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Abstract
For K a field, consider a finite subgroup G of GLn(K ) with its natural action on the
polynomial ring R := K [x1, . . . , xn]. Let n denote the homogeneous maximal ideal
of the ring of invariants RG . We study how the local cohomology module Hn

n (R
G)

compares with Hn
n (R)

G . Various results on the a-invariant and on the Hilbert series
of Hn

n (R
G) are obtained as a consequence.

Mathematics Subject Classification (2010) Primary 13A50 · Secondary 13D45 ·
13B05

1 Introduction

Let K be a field. Consider a finite group G acting on a polynomial ring R :=
K [x1, . . . , xn] via degree-preserving K -algebra automorphisms; the action of G on R
is completely determined by its action on one-forms, so there is little loss of generality
in taking G to be a finite subgroup of GLn(K ), with the action given by

M : X !→ MX ,
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where X is a column vector of the indeterminates; this is the action of G on R consid-
ered throughout the present paper. In the nonmodular case—when the order of G is
invertible in K—there is a wealth of results relating properties of the invariant ring RG

to properties of the group action; several of these fail in the modular case, i.e., when
the order of G is a multiple of the characteristic of K . For instance, in the nonmodular
case, the functor (−)G is exact, yielding an RG -isomorphism of local cohomology
modules

Hn
m(R)G ∼= Hn

n (R
G),

where m and n denote the respective homogeneous maximal ideals of R and RG .
This isomorphism no longer holds in the modular case; indeed, one of our goals is
to study the failure of this isomorphism. Quite generally, the transfer map provides
a surjection Hn

m(R) → Hn
n (R

G); when G contains no transvections, we explicitly
describe the kernel in Theorem 3.1. This result may be viewed as a dual formulation
of a theorem of Peskin [19], that relates the canonical modules of R and of RG (see
Remark 3.2).

WeapplyTheorem3.1 to study the local cohomologya-invariant of RG inSection 4,
proving that the a-invariant of RG equals that of R if and only if G is a subgroup of
the special linear group with no pseudoreflections (see Theorem 4.4). In Section 5, we
record a surprising consequence of our main theorem towards comparing the ranks
of the graded components of the local cohomology modules Hn

n (R
G) and Hn

m(R)G ,
proving that they coincide when G is cyclic with no transvections. The study of local
cohomology modules of invariant rings of finite groups goes back at least to the
work of Ellingsrud and Skjelbred [7], where they use spectral sequences relating local
cohomology and group cohomology to give upper bounds on the depth of modular
invariant rings.

The article [20] by Stanley provides an excellent account of the theory in the
nonmodular case; for sources that include the modular case as well, we refer the
reader to Benson [1] and Campbell and Wehlau [6]. We have attempted to keep this
paper largely self-contained, and accessible to the reader familiar with the basics of
local cohomology; some preliminary results are reviewed or proved in Section 2,
towards simplifying later arguments. Our study is closely related to earlier work on
the canonical module and the Gorenstein property of invariant rings, e.g., [3, 5, 9, 12,
19, 21, 22]; these are discussed briefly in Section 2.

2 Preliminary Remarks

We begin with some standard facts about finite group actions:

Pseudoreflections An element g ∈ GLn(K ) of finite order is a pseudoreflection if
it fixes a hyperplane; by convention, the group identity is not a pseudoreflection. It
follows that g is a pseudoreflection precisely if the matrix g − I , with I the identity
matrix, has rank one. An equivalent formulation is that the Jordan form of g, after
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extending scalars, is

⎡

⎢⎢⎢⎢⎢⎣

ζ 0 0 · · · 0
0 1 0 · · · 0
0 0 1 0
...
...

. . .

0 0 0 1

⎤

⎥⎥⎥⎥⎥⎦
or

⎡

⎢⎢⎢⎢⎢⎣

1 1 0 · · · 0
0 1 0 · · · 0
0 0 1 0
...
...

. . .

0 0 0 1

⎤

⎥⎥⎥⎥⎥⎦
.

Since g has finite order, the element ζ in the first case is a root of unity. The second
case only occurs when K has characteristic p > 0; such an element is a transvection.

Remark 2.1 Fix g ∈ G. We use (1 − g)R to denote the ideal of R := K [x1, . . . , xn]
generated by all elements of the form r − g(r) for r ∈ R. Since

(1 − g)(r1r2) = r2(1 − g)(r1)+ g(r1)(1 − g)(r2),

the ideal (1 − g)R is generated by the elements (1 − g)(xi ) for 1 ≤ i ≤ n. Note that
g is a pseudoreflection if and only if the ideal (1 − g)R has height one.

Transfer LetG be a finite subgroup acting on a ring R. For a subgroup H , the transfer
map TrGH : RH → RG is defined as

TrGH (r) :=
∑

gH∈G/H

g(r),

where the sum is over a set of left coset representatives. It is straightforward to see
that TrGH is an RG -linear map, independent of the coset representatives. Precomposing
with the inclusion RG ⊆ RH , the composition

RG −→ RH TrGH−→ RG

is multiplication by the integer [G : H ], i.e., by the index of H in G. It follows that
TrGH is surjective if [G : H ] is invertible in R.

When H is the subgroup consisting only of the identity element, we use TrG or Tr
to denote the transfer map R −→ RG .

The following lemma appears in various forms in the literature, e.g., [8, Theo-
rem 2.4], [3, Proposition 3.7], and [18, Theorem 2.4.5]; we include a self-contained
proof:

Lemma 2.2 Let G be a finite subgroup of GLn(K ), without transvections, acting on the
polynomial ring R := K [x1, . . . , xn]. Then, the image of the transfer map Tr : R −→
RG is an ideal of RG of height at least two.

Proof The transfer map is surjective in the nonmodular case, so assume that K has
positive characteristic p. The claim reduces to the casewhere K is algebraically closed,
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as we now assume. Let p be a prime ideal of RG height one, and q a height one prime
of R containing p. It suffices to show that there is a maximal ideal m of R, containing
q, such that Tr(R) ! m.

By Remark 2.1, the prime q does not contain an ideal of the form (1− g)R for any
group element g of order p, since such an element would then be a transvection. Let
a denote the product of the ideals (1 − g)R, taken over group elements g of order p.
Then, a ! q, so there exists a point (a1, . . . , an) ∈ An

K that lies in the algebraic set
V (q) but not in V (a). Set m := (x1 − a1, . . . , xn − an)R. We claim that g(m) ̸= m
for each g ∈ G of order p.

If the claim is false, there exists an element g of order p such that

g(xi − ai ) = g(xi ) − ai ∈ m for each 1 ≤ i ≤ n.

But xi − ai ∈ m as well, so xi − g(xi ) ∈ m for each i . These generate (1 − g)R,
yielding a contradiction. This proves the claim.

Consider the action of G on the set of maximal ideals of R. Since the stabilizer H
of m has no elements of order p, the order of H is invertible in K . The transfer map
R → RG factors as

R
TrH−→ RH TrGH−→ RG,

where the first map is surjective, so it suffices to show that the image of TrGH is not
contained in m. Let {g1, . . . , gℓ} be coset representatives for G/H , where g1H = H .
Then,

m = g−1
1 (m), g−1

2 (m), . . . , g−1
ℓ (m)

are distinct maximal ideals of R, so there exists an element r ∈ R with r ∈ g−1
i (m)

for each i ≤ 2 ≤ ℓ, and r /∈ m. These conditions are preserved when r is replaced by
its orbit product under H , so we may assume r ∈ RH . But then

TrGH (r) = g1(r)+ g2(r) · · · + gℓ(r)

≡ r mod m.

It follows that TrGH (R
H ) is not contained in m. ⊓⊔

Local Cohomology and the Canonical Module

Let S be an N-graded ring that is finitely generated over a field S0 = K . Let n
denote the homogeneous maximal ideal of S, and set n := dimS. Let y1, . . . , yn
be a homogeneous system of parameters for S, i.e., a sequence of n homogeneous
elements that generate an ideal with radical n. For an S-module M and an integer
k ≥ 0, the local cohomology module Hk

n(M) is defined as

Hk
n(M) = lim−→

i

ExtkS(S/n
i ,M),
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and may be identified with the Čech cohomology module Ȟ k(y1, . . . , yn; S), i.e.,
the k-th cohomology of the Čech complex

0 −→ M −→
⊕

i

Myi −→
⊕

i< j

Myi y j −→ · · · −→ My1···yn −→ 0.

In particular, this identifies Hn
n (M) with

My1···yn∑
i My1···ŷi ···yn

.

Under this identification, a local cohomology class

[
m

yd1 · · · ydn

]

∈ Hn
n (M),

for m ∈ M , is zero if and only if there exists an integer ℓ ≥ 0 such that

m(y1 · · · yn)ℓ ∈
(
yd+ℓ
1 , . . . , yd+ℓ

n
)
M .

When M is a Z-graded S-module, each Hk
n(M) acquires a natural Z-grading. Fol-

lowing Goto and Watanabe [10], the a-invariant of the ring S, denoted a(S), is the
largest integer a such that the graded component [Hn

n (S)]a is nonzero.
Let M be aZ-graded S-module. We use M(i) to denote the module with the shifted

grading [M(i)] j = [M]i+ j for each j ∈ Z. The graded K -dual of M , denoted M∗,
is the S-module with graded components

[M∗]i = HomK (M, K (i)),

where HomK (M, K (i)) is the vector space of degree-preserving K -linear maps M →
K (i). Assume now that S is normal; the canonical module of S is

ωS := Hn
n (S)

∗.

When the ring S is Gorenstein, one has a degree-preserving isomorphism

ωS ∼= S(a),

where a = a(S). A normal N-graded ring S is Gorenstein precisely if it is Cohen-
Macaulay and ωS is a cyclic S-module; dropping the Cohen-Macaulay condition, a
normal N-graded ring S is quasi-Gorenstein if ωS is a cyclic S-module.

Let G be a finite subgroup of GLn(K ), acting on a polynomial ring R. In the
nonmodular case, the invariant ring RG is Cohen-Macaulay by [13], though it need not
be Cohen-Macaulay in the modular case; this leads to interest in the quasi-Gorenstein
property. We summarize some of the work in this direction:
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Suppose first that the order of G is invertible in the field K ; this is the nonmodular
case. Watanabe proved that if G ⊆ SLn(K ), then RG is Gorenstein [21], and that if G
contains no pseudoreflections, then the converse holds aswell, i.e., if RG is Gorenstein,
then G ⊆ SLn(K ) (see [22]). Braun [3] proved analogues of these in the modular case
when G contains no pseudoreflections: the ring RG is quasi-Gorenstein if and only
if G is contained in SLn(K ). Some of these results are extended in [9] and [12].

It was conjectured that if RG is Cohen-Macaulay and G ⊆ SLn(K ), then RG is
Gorenstein [15, Conjecture 5]; while this is true in the nonmodular case by [21], the
conjecture was shown to be false by Braun [4], with the simplest example being the
subgroup G of SL2(F9) generated by

[
ζ 0
0 ζ−1

]
and

[
1 1
0 1

]
,

where ζ is a primitive 4-th root of unity. Note that G contains a transvection—as it
must!

The Group Action on Local Cohomology

Let G be a finite subgroup of GLn(K ), acting on a polynomial ring R :=
K [x1, . . . , xn]. The action of G on Hn

m(R) may be interpreted in several equivalent
ways: for g ∈ G, the automorphism g : R −→ R induces a map

Hn
m(R)

g−→ Hn
g(m)(R) = Hn

m(R),

where the equality is simply because g(m) = m.
Alternatively, let y1, . . . , yn be a homogeneous system of parameters for RG , and

use the identification of Hn
m(R) with Čech cohomology Ȟn(y1, . . . , yn; R). Under

this identification, for g ∈ G and r ∈ R, one has

η :=
[

r

yd1 · · · ydn

]

!→
[

g(r)

yd1 · · · ydn

]

= g(η).

Note that η is fixed by g precisely if there exists an integer ℓ ≥ 0 such that

(
g(r) − r

)
(y1 · · · yn)ℓ ∈

(
yd+ℓ
1 , . . . , yd+ℓ

n
)
R.

Since y1, . . . , yn is a regular sequence on R, this is equivalent to

g(r) − r ∈
(
yd1 , . . . , ydn

)
R.

It follows that η as above if fixed by g precisely if the image of r in the Artinian ring

A := R/(yd1 , . . . , y
d
n )R
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is fixed by g under the induced action. More generally, A is isomorphic as aG-module
to the submodule of Hn

m(R) consisting of elements of the form

[
r

yd1 · · · ydn

]

, for r ∈ R.

Yet another point of view may be obtained from the ideas surrounding Remark 4.3;
we leave this to the interested reader.

Recall that the transfer map Tr : R −→ RG is a homomorphism of RG-modules,
and hence induces a map

Hn
n (R)

Tr−→ Hn
n (R

G), (2.2.1)

where n is the homogeneous maximal ideal of RG . Since nR has radical m, one may
identify the modules Hn

n (R) and Hn
m(R). The transfer map (2.2.1) is then precisely

the map Hn
m(R) → Hn

n (R
G) with

[
r

yd1 · · · ydn

]

!→
[

Tr(r)

yd1 · · · ydn

]

,

where r ∈ R, and y1, . . . , yn is a homogeneous system of parameters for RG , as
above.

Maps on Local Cohomology

For a local ring (S, n), and M a finitely generated S-module, the local cohomology
modules Hk

n(M) vanish for k > dimM . It follows that the functor Hdim S
n (−) is right-

exact. More generally:

Lemma 2.3 Let (S, n) be a local ring and set n := dimS. Let

A
α−→ B

β−→ C −→ 0

be a complex of finitely generated S-modules.

(1) If Bp −→ Cp is surjective for each prime ideal p with dimS/p = n, then the
induced map Hn

n (B) −→ Hn
n (C) is surjective.

(2) If Bp −→ Cp is injective for each prime ideal p with dimS/p = n, and surjective
for each p with dimS/p = n − 1, then Hn

n (B) −→ Hn
n (C) is an isomorphism.

(3) If Bp −→ Cp is surjective for each pwithdimS/p = n−1, and Ap → Bp −→ Cp

is exact for each p with dimS/p = n, then the induced sequence

Hn
n (A) −→ Hn

n (B) −→ Hn
n (C) −→ 0

is exact.
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Proof The exact sequence B −→ C −→ cokerβ −→ 0 induces

Hn
n (B) −→ Hn

n (C) −→ Hn
n (cokerβ) −→ 0.

Since (cokerβ)p vanishes for each prime pwith dimS/p = n, one has dim(cokerβ) <
n. But then Hn

n (cokerβ) = 0, proving (1).
For (2), consider the exact sequences

0 −→ kerβ −→ B −→ imβ −→ 0

and
0 −→ imβ −→ C −→ cokerβ −→ 0.

The hypothesis (kerβ)p = 0 for each pwith dimS/p = n implies that dim(kerβ) < n,
so Hn

n (kerβ) = 0. Using the first sequence, Hn
n (B) −→ Hn

n (imβ) is an isomorphism.
Similarly, since (cokerβ)p = 0 for each prime p with dimS/p = n − 1, it follows

that dim(cokerβ) < n − 1, so Hn−1
n (cokerβ) = 0 = Hn

n (cokerβ). Passing to local
cohomology, the second displayed sequence yields the isomorphism Hn

n (imβ) −→
Hn
n (C).
For (3), we may replace A by its image in B, and then apply (2) to B/A −→ C to

obtain the isomorphism Hn
n (B/A) −→ Hn

n (C). Combine this with the exact sequence

Hn
n (A) −→ Hn

n (B) −→ Hn
n (B/A) −→ 0.

⊓⊔

3 Comparing Local Cohomology

Theorem 3.1 For K a field, let G be a finite subgroup of GLn(K ), without transvec-
tions, acting on the polynomial ring R := K [x1, . . . , xn]. Then, there is an exact
sequence ⊕

g∈G
Hn
m(R)

α−→ Hn
m(R)

Tr−→ Hn
n (R

G) −→ 0,

where m and n denote the respective homogeneous maximal ideals of R and RG, and

α : (ηg)g∈G !→
∑

g∈G

(
ηg − g(ηg)

)
.

Proof Note that the ideal nR ism-primary, so Hn
m(R) = Hn

n (R). In viewof Lemma2.3
(3), it suffices to consider the complex of RG -modules

⊕

g∈G
R

α−→ R
Tr−→ RG −→ 0, (3.1.1)



Local cohomology of...

where
α : (rg)g∈G !→

∑

g∈G

(
rg − g(rg)

)
,

and verify that Tr : R −→ RG is surjective after localizing at each height one prime p
of RG , and that the sequence (3.1.1) is exact upon tensoring with the fraction field of
RG . The surjectivity of Tr : R −→ RG at height one primes comes from Lemma 2.2.
For the second verification, let L denote the fraction field of R, in which case LG =
frac(RG) as G is finite. We then need to verify the exactness of the sequence

⊕

g∈G
L

α−→ L
Tr−→ LG −→ 0. (3.1.2)

But Tr : L −→ LG is a surjective map of LG-vector spaces, so its kernel is an LG-
vector space of rank |G| − 1. By the normal basis theorem, there exists λ ∈ L such
that

{g(λ)|g ∈ G}
is an LG-basis for L . But then the image of α in (3.1.2) contains the |G| − 1 linearly
independent elements λ − g(λ), as g varies over the nonidentity elements of G. ⊓⊔

Remark 3.2 Theorem 3.1 admits a dual formulation that extends [19, Theorem 2.7] as
follows. Suppose G contains no transvections. Using (−)∗ for the graded K -dual, one
has Hn

m(R)∗ = ωR and Hn
n (R

G)∗ = ωRG , so Theorem 3.1 yields the exact sequence

0 −→ ωRG −→ ωR
α∗

−→
⊕

g∈G
ωR .

Endowing ωR with the G-action induced by the identification ωR = Hn
m(R)∗, one has

ker α∗ ∼= (ωR)
G . The exact sequence above then gives

ωRG ∼= (ωR)
G .

This does not require the hypothesis that RG is Cohen-Macaulay, assumed in [19].

Remark 3.3 In the statement of Theorem 3.1, one may replace
⊕
g∈G

Hn
m(R) by the

direct sum over a generating set for G, and α by its restriction: if g, h ∈ G, then

(1 − hg)(η) = (1 − g)(η)+ (1 − h)(g(η)).

The hypothesis that G does not contain transvections is indeed required in Theo-
rem 3.1:

Example 3.4 Consider the symmetric group S2 = ⟨g⟩ acting on R := K [x, y] by
permuting the variables. Then RS2 = K [e1, e2], where e1 := x + y and e2 := xy.
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While g is a pseudoreflection independent of the characteristic of K , it is a transvection
if and only if K has characteristic two. We examine the complex

H2
m(R)

1−g−→ H2
m(R)

Tr−→ H2
n(R

S2) −→ 0 (2.2.3)

in degree −2. Note that [H2
n(R

S2)]−2 = 0, while [H2
m(R)]−2, computed via the Čech

complex on e1, e2, is the rank one K -vector space spanned by

η :=
[

x
e1e2

]
.

Since

(1 − g)(η) =
[
x − y
e1e2

]
=

[
2x
e1e2

]
= 2η,

the degree −2 strand of (2.2.3) takes the form

K
2−→ K −→ 0 −→ 0,

which is exact precisely when the characteristic of K is other than two, i.e., precisely
when the group contains no transvections.

4 When is the a-invariant Invariant?

We record in this section when the a-invariant of a ring of invariants coincides with
that of the ambient polynomial ring. The following proposition is likely well known
to experts, for example, it is an extension of [14, Lemma 2.17] (see also [17, Theo-
rem 1.1]).

Proposition 4.1 Let G be a finite subgroup of GLn(K ), acting on a polynomial ring R.
Then, for each subgroup H of G, one has a(RG) ≤ a(RH ).

Proof Consider the transfer map TrGH : RH −→ RG given by

TrGH (r) :=
∑

gH∈G/H

g(r). (4.1.1)

Let L denote the fraction field of R. Since G and H are finite, one has LG = frac(RG)

and LH = frac(RH ). Distinct cosets gH induce distinct automorphisms g : LH →
LH , so Dedekind’s theorem implies that the corresponding characters (LH )

× →
(LH )

× are linearly independent over LH , and hence over LG . It follows that their sum

∑
g : (LH )

× −→ LH ,
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taken over coset representatives, is a nonzero map, and hence that the transfer
map (4.1.1) is nonzero. As the transfer is RG -linear, one has an exact sequence of
RG-modules

RH TrGH−→ RG −→ RG/im(TrGH ) −→ 0.

Applying the functor Hn
n (−), one obtains the surjection

Hn
n (R

H )
TrGH−→ Hn

n (R
G),

since RG/im(TrGH ) has smaller dimension. The homogeneous maximal ideals of RH

and RG agree up to radical, so the assertion follows. ⊓⊔

The following is [14, Theorem 2.18], and also related to work of Broer [5]:

Corollary 4.2 Let K be a field of characteristic p > 0, and G a finite subgroup of
GLn(K ) acting on a polynomial ring R := K [x1, . . . , xn]. If a(RG) = a(R), and p
divides the order of G, then the inclusion RG ⊆ R is not RG-split.

Proof Consider the maps of rank one K -vector spaces

[Hn
n (R

G)]−n
i−→ [Hn

m(R)]−n
Tr−→ [Hn

n (R
G)]−n,

where i is induced by the inclusion RG ⊆ R. The composition is then multiplication
by |G|, which equals zero in K . As Tr above is surjective, the map i must be zero. But
then the inclusion RG ⊆ R is not RG-split. ⊓⊔

Remark 4.3 Let G be a finite subgroup of GLn(K ), acting on R := K [x1, . . . , xn].
We claim that for each g ∈ G and η ∈ [Hn

m(R)]−n , one has

g · η = (det g)−1η.

Since [Hn
m(R)]−n has rank one, without loss of generality, take η to be

[
1

x1 · · · xn

]
.

If f1, . . . , fn is a homogeneous system of parameters for R, the natural isomorphism
between Čech and local cohomology induces a natural isomorphism between the
Čech cohomologymodules Ȟn(x1, . . . , xn; R) and Ȟn( f1, . . . , fn; R). To make this
explicit, following [16, Theorem 4.18], let A be a matrix over R, such that

⎡

⎢⎣
f1
...

fn

⎤

⎥⎦ = A

⎡

⎢⎣
x1
...

xn

⎤

⎥⎦ .
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Then, under the isomorphism Ȟn(x1, . . . , xn; R) → Ȟn( f1, . . . , fn; R), one has

[
1

x1 · · · xn

]
!→

[
det A
f1 · · · fn

]
.

It follows that

g ·
[

1
x1 · · · xn

]
=

[
1

g(x1) · · · g(xn)

]
,

viewed as an element of Ȟn(g(x1), . . . , g(xn); R), corresponds to

[
(det g)−1

x1 · · · xn

]

= (det g)−1η

in Ȟn(x1, . . . , xn; R).

The following theorem has been obtained independently by Hashimoto [12]:

Theorem 4.4 For K a field, let G be a finite subgroup of GLn(K ) acting on the poly-
nomial ring R := K [x1, . . . , xn]. Then, a(RG) = a(R) if and only if G is a subgroup
of SLn(K ) that contains no pseudoreflections.

Proof We first show that if G contains a pseudoreflection, then a(RG) < a(R). In
view of Proposition 4.1, it suffices to consider the case where G is a cyclic group,
generated by a pseudoreflection g. After extending scalars, we may assume that g
takes the form ⎡

⎢⎢⎢⎢⎢⎣

ζ 0 0 · · · 0
0 1 0 · · · 0
0 0 1 0
...
...

. . .

0 0 0 1

⎤

⎥⎥⎥⎥⎥⎦
or

⎡

⎢⎢⎢⎢⎢⎣

1 1 0 · · · 0
0 1 0 · · · 0
0 0 1 0
...
...

. . .

0 0 0 1

⎤

⎥⎥⎥⎥⎥⎦
,

where ζ is a primitive k-th root of unity. In the first case, RG = K [xk1 , x2, . . . , xn], and
in the second RG = K [x p

1 − x1x
p−1
2 , x2, . . . , xn], where p > 0 is the characteristic

of K . In each case, RG is a polynomial ring, with a(RG) strictly less than a(R).
It remains to verify that if G has no pseudoreflections, then a(RG) = a(R) if and

only if G is a subgroup of SLn(K ). The exact sequence from Theorem 3.1, when
restricted to the degree −n strand, gives an exact sequence of K -vector spaces

⊕

g∈G
[Hn

m(R)]−n
α−→ [Hn

m(R)]−n
Tr−→ [Hn

n (R
G)]−n −→ 0.

Since [Hn
m(R)]−n is a rank one vector space, it follows that a(R

G) = −n if and only
if the map α above is identically zero, i.e., if and only if the map

[Hn
m(R)]−n

1−g−→ [Hn
m(R)]−n
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is zero for each g ∈ G. Taking

η :=
[

1
x1 · · · xn

]

as in Remark 4.3, this is equivalent to the condition that

η − g(η) = η − (det g)−1η

is zero for each g, i.e., that det g = 1 for each g ∈ G. ⊓⊔

5 Hilbert Series of Local Cohomology

Theorem 3.1 has an amusing consequence for the Hilbert series of local cohomology:

Corollary 5.1 For K a field, let G be a finite cyclic subgroup of GLn(K ), without
transvections, acting on the polynomial ring R := K [x1, . . . , xn]. Then, the Hilbert
series of Hn

n (R
G) and Hn

m(R)G coincide, i.e., for each integer k, one has

rankK [Hn
n (R

G)]k = rankK [Hn
m(R)G ]k .

Proof LetG = ⟨g⟩. Then, by Theorem 3.1 and Remark 3.3, one has an exact sequence

Hn
m(R)

1−g−→ Hn
m(R)

Tr−→ Hn
n (R

G)−→0.

But the kernel of the first map is precisely Hn
m(R)G , so

0−→Hn
m(R)G −→ Hn

m(R)
1−g−→ Hn

m(R)
Tr−→ Hn

n (R
G) −→ 0

is exact. Taking the degree k strand, the alternating sum of the ranks is zero. ⊓⊔

Wewill see in Example 5.3 that the equality of Hilbert series need not hold when G
is not cyclic; however, before that, it is worth emphasizing that both Hn

n (R
G) and

Hn
m(R)G are graded RG -modules, and Corollary 5.1 says precisely that they are iso-

morphic as graded K -vector spaces. They need not be isomorphic as RG-modules:

Example 5.2 Consider the alternating group A3 acting on R := F3[x, y, z] by per-
muting the variables. The ring of invariants RA3 is then generated by the elements

e1 := x + y + z, e2 := xy + yz + zx, e3 := xyz, ( := x2y + y2z + z2x .

It follows that RA3 is a hypersurface; the defining equation is readily seen to be

(2 − e1e2( + e32 + e31e3.



K. Goel et al.

Taking a Čech complex on e1, e2, e3, the socle of the RA3 -module H3
n(R

A3) is the
rank one vector space spanned by the cohomology class

η :=
[

(

e1e2e3

]
.

Note that η belongs to the kernel of the natural map H3
n(R

A3) → H3
n(R) since

RA3 → R is not RA3 -split; alternatively, it is a routine verification that

( ∈ (e1, e2, e3)R.

We claim that, in contrast with H3
n(R

A3), the socle of H3
n(R)

A3 , as an RA3 -module,
has larger rank: for this, one may verify that the elements

[
x(

e21e2e3

]

,

[
(

e21e2e3

]

,

[
(

e1e22e3

]

,

[
1

e1e2e3

]
,

are all nonzero in H3
n(R), that they are A3-invariant, and that they are annihilated

by the ideal (e1, e2, e3,()RA3 . Note that they have degrees −3, −4, −5, and −6,
respectively.

The equality of Hilbert series, Corollary 5.1, fails for an action of the Klein-4 group:

Example 5.3 The following matrices over F2 generate the Klein-4 group:

⎡

⎣
1 0 0
0 1 1
0 0 1

⎤

⎦ and

⎡

⎣
1 0 1
0 1 0
0 0 1

⎤

⎦ .

Each of these is a transvection; the invariant ring for this action of the Klein-4 group
on F2[x, y, z] is the polynomial ring

F2[z, x2 + xz, y2 + yz].

The situation is more interesting if we take the 2-fold diagonal embedding, i.e., if we
consider the representation of the Klein-4 group, over F2, determined by the matrices:

g :=

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
and h :=

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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Under the action of this group G on the polynomial ring R := F2[u, v, w, x, y, z],
the following elements are readily seen to be invariant:

w, z, u2 + uw, v2 + vw, x2 + xz, y2 + yz, uz + wx, vz + wy.

Indeed, the invariant ring RG is generated by these elements and is a complete inter-
section ring with defining relations

(uz + wx)2 + (uz + wx)wz + (u2 + uw)z2 + (x2 + xz)w2

and
(vz + wy)2 + (vz + wy)wz + (v2 + vw)z2 + (y2 + yz)w2.

It follows that RG has Hilbert series

(1 − t4)2

(1 − t)2(1 − t2)6
= (1+ t2)2

(1 − t)2(1 − t2)4
= 1+ 2t + 9t2 + · · · .

Set n to be the ideal of RG generated by the homogeneous system of parameters

w2, z2, u2 + uw, v2 + vw, x2 + xz, y2 + yz.

Since RG is Gorenstein with a(RG) = −6, the Hilbert series above yields

rank[H6
n(R

G)]−6 = 1 and rank[H6
n(R

G)]−7 = 2.

We claim that, on the other hand,

rank[H6
n(R)

G]−7 = 4.

Consider the Artinian ring A := R/nR; we identify [H6
n(R)]−6 with [A]6, and

[H6
n(R)]−7 with [A]5 as G-modules.
The rank one space [A]6 has basis uvwxyz, which is fixed by g and h, (as it must!)

since
g : uvwxyz !→ u(v + w)wx(y + z)z ≡ uvwxyz

in A, and
h : uvwxyz !→ (u + w)vw(x + z)yz ≡ uvwxyz.

For [A]5, we work with the basis vwxyz, uwxyz, uvxyz, uvwyz, uvwxz, and
uvwxy. The first of these elements is fixed since

g : vwxyz !→ (v + w)wx(y + z)z ≡ vwxyz

and
h : vwxyz !→ vw(x + z)yz ≡ vwxyz.
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Similar calculations show that uwxyz, uvwyz, uvwxz are fixed by g and h. On the
other hand,

g : uvxyz !→ u(v + w)x(y + z)z ≡ (uv + uw)xyz

and
g : uvwxy !→ u(v + w)wx(y + z) ≡ uvw(xy + xz),

so g fixes no nonzero F2-linear combination of uvxyz and uvwxy. It follows that the
subspace of [A]5 fixed by G has basis vwxyz, uwxyz, uvwyz, and uvwxz.
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