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Many-body potential for simulating the self-assembly of
polymer-grafted nanoparticles in a polymer matrix
Yilong Zhou 1,2, Sigbjørn Løland Bore3, Andrea R. Tao4, Francesco Paesani3 and Gaurav Arya 1✉

Many-body interactions between polymer-grafted nanoparticles (NPs) play a key role in promoting their assembly into low-
dimensional structures within polymer melts, even when the particles are spherical and isotropically grafted. However, capturing
such interactions in simulations of NP assembly is very challenging because explicit modeling of the polymer grafts and melt chains
is highly computationally expensive, even using coarse-grained models. Here, we develop a many-body potential for describing the
effective interactions between spherical polymer-grafted NPs in a polymer matrix through a machine-learning approach. The
approach involves using permutationally invariant polynomials to fit two- and three-body interactions derived from the potential of
mean force calculations. The potential developed here reduces the computational cost by several orders of magnitude, thereby,
allowing us to explore assembly behavior over large length and time scales. We show that the potential not only reproduces
previously known assembled phases such as 1D strings and 2D hexagonal sheets, which generally cannot be achieved using
isotropic two-body potentials, but can also help discover interesting phases such as networks, clusters, and gels. We demonstrate
how each of these assembly morphologies intrinsically arises from a competition between two- and three-body interactions. Our
approach for deriving many-body effective potentials can be readily extended to other colloidal systems, enabling researchers to
make accurate predictions of their behavior and dissect the role of individual interaction energy terms of the overall potential in the
observed behavior.
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INTRODUCTION
The incorporation of nanoparticles (NPs) into polymers is a
powerful strategy for improving their thermomechanical proper-
ties1–4 or for introducing new attributes (optical5–8, electronic9–11,
magnetic12, or catalytic13,14 properties) into otherwise inert
polymers. The surfaces of the NPs are traditionally grafted with
polymer ligands to stabilize NP dispersions in the host polymer, as
the grafts introduce steric (entropic) repulsion between NPs that, if
sufficiently large, can overcome the attractive interparticle forces
that promote aggregation15. However, emerging studies show
that polymer grafting can also be used to direct NP assembly and
access distinctive mesoscopic morphologies such as 1D strings
and 2D sheets16,17. These low-dimensional morphologies often
exhibit functional properties very distinct from their 3D counter-
parts (superlattices, globular aggregates)12,18–22. For example, 1D
fibrillar and string structures are the basis for colloidal NP gels that
exhibit unique rheology, low percolation thresholds, and high
porosities23–25, enabling the synthesis of functional materials such
as hydrogels that exhibit reversible sol–gel transitions and metallic
aerogels26 that exhibit high electrocatalytic activity. Noble metal
NPs that are assembled into periodic 1D and 2D architectures are
known to support collective optical modes as a result of plasmonic
coupling19,20, resulting in subwavelength light confinement27,
nanoscale waveguiding28, and topological plasmonic edge
states29. Polymer grafting has the potential to program assembly
in 1D and 2D morphologies as well as control the separation
distance and relative orientation (for shaped NPs) between
adjacent NPs within the assemblies, both of which are critical
for the function of these NP-based assemblies30–32.

These highly anisotropic assembly morphologies are a direct
manifestation of how polymer-grafted NPs interact with each
other but are difficult to predict. Spherical, uniformly grafted NPs
exhibit isotropic two-body interactions, which predict the forma-
tion of isotropic NP assemblies (unless the two-body potential is
deliberately structured, for example, through the introduction of a
long-range soft repulsion33–35). Thus, the formation of such
anisotropic NP phases must arise from higher-body interactions
between NPs, that is, perturbative corrections to the free energy
from the higher-order arrangement of particles beyond pairwise
distances36–38. Typically, the interaction free energy F of an N-NP
system is formulated as a sum over all pairwise interactions
between NPs, F ffi P

i

P
j>iW2 Ωi;Ωj

� �
, where W2 Ωi;Ωj

� �
is the

two-body potential of mean force (PMF) between particles i and j
suitably averaged over all degrees of freedom associated with the
grafted and matrix chains, leaving it dependent only on the
positions and orientations of the two NPs, which we denote by Ωi
and Ωj . Thus, the “effective” potential W2 implicitly accounts for
steric repulsion arising from the grafts and depletion-like
attraction arising from the matrix, in addition to direct energetic
interactions between the cores and grafts of the NPs39–41. For
spherical NPs grafted uniformly with polymer chains, W2 is
expected to be isotropic and hence a function of interparticle
separation distance dij only. While such two-body description of
interparticle interactions works well for many colloidal systems,
higher-body interactions have been shown to become significant
for NPs grafted with sufficiently long chains at sufficiently high
density37,38,42–49. When two NPs come into contact to form a
dimer, their grafts are expelled from the region in between them
due to the excluded volume of the NP cores. This leads to an
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increase in the graft segment density around the contact region of
the dimer relative to its poles, causing a third approaching NP to
experience additional steric repulsion in that region38. This
anisotropic repulsion is indeed what causes the NPs to sometimes
form anisotropic structures like 1D strings and 2D sheets in a
homogeneous polymer matrix36. Other structural phases like gels
have also been observed in NP-polymer systems at high particle
loadings50–52.
The role of many-body interactions in promoting anisotropic

assembly is best illustrated using the simple example of four NPs—
the smallest set of particles capable of forming 1D, 2D, and 3D
clusters, which may be envisioned as precursors of the string, sheet,
and globular assembly morphologies (Fig. 1). The free energy F of
this system, neglecting the single four-body contribution, can be
formulated as a sum over six two-body interactions W2 dij

� �
and 4

three-body interactions 4W3 dij; dik; djk
� �

, where dij , dik , and djk are
the separation distances between particles i, j, and k. Recent PMF
calculations for assembling polymer-grafted NPs show that W2

exhibits short-ranged attraction with a single minimum, at say
dij ¼ d0, and 4W3 exhibits short-ranged repulsion that is the
strongest when particle triplets form a close-packed triangle and
negligible when they arrange into a straight line38. Accordingly, we
assume for simplicity that: (1) pairs of NPs gain attractive free
energy of W�

2 � W2 d0ð Þ< 0 when in direct contact and no energy
at larger separations, and (2) triplets of NPs gain repulsive free
energy of 4W�

3 � 4W3 d0; d0; d0ð Þ> 0 when they form a close-
packed triangular configuration and no energy in all other

configurations. The free energies of the idealized 1D, 2D, and 3D
clusters of NPs (relative to their dispersed configuration) can be
estimated by simply enumerating the number of NP pairs forming
direct contacts and number of NP triplets forming close-packed
triangles. This analysis finds that the 3D tetrahedral cluster is the
most stable structure (with the lowest free energy) when
4W�

3<�W�
2=2, the 2D rhombic cluster is the most stable structure

when �W�
2=2<4W�

3<�W�
2; and the 1D string cluster structure is

the most stable when 4W�
3>�W�

2. Even though highly idealized,
these calculations provide a compelling illustration of the
importance of three-body interactions in stabilizing low-
dimensional assembly configurations of polymer-grafted NPs.
To capture many-body effects in assembly simulations, the

NPs, the polymer grafts, and the polymer matrix need to be
explicitly modeled. This is computationally expensive, even when
using coarse-grained (CG) models, as the system displays many
degrees of freedom involving the grafted and matrix polymer
chains, and the NPs exhibit highly sluggish dynamics due to their
grafts entangling with matrix chains53. Due to this limitation,
simulations of large system sizes, long-time scales, and large and
complex assemblies are unattainable. A possible solution to this
problem is to integrate out the many degrees of freedom of the
polymer chains and to model polymer-grafted NPs as individual
sites interacting through effective potentials that depend only
on interparticle distances. In recent years, machine learning (ML)
techniques have been a viable tool to efficiently approximate the
many-body interactions in atomistic systems and have been
used to speed up ab initio molecular dynamics (MD) simula-
tions54–57. More recently, ML techniques have also shown great
promise for approximating effective interactions in colloidal
systems58–63. For instance, Campos-Villalobos et al. used an ML
approach involving Behler–Parrinello symmetry functions to
develop many-body potentials for bare colloidal particles
suspended in non-absorbing polymers60. Boattini et al. used a
similar approach to model interactions between elastic spheres
and explore their assembly in 2D61. A symmetry-function-based
approach was also used by Chintha et al. to approximate the
two- and three-body interactions between ligand-coated NPs59,
though no simulations using the developed potential were
conducted to validate it.
Here we introduce a distinct ML approach to develop an

analytical many-body potential that can accurately describe the
two-body and three-body interactions between spherical
polymer-grafted NPs in a polymer matrix. The approach involves
the calculation of PMFs of the NPs in the polymer matrix through
CG MD simulations and fitting them using permutationally
invariant polynomials (PIPs) cast as functions of Coulomb-
transformations of interparticle distances55,56. To validate the
developed ML potential, we use it to carry out MD simulations of
NPs undergoing assembly and show that all known structural
phases, namely the 1D strings, 2D sheets, and 3D globular
aggregates discussed above, are successfully reproduced. The ML
potential reduces the computational cost of MD simulations by at
least three orders of magnitude, which allowed us to explore NP
assembly at large lengths and time scales and thereby discover
additional phases like networks, clusters, and gels that could be
assembled from polymer-grafted NPs. Given that the two- and
three-body interactions can be easily disentangled in our ML
potential, this allowed us to dissect the role of three-body
interactions in the formation of each phase.

RESULTS
Description of the many-body potential
An analytical many-body potential is developed here using ML to
model the effective interactions between spherical polymer-
grafted NPs in a polymer matrix; our overall strategy is

Fig. 1 Role of three-body interactions in governing the morphol-
ogy of clusters formed by polymer-grafted NPs. The left panel
shows the fully dispersed and idealized 1D, 2D, and 3D cluster
morphologies (string, rhombus, and tetrahedron) formed by four
such NPs. The middle and right panels show schematics of the two-
and three-body interactions (free energies) between NPs that lead to
these distinct morphologies. The free energies F1D, F2D; and F3D of
the three cluster morphologies relative to the dispersed state are
also shown. These were calculated by enumerating the number of
two-body contacts (blue arrows) and triangular three-body contacts
(red triangles) in each cluster that respectively contribute attractive
and repulsive energies, the maximum values of which are marked by
Asterix. The stability conditions are then F3D < F2D (or 4W�

3<�W�
2=2)

for forming a 3D cluster; F2D < F1D and F2D < F3D
(�W�

2=2<4W�
3<�W�

2) for forming a 2D cluster; and F1D < F2D
(4W�

3<�W�
2=2) for forming a 1D cluster, assuming conditions

conducive to assembly (W�
2 < 0).
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summarized in Fig. 2. The potential includes both two-body and
three-body interactions according to which the total free energy
UMB of the N-particle system is given by

UMBðrNÞ ¼
X
i

X
j > i

W2 dij
� �þX

i

X
j > i

X
k > j

4W3 dij; dik ; djk
� �

(1)

where rN describes the configuration (positions) of the NPs and
dij � ri � rj

�� �� the separation distance between NP i and j. As we
later use this free energy surface UMB for computing forces on the
NPs to simulate their dynamics, we refer to it as potential energy
when discussing it in the context of MD simulations. Higher-body
interactions are expected to play a less important role and are not
included in this potential to save computational costs. In fact we
show later that a three-body description of NP–NP interactions is
sufficient to capture all known structural phases exhibited by
these NPs.
In our many-body potential, the W2 and 4W3 components are

represented using PIPs in Coulombic variables yij , which are
related to interparticle distances dij via

yij ¼ e�k dij�x0ð Þ=dij (2)

where k and x0 are nonlinear parameters that control the width
and the position of yij

55,56. The two-body interaction W2 between
pairs of NPs is expressed as

W2 dij
� � ¼ sðtijÞ

XM
n¼1

Cny
n
ij (3)

where sðtijÞ is a switching function that smoothly switches to zero
once dij exceeds a predetermined cutoff value, M is the order of
the polynomial, and coefficients Cn are linear fitting parameters.
The switching function is given by

s tij
� � ¼

1 if tij<0

cos2 π
2 tij
� �

if 0 � tij<1

0 if tij � 1

8><
>: (4)

with

tij ¼
dij � Ri
Ro � Ri

(5)

where Ri and Ro denote the inner and outer radii of the switching
function, respectively. The three-body contribution 4W3 for
triplets of NPs is expressed as

4W3 dij; dik ; djk
� � ¼ s tij

� �
s tikð Þ þ s tij

� �
s tjk
� ��

þs tikð Þs tjk
� ��XM

m¼1

CabcS yaij y
b
iky

c
jk

� �
(6)

where S is an operator that symmetrizes the monomials yaij y
b
iky

c
jk

(the symmetrized terms are invariant to all permutations among
triplets of NPs) and Cabc are linear fitting parameters representing
the coefficients of the symmetrized terms with aþ bþ c ¼ m.

Generation of training data
To generate the training data, and later validate the developed
potential, we carried out MD simulations of polymer-grafted NPs
in a polymer matrix treated using a CG model that captures the
most essential physics of NP-polymer systems while keeping the
computational costs reasonable38,53,64,65 (Fig. 3a). Briefly, the
polymer grafts and the matrix polymer were treated as flexible
bead-chains of lengths Lg ¼ 10 and Lm ¼ 20 beads; the beads
represent short segments of polymer chains and are all of size σ
and mass m. The grafts and matrix polymers are assumed to be
fully miscible with each other. Therefore, the graft–matrix,
matrix–matrix, and graft–graft intersegment interactions were all
treated using a potential that accounts for both excluded volume
and attractive interactions, with parameters σ and ε specifying the
size and attraction strength of the segments. The NP cores were
treated as rigid spheres of radius RNP ¼ 3σ and mass of 216m that
interact with each other using a combined attractive and
excluded-volume potential of attraction strength εNP ¼ 30ε (unless
otherwise stated) and interact neutrally with all polymer segments

Fig. 2 Machine learning approach for deriving analytical many-body potentials for modeling the effective interactions between
polymer-grafted NPs in a polymer matrix. The approach involves training permutationally invariant polynomials to two- and three-particle
PMFs collected from MD simulations. The resulting potential can then be used to investigate the assembly behavior of NPs for orders of
magnitude larger length and time scales than achievable through explicit description of the polymer chains.
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using an excluded-volume potential. Bare and grafted NPs with
grafting densities of Γg ¼ 0:15 to 0:4 chains/σ2 (with the number
of grafted chains ranging from 17 to 45) spanning the mushroom
to weak-brush grafting regimes were explored. All systems were
investigated at a constant temperature of T ¼ ε=kB and at a
constant polymer segment density of 0:85 beads/σ3 producing
melt-like conditions for the polymer composite. Based on these
grafting densities, graft-matrix miscibility, and relative length of
matrix and grafted chains, the polymer-grafted NPs are expected
to be in the “wetting regime”, where the matrix chains can
penetrate (wet) the polymer grafts. Thus, the primary driver of NP
self-assembly is the direct attraction between their cores, which
needs to counteract the repulsive steric interactions arising from
the grafts. Moreover, these parameter choices have previously38

been shown to produce robust three-body interactions expected
to lead to anisotropic structural phases like strings and sheets.
The W2 and 4W3 training data was obtained from PMFs of

three polymer-grafted NPs (labeled NP1, NP2, and NP3) in a
polymer matrix computed as a function of interparticle distances
using the blue moon ensemble method38,66,67. These PMFs were
calculated relative to a reference system in which the three NPs
are located far from each other where they exhibit no interactions.
The W2ðdijÞ potential is simply the separation-distance-dependent

PMF between a pair of interacting NPs that are isolated from other
NPs. To obtain this PMF—W2 d12ð Þ in our case, as we use NP1 and
NP2 to compute it—we held the core of NP1 fixed during the
simulation while the core of NP2 was brought closer to NP1 in a
stepwise manner along a straight-line path passing through its
center (red dashed line, Fig. 3a). W2 was obtained as a function of
d12 by integrating the ensemble-average normal force experi-
enced by NP2 on a finely spaced grid along the path. To ensure
that the PMF was not affected by NP3, this NP also was held fixed
at a location far from both NP1 and NP2 during the simulation.
The three-body contribution 4W3 dij; dik ; djk

� �
is equal to the

difference between the overall PMF W3 d12; d13; d23ð Þ of our three-
NP system and the sum of the two-body PMFs W2 d12ð Þ, W2 d13ð Þ,
and W2 d23ð Þ. However, we found that 4W3 could be more
efficiently calculated from a partial three-particle PMF W 0

3 as
4W3 ¼ W 0

3 d12; d13; d23ð Þ �W2 d13ð Þ �W2 d23ð Þ; where W 0
3

includes only interactions of NP3 with NP1 and NP2, and not
those between NP1 and NP2. To compute W 0

3, we devised a
strategy to sample non-degenerate configurations of the NPs by
taking advantage of their indistinguishability and the cylindrical
symmetry of the potential (Fig. 3c). This involved placing NP1 and
NP2 on the x-axis symmetrically about the origin. For each fixed
value of distance d12 between the two NPs, the position of NP3

Fig. 3 PMF calculations and PIP fitting results. a Coarse-grained model of the polymer matrix and polymer-grafted NPs at grafting density
Γg ¼ 0:3 chains/σ2. The matrix chains are shown in fluorescent green, the grafts in green, and the NP cores in gray. Red dashed line shows the
reaction coordinate for calculating the two-body PMF. b Two-body PMF (red circles) and the corresponding PIP potential (blue line) as a
function of interparticle distance. Inset shows a zoom of the fit about the minimum. c Schematic of the distance sampling strategy for three-
particle PMF calculations. The vertically aligned reaction coordinates along which the force is integrated to compute PMFs are shown by red
lines. The three frames indicate nondegenerate sampling of separation distances d13 and d23 at three different separation distances d12
between NP1 and NP2. d, e 3D (top) and 2D (bottom) contour maps of the fitted three-body interactions with respect to interparticle
distances d13 and d23 (at fixed d12 ¼ 6:12σ) (c) and d12 and d13 ¼ d23 (e). The corresponding PMFs computed from simulations are shown in
white circles (top; insets show the partial contour map from a bottom view). Representative NP configurations at four corners (purple stars) of
the landscape are schematically shown using gray spheres (bottom).
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was varied across a 2D grid in the first quadrant of the x–y axes,
thereby sampling distances d13 and d23 of NP3 relative to NP1 and
NP2. The ensemble-averaged force on NP3 was computed at each
grid point from the simulations and integrating the y-component
of this force along gridlines connecting grid points in the y-
direction (red lines, Fig. 3c) then yielded W 0

3 as a function of d13
and d23 for each fixed d12.

Fitting of two- and three-body interaction potentials
After computing the effective two-body interaction W2 d12ð Þ and
the three-body contribution 4W3 d12; d13; d23ð Þ from simulations,
the two data sets were individually fitted to the PIP potentials
specified in Eqs. (3) and (6). The unknown parameters in the PIPs
were obtained through a combination of singular value decom-
position and simplex optimization minimizing the mean square
error between PIP-predicted and computed potentials using
Tikhonov regularization68.
The two-body interactions were computed at 120 distinct

values of d12 in the range 6σ and 14σ, using finer spacings at
d12 � 8σ where it exhibits sharper variations. Figure 3b presents a
representative two-body PMF (red circles, Fig. 3b) for polymer-
grafted NPs at grafting density Γg ¼ 0:3 chains/σ2. The PMF
exhibits a minimum and an energy barrier separating the
associated and dissociated states, features that arise from the
interplay between short-range attraction between NP cores and a
longer-ranged steric repulsion between the NPs due to their
grafts. A 7th-order PIP was used for fitting this PMF. This involved
the determination of a total of 9 fitting parameters, which includes
7 linear parameters Cn and 2 nonlinear parameters k and x0. The
inner and outer radii of the switching function were set to Ri ¼
10σ and Ro ¼ 12σ. The final optimized values of the linear and
nonlinear fit parameters are listed in Supplementary Table 1. The
RMSD of the full training set is 0.121 kBT , and that over the lowest
10 kBT energy range is 0.035 kBT . The fitted PIP (blue line, Fig. 3b)
shows excellent agreement with the computed PMF (see also
parity plot in Supplementary Fig. 1a), capturing well its repulsive
shoulder at short distances, its minimum, its energy barrier, and its
slow delay over large distances.
The three-body interactions were computed at 4200 combina-

tions of d12, d13, and d23 values, yielding a 3D energy landscape.
Supplementary Fig. 2 shows representative 1D energy profiles
through this landscape computed for Γg ¼ 0:3 chains/σ2 NPs.
The profiles show that the three-body interactions are highly
repulsive when an NP approaches a dimer of contacting NPs along
the dimer’s perpendicular axis (Supplementary Fig. 2a) and
negligible when the NP approaches the dimer along its long-
itudinal axis (Supplementary Fig. 2b). They also show that the
repulsion diminishes as the interparticle distance between the
dimer NPs increases (Supplementary Fig. 2c and d). A 5th-order
PIP with 15 symmetrized terms involving 17 fitting parameters (15
linear parameters Cabc and 2 nonlinear parameters) was used to fit
the three-body interactions. The inner and outer radii of the
switching function were set to Ri ¼ 6σ and Ro ¼ 10σ. The
optimized values of these fit parameters along with the forms of
the symmetrized terms are listed in Supplementary Table 2. The
RMSD over the full training set is 1.241 kBT , and the RMSD over
data in the lowest 5 kBT energy range is 0.673 kBT (Supplementary
Fig. 1b). Figure 3d presents a contour map of the fitted PIP along
d13 and d23, for fixed d12 ¼ 6:12σ, corresponding to the case
where a pre-assembled dimer of contacting NPs is approached by
a third NP. The fitted PIP shows excellent agreement with the MD-
computed PMFs (white circles). Moreover, the fit shows that the
three-body contribution is purely repulsive and that the strongest
repulsion is observed when the three NPs form a closed triangle (
d13 and d23 also equal to 6:12σ). It also predicts that a third NP
would experience the strongest repulsion when approaching the
dimer along the perpendicular axis passing through its center and

negligible repulsion when approaching along its longitudinal axis.
To visualize the three-body interactions and confirm the goodness
of the PIP fit in the remaining dimensions, we plotted similar
contour maps with respect to distances d12 and d13 ¼ d23 (Fig. 3e).
We find that the three-body contribution decays rapidly with
increasing separation between the dimer NPs.

Validation of optimized many-body potential
To investigate how well the many-body potential developed here
reproduced the assembly behavior of NPs treated using the
original CG force field with explicit description of polymer grafts
and matrix, we again considered polymer-grafted NPs with Γg of
0:3 chains/σ2 and carried out MD simulations of three such
particles treated using the many-body potential UMB (Eqs. (1)–(6))
with parameters listed in Supplementary Tables 1 and 2. For
comparison, we carried out MD simulations of the corresponding
system treated using the CG force field as well as MD simulations
using only two-body interactions of the many-body potential; we
call this a two-body potential and it is denoted by
U2BðrNÞ �

P
i

P
j>iW2 dij

� �
. Because the many-body and two-

body potential treat the effects of polymer chains implicitly, the
entire system of N ¼ 3 particles can be described using 3N ¼ 9
degrees of freedom, whereas the original CG system involved N 	
50; 000 CG beads and thus 150,000 degrees of freedom.
Before analyzing the simulation results, it is instructive to first

look at the expected assembly behavior of NPs based on their free
energy landscape UMB, which has a simple 3D form for a system of
three particles, calculated as the sum of three pairwise two-body
interactions and a single three-body interaction (see Eq. (1)). This
energy landscape is plotted in Fig. 4a with respect to d12 and
d13 ¼ d23 and in Supplementary Fig. 3 with respect to d13 and d23
(d12 is fixed at 6.12σ). Both landscape visualizations show that the
linear string configuration of NPs exhibits the lowest free energy.
Even though a closed-triangle geometry would allow NPs to
maximize attractive two-body interactions, this configuration also
experiences the strongest three-body repulsion (Fig. 3d and e).
Interestingly, the closed triangle appears as a metastable state,
where it is surrounded by large energy barriers that separate this
configuration from the string or dispersed configurations. These
large energy barriers in fact arise mostly from the repulsive three-
body interaction (	30kBT ; see Fig. 3d), with a smaller contribution
from two-body interactions (	5kBT ; see Fig. 3b). In contrast, an
energy landscape composed of pairwise two-body interactions
only wrongly predicts the closed triangle as the configuration with
the lowest free energy (Fig. 4b). Thus, we expect that proper
description of three-body effects in simulations would show the
formation of the globally stable linear-string structure with the
possibility of also getting trapped in the metastable closed-
triangle structure.
We next compared the assembly structures formed by the three

NPs in simulations using many-body versus CG potentials. Based
on the above discussion on relative stabilities of the linear-string
and closed-triangle structures, the NPs were released from two
different initial configurations: a relaxed triangle arrangement with
d12 ¼ d13 ¼ d23 ¼ 7σ (top insets, Fig. 4c) and a relaxed string
arrangement with d12 ¼ 13:2σ and d13 ¼ d23 ¼ 6:6σ (top insets,
Fig. 4d). The initially triangle-arranged NPs in the CG MD
simulation ended up dissociating into an NP dimer and an
isolated NP after 10 million timesteps (Fig. 4c, left). This behavior is
well captured by simulations based on the many-body potential
(Fig. 4c, middle). The formation of this configuration originates
from the large energy barriers in the energy landscape (Fig. 4a)
that prevent the triangularly arranged NPs from forming the
closed triangle or the string structure; no such barriers, however,
exist to prevent the triangularly arranged NPs from forming a
dimer and an isolated NP (star symbols in Fig. 4a indicate initial
configuration and dashed lines indicate possible assembly
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pathways). The initially string-arranged NPs in the CG MD
simulations indeed assembled into the linear string (Fig. 4d, left),
which again was well captured by our many-body potential (Fig.
4d, middle). As discussed above, the string structure is the globally
stable structure with the lowest free energy because three-body
repulsion is almost negligible when NPs are arranged in a straight
line (Figs. 4a and 3d). Importantly, simulations using the two-body
potential falsely predicted the formation of a closed triangle with
both initial configurations (Fig. 4c and d, right). In addition, we find
that the many-body potential can accurately capture the second
peak in the radial distribution function corresponding to string
formation, whereas the two-body potential is unable to capture
this peak (Supplementary Fig. 4). Thus, the effective many-body

potential is not only able to reproduce the structures formed by
polymer-grafted NPs but also the underlying assembly pathways.

Large-scale assembly of NPs
So far, we have developed a many-body potential for polymer-
grafted NPs of specific grafting density and showed that the
potential can correctly capture the tendency of a small system of
such NPs to assemble into string-like structures. We next used this
potential to study the behavior of much larger systems of NPs,
allowing us access to more realistic assembly morphologies
formed by such NPs. Meanwhile, we also developed many-body
potentials for other NP grafting conditions and used larger
systems of those NPs to explore other assembly morphologies.

Fig. 4 Free energy landscape and assembly dynamics of a three-NP system. a, b 3D (top) and 2D (bottom) contour maps of the many-body
potential (a) and the two-body potential (b) with respect to interparticle distance d12 and d13 ¼ d23 . Representative NP configurations are
schematically shown in the landscape using gray spheres. c, d NP assemblies resulting from two different initial configurations of NPs (top
insets): relaxed triangular (T0) (c) and string-like (S0) (d) arrangement using MD simulations (left; grafting density Γg ¼ 0:3 chains/σ2; bottom
insets show NPs without grafts for better visualization), many-body potential UMB (middle) and two-body potential U2B (right). The initial
configurations are also roughly marked by the star symbols and the dashed lines indicate the possible assembly pathways (a).
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1D string phase. We started by examining the assembly of 27 NPs
of the above string-forming NPs with Γg ¼ 0:3 chains/σ2. As
before, we carried out MD simulations using the many-body
potential UMB, the two-body potential U2B, and the explicit CG
force field, each initialized from random arrangement of NPs
(Fig. 5). The NPs treated using the CG force field eventually
assembled into a string phase, but only after ~200 million
timesteps corresponding to a time scale of ~4 ´ 105 mσ2=εð Þ1=2
due to the sluggish dynamics of polymer-grafted NPs in polymer
melts. The final assembled form of the NPs is shown in Fig. 5a (also
see Supplementary Fig. 5). These simulations required ~15,500
CPU hours on AMD EPYC 7742 processors. A similar string-like
phase was also obtained in simulations using the many-body
potential, but at the computational cost of only ~5 CPU hours on
similar processors (Fig. 5b). In contrast, simulations using the two-
body potential falsely predicted the formation of NP aggregates
(Fig. 5c). For more quantitative comparison, we computed the
time-averaged Steinhardt’s bond orientational order para-
meters69,70 for each NP in the assembled structures. As shown
in Fig. 5d, the string-like structures assembled from both the CG
force field and the many-body potential exhibit high q4 and q6
values that roughly spread over the same region in the q4–q6 plot,
confirming that both interaction models produced similar
assembly morphologies. In contrast, the order parameters of the
NP aggregates predicted by the two-body potential are in the low
q4 and q6 region and are well separated from those of the string-
like phase. Lastly, given the enormous saving in computational
cost afforded by our many-body potential, we were able to access
NP assembly at even larger length and time scales. Figure 5e
presents the assembly outcome of 125 NPs simulated using the
many-body potential, revealing the formation of vivid NP strings
over much longer time scales of 4 ´ 106 mσ2=εð Þ1=2.

2D sheet phase. Our success with assembling NP strings with the
many-body potential prompted us to explore its ability to
assemble 2D NP sheets—another structural phase formed by
polymer-grafted NPs due to many-body effects. Based on our
earlier discussion on cluster morphologies (Fig. 1), 2D clusters are
expected to form at intermediate strengths of three-body
repulsion—when this repulsion is weak enough to allow the

formation of 2D clusters but strong enough to destabilize the
formation of 3D clusters. Therefore, we sought to develop a many-
body potential for polymer-grafted NPs at a lower grafting density
of 0:15 chains/σ2 to target the 2D sheet phase. The training data
were generated in the same way as described earlier for the
densely grafted NPs (Supplementary Fig. 6a). Their fitting
procedure using PIPs was also similar, except that a 6th-order
PIP was found to be sufficient to fit the two-body PMF. The
corresponding fitting parameters are listed in Supplementary
Tables 1 and 2, and the parity plots for the two- and three-body
contributions are shown in Supplementary Fig. 6b, c.
Figure 6a presents the computed two-body PMF and corre-

sponding PIP fit. The two-body interactions now become stronger
and fully attractive because the smaller grafting density reduces
the steric repulsion from the grafts. This reduction is also reflected
in the three-body interactions (Fig. 6b), which remain repulsive
but of weaker strengths (compare to Fig. 3d). The total free energy
landscape of three such NPs is presented in Fig. 6c, where the
closed triangle is now strongly favored. MD simulations of 27 such
NPs (Supplementary Fig. 6d) using the CG model show that NPs
indeed assembled into sheet-like structures, which were well
captured by our many-body potential (Supplementary Fig. 6e). We
also used the many-body potential to simulate the assembly of
125 NPs, which indeed led to the formation of a 2D hexagonal
sheet (Fig. 6d). Interestingly, W�

2 
 �30kBT for contacting pairs of
NPs (Fig. 6a) and 4W�

3 
 10kBT for contacting triangles of NPs
(Fig. 6b), so the three-body repulsion is smaller than �W�

2=2
required to promote the formation of 2D sheets, as per our earlier
discussion (Fig. 1). This is because NPs in macroscopic 2D
hexagonal sheets possess more triads of NPs compared to the
4-NP sheet, as schematically shown in Supplementary Fig. 7. Since
the net repulsion that a NP experiences is given by the sum of the
three-body repulsions arising from all triads that the NP forms
with neighboring NPs, a smaller strength of repulsion per triad is
sufficient to promote the formation of 2D sheets.

Globular aggregate and dispersed phases. Two other previously
reported phases of polymer-grafted NPs are the globular and
dispersed phases. To investigate if three-body interactions play a
role in the formation of these phases, we considered two

Fig. 5 Large-scale assembly of polymer-grafted NPs at Γg= 0.3 chains/σ2. a Assembly morphology of NPs obtained from MD simulations
using CG force field description of polymer chains. Grafts are removed here for better visualization. b Assembly of NPs using the many-body
potential UMB . Red dashed lines indicate the formation of string-like structures. c Assembly of NPs using the two-body potential U2B. d Bond
orientational order parameters calculated for each NP in (a–c). Data from simulations using the CG force field, UMB, and U2B are marked by
green, yellow, and red circles, respectively. e NP assembly at even larger length and time scales using the many-body potential UMB.
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additional cases: bare NPs and polymer-grafted NPs at the higher
grafting density Γg ¼ 0:4 chains/σ2, expected to form the globular
aggregate and dispersed phases.
Figure 7a presents the two-body PMF of bare NPs in the

polymer matrix and the corresponding 5th-order PIPs fit
(optimized parameters listed in Supplementary Table 1). As
expected, the PMF is fully attractive at distances beyond the
excluded zone of NPs (d > 2RNP ¼ 6σ). The depth of the PMF at its

Fig. 7 Bare and strongly grafted NPs lead to globular aggregate and dispersed phases. a, d Two-body PMFs (red circles) and the
corresponding fitting potentials (blue line) for bare NPs (a) and polymer-grafted NPs of grafting density 0:4 chains/σ2 (d). Inset shows
snapshots of the two kinds of NPs from CG MD simulations. b, e Three-body contributions for these bare NPs (b) and polymer-grafted NPs (e)
as a function of the separation distance between a NP and a NP dimer along its perpendicular axis. Contributions for two different dimer
configurations (d12) are presented. Inset shows corresponding snapshots from MD simulations. c Globular aggregate assembled from NPs
using the two-body potential in (a). f Dispersed phase assembled from NPs using two-body potential in (d).

Fig. 6 Weakly grafted NPs at Γg= 0.15 chains/σ2 assemble into a 2D sheet phase. a Two-body PMF (red circles) and the corresponding PIP
fit (blue line) as a function of interparticle distance. Inset shows a representative configuration of two polymer-grafted NPs captured from our
PMF calculations. Red dashed line indicates the reaction coordinate. b, c Contour map of the fitted three-body interaction (b) and the many-
body potential (c) with respect to interparticle distances d13 and d23 (d12 ¼ 6:12σ). Representative NP configurations at specific locations on
the landscape are schematically shown by gray spheres. d NPs assemble into 2D sheets when simulated using this many-body potential UMB.
Inset is a zoomed view of the assembly showing the 2D hexagonal arrangement of NPs.
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minimum is roughly equal to the strength of energetic interac-
tions between the NP cores (εNP ¼ 30ε). We also computed the
three-body interactions between bare NPs and two example
profiles are shown in Fig. 7b. The bare NP exhibits almost zero
three-body contributions, even when the NP approaches the
dimer from its perpendicular axis (d12 ¼ 6:12σ) (along which the
polymer-grafted NPs exhibited the strongest three-body repul-
sion; see Figs. 3d and 6b). Thus, only two-body interactions are
needed to simulate the assembly of bare NPs, naturally leading to
the formation of globular aggregates (Fig. 7c), which was also
confirmed by the CG MD simulation of bare NPs in the polymer
matrix (Supplementary Fig. 8a).
Figure 7d shows the two-body PMF of polymer-grafted NPs at

Γg ¼ 0:4 chains/σ2 with the corresponding 6th-order PIPs fit
(Supplementary Table 1). At this high grafting density, the steric
repulsion from the grafts becomes very strong and outweighs the
attraction between NP cores, resulting in purely repulsive two-
body interactions that exhibit metastability at a distance
corresponding to the minimum of the core-core interaction
potential. The three-body repulsion also becomes very strong for
these NPs (Fig. 7e). We found that the repulsive two-body
interactions were on their own enough to prevent NPs from
assembling (Fig. 7f; see also Supplementary Fig. 8c). Since the
repulsion keeps NPs well separated, the three-body repulsion
experienced by NPs turns out to be very small, as illustrated
for the case of an NP approaching a separated NP dimer
(d12 ¼ 10:12σ) along its perpendicular axis (Fig. 7e). These results
demonstrate that even though the three-body interactions are
large for densely grafted NPs, they do not play a significant role in
NPs forming the dispersed phase as the two-body interactions are
even more repulsive.
Lastly, we computed Steinhardt’s bond orientational order

parameters for each of the reproduced phases (Supplementary
Fig. 8b). We find that the 1D strings, 2D sheets and 3D aggregates

assembled from moderately grafted, weakly grafted, and bare NPs
can be clearly distinguished through this order parameter with 1D
strings exhibiting high q4 and high q6 (as strings have strong
2-fold symmetry), the 2D sheets exhibiting relatively low q4 and
intermediate q6, and 3D aggregates exhibiting low q4 and low q6.

Exploratory assembly studies using many-body potentials
Having demonstrated that many-body potentials can reproduce
previously discovered structural phases of polymer-grafted NPs in
a polymer matrix, we next used the already developed potentials
to rapidly explore other assembly scenarios that do not require
reparameterization (training). To this end, we considered the
many-body potential we developed for polymer-grafted NPs at a
grafting density of 0:15 chains/σ2 and εNP ¼ 30ε that were earlier
shown to form 2D sheets (Fig. 6).
We began by exploring the impact of varying the strength of

attraction εNP between the cores of NPs. Note that this interaction
between NP cores does not appear in the three-body interaction,
so tuning εNP will only affect the pairwise two-body interactions
W2. Even here, changes in εNP will simply shift W2ðdÞ relative to
the one we computed for εNP ¼ 30ε by an amount equal to the
difference in the new and original attractive core–core potential
Ucc, that is, W2 d;εNPð Þ ¼ W2 d;30εð Þ þ Ucc d;εNPð Þ � Ucc d;30εð Þ,
which can be rapidly calculated. When we reduced the vdW
attraction to εNP ¼ 20ε, the previously obtained 2D sheets could
not be realized, and NPs instead assembled into a loose network
of NP strings (Fig. 8a). The reason is that the weaker core-core
attraction leads to a weaker two-body attraction between NPs,
making the three-body repulsion relatively stronger. This repulsion
is now too strong to support the assembly of 2D sheets, but not
strong enough to promote assembly of 1D strings, causing the
formation of a structure intermediate to the two. On the other
hand, increasing the attraction to εNP ¼ 40ε led to the formation

Fig. 8 Many-body potential facilitates the exploration of assembly morphologies at different NP core attraction strengths and volume
fractions. a, b Assembly morphologies obtained at attraction strengths of εNP ¼ 20ε (a) and εNP ¼ 40ε (b) using many-body potential
developed for εNP ¼ 30ε NPs that led to 2D sheets. c, d Assembly morphologies obtained at ϕ ¼ 0:22 using the many-body potentials that led
to 2D sheets (c) and 1D strings (d) at ϕ ¼ 0:03. e Bond orientational order parameters calculated for the assembled structural phases in a–d
plotted as the green, red, yellow, and blue points, respectively. The parameters calculated for individual NPs (top) and their average overall
from all NPs in each simulation (bottom) are presented.
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of small 3D NP clusters that remain stable in size even over a very
long timescale of 4 ´ 106 mσ2=εð Þ1=2 (Fig. 8b). Interestingly, while
the stronger two-body attraction should promote continuous
merger of clusters until a single globular aggregate remains
(Fig. 7c), the three-body repulsion seems to prevent cluster
aggregation. This is likely because the many triads of three-body
repulsions arising from the NPs in the clusters create energy
barriers between each cluster that prevent them from further
aggregating.
Next, we used this many-body potential (for NPs with Γg ¼ 0:15

chains/σ2 and εNP ¼ 30ε) to study the effect of particle volume
fraction ϕ, defined as the ratio of the total volume occupied by
NPs to the volume of the simulation box. Compared to 2D sheets
formed by such NPs at a low ϕ ¼ 0.03 (Fig. 6d), NPs interacting
with each other through the same three-body potential
assembled into a gel-like phase in simulations at much higher
ϕ ¼ 0.22 (Fig. 8c). Although NPs sought to condense due to two-
body attraction, the three-body repulsion prevented them from
forming a large globular aggregate. Interestingly, their local
structure has partial 3D and 2D features (Supplementary Fig. 9a),
as confirmed by the bond orientational order parameter of NPs in
this phase (Fig. 8e, yellow points), which spread over a region that
partially overlaps with those of the 3D aggregate and 2D sheet
phases determined earlier (Supplementary Fig. 8b, yellow and red
points). We also performed simulations at the same ϕ ¼ 0.22 but
using the many-body potential (for NPs with Γg ¼ 0:3 chains/σ2

and εNP ¼ 30ε) that led to the formation of 1D strings (Fig. 5e). As
shown in Fig. 8d, these NPs assembled into another gel phase,
which at first glance looks like the gel phase described above.
However, a closer inspection of its local structure reveals a dense
network of short NP strings (Supplementary Fig. 9b) different from
the gel phase described earlier. Again, this was confirmed by bond
orientational order parameter calculations (Fig. 8e, blue points),
which spread over a region of intermediate q4 and q6 that
overlaps with that of the string network (Fig. 8a and e, green
points), indicating a string-like local structure.

DISCUSSION
We developed via ML an analytical potential that can accurately
capture many-body interactions between polymer-grafted NPs in
a polymer matrix and used the potential to explore NP assembly
over large length and time scales. Our approach relies on
computing relevant PMFs from CG MD simulations to extract
effective two- and three-body interactions between NPs, which
are then fitted to permutationally invariant polynomials. As the
polymer is explicitly treated in the CG model, these fitted
interactions implicitly capture all energetic and entropic effects
of the grafted and matrix chains. We validated the many-body
potential by comparing the assembly behavior of NPs treated
using the fitted potential against those treated using the CG
model and demonstrating that the potential can not only
accurately reproduce the assembled structures but also capture
the assembly pathways. Given that this potential eliminates the
need to simulate the numerous degrees of freedom associated
with the grafted polymer and the polymer matrix, the potential
can speed up NP simulations by at least three orders of
magnitude. By simulating the assembly behavior of large systems
of NPs over long timescales, we could successfully capture the
formation of the experimentally observed 1D string and 2D
hexagonal sheet phases and illuminate the critical role of three-
body interactions in the formation of these phases. We also
elucidated the role of NP interactions on the formation of 3D
globular aggregate and dispersed phases and showed that three-
body interactions do not play a significant role in their formation.
The many-body potentials developed here for specific polymer-
grafted NPs also allowed us to rapidly explore assembly behavior
under other conditions, e.g., NP core-core interaction strengths

and NP volume fractions, without the need for generating new
training data. In this manner, we were able to discover several
other interesting NP phases, including string networks, small
clusters, and two different varieties of gels, where one is a dense
network of short 1D strings and the other is a network of partial-
2D and 3D motifs. In addition, we showed the utility of
Steinhardt’s bond-orientational order parameters in effective
classification of NP assemblies.
While our findings support that a three-body potential is

enough to reproduce previously discovered phases, higher-body
interactions have not been investigated and their role in NP
assembly thus remains unclear. However, the fact that we could
reproduce all known phases of polymer-grafted NPs using a three-
body potential implies the role of higher-body interactions may
not be significant. Nonetheless, the accuracy of the developed
potential could be further improved by including higher-body
interactions. However, this would require computation of high
dimensional PMFs, along nðn� 1Þ=2 distinct interparticle dis-
tances for each n-body contribution, which can quickly become
prohibitive with increasing n. In such cases, deep neural networks
may offer a better alternative for fitting such higher-body
contributions.
Our previous work revealed that many-body interactions were

responsible for the assembly of quasi-1D structures like serpentine
strings and tri-branched networks from polymer-grafted NPs
trapped at fluid-fluid interfaces71. However, the full potential of
many-body interactions in producing such assembly architectures
at interfaces has not been fully explored. The many-body potential
developed here could be extended to interfacial environments
and coupled with analytical forms of NP-interface interactions72 to
uncover anisotropic assembly configurations at fluid interfaces.
Although we examined a single species of polymer-grafted
spherical NPs so far, it would be worthwhile to apply our ML
approach to derive many-body interactions for binary or higher-
component NP systems (differing in size and/or polymer grafting),
as well as shaped NPs, where many-body effects may be even
more prominent. The former application will require reformulation
of the PIPs in terms of component-specific interparticle distances
and the latter will require additional angular parameters in the
PIPs for describing the relative orientation of the NPs, in addition
to their separation distance62.

METHODS
Coarse-grained model
To compute PMFs between polymer-grafted NPs in a polymer
matrix, we adopted a coarse-grained model similar to the one we
previously used38. Polymer chains were treated as Kremer–Grest
bead-chains73, where beads, each of size σ and mass m, represent
short segments of the chain. Chain lengths of Lg ¼ 10 and Lm ¼
20 beads were used for modeling the grafts and the polymer
matrix (Fig. 3a). The NP cores were modeled as rigid spheres of
radius RNP ¼ 3σ and mass mNP ¼ 216m. The grafting points on the
surface of the NP cores were uniformly distributed across the
surface. We studied both bare NPs (with no grafts) as well as
polymer-grafted NP cores of grafting densities in the range
Γg ¼ 0:15–0:4 chains/σ2.
Adjacent beads of chains signifying bonded segments interact

with each other through a combined finitely extensible nonlinear
elastic (FENE) spring and Weeks–Chandler–Anderson (WCA)
potential74. The FENE spring potential ensures that bonded beads
do not stretch beyond a cutoff distance and is given by

UFENE r;ks; r0ð Þ ¼ � ks
2
r20ln 1� r

r0

� 	2
" #

(7)

where r is the separation distance between beads, ks ¼ 30ε=σ2 is
the spring constant, ε is the characteristic energy parameter, and
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r0 ¼ 1:5σ is the maximum possible spring length. The WCA
potential, a short-range purely repulsive potential that models
excluded-volume interactions between the bonded segments, can
be conveniently cast in the form of a cut-and-shifted Lennard-
Jones (LJ) potential:

ULJ r; σ; ε; rcð Þ ¼ 4ε σ
r

� �12 � σ
r

� �6 � σ
rc

� �12
þ σ

rc

� �6

 �

r < rc

0 r � rc

8<
: (8)

where the cutoff distance rc ¼ 21=6σ. Chains making up the graft
and the matrix were considered fully miscible with each other like
chains of the same kind. Hence, nonbonded beads within or
across any chain interacted with each other via the LJ potential
ULJ r; σ; ε; rc ¼ 2:5σð Þ, which captures both attractive and
excluded-volume interactions due to the larger cutoff of rc ¼ 2:5σ.
The NP cores interact with each other through an expanded LJ

potential ULJ r � 2RNP; σ; εNP; rc ¼ 2:5σð Þ, where r is the distance
between the centers of the NP cores. The 2RNP shift prevents the
NP cores from penetrating each other and εNP ¼ 30ε (unless
otherwise stated) was used for modeling attractive interactions
between the cores. The excluded volume interactions between NP
cores and polymer beads were also treated using an expanded
WCA potential which can be cast as ULJ r � rev; σ; ε; rc ¼ 21=6σ

� �
,

where r is the distance between the center of the NP core and the
polymer bead, and rev � RNP � σ=2 is a distance shift that
prevents polymer beads from penetrating the NP core.

Molecular dynamics simulations
The LAMMPS package75 was used for carrying out all MD simulations
of this NP-polymer system. All simulations were carried out in the
canonical (NVT) ensemble at a temperature of ε=kB and a polymer
density of 0:85 beads/σ3. Under these conditions, the polymer
matrix exhibits a melt-like state. Periodic boundary conditions were
employed in all three directions of the simulation box. A velocity-
Verlet algorithm with a time step of 0:002 mσ2=εð Þ1=2 and a
Nose –Hoover thermostat of time constant 1:0 mσ2=εð Þ1=2 was used
for integrating the equations of motion and keeping the system
temperature fixed. The simulations were initialized by placing the
grafted NPs and the polymer chains in a cubic simulation box 50
times larger than the required dimensions to prevent overlap among
the chain beads and NP cores. The box was then gradually shrunk in
each direction over a period of 0.8 million timesteps until the
targeted polymer density was reached. Simultaneously, the NPs were
slowly brought into a configuration used for initiating the PMF
calculations or NP assembly simulations. After initialization, we
continued the MD simulations for an additional 1 million timesteps
to further equilibrate the system while keeping the NPs fixed. During
the production period, the net linear and angular momentums of the
entire system were zeroed at every step to avoid the “unreal” drifting
or rotation induced by the periodic boundary conditions.

Model parameter selection
Our parameter choices were guided by our prior CG simulation study
exploring the role of polymer-mediated interactions in the formation
of anisotropic structures38, where we obtained a structural phase
diagram for a system of three polymer-grafted NPs in a polymer
matrix by comparing the formation free energies of linear and
triangular trimers for various combinations of graft lengths and
grafting densities. Our calculations suggested that NPs with strong
grafting conditions (long graft lengths or high grafting densities)
would stay dispersed in the matrix, those with moderate grafting
(intermediate graft length or density) will form a linear trimer, and
those with weak grafting (short grafts and/or low grafting densities)
will form a triangular trimer. Furthermore, all three structures could
be achieved with a single graft length of Lg ¼ 10 beads and varying
the grafting density. Since our CG model is very similar to that used in

this prior work, and that these three trimer configurations may be
conceived as precursors of the macroscopic dispersed, string, and
sheet/globular assembly morphologies, we hypothesized that we
should be able to obtain all four morphologies by simply
manipulating the grafting density at a fixed graft length of 10 beads.
Indeed, we find that grafting densities of 0.4, 0.3, 0.15, and 0 chains/
σ2 lead to dispersed, string, sheet, and globular phases, respectively.

Potential of mean force calculations
We used the blue moon ensemble method38,66,67 to calculate the
two-particle PMF W2 d12ð Þ at grid points along the horizontal path
(reaction coordinate) connecting the centers of NP1 and NP2 (see
Fig. 3a). Defining the distance between the two NPs along this
coordinate as ξ, NP2 was moved towards a fixed NP1 along this
coordinate in a stepwise manner starting from a distance ξ ¼ 14σ
(� ξ0Þ, first at steps of Δξ = 0.15σ until a distance of ξ ¼ 2σ was
reached, then at steps of Δξ ¼ 0:05σ until ξ ¼ 1σ, then at steps of
Δξ= 0.02σ until ξ ¼ 0:2σ, and finally at steps of Δξ ¼ 0:01σ until
contact. During the mobile phase of each step, the Δξ change in
distance was carried out over 0.05 million timesteps by imposing a
small velocity to NP2. During the stationary phase of each step,
the center of NP2 was held fixed for 1.2 million timesteps. The
ensemble-averaged force hFðξÞi experienced by NP2 in the
direction of NP1 was computed from the last 0.6 million timesteps
of this stationary phase. Such forces obtained at the different ξ
values corresponding to the grid points were then integrated to
obtain the PMF at any position d12 along the reaction coordinate:

W2 d12ð Þ ¼ W2 ξ0ð Þ �
Z d12

ξ0

F ξð Þh idξ (9)

whereW2 ξ0ð Þ can be approximated as zero, given that ξ0 ¼ 14σ is
a sufficiently large distance for NP1 and NP2 to interact.
Such force-integration approach was also used for calculating the

partial three-particle PMF W 0
3 d12; d13; d23ð Þ on a 2D grid fd13; d23g

representing location of NP3 for each fixed distance d12 between
NP1 and NP2 (see Fig. 3c). We moved NP3 along the vertical
gridlines representing reaction coordinates, defining ξ as the
vertical distance of NP3 from the horizonal axis passing through the
NP1–NP2 dimer. To traverse each reaction coordinate, we placed
NP3 at a distance ξ0 ¼ 11σ and moved it in a stepwise manner
towards the fixed dimer along the coordinate, first at steps of Δξ ¼
0:15σ until a distance of ξ ¼ 2σ was reached, then at steps of
Δξ ¼ 0:05σ until ξ ¼ 1σ, then at steps of Δξ ¼ 0:02σ until
ξ ¼ 0:2σ, and finally at steps of Δξ ¼ 0:01σ until contact. This
process is repeated for each of the 12 reaction coordinates
(spanning a horizontal distance of 10σ) at each of the 6 separation
distances d12 varying from 6:12σ to 10:12σ. The time periods for
the mobile and stationary phase and for force averaging were
similar to those used for two-body PMF calculations. During each
stationary phase, the component of the ensemble-average force
experienced by NP3 in the vertical direction was obtained, as
denoted by hFðξÞi, and the partial PMF was computed through
integration using Eq. 9, where ξ0 was again chosen to be sufficiently
large to prevent any interactions of NP3 with NP1 or NP2.
In both sets of calculations, the three NPs were allowed to rotate

throughout the simulations. The simulations along each reaction
coordinate were repeated three times to improve accuracy.

Weighted sum of squared residuals
The regularized weighted sum of squared residuals calculated for
a given training set is given by55,56

χ2 ¼
X
n

wn½UmodelðnÞ � Uref nð Þ�2 þ Γ2
X
l

C2
l (11)

Here, wn are the weights that emphasize the training data with
lower total energy, Umodel is the permutationally invariant
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polynomial used for fitting the training set (W2 dð Þ in Eq. (3) for
fitting two-body interactions or 4W3 d12; d13; d23ð Þ in Eq. (6) for
fitting three-body interactions), and Uref is the corresponding
reference value in the training set. To avoid overfitting with respect
to linear fitting parameters Cl , the regularization parameter Γ was set
to 5 ´ 10�4 for fitting two-body interactions and to 10�4 for fitting
three-body interactions. The weights wn were assigned as follows:

w Eð Þ ¼ 4E
E � Emin þ4E

� 	2

(12)

where Emin denotes the lowest energy in the training set and ΔE
defines the range of favorably weighted energies, which was set
to 10 kBT for the fitting of two-body interactions and to 5 kBT for
the fitting of three-body interactions upon careful experimenta-
tion. Both linear and nonlinear parameters were obtained by
minimizing the (regularized) weighted sum of squared residuals
(Eq. (11)). The linear parameters (Cl) were obtained through
singular value decomposition and nonlinear parameters were
optimized using the simplex algorithm55,56.

Simulations using the many-body potential
The three-body potentials were developed through MB-Fit soft-
ware76 and were then incorporated into LAMMPS75 through MBX
software77, where forces and energy of NPs are calculated based
on the developed potential. All simulations were carried out in
Langevin dynamics at a temperature of ε=kB, and a damping
parameter of 0:0864 mσ2=εð Þ1=2 was used so that the dynamics of
the NPs matched those of polymer-grafted NPs in the CG MD
simulations (Supplementary Fig. 10). Periodic boundary conditions
were employed in all three directions of the simulation box. A
velocity-Verlet algorithm with a time step of 0:02 mσ2=εð Þ1=2 was
used for integrating the equations of motion.

Bond orientational order parameters
The averaged Steinhardt’s bond orientational order para-
meters69,70 were calculated to classify the assembled structural
phases. The calculations were performed using the pyscal python
module78. A cutoff distance of 7:5σ was used to determine the
nearest neighbors of a NP. The q4 and q6 parameters for each NP
or averaged over all NPs were then reported.
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