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Abstract
We study the behavior of various properties of commutative Noetherian rings under Segre
products, with a special focus on properties in positive prime characteristic defined using the
Frobenius endomorphism. Specifically, we construct normal graded rings of finite Frobenius
representation type that are not Cohen-Macaulay.
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1 Introduction

We study the behavior of various properties of commutative Noetherian rings under Segre
products, with a special focus on properties in positive prime characteristic defined using
the Frobenius endomorphism. Segre products of rings arise rather naturally in the context of
projective varieties: while the product of affine spaces Am and An is readily identified with

B Anurag K. Singh
singh@math.utah.edu

Kei-ichi Watanabe
watnbkei@gmail.com

1 Department of Mathematics, University of Utah,
155 South 1400 East, Salt Lake City, UT 84112, USA

2 Department of Mathematics, College of Humanities and Sciences, Nihon University,
Setagaya-ku, Tokyo 156-8550, Japan

3 Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University,
Higashimita 1-1-1, Tama-ku, Kawasaki 214-8571, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40306-023-00506-4&domain=pdf
http://orcid.org/0000-0002-3912-2393


A. K. Singh and K.-i. Watanabe

Am+n , it is the Segre embedding that gives the product of projective spaces Pm and Pn the
structure of a projective variety:

Pm × Pn → Pm+n+mn, ((a0, . . . , am), (b0, . . . , bn)) #→ (a0b0, a0b1, . . . , ambn).

At the level of homogeneous coordinate rings, this corresponds to

Pm × Pn = ProjF[x0y0, x0y1, . . . , xm yn],
where Pm := ProjF[x0, . . . , xm] and Pn := ProjF[y0, . . . , yn].

More generally, for N-graded rings R = ⊕n≥0Rn and S = ⊕n≥0Sn , finitely generated
over a field R0 = F = S0, the Segre product of R and S is the N-graded ring

R # S :=
⊕

n≥0

Rn ⊗F Sn .

It is readily seen that R # S is a subring of the tensor product R ⊗F S; moreover, R # S is a
direct summand of R ⊗F S as an R # S-module, equivalently the inclusion of rings

R # S ↪→ R ⊗F S

is pure; it follows from this that if F is a field of positive characteristic, and R and S are F-
pure or F-regular, then the same is also true for R # S. What is perhaps surprising is that the
converse also holds, provided that theN-grading on each of the rings R and S is irredundant;
this is proved here as Theorem 3.1, see also [10, Theorem 5.2]. The additional hypothesis on
the grading is indeed required in view of Example 3.2.

While the propertiesF-purity andF-regularity are inherited by pure subrings, the property
of being F-rational is not, as established by the second author in [32]. Nonetheless, we show
that if R and S are F-rational rings of positive prime characteristic, then R # S is also F-
rational, Theorem 4.1. The converse to this is false, see Example 4.2.

Lastly, we turn to the property of finite Frobenius representation type (FFRT); the notion
is due to Smith and Van den Bergh [27], and it follows readily from their results that if R
and S are N-graded reduced rings, finitely generated over a perfect field R0 = F = S0 of
positive characteristic, then R # S has FFRT. We use this to construct normal graded rings
that are not Cohen-Macaulay, but have the FFRT property.

The observation that Segre products readily yield large families of normal graded rings
that are not Cohen-Macaulay goes back at least to Chow [2], who established necessary and
sufficient conditions for the Segre product of Cohen-Macaulay rings to be Cohen-Macaulay;
Hochster and Roberts [15, §14] observed that under mild hypotheses, Chow’s results may be
recovered via the Künneth formula for sheaf cohomology. Subsequently, Goto andWatanabe
[6] established a more general Künneth formula for local cohomology that extends this circle
of ideas; this and other ingredients are summarized next.

2 Preliminaries

We first record the Künneth formula for local cohomology [6, Theorem 4.1.5]:

Theorem 2.1 (Goto-Watanabe) Let R and S be normal N-graded rings, finitely generated
over a field R0 = F = S0. Set mR, mS, and m to be the homogeneous maximal ideals of
the rings R, S, and R # S respectively. Suppose M and N are finitely generated Z-graded
modules over R and S respectively, such that Hk

mR
(M) = 0 = Hk

mS
(N ) for k = 0, 1.
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Then, for each k ≥ 0, the local cohomology of the Z-graded R # S-module

M # N :=
⊕

n∈Z
Mn ⊗F Nn

is given by

Hk
m(M # N ) =

(
M # Hk

mS
(N )

)
⊕

(
Hk
mR

(M) # N
)

⊕
⊕

i+ j=k+1

(
Hi
mR

(M) # H j
mS (N )

)
.

Our proof of Theorem 3.1 uses the description of normal graded rings in terms of Q-
divisors, due to Dolgačev [4], Pinkham [20], and Demazure [3], that we review next. A
Q-divisor on a normal projective variety X is a Q-linear combination of codimension one
irreducible subvarieties of X . Let D = ∑

ni Vi be a Q-divisor, where ni ∈ Q, and the
subvarieties Vi are distinct. Set

⌊D⌋ :=
∑

⌊ni⌋Vi ,

where ⌊n⌋ is the greatest integer less than or equal to n. We define

OX (D) := OX (⌊D⌋).
Let K (X) denote the field of rational functions on X . Each g ∈ K (X) defines a Weil
divisor div(g) by considering the zeros and poles of g with appropriate multiplicity. As these
multiplicities are integers, it follows that for a Q-divisor D one has

H0(X ,OX (⌊D⌋)) = {g ∈ K (X) | div(g)+ ⌊D⌋ ≥ 0}
= {g ∈ K (X) | div(g)+ D ≥ 0} = H0(X ,OX (D)).

A Q-divisor D is ample if ND is an ample Cartier divisor for some N ∈ N. In this case,
the generalized section ring Γ∗(X , D) is the N-graded ring

Γ∗(X , D) :=
⊕

n≥0

H0(X ,OX (nD))T n,

where T is an element of degree 1, transcendental over K (X). The following is [3, 3.5]:

Theorem 2.2 (Demazure) Let R be an N-graded normal domain that is finitely generated
over a field R0. Let T be a homogeneous element of degree 1 in the fraction field of R. Then
there exists a unique ample Q-divisor D on X := Proj R such that

Rn = H0(X ,OX (nD))T n for each n ≥ 0.

Let D = ∑
(si/ti )Vi be aQ-divisor where the Vi are distinct, si and ti are relatively prime

integers, and ti > 0. Following [29, Theorem 2.8], the fractional part of D is

D′ :=
∑ ti − 1

ti
Vi .

This definition is motivated by the fact that one then has

−⌊−nD⌋ = ⌊D′ + nD⌋
for each integer n, so that taking the graded dual of

[HdimR
m (R)]−n = HdimX (X ,OX (−nD))
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yields

[ωR]n = H0(X ,OX (KX + D′ + nD)),

whereωR is the graded canonical module of R := Γ∗(X , D), and KX is the canonical divisor
of X . The following is [31, Theorem 3.3]; note that

HdimX (X ,OX (KX + D′)) = HdimX (X ,OX (KX ))

is the rank one vector space [HdimR
m (ωR)]0.

Theorem 2.3 (Watanabe) Let X be a normal projective variety of characteristic p > 0, and
KX its canonical divisor. Let D be an ample Q-divisor, and set R := Γ∗(X , D). Then:

(i) The ring R is F-pure if and only if the Frobenius map below is injective:

F : HdimX (X ,OX (KX + D′)) → HdimX (X ,OX (pKX + pD′)).

(ii) Let η be a nonzero element of HdimX (X ,OX (KX + D′)). Then the ring R is F-regular
if and only if for each integer n > 0 and each nonzero element c of H0(X ,OX (nD)),
there exists an integer e > 0 such that cFe(η) is a nonzero element of

HdimX (X ,OX (pe(KX + D′)+ nD)).

3 F-regularity and F-purity

The theory of tight closure was introduced by Hochster and Huneke in [12], and further
developed in the graded context in [13]. A ring R of positive prime characteristic is weakly
F-regular if each ideal of R equals its tight closure, while R is F-regular if each localization
of R is weakly F-regular. Following [11, p. 166], a ring R of positive prime characteristic
is strongly F-regular if N∗

M = N for each pair of R-modules N ⊆ M . When R is an N-
graded ring that is finitely generated over a field R0 of positive characteristic, as is the case in
the present paper, the properties of weak F-regularity, F-regularity, and strong F-regularity
coincide by [17, Corollary 3.3].

The following theorem may be viewed as an extension of [10, Theorem 5.2], where it was
proved under the hypothesis that the rings contain homogeneous elements of degree 1:

Theorem 3.1 Let R and S be normal N-graded rings, finitely generated over a perfect field
R0 = F = S0 of positive characteristic. Suppose that the fraction fields of R as well as S
contain homogeneous elements of degree 1.

Then the Segre product R # S is F-regular (respectively, F-pure) if and only if R and S
are F-regular (respectively, F-pure).

Proof If the rings R and S are F-regular or F-pure, then the same holds for their tensor
product R ⊗F S, see for example the proof of 2 .⇒ 3 in [10, Theorem 5.2]. The property,
then, is inherited by the pure subring R # S; it is only the converse that requires the additional
hypothesis on the grading:

Let DX and DY be ample Q-divisors on X := Proj R and Y := Proj S respectively, such
that R = Γ∗(X , DX ) and S = Γ∗(Y , DY ). Set Z := X × Y , and let π1 : Z → X and
π2 : Z → Y be the respective projection morphisms. For each integer n ≥ 0 one has

H0(Z ,OZ (π
∗
1 (nDX )+ π∗

2 (nDY ))) = H0(X ,OX (nDX )) ⊗ H0(Y ,OX (nDY )),
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from which it follows that

R # S = Γ∗(Z ,π∗
1 (DX )+ π∗

2 (DY )).

Setting DZ := π∗
1 (DX )+ π∗

2 (DY ), one has

D′
Z = π∗

1 (D
′
X )+ π∗

2 (D
′
Y ),

so the Frobenius map F as in Theorem 2.3 (i) takes the form

where d1 := dimX and d2 := dimY . Let η1 and η2 be nonzero elements of the rank one
vector spaces Hd1(X ,OX (KX + D′)) and Hd2(Y ,OY (KY + D′

Y )) respectively.
If R # S is F-pure, the injectivity of the vertical arrows in the diagram displayed above

implies that F(η1 ⊗ η2) = F(η1) ⊗ F(η2) is nonzero, and hence that the maps

Hd1(X ,OX (KX + D′
X ))

F−−−→ Hd1(X ,OX (pKX + pD′
X ))

and

Hd2(Y ,OY (KY + D′
Y ))

F−−−→ Hd2(Y ,OY (pKY + pD′
Y ))

are injective; it follows that the rings R and S are F-pure.
Next, assume that R # S is F-regular. Fix n > 0, and consider nonzero elements

c1 ∈ H0(X ,OX (nDX )) and c2 ∈ H0(Y ,OY (nDY )).

Then c1 ⊗c2 is a nonzero element of H0(Z ,OX (nDZ )), so the F-regularity of R # S implies
that there exists e > 0 such that

(c1 ⊗ c2)Fe(η1 ⊗ η2) = c1Fe(η1) ⊗ c2Fe(η2)

is a nonzero element of

Hd1+d2(Z ,OZ (pe(KZ + D′
Z )+ nDZ ))

∼= Hd1(X ,OX (pe(KX + D′
X )+ nDX )) ⊗ Hd2(Y ,OY (pe(KY + D′

Y )+ nDY )).

But then the elements

c1Fe(η1) ∈ Hd1(X ,OX (pe(KX + D′
X )+ nDX ))

and

c2Fe(η2) ∈ Hd2(Y ,OY (pe(KY + D′
Y )+ nDY ))

are nonzero, implying that the rings R and S are F-regular. ⊓⊔

The hypothesis that the N-grading on R and S is irredundant is indeed required:

Example 3.2 Consider the hypersurface R := F2[x, y, z]/(x2 + y3 + z3) where x, y, z have
degrees 3, 2, 2, respectively, and S := F2[u, v] where u and v have degree 2. The ring
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R is not F-pure or F-regular since the element x belongs to the Frobenius closure of the
ideal (y, z)R. However, since the ring S is supported only in even degrees, one has

R # S = R(2) # S = F2[y, z] # F2[u, v] = F2[uy, uz, vy, vz],
which is F-regular. Note that while the fraction field of R contains homogeneous elements
of degree 1, the fraction field of S does not.

4 F-rationality

Following [11, p. 125], a local ring of positive prime characteristic is F-rational if it is a
homomorphic image of a Cohen-Macaulay ring, and each ideal generated by a system of
parameters is tightly closed; a Noetherian ring of positive prime characteristic is F-rational
if its localization at each maximal ideal (equivalently, at each prime ideal) is F-rational. With
this definition, an F-rational ring is normal and Cohen-Macaulay.

For the case of interest in this paper, let R be anN-graded normal domain that is a finitely
generated algebra over a field R0 of positive characteristic. Then R is F-rational if and only
if the ideal generated by some (equivalently, any) homogeneous system of parameters for R
is tightly closed; see [13, Theorem 4.7] and the preceding remark.

Smith [25] proved that F-rational rings have rational singularities; the converse, more
precisely the theorem that rings with rational singularities have F-rational type, is due inde-
pendently to Hara [7] and to Mehta and Srinivas [19].

Let R be a finitely generated algebra over a field of characteristic zero; Boutot’s theorem
states that if R has rational singularities, then so does each pure subring of R [1]. The
corresponding statement for F-rational rings turns out to be false: in [32] the second author
constructed an example of an F-rational ring with a pure subring that is not F-rational.
Nonetheless, we have:

Theorem 4.1 Suppose R and S are F-rational N-graded rings, finitely generated over a
perfect field R0 = F = S0 of positive characteristic. Then R # S is F-rational.

Proof Note that R and S are Cohen-Macaulay; it suffices to assume that they have positive
dimension, in which case a(R) < 0 and a(S) < 0 by [5, Satz 3.1] or [30, Theorem 2.2].
Using this, the Künneth formula shows that R # S is Cohen-Macaulay and that

Hd
m(R # S) = HdimR

mR
(R) # HdimS

mS
(S), (4.1.1)

where d := dim(R # S), and mR , mS , and m are the homogeneous maximal ideals of the
rings R, S, and R # S respectively. The hypothesis that F is perfect ensures that the ring R # S
is normal. By [9, Corollary 6.8], the ring R ⊗F S is F-rational.

It suffices to show that the zero submodule of (4.1.1) is tightly closed. Suppose, to the
contrary, that c and η are nonzero homogenous elements of R # S and Hd

m(R # S) respectively,
with cFe(η) = 0 in Hd

m(R # S) for e ≫ 0. It follows that cFe(η) is also zero for e ≫ 0,
when regarded as an element of

HdimR
mR

(R) ⊗F HdimS
mS

(S).

But then η, regarded as an element of the module above, is in the tight closure of zero; this
contradicts the F-rationality of R ⊗F S. ⊓⊔

In contrast with Theorem 3.1, R # S may be F-rational even when R and S are not:
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Example 4.2 Let F be a field of positive characteristic, and consider the hypersurfaces

R := F[x, y, z]/(x2 + y3 + z7) and S := F[u, v, w]/(u4 + v5 + w5),

with x, y, z having degrees 21, 14, 6 respectively, and u, v, w having degrees 5, 4, 4 respec-
tively. Then a(R) = 1 and a(S) = 7, so R and S are not F-rational. Note that the gradings
are irredundant, i.e., as in the hypotheses of Theorem 3.1, the fraction fields of R as well as
S contain homogeneous elements of degree 1.

Since [H2
mR

(R)]≥0 is supported only in degree 1, and [H2
mS

(S)]≥0 in degrees 2, 3, and
7, the Künneth formula shows that R # S is Cohen-Macaulay, and also that a(R # S) = −5.
Suppose that the characteristic of F is at least 7. Then the Frobenius action on each of

[H2
mR

(R)]≤−5 and [H2
mS

(S)]≤−5

and hence on H2
mR

(R) # H2
mS

(S) is injective. Moreover, we claim that R # S has an isolated
non F-regular point: to see this, let r ⊗ s be a nonzero homogeneous element of R # S of
positive degree; then the ring

(R # S)r⊗s = Rr # Ss

is a pure subring of the regular ring Rr ⊗F Ss , and is hence F-regular. It follows that R # S
is F-rational by [13, Theorem 7.1].

5 Finite Frobenius Representation Type

The notion of rings of finite Frobenius representation type (FFRT) is due to Smith andVan den
Bergh; it is an essential ingredient in their proof of the following remarkable theorem: If R is
a graded direct summand of a polynomial ring over a perfect field F of positive characteristic,
then the ring of F-linear differential operators on R is a simple ring, see [27, Theorem 1.3].
This is striking in that the corresponding statement is not known for polynomial rings over
fields of characteristic zero.

Subsequently, the FFRT property has found several other applications: Seibert [23] proved
that over rings with FFRT, the Hilbert-Kunz multiplicity is rational; tight closure commutes
with localization for rings with FFRT by Yao [33]; if R is a Gorenstein ring with FFRT,
Takagi and Takahashi [28] proved that each local cohomology module of the form Hk

a(R)
has finitely many associated primes; the Gorenstein hypothesis may be removed, as proved
subsequently by Hochster and Núñez-Betancourt [14].

A reduced ring R of positive prime characteristic p, satisfying the Krull-Schmidt theorem,
is said to have finite Frobenius representation type if there exists a finite set S of R-modules
such that for each q = pe, each indecomposable summand of R1/q is isomorphic to an
element of S. When R is Cohen-Macaulay, each indecomposable summand of R1/q is a
maximal Cohen-Macaulay R-module; thus, Cohen-Macaulay rings of finite representation
type have FFRT, though the latter property is much weaker: e.g., in the graded setting, the
FFRT property is inherited by direct summands [27, Proposition 3.1.6].

Key examples of rings with FFRT include those that are graded direct summands of
polynomial rings; such rings are also F-regular, and hence Cohen-Macaulay. Recent work
on the FFRT property includes that of Hara andOhkawa [8], where they study the property for
2-dimensional normal graded rings in terms ofQ-divisors, and [21, 22] where Raedschelders,
Špenko, and Van den Bergh prove that over an algebraically closed field of characteristic
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p ≥ max{n − 2, 3}, the Plücker homogeneous coordinate ring of the Grassmannian G(2, n)
has FFRT.

Our goal here is to construct normal rings with FFRT that are not Cohen-Macaulay. Note
that a Stanley-Reisner ring over a perfect field has FFRT by [16, Example 2.36], though
such a ring need not be Cohen-Macaulay. Our interest here, however, is primarily in normal
domains. We first record:

Lemma 5.1 Let F be a perfect field of positive characteristic, and let R and S be reduced
rings that are finitely generated F-algebras. Suppose, moreover, that R, S, and R⊗F S satisfy
the Krull-Schmidt theorem. Then, if R and S have FFRT, so does R ⊗F S.

Proof If R and S have FFRT, there exist indecomposable R-modules M1, . . . ,Mm , and
indecomposable S-modules N1, . . . , Nn such that for each q = pe, one has

R1/q ∼=
⊕

Mi and S1/q ∼=
⊕

N j ,

where, in each case, the index set depends on q , and modules may be repeated within the
direct sum. Set T := R ⊗F S. Then

T 1/q ∼= R1/q ⊗F S1/q ∼=
(⊕

Mi

)
⊗F

(⊕
N j

)
∼=

⊕(
Mi ⊗F N j

)
.

Each of the mn modules of the form Mi ⊗F N j is a direct sum of finitely many indecom-
posable T -modules. This provides a finite set of indecomposable T -modules that contains
an isomorphic copy of each indecomposable summand of T 1/q for each q = pe. ⊓⊔

Proposition 5.2 Let R and S be N-graded reduced rings, finitely generated over a perfect
field R0 = F = S0 of positive characteristic. If R and S have FFRT, then the rings R ⊗F S
and R # S also have FFRT.

Proof The statement regarding the tensor product follows immediately from the lemma,
bearing in mind that the Krull-Schmidt theorem holds for N-graded rings A with A0 a field.

The assertion about the Segre product follows from [27, Proposition 3.1.6], since R # S is
a graded direct summand of the tensor product R ⊗F S. ⊓⊔

Example 5.3 Let F be a perfect field of characteristic p ≥ 7, and consider the hypersurface
R := F[x, y, z]/(x2 + y3 − z p), with x, y, z having degrees 3p, 2p, 6 respectively. Note
that the ring R is sandwiched between A := F[x, y] and A1/p = F[x1/p, y1/p], since

z = x2/p + y3/p.

As A is a polynomial ring, and hence has finite representation type, it follows that R has FFRT
by [24, Observation 3.7, Theorem 3.10]. Set S := F[u, v], where u and v are indeterminates
with degree 1. Then the ring R # S has FFRT by Proposition 5.2. However, since a(R) =
p − 6 > 0, the Künneth formula shows that R # S is not Cohen-Macaulay.

Remark 5.4 The examples above are characteristic-specific: to illustrate, let p ≥ 7 be a
prime integer, and let F now be an arbitrary field. Set P1 := ProjF[u, v], with points of P1

parametrized by u/v. If p = 6k + 1, consider the Q-divisor

D := 1
2
(0) − 1

3
(∞) − k

p
(−1). (5.4.1)
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Then Γ∗(P1, D) := ⊕
H0(P1, nD)T n is the F-algebra generated by

z := v2(u + v)

u3
T 6, y := v4k+1(u + v)2k

u6k+1 T 2p, x := v6k+1(u + v)3k

u9k+1 T 3p,

where T is an indeterminate of degree one. It is readily seen that Γ∗(P1, D) is a hypersurface
with defining equation z p = x2 + y3.

If p = 6k − 1, consider instead the Q-divisor

D := 1
3
(∞)+ k

p
(−1) − 1

2
(0). (5.4.2)

In this case, Γ∗(P1, D) is the F-algebra generated by

z := u3

v2(u + v)
T 6, y := u6k−1

v4k−1(u + v)2k
T 2p, x := u9k−1

v6k−1(u + v)3k
T 3p.

Once again, Γ∗(P1, D) is a hypersurface with defining equation z p = x2 + y3.
Note that the denominators occurring in the Q-divisor D in (5.4.1) and (5.4.2) are 2, 3,

and p. It follows from [8, Theorem 7.2] that if the characteristic of F is not 2, 3, or p, then
the hypersurface F[x, y, z]/(x2 + y3 − z p) does not have FFRT.

This raises the question:

Question 5.5 Let R be anormal gradeddomain, finitely generatedover afield of characteristic
zero. If R has dense FFRT type, i.e., there exists a dense set of prime integers p for which
the mod p reductions Rp have FFRT, then is R a Cohen-Macaulay ring?

A related question is the following; see also [18, Question 9.1].

Question 5.6 Let R be anormal gradeddomain, finitely generatedover afield of characteristic
zero. If R has dense FFRT type, then is R an F-regular ring?

The converse is false: [26, Theorem 5.1] provides an example of an F-regular hypersur-
face R, over a field of characteristic zero, for which each mod p reduction Rp has a local
cohomology module of the form H3

I (Rp) that has infinitely many associated prime ideals; it
follows from [28, Theorem 3.9] or [14, Theorem 5.7] that, for each prime integer p, the mod
p reduction Rp does not have FFRT.
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