

On Segre Products, F -regularity, and Finite Frobenius Representation Type

Anurag K. Singh¹ · Kei-ichi Watanabe^{2,3}

Dedicated to Ngo Viet Trung on the occasion of his 70th birthday, in celebration of his many contributions to commutative algebra

Received: 23 March 2023 / Accepted: 3 April 2023

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2023

Abstract

We study the behavior of various properties of commutative Noetherian rings under Segre products, with a special focus on properties in positive prime characteristic defined using the Frobenius endomorphism. Specifically, we construct normal graded rings of finite Frobenius representation type that are not Cohen-Macaulay.

Keywords Noetherian rings · Segre products · Frobenius endomorphism

Mathematics Subject Classification (2010) Primary 13A35; Secondary 13A02 · 13H10

1 Introduction

We study the behavior of various properties of commutative Noetherian rings under Segre products, with a special focus on properties in positive prime characteristic defined using the Frobenius endomorphism. Segre products of rings arise rather naturally in the context of projective varieties: while the product of affine spaces \mathbb{A}^m and \mathbb{A}^n is readily identified with

✉ Anurag K. Singh
singh@math.utah.edu

Kei-ichi Watanabe
watnbkei@gmail.com

¹ Department of Mathematics, University of Utah,
155 South 1400 East, Salt Lake City, UT 84112, USA

² Department of Mathematics, College of Humanities and Sciences, Nihon University,
Setagaya-ku, Tokyo 156-8550, Japan

³ Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University,
Higashimita 1-1-1, Tama-ku, Kawasaki 214-8571, Japan

\mathbb{A}^{m+n} , it is the *Segre embedding* that gives the product of projective spaces \mathbb{P}^m and \mathbb{P}^n the structure of a projective variety:

$$\mathbb{P}^m \times \mathbb{P}^n \rightarrow \mathbb{P}^{m+n+mn}, \quad ((a_0, \dots, a_m), (b_0, \dots, b_n)) \mapsto (a_0b_0, a_0b_1, \dots, a_mb_n).$$

At the level of homogeneous coordinate rings, this corresponds to

$$\mathbb{P}^m \times \mathbb{P}^n = \text{Proj } \mathbb{F}[x_0y_0, x_0y_1, \dots, x_my_n],$$

where $\mathbb{P}^m := \text{Proj } \mathbb{F}[x_0, \dots, x_m]$ and $\mathbb{P}^n := \text{Proj } \mathbb{F}[y_0, \dots, y_n]$.

More generally, for \mathbb{N} -graded rings $R = \bigoplus_{n \geq 0} R_n$ and $S = \bigoplus_{n \geq 0} S_n$, finitely generated over a field $R_0 = \mathbb{F} = S_0$, the *Segre product* of R and S is the \mathbb{N} -graded ring

$$R \# S := \bigoplus_{n \geq 0} R_n \otimes_{\mathbb{F}} S_n.$$

It is readily seen that $R \# S$ is a subring of the tensor product $R \otimes_{\mathbb{F}} S$; moreover, $R \# S$ is a direct summand of $R \otimes_{\mathbb{F}} S$ as an $R \# S$ -module, equivalently the inclusion of rings

$$R \# S \hookrightarrow R \otimes_{\mathbb{F}} S$$

is pure; it follows from this that if \mathbb{F} is a field of positive characteristic, and R and S are F -pure or F -regular, then the same is also true for $R \# S$. What is perhaps surprising is that the converse also holds, provided that the \mathbb{N} -grading on each of the rings R and S is irredundant; this is proved here as Theorem 3.1, see also [10, Theorem 5.2]. The additional hypothesis on the grading is indeed required in view of Example 3.2.

While the properties F -purity and F -regularity are inherited by pure subrings, the property of being F -rational is not, as established by the second author in [32]. Nonetheless, we show that if R and S are F -rational rings of positive prime characteristic, then $R \# S$ is also F -rational, Theorem 4.1. The converse to this is false, see Example 4.2.

Lastly, we turn to the property of finite Frobenius representation type (FFRT); the notion is due to Smith and Van den Bergh [27], and it follows readily from their results that if R and S are \mathbb{N} -graded reduced rings, finitely generated over a perfect field $R_0 = \mathbb{F} = S_0$ of positive characteristic, then $R \# S$ has FFRT. We use this to construct normal graded rings that are not Cohen-Macaulay, but have the FFRT property.

The observation that Segre products readily yield large families of normal graded rings that are not Cohen-Macaulay goes back at least to Chow [2], who established necessary and sufficient conditions for the Segre product of Cohen-Macaulay rings to be Cohen-Macaulay; Hochster and Roberts [15, §14] observed that under mild hypotheses, Chow's results may be recovered via the Künneth formula for sheaf cohomology. Subsequently, Goto and Watanabe [6] established a more general Künneth formula for local cohomology that extends this circle of ideas; this and other ingredients are summarized next.

2 Preliminaries

We first record the Künneth formula for local cohomology [6, Theorem 4.1.5]:

Theorem 2.1 (Goto-Watanabe) *Let R and S be normal \mathbb{N} -graded rings, finitely generated over a field $R_0 = \mathbb{F} = S_0$. Set \mathfrak{m}_R , \mathfrak{m}_S , and \mathfrak{m} to be the homogeneous maximal ideals of the rings R , S , and $R \# S$ respectively. Suppose M and N are finitely generated \mathbb{Z} -graded modules over R and S respectively, such that $H_{\mathfrak{m}_R}^k(M) = 0 = H_{\mathfrak{m}_S}^k(N)$ for $k = 0, 1$.*

Then, for each $k \geq 0$, the local cohomology of the \mathbb{Z} -graded $R \# S$ -module

$$M \# N := \bigoplus_{n \in \mathbb{Z}} M_n \otimes_{\mathbb{F}} N_n$$

is given by

$$H_{\mathfrak{m}}^k(M \# N) = \left(M \# H_{\mathfrak{m}_S}^k(N) \right) \oplus \left(H_{\mathfrak{m}_R}^k(M) \# N \right) \oplus \bigoplus_{i+j=k+1} \left(H_{\mathfrak{m}_R}^i(M) \# H_{\mathfrak{m}_S}^j(N) \right).$$

Our proof of Theorem 3.1 uses the description of normal graded rings in terms of \mathbb{Q} -divisors, due to Dolgačev [4], Pinkham [20], and Demazure [3], that we review next. A \mathbb{Q} -divisor on a normal projective variety X is a \mathbb{Q} -linear combination of codimension one irreducible subvarieties of X . Let $D = \sum n_i V_i$ be a \mathbb{Q} -divisor, where $n_i \in \mathbb{Q}$, and the subvarieties V_i are distinct. Set

$$\lfloor D \rfloor := \sum \lfloor n_i \rfloor V_i,$$

where $\lfloor n \rfloor$ is the greatest integer less than or equal to n . We define

$$\mathcal{O}_X(D) := \mathcal{O}_X(\lfloor D \rfloor).$$

Let $K(X)$ denote the field of rational functions on X . Each $g \in K(X)$ defines a Weil divisor $\text{div}(g)$ by considering the zeros and poles of g with appropriate multiplicity. As these multiplicities are integers, it follows that for a \mathbb{Q} -divisor D one has

$$\begin{aligned} H^0(X, \mathcal{O}_X(\lfloor D \rfloor)) &= \{g \in K(X) \mid \text{div}(g) + \lfloor D \rfloor \geq 0\} \\ &= \{g \in K(X) \mid \text{div}(g) + D \geq 0\} = H^0(X, \mathcal{O}_X(D)). \end{aligned}$$

A \mathbb{Q} -divisor D is *ample* if ND is an ample Cartier divisor for some $N \in \mathbb{N}$. In this case, the *generalized section ring* $\Gamma_*(X, D)$ is the \mathbb{N} -graded ring

$$\Gamma_*(X, D) := \bigoplus_{n \geq 0} H^0(X, \mathcal{O}_X(nD))T^n,$$

where T is an element of degree 1, transcendental over $K(X)$. The following is [3, 3.5]:

Theorem 2.2 (Demazure) *Let R be an \mathbb{N} -graded normal domain that is finitely generated over a field R_0 . Let T be a homogeneous element of degree 1 in the fraction field of R . Then there exists a unique ample \mathbb{Q} -divisor D on $X := \text{Proj } R$ such that*

$$R_n = H^0(X, \mathcal{O}_X(nD))T^n \quad \text{for each } n \geq 0.$$

Let $D = \sum (s_i/t_i) V_i$ be a \mathbb{Q} -divisor where the V_i are distinct, s_i and t_i are relatively prime integers, and $t_i > 0$. Following [29, Theorem 2.8], the *fractional part* of D is

$$D' := \sum \frac{t_i - 1}{t_i} V_i.$$

This definition is motivated by the fact that one then has

$$-\lfloor -nD \rfloor = \lfloor D' + nD \rfloor$$

for each integer n , so that taking the graded dual of

$$[H_{\mathfrak{m}}^{\dim R}(R)]_{-n} = H^{\dim X}(X, \mathcal{O}_X(-nD))$$

yields

$$[\omega_R]_n = H^0(X, \mathcal{O}_X(K_X + D' + nD)),$$

where ω_R is the graded canonical module of $R := \Gamma_*(X, D)$, and K_X is the canonical divisor of X . The following is [31, Theorem 3.3]; note that

$$H^{\dim X}(X, \mathcal{O}_X(K_X + D')) = H^{\dim X}(X, \mathcal{O}_X(K_X))$$

is the rank one vector space $[H_m^{\dim R}(\omega_R)]_0$.

Theorem 2.3 (Watanabe) *Let X be a normal projective variety of characteristic $p > 0$, and K_X its canonical divisor. Let D be an ample \mathbb{Q} -divisor, and set $R := \Gamma_*(X, D)$. Then:*

(i) *The ring R is F -pure if and only if the Frobenius map below is injective:*

$$F: H^{\dim X}(X, \mathcal{O}_X(K_X + D')) \rightarrow H^{\dim X}(X, \mathcal{O}_X(pK_X + pD')).$$

(ii) *Let η be a nonzero element of $H^{\dim X}(X, \mathcal{O}_X(K_X + D'))$. Then the ring R is F -regular if and only if for each integer $n > 0$ and each nonzero element c of $H^0(X, \mathcal{O}_X(nD))$, there exists an integer $e > 0$ such that $cF^e(\eta)$ is a nonzero element of*

$$H^{\dim X}(X, \mathcal{O}_X(p^e(K_X + D') + nD)).$$

3 F -regularity and F -purity

The theory of tight closure was introduced by Hochster and Huneke in [12], and further developed in the graded context in [13]. A ring R of positive prime characteristic is *weakly F -regular* if each ideal of R equals its tight closure, while R is F -regular if each localization of R is weakly F -regular. Following [11, p. 166], a ring R of positive prime characteristic is *strongly F -regular* if $N_M^* = N$ for each pair of R -modules $N \subseteq M$. When R is an \mathbb{N} -graded ring that is finitely generated over a field R_0 of positive characteristic, as is the case in the present paper, the properties of weak F -regularity, F -regularity, and strong F -regularity coincide by [17, Corollary 3.3].

The following theorem may be viewed as an extension of [10, Theorem 5.2], where it was proved under the hypothesis that the rings contain homogeneous elements of degree 1:

Theorem 3.1 *Let R and S be normal \mathbb{N} -graded rings, finitely generated over a perfect field $R_0 = \mathbb{F} = S_0$ of positive characteristic. Suppose that the fraction fields of R as well as S contain homogeneous elements of degree 1.*

Then the Segre product $R \# S$ is F -regular (respectively, F -pure) if and only if R and S are F -regular (respectively, F -pure).

Proof If the rings R and S are F -regular or F -pure, then the same holds for their tensor product $R \otimes_{\mathbb{F}} S$, see for example the proof of 2 \implies 3 in [10, Theorem 5.2]. The property, then, is inherited by the pure subring $R \# S$; it is only the converse that requires the additional hypothesis on the grading:

Let D_X and D_Y be ample \mathbb{Q} -divisors on $X := \text{Proj } R$ and $Y := \text{Proj } S$ respectively, such that $R = \Gamma_*(X, D_X)$ and $S = \Gamma_*(Y, D_Y)$. Set $Z := X \times Y$, and let $\pi_1: Z \rightarrow X$ and $\pi_2: Z \rightarrow Y$ be the respective projection morphisms. For each integer $n \geq 0$ one has

$$H^0(Z, \mathcal{O}_Z(\pi_1^*(nD_X) + \pi_2^*(nD_Y))) = H^0(X, \mathcal{O}_X(nD_X)) \otimes H^0(Y, \mathcal{O}_Y(nD_Y)),$$

from which it follows that

$$R \# S = \Gamma_*(Z, \pi_1^*(D_X) + \pi_2^*(D_Y)).$$

Setting $D_Z := \pi_1^*(D_X) + \pi_2^*(D_Y)$, one has

$$D'_Z = \pi_1^*(D'_X) + \pi_2^*(D'_Y),$$

so the Frobenius map F as in Theorem 2.3 (i) takes the form

$$\begin{array}{ccc} H^{d_1+d_2}(Z, \mathcal{O}_Z(K_Z + D'_Z)) & \xrightarrow{\cong} & H^{d_1}(X, \mathcal{O}_X(K_X + D'_X)) \otimes H^{d_2}(Y, \mathcal{O}_Y(K_Y + D'_Y)) \\ F \downarrow & & F \downarrow \\ H^{d_1+d_2}(Z, \mathcal{O}_Z(pK_Z + pD'_Z)) & \xrightarrow{\cong} & H^{d_1}(X, \mathcal{O}_X(pK_X + pD'_X)) \otimes H^{d_2}(Y, \mathcal{O}_Y(pK_Y + pD'_Y)) \end{array}$$

where $d_1 := \dim X$ and $d_2 := \dim Y$. Let η_1 and η_2 be nonzero elements of the rank one vector spaces $H^{d_1}(X, \mathcal{O}_X(K_X + D'))$ and $H^{d_2}(Y, \mathcal{O}_Y(K_Y + D'))$ respectively.

If $R \# S$ is F -pure, the injectivity of the vertical arrows in the diagram displayed above implies that $F(\eta_1 \otimes \eta_2) = F(\eta_1) \otimes F(\eta_2)$ is nonzero, and hence that the maps

$$H^{d_1}(X, \mathcal{O}_X(K_X + D'_X)) \xrightarrow{F} H^{d_1}(X, \mathcal{O}_X(pK_X + pD'_X))$$

and

$$H^{d_2}(Y, \mathcal{O}_Y(K_Y + D'_Y)) \xrightarrow{F} H^{d_2}(Y, \mathcal{O}_Y(pK_Y + pD'_Y))$$

are injective; it follows that the rings R and S are F -pure.

Next, assume that $R \# S$ is F -regular. Fix $n > 0$, and consider nonzero elements

$$c_1 \in H^0(X, \mathcal{O}_X(nD_X)) \quad \text{and} \quad c_2 \in H^0(Y, \mathcal{O}_Y(nD_Y)).$$

Then $c_1 \otimes c_2$ is a nonzero element of $H^0(Z, \mathcal{O}_Z(nD_Z))$, so the F -regularity of $R \# S$ implies that there exists $e > 0$ such that

$$(c_1 \otimes c_2)F^e(\eta_1 \otimes \eta_2) = c_1F^e(\eta_1) \otimes c_2F^e(\eta_2)$$

is a nonzero element of

$$\begin{aligned} & H^{d_1+d_2}(Z, \mathcal{O}_Z(p^e(K_Z + D'_Z) + nD_Z)) \\ & \cong H^{d_1}(X, \mathcal{O}_X(p^e(K_X + D'_X) + nD_X)) \otimes H^{d_2}(Y, \mathcal{O}_Y(p^e(K_Y + D'_Y) + nD_Y)). \end{aligned}$$

But then the elements

$$c_1F^e(\eta_1) \in H^{d_1}(X, \mathcal{O}_X(p^e(K_X + D'_X) + nD_X))$$

and

$$c_2F^e(\eta_2) \in H^{d_2}(Y, \mathcal{O}_Y(p^e(K_Y + D'_Y) + nD_Y))$$

are nonzero, implying that the rings R and S are F -regular. \square

The hypothesis that the \mathbb{N} -grading on R and S is irredundant is indeed required:

Example 3.2 Consider the hypersurface $R := \mathbb{F}_2[x, y, z]/(x^2 + y^3 + z^3)$ where x, y, z have degrees 3, 2, 2, respectively, and $S := \mathbb{F}_2[u, v]$ where u and v have degree 2. The ring

R is not F -pure or F -regular since the element x belongs to the Frobenius closure of the ideal $(y, z)R$. However, since the ring S is supported only in even degrees, one has

$$R \# S = R^{(2)} \# S = \mathbb{F}_2[y, z] \# \mathbb{F}_2[u, v] = \mathbb{F}_2[uy, uz, vy, vz],$$

which is F -regular. Note that while the fraction field of R contains homogeneous elements of degree 1, the fraction field of S does not.

4 F -rationality

Following [11, p. 125], a local ring of positive prime characteristic is F -rational if it is a homomorphic image of a Cohen-Macaulay ring, and each ideal generated by a system of parameters is tightly closed; a Noetherian ring of positive prime characteristic is F -rational if its localization at each maximal ideal (equivalently, at each prime ideal) is F -rational. With this definition, an F -rational ring is normal and Cohen-Macaulay.

For the case of interest in this paper, let R be an \mathbb{N} -graded normal domain that is a finitely generated algebra over a field R_0 of positive characteristic. Then R is F -rational if and only if the ideal generated by some (equivalently, any) homogeneous system of parameters for R is tightly closed; see [13, Theorem 4.7] and the preceding remark.

Smith [25] proved that F -rational rings have rational singularities; the converse, more precisely the theorem that rings with rational singularities have F -rational type, is due independently to Hara [7] and to Mehta and Srinivas [19].

Let R be a finitely generated algebra over a field of characteristic zero; Boutot's theorem states that if R has rational singularities, then so does each pure subring of R [1]. The corresponding statement for F -rational rings turns out to be false: in [32] the second author constructed an example of an F -rational ring with a pure subring that is not F -rational. Nonetheless, we have:

Theorem 4.1 *Suppose R and S are F -rational \mathbb{N} -graded rings, finitely generated over a perfect field $R_0 = \mathbb{F} = S_0$ of positive characteristic. Then $R \# S$ is F -rational.*

Proof Note that R and S are Cohen-Macaulay; it suffices to assume that they have positive dimension, in which case $a(R) < 0$ and $a(S) < 0$ by [5, Satz 3.1] or [30, Theorem 2.2]. Using this, the Künneth formula shows that $R \# S$ is Cohen-Macaulay and that

$$H_{\mathfrak{m}}^d(R \# S) = H_{\mathfrak{m}_R}^{\dim R}(R) \# H_{\mathfrak{m}_S}^{\dim S}(S), \quad (4.1.1)$$

where $d := \dim(R \# S)$, and \mathfrak{m}_R , \mathfrak{m}_S , and \mathfrak{m} are the homogeneous maximal ideals of the rings R , S , and $R \# S$ respectively. The hypothesis that \mathbb{F} is perfect ensures that the ring $R \# S$ is normal. By [9, Corollary 6.8], the ring $R \otimes_{\mathbb{F}} S$ is F -rational.

It suffices to show that the zero submodule of (4.1.1) is tightly closed. Suppose, to the contrary, that c and η are nonzero homogenous elements of $R \# S$ and $H_{\mathfrak{m}}^d(R \# S)$ respectively, with $cF^e(\eta) = 0$ in $H_{\mathfrak{m}}^d(R \# S)$ for $e \gg 0$. It follows that $cF^e(\eta)$ is also zero for $e \gg 0$, when regarded as an element of

$$H_{\mathfrak{m}_R}^{\dim R}(R) \otimes_{\mathbb{F}} H_{\mathfrak{m}_S}^{\dim S}(S).$$

But then η , regarded as an element of the module above, is in the tight closure of zero; this contradicts the F -rationality of $R \otimes_{\mathbb{F}} S$. \square

In contrast with Theorem 3.1, $R \# S$ may be F -rational even when R and S are not:

Example 4.2 Let \mathbb{F} be a field of positive characteristic, and consider the hypersurfaces

$$R := \mathbb{F}[x, y, z]/(x^2 + y^3 + z^7) \quad \text{and} \quad S := \mathbb{F}[u, v, w]/(u^4 + v^5 + w^5),$$

with x, y, z having degrees 21, 14, 6 respectively, and u, v, w having degrees 5, 4, 4 respectively. Then $a(R) = 1$ and $a(S) = 7$, so R and S are not F -rational. Note that the gradings are irredundant, i.e., as in the hypotheses of Theorem 3.1, the fraction fields of R as well as S contain homogeneous elements of degree 1.

Since $[H_{\mathfrak{m}_R}^2(R)]_{\geq 0}$ is supported only in degree 1, and $[H_{\mathfrak{m}_S}^2(S)]_{\geq 0}$ in degrees 2, 3, and 7, the Künneth formula shows that $R \# S$ is Cohen-Macaulay, and also that $a(R \# S) = -5$. Suppose that the characteristic of \mathbb{F} is at least 7. Then the Frobenius action on each of

$$[H_{\mathfrak{m}_R}^2(R)]_{\leq -5} \quad \text{and} \quad [H_{\mathfrak{m}_S}^2(S)]_{\leq -5}$$

and hence on $H_{\mathfrak{m}_R}^2(R) \# H_{\mathfrak{m}_S}^2(S)$ is injective. Moreover, we claim that $R \# S$ has an isolated non F -regular point: to see this, let $r \otimes s$ be a nonzero homogeneous element of $R \# S$ of positive degree; then the ring

$$(R \# S)_{r \otimes s} = R_r \# S_s$$

is a pure subring of the regular ring $R_r \otimes_{\mathbb{F}} S_s$, and is hence F -regular. It follows that $R \# S$ is F -rational by [13, Theorem 7.1].

5 Finite Frobenius Representation Type

The notion of rings of finite Frobenius representation type (FFRT) is due to Smith and Van den Bergh; it is an essential ingredient in their proof of the following remarkable theorem: If R is a graded direct summand of a polynomial ring over a perfect field \mathbb{F} of positive characteristic, then the ring of \mathbb{F} -linear differential operators on R is a simple ring, see [27, Theorem 1.3]. This is striking in that the corresponding statement is not known for polynomial rings over fields of characteristic zero.

Subsequently, the FFRT property has found several other applications: Seibert [23] proved that over rings with FFRT, the Hilbert-Kunz multiplicity is rational; tight closure commutes with localization for rings with FFRT by Yao [33]; if R is a Gorenstein ring with FFRT, Takagi and Takahashi [28] proved that each local cohomology module of the form $H_{\mathfrak{a}}^k(R)$ has finitely many associated primes; the Gorenstein hypothesis may be removed, as proved subsequently by Hochster and Núñez-Betancourt [14].

A reduced ring R of positive prime characteristic p , satisfying the Krull-Schmidt theorem, is said to have *finite Frobenius representation type* if there exists a finite set \mathcal{S} of R -modules such that for each $q = p^e$, each indecomposable summand of $R^{1/q}$ is isomorphic to an element of \mathcal{S} . When R is Cohen-Macaulay, each indecomposable summand of $R^{1/q}$ is a maximal Cohen-Macaulay R -module; thus, Cohen-Macaulay rings of finite representation type have FFRT, though the latter property is much weaker: e.g., in the graded setting, the FFRT property is inherited by direct summands [27, Proposition 3.1.6].

Key examples of rings with FFRT include those that are graded direct summands of polynomial rings; such rings are also F -regular, and hence Cohen-Macaulay. Recent work on the FFRT property includes that of Hara and Ohkawa [8], where they study the property for 2-dimensional normal graded rings in terms of \mathbb{Q} -divisors, and [21, 22] where Raedschelders, Špenko, and Van den Bergh prove that over an algebraically closed field of characteristic

$p \geq \max\{n - 2, 3\}$, the Plücker homogeneous coordinate ring of the Grassmannian $G(2, n)$ has FFRT.

Our goal here is to construct normal rings with FFRT that are not Cohen-Macaulay. Note that a Stanley-Reisner ring over a perfect field has FFRT by [16, Example 2.36], though such a ring need not be Cohen-Macaulay. Our interest here, however, is primarily in normal domains. We first record:

Lemma 5.1 *Let \mathbb{F} be a perfect field of positive characteristic, and let R and S be reduced rings that are finitely generated \mathbb{F} -algebras. Suppose, moreover, that R , S , and $R \otimes_{\mathbb{F}} S$ satisfy the Krull-Schmidt theorem. Then, if R and S have FFRT, so does $R \otimes_{\mathbb{F}} S$.*

Proof If R and S have FFRT, there exist indecomposable R -modules M_1, \dots, M_m , and indecomposable S -modules N_1, \dots, N_n such that for each $q = p^e$, one has

$$R^{1/q} \cong \bigoplus M_i \quad \text{and} \quad S^{1/q} \cong \bigoplus N_j,$$

where, in each case, the index set depends on q , and modules may be repeated within the direct sum. Set $T := R \otimes_{\mathbb{F}} S$. Then

$$T^{1/q} \cong R^{1/q} \otimes_{\mathbb{F}} S^{1/q} \cong \left(\bigoplus M_i \right) \otimes_{\mathbb{F}} \left(\bigoplus N_j \right) \cong \bigoplus (M_i \otimes_{\mathbb{F}} N_j).$$

Each of the mn modules of the form $M_i \otimes_{\mathbb{F}} N_j$ is a direct sum of finitely many indecomposable T -modules. This provides a finite set of indecomposable T -modules that contains an isomorphic copy of each indecomposable summand of $T^{1/q}$ for each $q = p^e$. \square

Proposition 5.2 *Let R and S be \mathbb{N} -graded reduced rings, finitely generated over a perfect field $R_0 = \mathbb{F} = S_0$ of positive characteristic. If R and S have FFRT, then the rings $R \otimes_{\mathbb{F}} S$ and $R \# S$ also have FFRT.*

Proof The statement regarding the tensor product follows immediately from the lemma, bearing in mind that the Krull-Schmidt theorem holds for \mathbb{N} -graded rings A with A_0 a field.

The assertion about the Segre product follows from [27, Proposition 3.1.6], since $R \# S$ is a graded direct summand of the tensor product $R \otimes_{\mathbb{F}} S$. \square

Example 5.3 Let \mathbb{F} be a perfect field of characteristic $p \geq 7$, and consider the hypersurface $R := \mathbb{F}[x, y, z]/(x^2 + y^3 - z^p)$, with x, y, z having degrees $3p, 2p, 6$ respectively. Note that the ring R is sandwiched between $A := \mathbb{F}[x, y]$ and $A^{1/p} = \mathbb{F}[x^{1/p}, y^{1/p}]$, since

$$z = x^{2/p} + y^{3/p}.$$

As A is a polynomial ring, and hence has finite representation type, it follows that R has FFRT by [24, Observation 3.7, Theorem 3.10]. Set $S := \mathbb{F}[u, v]$, where u and v are indeterminates with degree 1. Then the ring $R \# S$ has FFRT by Proposition 5.2. However, since $a(R) = p - 6 > 0$, the Künneth formula shows that $R \# S$ is not Cohen-Macaulay.

Remark 5.4 The examples above are characteristic-specific: to illustrate, let $p \geq 7$ be a prime integer, and let \mathbb{F} now be an *arbitrary* field. Set $\mathbb{P}^1 := \text{Proj } \mathbb{F}[u, v]$, with points of \mathbb{P}^1 parametrized by u/v . If $p = 6k + 1$, consider the \mathbb{Q} -divisor

$$D := \frac{1}{2}(0) - \frac{1}{3}(\infty) - \frac{k}{p}(-1). \tag{5.4.1}$$

Then $\Gamma_*(\mathbb{P}^1, D) := \bigoplus H^0(\mathbb{P}^1, nD)T^n$ is the \mathbb{F} -algebra generated by

$$z := \frac{v^2(u+v)}{u^3}T^6, \quad y := \frac{v^{4k+1}(u+v)^{2k}}{u^{6k+1}}T^{2p}, \quad x := \frac{v^{6k+1}(u+v)^{3k}}{u^{9k+1}}T^{3p},$$

where T is an indeterminate of degree one. It is readily seen that $\Gamma_*(\mathbb{P}^1, D)$ is a hypersurface with defining equation $z^p = x^2 + y^3$.

If $p = 6k - 1$, consider instead the \mathbb{Q} -divisor

$$D := \frac{1}{3}(\infty) + \frac{k}{p}(-1) - \frac{1}{2}(0). \quad (5.4.2)$$

In this case, $\Gamma_*(\mathbb{P}^1, D)$ is the \mathbb{F} -algebra generated by

$$z := \frac{u^3}{v^2(u+v)}T^6, \quad y := \frac{u^{6k-1}}{v^{4k-1}(u+v)^{2k}}T^{2p}, \quad x := \frac{u^{9k-1}}{v^{6k-1}(u+v)^{3k}}T^{3p}.$$

Once again, $\Gamma_*(\mathbb{P}^1, D)$ is a hypersurface with defining equation $z^p = x^2 + y^3$.

Note that the denominators occurring in the \mathbb{Q} -divisor D in (5.4.1) and (5.4.2) are 2, 3, and p . It follows from [8, Theorem 7.2] that if the characteristic of \mathbb{F} is not 2, 3, or p , then the hypersurface $\mathbb{F}[x, y, z]/(x^2 + y^3 - z^p)$ does not have FFRT.

This raises the question:

Question 5.5 Let R be a normal graded domain, finitely generated over a field of characteristic zero. If R has dense FFRT type, i.e., there exists a dense set of prime integers p for which the mod p reductions R_p have FFRT, then is R a Cohen-Macaulay ring?

A related question is the following; see also [18, Question 9.1].

Question 5.6 Let R be a normal graded domain, finitely generated over a field of characteristic zero. If R has dense FFRT type, then is R an F -regular ring?

The converse is false: [26, Theorem 5.1] provides an example of an F -regular hypersurface R , over a field of characteristic zero, for which each mod p reduction R_p has a local cohomology module of the form $H_I^3(R_p)$ that has infinitely many associated prime ideals; it follows from [28, Theorem 3.9] or [14, Theorem 5.7] that, for each prime integer p , the mod p reduction R_p does not have FFRT.

Acknowledgements The authors thank Mitsuyasu Hashimoto and Karl Schwede for useful discussions. A. K. S. was supported by NSF grants DMS 1801285 and DMS 2101671, and K. W. by JSPS Grant-in-Aid for Scientific Research 20K03522. This paper started from conversations at the *Advanced Instructional School on commutative algebra and algebraic geometry in positive characteristics*, Indian Institute of Technology, Bombay. The authors take this opportunity to thank the program organizers for their hospitality.

References

1. Boutot, J.-F.: Singularités rationnelles et quotients par les groupes réductifs. Invent. Math. **88**, 65–68 (1987)
2. Chow, W.-L.: On unmixedness theorem. Amer. J. Math. **86**, 799–822 (1964)
3. Demazure, M.: Anneaux gradués normaux. In: Introduction à la théorie des singularités II. Travaux en Cours, vol. 37, pp. 35–68. Hermann, Paris (1988)
4. Dolgačev, I.V.: Automorphic forms, and quasihomogeneous singularities. Funkcional. Anal. i Prilozhen. **9**, 67–68 (1975)

5. Flenner, H.: Rationale quasihomogene Singularitäten. *Arch. Math.* **36**, 35–44 (1981)
6. Goto, S., Watanabe, K.-i.: On graded rings I. *J. Math. Soc. Japan.* **30**, 179–213 (1978)
7. Hara, N.: A characterisation of rational singularities in terms of injectivity of Frobenius maps. *Amer. J. Math.* **120**, 981–996 (1998)
8. Hara, N., Ohkawa, R.: The FFRT property of two-dimensional graded rings and orbifold curves. *Adv. Math.* **370**, 107215 (2020)
9. Hashimoto, M.: Cohen-Macaulay F -injective homomorphisms. In: *Geometric and combinatorial aspects of commutative algebra* (Messina, 1999), Lecture Notes in Pure and Appl. Math., vol. 217, pp. 231–244. Dekker, New York (2001)
10. Hashimoto, M.: Surjectivity of multiplication and F -regularity of multigraded rings. In: *Commutative algebra* (Grenoble/Lyon, 2001), Contemp. Math., vol. 331, pp. 153–170. Amer. Math. Soc., Providence, RI (2003)
11. Hochster, M.: Foundations of tight closure theory. <http://www.math.lsa.umich.edu/~hochster/>. Accessed 1 Mar 2023
12. Hochster, M., Huneke, C.: Tight closure, invariant theory, and the Briançon-Skoda theorem. *J. Amer. Math. Soc.* **3**, 31–116 (1990)
13. Hochster, M., Huneke, C.: Tight closure of parameter ideals and splitting in module-finite extensions. *J. Algebraic Geom.* **3**, 599–670 (1994)
14. Hochster, M., Núñez-Betancourt, L.: Support of local cohomology modules over hypersurfaces and rings with FFRT. *Math. Res. Lett.* **24**, 401–420 (2017)
15. Hochster, M., Roberts, J.: Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay. *Adv. Math.* **13**, 115–175 (1974)
16. Kamoi, Y.: A study of Noetherian G -graded rings. Ph.D. thesis, Tokyo Metropolitan University (1995)
17. Lyubeznik, G., Smith, K.E.: Strong and weak F -regularity are equivalent for graded rings. *Amer. J. Math.* **121**, 1279–1290 (1999)
18. Mallory, D.: Finite F -representation type for homogeneous coordinate rings of non-Fano varieties. arXiv preprint [arXiv:2207.08966](https://arxiv.org/abs/2207.08966)
19. Mehta, V.B., Srinivas, V.: A characterization of rational singularities. *Asian J. Math.* **1**, 249–271 (1997)
20. Pinkham, H.: Normal surface singularities with C^* action. *Math. Ann.* **227**, 183–193 (1977)
21. Raedschelders, T., Špenko, Š., Van den Bergh, M.: The Frobenius morphism in invariant theory. *Adv. Math.* **348**, 183–254 (2019)
22. Raedschelders, T., Špenko, Š., Van den Bergh, M.: The Frobenius morphism in invariant theory II. *Adv. Math.* **410**, 108587 (2022)
23. Seibert, G.: The Hilbert-Kunz function of rings of finite Cohen-Macaulay type. *Arch. Math. (Basel)* **69**, 286–296 (1997)
24. Shibuta, T.: One-dimensional rings of finite F -representation type. *J. Algebra* **332**, 434–441 (2011)
25. Smith, K.E.: F -rational rings have rational singularities. *Amer. J. Math.* **119**, 159–180 (1997)
26. Singh, A.K., Swanson, I.: Associated primes of local cohomology modules and of Frobenius powers. *Int. Math. Res. Not.* **33**, 1703–1733 (2004)
27. Smith, K.E., Van den Bergh, M.: Simplicity of rings of differential operators in prime characteristic. *Proc. London Math. Soc.* **75**, 32–62 (1997)
28. Takagi, S., Takahashi, R.: D -modules over rings with finite F -representation type. *Math. Res. Lett.* **15**, 563–581 (2008)
29. Watanabe, K.-i.: Some remarks concerning Demazure's construction of normal graded rings. *Nagoya Math. J.* **83**, 203–211 (1981)
30. Watanabe, K.-i.: Rational singularities with k^* -action. In: *Commutative algebra* (Trento, 1981), Lecture Notes in Pure and Appl. Math., vol. 84, pp. 339–351. Dekker, New York (1983)
31. Watanabe, K.-i.: F -regular and F -pure normal graded rings. *J. Pure Appl. Algebra* **71**, 341–350 (1991)
32. Watanabe, K.-i.: F -rationality of certain Rees algebras and counterexamples to "Boutot's Theorem" for F -rational rings. *J. Pure Appl. Algebra* **122**, 323–328 (1997)
33. Yao, Y.: Modules with finite F -representation type. *J. London Math. Soc.* **2**(72), 53–72 (2005)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.