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We investigate the injectivity of the Frobenius map on thickenings of smooth varieties in projective
space over a field of positive characteristic. We obtain uniform bounds—that is, independent of the
characteristic—on the thickening that ensures an injective Frobenius map when the projective variety
is a smooth complete intersection or an arbitrary projective embedding of an elliptic curve. Our bounds
are sharp in the case of hypersurfaces, and in the case of elliptic curves.

1 Introduction
Let X be a closed subscheme of Pn defined by an ideal I of S := F[x0, . . . , xn], where F is a field of
characteristic p > 0. We use Xt to denote the t-th thickening of X, that is, the subscheme defined by
It. Suppose F has characteristic p ! t, consider the composition

where I[p] is the ideal generated by p-th powers of generators of I, the first map is induced by the
Frobenius endomorphism of S, and the second is the canonical surjection. For k an integer, consider
the induced map on cohomology groups

F̃t : Hk(X, OX) −→ Hk(Xt, OXt ).

This paper is motivated by the following question:

Question 1.1. Let X be a smooth subvariety of Pn, over a field of characteristic p > 0. Does there
exist an integer t " p, depending only on dim X, such that for each k, the map F̃t as above is
injective?

We prove that the integer t = dim X + 1 suffices in two cases:

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad291/7492888 by M

SR
I user on 10 M

ay 2024

%0A%252015993%252018230%2520a%252015993%252018230%2520a%0A%2520
mailto:manuel.blickle@gmail.com
mailto:manuel.blickle@gmail.com
mailto:manuel.blickle@gmail.com


2 | B. Bhatt et al.

Theorem 1.2. Let X be a smooth subvariety of Pn, over a field of characteristic p > 0. Suppose
that either

(1) X is an elliptic curve, or
(2) X is a hypersurface, and p ! n.

Then the map

F̃t : Hdim X(X, OX) −→ Hdim X(Xt, OXt )

is injective when t = dim X + 1.

To give this some context, suppose X is an elliptic curve over a field of positive characteristic. Then
the Frobenius map

F̃1 : H1(X, OX) −→ H1(X, OX)

is injective if and only if the elliptic curve is ordinary; in contrast, Theorem 1.2 (1) says that F̃2 is injective
independent of whether X is ordinary or supersingular. When X is an elliptic curve in P2, this was proved
earlier as [1, Theorem 4.1], while Theorem 1.2 (2) extends the results of [1] from the Calabi-Yau case to
that of all smooth hypersurfaces.

In the case of a hypersurface of characteristic p in Pn, it is easy to see that the map F̃p is injective; see
Remark 2.4. What is striking in Theorem 1.2 (2) is that the n-th thickening suffices independent of the
characteristic. Moreover, the integer n here is sharp: for each n ! 2 and each d ! n + 1, we construct a
hypersurface X in Pn, of degree d, for which

F̃n−1 : Hn−1(X, OX) −→ Hn−1(Xn−1, OXn−1 )

is not injective; see Example 3.1. One cannot expect uniform injectivity results for positive twists of
the structure sheaf (see Example 3.3) or without some version of the smoothness hypotheses (see
Example 3.4).

Another affirmative answer to Question 1.1 is when X is a complete intersection in Pn:

Theorem 1.3. Let X be a smooth complete intersection in Pn, over a field of characteristic p > 0.
Then there exists an integer t, depending only on n and on the degrees of the minimal
defining equations, such that the map

F̃t : Hdim X(X, OX) −→ Hdim X(Xt, OXt )

is injective provided p ! t.

While a bound on t in the theorem above may indeed be obtained using Theorem 4.1 below, we have
not attempted in the present paper to optimize this bound.

We briefly explain the genesis of Question 1.1; it arose organically from certain calculations in the
case of Calabi-Yau hypersurfaces. More precisely, the injectivity of the Frobenius map on thickenings
is closely related to the F-pure thresholds of Mustaţă, Takagi, and Watanabe [3, 5], that are invariants
of singularities in positive characteristic analogous to characteristic zero log canonical thresholds; for
instance, for a supersingular elliptic curve X of characteristic p in P2, the injectivity of F̃2 : H1(X, OX) −→
H1(X2, OX2 ) yields that the F-pure threshold of the curve is 1 − 1/p; see [1, Remark 2.2]. Analogous
assertions hold for all Calabi-Yau hypersurfaces X in Pn provided p is sufficiently large compared to
n; see [1, Theorem 4.1.4 and Lemma 4.5]. Given that the injectivity of the Frobenius map on thickenings
is the key cohomological input in these calculations, it is then natural to formulate Question 1.1 for
arbitrary smooth varieties X in Pn.
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Remark 1.4. The integer t in Question 1.1 is, in the case of Calabi-Yau hypersurfaces, closely
related to the order of vanishing of the Hasse invariant at [X] on the family of all such
hypersurfaces; see [1, Lemma 4.5]. This was investigated in depth by Ogus [4].

Remark 1.5. Though we do not pursue it here, it would be interesting to understand the role of
projective space in Question 1.1; are there other natural smooth varieties that one may use
instead? We thank Mircea Mustaţă for highlighting this question.

2 Preliminaries
Let S := F[x0, . . . , xn] be a polynomial ring over a field F of characteristic p > 0, and let m denote its
homogeneous maximal ideal. For integer powers q of p, set

m[q] := (xq
0, . . . , xq

n)S.

Ring elements and ideals considered in this paper are homogeneous under the standard grading on S.
By the Jacobian ideal of a polynomial f , we mean the ideal J generated by the partial derivatives

fxi := ∂f/∂xi for 0 " i " n.

The ideal J + fS is m-primary when Proj S/fS is smooth.
More generally, if f1, . . . , fc is a regular sequence of homogeneous forms in S, let J denote the ideal

generated by the size c minors of the matrix

⎛

⎜⎜⎜⎝

∂f1
∂x0

. . .
∂fc
∂x0

...
...

∂f1
∂xn

. . .
∂fc
∂xn

⎞

⎟⎟⎟⎠
.

The condition that Proj S/(f1, . . . , fc)S is smooth implies that J + (f1, . . . , fc)S is m-primary.

Lemma 2.1. Let f be a homogeneous polynomial in S := F[x0, . . . , xn] such that Proj S/fS is
smooth. Set d := deg f . Then

mn(d−2)+d ⊆ J + fS .

Proof. The assertion is a statement regarding the Hilbert-Poincaré series of S/(J + fS), and this is
unaffected by enlarging F to an infinite field, so as to use homogeneous prime avoidance as follows:
the ideal J + fS is m-primary, and J is generated in degree d − 1, so f can be extended to a homogeneous
system of parameters for S, where the parameters have degrees d, d − 1, . . . , d − 1. The socle modulo
these elements is spanned by an element of degree d − 1 + n(d − 2). !

The following is essentially [1, Lemma 3.2]; a proof is sketched for convenience.

Lemma 2.2. Let S := F[x0, . . . , xn] be a polynomial ring over a field of characteristic p > 0. Then,
for each q := pe and each N ! 0, one has

m[q] :S mN = m(n+1)q−n−N + m[q],

with the convention that mi := S for i " 0.

Proof. The pigeonhole principle gives

m(n+1)q−n ⊆ m[q],
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4 | B. Bhatt et al.

which explains one inclusion. For the other, if s is a homogeneous element of m[q] :S mN, then mN

annihilates the element

[
s

xq
0 · · · xq

n

]

of the local cohomology module Hn+1
m (S). If this element is nonzero, then it has degree at

least −n − N. !

Lemma 2.3. Let f ∈ S := F[x0, . . . , xn] be a homogeneous form, where F is a field of characteristic
p. Set d := deg f , and let t be an integer with 1 " t " p. Then there exists a commutative
diagram

where, in the vertical map on the right,

F : Hn+1
m (S) −→ Hn+1

m (S)

is the map induced by the Frobenius endomorphism of S.
More generally, suppose f1, . . . , fc is a regular sequence of homogeneous forms in S. Setting
d := ∑

deg fi, one has a commutative diagram

where F̃[t] is the map of local cohomology modules induced by

with the first map induced by Frobenius, and the second being the canonical surjection.

Proof. For the first assertion, note that the commutative diagram

induces a commutative diagram of local cohomology modules

(2.3.1)

where the rows are exact. The second assertion has a similar inductive proof. !
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Frobenius on the Cohomology of Thickenings | 5

Remark 2.4. It is immediate from the above that the map

F̃p : Hn
m(S/fS) −→ Hn

m(S/f pS)

is injective: the Frobenius action on Hn+1
m (S) is injective.

3 Hypersurfaces
We begin with the proof of Theorem 1.2 (2), followed by examples illustrating that this result is sharp
in multiple ways.

Proof of Theorem 1.2 (2). Let f ∈ S := F[x0, . . . , xn] be a homogeneous form defining the hypersurface X.
Set d := deg f . The map

F̃t : Hn−1(X, OX) −→ Hn−1(Xt, OXt )

is precisely the map

F̃t : [Hn
m(S/fS)]0 −→ [Hn

m(S/f tS)]0,

so taking t = n in Lemma 2.3, it suffices to prove that

f p−nF : [Hn+1
m (S)]−d −→ [Hn+1

m (S)]−dn

is injective. Computing local cohomology via the Čech complex on the elements x0, . . . , xn, a nonzero
element of [Hn+1

m (S)]−d may be expressed as

η :=
[

s
(x0 · · · xn)q/p

]

for some integer power q of the characteristic p, where s is a homogeneous element of S with degree
−d + (n + 1)q/p. Suppose f p−nF(η) = 0. Then

f p−nsp ∈ m[q],

whereas the assumption η ̸= 0 implies that sp /∈ m[q]. Take k to be the smallest integer with

f ksp ∈ m[q]. (3.0.1)

Applying the Sp-linear derivations ∂/∂xi to the above, one obtains

kfxi f
k−1sp ∈ m[q] for 0 " i " n,

where fxi := ∂f/∂xi. Since 1 " k " p − n, the image of k in F is nonzero, so

Jf k−1sp ⊆ m[q],

where J := (fx0 , . . . , fxn )S is the Jacobian ideal of f . It follows that

(J + fS)f k−1sp ⊆ m[q].

Combining this with Lemma 2.1, one obtains

mn(d−2)+df k−1sp ⊆ m[q],
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6 | B. Bhatt et al.

so Lemma 2.2 gives

f k−1sp ∈ m(n+1)(q−d)+n + m[q].

But f k−1sp /∈ m[q] by the minimality of k in (3.0.1), so the polynomial f k−1sp must have degree at least
(n + 1)(q − d) + n, that is,

(k − 1)d − pd + (n + 1)q ! (n + 1)(q − d) + n,

which yields a contradiction since k " p − n. !

The following example illustrates that the n-th thickening in Theorem 1.2 (2) is optimal:

Example 3.1. Fix n ! 2 and d ! n + 1, and consider the hypersurface X defined by

f := xd
0 + · · · + xd

n

in S := F[x0, . . . , xn], where F is a field of characteristic p ≡ −1 mod d. We claim that

F̃n−1 : Hn−1(X, OX) −→ Hn−1(Xn−1, OXn−1 )

is not injective. View Hn−1(X, OX) as [Hn
m(S/fS)]0, with the latter computed via the Čech

complex on x0, . . . , xn. The hypothesis d ! n + 1 ensures that

η :=
[

xn
0

x1 · · · xn

]

is a nonzero element [Hn
m(S/fS)]. We claim that

F̃n−1(η) ∈ [Hn
m(S/f n−1S)]0

is zero. For this, it suffices to verify that

xnp
0 ∈ (xp

1, . . . , xp
n, f n−1)S.

Let p = kd − 1, for k an integer. Then np ! (nk − 1)d, so it suffices to verify that

x(nk−1)d
0 ∈ (xkd

1 , . . . , xkd
n , f n−1)S.

Setting yi := xd
i for each i, one has f = y0 + · · · + yn, so the required verification now is

ynk−1
0 ∈

(
yk

1, . . . , yk
n, (y0 + · · · + yn)

n−1)S.

Working modulo (y0 + · · · + yn)
n−1, the element ynk−1

0 is congruent to an element in

(y1, . . . , yn)
nk−n+1,

which is contained in (yk
1, . . . , yk

n), settling the claim.

Remark 3.2. Regarding negative twists of the structure sheaf, an injectivity result for the
Frobenius action is provided by [1, Theorem 3.5]: Let X be a smooth hypersurface of degree d
in Pn, over a field of characteristic p ! min{d + 1, nd − d − n}. Then

F̃1 : Hn−1(X, OX(−k)) −→ Hn−1(X, OX(−pk))

is injective for each k ! 1; it is worth emphasizing that no thickening is needed in this case.
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Frobenius on the Cohomology of Thickenings | 7

In view of Serre vanishing, one cannot expect similar uniform results when dealing with positive
twists of the structure sheaf:

Example 3.3. Let X be a smooth quartic hypersurface in P2, and consider the map

F̃t : H1(X, OX(1)) −→ H1(Xt, OXt (p)). (3.3.1)

If this map is injective, then H1(Xt, OXt (p)) is nonzero, so p " 4t − 3, that is, t ! (p + 3)/4. It
follows that there is no uniform t, that is, independent of p, for which (3.3.1) is injective.
As such, the injectivity of the map (3.3.1) is equivalent to that of

f p−tF : [H3
m(S)]−3 −→ [H3

m(S)]p−4t (3.3.2)

by Lemma 2.3. If this map is not injective, then f p−t ∈ m[p]; applying differential operators and
imitating the proof of Theorem1.2 (2), one obtains t " (p + 6)/4. Thus, (3.3.2) is injective for
thickenings Xt with t > (p + 6)/4.
For an explicit example, consider the hypersurface X defined by f = x4

0 + x4
1 + x4

2. We claim
that the least t such that the map (3.3.2) is injective is

t =

⎧
⎨

⎩

p+3
4 if p ≡ 1 mod 4,

p+9
4 if p ≡ 3 mod 4.

Suppose p = 4k + 1, it suffices to check that f p−(p+3)/4 = f3k /∈ m[p], which holds since the
monomial x4k

0 x4k
1 x4k

2 occurs in f3k with a nonzero coefficient. If p = 4k + 3, one has

f p−(p+5)/4 = f3k+1 ∈ (x4k+4
0 , x4k+4

1 , x4k+4
2 ) ⊆ m[p],

so (3.3.2) in not injective with t = (p + 5)/4. However, (3.3.2) is injective for t = (p + 9)/4 by the
bound recorded previously.

Example 3.4. Consider X in P2 defined by x3
0 − x2

1x2. This hypersurface is not smooth and,
indeed, the least t with

F̃t : H1(X, OX) −→ H1(Xt, OXt )

injective increases with the characteristic p as follows:

t =

⎧
⎨

⎩

p+5
6 if p ≡ 1 mod 6,

p+7
6 if p ≡ 5 mod 6.

These are straightforward calculations using binomial expansions, and are omitted.

4 Complete Intersections
The proof of Theorem 1.3 relies on the following:

Theorem 4.1. Let S := F[x0, . . . , xn] be a polynomial ring over a field F of positive characteristic p.
Let f1, . . . , fc be a regular sequence of homogeneous forms in S, defining a smooth projective
variety Proj S/(f1, . . . , fc)S. Set di := deg fi, and d := ∑

di.
If t is an integer with t " p, and

tdi ! (n + 1 − c)(d − c) + 1
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8 | B. Bhatt et al.

for each 1 " i " c, then the map

F̃[t] : [Hn+1−c
m (S/(f1, . . . , fc)S)]0 −→ [Hn+1−c

m (S/(f t
1, . . . , f t

c )S)]0,

as defined in Lemma 2.3, is injective.

Proof. In view of Lemma 2.3, it suffices to verify that for t as in the theorem, the map

(f1 · · · fc)
p−tF : [Hn+1

m (S)]−d −→ [Hn+1
m (S)]−dt

is injective when restricted to the annihilator of (f1, . . . , fc)S. Consider a nonzero element η of [Hn+1
m (S)]−d

that is annihilated by (f1, . . . , fc)S. Then

η =
[

s
(x0 · · · xn)q/p

]
,

where q is a power of p, and s ∈ S is homogeneous of degree −d + (n + 1)q/p. The condition that η is
annihilated by each fi implies that fis ∈ m[q/p], and hence that

f p
i sp ∈ m[q] for 1 " i " c. (4.1.1)

Suppose that

(f1 · · · fc)
p−tF(η) = 0,

then

(f1 · · · fc)
p−tsp ∈ m[q].

Consider the partial order on c-tuples where (k1, . . . , kc) " (l1, . . . , lc) if ki " li for each i; let (k1, . . . , kc) be
a minimal c-tuple with the property that ki " p − t for each i, and

f k1
1 · · · f kc

c sp ∈ m[q]. (4.1.2)

Applying the differential operators ∂/∂xi to the above, we obtain

k1
∂f1

∂xi
f k1−1
1 f k2

2 · · · f kc
c sp + · · · + kc

∂fc

∂xi
f k1
1 · · · f kc−1

c−1 f kc−1
c sp

=
( ∂f1

∂xi
k1f2 · · · fc + · · · + ∂fc

∂xi
kcf1 · · · fc−1

)
f k1−1
1 · · · f kc−1

c sp ∈ m[q] (4.1.3)

for each i with 0 " i " n. The ideal generated by the entries of the product matrix
⎛

⎜⎜⎜⎝

∂f1
∂x0

. . .
∂fc
∂x0

...
...

∂f1
∂xn

. . .
∂fc
∂xn

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎝

k1f2 · · · fc

...
kcf1 · · · fc−1

⎞

⎟⎟⎠

contains the ideal

J(k1f2 · · · fc, . . . , kcf1 · · · fc−1)

where J is Jacobian ideal: selecting any c rows of the matrix (∂fj/∂xi), one may multiply on the left by the
classical adjoint of the resulting c × c submatrix. Hence, (4.1.3) gives

J(k1f2 · · · fc, . . . , kcf1 · · · fc−1) f k1−1
1 · · · f kc−1

c sp ⊆ m[q].
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Frobenius on the Cohomology of Thickenings | 9

Since sp /∈ m[q] as F(η) ̸= 0, some ki must be nonzero in (4.1.2). After relabelling the elements fi, assume
without loss of generality that k1 is nonzero. Then

Jf k1−1
1 f k2

2 · · · f kc
c sp ⊆ m[q],

and using (4.1.1) and (4.1.2) we can moreover conclude that

(
J + (f1, f p−k2

2 , . . . , f p−kc
c )

)
f k1−1
1 f k2

2 · · · f kc
c sp ⊆ m[q].

The ideal J + (f1, f2, . . . , fc)S is m-primary by the smoothness hypothesis, hence so is the ideal J +
(f1, f p−k2

2 , . . . , f p−kc
c )S. We claim that

mN ⊆ J + (f1, f p−k2
2 , . . . , f p−kc

c )S,

where

N := d1 +
( c∑

i=2

di(p − ki)
)

+ (n + 1 − c)(d − c) − n.

The proof of the claim follows that of Lemma 2.1: the ideal J is generated in degree d − c, so after
enlarging the field F, the regular sequence f1, f p−k2

2 , . . . , f p−kc
c can be extended to a homogeneous system

of parameters for S by choosing n + 1 − c elements from J, each of degree d − c. It follows that

mNfk1−1
1 f k2

2 · · · f kc
c sp ⊆ m[q],

and Lemma 2.2 gives

f k1−1
1 f k2

2 · · · f kc
c sp ∈ m[q] :S mN = m[q] + m(n+1)q−n−N.

The minimality assumption on (k1, . . . , kc) in (4.1.2) implies that

f k1−1
1 f k2

2 · · · f kc
c sp /∈ m[q],

and hence that

f k1−1
1 f k2

2 · · · f kc
c sp ∈ m(n+1)q−n−N.

Examining degrees, one has

deg(f k1−1
1 f k2

2 · · · f kc
c sp) ! (n + 1)q − n − N,

that is,

(k1 − 1)d1 +
c∑

i=2

kidi − pd + (n + 1)q ! (n + 1)q − n − N,

which simplifies to

(n + 1 − c)(d − c) ! (p − k1)d1.

But p − k1 ! t, so (n + 1 − c)(d − c) ! td1, which contradicts the assumption on t. !

Using Theorem 4.1, we obtain:

Proof of Theorem 1.3. Let X = Proj S/(f1, . . . , fc)S for fi as in the previous theorem, and choose t0 such
that

t0di ! (n + 1 − c)(d − c) + 1
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10 | B. Bhatt et al.

for each i. Then for t ! c(t0 − 1) + 1 and p ! t, one has

with the first map induced by Frobenius, and the others being canonical surjections. But

F̃[t0] : [Hn+1−c
m (S/(f1, . . . , fc)S)]0 −→ [Hn+1−c

m (S/(f t0
1 , . . . , f t0

c )S)]0

is injective by Theorem 4.1; it factors through

F̃t : [Hn+1−c
m (S/(f1, . . . , fc)S)]0 −→ [Hn+1−c

m (S/(f1, . . . , fc)
tS)]0,

which is therefore injective. !

5 Elliptic Curves
It remains to settle Theorem 1.2 (1), that is, to prove:

Theorem 5.1. Let X be an elliptic curve in Pn, over a field of characteristic p > 0. Then the
Frobenius map

F̃2 : H1(X, OX) −→ H1(X2, OX2 )

is injective.

Proof. The statement is insensitive to replacing the ground field F by its algebraic closure, so we assume
F is algebraically closed. For the proof, it will be convenient to generalize the construction of F̃2 slightly
by allowing arbitrary ambient spaces as follows:

Given an F-scheme P, and a closed immersion i : X −→ P, write 2i(X) ⊂ P for the square-zero
thickening defined by I2

X; the Frobenius on P induces a map 2i(X) −→ X. We call the closed immersion
(X ⊂ P) good if the pullback

H1(X, OX) −→ H1(2X, O2i(X)),

induced by the Frobenius on P, is injective. Thus, the identity map X −→ X is good exactly when the
elliptic curve X is ordinary. The theorem amounts to showing that the given closed immersion X ⊂ Pn

is good.
First, observe that goodness descends: given closed immersions (X ⊂ P) and (X ⊂ P′) with a map

P′ −→ P compatible with the inclusion of X, if (X ⊂ P′) is good, so is (X ⊂ P).
Next, we recall a good pair coming from moduli spaces. Let f : C −→ M1,1 be the universal curve over

the moduli space of elliptic curves. After choosing an F-point on X, the elliptic curve X gets identified
as a fibre Cx of f at an F-point x ∈ M1,1 classifying the elliptic curve X. Set 2Cx := V(I2

Cx
) ⊂ C . As

M1,1 is a smooth (Deligne-Mumford) curve, the closed immersion (X = Cx ⊂ 2Cx) is a square-zero
thickening whose ideal may be identified with t∨x ⊗F OX, where tx is the tangent space to M1,1 at x
(whence tx = H1(X, TX) by deformation theory). Critically, Igusa’s theorem on the reducedness of the
supersingular locus [2] implies that (X ⊂ 2Cx) is good.

We now prove that (X ⊂ Pn) is good. Let H be a suitable Hilbert scheme of elliptic curves in Pn, and let
g : X −→ H be the universal elliptic curve, so we have a tautological closed immersion iH : X −→ Pn

H

as well as a distinguished point y ∈ H (F) corresponding to X such that the fibre of iH over y identifies
with X ⊂ Pn. Set 2Xy := V(I2

Xy
) ⊂ X . Forgetting the embedding gives a map π : H −→ M1,1 with π(y) = x;

we shall prove this map is smooth at y. Granting the smoothness, let us first complete the proof of the
theorem. We have a fibre square

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad291/7492888 by M

SR
I user on 10 M

ay 2024



Frobenius on the Cohomology of Thickenings | 11

with π being smooth at y ∈ H , and the vertical maps being relative smooth curves. As tangent vectors
can be lifted along smooth maps, it follows that the map

(X = Xy ⊂ 2Xy) −→ (X = Cx ⊂ 2Cx)

of square-zero thickenings admits a section, so the goodness of one is equivalent to the goodness of the
other by descent of goodness, whence (X = Xy ⊂ 2Xy) is good by the last paragraph. But we have maps

(X = Xy ⊂ 2Xy) −→ (X ⊂ X ) −→ (X ⊂ Pn)

of closed immersions, so the descent of goodness implies that (X ⊂ Pn) is good.
It remains to prove the smoothness of the map π : H −→ M1,1 from the Hilbert scheme to the

moduli space at y. As the target is smooth, it suffices to prove the source is smooth and that this map
is surjective on tangent spaces. If we write IX ⊂ OPn for the ideal sheaf of X, then the obstruction to
smoothness of H at y is given by

Ext1
X(IX/I2

X, OX) = H1(X, (IX/I2
X)∨),

while the tangent map tπ ,y identifies with the map

HomX(IX/I2
X, OX) −→ H1(X, TX)

arising from the standard exact sequence

as the boundary map on global sections. Thus, it is enough to check that the second and third terms
in the sequence above have no H1. Now TPn is a quotient of OPn (1)n+1 by the Euler sequence, so the
same is true on restriction to X. As H>1(X, −) = 0, the functor H1(X, −) is right exact, so the vanishing of
H1(X, OPn (1)|X) by Riemann-Roch implies both the desired vanishings. !
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