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Abstract 

The cerebellum is gaining scientific attention as a key neural substrate of cognitive 
function; however, individual differences in the cerebellar organization have not yet 
been well studied. Individual differences in functional brain organization can be closely 
tied to individual differences in brain connectivity. ‘Connectome Fingerprinting’ is a 
modeling approach that predicts an individual’s brain activity from their connectome. 
Here, we extend ‘Connectome Fingerprinting’ (CF) to the cerebellum. We examined 
functional MRI data from 160 subjects (98 females) of the Human Connectome Project 
young adult dataset. For each of seven cognitive task paradigms, we constructed CF 
models from task activation maps and resting-state cortico-cerebellar functional 
connectomes, using a set of training subjects. For each model, we then predicted task 
activation in novel individual subjects, using their resting-state functional connectomes. 
In each cognitive paradigm, the CF models predicted individual subject cerebellar 
activity patterns with significantly greater precision than did predictions from the group 
average task activation. Examination of the CF models revealed that the cortico-
cerebellar connections that carried the most information were those made with the non-
motor portions of the cerebral cortex. These results demonstrate that the fine-scale 
functional connectivity between the cerebral cortex and cerebellum carries important 
information about individual differences in cerebellar functional organization. 
Additionally, CF modeling may be useful in the examination of patients with cerebellar 
dysfunction, since model predictions require only resting-state fMRI data which is more 
easily obtained than task fMRI. 

 



Highlights 
● Cortico-cerebellar functional connectivity predicts cerebellar task activation 

● A single connectome measurement can predict across a multi-domain task battery 

● Predictions are unique to the individual 

● Findings indicate highly specific cerebellar contributions to cognition 

  



Introduction 
Although traditionally viewed primarily as a motor structure, the cerebellum supports a 
broad range of non-motor cognitive functions, including working memory, attention, 
language and higher cognition (Stoodley & Schmahmann, 2009; Schmahmann, 2019; 
Brissenden et al., 2021). This view is supported both by studies of patients with 
cerebellar damage and by neuroimaging studies of healthy subjects (Schmahmann et 
al., 2007; Stoodley et al., 2012). Brain networks supporting specific forms of cognition 
comprise not only cerebral cortical regions but also cerebellar regions and there’s 
growing evidence for fine-scale cerebro-cerebellar connectivity (Buckner et al., 2011; 
Liu et al., 2022). The fact that cerebro-cerebellar anatomical connectivity is not 
monosynaptic complicates the analysis of these networks. Descending connections 
pass via the pons and ascending connections pass via the thalamus (Steriade & Llinas, 
1988). Resting-state functional MRI has proven an effective way to reveal multisynaptic 
brain networks generally (Gordon et al., 2017) and cerebro-cerebellar networks more 
specifically (Guell et al., 2018). 
  
Most neuroimaging investigations of cerebellar function have been focused on group-
level analyses. In contrast, individual subject-level analysis offers a number of potential 
advantages, including the ability to observe fine-scale structures that would be blurred 
by group analyses and the ability to develop precision medicine diagnostics for 
individual patients (Braga & Buckner, 2017; Somers et al., 2021; Xue et al., 2021). Here 
we extend individual subject research methods that have been applied to the cerebral 
cortex to the cerebellum. 
  
Passingham and colleagues proposed that each cortical area has a unique pattern of 
cortico-cortical connections – a ‘connectional fingerprint’ – that could be used to 
functionally localize cortical areas in individuals (Mars et al., 2018). Multiple studies 
have utilized functional and structural connectivity measures to model an individual 
region’s connectivity fingerprints and use them to make functional network predictions 
(Tavor et al., 2016; Cole et al., 2016; Murty et al., 2020; King et al., 2023; Bernstein-
Eliav & Tavor, 2022). Connectome Fingerprinting (CF) is a computational neuroimaging 
technique that combines non-invasive connectome measurements to predict fine-scale 
functional brain organization in individual subjects (Osher et al., 2016; Saygin et al., 
2012; Tobyne et al., 2018). CF modeling approaches based on connectomes derived 
from structural or resting-state functional MRI have been successfully applied 
throughout the cerebral cortex; however, the cerebellum has received little attention to 
date. King et. al. (2023) utilized an activity flow method (Cole et al., 2016) to model 
cerebellar connectivity and relationship with cortical task activations. Connectome 
Fingerprinting predicts voxel-wise activations to a particular task from the resting state 
functional connectivity from voxels in a search space to regions in a parcellation 



scheme. Utilizing high-quality resting state data, we can predict with sufficient accuracy 
the activations in out-of-sample subjects (Tavor et al., 2016) even with low n datasets 
(Osher et al., 2019; Tobyne et al., 2018).  
  
We utilized task and resting-state fMRI data from the Human Connectome Project 
(HCP) young adult dataset (n=160). The HCP examined seven cognitive paradigms that 
probed a diverse set of brain networks: Working memory, Gambling, Motor, Language, 
Social, Relational, and Emotion. Each task compared an experimental condition with a 
control condition as well as a fixation baseline condition. The Working Memory and 
Motor tasks also included sub-conditions, with different categories of visual images in 
the working memory task and different body parts in the motor task. Group-level task 
activation in these paradigms is reported by Barch et al. (2013). We developed CF 
models for the seven cognitive tasks and compared our performance with group 
average activation as the baseline. We then compared the specificity of an individual’s 
connectome in its functional activation prediction compared to other subjects and group-
averaged connectomes. We also analyzed the degree to which cerebellar-cortical 
connectivity varies across the cerebellum. We further examined the relationship 
between model coefficients and cortical activations to highlight the close link between 
cerebellar-cortical function and connectivity. 
 
 
 
 

Methods 

Dataset 
We used 160 subjects (98 females) from the Human Connectome Project Young Adult 
(HCP-YA) dataset (Van Essen et al., 2012) who had acquisitions on both 3T and 7T 
scanners. The HCP Young Adult initiative collected high-quality structural, resting state 
and task data on a population of young adults (ages 22-35 years). 
The study was approved by the Washington University Institutional Review Board and 
all subjects gave informed consent for the study. The dataset is available to all on 
HCP’s data management platform, ConnectomeDB (https://db.humanconnectome.org). 
A custom Siemens CONNECTOM Skyra MRI Scanner was used. All subjects 
participated in two days of scanning which included a high-resolution structural T1 
weighted MRI, T2 weighted MRI. During resting-state scans (32 channel head coil, 
voxel resolution = 2 mm isotropic, in-plane FOV = 208 × 180 mm, 72 slices, multi-band 
factor 8, TR = 720 ms,  TE = 33.1 ms, 1200 TRs) subjects were asked to visually fixate 
on a cross and do nothing, in particular. Resting-state scans consisted of four runs of 



fifteen minutes each collected in two separate sessions. The task runs had the same 
acquisition protocol but differed in the number of frames (TRs). Half of the task and 
resting-state runs were acquired using left-to-right phase encoding and another half on 
the right-to-left phase encoding. 
 
The subjects participated in seven task experiments in the scanner that examined 
different aspects of cognition: Working memory, Gambling, Motor, Language, Social, 
Relational, Emotion. We describe the tasks briefly here, details can be found in the 
initial HCP task fMRI paper (Barch et al., 2013). The working memory task involved a ‘2-
back’ working memory condition in which subjects were asked to report when the 
current stimulus matched a stimulus presented two trials prior, and a ‘0-back’ control 
condition in which subjects were asked to report when a presented stimulus matched a 
target that was presented at the start of the block. Stimuli were presented in blocks and 
across blocks four different categories of images were employed: places, faces, body 
parts and tools. There were 8 task blocks per run, half of the blocks were 2-back, and 
the other half were 0-back. Task blocks were 25 s long with 10 trials per block. There 
were also 4 fixation blocks per run of 15 s each. Total 405 TRs were collected per run. 
We explored the 2-back vs 0-back, 2-back body, 2-back face, 2-back place, and 2-back 
tool contrasts. 
 
The Gambling task compared reward processing to loss processing using a shared task 
paradigm; the key manipulation was to covertly change the odds of rewards/losses 
across blocks of trials. On each trial, a mystery card was presented on the screen and 
the subject had to guess if the number on the card would be higher or lower than five. 
Reward blocks had mostly reward trials (6 out of 8, and others could be loss and/or 
neutral trials) whereas Punish blocks had mostly loss trials (6 out of 8, and others could 
be neutral and/or reward trials). Each run had two blocks of reward and punish 28 s 
each and four fixation blocks of 15 s each and a total of 253 TRs. We explored the 
Punish-Fix and Reward-Fix conditions. 
 
The Motor task involved visual cues where subjects were asked to tap either their left or 
right fingers, squeeze either their left or right toes or move the tongue. The blocks were 
12 s long and each run consisted of two blocks for each movement (Left Hand, Right 
Hand, Left Foot, Right Foot, and Tongue) and three fixation blocks of 15 s each. Total of 
284 TRs per run were collected. We analyzed the vs average (AVG) contrasts for all the 
five conditions (LH, LH, RF, RH, T) where the average included all other than selected 
condition. The Language task consisted of four ‘story’ task and four ‘math’ task blocks 
per run. The ‘story’ condition blocks consisted of stories from Aesop’s fables and 
subjects were asked to respond via button press to a 2-alternative forced-choice (2-
AFC) question about the topic of the story. The ‘math’ condition blocks consisted of 



auditory presentations of math calculations like “eight plus five equals” followed by two 
possible answers; subjects reported the correct answer via button press. The duration 
of the blocks were fixed at 30 s, some subjects performed the math computations faster, 
so they were given additional trials to match the duration of the story blocks. Each run 
was 316 TRs long and we studied the Math vs Story contrast for the language task. 
 
The Social Cognition Task or ‘Theory of Mind’ task incorporated video clips of 20 s long 
of simple shapes (e.g., squares, circles and triangles) that moved across a background. 
In the ‘Theory of Mind’ condition, the coordinated movement of the shapes suggested a 
social interaction between them, while in the control condition the shapes moved about 
independently of one another. Each run had five video blocks, a total of ten across the 
two runs (five for each of the two conditions). The subjects were asked to report 
whether they observed a social interaction, no interaction or were not sure about the 
interaction. Each run had 5 fixation blocks of 15 s each and a total of 274 TRs and we 
examined the Random vs Fix and Theory of Mind vs Fix conditions.  
 
The Relational Task asked subjects to infer a relationship between two objects and to 
examine that relationship between another pair of objects. Stimuli consisted of shapes 
that had a certain texture. In the relational task condition, subjects had to compare two 
shapes on the top of the screen with each other to determine whether they differed in 
shape or texture and then report whether the two shapes on the bottom also differed 
along the same dimension or not. In the matching control condition, subjects were 
presented with two shapes on the top, one on the bottom and a cue (shape or texture) 
and were asked to report whether the bottom shape was similar to either of the top 
shapes in the cued dimension. Each run had three relational and three match blocks 
that lasted 18 s and three fixation blocks of 16 s length, with a total of 232 TRs and we 
analyzed the Match vs fix and Relational vs fix contrasts.  
 
The Emotion task asked subjects to examine facial expressions of emotions. Stimuli 
consisted of faces (experimental) and shapes (control) conditions during which subjects 
were presented with two faces/shapes on the top and one face/shape on the bottom 
and they were ask to match the bottom face/shape with the top ones and report via 
button press which top face/shape was similar to the bottom one. The faces had either 
angry or fearful expressions. Each run consisted of three faces and three shapes blocks 
(all 18 s long) and had a total of 176 TRs and we looked over the Faces vs fix and 
Shapes vs fix contrasts.  
 
 



Preprocessing 
We used the minimally preprocessed data as available on the HCP database portal. 
The preprocessing pipeline (Glasser et al., 2013) included corrections for artifact, 
gradient non-linearity correction, motion and EPI distortion followed by temporal 
denoising and bandpass filtering (0.001 - 0.008 Hz). The structural and functional 
images were registered from the native space to MNI space. Freesurfer pipeline (Dale 
et al., 1999; Fischl et al., 1999) was used to convert it to the 168k fsaverage space 
which was converted to the 32k CIFTI “grayordinates” space which included the two 
cerebral hemispheres as surfaces and the subcortical regions as volumes registered in 
the MNI 2mm space. The data was spatially smoothed with a 2 mm FWHM. We 
demeaned the resting state data across time within each voxel/vertex and regressed out 
the mean global signal and concatenated the four runs resulting in 60 minutes (total 
4800 TRs) of resting-state data per subject. 

GLM Analysis 
General Linear Model analysis of the task data was performed using modified scripts 
(https://github.com/Washington-University/HCPpipelines/tree/master/TaskfMRIAnalysis) 
as made available by the HCP consortium (Barch et al., 2013; Glasser et al., 2016). The 
already analyzed files were downloaded from the analysis section from the HCP 
database (db.humanconnectome.org). The modified scripts run the FSL-based GLM 
analysis (Jenkinson et al., 2012)  on each voxel/vertex in the 91k grayordinates space. 
Block-based analysis was performed using a double gamma HRF as implemented in 
FSL. The contrasts used for various tasks are Working Memory (2BK_BODY vs. fix, 
2BK_FACE vs. fix, 2BK_PLACE vs. fix, 2BK_TOOL vs. fix, 2BK vs. 0BK), Gambling 
(PUNISH vs. fix, REWARD vs. fix), Motor (LH vs AVG, RH vs. AVG, LF vs. AVG, RF vs. 
AVG, T vs. AVG), Language (MATH vs. STORY), Social (Theory of Mind/TOM vs. fix, 
RANDOM vs. fix), Relational (REL vs. fix, MATCH vs. fix), Emotion (FACES vs. fix, 
SHAPES vs. fix).  

Connectivity Fingerprinting 
We used the connectivity fingerprinting (CF) approach using resting-state functional 
connectivity data as described in (Tobyne et al., 2018), illustrated in Figure 1. First, we 
divided our 160 subjects into test and training datasets consisting of 80 subjects in each 
group. Prior work demonstrates that as few as 20 training subjects can be sufficient for 
strong model performance, as the number of fMRI task time points in the training set is 
generally more important than the number of subjects (Tik et al., 2023). For a selected 
contrast, we computed the cerebellar search space as the region with the absolute 
value of the group average activations greater than 1.5 t-statistic value. Based on the 
criteria for the selection of search space, few contrasts (Gambling: PUNISH vs 
REWARD; Language: MATH, STORY; Social: TOM vs RANDOM; Relational MATCH 



vs REL; Emotion: FACES vs SHAPES) did not have task-relevant voxels and were not 
included further in the analysis. For all voxels in the selected search space, we created 
a resting-state functional connectivity matrix of dimensions voxels x ROIs where the 
ROIs were defined in the cortex using the Schaefer 400 atlas (Schaefer et al., 2017). 
The resting-state time series data were averaged in the ROIs and then the functional 
connectivity matrix was computed. We appended the connectivity matrices across the 
training dataset, and we created a composite predictor matrix. The target matrix was 
composed of the task activations across the search space appended across the 
subjects in the training dataset. Using a k-fold (10 folds) ridge regression method as 
implemented in Scikit Learn (Pedregosa et al., 2011), we trained a model separately for 
each contrast. The k-folds were used to optimize the hyperparameter in the ridge 
regression. Using the trained model, we applied our model to the test dataset and 
computed the prediction accuracy as the Pearson correlation between the actual and 
the predicted activations. We plotted the predicted activations back on the search space 
for visualization. To compare the performance of the CF model, we used group average 
(GroupAvg) as the control model where group averaged t statistic values in the search 
space for the selected task contrast were taken as the prediction for all subjects and 
compared with the actual activations. We compared the prediction accuracies using the 
CF and the GroupAvg model using paired t-test as defined in the statsmodels python 
package (Seabold & Perktold, 2010). Visualizations in the SUIT space (Diedrichsen & 
Zotow, 2015) were done using the SUITpy python toolbox 
(https://github.com/diedrichsenlab/SUITPy/releases/latest). To determine if the 
individual’s functional connectivity was better suited for within-subject prediction, we 
used the subject’s own functional connectivity (self) and other subjects’ connectivity 
(others) to predict and compare with the subject’s activation. We also used the group 
average functional connectivity to make individual predictions.  
 
We also analyzed the variance of task activity explained by individual subjects’ 
activations and group activations by taking the square of the Pearson correlation 
between group averaged activations and our subjects' individualized task activations. 
We also computed the across-subjects variance in the cerebellar-cortical connectivity 
using the approach by Marek and colleagues (Marek et al., 2018) where we computed 
the Fisher-z transformation across all cerebellar-cortical connectivity followed by 
computing the variance across subjects, averaging it across parcels and then taking a 
square root to get standard deviation values.  
  
The coefficients from the trained model for each contrast were correlated with task 
activations averaged across the ROIs and subjects to analyze what predictors 
contributed more to the predictions. The analysis codes were written in Python and 



used Numpy (Harris et al., 2020), Scipy (Virtanen et al., 2020) and Nipy 
(https://github.com/nipy/nipy) toolboxes.  

 

Results 

Prediction accuracy for CF models across various tasks 
We analyzed the ability to use resting-state functional connectivity to predict task 
activations in the human cerebellum using the HCP dataset. We used the Connectome 
Fingerprinting approach as demonstrated in Figure 1. We evaluated the quality of 
predictions by examining the correlation between the actual pattern and the predicted 
pattern of t-statistics across the cerebellar search space. We also examined the 
correlation between each subject’s actual pattern of activation and the group-averaged 
pattern of activation for the selected task contrast. This analysis was performed for all 
subjects of the test set and performance was compared between the CF and group-
average predictions. 
 
The Working Memory task visually presented sequences of images and asked subjects 
to report when a stimulus matched the stimulus shown two stimuli before (2-back task). 
This was contrasted with a 0-back condition in which subjects were asked to report 
when a stimulus match a target stimulus presented prior to the block of trials. The 2-
back condition created greater working memory demands (e.g., encoding, manipulation) 
than did the 0-back condition. The CF model predicted individual subject activations in 
the cerebellum in the 2-back vs. 0-back (2BK_0BK, Figure 2) contrast significantly 
better than did the group average approach (CF Mean accuracy=0.30, SD=0.17; 
GroupAvg M=0.08, SD=0.05; paired t test - t(79) = 12.00, p<0.0001, Cohen's d=1.78). 
The 2-back trials were presented in blocks in which the stimuli were restricted to one of 
four categories of images: bodies, faces, places, or tools. These sub-conditions were 
each contrasted with the fixation condition, yielding four additional contrasts of interest: 
2BK_BODY, 2BK_FACE, 2BK_PLACE, and 2BK_TOOL. For each of these contrasts 
the CF models outperformed the group average predictions: 2BK_BODY (CF M=0.30, 
SD=0.13; GroupAvg M=0.15, SD=0.06; t(79) = 10.44, p<0.0001, Cohen's d=1.52); 
2BK_FACE (CF M=0.30, SD=0.13; GroupAvg M=0.10, SD=0.06; t(79) = 12.90, 
p<0.0001, Cohen's d=1.52); 2BK_PLACE (CF M=0.32, SD=0.12; GroupAvg M=0.11, 
SD=0.06; t(79) = 15.48, p<0.0001, Cohen's d=2.26), 2BK_TOOL (CF M=0.31, SD=0.13; 
GroupAvg M=0.14, SD=0.05; t(79) = 12.01, p<0.0001, Cohen's d=1.73). 
 
The Gambling task involved reward based processing and the CF model made 
significant predictions (Figure 3) for the PUNISH (CF (M=0.34, SD=0.15), GroupAvg 



(M=0.18, SD=0.07); t(79) = 9.49, p<0.0001, Cohen's d=1.41) and REWARD 
(CF(M=0.36,SD=0.12), GroupAvg(M=0.08,SD=0.06);  t(79) = 18.55, p<0.0001, Cohen's 
d=2.75) conditions. 
 
In the Motor task, subjects had to tap their left hand, left foot, right hand, right foot and 
tongue during different task blocks. The overall prediction accuracy for the CF models 
(Figure 4) was lower for the motor contrasts but significant for Left Hand - Average 
(CF(M=0.16, SD=0.15) GroupAvg (M=0.07, SD=0.11); t(79) = 5.07, p<0.001, Cohen's 
d=0.68), RIght Hand - Average (CF(M=0.22, SD=0.17), GroupAvg(M=0.08,SD=0.09); 
t(79) = 7.41, p<0.0001, Cohen's d=1.08), Right Foot - Average ( CF(M=0.15, SD=0.15), 
GroupAvg(M=0.05, SD=0.12); t(79) = 4.77, p<0.001, Cohen's d=0.69) but not significant 
for Left Foot - Average (CF (M=0.09, SD=0.12), GroupAvg(M=0.07, SD=0.14); t(79) = 
1.37, p=0.175, Cohen's d=0.18) and Tongue - Average (CF(M=0.39,SD=0.15) 
GroupAvg(M=0.41,SD=0.13); t(79) = -1.66, p=0.100, Cohen's d=-0.12). In the motor 
task, the average is computed across all conditions except the contrasted condition, for 
example, in the Left Hand - Average contrast, the average is computed over the right 
hand, left and right foot and tongue. 
 
In the language task, subjects had to either perform mental calculations in the math 
condition or comprehend a story and answer true or false questions related to the story. 
In the MATH-STORY contrast, the prediction accuracy (Figure 5)  was high for the CF 
models as well as Group average models (CF(M=0.68, SD=0.14), GroupAvg(M=0.68, 
SD=0.08) but there was no statistical difference between the two models (t(79) = 0.21, 
p=0.836, Cohen's d=0.03) 
 
The social task involved looking at the interactions between different shapes moving 
and making a sense of whether the interaction was random or involved the theory of 
mind (TOM) condition. The prediction accuracy for CF model (Figure 6) was significantly 
higher as compared to Group Average model for both random (CF(M=0.34, SD=0.12), 
GroupAvg(M=0.11, SD=0.09); t(79) = 15.56, p<0.0001, Cohen's d=2.13) and TOM 
(CF(M=0.36, SD=0.12), GroupAvg(M=0.13, SD=0.08); t(79) = 15.69, p<0.0001, Cohen's 
d=2.21) conditions. In the relational task, subjects had to compare shapes or textures of 
objects presented on the screen to whether they related along a dimension or one 
object match the others along the cued dimension. The CF model (Figure 7) performed 
significantly better in both Match control (CF(M=0.37, SD=0.11), GroupAvg(M=0.14, 
SD=0.07); t(79) = 17.82, p<0.0001, Cohen's d=2.49) and Relational (CF(M=0.40, 
SD=0.13), GroupAvg(M=0.19, SD=0.06); t(79) = 15.08, p<0.0001, Cohen's d=2.10) 
conditions.  
 
 



The emotion task involved looking at faces with affect and non-affective shapes to elicit 
and observe the neural responses to emotions. Though the number of task-relevant 
voxels were less in the cerebellum for the emotion task, CF model (Figure 8) performed 
significantly better than the Group average model for both the Faces (CF(M=0.35, 
SD=0.16), GroupAvg(M=0.03, SD=0.14); t(79) = 14.20, p<0.0001, Cohen's d=2.19) and 
Shapes conditions (CF(M=0.35, SD=0.34), GroupAvg(M=0.16, SD=0.34); t(79) = 3.48, 
p<0.001, Cohen's d=0.54). The Faces-Shapes contrast did not have task-relevant 
voxels so was not included in the prediction analysis. 
 
We analyzed the effect of the number of training subjects required for optimal model 
building and found that beyond thirty subjects, our model performance plateaus (Figure 
S1). We also replicated these findings for all contrasts, examining an additional 78 
testing subjects (see Supplementary Material). We did not observe any significant 
differences (F(1,1097) = 2.8, p = 0.08) in model performance between the two test 
subject pools (Figures S2, S3) for any of the contrasts. 
 

Individual variability in connectivity drives predictions 
How does the subjects’ connectivity affect the predictions made through the CF model? 
We tested the prediction accuracy of the model using different subjects' resting-state 
functional connectivity (Figure 9, Figure S4) and compared if it was better than 
predictions made using subjects’ own functional connectivity which is represented along 
with the diagonal axis in Fig. 9. Using the subject’s own functional connectivity, the 
predictions across contrasts were higher (Table 1, Column 2) when compared to using 
other subjects’ connectivity (Table 1, Column 3). We found that for all such pairwise 
combinations possible for 80 subjects (6320), in more than 98% of combinations the 
subject’s connectivity made better predictions for the different contrasts in the working 
memory task (2BK_BODY- 98.03 %, 2BK_FACE 98.76 %, 2BK_PLACE 99.14 %, 
2BK_TOOL 0.98.37). The 2BK-0BK contrast had a reduced value of 93.24 %. The 
contrasts in the motor tasks had reduced performance within-subject connectivity vs 
across (LF-AVG 69.09%, LH-AVG 77.08 %, RF-AVG 76.37 %, RH-AVG 87.92 %, T-
AVG 89.81 %). The two conditions in the Gambling task also had a very high degree of 
within-subject connectivity performance (PUNISH - 97.92 %, REWARD - 98.98 %). We 
saw similar results with the Social task (RANDOM - 98.65 %, TOM 99.38 %) and the 
Relational task (MATCH  99.25 %, REL 98.97 %). The Emotion task shapes contrast 
did around 93.11 %, and Language MATH-STORY 92.86 %. The two-sided 
Kolmogorov-Smirnov statistic for all contrasts except MOTOR LF-AVG came out greater 
than 0.35, with all p < 10-10. 
 
 



 
There is a large amount of variability in the cerebellar-cortical connectivity across 
subjects as other studies have also suggested (Marek et al., 2018). We computed the 
Fisher-z transform of the correlation between connectivity between the cerebellum and 
the cortical parcels from the Schaefer 400 atlas. And then computed the variance 
across subjects followed by averaging across parcels resulting in a variance map. We 
plotted the across-subjects variance in Figure S9 and found that the cerebellar-cerebral 
connectivity varied most across the posterior parts of the cerebellum as earlier studies 
(Marek et al., 2018) have also shown. We found that for most task-relevant search 
spaces, the connectivity across subjects was weakly correlated (Table 1, Column 4). 
 
We can use subject-averaged functional connectivity to make predictions for a subject’s 
task activation and we found that for most contrast the mean prediction accuracy across 
the 80 test subjects was pretty low (Table 1, Column 5). The math-story contrast in the 
language task had strong prediction using subject-averaged functional connectivity but 
that was still weaker than individual subjects’ predictions (t(79)=-9.7389, p<0.0001) but 
for the tongue-avg contrast in the motor task had stronger predictions using group 
average functional connectivity than individual connectivity (t(79)=6.4604, p<0.0001) 
suggesting that there is less variability in the tongue regions’ cerebellar-cerebral 
connectivity which is comparable to the CF and GroupAvg predictions discussed in the 
earlier section. 
 
Table 1: Analysing the averaged model prediction using one’s own connectivity, other 
subjects’ connectivity and group-averaged connectivity. And looking at cross-subject 
correlations which are computed using the correlation between the cerebellar cortical 
connectivity across subjects. 

 

Task_Contrast 

Averaged 
prediction 
using self-

connectivity (r) 

Averaged 
prediction 
using others' 
connectivity 

(r) 
Cross-Subject 
Correlations (r) 

Averaged 
prediction using 
group averaged 
connectivity (r) 

WM_2BK_BODY 0.3 0.02 
M=0.15, 
SD=0.06 M=0.07, SD=0.09 

WM_2BK_FACE 0.3 0.02 
M=0.15, 
SD=0.06 M=0.06, SD=0.08 

WM_2BK_PLACE 0.32 0.02 
M=0.15, 
SD=0.06 M=0.07, SD=0.08 

WM_2BK_TOOL 0.31 0.03 
M=0.14, 
SD=0.06 M=0.08, SD=0.08 



WM_2BK-0BK 0.3 0.01 
M=0.18, 
SD=0.07 M=0.03, SD=0.11 

GAMBLING_PUNISH 0.34 0.03 
M=0.15, 
SD=0.07 M=0.09, SD=0.09 

GAMBLING_REWARD 0.36 0.02 
M=0.15, 
SD=0.07 M=0.06, SD=0.09 

MOTOR_LF-AVG 0.09 0.01 
M=0.02, 
SD=0.05 M=0.07, SD=0.11 

MOTOR_LH-AVG 0.16 0.02 
M=0.05, 
SD=0.06 M=0.10, SD=0.13 

MOTOR_RF-AVG 0.15 0.02 
M=0.03, 
SD=0.05 M=0.07, SD=0.13 

MOTOR_RH-AVG 0.22 0 
M=0.05, 
SD=0.06 M=0.02, SD=0.17 

MOTOR_T-AVG 0.39 0.22 
M=0.08, 
SD=0.05 M=0.50, SD=0.12 

LANGUAGE_MATH-
STORY 0.68 0.43 

M=0.18, 
SD=0.07 M=0.60, SD=0.12 

SOCIAL_RANDOM 0.34 0.03 
M=0.14, 
SD=0.06 M=0.09, SD=0.07 

SOCIAL_TOM 0.36 0.04 
M=0.15, 
SD=0.06 M=0.14, SD=0.08 

RELATIONAL_MATCH 0.37 0.03 
M=0.14, 
SD=0.06 M=0.11, SD=0.09 

RELATIONAL_REL 0.4 0.04 
M=0.15, 
SD=0.06 M=0.14, SD=0.10 

EMOTION_FACES 0.35 0 
M=0.15, 
SD=0.11 M=0.00, SD=0.18 

EMOTION_SHAPES 0.35 0.02 
M=0.15, 
SD=0.20 M=0.08, SD=0.31 

 
We analyzed the variance of cerebellar activity patterns across various tasks and task 
contrasts to determine how much could be explained by the group-averaged map as 
compared to the individual map. We found that group average maps can explain about 
2-10% of the variance (Table 2) and the rest is explained by the individual maps 
suggesting a large amount of individual variability. The tongue and the math-story 
contrast from the language task had the most amount of variance explainable by the 
group map. 
 



Table 2: Variance of individualized cerebellar task activations explained by group 
average map. 
 

Task_Contrast 
Group Average Map 
Variance (%age) 

WM_2BK_BODY M=0.02, SD=0.01 

WM_2BK_FACE M=0.02, SD=0.02 

WM_2BK_PLACE M=0.02, SD=0.02 

WM_2BK_TOOL M=0.02, SD=0.02 

WM_2BK-0BK M=0.02, SD=0.02 

GAMBLING_PUNISH M=0.02, SD=0.02 

GAMBLING_REWARD M=0.02, SD=0.02 

MOTOR_LF-AVG M=0.06, SD=0.06 

MOTOR_LH-AVG M=0.05, SD=0.04 

MOTOR_RF-AVG M=0.05, SD=0.05 

MOTOR_RH-AVG M=0.04, SD=0.03 

MOTOR_T-AVG M=0.28, SD=0.12 

LANGUAGE_MATH-STORY M=0.39, SD=0.13 

SOCIAL_RANDOM M=0.04, SD=0.03 

SOCIAL_TOM M=0.06, SD=0.04 

RELATIONAL_MATCH M=0.04, SD=0.03 

RELATIONAL_REL M=0.05, SD=0.03 

EMOTION_FACES M=0.03, SD=0.05 

EMOTION_SHAPES M=0.14, SD=0.18 
 

Relationship between model coefficients and cortical task activations 
 
Earlier studies (Osher et al., 2019) have shown that the model coefficients are similar to 
group averaged task activations. We saw similar behaviour but with coefficients for 
predictions in the cerebellum and group averaged task activations in the cortex which 
were not part of the model dataset. For the contrasts in the Working Memory task, we 
saw a significant correlation (WM_2BK_BODY: r(398) = 0.62, p<0.0001; 
WM_2BK_FACE: r(398) = 0.66, p<0.0001; WM_2BK_PLACE: r(398) = 0.68, p<0.0001; 
WM_2BK_TOOL: r(398) = 0.65, p<0.0001; WM_2BK-0BK: r(398) = 0.70, p<0.0001) 



between the task activations and ridge regression model coefficients as can be seen in 
Figure 10 and Figure S5. We saw similar correlations (Figure S7, S8) for Social 
(RANDOM: r(398) = 0.46, p<0.0001; TOM: r(398) = 0.38, p<0.001), Relational (MATCH 
r(398) = 0.44, p<0.0001), Language (MATH-STORY: r(398) = 0.47, p<0.0001) and 
Gambling tasks (PUNISH: r(398) = 0.54, p<0.0001; REWARD: r(398) = 0.33, p<0.001). 
The activations in the motor regions and coefficients were proportional (Figure S6) but 
the correlations between coefficients and averaged task activations across the whole 
brain did not come out to be significant. We did not see correlations between the task 
activations and coefficients for Emotion tasks.  
 
 
 

Discussion 
There has been an impetus for predictive modeling of the brain activations during 
cognitive and somatomotor tasks using resting-state functional connectivity (Cole et al., 
2016; Tavor et al., 2016; Tobyne et al., 2018; Osher et al., 2019; Bernstein-Eliav & 
Tavor, 2022). We extended the connectivity fingerprinting based approach for the 
cerebellum and found that models created using resting-state connectivity with the 
cerebral cortex perform much better than only group average based predictions across 
tasks related to various cognitive modalities like working memory, emotion, theory of 
mind, gambling, relational and motor task. Our work extends the current literature on the 
association between connectivity between brain regions and the function of brain 
regions to the cerebellum which for a long time was thought only to respond to motor 
movements. Recent studies have found cerebellar involvement in attention (Brissenden 
et al., 2016), working memory (Brissenden et al., 2018, 2021), emotion and other higher 
cognitive functions (Schmahmann, 1996, 2010, 2019; Stoodley et al., 2012) 
 
We found out that our Connectome Fingerprinting approach predicts task activations 
significantly better than the group averaged activations in all seven tasks of the HCP 
dataset. As we limited our search space to task-relevant voxels, some of the contrasts 
like Language-Math, Language-Story, Gambling_Punish-Reward, Emotion_Faces-
Shapes, Social_TOM-Random, Relational_Match-Rel did not have sufficient activation 
in the cerebellum to be included in the analysis. It could be due to a lack of differences 
in the activation of these conditions in the cerebellum or across the brain. Our model 
also did not outperform statistically for the group average model Motor_Tongue-
Average, Language_Math-Story and Emotion_Shapes-fix. 
 
 
 



Earlier studies have shown the link between the coefficients of CF models trained on 
cortical search spaces and cortical task activations (Osher et al., 2019). Here, we see 
that the coefficients of our models based on search spaces defined in the cerebellum 
were similar to task activations in the cortical regions suggesting a close link between 
connectivity and function in the cerebellum. Interestingly, we did not see a similar trend 
for the emotion tasks which could be due to the small number of voxels that were task-
relevant in the cerebellum and hence selected in the search space suggesting that the 
emotion representations in the cerebellum are not strong. The coefficients for motor 
areas in the cortex were proportional to the cortical motor area activation but not across 
all the cortical regions. We also saw the specificity of the individual subjects’ functional 
connectivity in predicting their own activations which other papers have mentioned 
earlier (Osher et al., 2019; Tavor et al., 2016; Tobyne et al., 2018) suggesting that the 
cerebellar-cortical connectivity is also individual specific. 
 
Studies have used other approaches to associate connectivity and function. The activity 
flow model proposed by Cole and colleagues (Cole et al., 2016) models the activity 
within a region as the accumulation of activity across other regions weighted by their 
connectivity. King et. al. (2023) utilized this approach to model the cerebellar activity 
using cortical connectivity in the Multi Domain Task Battery (MDTB) dataset (King et al., 
2019). There are differences between the approaches, whereas we identified 
associations between a region’s connectivity and function for a selected task contrast, 
King and colleagues integrated information across multiple tasks from the cortex and 
weighted it by different connectivity weights to predict activations in the cortex. We did 
not explicitly use the cortical activation data in the modeling but our model coefficients 
incidentally exhibit proportionality to cortical activity. Both studies highlight the 
organizational structure of the cerebellum in complementary ways. CF modeling has the 
advantage that cross-subject generalization is built into the model and we don’t require 
a separate dataset for model validation.  
 
Activity flow methods have demonstrated the disruption of connectivity and activation 
with various cognitive disorders (Hearne et al., 2021; Tik et al., 2021). Models trained to 
associate connectivity and function can allow for the prediction of individual-specific 
functional activations for populations like subjects with ADHD, Alzheimer's, Dementia or 
other disorders who can not perform different cognitive tasks in the scanner. It can also 
allow us to predict task-specific regions in clinical populations with brain tumors which 
can aid in better presurgical planning (Parker Jones et al., 2017; Tie et al., 2014; Yao et 
al., 2021).   
 
There are a few limitations of the work namely the task design in the HCP protocol. 
HCP dataset is of very high quality in terms of the acquisition using the latest MR 



sequences and multi-modal registration approaches like the Multi-Surface Matching 
(MSM) (Robinson et al., 2014). But the tasks may not be the best to elicit responses for 
a particular cognitive modality. The data was also limited by the number of runs per 
modality. Studies have shown that the more amount of data per subject improves the 
reliability and the robustness of the results (Braga & Buckner, 2017; Gilmore et al., 
2021; Gordon et al., 2017; Somers et al., 2021; Xue et al., 2021). The field has been 
termed deep imaging (Gratton & Braga, 2021). We had a large amount of resting-state 
data per subject but fewer runs of task data per subject which could have resulted in 
weaker models overall. Our current approach was limited to regularized regression 
models which perform better than ordinary least squares models (Tobyne et al., 2018) 
but there might be better performing non-linear models which would require further 
exploration in future studies.  
 
Our current paper focused on the tasks in the HCP dataset. We could extend our 
approach to different datasets which have more focused runs per subject in a specific 
cognitive modality. We can also perform cross-scanner predictions by training on deep 
imaging subjects and testing them on studies with large cohorts. The combination of 
models trained on different tasks for the same cognitive modality requires more in-depth 
research.  
 

Acknowledgements 
We’d like to acknowledge NSF Grant BCS-1829394 for their gracious support of the 
project. 

Code/Data Availability 
Human Connectome Project dataset is available on db.humanconnectome.org 
Codes are available on request to the authors. 
 



Figures 
 

 
Figure 1: Connectome Fingerprinting Method: We compute the task activations in the 
cerebellum for a given task and estimate the search space with task-relevant voxels. Then, we 
create a functional connectivity matrix from the voxels in the search space to cortical parcels 
defined by a parcellation scheme (here, Schaefer 400 atlas). The connectivity matrices are 
appended across subjects in the training dataset to create the predictor matrix X. The task 
activations in the cerebellar search space are appended across training dataset subjects to 
create the target matrix Y. We then train a ridge regression model with a k-fold cross-validation 
scheme. The trained model is used to predict activations in the test dataset and the 



performance is analyzed across the task. The process is repeated for relevant contrasts across 
the seven tasks of the Human Connectome Project dataset. 
 

 
 
Figure 2: Working memory task predictions. a) Predictions using the CF model (middle panel) 
and control Group Average model (right panel) for the working memory 2 back vs 0 back 
contrast. The left panel depicts the actual task activations visualized on the SUIT surface space. 
b) Prediction accuracy computed as the Pearson correlation coefficient between the predicted 
and actual activations for the test dataset in the search space for the five contrasts in the 
working memory task: 2 back Body, 2 back faces, 2 back places, 2 back tools and 2 back vs 0 
back. Asterisk depicts statistically significant differences between the prediction accuracies of 
the two model types. 
 

 
 
Figure 3: Gambling task predictions. a) Predictions using the CF model (middle panel) and 
control Group Average model (right panel) for the gambling task punish condition. The left panel 
depicts the actual task activations. b) Prediction accuracies for the two conditions in the 
gambling task: Punish (mostly loss trials) and Reward (mostly gain trials). Asterisk depicts 
statistically significant differences between the prediction accuracies of the two model types. 
 
 
 
 



 
 
Figure 4: Motor task predictions. a) Predictions using the CF model (middle panel) and control 
Group Average model (right panel) for the motor task right hand vs average contrast. The left 
panel depicts the actual task activations. b) In this task subject tapped left and right hand and 
toes and tongue during a block-based paradigm. Average here refers to average across all 
except the contrasted one. Prediction accuracies for the five contrasts in the motor task: Left 
Foot vs Average (LF-AVG), Left Hand vs Average (LH-AVG), Right Foot vs Average (RF-AVG), 
Right Hand vs Average (RH-AVG) and Tongue vs Average (T-AVG). Asterisk depicts 
statistically significant differences between the prediction accuracies of the two model types. 
 

 
 
Figure 5: Language task predictions. a) Predictions using the CF model (middle panel) and 
control Group Average model (right panel) for the language task math vs story contrast. The left 
panel depicts the actual task activations visualized on the SUIT surface space. b) Prediction 
accuracy across all subjects using the CF and Group Average control model in the math vs 
story contrast for the language task where subjects either solve a simple math audio question 
presented or understand the premise of a short story from Aesop’s fables. Asterisk depicts 
statistically significant differences between the prediction accuracies of the two model types. 
 



 
 
Figure 6: Social task predictions. a) Predictions using the CF model (middle panel) and control 
Group Average model (right panel) for the social task theory of mind (TOM) condition. The left 
panel depicts the actual task activations visualized on the SUIT surface space. b) Prediction 
accuracies across the two model types for all subjects in the random condition where objects on 
the screen moved randomly or the Theory of Mind (TOM) condition where the objects appeared 
to have social interaction. Asterisk depicts statistically significant differences between the 
prediction accuracies of the two model types. 
 

 
 
Figure 7: Relational task predictions. a) Predictions using the CF model (middle panel) and 
control Group Average model (right panel) for the relational task where subjects had to match or 
compare objects that differed along the dimension of shape or texture. The left panel depicts the 
actual task activations visualized on the SUIT surface space. b) Prediction accuracies across all 
subjects in the test dataset compared across the two model types for the match and relational 
conditions. Asterisk depicts statistically significant differences between the prediction accuracies 
of the two model types. 
 
 



 
Figure 8: Emotion task Predictions. a) Predictions using the CF model (middle panel) and 
control Group Average model (right panel) for the emotion task where subjects had to compare 
either affective faces or shapes. The left panel depicts the actual task activations visualized on 
the SUIT surface space. b) A very small area of the cerebellum had task-relevant voxels for the 
emotion task conditions. Prediction accuracies across the test subjects for the two conditions: 
faces and shapes across the two model types: CF and Group Average. Asterisk depicts 
statistically significant differences between the prediction accuracies of the two model types. 
 

 
 
Figure 9: Cross connectivity predictions: a) Predicting a subject’s task activation using their own 
functional connectivity (self) or other subjects’ functional connectivity (others) for the working 
memory task contrasts. We see a diagonal heavy matrix which suggests that there are 
individual differences in cerebellar-cortical connectivity which is better at predicting the subject’s 
own task activations as compared to other subjects. b) The distribution of the accuracies made 
using other subjects’ connectivity (blue) compared to self connectivity (orange). 
 
 



 
Figure 10: Coefficients and task activations: a) Looking at the distribution of the model 
coefficients across the cortex for the working memory task (2 back vs 0 back contrast). Group 
averaged task activations on the left panel and the model coefficients on the right panel. The 
coefficients have a similar distribution to cortical task activations which were not a part of the 
training or test model suggesting a link between cerebellar-cortical connectivity and cortical 
functional areas. b) Scatter plot of model coefficients vs activations (GLM t statistic) for the five 
contrasts from the working memory task: 2 back body, 2 back faces, 2 back places, 2 back tools 
and 2 back vs 0 back. A strong association between the model coefficients and the cortical task 
activations corroborate the link between functional connectivity and function.   
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Supplementary Methods 
 
In order to validate our findings on additional subjects from the Human 
Connectome Project - Young Adult dataset, we included an additional sample of 
78 subjects (39 males). We used our prediction models, across all seven tasks 
and various contrasts, trained on the original training dataset and applied it 
across the additional testing dataset.  
 
Supplementary Figures 
 
 

 
 

Figure S1: The relationship between prediction accuracy and the number of 
subjects in the training dataset for using Ridge regression with 50-50 split in test 
and training data (RidgeSplit). We see a plateau beyond thirty subjects. 
 
 



 
 
Figure S2: Model performance across additional testing dataset: We analysed the 
performance of our prediction models on an additional set (Set 2) of 78 subjects 
from the HCP data and found no significant differences in model predictions across 
various tasks and contrasts in the two testing datasets.  
 



 
 
Figure S3: Effect of the number of subjects in the testing dataset on the prediction 
accuracy: Here, we systematically varied the number of testing subjects from 20 to 
158 (with ten random permutations for each number of subjects). The model 
performance was not dependent on the number of test subjects for the various 
tasks and contrasts in the HCP dataset. 

 



 
 
 

Figure S4:Cross connectivity predictions for the contrasts across the other 
cognitive tasks. We see that a subject’s own functional connectivity better 
predicts its task activation as compared to other subjects in gambling, social, 
relational and language tasks but not so much in the contrasts in the motor task 
suggesting that cerebellar-cortical connectivity for motor regions is not strongly 
individual specific.  
  



 
 

Figure S5:Coefficients and task activations: Plotting out the surface maps for the 
coefficients and task activations for the working memory and gambling tasks. 
  

 

 
 



 
 

Figure S6:Coefficients and task activations: Plotting out the surface maps for the 
coefficients and task activations for the motor and language tasks.  

 



 
 

Figure S7:Coefficients and task activations: Plotting out the surface maps for the 
coefficients and task activations for the social, relational and emotion tasks. 
  

 



 
 
 

Figure Coefficients and task activations: Scatter plots between the model 
coefficients and task activations for the remaining tasks. Contrasts and tasks with 
no relationship are not shown here. 
 
 
 

 
Figure S9: Variance in Cerebellar-cortical connectivity across subjects.  

 



 


