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K. R. Nagarajan constructed an example of a formal power
series ring of dimension two, over a field of characteristic two,
with the action of a cyclic group of order two, such that
the ring of invariants is not noetherian. We point out how
Nagarajan’s example readily extends to each positive prime
characteristic, and also to a characteristic zero example: There
exists a formal power series ring of dimension two, over a
field of characteristic zero, with an action of the infinite cyclic
group, such that the ring of invariants is not noetherian.
Both the positive characteristic and the characteristic zero
examples are sharp in multiple ways.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Consider a finite group G acting on a noetherian ring R via ring automorphisms. The

question whether the invariant ring R® is noetherian is a classical one, with positive

results, in a sense, going back to Hilbert and Noether: If the order of the finite group is
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invertible in R, then R® is noetherian [6,7,16]; if R is a finitely generated algebra over
a noetherian ring A, and the action of G on R is via A-algebra automorphisms, then,
again, R® is noetherian [17].

On the other hand, Nagata gave an example of an artinian local ring R containing
a field of characteristic p > 0, with an action of a cyclic group G of order p, such
that RY is not noetherian [15, Proposition 0.10], see also [4, §1] and [8, Example 12];
while the ring in this example is of course not an integral domain, in the same paper,
Nagata also constructs a pseudo-geometric local integral domain R of dimension one and
characteristic p > 0, with an action of a cyclic group G of order p, such that R® is not
noetherian [15, Proposition 0.11]. In contrast, if G is a finite group acting on a Dedekind
domain R, then R® is noetherian [15, Proposition 0.3, Remark 0.7].

In light of the above, it is natural to impose stronger hypotheses on R and ask
whether R is noetherian when G is a finite group, and R is normal [15, Question 0.1],
or even regular. These questions were settled in the negative by Nagarajan [12, §4], who
constructed a formal power series ring R of dimension two, over a field of characteristic
two, with the action of an involution o such that R{?} is not noetherian. Our first goal
in this paper is to point out how Nagarajan’s example readily extends to each positive
prime characteristic p, providing an action of a cyclic group G of order p on a formal
power series ring R := K[z, y], with K a field of characteristic p, such that the invariant
ring RY is not noetherian. Other variations of Nagarajan’s example may be found in [2]
and [1].

Our other goal is to note that Nagarajan’s construction extends readily to a curious
characteristic zero example: there exists a formal power series ring R := K[z, y] over a
field K of characteristic zero, with an action of the infinite cyclic group G, such that the
invariant ring R is not noetherian. The positive characteristic and the characteristic
zero examples are all sharp: in each case, the dimension of the regular local ring R is the
least possible, see Remark 2.2, as is the cardinality and the number of generators of the
group G.

While we have focused here on the noetherian property of RY, related questions
on the finite generation of R have a rich history: in addition to Nagata’s celebrated
counterexamples to Hilbert’s 14th Problem [13,14], we point the reader towards the
papers [11,18,19,3,10,5,9,20], and the references therein.

2. The example
Let F be a field, and consider the purely transcendental extension field
K = F(al,bl,a%bg, . ),

where the elements a,,, b,, are indeterminates over F. Set R := K[z, y], i.e., R is the ring
of formal power series in the variables x and y, with coefficients in K. Set

fni=anT 4+ bry forn > 1.
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Define an F-algebra endomorphism o of R as follows:

r — o,
y =y,
g
Qp, — an + yfn+17
bn — bn - l‘fn+1.

It is readily seen that o(f,) = f, for each n > 1, and also that o is surjective, hence an
automorphism of R. With this notation, we prove:

Theorem 2.1. Let K be a field constructed as above, R := K[x,y] a formal power series
ring, and G = (o) a cyclic group acting on R as described above. If the field K has
positive characteristic p, then G is a cyclic group of order p, whereas G is infinite if K
has characteristic zero. In either case, the ring of invariants R® is not noetherian.

Proof. For each k € Z, one has
Uk(an) = an+ kyfnr1 and ak(bn) = by, — kxfni1,

so the group (o) has order p if K has characteristic p > 0, and is infinite cyclic otherwise.
Let m denote the maximal ideal of R. We claim that for each o in K, one has

o(a) = o mod m? (2.1.1)

in R. To see this, suppose a = g/h for nonzero g, h in F|aq, b1, ag, ba, . ..]. It is immediate
from the definition that o(g) = g mod m?. Since g is a unit in R, there exists go € m?
with o(g) = g(1 — g2). Similarly, there exists ho € m? with o(h) = h(1 — h2). But then

() - = -

Y mod m?,

(1=g2)(14hathy+---) =

IS

which proves the claim.
Given a power series r € R, set 7 to be its constant term, i.e.,7 € K, and r =7 mod m.
We next claim that if » € R, then (2.1.1) can be strengthened to
o(F) = 7 mod (22, y*)R. (2.1.2)
Given r € R%, let «, 3, be elements of K such that

r = T+ azx+ By +yry mod (22, y*)R.

Since o(r) = r, one has
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o(F) +o(a)z+o(B)y+o(y)zy = T+ az+ By +yzy mod (2*, y*)R.

By (2.1.1), one has o(a) = @ mod m?, and ¢(3) = 8 mod m?, and o(y) = v mod m?,
so the above display yields ¢(7) =7 mod (22, %?)R as desired.
Lastly, we prove that R is not noetherian by showing that

far1 & (fio--, fa)RC forn > 1,

which, then, gives a strictly ascending chain of ideals in R®. Suppose, to the contrary,
that there exists an integer n such that

n
fosr = D _rikn
h=1

where r;, € RC for each k with 1 < k < n. The above may be written as

n
Ap 412 + bpi1y = Z ri(arx + bry),
k=1

so comparing the coefficients of x yields

U1 = Y T ag. (2.1.3)
k=1

Applying o to the above equation gives

n

1+ Yfre = Y o) (ar +yfii),
k=1

i.e.,

n

ni1 + anp2my + bugoy® = > 0(Fe)(ak + apr2y + brr1y?).
k=1

Since o () =T mod (22, y?)R for each k by (2.1.2), one obtains
Apt1 + Appoxy = ZFk(ak + agp1ry) mod (22, y*)R.
k=1
In light of (2.1.3), this simplifies to

n

QpioTy = ZFk ap1zy mod (22, 3°)R,
k=1
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from which one obtains
Unia = Y Trr1. (2.1.4)
k=1

Repeating the argument that (2.1.3) implies (2.1.4) gives

n
Qntm+1 = ZFk Atm for each m > 1.
k=1
As Ty, ...,T, are finitely many elements of the field K, this contradicts the assumption
that ai,as,... are infinitely many elements algebraically independent over F. O

Remark 2.2. Consider a discrete valuation ring R, with an action of a group G. We claim
that the invariant ring R is either a field or a discrete valuation ring; in particular, R®
is noetherian. To see this, let v: RN\ {0} —» Z be the discrete valuation, and consider its
restriction 7: RY~\ {0} — Z. If the image of this map is 0, then R is a field; otherwise,
the image is generated by a positive integer n, which yields the discrete valuation

1
EE:RG\{O}—»Z.
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