
Testing Modules for Experiments in Stellar Astrophysics (MESA)
William M. Wolf1 , Josiah Schwab2 , R. Farmer3 , and Evan B. Bauer4

1 Department of Physics and Astronomy, University of Wisconsin – Eau Claire, Eau Claire, WI 54701, USA; wolfwm@uwec.edu
2 Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA
3 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85741 Garching, Germany
4 Center for Astrophysics | Harvard & Smithsonian, 60 Garden St., Cambridge, MA 02138, USA

Received 2023 August 28; revised 2023 September 29; accepted 2023 October 2; published 2023 November 28

Abstract

Regular, automated testing is a foundational principle of modern software development. Numerous widely used
continuous integration systems exist, but they are often not suitable for the unique needs of scientific simulation
software. Here we describe the testing infrastructure developed for and used by the Modules for Experiments in Stellar
Astrophysics (MESA) project. This system allows the computationally demanding MESA test suite to be regularly run
on a heterogeneous set of computers and aggregates and displays the testing results in a form that allows for the rapid
identification and diagnosis of regressions. Regularly collecting comprehensive testing data also enables longitudinal
studies of the performance of the software and the properties of the models it generates.

Unified Astronomy Thesaurus concepts: Astronomy software (1855); Open source software (1866); Stellar
evolutionary models (2046); Stellar physics (1621)

1. Introduction

The stellar evolution software instrument MESA (Modules
for Experiments in Stellar Astrophysics; Paxton et al. 2011,
2013, 2015, 2018, 2019; Jermyn et al. 2023) is developed by a
worldwide team. The complex nature of the software itself and
of the stellar evolution scenarios that it models demand
frequent, automated testing in order to ensure changes do not
have unintended side effects.

To this end, MESA has a collection of approximately 100 test
cases spanning a wide range of stellar-modeling applications
that are regularly run and checked for regressions. These test
cases can take anywhere from tens of seconds to many hours to
complete, varying with the particular test case and the machine
running it. MESA has a large user base that runs it on a
heterogeneous set of Unix-based operating systems and
computers ranging from consumer laptops up to supercomput-
ing clusters. Additionally, the global nature of MESA develop-
ment requires that results from running the test suite need to be
easily accessible through a cloud-based interface. These three
aspects (lengthy test cases, heterogenous hardware and soft-
ware, and distributed development) require a unique testing
infrastructure, which we lay out in this paper.

Aspects of this testing infrastructure, including the MESA
TestHub, were briefly introduced in Appendix D of Paxton et al.
(2019) as a means to aggregate and digest test results on a variety
of different hardware and software platforms. Since that time, the
MESA testing infrastructure has been extensively overhauled to
reflect changes to the MESA development workflow (i.e., a change
of version control system from subversion to Git) and to expand
its capabilities. Several of these updates were briefly described in
Jermyn et al. (2023). This article gives a more complete summary
of the current design and implementation of the MESA testing
infrastructure. We hope that other research software projects with

similar needs will use our findings to support their own testing
infrastructures.

2. Testing

Figure 1 summarizes the MESA testing flow. At the lowest level
shown, MESA itself contains scripts that compile the software and
execute tests (Section 2.1). The process of obtaining a specific
version of MESA and invoking these scripts is managed by the
mesa_test Ruby gem (Section 2.2), which also transmits the
results of the tests. The data reported from instances of
mesa_test are collected and collated by the MESA TestHub
Ruby on Rails web application (Section 2.3), which then displays
the results to the developers on a dynamic website.

2.1. MESA

High-level MESA5modules (currently star, binary, and
astero) each contain a test_suite directory with a
collection of test cases. MESA includes a set of shell scripts that
perform bookkeeping tasks such as enumerating the available
tests and providing a mapping between an integer identifier and
a given test.
A shell script each_test_run is responsible for running

a single test case and recording its output. When invoked,
it creates a YAML6

file testhub.yml and populates it
with metadata such as the test name and the values of testing-
related options. The test is executed by invoking shell
scripts common to each test case directory that compile (mk),
run (rn), and restart (re) the test. The run and restart scripts
that invoke MESA are instrumented to record their memory
usage. The output (to stdout and stderr) of these scripts is
captured and in the case of failing tests, transmitted by
mesa_test to a remote server for diagnostic purposes
(Section 2.3.5).
Within a test case, the rn script is responsible for executing

the test. A set of helper scripts abstracts the process of running

The Astrophysical Journal Supplement Series, 269:50 (10pp), 2023 December https://doi.org/10.3847/1538-4365/acffbf
© 2023. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

5 Source code available at https://github.com/MESAHub/mesa.
6 YAML is a human friendly data serialization standard: https://yaml.org/.

1

https://orcid.org/0000-0002-6828-0630
https://orcid.org/0000-0002-6828-0630
https://orcid.org/0000-0002-6828-0630
https://orcid.org/0000-0002-4870-8855
https://orcid.org/0000-0002-4870-8855
https://orcid.org/0000-0002-4870-8855
https://orcid.org/0000-0003-3441-7624
https://orcid.org/0000-0003-3441-7624
https://orcid.org/0000-0003-3441-7624
https://orcid.org/0000-0002-4791-6724
https://orcid.org/0000-0002-4791-6724
https://orcid.org/0000-0002-4791-6724
mailto:wolfwm@uwec.edu
http://astrothesaurus.org/uat/1855
http://astrothesaurus.org/uat/1866
http://astrothesaurus.org/uat/2046
http://astrothesaurus.org/uat/2046
http://astrothesaurus.org/uat/1621
https://doi.org/10.3847/1538-4365/acffbf
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4365/acffbf&domain=pdf&date_stamp=2023-11-28
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4365/acffbf&domain=pdf&date_stamp=2023-11-28
http://creativecommons.org/licenses/by/4.0/
https://github.com/MESAHub/mesa
https://yaml.org/

a single MESA inlist7 into a function called do_one. A rn
script is effectively a sequence of do_one commands. Each
call to do_one records the name of the inlist file and invokes
the relevant MESA executable. When MESA exits, testing-
specific code inserted into its extras_after_evolve hook
appends summary information about MESA’s performance such
as the runtime, number of steps, number of failed solver calls,
and a SHA-256 hash generated from the final model to the
YAML file. Individual test cases may optionally report
physical quantities to the YAML file for longitudinal tracking.
In this way, when the run is concluded, a YAML file
summarizing the complete run has been generated (see
Figure 2).

What physical quantities to track is an area of ongoing
work. Scalar quantities such as the final star mass, final core
mass, or the maximum value of some quantity are trivial to
track. However, more complex quantities such as the time
variation in the star’s mass or the radial distribution of a
quantity inside a stellar model cannot currently be tracked,
though we have had instances where this information would
have caught a bug in MESA. In principle, the tests themselves
could check time-varying quantities or radial distributions
and report out a failure if something is awry. In practice,
knowing what the “correct” configurations are and how to

identify meaningful deviations are difficult challenges. In a
few instances, we have instructed tests to output a png file
with plots of relevant quantities for more rapid diagnosis after
a reported failure. However, such checks must still be done
by hand as the files themselves cannot yet be used to
automatically detect a failure, nor are they available online.
Many test cases allow for one or more of the slower do_one

steps to be skipped if a particular environment variable is set.
We refer to the inlists associated with these skipped steps as
“optional” inlists. Skipping optional inlists is done to cut down
on excessive runtimes, since a full run of all test cases on a
single workstation can take over 24 hr otherwise. To allow the
steps after a skipped step to still run, we keep saved models for
the subsequent steps to load.
Skipping optional inlists obviously exposes us to missed

regressions, so we have a cluster set up to do up to one full run
(including optional inlists) on the main branch each day. We
have also devised a way to request a full run on any commit
(see Section 2.4). For a full run, testhub.yml reports data
for all inlists and indicates that it ran optional inlists with a
Boolean flag, as in the top portion of Figure 2.

2.2. mesa_test

A Ruby gem mesa_test8 is responsible for obtaining a
given version of MESA and using the built-in infrastructure

Figure 1.Workflow for testing MESA. Developers interact with the MESA TestHub via a web browser. The data for the TestHub comes from instances of mesa_test
run on a heterogeneous set of computer systems (laptops, desktops, clusters). The internal operation of one instance of mesa_test is expanded and illustrated in the
dotted rectangle.

7 An “inlist” is a generic name for a MESA input file which is a collection of
Fortran namelists. The main inlist may direct MESA to read other inlist files. 8 Source code available at https://github.com/MESAHub/mesa_test.

2

The Astrophysical Journal Supplement Series, 269:50 (10pp), 2023 December Wolf et al.

https://github.com/MESAHub/mesa_test

described in the previous subsection to compile MESA and run
its tests. It then processes the generated YAML files and
transmits that information to the MESA TestHub.

When mesa_test is first set up, it creates a Git mirror
repository on the local machine. This is a bare copy of the
remote repository (hosted on GitHub), meaning there is no
associated working tree. When a user requests to test a specific
version, the mirror is updated (via a git fetch) and a
working copy is created (via git worktree). This process
ensures that a fresh working tree is created each time and
avoids having to repeatedly clone the multigigabyte repository.

After MESA is installed, tests can then be run. The design of
mesa_test allows tests to be invoked individually, enabling
easy parallelization via schedulers (e.g., SLURM) in cluster-
computing environments. Individual MESA developers have
created testing scripts tailored to the computing clusters to
which they have access.

Figure 1 illustrates that mesa_test serves as the messenger
between the utilitarian shell scripts that control testing in MESA
and the storage and dissemination role of the MESA TestHub.
Keeping the role of mesa_test narrow and its code as simple
as possible has proved beneficial. Relying on testing scripts
included within MESA rather than reimplementing them in
mesa_test reduces code duplication and removes

opportunities for errors. More importantly, changes in the
MESA TestHub or in MESA itself do not require any software
updates to occur on the testing computers.
With this separation of responsibilities, mesa_test does

not need to be updated often by developers or testers. A
common type of desired change is tracking a new piece of data
for each test case. To do so, the test cases simply write out the
new quantity to the YAML file, and a simple migration to the
TestHub database allows it to accept those new quantities.
Meanwhile, mesa_test continues to pass the data from the
YAML files to the TestHub, agnostic to its contents.

Algorithm 1. Pseudocode for the execution of mesa_test in
parallel on a computing cluster

loop Every X minutes
for commit in last N commits do
if commit is untested then
test_commit(commit)

end if
end for

end loop
function test_commit(commit)

download_and_build_mesa(commit)

if build_succesful(commit) then
for module in star binary astero do

for all tests in module do
run_test(commit, module, test)
submit_result(commit, module, test)

end for
end for

end if
submit_cleanup_job(commit)

end function

Algorithm 1 shows the pseudocode for how mesa_test is
run on computing clusters, which we use to minimize the delay
between committing code and seeing the results. Every X
minutes (usually in the 5–10 minutes range), a cluster will start
a management script via cron or scron that starts mesa_test.
This script will then check for any new commits, since the last
time it ran, and if there are new commits it will submit to the
cluster’s queue system a job that then runs mesa_test to
download and build MESA. While mesa_test can run the
individual test cases serially, to maximize performance on a
cluster we must run them in parallel. This is achieved by
iterating over all test cases and submitting one job to the
cluster’s queue per test case. This job is then responsible for
running the test, submitting the results to the TestHub, and
potentially cleaning up any files. When running multiple
MESAs, each with around 100 test cases, we can generate
significant network bandwidth and use significant storage
temporarily during a test. Combined with the fact that each
computing cluster usually runs a different queueing system,
this means we must optimize and refine the testing scripts for
each new environment. A version of these scripts optimized for
the Helios cluster at the University of Amsterdam can be found
at https://github.com/rjfarmer/mesa-helios-test.
While an interface that needs to continuously poll GitHub

for changes introduces a delay between when it can start a job,
it is much simpler to implement on a shared computing cluster
instead of an interface based on receiving push notifications
from GitHub (like the TestHub website does).

Figure 2. Anatomy of a testhub.yml YAML file. Red text comes from
each_test_run, green text from do_one, and blue text from MESA itself.

3

The Astrophysical Journal Supplement Series, 269:50 (10pp), 2023 December Wolf et al.

https://github.com/rjfarmer/mesa-helios-test

2.3. MESA TestHub

The MESA TestHub9 is a web application built on top of
Ruby on Rails that collects, displays, and disseminates the
result of testing conducted by computers running mesa_test.
Currently, it is hosted at https://testhub.mesastar.org. It uses a
PostgreSQL database to store data associated with the MESA
repository as well as information about registered testers, their
computers used for testing, and their test-result submissions.

2.3.1. Syncing with GitHub

To organize results on a commit-by-commit basis, the
TestHub must have knowledge of the MESA repository. To that
end, the TestHub tracks all open branches and their respective
commits. To accomplish this, the MESA repository on GitHub
uses a webhook that makes a request to the TestHub every time
a developer pushes commits to GitHub. Upon receiving this
webhook request, the TestHub uses the GitHub application
programming interface (API) to retrieve an updated listing of
all open branches and their head commits. If any branch is
missing or out of date, it uses the GitHub API to retrieve
commit data from GitHub and update the TestHub’s database.

2.3.2. Interface with mesa_test

The TestHub implements a simple API where authenticated
https requests can deliver JSON payloads of test data which are
then ingested into the database. The mesa_test gem
streamlines this process by taking the various YAML output
files from compilation and testing as well as computer
information, converting this data to JSON, and then sending
the result as a payload attached to an authenticated request to
the TestHub server using the API.

2.3.3. The Web Front End

To interact with the data it collects, the TestHub provides a
rich front-end experience on browsers that is largely powered
by the free Bootstrap front-end framework with some
additional JavaScript features provided by jQuery. This is also
where registered users set up a computer in the database to
receive testing data. There are four primary useful views in the
web interface.

Single Commit View. The single commit view shows typical
data for a commit, including its full SHA-256 hash, author, and
message. It also shows a color-coded list of all test cases
present in that commit. Test cases can have a variety of statuses
depending on the results submitted so far. Tests can be passing
if every instance of that test case submitted has passed and has
either no checksum or matching checksums (for multiple
submissions). They can also be failing, where every instance
has indicated a failure in the test. They can be mixed if there is
at least one passing and one failing instance.

Since most test case submissions include a checksum
generated from the final model, a test can also have a multiple
checksum status if all instances pass, but different computers
produce different checksums for the final model. This would be
concerning since most of MESA is written such that results
should be bit-for-bit consistent across multiple platforms
(Paxton et al. 2015). Notably, we do not compare checksums
between submissions with optional inlists and those without,

since they would not be expected to match. Additionally, we do
not track checksums for several test cases that use code that is
not yet optimized to yield bit-for-bit consistency across
multiple platforms, though bringing these pieces of the
codebase to bit-for-bit consistency is a long-term goal of
MESA development.
Finally, test cases can be untested if no instances have been

submitted yet. Figure 3 shows a typical instance of this view.
Commits Index View. The commits index view lists commits

in a particular branch, indicating their status in a color-coded
list. Each entry shows basic information about the commit and
a collection of badges indicating the number of tests that pass,
fail, etc. The entire commit entry is color coded to reflect the
status of that commit’s most alarming test case’s status, giving
a quick sense of how that commit is faring. Figure 4 shows a
typical example of this view.
In this view, one can also quickly toggle between different

branches to see commits in context of their recent development.
This is particularly useful when deciding if and when to merge
one branch into another, since one would not want to merge in
changes from another branch that are known to cause test cases
to fail.
Test Case Commit View. The test case commit view shows

data for a given test case on a given commit. This shows why a
test case has the indicated status in the single commit view by
listing all instances of that test case that have been submitted,
including granular data like checksum hashes, runtime, random
access memory (RAM) usage, and physical data related to that
particular test case. Figure 5 shows an example of this view.
Test Case History View. The test case history view shows

data for a given test case over many commits, either by
showing commit-wide summary data for each commit
(essentially the data that is expected to agree among different
computers on a given commit) or by showing data from a
particular submitting computer. This is useful for seeing when
a test case first started failing or how some physical quantity
varies with time (reflecting changes in the software). When
looking at individual computers’ data, this view reveals trends
in runtime and RAM usage over many commits. Figure 6
shows an example of a computer-specific test case his-
tory view.

2.3.4. Daily E-mail

Being able to track the status of commits on demand via the
web front end is invaluable, but since its inception the MESA
TestHub has implemented a daily e-mail summarizing recent
testing activity. Every commit in every branch tested in the
previous 24 hr is reported using a similar color scheme to that
indicated above, including a listing of all test cases that are
failing, mixed, or show multiple checksums with links to each
relevant single commit view and test case commit view. The
daily e-mail serves as a way to keep the development team
informed on the status of various branches. We have also set
these e-mails to be sent to a dedicated testing channel in the
development team’s Slack workspace, where they often serve
as the anchor for debugging discussions. Figure 7 shows an
example of one such e-mail. In this case, the example e-mail
shows the status of ongoing development on branches that have
since been merged into main to incorporate major new
features into recent MESA releases: time-dependent-convec-
tion (Jermyn et al. 2023) and carbon–oxygen phase separation
(Bauer 2023).9 Source code available at https://github.com/MESAHub/MESATestHub.

4

The Astrophysical Journal Supplement Series, 269:50 (10pp), 2023 December Wolf et al.

https://testhub.mesastar.org
https://github.com/MESAHub/MESATestHub

2.3.5. Failure Logs

Test cases inevitably fail. When they do, it is important that
developers have easy access to the output associated with the
failing tests. This is especially useful in the case of failures that
are not easy for an individual developer to reproduce (for
example, because the failure is intermittent or because it only
occurs with a specific operating system or compiler). Even in
the case of easily reproducible failures, this saves a developer
the time needed to rerun the case and trigger the failure
themselves, or to wait for the developer who owns the machine
to report the failure(s) manually (especially important given the
multiple time zones that MESA development occurs over).

When a compilation or test failure occurs, mesa_test
transmits the information that was output (i.e., the contents of
stdout and stderr, not the data written to the MESA history or
profile files) to a separate log archiving server that is tightly
integrated with the TestHub. Transmitting only the failing cases
saves significant bandwidth and storage as the full logs from a
complete test-suite run are 10MB in size. Because these files
are intended for diagnosing failures, they are only retained for a
limited time, under the assumption their utility is largely
exhausted after issues are fixed. On the TestHub web interface,
notifications of failing compilations and failing test case
instances are accompanied by links to the relevant log files if
they exist.

Figure 3. An example of the single commit view. Basic information about the commit itself is shown at the top. Below that is a summary of the computers that have
submitted tests, where full circles indicate all tests have been run, and an incomplete circle signifies that at least some test cases have not been submitted. Below that,
we see three tests with a mixed status (yellow) and one that is failing on all computers.

5

The Astrophysical Journal Supplement Series, 269:50 (10pp), 2023 December Wolf et al.

The mesa_test gem also includes an option to force
submission of test logs even for cases where no failure
occurred. We currently have one cluster set up to force test log
submissions to the latest commit on the main branch of MESA
up to once per day. This allows developers to have a quick
reference to test output for passing test cases on main when
tests report failures on other branches, while also avoiding an
overload of test log files.

2.3.6. Hosting and Hardware

The TestHub is currently hosted by the Heroku10 platform as
a service on a single “basic” dyno. Dynos are isolated,
virtualized Unix containers designed to work with a particular
application environment. In the TestHub’s case, the dyno is
tuned to work well with Ruby on Rails applications. The basic
level is the least capable of Heroku’s persistent plans,
providing 512MB of RAM and modest access to a central
processing unit (CPU) (Heroku does not publish precise details
on what CPUs or how many cores a given dyno has access to)
at a cost of $7 USD per month as of 2023 August. New
deployments are triggered by issuing a git push to a special
heroku remote, with the actual build deployment handled
automatically on Heroku’s end. The runtime environment can
be accessed with command-line access through Heroku’s
website or via their command-line tool.

In addition to the web server, Heroku also hosts the
PostgreSQL database the TestHub relies on via their Heroku
Postgres add-on service. We use the “basic” level of service,
which allows 10,000,000 rows, 10 GB of storage, and up to 20
simultaneous connections at a cost of $9 USD per month as of
2023 August. Over the first 32 months of usage since MESA
development shifted to GitHub, the TestHub now uses over
2,400,000 rows spread over 13 tables, consuming 564.5MB.
So in the medium term, we may require upgraded database
service, or we may opt to purge old test data to keep the data
storage lean.
With the relatively low throughput the TestHub experiences,

it could be served by a rather inexpensive server and a reliable
Internet connection. However, the low cost of $16 USD per
month and reliable service has made Heroku’s platform as a
service a robust and simple hosting solution. Even at the
modest levels of service the TestHub runs on, it does not
appear to be meaningfully bottlenecked by the processor,
RAM, or database connection.

2.4. Commit Messages

To extend the flexibility in testing we have introduced a
number of commit strings to pass data to the testing machines.
These strings, if present in the commit message, signal a
request from the committer to the testing machines to alter the
standard testing setup in some way (note these are only

Figure 4. An example of the commits index view showing commits that are passing, failing, mixed, and untested. The “+” icon indicates that all optional inlists were
run for all tests on at least one machine for that commit.

10 https://heroku.com

6

The Astrophysical Journal Supplement Series, 269:50 (10pp), 2023 December Wolf et al.

https://heroku.com

requests as not every test machine respects every commit
message):

1. [ci skip] This instructs testing machines not to run the test
suite on this commit. This is primarily useful when
committing changes that do not affect the code, for
instance documentation changes. A basic check for
passing compilation is still performed and submitted.

2. [ci optional] Requests that testing machines run all
optional inlists in all test cases. This is particularly useful
right before attempting to merge a branch back into main
to ensure no lurking regressions remain.

3. [ci fpe] Requests that a number of additional compile-
time flags are enabled, as well as certain runtime flags
that initialize data to not a number. This allows better
testing for things like uninitialized variable usage and bit-
for-bit issues.

4. [ci converge] Request that MESA runs with an increased
spatial and temporal resolution, to find test cases that are
numerically unconverged.

In the past, we also had a [ci split] flag that signaled that the
two main clusters we were using at the time should split the
tests. That is, each cluster would only run half of the tests, but

between the two, all tests would be run once. This allowed for
quicker turnaround during periods of rapid development.
However, this required a lot of hand tuning to balance which
tests went to which cluster and sacrificed the knowledge that
tests worked the same on both systems (let alone that all tests
could pass on a single system). Since then, we have usually
had enough available computing resources that the small
amount of time saved by this is not worth the complexity it
introduced.
These flags enable greater flexibility in the testing. The

committer can decide whether they wish for no testing ([ci
skip]), normal testing (no flag), or a slower but more in-depth
testing ([ci optional] and/or [ci converge]). By not having
every machine respect all the flags we also ensure that the test
suite is still run regularly. Indeed, we have several machines
set up to test the latest commit on the main branch with
all optional inlists and/or forcing the submission of logs to
the log server. As a result, we will often have commits with
the [ci skip] flag tested heavily if they happen to be the latest
commit when this task is performed. Additional icons are also
present in the web overview (see Figures 3, 4, and 5) to show
at a glance which machines have tested the commit with
each flag.

Figure 5. An example of the test case commit view showing that the failing instances are coming from a single computer, along with links to view the logs of those
instances (see Section 2.3.5). The “+” icons indicate submissions where optional inlists were run. In this example, we can see that enabling optional inlists revealed a
regression in this test.

7

The Astrophysical Journal Supplement Series, 269:50 (10pp), 2023 December Wolf et al.

3. Conclusions

The combination of testing infrastructure inside MESA,
mesa_test, and the MESA TestHub has gone through many
refinements as we have learned what works well and what our
development team really needs from a testing system. Other
continuous testing infrastructures exist, but the unique needs of
the MESA project require a more bespoke solution. In particular,
useful tests in MESA are long, complex, stellar evolution problems
and not simple unit tests. We also value being able to report and

track a heterogenous set of metrics, including test-specific physical
quantities. Additionally, we need a testing framework designed to
accommodate a wide variety of systems rather than being focused
on a single server in the cloud, since MESA users work at a variety
of scales on multiple platforms. And so, we designed a system that
works well on individual laptops and computing clusters; we have
even adapted it to work with a continuous testing server at the
Flatiron Institute running Jenkins.11

Figure 6. An example of the test case history view showing all submissions from the computer ScienceFurnace for the test case cburn_inward over a range of
dates for all commits on the remove-deltaQ-Vs branch.

11 https://jenkins.io

8

The Astrophysical Journal Supplement Series, 269:50 (10pp), 2023 December Wolf et al.

https://jenkins.io

We conclude with some lessons learned over the develop-
ment of MESA’s testing infrastructure. First, separation of
responsibilities is very important. Originally, mesa_test
handled downloading, installing, running of tests, collection of
data, and submission of results to the TestHub. This resulted in
asking testers to manually update their local version of
mesa_test whenever a new piece of data was to be collected
or a bug needed to be fixed. Since moving the management of
individual tests and test data to MESA itself, mesa_test is
much leaner and requires less frequent updating and
maintenance.

Second, balancing coverage of tests with speed requires
thoughtful compromise. More rigorous testing usually means a
longer delay between a commit and a result, as well as a larger
investment of limited CPU hours. On the other hand, sparse
coverage runs the risk of missing important regressions. Our
current method of using optional inlists to skip the most time-
consuming portions of tests has resulted in relatively fast
turnarounds while still allowing for more in-depth testing on at
least a daily basis. However, we may need to make other
compromises such as dividing the test cases into “probative”

and “exemplary” categories for prioritized testing if the test
suite grows appreciably in size without an accompanying
growth in computational resources.
Third, using a platform as a service (like Heroku) has been a

smooth and cost-effective experience. The portable nature of a
cloud service was particularly helpful as the lead developer of
the TestHub switched institutions with virtually no disturbance
to the testing infrastructure.
Fourth, while automated testing has caught many bugs and

issues in MESA, manually inspecting the output of the MESA
test suite is still needed from time to time. Certain problems
have arisen in the past that cannot be easily checked for by
automated scripts. Thus a human review of diagnostic plots and
model output is still needed occasionally to ensure that MESA is
running correctly. Automated testing is not meant to constitute
a complete replacement for the maintenance work of a team of
experts covering the wide range of physics encountered in
stellar evolution, but rapid turnaround of broad automated
testing enabled by this platform has greatly expedited the pace
of development and the rate at which issues are discovered and
referred to experts for closer inspection.

Figure 7. An example of an automatic daily summary e-mail developers receive from the TestHub.

9

The Astrophysical Journal Supplement Series, 269:50 (10pp), 2023 December Wolf et al.

Finally, we note that building and maintaining a robust
testing infrastructure for a project with complex needs like that
of MESA requires substantial expertise and effort at multiple
levels. In the case of the TestHub and mesa_test, we needed
some degree of full stack web-development knowledge, but the
infrastructure within MESA required a deep understanding of
the way tests can fail, how that information can be aggregated,
and what information would be essential for diagnosing
regressions. As a research software project grows from a
single scientist to a distributed team, developers should be
aware of the testing and quality assurance needs of their project
and not overlook the significant investment of time and effort
required to enable smooth development.

The MESA testing infrastructure has been a critical factor in
enabling the continued development of this software. In the
first two and a half years since the move to Git, we have
averaged testing five commits per day, with over 570,000 test
case instances reported to the TestHub representing nearly one
million CPU hours of computation on clusters, workstations,
and laptops. We hope that by documenting our testing
infrastructure, other projects in computational science with
similar demands might be able to build a system that supports
their further development.

Acknowledgments

We thank the anonymous reviewer for their helpful
comments and suggestions. W.W. acknowledges support by
the National Science Foundation through grant AST-2238851.
J.S. acknowledges support by NASA through Hubble Fellow-
ship grant No. HST-HF2-51382.001-A awarded by the Space
Telescope Science Institute, which is operated by the Associa-
tion of Universities for Research in Astronomy, Inc., for
NASA, under contract NAS5-26555; by the A.F. Morrison

Fellowship in Lick Observatory, and by the National Science
Foundation through grant ACI-1663688. We acknowledge use
of the lux supercomputer at UC Santa Cruz, funded by the NSF
MRI grant AST 1828315, and we thank Josh Sonstroem and
Brant Robertson for their tireless efforts providing this
resource. We acknowledge use of the University of Amster-
dam’s Helios cluster which was supported by a European
Research Council grant 715063, PI S.E. de Mink. We acknowl-
edge the use of the FASRC Cannon cluster supported by the
FAS Division of Science Research Computing Group at
Harvard University, with special thanks to Charlie Conroy
and the Institute for Theory and Computation for access to their
dedicated nodes on Cannon.
Software: MESA (Paxton et al. 2011, 2013, 2015, 2018,

2019; Jermyn et al. 2023, http://mesa.sourceforge.net), Ruby
on Rails (https://rubyonrails.org), Bootstrap (https://
getbootstrap.com), jQuery (https://jquery.com)

ORCID iDs

William M. Wolf https://orcid.org/0000-0002-6828-0630
Josiah Schwab https://orcid.org/0000-0002-4870-8855
R. Farmer https://orcid.org/0000-0003-3441-7624
Evan B. Bauer https://orcid.org/0000-0002-4791-6724

References

Bauer, E. B. 2023, ApJ, 950, 115
Jermyn, A. S., Bauer, E. B., Schwab, J., et al. 2023, ApJS, 265, 15
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3
Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4
Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 220, 15
Paxton, B., Schwab, J., Bauer, E. B., et al. 2018, ApJS, 234, 34
Paxton, B., Smolec, R., Schwab, J., et al. 2019, ApJS, 243, 10

10

The Astrophysical Journal Supplement Series, 269:50 (10pp), 2023 December Wolf et al.

http://mesa.sourceforge.net
https://rubyonrails.org
https://getbootstrap.com
https://getbootstrap.com
https://jquery.com
https://orcid.org/0000-0002-6828-0630
https://orcid.org/0000-0002-6828-0630
https://orcid.org/0000-0002-6828-0630
https://orcid.org/0000-0002-6828-0630
https://orcid.org/0000-0002-6828-0630
https://orcid.org/0000-0002-6828-0630
https://orcid.org/0000-0002-6828-0630
https://orcid.org/0000-0002-6828-0630
https://orcid.org/0000-0002-4870-8855
https://orcid.org/0000-0002-4870-8855
https://orcid.org/0000-0002-4870-8855
https://orcid.org/0000-0002-4870-8855
https://orcid.org/0000-0002-4870-8855
https://orcid.org/0000-0002-4870-8855
https://orcid.org/0000-0002-4870-8855
https://orcid.org/0000-0002-4870-8855
https://orcid.org/0000-0003-3441-7624
https://orcid.org/0000-0003-3441-7624
https://orcid.org/0000-0003-3441-7624
https://orcid.org/0000-0003-3441-7624
https://orcid.org/0000-0003-3441-7624
https://orcid.org/0000-0003-3441-7624
https://orcid.org/0000-0003-3441-7624
https://orcid.org/0000-0003-3441-7624
https://orcid.org/0000-0002-4791-6724
https://orcid.org/0000-0002-4791-6724
https://orcid.org/0000-0002-4791-6724
https://orcid.org/0000-0002-4791-6724
https://orcid.org/0000-0002-4791-6724
https://orcid.org/0000-0002-4791-6724
https://orcid.org/0000-0002-4791-6724
https://orcid.org/0000-0002-4791-6724
https://doi.org/10.3847/1538-4357/acd057
https://ui.adsabs.harvard.edu/abs/2023ApJ...950..115B/abstract
https://doi.org/10.3847/1538-4365/acae8d
https://ui.adsabs.harvard.edu/abs/2023ApJS..265...15J/abstract
https://doi.org/10.1088/0067-0049/192/1/3
https://ui.adsabs.harvard.edu/abs/2011ApJS..192....3P/abstract
https://doi.org/10.1088/0067-0049/208/1/4
https://ui.adsabs.harvard.edu/abs/2013ApJS..208....4P/abstract
https://doi.org/10.1088/0067-0049/220/1/15
https://ui.adsabs.harvard.edu/abs/2015ApJS..220...15P/abstract
https://doi.org/10.3847/1538-4365/aaa5a8
https://ui.adsabs.harvard.edu/abs/2018ApJS..234...34P/abstract
https://doi.org/10.3847/1538-4365/ab2241
https://ui.adsabs.harvard.edu/abs/2019ApJS..243...10P/abstract

	1. Introduction
	2. Testing
	2.1. MESA
	2.2. mesatest
	2.3. MESA TestHub
	2.3.1. Syncing with GitHub
	2.3.2. Interface with mesatest
	2.3.3. The Web Front End
	2.3.4. Daily E-mail
	2.3.5. Failure Logs
	2.3.6. Hosting and Hardware

	2.4. Commit Messages

	3. Conclusions
	References

