

1 **Title: Functional Aggregation of Cell-Free Proteins Enables Fungal Ice Nucleation**

2

3 **Authors:** Ralph Schwidetzky^{a1}, Ingrid de Almeida Ribeiro^{b1}, Nadine Bothen^c, Anna
4 T. Backes^c, Arthur L. DeVries^d, Mischa Bonn^a, Janine Fröhlich-Nowoisky^c, Valeria
5 Molinero^{b,2}, and Konrad Meister^{a,e,2}

6 **Affiliations:**

7 ^aMax Planck Institute for Polymer Research, 55128 Mainz, Germany

8 ^bThe University of Utah, 84112 Salt Lake City, UT, United States

9 ^cMax Planck Institute for Chemistry, 55128 Mainz, Germany

10 ^dUniversity of Illinois at Urbana-Champaign, 61801 Urbana, IL, United States

11 ^eBoise State University, 83725 Boise, ID, United States

12

13

14 **Classification:**

15 Heterogeneous Ice Nucleation, Ice-Nucleating Proteins, Fungi, Protein Assembly

16 **Abstract:**

17 Biological ice nucleation plays a key role in the survival of cold-adapted organisms. Several
18 species of bacteria, fungi, and insects produce ice nucleators (INs) that enable ice formation at
19 temperatures above -10 °C. Bacteria and fungi produce particularly potent INs that can promote
20 water crystallization above -5 °C. Bacterial INs consist of extended protein units that aggregate
21 to achieve superior functionality. Despite decades of research, the nature and identity of fungal
22 INs remain elusive. Here we combine ice nucleation measurements, physicochemical
23 characterization, numerical modeling and nucleation theory to shed light on the size and nature
24 of the INs from the fungus *Fusarium acuminatum*. We find ice-binding and ice-shaping activity
25 of *Fusarium* IN, suggesting a potential connection between ice growth promotion and inhibition.
26 We demonstrate that fungal INs are composed of small 5.3 kDa protein subunits which
27 assemble into ice nucleating complexes that can contain more than 100 subunits. *Fusarium* INs
28 retain high ice-nucleation activity even when only the ~12 kDa fraction of size-excluded
29 proteins are initially present, suggesting robust pathways for their functional aggregation in
30 cell-free aqueous environments. We conclude that the use of small proteins to build large
31 assemblies is a common strategy among organisms to create potent biological INs.

32 **Significance**

33 Organisms have evolved efficient molecular strategies to control the nucleation and growth of
34 ice. Although these strategies have developed independently across biological kingdoms, they
35 all seem to use proteins to construct extended functional domains. While for bacteria the use of
36 large proteinaceous units to build superior ice-making complexes is established, the identity of
37 fungal INs remains unknown. Here, we demonstrate that small extracellular proteins, of which
38 over a hundred are capable of assembling in cell-free environments, make up the fungal INs
39 that enable ice formation at warm temperatures. Our findings highlight that nature uses a
40 common strategy, *E pluribus unum* (out of many, one), to enable high subzero ice nucleation
41 temperatures by assembly of ice-nucleating proteins into large functional aggregates.

42

43

44 The crystallization of water is the most prevalent liquid-to-solid phase transition on Earth. Ice
45 formation is thermodynamically favored at temperatures below 0 °C, but the crystallization
46 process is kinetically hindered by the cost of the ice nucleus interface. Consequently, pure water
47 microdroplets can be supercooled to temperatures as low as -46 °C, below which homogenous
48 ice nucleation seems to be unavoidable (1). In nature, the freezing of water is usually a
49 heterogeneous process facilitated by ice nucleators (INs) of biological and abiotic origins.
50 Naturally occurring abiotic INs typically elevate freezing temperatures to -15 to -30 °C,
51 whereas biological INs are more active and proteinaceous INs can facilitate freezing at
52 temperatures between -2 and -15 °C (2). The ecological advantages of ice nucleation and its
53 potential impact on cloud glaciation and precipitation are not yet fully understood, and
54 constitute a significant gap in our understanding of the relationship between climate and life.

55 The best-characterized biological INs are plant-associated bacteria of the genera *Pseudomonas*,
56 *Pantoea*, and *Xanthomonas*, which enable ice formation at temperatures close to 0 °C (3). The
57 ability of the ice-nucleation-active bacteria to facilitate ice formation is attributed to ~120 kDa
58 ice-nucleating proteins (INPro) that are anchored to their outer cell membrane, and that form
59 functional aggregates to achieve activity at high temperatures (4-6). The gene encoding the
60 large bacterial INPro monomers has been identified and found to be conserved across diverse
61 ice nucleation-active gram-negative bacteria (7, 8).

62 Fungi also produce very effective biological INs, enabling the crystallization of water at
63 temperatures as warm as -2 °C (9, 10). The ice nucleation activity in fungi was first discovered
64 in the genus *Fusarium*, and later observed in multiple other genera (e.g., *Isaria*, *Mortierella*,
65 *Sarocladium*, *Puccinia*) (11-13). The cosmopolitan genus *Fusarium* comprises saprophytes and
66 pathogens of plants and animals, and it is the most studied ice nucleation active fungus (9, 10).
67 Although widely distributed in soil and on plants, it has also been detected in atmospheric and
68 cloud water samples, making it a highly relevant biological and atmospheric model system (11,
69 14). Both ice nucleation active bacteria and fungi can cause frost damage to plants, and their
70 presence in precipitation samples has led to suggestions that these biological INs may influence
71 regional and global weather patterns (15-18).

72 However, unlike the bacterial INPro (3, 4, 19), the chemical composition and structures of the
73 macromolecules responsible for ice nucleation activity in fungi are unknown. Our current
74 understanding suggests that *Fusarium* INs are cell-free secreted soluble macromolecules that
75 are stable at pH values from 2 to 12 (9, 10, 20, 21). Kunert *et al.* determined the size of *Fusarium*

76 INs to be <100 kDa based on molecular weight cut-off (MWCO) filtration experiments (10).
77 Similarly, Yang *et al.* utilized MWCO filters and determined that the size of fungal INs is <30
78 kDa (21). However, the use of MWCO filters has limitations, as these filters only provide
79 nominal classifications and not precise boundaries. Achieving 100% retention, even for very
80 large molecules, is not possible and drawn conclusions can be ambiguous. The *Fusarium* INs
81 were proposed to be at least partially proteinaceous, given their heat inactivation, peak UV
82 absorbance at 280 nm, and sensitivity to certain proteinases (10, 21, 22). In addition, Vinatzer
83 and coworkers recently employed comparative genomics and transcriptomics to identify over
84 200 candidates for ice nucleation genes that code for secreted proteins preferentially expressed
85 at low temperatures (21). However, the assumption that ice nucleation sites of biological origin
86 are denatured by heat while those associated with abiotic nucleators are unaffected is
87 insufficient. Heat-stable proteins are ubiquitous in nature (23), and a recent study showed that
88 abiotic materials like quartz and feldspars can also lose ice nucleation abilities when heated
89 (24). Moreover, the UV absorbance at 280 nm, caused by aromatic residues are also present in
90 polyketides (25), and *Fusarium* mycotoxins, which are polyketides, are enzymatically
91 degradable (26).

92 Here, we investigate the composition, structure, and activity of INs from *Fusarium acuminatum*,
93 which we extracted from the surfaces of fungal spores and mycelia. The goal of this study is to
94 identify the nature and size of the individual ice-nucleating macromolecules and estimate how
95 many are involved in the functional aggregates responsible for these organisms' exceptional ice
96 nucleation activity.

97 Results

98 To investigate the freezing capabilities of INs from spores and mycelial surfaces of
99 *F. acuminatum*, aqueous *Fusarium* extracts were serially diluted 10-fold, resulting in a
100 concentration range spanning from ~14.1 mg/mL to ~1.41 ng/mL. The aqueous extracts contain
101 all *Fusarium* INs derived from spores and mycelial surfaces and were passed through 0.1 μ m
102 filters before measurements. The freezing temperature of each of 96 3 μ L-sized droplets for
103 each concentration was followed with a cooling rate of 1 °C/min (27). These measurements
104 provide the fraction of frozen droplets as a function of temperature for each concentration (**Fig**
105 **S1**). The results are combined using Vali's equation into a single freezing curve of
106 *F. acuminatum*, shown in **Fig. 1A**, where N_m represents the total number of active INs above a
107 certain temperature (28). The strong increase that starts just below -4 °C, and the subsequent

108 plateau in the cumulative number of INs per unit mass $N_m(T)$, indicate the presence of highly
109 efficient INs, consistent with previous studies (10, 21).

110 **The INs of *Fusarium* are ice-binding proteins.** The high ice nucleation activity in *Fusarium*
111 is indicative of INs capable of strong binding to ice (29). We employed ice-affinity purification
112 to capitalize on the ice-binding capabilities of the *Fusarium* INs to selectively purify them. The
113 purification process involves the incorporation of the ice-binding INs into a slowly growing ice
114 phase and the exclusion of non-ice-binding macromolecules and impurities. Thereby, the ice-
115 binding macromolecules present in *F. acuminatum* were isolated. The success of the process
116 was assessed by monitoring the activity of the purified INs and by gel electrophoresis (**Fig. S2**).
117 The freezing curve of the ice-affinity purified INs looks similar to that of the aqueous *Fusarium*
118 extract, with a slight decrease in the total number of INs (**Fig. 1A**). The presence of ice-binding
119 macromolecules in *Fusarium* was further investigated by measuring their ice-shaping
120 capabilities. Using Nanoliter Cryoscopy, we observed that slow cooling of a ~15 μm ice disc
121 resulted in its faceting that transformed it into a hexagon, as shown in **Fig. 1B**. Measurements
122 in the absence of INs under identical conditions (salinity, cooling rate) resulted in the formation
123 of circular ice crystals, confirming that the purified macromolecules in the *F. acuminatum*
124 samples selectively bind to ice.

125 The proteinaceous nature of the ice-binding macromolecules of *F. acuminatum* had been
126 suggested, but was not previously confirmed (10). **Fig. 2A** shows circular dichroism (CD)
127 spectra of the ice-affinity purified solutions of *F. acuminatum* at room temperature and at 90 °C.
128 The CD spectrum of the untreated sample shows a maximum molar ellipticity at ~235 nm and
129 a minimum at ~205 nm. Spectral analysis and fold recognition using the web server BeStSel
130 (30, 31) reveals that the *Fusarium* INs are proteinaceous with ~29% antiparallel β -sheet and
131 ~12% helical content (**Fig. S3**). It is worth mentioning that high β -sheet contents were also
132 found in INPro derived from bacteria (32-36). Upon heating the ice-affinity purified *Fusarium*
133 INs to 90 °C, the CD spectrum shows marked changes: a reduction of the molar ellipticity at
134 235 nm, and a shift of the minimum at ~205 nm to ~202 nm. These spectral changes following
135 heating suggest significant, irreversible changes in the secondary structure of *Fusarium*'s INs.
136 We interpret that these conformational changes cause an irreversible loss of the protein's native
137 structure and are the origin of the significant loss of *Fusarium*'s ice nucleation activity after
138 heat treatment (**Fig. 2B**) (10).

139 **Determination of IN subpopulations based on numerical modeling and nucleation theory.**
140 **Fig 3A** presents $N_m(T)$ obtained from dilution series of three independent experiments with
141 aqueous extracts from individual fungal cultures. To obtain the distribution of heterogeneous
142 ice nucleation temperatures of the fungal INs, we extracted the differential freezing spectrum
143 $n_m(T)$ from each experimental cumulative freezing spectrum $N_m(T)$ using the Heterogeneous
144 Underlying-Based (HUB) backward code (37). The code implements a stochastic optimization
145 procedure that enables the fitting of the experimental $N_m(T)$ data, as shown in **Fig. 3A**, assuming
146 that the distribution of nucleation temperatures in the *Fusarium* sample is a linear combination
147 of Gaussian subpopulations. The mean square error (MSE) between the experimental and
148 predicted $N_m(T)$ decreases from ~15% to 1% as the number of subpopulations increases from
149 one to three (**Fig. S4, Table S1**). The differential spectra $n_m(T)$ (**Fig 3B**) that best fits the
150 experimental $N_m(T)$ of **Fig 3A** contain three Gaussians centered around -5.5, -6.8 and -11 °C
151 (**Table S1**). The comparable contribution and overlap of these subpopulations imply an almost
152 continuum distribution of IN sizes. This suggests that the subpopulation of more potent IN
153 dominates the freezing of water by the organism in its natural environment.

154 **Fig. S8** shows that consecutive freeze-thaw cycles of the same sample have only minor impacts
155 on the ice nucleation ability of IN from *F. acuminatum* and the corresponding freezing spectrum.
156 In contrast to fungal INs, repetitive freeze-thaw cycles alter the freezing spectra of bacterial INs,
157 and the activity of their most active INs is significantly reduced (38). These findings are
158 consistent with the known instability of bacterial INs (39), which is in sharp contrast to the
159 observed high stability of fungal INs (10).

160 To interpret the position of the peaks in the differential spectrum $n_m(T)$ of *F. acuminatum*, we
161 use an accurate implementation of classical nucleation theory to predict ice nucleation
162 temperatures of finite-sized IN surfaces (29). The calculation is implemented into the
163 “Heterogeneous Ice Nucleation Temperature” (HINT) code, which takes into account the size
164 and shape of the surface, and temperature-dependent thermodynamic and dynamic water
165 properties to predict the temperature of heterogeneous ice nucleation (29). We first assume that
166 the ice-binding area of the fungal IN is a flat square surface with a binding energy $\Delta\gamma$
167 corresponding to that of ice binding to ice. These calculations provide a lower limit for the area
168 of the IN, because a less potent $\Delta\gamma$ or an elongated IN would require a larger area to reach the
169 same nucleation temperature (29). The predicted freezing temperatures based on square IN
170 surfaces are shown in **Fig. 3C**. The ice nucleation signal for the three modes of the differential
171 spectrum $n_m(T)$ of *F. acuminatum* match those of square IN surfaces of areas 290 nm² ($T_{het} =$

172 -5.5 °C), 187 nm² ($T_{\text{het}} = -6.8$ °C), and 53 nm² ($T_{\text{het}} = -11$ °C) (**Fig. 3C, Table S2**). We emphasize
173 that these areas are the minimal ones required to nucleate ice at the corresponding temperatures,
174 and match those of squares with sides 17, 13.7 and 7.3 nm, respectively. For reference, the
175 minimum width of a rectangular surface that nucleates ice at -6.8 °C is 8.4 nm, and its minimum
176 length ~45 nm, resulting in about twice the area of the 13.7 x 13.7 nm² surface that promotes
177 ice nucleation at that temperature. Below we use the estimated square IN areas to provide lower
178 bounds of the number of protein monomers involved in the ice-nucleating particles produced
179 by *F. acuminatum*.

180 Our theoretical estimate of the size of the IN surfaces responsible for the exceptional nucleation
181 activity of *F. acuminatum* is consistent with the results of filtration experiments that showed
182 N_m to be unchanged by filters with nominal cutoff down to 100 nm, minimally impacted by
183 filters with nominal cut-off at ~9 nm (300 kDa), and strongly impacted by filters with smaller
184 pores (**Fig. S5**) (10, 21). However, neither the filtration experiments nor our theoretical
185 calculations can reveal whether the INs are composed of smaller subunits, and, if they are, what
186 is their actual size.

187 **Determination of size and composition of *Fusarium* INs.** To address these questions, we used
188 size exclusion chromatography (SEC), gel electrophoresis, and matrix-assisted laser
189 desorption/ionization-time-of-flight (MALDI-TOF) spectroscopy of the ice-affinity purified
190 *Fusarium* INs. **Fig. 4A** shows the SEC separation profile of standard calibration proteins and
191 *Fusarium* INs in 50 mM sodium phosphate in 0.3 M NaCl buffer (pH 7.0). The elution profile
192 of the *Fusarium* samples showed prominent peaks at ~5.20, ~7.40, ~10.98, ~12.40 min, and a
193 smaller peak at ~13.5 min (**Fig. 4C**). Based on the elution profile of the calibration proteins, we
194 estimate the molecular weight of the *Fusarium* elution peaks to be ~660, ~45, ~12, ~6, and
195 ~<3 kDa, respectively. Given that proteins can vary significantly in shape, the determined
196 molecular weights of the *Fusarium* INs should not be seen as absolutes, but rather as good
197 approximations. Furthermore, the column's reduced sensitivity towards high kDa proteins may
198 cause large aggregates to appear similar in size. The observed "660 kDa" peak could act as a
199 cut-off point for larger aggregates and include a range of larger sizes.

200 We find that both large (~660 kDa) and small (~12 kDa) SEC *Fusarium* fractions retain their
201 ice nucleation activity at low supercooling (**Fig. S6, Table S1**). The IN peaks for the 660 kDa
202 fraction (-7.5, -6.1 and -4.7 °C) overlap with the two warmer IN peaks obtained from the whole
203 sample (-6.8 and -5.3 °C), while clearly lacking the population of less active nucleants (around

204 -11 °C) obtained from the whole *Fusarium* extract. On the other hand, the three IN peaks
205 obtained from the 12 kDa sample (-11.8, -8.5 and -6.4 °C) encompass those found in the two
206 less efficient peaks of the whole sample, while lacking the most potent IN population around -
207 5 °C. These results strongly suggest that even when small subunits are initially present, there
208 exists a robust mechanism for them to reassemble into larger INs. Without a re-assembly
209 mechanism, the experimentally observed activity at higher temperatures would not be possible
210 (see **Fig. 3C**).

211 The presence of small subunits with an estimated weight below 10 kDa is supported by MALDI
212 spectra of ice-affinity purified solutions of *F. acuminatum* and SDS-PAGE gel electrophoresis
213 (**Fig. 4B**). The MALDI spectrum shows a dominant signal at ~5.3 kDa, with a second smaller
214 signal at 2.65 kDa, which either originates from a z=+2 charge state of the 5.3 kDa protein, or
215 a separate half-sized protein. Considering the 110 Da average molecular weight of amino acids,
216 we estimate that the ~5.3 kDa protein unit contains ~48 amino acids. Interestingly, the presence
217 of a peak at 2.65 kDa, which is half the size of the dominant peak at 5.3 kDa, along with a minor
218 fraction in the SEC profile, raises the possibility that the 5.3 kDa protein might be a dimer of a
219 smaller subunit. Furthermore, the faint second band observed in the SDS PAGE hints at the
220 potential existence of a smaller component, although it could also be an artifact from the dye
221 front. The SDS-PAGE gel shows a band below ~10 kDa, confirming the presence of small
222 proteins. We further performed an amino acid analysis of the ~12 kDa SEC fraction to verify
223 the proteinaceous nature of the *Fusarium* IN. The amino acid content showed high contents of
224 aspartic (15%) and glutamic acids (19%) (acid or amide form) as well as of threonine (10%)
225 and serine (8%) (**Fig. S7**). A globular protein of ~10 kDa would have a molecular diameter of
226 ~2.8 nm (40) and nucleate ice at temperatures below -23 °C (Table S2). The much warmer
227 nucleation temperatures obtained with the 12 kDa SEC fraction (Fig. S6 and Table S1) evince
228 that *Fusarium* INs consist of small protein units that assemble into larger complexes in solution.

229 We assessed the minimum number of protein monomers needed to achieve the nucleation
230 temperatures of *F. acuminatum* through a combination of experiments, nucleation theory, and
231 modeling results. If we assume that the 5.3 kDa monomer is the smallest unit and it has a
232 globular fold, then its radius would be ~1.1 nm (40) and would nucleate ice at about -28 °C
233 (**Table S2**). A functional assembly of at least 150 5.3 kDa units would be required to tile the
234 minimal IN surface that nucleates ice at -4 °C, ~100 to nucleate at -5 °C, ~50 at -6.8 °C, and
235 ~16 at -11 °C (Table S2). This range of aggregate sizes is consistent with those observed in the
236 size exclusion chromatography of the ice-affinity purified solutions (**Fig. 4A**).

237

238 **Discussion:**

239 We combine physicochemical characterizations of ice-affinity purified *Fusarium* INs with
 240 stochastic optimization algorithms and nucleation theory to unravel the nature and size of the
 241 units and functional assemblies that endow this fungus with outstanding ice nucleation ability.
 242 We find that the fungal INs consist of small protein subunits with about 50 amino acids, that
 243 assemble in a cell-free environment into functional aggregates that enable ice nucleation at low
 244 supercooling. These functional aggregates can contain over a hundred ice nucleating proteins.
 245 Both experimental and theoretical evidence indicate the existence of functional aggregates with
 246 a continuum distribution of sizes, highlighting the need for further investigations that elucidate
 247 their structures and the mechanisms governing their assembly. Notably, the *Fusarium* INs can
 248 regain ice nucleation activity at low supercooling even when only the SEC fraction
 249 corresponding to small <12 kDa proteins are initially present (Fig. S6), suggesting the existence
 250 of robust mechanisms for their efficient reassembly in cell-free aqueous environments.

251 In bacteria, it has been shown that dimers and higher-order oligomers are key for the activity
 252 of ~120 kDa INPro (4, 19, 35, 36). *P. syringae* display functional INPro aggregates in their
 253 outer membrane that can nucleate ice at high onset temperatures (4, 19, 29, 35, 36). However,
 254 individual bacterial INPro nucleate ice at just -16 °C, and while aggregation of bacterial INPro
 255 probably occurs in solution (36), the membrane is needed to produce the most active form (41).
 256 The ability to regain high ice nucleation activity from monomers in solution and their high
 257 stability sets *Fusarium* INPro apart from bacterial ones, which lack these capabilities (29, 35,
 258 41, 42). Here, we demonstrate that functional aggregation of much smaller ~5.3 kDa proteins
 259 from fungi also results in large IN assemblies. Likewise, control of ice nucleation by assembling
 260 large units is also common in insects and pollen, where a combination of carbohydrates, lipids,

261 and proteins enables freezing (43, 44). We conclude that nature has implemented these *E*
262 *pluribus unum* strategies across biological kingdoms using a wide range of sizes of protein
263 building blocks, from ~120 kDa in bacteria to ~5 kDa in fungi.

264 The functional aggregation processes associated with these strategies give rise to potent ice-
265 nucleating structures, which can manifest as soluble extracellular aggregates in fungi or
266 membrane-bound assemblies in bacteria. In all cases, however, the functional assembly of
267 smaller units results in a sufficiently large ice-binding area that can support the formation of
268 critical ice nuclei at low supercooling (29, 45). We expect that the energetic benefit for the
269 organism in producing smaller proteins, rather than a single large one, contributes to the success
270 and adoption of the *E pluribus unum* strategy across species that are not evolutionary-related.
271 The same strategies could be applied to design and produce synthetic INs by self-assembly of
272 small ice-binding structures. Developing such powerful synthetic INs would be highly valuable
273 for applications ranging from cryopreservation of cells to cloud seeding.

274 **Methods:**

275 *Fungal culture and sample preparation.* 75 plates of the ice nucleation-active fungal species
276 *Fusarium acuminatum* were grown on full-strength potato dextrose agar plates (VWR
277 International GmbH). Growth occurred at room temperature for one week and then at 6 °C for
278 about four weeks. Pure water was obtained from Millipore Milli-Q® Integral 3 water
279 purification system (Merck Chemicals GmbH), autoclaved at 121 °C for 15 min, and filtered
280 through a 0.1 µm bottle top filtration unit (VWR International GmbH). For the droplet freezing
281 experiments, aqueous extracts of fungal mycelium were prepared as described previously with
282 the following modifications (10). The fungal mycelium of five agar plates was collected in a
283 sterile 50 mL tube, and the weight of the mycelium was determined gravimetrically. Aliquots
284 of 50 mL of pure water were added to the mycelium. The samples were vortexed three times at
285 2700 rpm for 1 min. The aqueous extracts for all experiments were filtered through a 0.1 µm
286 bottle-top filtration unit (VWR International GmbH), and the resulting aqueous extracts
287 contained ice nucleators from spores and mycelial surfaces. For filtration experiments, the
288 0.1 µm filtrate was filtered through either 30 kDa or 50 kDa MWCO PES ultrafiltration
289 centrifugation units (Thermo Fisher Scientific), and the ice nucleator concentration was
290 determined by TINA measurements.

291 *Ice-affinity purification.* Rotary ice-shell and ice-slide purification was used to purify the ice-
292 nucleating macromolecules of the crude fungal extract. Details of the purification method have
293 been described elsewhere (32, 46). In short, in a 500 mL flask, ~20–30 mL ultrapure water was
294 used to form an ice-shell using a dry ice-ethanol bath for 30–60 s. The flask was then rotated in
295 a temperature-controlled ethylene glycol bath, and the temperature of the bath was set to –2 °C.
296 100 mL precooled fungal extract was added, and the flask rotated continuously in the bath until
297 30% of the solution was frozen. The ice was melted and freeze-dried to obtain a mixture of the
298 ice-binding macromolecules present in *F. acuminatum*. The ice-affinity purification procedure
299 is typically performed multiple times (2-5 times), and the success of the purification was
300 checked by determining the ice nucleation activity of the ice-affinity purified *Fusarium* samples
301 using TINA measurements and by gel electrophoresis (Fig. S1). The ice-affinity purified
302 solution was used for SEC experiments and to obtain MALDI, SDS-PAGE and CD spectra.

303 *Size exclusion chromatography.*

304 The ice-affinity purified extract was lyophilized and dissolved in water. The protein in the clear
305 solution (~4 mg/mL) was analyzed by HPLC using a G2000SWXL TSK gel column (7.6 mm
306 x 30 cm). The elution buffer was 0.05 M sodium phosphate in 0.3 M NaCl, pH 7.0. The flow
307 rate was 1 mL/min, with absorbance recorded at 220 or 280 nm.

308

309 *SDS-PAGE*

310 Aliquots of the ice-affinity purified extracts were mixed with a fifth volume of 6x Laemmli
311 buffer containing 5% of β-Mercaptoethanol and were heated at 95 °C for 5 min. Samples were
312 loaded onto a MiniPROTEAN® TGX™ Stain-free Precast Protein Gel (4-20%, Bio-Rad) next
313 to a molecular weight marker (Precision Plus Protein Unstained Standards, 161-0363, Bio-
314 Rad). The electrophoresis setting was a constant voltage of 175 V for 40 min. Image acquisition
315 of the gel was performed using a ChemiDoc MP Imaging system and the Image Lab software
316 (Version 5.1, Bio-Rad).

317 *TINA experiments.* Ice nucleation experiments were performed using the high-throughput
318 Twin-plate Ice Nucleation Assay (TINA), which has been described in detail elsewhere (27).
319 In a typical experiment, the investigated IN sample was serially diluted 10-fold by a liquid
320 handling station (epMotion ep5073, Eppendorf). 96 droplets (3 µL) per dilution were placed on
321 two 384-well plates and tested with a continuous cooling rate of 1 °C/min from 0 °C to –30 °C
322 with a temperature uncertainty of ±0.2 °C. The droplet-freezing was determined by two infrared
323 cameras (Seek Therman Compact XR, Seek Thermal Inc.). For each experiment the obtained

324 fraction of frozen droplets (f_{ice}) and the counting error were used to calculate the cumulative
325 number of IN (N_m) with the associated error using Vali's formula and Gaussian error
326 propagation (28). All experiments were performed multiple times (e.g., Fig. 1, 3-5 samples).
327 We find that independent samples from individual fungal cultures show similar results with
328 some variations, consistent with a previous study (10).

329 *CD spectroscopy.* CD spectra of the ice-affinity purified extracts were recorded at a 1 nm
330 interval from 260 to 180 nm using a Jasco J-1500 spectrometer. CD measurements were
331 performed in a rectangular cell with the optical path of 0.1 cm. CD measurements were taken
332 at 90 °C or room temperature, and the equilibration time for every sample before each set of
333 measurements was 15 min. All spectra were background subtracted and processed using the
334 Spectra Manager Analysis program from JASCO.

355 *MALDI-TOF.* MALDI measurements were carried out on a rapifleXTM MALDI-TOF/TOF
356 mass spectrometer from Bruker Daltonik GmbH. The instrument is equipped with a scanning
357 smartbeam 3D 10 kHz Nd:YAG laser at a wavelength of 355 nm and a 10-bit 5 GHz digitizer.
358 The acceleration voltage was set to 20 kV and the mass spectra were recorded in positive ion
359 mode. Calibration was done with the Bruker peptide mix and the Bruker protein calibration
360 standard I and II in a mass range of up to 70 kDa. Sample preparation was done by mixing a
361 saturated solution of sinapinic acid dissolved in water/acetonitrile (1:1 + 0,1 % trifluoroacetic
362 acid) with an aqueous solution of the analyte in equal amounts. Aliquots of the ice-affinity
363 purified extracts were measured with random walk ionization across the sample spot. Typically,
364 8000 shots were averaged per spectrum.

345 *Nanoliter Cryoscopy.* Ice shaping was determined at a *Fusarium* extract concentration of
346 ~10 mg/mL in water using a Clifton Nanoliter Osmometer (47). Ice shaping was performed
347 with a cooling rate of 0.075 °C/min and without annealing. Measurements were performed 2-4
348 times on independent samples.

349 *HUB method.* We used the HUB-backward stochastic optimization code to extract the
350 distribution of heterogeneous ice nucleation temperatures from the experimental cumulative
351 nucleation spectra (37). The HUB code uses the same assumptions adopted by Vali (28). It
352 considers that the number of IN in each droplet follows the Poisson distribution, that each IN
353 has a distinct nucleation temperature, and that the IN with the warmest nucleation temperature
354 in the droplet sets the freezing temperature of the droplet in the cooling experiment. The HUB-
355 backward code represents the distribution of nucleation temperatures of the IN in the sample as

356 a linear combination of Gaussian populations and uses a stochastic optimization procedure to
357 find the best set of parameters of the populations: modes, widths and weights to reproduce the
358 experimental $N_m(T)$. The output of the HUB-backward is the differential spectrum $n_m(T)$ in
359 terms of the distribution of subpopulations of INs that reproduce the cumulative freezing
360 spectrum $N_m(T)$ of *Fusarium*.

361 *Classical Nucleation Theory (CNT)*. The HINT algorithm is an accurate numerical
362 implementation of classical nucleation theory that predicts the temperatures of heterogeneous
363 nucleation of ice on finite-sized IN surface using experimental data for water such as the self-
364 diffusion coefficient D , the difference in chemical potential between liquid and ice $\Delta\mu$, and the
365 ice-liquid surface tension $\gamma_{\text{ice-liquid}}$, the surface binding free energy of the IN to ice $\Delta\gamma_{\text{bind}} = \gamma_{\text{ice-}} - \gamma_{\text{ice-liquid}} - \gamma_{\text{liquid-IN}}$, where $\gamma_{\text{ice-IN}}$ and $\gamma_{\text{liquid-IN}}$ are the surface tensions of the ice nucleating
366 surface with ice and liquid water, respectively (29). HINT uses that data to compute the free
367 energy barriers for ice nucleation and the prefactor for the nucleation rate. It predicts the
368 nucleation temperature with that data and knowledge of the experimental nucleation rate $J_{\text{exp}} =$
369 $10^5 \text{ cm}^{-3} \text{ s}^{-1}$ corresponding to cooling microliter at rates of $1 \text{ }^{\circ}\text{C}/\text{min}$ (48-50). We assume that
370 the IN binds ice as strong as ice itself, i.e. $\Delta\gamma_{\text{bind}} = -2 \gamma_{\text{ice-liquid}}$, as deduced for the ice nucleating
371 proteins of *P. syringae* (29). Any weaker binding would require larger IN surfaces to reach the
372 same ice nucleating temperature. We further assume that the IN surface is a square, because
373 this compact shape requires lower area to nucleate ice at a given temperature than any other
374 rectangular shape. We follow the procedures of Qiu *et al.* (29) to compute with HINT the
375 minimum width of an IN that nucleates ice at $-6.8 \text{ }^{\circ}\text{C}$, 8.4 nm, by first assuming that the IN is
376 an extremely long (80 nm long) of width W , adjusting W down from the 13.7 nm value of the
377 square until we find that the ice nucleation occurs at the target $-6.8 \text{ }^{\circ}\text{C}$, and then shortening the
378 length in 5 nm decrements until the freezing temperature falls below $-6.8 \text{ }^{\circ}\text{C}$. That results in an
379 estimate of 4 nm for the minimum length of the narrower aggregate that can nucleate ice at -6.8
380 $\text{ }^{\circ}\text{C}$. As the smaller IN area corresponds to a square shape, we use the results for the square
381 surfaces as a lower bound for the true areas of the IN aggregates of *Fusarium*.

383 **Corresponding Author**

384 ¹R. S. and I. R. contributed equally to this work.

385 ²Konrad Meister, e-mail: meisterk@mpip-mainz.mpg.de

386 ²Valeria Molinero, e-mail: valeria.molinero@utah.edu

387

388 **Notes**

389 The authors declare no competing financial interests.

390

391 **Author contributions**

392 K.M., V. M., J. F.-N., R. S., M. B. designed research; R. S., N. B., A. D., A. B. performed
393 experiments; I. R. performed modeling; R. S., N. B., K. M., A. D. analyzed experimental data;
394 I. R. and V. M. analyzed modeling data, K.M. and V. M. wrote the paper with contributions
395 from all the authors.

396

397 **Supporting Information**

398 This article contains supporting information online at XXX

399

400 **Acknowledgment**

401 We are grateful to the MaxWater initiative from the Max Planck Society and the Deutsche
402 Forschungsgemeinschaft (ME 5344/1-1). K. M. acknowledges support by the National Science
403 Foundation under Grant No. (NSF 2308172, 2116528) and from the Institutional Development
404 Awards (IDeA) from the National Institute of General Medical Sciences of the National
405 Institutes of Health under Grants #P20GM103408, P20GM109095. I. de A. R. and V. M.
406 gratefully acknowledge support by AFOSR through MURI Award No. FA9550-20-1-0351. We
407 thank N.-M. Kropf, G. Renzer and L. Reichelt for technical assistance and the Center for High
408 Performance Computing at the University of Utah for an award of computing time and technical
409 support.

410

411

412

413 **References**

1. H. Laksmono *et al.*, Anomalous Behavior of the Homogeneous Ice Nucleation Rate in “No-Man’s Land”. *The Journal of Physical Chemistry Letters* **6**, 2826-2832 (2015).
2. B. J. Murray, D. O’Sullivan, J. D. Atkinson, M. E. Webb, Ice nucleation by particles immersed in supercooled cloud droplets. *Chemical Society Reviews* **41**, 6519-6554 (2012).
3. D. Gurian-Sherman, S. E. Lindow, Bacterial ice nucleation: significance and molecular basis. *Fasebj* **7**, 1338-1343 (1993).
4. A. G. Govindarajan, S. E. Lindow, Size of Bacterial Ice-Nucleation Sites Measured in Situ by Radiation Inactivation Analysis. *Proc. Natl. Acad. Sci. U.S.A.* **85**, 1334 (1988).
5. S. E. Lindow, E. Lahue, A. G. Govindarajan, N. J. Panopoulos, D. Gies, Localization of ice nucleation activity and the iceC gene product in *Pseudomonas syringae* and *Escherichia coli*. *Mol Plant Microbe Interact* **2**, 262-272 (1989).

- 425 6. G. M. Mueller, P. K. Wolber, G. J. Warren, Clustering of ice nucleation protein correlates with
426 ice nucleation activity. *Cryobiology* **27**, 416-422 (1990).
- 427 7. P. K. Wolber *et al.*, Identification and purification of a bacterial ice-nucleation protein.
428 *Proceedings of the National Academy of Sciences* **83**, 7256-7260 (1986).
- 429 8. C. Orser, B. J. Staskawicz, N. J. Panopoulos, D. Dahlbeck, S. E. Lindow, Cloning and Expression
430 of Bacterial Ice Nucleation Genes in *Escherichia Coli*. *J. Bacteriol.* **164**, 359 (1985).
- 431 9. S. Pouleur, C. Richard, J. G. Martin, H. Antoun, Ice Nucleation Activity in *Fusarium acuminatum*
432 and *Fusarium avenaceum*. *Appl Environ Microbiol* **58**, 2960-2964 (1992).
- 433 10. A. T. Kunert *et al.*, Macromolecular fungal ice nuclei in *Fusarium*: effects of physical and
434 chemical processing. *Biogeosciences* **16**, 4647-4659 (2019).
- 435 11. J. A. Huffman *et al.*, High concentrations of biological aerosol particles and ice nuclei during
436 and after rain. *Atmos. Chem. Phys.* **13**, 6151-6164 (2013).
- 437 12. C. E. Morris *et al.*, Urediospores of rust fungi are ice nucleation active at > -10 °C and harbor
438 ice nucleation active bacteria. *Atmos. Chem. Phys.* **13**, 4223-4233 (2013).
- 439 13. J. Fröhlich-Nowoisky *et al.*, Ice nucleation activity in the widespread soil fungus *Mortierella*
440 *alpina*. *Biogeosciences* **12**, 1057-1071 (2015).
- 441 14. D. O'Sullivan *et al.*, The relevance of nanoscale biological fragments for ice nucleation in clouds.
442 *Scientific Reports* **5**, 8082 (2015).
- 443 15. V. Després *et al.*, Primary biological aerosol particles in the atmosphere: a review. *Tellus B: Chemical and Physical Meteorology* **64**, 15598 (2012).
- 444 16. R. Du *et al.*, Evidence for a missing source of efficient ice nuclei. *Scientific Reports* **7**, 39673
446 (2017).
- 447 17. C. M. Beall *et al.*, Cultivable halotolerant ice-nucleating bacteria and fungi in coastal
448 precipitation. *Atmos. Chem. Phys.* **21**, 9031-9045 (2021).
- 449 18. M. N. Smith, Pathological Factors Affecting Survival of Winter Barley Following Controlled
450 Freeze Tests. *Phytopathology* **68**, 773 (1978).
- 451 19. M. Lukas, R. Schwidetzky, R. J. Eufemio, M. Bonn, K. Meister, Toward Understanding Bacterial
452 Ice Nucleation. *The Journal of Physical Chemistry B* **126**, 1861-1867 (2022).
- 453 20. Y. Hasegawa, Y. Ishihara, T. Tokuyama, Characteristics of Ice-Nucleation Activity in *Fusarium*
454 *Avenaceum* Ifo 7158. *Biosci., Biotechnol., Biochem.* **58**, 2273 (1994).
- 455 21. S. Yang, M. Rojas, J. J. Coleman, B. A. Vinatzer, Identification of Candidate Ice Nucleation
456 Activity (INA) Genes in *Fusarium avenaceum* by Combining Phenotypic Characterization with
457 Comparative Genomics and Transcriptomics. *Journal of Fungi* **8**, 958 (2022).
- 458 22. P. E. Nelson, M. C. Dignani, E. J. Anaissie, Taxonomy, biology, and clinical aspects of *Fusarium*
459 species. *Clinical Microbiology Reviews* **7**, 479-504 (1994).
- 460 23. C. Sidebottom *et al.*, Heat-stable antifreeze protein from grass. *Nature* **406**, 256-256 (2000).
- 461 24. M. I. Daily, M. D. Tarn, T. F. Whale, B. J. Murray, An evaluation of the heat test for the ice-
462 nucleating ability of minerals and biological material. *Atmos. Meas. Tech.* **15**, 2635-2665 (2022).
- 463 25. R. J. Cole, Cox, R.H., *Handbook of Toxic Fungal Metabolites* (Academic Press, New York., 1981).
- 464 26. M. Cai *et al.*, Detoxification of aflatoxin B1 by *Stenotrophomonas* sp. CW117 and
465 characterization the thermophilic degradation process. *Environmental Pollution* **261**, 114178
466 (2020).
- 467 27. A. T. Kunert *et al.*, Twin-Plate Ice Nucleation Assay (Tina) with Infrared Detection for High-
468 Throughput Droplet Freezing Experiments with Biological Ice Nuclei in Laboratory and Field
469 Samples. *Atmos. Meas. Technol.* **11**, 6327 (2018).
- 470 28. G. Vali, Quantitative Evaluation of Experimental Results an the Heterogeneous Freezing
471 Nucleation of Supercooled Liquids. *Int. J. Atmos. Sci.* **28**, 402 (1971).
- 472 29. Y. Qiu, A. Hudait, V. Molinero, How Size and Aggregation of Ice-Binding Proteins Control Their
473 Ice Nucleation Efficiency. *J. Am. Chem. Soc.* **141**, 7439 (2019).
- 474 30. A. Micsonai *et al.*, Accurate secondary structure prediction and fold recognition for circular
475 dichroism spectroscopy. *Proceedings of the National Academy of Sciences* **112**, E3095-E3103
476 (2015).

- 477 31. A. Micsonai *et al.*, BeStSel: webserver for secondary structure and fold prediction for protein
478 CD spectroscopy. *Nucleic Acids Research* **50**, W90-W98 (2022).
- 479 32. M. Lukas *et al.*, Interfacial Water Ordering Is Insufficient to Explain Ice-Nucleating Protein
480 Activity. *The Journal of Physical Chemistry Letters* **12**, 218-223 (2021).
- 481 33. C. P. Garnham, R. L. Campbell, V. K. Walker, P. L. Davies, Novel dimeric β -helical model of an
482 ice nucleation protein with bridged active sites. *BMC Struct Biol* **11**, 36 (2011).
- 483 34. A. V. Kajava, S. E. Lindow, A Model of the Three-Dimensional Structure of Ice Nucleation
484 Proteins. *J. Mol. Biol.* **232**, 709 (1993).
- 485 35. D. Schmid *et al.*, Molecular organisation of the ice nucleation protein InaV from *Pseudomonas*
486 *syringae*. *FEBS Letters* **414**, 590-594 (1997).
- 487 36. S. Hartmann *et al.*, Structure and Protein-Protein Interactions of Ice Nucleation Proteins Drive
488 Their Activity. *Frontiers in Microbiology* **13** (2022).
- 489 37. I. de Almeida Ribeiro, K. Meister, V. Molinero, HUB: a method to model and extract the
490 distribution of ice nucleation temperatures from drop-freezing experiments. *Atmos. Chem. Phys.* **23**, 5623-5639 (2023).
- 491 38. R. J. Eufemio *et al.*, Lichen species across Alaska produce highly active and stable ice nucleators.
492 *Biogeosciences Discuss.* **2023**, 1-18 (2023).
- 493 39. M. Polen, E. Lawlis, R. C. Sullivan, The unstable ice nucleation properties of Snomax® bacterial
494 particles. *Journal of Geophysical Research: Atmospheres* **121**, 11,666-611,678 (2016).
- 495 40. H. P. Erickson, Size and Shape of Protein Molecules at the Nanometer Level Determined by
496 Sedimentation, Gel Filtration, and Electron Microscopy. *Biological Procedures Online* **11**, 32
497 (2009).
- 498 41. R. Schwidetzky *et al.*, Membranes Are Decisive for Maximum Freezing Efficiency of Bacterial
499 Ice Nucleators. *J. Phys. Chem. Lett.* **12**, 10783 (2021).
- 500 42. A. G. Govindarajan, S. E. Lindow, Phospholipid requirement for expression of ice nuclei in
501 *Pseudomonas syringae* and *in vitro*. *Journal of Biological Chemistry* **263**, 9333-9338 (1988).
- 502 43. K. L. Yeung, E. E. Wolf, J. G. Duman, A scanning tunneling microscopy study of an insect
503 lipoprotein ice nucleator. *Journal of Vacuum Science & Technology B: Microelectronics and
504 Nanometer Structures Processing, Measurement, and Phenomena* **9**, 1197-1201 (1991).
- 505 44. K. Dreischmeier, C. Budke, L. Wiehemeier, T. Kottke, T. Koop, Boreal pollen contain ice-
506 nucleating as well as ice-binding 'antifreeze' polysaccharides. *Scientific Reports* **7**, 41890 (2017).
- 507 45. M. J. Burke, S. E. Lindow, Surface properties and size of the ice nucleation site in ice nucleation
508 active bacteria: Theoretical considerations. *Cryobiology* **27**, 80-84 (1990).
- 509 46. H. E. Tomalty, L. A. Graham, R. Eves, A. K. Gruneberg, P. L. Davies, Laboratory-Scale Isolation
510 of Insect Antifreeze Protein for Cryobiology. *Biomolecules* **9**, 180 (2019).
- 511 47. Y. Sun *et al.*, Disaccharide Residues are Required for Native Antifreeze Glycoprotein Activity.
512 *Biomacromolecules* **22**, 2595-2603 (2021).
- 513 48. T. Koop, B. Luo, A. Tsias, T. Peter, Water activity as the determinant for homogeneous ice
514 nucleation in aqueous solutions. *Nature* **406**, 611-614 (2000).
- 515 49. T. Koop, B. J. Murray, A physically constrained classical description of the homogeneous
516 nucleation of ice in water. *The Journal of Chemical Physics* **145**, 211915 (2016).
- 517 50. L. Kaufmann, C. Marcolli, B. Luo, T. Peter, Refreeze experiments with water droplets containing
518 different types of ice nuclei interpreted by classical nucleation theory. *Atmos. Chem. Phys.* **17**,
519 3525-3552 (2017).
- 520

521
522

523 **Figure Legends**

524

525 **Fig. 1.** Freezing experiments of aqueous extracts containing fungal ice nucleators from
526 *F. acuminatum*. (A) Shown is the cumulative number of ice nucleators per unit mass of
527 *F. acuminatum* (N_m) for extracts containing ice nucleators from spores and mycelial surfaces
528 (blue) and for ice-affinity purified ice nucleators (orange). (B) Cryomicroscopic image of a
529 hexagonal ice crystal grown in a *F. acuminatum* IN extract.

530 **Fig. 2.** Characterization of aqueous solutions containing ice-affinity purified INs from
531 *F. acuminatum*. (A) The CD spectrum shows a maximum molar ellipticity at ~ 235 nm and a
532 minimum at ~ 205 nm, and both signals are altered following heating to ~ 90 °C. (B) Effects of
533 high temperature (98 °C) on the ice nucleation activity of *F. acuminatum* extract. Shown is the
534 cumulative number of INs (N_m) per gram of mycelium plotted against the temperature. Data
535 were obtained from Kunert *et al.* (10).

536 **Fig. 3.** Freezing experiments of aqueous extracts containing fungal INs from *F. acuminatum*.
537 (A) Cumulative number of INs per unit mass of *F. acuminatum* (N_m) for extracts containing INs
538 from spores and mycelial surfaces. The lines represent the optimized solution obtained through
539 the HUB-backward code assuming that the differential spectrum is a combination of three
540 Gaussian subpopulations. The colors of the lines are the same as for the sets they fit (B)
541 Normalized distribution function that represents the corresponding differential freezing
542 spectrum $n_m(T)$. The distributions have modes around -5.5, -6.8 and -11 °C (Table S1);
543 however, their overlap and comparable proportions support that there is a continuum of IN sizes.
544 (C) Ice nucleation temperatures as a function of ice-binding area for the INs from
545 *F. acuminatum*. Blue diamonds show the freezing temperatures of square surfaces predicted by
546 classical nucleation theory implemented in the HINT algorithm. The light gray shaded area
547 represents the full range of the heterogeneous freezing temperatures, and the middle of the dark
548 gray shaded areas represent the modes of the populations in the differential spectrum, and the
549 range of temperatures were determined by the standard deviation of each Gaussian distribution.

550 **Fig. 4.** Characterization of aqueous solutions of ice-affinity purified INs from *F. acuminatum*.
551 (A) Separation of a protein standard and the ice-affinity purified *F. acuminatum* extract on a
552 gel filtration column using a TSK G2000SWXL. The proteins were eluted with a 50 mM
553 sodium phosphate, 0.3 M NaCl buffer, pH 7, at a flow rate of 1 mL/min. (B) SDS-PAGE gel
554 electrophoresis of the ice-affinity purified *F. acuminatum* extract shows a weak band just below
555 10 kDa that is highlighted by an arrow (C) MALDI spectra of the ice-affinity purified sample
556 show a dominant signal at ~ 5300 , which is highlighted in the inset.

557