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Abstract

The cerebellum is gaining scientific attention as a key neural substrate of cognitive
function; however, individual differences in the cerebellar organization have not yet
been well studied. Individual differences in functional brain organization can be closely
tied to individual differences in brain connectivity. ‘Connectome Fingerprinting’ is a
modeling approach that predicts an individual’s brain activity from their connectome.
Here, we extend ‘Connectome Fingerprinting’ (CF) to the cerebellum. We examined
functional MRI data from 160 subjects (98 females) of the Human Connectome Project
young adult dataset. For each of seven cognitive task paradigms, we constructed CF
models from task activation maps and resting-state cortico-cerebellar functional
connectomes, using a set of training subjects. For each model, we then predicted task
activation in novel individual subjects, using their resting-state functional connectomes.
In each cognitive paradigm, the CF models predicted individual subject cerebellar
activity patterns with significantly greater precision than did predictions from the group
average task activation. Examination of the CF models revealed that the cortico-
cerebellar connections that carried the most information were those made with the non-
motor portions of the cerebral cortex. These results demonstrate that the fine-scale
functional connectivity between the cerebral cortex and cerebellum carries important
information about individual differences in cerebellar functional organization.
Additionally, CF modeling may be useful in the examination of patients with cerebellar
dysfunction, since model predictions require only resting-state fMRI data which is more
easily obtained than task fMRI.



Highlights
e Cortico-cerebellar functional connectivity predicts cerebellar task activation
e A single connectome measurement can predict across a multi-domain task battery
e Predictions are unique to the individual

e Findings indicate highly specific cerebellar contributions to cognition



Introduction

Although traditionally viewed primarily as a motor structure, the cerebellum supports a
broad range of non-motor cognitive functions, including working memory, attention,
language and higher cognition (Stoodley & Schmahmann, 2009; Schmahmann, 2019;
Brissenden et al., 2021). This view is supported both by studies of patients with
cerebellar damage and by neuroimaging studies of healthy subjects (Schmahmann et
al., 2007; Stoodley et al., 2012). Brain networks supporting specific forms of cognition
comprise not only cerebral cortical regions but also cerebellar regions and there'’s
growing evidence for fine-scale cerebro-cerebellar connectivity (Buckner et al., 2011;
Liu et al., 2022). The fact that cerebro-cerebellar anatomical connectivity is not
monosynaptic complicates the analysis of these networks. Descending connections
pass via the pons and ascending connections pass via the thalamus (Steriade & Llinas,
1988). Resting-state functional MRI has proven an effective way to reveal multisynaptic
brain networks generally (Gordon et al., 2017) and cerebro-cerebellar networks more
specifically (Guell et al., 2018).

Most neuroimaging investigations of cerebellar function have been focused on group-
level analyses. In contrast, individual subject-level analysis offers a number of potential
advantages, including the ability to observe fine-scale structures that would be blurred
by group analyses and the ability to develop precision medicine diagnostics for
individual patients (Braga & Buckner, 2017; Somers et al., 2021; Xue et al., 2021). Here
we extend individual subject research methods that have been applied to the cerebral
cortex to the cerebellum.

Passingham and colleagues proposed that each cortical area has a unique pattern of
cortico-cortical connections — a ‘connectional fingerprint’ — that could be used to
functionally localize cortical areas in individuals (Mars et al., 2018). Multiple studies
have utilized functional and structural connectivity measures to model an individual
region’s connectivity fingerprints and use them to make functional network predictions
(Tavor et al., 2016; Cole et al., 2016; Murty et al., 2020; King et al., 2023; Bernstein-
Eliav & Tavor, 2022). Connectome Fingerprinting (CF) is a computational neuroimaging
technique that combines non-invasive connectome measurements to predict fine-scale
functional brain organization in individual subjects (Osher et al., 2016; Saygin et al.,
2012; Tobyne et al., 2018). CF modeling approaches based on connectomes derived
from structural or resting-state functional MRI have been successfully applied
throughout the cerebral cortex; however, the cerebellum has received little attention to
date. King et. al. (2023) utilized an activity flow method (Cole et al., 2016) to model
cerebellar connectivity and relationship with cortical task activations. Connectome
Fingerprinting predicts voxel-wise activations to a particular task from the resting state
functional connectivity from voxels in a search space to regions in a parcellation



scheme. Utilizing high-quality resting state data, we can predict with sufficient accuracy
the activations in out-of-sample subjects (Tavor et al., 2016) even with low n datasets
(Osher et al., 2019; Tobyne et al., 2018).

We utilized task and resting-state fMRI data from the Human Connectome Project
(HCP) young adult dataset (n=160). The HCP examined seven cognitive paradigms that
probed a diverse set of brain networks: Working memory, Gambling, Motor, Language,
Social, Relational, and Emotion. Each task compared an experimental condition with a
control condition as well as a fixation baseline condition. The Working Memory and
Motor tasks also included sub-conditions, with different categories of visual images in
the working memory task and different body parts in the motor task. Group-level task
activation in these paradigms is reported by Barch et al. (2013). We developed CF
models for the seven cognitive tasks and compared our performance with group
average activation as the baseline. We then compared the specificity of an individual’s
connectome in its functional activation prediction compared to other subjects and group-
averaged connectomes. We also analyzed the degree to which cerebellar-cortical
connectivity varies across the cerebellum. We further examined the relationship
between model coefficients and cortical activations to highlight the close link between
cerebellar-cortical function and connectivity.

Methods

Dataset

We used 160 subjects (98 females) from the Human Connectome Project Young Adult
(HCP-YA) dataset (Van Essen et al., 2012) who had acquisitions on both 3T and 7T
scanners. The HCP Young Adult initiative collected high-quality structural, resting state
and task data on a population of young adults (ages 22-35 years).

The study was approved by the Washington University Institutional Review Board and
all subjects gave informed consent for the study. The dataset is available to all on
HCP’s data management platform, ConnectomeDB (https://db.humanconnectome.org).
A custom Siemens CONNECTOM Skyra MRI Scanner was used. All subjects
participated in two days of scanning which included a high-resolution structural T1
weighted MRI, T2 weighted MRI. During resting-state scans (32 channel head coll,
voxel resolution = 2 mm isotropic, in-plane FOV = 208 x 180 mm, 72 slices, multi-band
factor 8, TR = 720 ms, TE = 33.1 ms, 1200 TRs) subjects were asked to visually fixate
on a cross and do nothing, in particular. Resting-state scans consisted of four runs of



fifteen minutes each collected in two separate sessions. The task runs had the same
acquisition protocol but differed in the number of frames (TRs). Half of the task and
resting-state runs were acquired using left-to-right phase encoding and another half on
the right-to-left phase encoding.

The subjects participated in seven task experiments in the scanner that examined
different aspects of cognition: Working memory, Gambling, Motor, Language, Social,
Relational, Emotion. We describe the tasks briefly here, details can be found in the
initial HCP task fMRI paper (Barch et al., 2013). The working memory task involved a ‘2-
back’ working memory condition in which subjects were asked to report when the
current stimulus matched a stimulus presented two trials prior, and a ‘0-back’ control
condition in which subjects were asked to report when a presented stimulus matched a
target that was presented at the start of the block. Stimuli were presented in blocks and
across blocks four different categories of images were employed: places, faces, body
parts and tools. There were 8 task blocks per run, half of the blocks were 2-back, and
the other half were 0-back. Task blocks were 25 s long with 10 trials per block. There
were also 4 fixation blocks per run of 15 s each. Total 405 TRs were collected per run.
We explored the 2-back vs 0-back, 2-back body, 2-back face, 2-back place, and 2-back
tool contrasts.

The Gambling task compared reward processing to loss processing using a shared task
paradigm; the key manipulation was to covertly change the odds of rewards/losses
across blocks of trials. On each trial, a mystery card was presented on the screen and
the subject had to guess if the number on the card would be higher or lower than five.
Reward blocks had mostly reward trials (6 out of 8, and others could be loss and/or
neutral trials) whereas Punish blocks had mostly loss trials (6 out of 8, and others could
be neutral and/or reward trials). Each run had two blocks of reward and punish 28 s
each and four fixation blocks of 15 s each and a total of 253 TRs. We explored the
Punish-Fix and Reward-Fix conditions.

The Motor task involved visual cues where subjects were asked to tap either their left or
right fingers, squeeze either their left or right toes or move the tongue. The blocks were
12 s long and each run consisted of two blocks for each movement (Left Hand, Right
Hand, Left Foot, Right Foot, and Tongue) and three fixation blocks of 15 s each. Total of
284 TRs per run were collected. We analyzed the vs average (AVG) contrasts for all the
five conditions (LH, LH, RF, RH, T) where the average included all other than selected
condition. The Language task consisted of four ‘story’ task and four ‘math’ task blocks
per run. The ‘story’ condition blocks consisted of stories from Aesop’s fables and
subjects were asked to respond via button press to a 2-alternative forced-choice (2-
AFC) question about the topic of the story. The ‘math’ condition blocks consisted of



auditory presentations of math calculations like “eight plus five equals” followed by two
possible answers; subjects reported the correct answer via button press. The duration
of the blocks were fixed at 30 s, some subjects performed the math computations faster,
so they were given additional trials to match the duration of the story blocks. Each run
was 316 TRs long and we studied the Math vs Story contrast for the language task.

The Social Cognition Task or ‘Theory of Mind’ task incorporated video clips of 20 s long
of simple shapes (e.g., squares, circles and triangles) that moved across a background.
In the “Theory of Mind’ condition, the coordinated movement of the shapes suggested a
social interaction between them, while in the control condition the shapes moved about
independently of one another. Each run had five video blocks, a total of ten across the
two runs (five for each of the two conditions). The subjects were asked to report
whether they observed a social interaction, no interaction or were not sure about the
interaction. Each run had 5 fixation blocks of 15 s each and a total of 274 TRs and we
examined the Random vs Fix and Theory of Mind vs Fix conditions.

The Relational Task asked subjects to infer a relationship between two objects and to
examine that relationship between another pair of objects. Stimuli consisted of shapes
that had a certain texture. In the relational task condition, subjects had to compare two
shapes on the top of the screen with each other to determine whether they differed in
shape or texture and then report whether the two shapes on the bottom also differed
along the same dimension or not. In the matching control condition, subjects were
presented with two shapes on the top, one on the bottom and a cue (shape or texture)
and were asked to report whether the bottom shape was similar to either of the top
shapes in the cued dimension. Each run had three relational and three match blocks
that lasted 18 s and three fixation blocks of 16 s length, with a total of 232 TRs and we
analyzed the Match vs fix and Relational vs fix contrasts.

The Emotion task asked subjects to examine facial expressions of emotions. Stimuli
consisted of faces (experimental) and shapes (control) conditions during which subjects
were presented with two faces/shapes on the top and one face/shape on the bottom
and they were ask to match the bottom face/shape with the top ones and report via
button press which top face/shape was similar to the bottom one. The faces had either
angry or fearful expressions. Each run consisted of three faces and three shapes blocks
(all 18 s long) and had a total of 176 TRs and we looked over the Faces vs fix and
Shapes vs fix contrasts.



Preprocessing

We used the minimally preprocessed data as available on the HCP database portal.
The preprocessing pipeline (Glasser et al., 2013) included corrections for artifact,
gradient non-linearity correction, motion and EPI distortion followed by temporal
denoising and bandpass filtering (0.001 - 0.008 Hz). The structural and functional
images were registered from the native space to MNI space. Freesurfer pipeline (Dale
et al., 1999; Fischl et al., 1999) was used to convert it to the 168k fsaverage space
which was converted to the 32k CIFTI “grayordinates” space which included the two
cerebral hemispheres as surfaces and the subcortical regions as volumes registered in
the MNI 2mm space. The data was spatially smoothed with a 2 mm FWHM. We
demeaned the resting state data across time within each voxel/vertex and regressed out
the mean global signal and concatenated the four runs resulting in 60 minutes (total
4800 TRs) of resting-state data per subject.

GLM Analysis

General Linear Model analysis of the task data was performed using modified scripts
(https://qithub.com/Washington-University/HCPpipelines/tree/master/TaskfMRIAnalysis)
as made available by the HCP consortium (Barch et al., 2013; Glasser et al., 2016). The
already analyzed files were downloaded from the analysis section from the HCP
database (db.humanconnectome.org). The modified scripts run the FSL-based GLM
analysis (Jenkinson et al., 2012) on each voxel/vertex in the 91k grayordinates space.
Block-based analysis was performed using a double gamma HRF as implemented in
FSL. The contrasts used for various tasks are Working Memory (2BK_BODY vs. fix,
2BK_FACE vs. fix, 2BK_PLACE vs. fix, 2BK_TOOL vs. fix, 2BK vs. 0BK), Gambling
(PUNISH vs. fix, REWARD vs. fix), Motor (LH vs AVG, RH vs. AVG, LF vs. AVG, RF vs.
AVG, T vs. AVG), Language (MATH vs. STORY), Social (Theory of Mind/TOM vs. fix,
RANDOM vs. fix), Relational (REL vs. fix, MATCH vs. fix), Emotion (FACES vs. fix,
SHAPES vs. fix).

Connectivity Fingerprinting

We used the connectivity fingerprinting (CF) approach using resting-state functional
connectivity data as described in (Tobyne et al., 2018), illustrated in Figure 1. First, we
divided our 160 subjects into test and training datasets consisting of 80 subjects in each
group. Prior work demonstrates that as few as 20 training subjects can be sufficient for
strong model performance, as the number of fMRI task time points in the training set is
generally more important than the number of subjects (Tik et al., 2023). For a selected
contrast, we computed the cerebellar search space as the region with the absolute
value of the group average activations greater than 1.5 t-statistic value. Based on the
criteria for the selection of search space, few contrasts (Gambling: PUNISH vs
REWARD; Language: MATH, STORY; Social: TOM vs RANDOM; Relational MATCH



vs REL; Emotion: FACES vs SHAPES) did not have task-relevant voxels and were not
included further in the analysis. For all voxels in the selected search space, we created
a resting-state functional connectivity matrix of dimensions voxels x ROIs where the
ROls were defined in the cortex using the Schaefer 400 atlas (Schaefer et al., 2017).
The resting-state time series data were averaged in the ROls and then the functional
connectivity matrix was computed. We appended the connectivity matrices across the
training dataset, and we created a composite predictor matrix. The target matrix was
composed of the task activations across the search space appended across the
subjects in the training dataset. Using a k-fold (10 folds) ridge regression method as
implemented in Scikit Learn (Pedregosa et al., 2011), we trained a model separately for
each contrast. The k-folds were used to optimize the hyperparameter in the ridge
regression. Using the trained model, we applied our model to the test dataset and
computed the prediction accuracy as the Pearson correlation between the actual and
the predicted activations. We plotted the predicted activations back on the search space
for visualization. To compare the performance of the CF model, we used group average
(GroupAvg) as the control model where group averaged t statistic values in the search
space for the selected task contrast were taken as the prediction for all subjects and
compared with the actual activations. We compared the prediction accuracies using the
CF and the GroupAvg model using paired t-test as defined in the statsmodels python
package (Seabold & Perktold, 2010). Visualizations in the SUIT space (Diedrichsen &
Zotow, 2015) were done using the SUITpy python toolbox
(https://github.com/diedrichsenlab/SUITPy/releases/latest). To determine if the
individual’s functional connectivity was better suited for within-subject prediction, we
used the subject’s own functional connectivity (self) and other subjects’ connectivity
(others) to predict and compare with the subject’s activation. We also used the group
average functional connectivity to make individual predictions.

We also analyzed the variance of task activity explained by individual subjects’
activations and group activations by taking the square of the Pearson correlation
between group averaged activations and our subjects’ individualized task activations.
We also computed the across-subjects variance in the cerebellar-cortical connectivity
using the approach by Marek and colleagues (Marek et al., 2018) where we computed
the Fisher-z transformation across all cerebellar-cortical connectivity followed by
computing the variance across subjects, averaging it across parcels and then taking a
square root to get standard deviation values.

The coefficients from the trained model for each contrast were correlated with task
activations averaged across the ROIs and subjects to analyze what predictors
contributed more to the predictions. The analysis codes were written in Python and



used Numpy (Harris et al., 2020), Scipy (Virtanen et al., 2020) and Nipy
(https://github.com/nipy/nipy) toolboxes.

Results

Prediction accuracy for CF models across various tasks

We analyzed the ability to use resting-state functional connectivity to predict task
activations in the human cerebellum using the HCP dataset. We used the Connectome
Fingerprinting approach as demonstrated in Figure 1. We evaluated the quality of
predictions by examining the correlation between the actual pattern and the predicted
pattern of t-statistics across the cerebellar search space. We also examined the
correlation between each subject’s actual pattern of activation and the group-averaged
pattern of activation for the selected task contrast. This analysis was performed for all
subjects of the test set and performance was compared between the CF and group-
average predictions.

The Working Memory task visually presented sequences of images and asked subjects
to report when a stimulus matched the stimulus shown two stimuli before (2-back task).
This was contrasted with a 0-back condition in which subjects were asked to report
when a stimulus match a target stimulus presented prior to the block of trials. The 2-
back condition created greater working memory demands (e.g., encoding, manipulation)
than did the 0-back condition. The CF model predicted individual subject activations in
the cerebellum in the 2-back vs. 0-back (2BK_0BK, Figure 2) contrast significantly
better than did the group average approach (CF Mean accuracy=0.30, SD=0.17;
GroupAvg M=0.08, SD=0.05; paired t test - {(79) = 12.00, p<0.0001, Cohen's d=1.78).
The 2-back trials were presented in blocks in which the stimuli were restricted to one of
four categories of images: bodies, faces, places, or tools. These sub-conditions were
each contrasted with the fixation condition, yielding four additional contrasts of interest:
2BK_BODY, 2BK_FACE, 2BK_PLACE, and 2BK_TOOL. For each of these contrasts
the CF models outperformed the group average predictions: 2BK_BODY (CF M=0.30,
SD=0.13; GroupAvg M=0.15, SD=0.06; t(79) = 10.44, p<0.0001, Cohen's d=1.52);
2BK_FACE (CF M=0.30, SD=0.13; GroupAvg M=0.10, SD=0.06; t(79) = 12.90,
p<0.0001, Cohen's d=1.52); 2BK_PLACE (CF M=0.32, SD=0.12; GroupAvg M=0.11,
SD=0.06; t(79) = 15.48, p<0.0001, Cohen's d=2.26), 2BK_TOOL (CF M=0.31, SD=0.13;
GroupAvg M=0.14, SD=0.05; t(79) = 12.01, p<0.0001, Cohen's d=1.73).

The Gambling task involved reward based processing and the CF model made
significant predictions (Figure 3) for the PUNISH (CF (M=0.34, SD=0.15), GroupAvg



(M=0.18, SD=0.07); t(79) = 9.49, p<0.0001, Cohen's d=1.41) and REWARD
(CF(M=0.36,SD=0.12), GroupAvg(M=0.08,SD=0.06); t(79) = 18.55, p<0.0001, Cohen's
d=2.75) conditions.

In the Motor task, subjects had to tap their left hand, left foot, right hand, right foot and
tongue during different task blocks. The overall prediction accuracy for the CF models
(Figure 4) was lower for the motor contrasts but significant for Left Hand - Average
(CF(M=0.16, SD=0.15) GroupAvg (M=0.07, SD=0.11); t(79) = 5.07, p<0.001, Cohen's
d=0.68), Rlght Hand - Average (CF(M=0.22, SD=0.17), GroupAvg(M=0.08,SD=0.09);
t(79) = 7.41, p<0.0001, Cohen's d=1.08), Right Foot - Average ( CF(M=0.15, SD=0.15),
GroupAvg(M=0.05, SD=0.12); t(79) = 4.77, p<0.001, Cohen's d=0.69) but not significant
for Left Foot - Average (CF (M=0.09, SD=0.12), GroupAvg(M=0.07, SD=0.14); t(79) =
1.37, p=0.175, Cohen's d=0.18) and Tongue - Average (CF(M=0.39,SD=0.15)
GroupAvg(M=0.41,SD=0.13); t(79) = -1.66, p=0.100, Cohen's d=-0.12). In the motor
task, the average is computed across all conditions except the contrasted condition, for
example, in the Left Hand - Average contrast, the average is computed over the right
hand, left and right foot and tongue.

In the language task, subjects had to either perform mental calculations in the math
condition or comprehend a story and answer true or false questions related to the story.
In the MATH-STORY contrast, the prediction accuracy (Figure 5) was high for the CF
models as well as Group average models (CF(M=0.68, SD=0.14), GroupAvg(M=0.68,
SD=0.08) but there was no statistical difference between the two models (1(79) = 0.21,
p=0.836, Cohen's d=0.03)

The social task involved looking at the interactions between different shapes moving
and making a sense of whether the interaction was random or involved the theory of
mind (TOM) condition. The prediction accuracy for CF model (Figure 6) was significantly
higher as compared to Group Average model for both random (CF(M=0.34, SD=0.12),
GroupAvg(M=0.11, SD=0.09); t(79) = 15.56, p<0.0001, Cohen's d=2.13) and TOM
(CF(M=0.36, SD=0.12), GroupAvg(M=0.13, SD=0.08); t(79) = 15.69, p<0.0001, Cohen's
d=2.21) conditions. In the relational task, subjects had to compare shapes or textures of
objects presented on the screen to whether they related along a dimension or one
object match the others along the cued dimension. The CF model (Figure 7) performed
significantly better in both Match control (CF(M=0.37, SD=0.11), GroupAvg(M=0.14,
SD=0.07); t(79) = 17.82, p<0.0001, Cohen's d=2.49) and Relational (CF(M=0.40,
SD=0.13), GroupAvg(M=0.19, SD=0.06); t(79) = 15.08, p<0.0001, Cohen's d=2.10)
conditions.



The emotion task involved looking at faces with affect and non-affective shapes to elicit
and observe the neural responses to emotions. Though the number of task-relevant
voxels were less in the cerebellum for the emotion task, CF model (Figure 8) performed
significantly better than the Group average model for both the Faces (CF(M=0.35,
SD=0.16), GroupAvg(M=0.03, SD=0.14); t(79) = 14.20, p<0.0001, Cohen's d=2.19) and
Shapes conditions (CF(M=0.35, SD=0.34), GroupAvg(M=0.16, SD=0.34); t(79) = 3.48,
p<0.001, Cohen's d=0.54). The Faces-Shapes contrast did not have task-relevant
voxels so was not included in the prediction analysis.

We analyzed the effect of the number of training subjects required for optimal model
building and found that beyond thirty subjects, our model performance plateaus (Figure
S1). We also replicated these findings for all contrasts, examining an additional 78
testing subjects (see Supplementary Material). We did not observe any significant
differences (F(1,1097) = 2.8, p = 0.08) in model performance between the two test
subject pools (Figures S2, S3) for any of the contrasts.

Individual variability in connectivity drives predictions

How does the subjects’ connectivity affect the predictions made through the CF model?
We tested the prediction accuracy of the model using different subjects' resting-state
functional connectivity (Figure 9, Figure S4) and compared if it was better than
predictions made using subjects’ own functional connectivity which is represented along
with the diagonal axis in Fig. 9. Using the subject’s own functional connectivity, the
predictions across contrasts were higher (Table 1, Column 2) when compared to using
other subjects’ connectivity (Table 1, Column 3). We found that for all such pairwise
combinations possible for 80 subjects (6320), in more than 98% of combinations the
subject’s connectivity made better predictions for the different contrasts in the working
memory task (2BK_BODY- 98.03 %, 2BK_FACE 98.76 %, 2BK_PLACE 99.14 %,
2BK_TOOL 0.98.37). The 2BK-0BK contrast had a reduced value of 93.24 %. The
contrasts in the motor tasks had reduced performance within-subject connectivity vs
across (LF-AVG 69.09%, LH-AVG 77.08 %, RF-AVG 76.37 %, RH-AVG 87.92 %, T-
AVG 89.81 %). The two conditions in the Gambling task also had a very high degree of
within-subject connectivity performance (PUNISH - 97.92 %, REWARD - 98.98 %). We
saw similar results with the Social task (RANDOM - 98.65 %, TOM 99.38 %) and the
Relational task (MATCH 99.25 %, REL 98.97 %). The Emotion task shapes contrast
did around 93.11 %, and Language MATH-STORY 92.86 %. The two-sided
Kolmogorov-Smirnov statistic for all contrasts except MOTOR LF-AVG came out greater
than 0.35, with all p < 10,



There is a large amount of variability in the cerebellar-cortical connectivity across
subjects as other studies have also suggested (Marek et al., 2018). We computed the
Fisher-z transform of the correlation between connectivity between the cerebellum and
the cortical parcels from the Schaefer 400 atlas. And then computed the variance
across subjects followed by averaging across parcels resulting in a variance map. We
plotted the across-subjects variance in Figure S9 and found that the cerebellar-cerebral
connectivity varied most across the posterior parts of the cerebellum as earlier studies
(Marek et al., 2018) have also shown. We found that for most task-relevant search
spaces, the connectivity across subjects was weakly correlated (Table 1, Column 4).

We can use subject-averaged functional connectivity to make predictions for a subject’s
task activation and we found that for most contrast the mean prediction accuracy across
the 80 test subjects was pretty low (Table 1, Column 5). The math-story contrast in the
language task had strong prediction using subject-averaged functional connectivity but
that was still weaker than individual subjects’ predictions (1(79)=-9.7389, p<0.0001) but
for the tongue-avg contrast in the motor task had stronger predictions using group
average functional connectivity than individual connectivity (1(79)=6.4604, p<0.0001)
suggesting that there is less variability in the tongue regions’ cerebellar-cerebral
connectivity which is comparable to the CF and GroupAvg predictions discussed in the
earlier section.

Table 1: Analysing the averaged model prediction using one’s own connectivity, other
subjects’ connectivity and group-averaged connectivity. And looking at cross-subject

correlations which are computed using the correlation between the cerebellar cortical
connectivity across subjects.

Averaged
Averaged prediction Averaged
prediction using others' prediction using
using self- connectivity | Cross-Subject | group averaged
Task_Contrast connectivity (r) (r) Correlations (r) | connectivity (r)
M=0.15,
WM_2BK_BODY 0.3 0.02 SD=0.06 M=0.07, SD=0.09
M=0.15,
WM_2BK_FACE 0.3 0.02 SD=0.06 M=0.06, SD=0.08
M=0.15,
WM_2BK_PLACE 0.32 0.02 SD=0.06 M=0.07, SD=0.08
M=0.14,
WM_2BK_TOOL 0.31 0.03 SD=0.06 M=0.08, SD=0.08




WM_2BK-0BK

GAMBLING_PUNISH

GAMBLING_REWARD

MOTOR_LF-AVG

MOTOR_LH-AVG

MOTOR_RF-AVG

MOTOR_RH-AVG

MOTOR_T-AVG

LANGUAGE_MATH-

STORY

SOCIAL_RANDOM

SOCIAL_TOM

RELATIONAL_MATCH

RELATIONAL_REL

EMOTION_FACES

EMOTION_SHAPES

0.3

0.34

0.36

0.09

0.16

0.15

0.22

0.39

0.68

0.34

0.36

0.37

0.4

0.35

0.35

0.01

0.03

0.02

0.01

0.02

0.02

0.22

0.43

0.03

0.04

0.03

0.04

0.02

M=0.18,
SD=0.07
M=0.15,
SD=0.07
M=0.15,
SD=0.07
M=0.02,
SD=0.05
M=0.05,
SD=0.06
M=0.03,
SD=0.05
M=0.05,
SD=0.06
M=0.08,
SD=0.05
M=0.18,
$D=0.07
M=0.14,
SD=0.06
M=0.15,
SD=0.06
M=0.14,
SD=0.06
M=0.15,
SD=0.06
M=0.15,
SD=0.11
M=0.15,
SD=0.20

M=0.03, SD=0.11

M=0.09, SD=0.09

M=0.06, SD=0.09

M=0.07, SD=0.11

M=0.10, SD=0.13

M=0.07, SD=0.13

M=0.02, SD=0.17

M=0.50, SD=0.12

M=0.60, SD=0.12

M=0.09, SD=0.07

M=0.14, SD=0.08

M=0.11, SD=0.09

M=0.14, SD=0.10

M=0.00, SD=0.18

M=0.08, SD=0.31

We analyzed the variance of cerebellar activity patterns across various tasks and task
contrasts to determine how much could be explained by the group-averaged map as
compared to the individual map. We found that group average maps can explain about
2-10% of the variance (Table 2) and the rest is explained by the individual maps
suggesting a large amount of individual variability. The tongue and the math-story
contrast from the language task had the most amount of variance explainable by the

group map.




Table 2: Variance of individualized cerebellar task activations explained by group

average map.

Task_Contrast

Group Average Map

Variance (%age)

WM_2BK_BODY
WM_2BK_FACE

M=0.02, SD=0.01
M=0.02, SD=0.02

M=0.02, SD=0.02
M=0.02, SD=0.02
M=0.02, SD=0.02
M=0.02, SD=0.02
M=0.02, SD=0.02
M=0.06, SD=0.06

WM_2BK_PLACE }
WM_2BK_TOOL \
WM_2BK-0BK \
GAMBLING_PUNISH \
GAMBLING_REWARD \
MOTOR_LF-AVG \
MOTOR_LH-AVG \ M=0.05, SD=0.04
MOTOR_RF-AVG | M=0.05, SD=0.05
MOTOR_RH-AVG | M=0.04, SD=0.03
MOTOR_T-AVG | M=0.28, SD=0.12
LANGUAGE_MATH-STORY | M=0.39, SD=0.13
SOCIAL_RANDOM \ M=0.04, SD=0.03
SOCIAL_TOM | M=0.06, SD=0.04
RELATIONAL_MATCH | M=0.04, SD=0.03
RELATIONAL_REL | M=0.05, SD=0.03
EMOTION_FACES | M=0.03, SD=0.05
EMOTION_SHAPES | M=0.14, SD=0.18

Relationship between model coefficients and cortical task activations

Earlier studies (Osher et al., 2019) have shown that the model coefficients are similar to
group averaged task activations. We saw similar behaviour but with coefficients for
predictions in the cerebellum and group averaged task activations in the cortex which
were not part of the model dataset. For the contrasts in the Working Memory task, we
saw a significant correlation (WM_2BK_BODY: r(398) = 0.62, p<0.0001;
WM_2BK_FACE: r(398) = 0.66, p<0.0001; WM_2BK_PLACE: r(398) = 0.68, p<0.0001;
WM_2BK_TOOL: r(398) = 0.65, p<0.0001; WM_2BK-0BK: r(398) = 0.70, p<0.0001)



between the task activations and ridge regression model coefficients as can be seen in
Figure 10 and Figure S5. We saw similar correlations (Figure S7, S8) for Social
(RANDOM: r(398) = 0.46, p<0.0001; TOM: r(398) = 0.38, p<0.001), Relational (MATCH
r(398) = 0.44, p<0.0001), Language (MATH-STORY:: r(398) = 0.47, p<0.0001) and
Gambling tasks (PUNISH: r(398) = 0.54, p<0.0001; REWARD: r(398) = 0.33, p<0.001).
The activations in the motor regions and coefficients were proportional (Figure S6) but
the correlations between coefficients and averaged task activations across the whole
brain did not come out to be significant. We did not see correlations between the task
activations and coefficients for Emotion tasks.

Discussion

There has been an impetus for predictive modeling of the brain activations during
cognitive and somatomotor tasks using resting-state functional connectivity (Cole et al.,
2016; Tavor et al., 2016; Tobyne et al., 2018; Osher et al., 2019; Bernstein-Eliav &
Tavor, 2022). We extended the connectivity fingerprinting based approach for the
cerebellum and found that models created using resting-state connectivity with the
cerebral cortex perform much better than only group average based predictions across
tasks related to various cognitive modalities like working memory, emotion, theory of
mind, gambling, relational and motor task. Our work extends the current literature on the
association between connectivity between brain regions and the function of brain
regions to the cerebellum which for a long time was thought only to respond to motor
movements. Recent studies have found cerebellar involvement in attention (Brissenden
et al., 2016), working memory (Brissenden et al., 2018, 2021), emotion and other higher
cognitive functions (Schmahmann, 1996, 2010, 2019; Stoodley et al., 2012)

We found out that our Connectome Fingerprinting approach predicts task activations
significantly better than the group averaged activations in all seven tasks of the HCP
dataset. As we limited our search space to task-relevant voxels, some of the contrasts
like Language-Math, Language-Story, Gambling_Punish-Reward, Emotion_Faces-
Shapes, Social TOM-Random, Relational Match-Rel did not have sufficient activation
in the cerebellum to be included in the analysis. It could be due to a lack of differences
in the activation of these conditions in the cerebellum or across the brain. Our model
also did not outperform statistically for the group average model Motor_Tongue-
Average, Language_Math-Story and Emotion_Shapes-fix.



Earlier studies have shown the link between the coefficients of CF models trained on
cortical search spaces and cortical task activations (Osher et al., 2019). Here, we see
that the coefficients of our models based on search spaces defined in the cerebellum
were similar to task activations in the cortical regions suggesting a close link between
connectivity and function in the cerebellum. Interestingly, we did not see a similar trend
for the emotion tasks which could be due to the small number of voxels that were task-
relevant in the cerebellum and hence selected in the search space suggesting that the
emotion representations in the cerebellum are not strong. The coefficients for motor
areas in the cortex were proportional to the cortical motor area activation but not across
all the cortical regions. We also saw the specificity of the individual subjects’ functional
connectivity in predicting their own activations which other papers have mentioned
earlier (Osher et al., 2019; Tavor et al., 2016; Tobyne et al., 2018) suggesting that the
cerebellar-cortical connectivity is also individual specific.

Studies have used other approaches to associate connectivity and function. The activity
flow model proposed by Cole and colleagues (Cole et al., 2016) models the activity
within a region as the accumulation of activity across other regions weighted by their
connectivity. King et. al. (2023) utilized this approach to model the cerebellar activity
using cortical connectivity in the Multi Domain Task Battery (MDTB) dataset (King et al.,
2019). There are differences between the approaches, whereas we identified
associations between a region’s connectivity and function for a selected task contrast,
King and colleagues integrated information across multiple tasks from the cortex and
weighted it by different connectivity weights to predict activations in the cortex. We did
not explicitly use the cortical activation data in the modeling but our model coefficients
incidentally exhibit proportionality to cortical activity. Both studies highlight the
organizational structure of the cerebellum in complementary ways. CF modeling has the
advantage that cross-subject generalization is built into the model and we don’t require
a separate dataset for model validation.

Activity flow methods have demonstrated the disruption of connectivity and activation
with various cognitive disorders (Hearne et al., 2021; Tik et al., 2021). Models trained to
associate connectivity and function can allow for the prediction of individual-specific
functional activations for populations like subjects with ADHD, Alzheimer's, Dementia or
other disorders who can not perform different cognitive tasks in the scanner. It can also
allow us to predict task-specific regions in clinical populations with brain tumors which
can aid in better presurgical planning (Parker Jones et al., 2017; Tie et al., 2014; Yao et
al., 2021).

There are a few limitations of the work namely the task design in the HCP protocol.
HCP dataset is of very high quality in terms of the acquisition using the latest MR



sequences and multi-modal registration approaches like the Multi-Surface Matching
(MSM) (Robinson et al., 2014). But the tasks may not be the best to elicit responses for
a particular cognitive modality. The data was also limited by the number of runs per
modality. Studies have shown that the more amount of data per subject improves the
reliability and the robustness of the results (Braga & Buckner, 2017; Gilmore et al.,
2021; Gordon et al., 2017; Somers et al., 2021; Xue et al., 2021). The field has been
termed deep imaging (Gratton & Braga, 2021). We had a large amount of resting-state
data per subject but fewer runs of task data per subject which could have resulted in
weaker models overall. Our current approach was limited to regularized regression
models which perform better than ordinary least squares models (Tobyne et al., 2018)
but there might be better performing non-linear models which would require further
exploration in future studies.

Our current paper focused on the tasks in the HCP dataset. We could extend our
approach to different datasets which have more focused runs per subject in a specific
cognitive modality. We can also perform cross-scanner predictions by training on deep
imaging subjects and testing them on studies with large cohorts. The combination of
models trained on different tasks for the same cognitive modality requires more in-depth
research.
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Figure 1: Connectome Fingerprinting Method: We compute the task activations in the
cerebellum for a given task and estimate the search space with task-relevant voxels. Then, we
create a functional connectivity matrix from the voxels in the search space to cortical parcels
defined by a parcellation scheme (here, Schaefer 400 atlas). The connectivity matrices are
appended across subjects in the training dataset to create the predictor matrix X. The task
activations in the cerebellar search space are appended across training dataset subjects to
create the target matrix Y. We then train a ridge regression model with a k-fold cross-validation
scheme. The trained model is used to predict activations in the test dataset and the



performance is analyzed across the task. The process is repeated for relevant contrasts across
the seven tasks of the Human Connectome Project dataset.
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Figure 2: Working memory task predictions. a) Predictions using the CF model (middle panel)
and control Group Average model (right panel) for the working memory 2 back vs 0 back
contrast. The left panel depicts the actual task activations visualized on the SUIT surface space.
b) Prediction accuracy computed as the Pearson correlation coefficient between the predicted
and actual activations for the test dataset in the search space for the five contrasts in the
working memory task: 2 back Body, 2 back faces, 2 back places, 2 back tools and 2 back vs 0
back. Asterisk depicts statistically significant differences between the prediction accuracies of
the two model types.
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Figure 3: Gambling task predictions. a) Predictions using the CF model (middle panel) and
control Group Average model (right panel) for the gambling task punish condition. The left panel
depicts the actual task activations. b) Prediction accuracies for the two conditions in the
gambling task: Punish (mostly loss trials) and Reward (mostly gain trials). Asterisk depicts
statistically significant differences between the prediction accuracies of the two model types.
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Figure 4: Motor task predictions. a) Predictions using the CF model (middle panel) and control
Group Average model (right panel) for the motor task right hand vs average contrast. The left
panel depicts the actual task activations. b) In this task subject tapped left and right hand and
toes and tongue during a block-based paradigm. Average here refers to average across all
except the contrasted one. Prediction accuracies for the five contrasts in the motor task: Left
Foot vs Average (LF-AVG), Left Hand vs Average (LH-AVG), Right Foot vs Average (RF-AVG),

Right Hand vs Average (RH-AVG) and Tongue vs Average (T-AVG). Asterisk depicts

statistically significant differences between the prediction accuracies of the two model types.
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Figure 5: Language task predictions. a) Predictions using the CF model (middle panel) and
control Group Average model (right panel) for the language task math vs story contrast. The left
panel depicts the actual task activations visualized on the SUIT surface space. b) Prediction
accuracy across all subjects using the CF and Group Average control model in the math vs
story contrast for the language task where subjects either solve a simple math audio question
presented or understand the premise of a short story from Aesop’s fables. Asterisk depicts
statistically significant differences between the prediction accuracies of the two model types.
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Figure 6: Social task predictions. a) Predictions using the CF model (middle panel) and control
Group Average model (right panel) for the social task theory of mind (TOM) condition. The left
panel depicts the actual task activations visualized on the SUIT surface space. b) Prediction
accuracies across the two model types for all subjects in the random condition where objects on
the screen moved randomly or the Theory of Mind (TOM) condition where the objects appeared
to have social interaction. Asterisk depicts statistically significant differences between the
prediction accuracies of the two model types.
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Figure 7: Relational task predictions. a) Predictions using the CF model (middle panel) and
control Group Average model (right panel) for the relational task where subjects had to match or
compare objects that differed along the dimension of shape or texture. The left panel depicts the
actual task activations visualized on the SUIT surface space. b) Prediction accuracies across all
subjects in the test dataset compared across the two model types for the match and relational
conditions. Asterisk depicts statistically significant differences between the prediction accuracies
of the two model types.
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Figure 8: Emotion task Predictions. a) Predictions using the CF model (middle panel) and
control Group Average model (right panel) for the emotion task where subjects had to compare
either affective faces or shapes. The left panel depicts the actual task activations visualized on
the SUIT surface space. b) A very small area of the cerebellum had task-relevant voxels for the
emotion task conditions. Prediction accuracies across the test subjects for the two conditions:
faces and shapes across the two model types: CF and Group Average. Asterisk depicts
statistically significant differences between the prediction accuracies of the two model types.
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Figure 9: Cross connectivity predictions: a) Predicting a subject’s task activation using their own
functional connectivity (self) or other subjects’ functional connectivity (others) for the working
memory task contrasts. We see a diagonal heavy matrix which suggests that there are
individual differences in cerebellar-cortical connectivity which is better at predicting the subject’s
own task activations as compared to other subjects. b) The distribution of the accuracies made
using other subjects’ connectivity (blue) compared to self connectivity (orange).
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Figure 10: Coefficients and task activations: a) Looking at the distribution of the model
coefficients across the cortex for the working memory task (2 back vs 0 back contrast). Group
averaged task activations on the left panel and the model coefficients on the right panel. The
coefficients have a similar distribution to cortical task activations which were not a part of the
training or test model suggesting a link between cerebellar-cortical connectivity and cortical
functional areas. b) Scatter plot of model coefficients vs activations (GLM t statistic) for the five
contrasts from the working memory task: 2 back body, 2 back faces, 2 back places, 2 back tools
and 2 back vs 0 back. A strong association between the model coefficients and the cortical task
activations corroborate the link between functional connectivity and function.
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Supplementary Methods

In order to validate our findings on additional subjects from the Human
Connectome Project - Young Adult dataset, we included an additional sample of
78 subjects (39 males). We used our prediction models, across all seven tasks
and various contrasts, trained on the original training dataset and applied it
across the additional testing dataset.

Supplementary Figures
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Figure S1: The relationship between prediction accuracy and the number of
subjects in the training dataset for using Ridge regression with 50-50 split in test
and training data (RidgeSplit). We see a plateau beyond thirty subjects.
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Figure S2: Model performance across additional testing dataset: We analysed the
performance of our prediction models on an additional set (Set 2) of 78 subjects
from the HCP data and found no significant differences in model predictions across
various tasks and contrasts in the two testing datasets.
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Figure S3: Effect of the number of subjects in the testing dataset on the prediction
accuracy: Here, we systematically varied the number of testing subjects from 20 to
158 (with ten random permutations for each number of subjects). The model
performance was not dependent on the number of test subjects for the various
tasks and contrasts in the HCP dataset.
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Figure S4:Cross connectivity predictions for the contrasts across the other
cognitive tasks. We see that a subject’s own functional connectivity better
predicts its task activation as compared to other subjects in gambling, social,
relational and language tasks but not so much in the contrasts in the motor task
suggesting that cerebellar-cortical connectivity for motor regions is not strongly

individual specific.
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Figure S5:Coefficients and task activations: Plotting out the surface maps for the
coefficients and task activations for the working memory and gambling tasks.
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Figure S6:Coefficients and task activations: Plotting out the surface maps for the

coefficients and task activations for the motor and language tasks.
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Figure S7:Coefficients and task activations: Plotting out the surface maps for the
coefficients and task activations for the social, relational and emotion tasks.
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Figure Coefficients and task activations: Scatter plots between the model

coefficients and task activations for the remaining tasks. Contrasts and tasks with

no relationship are not shown here.

Figure S9: Variance in Cerebellar-cortical connectivity across subjects.
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