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We investigate the injectivity of the Frobenius map on thickenings of smooth varieties in projective
space over a field of positive characteristic. We obtain uniform bounds—that is, independent of the
characteristic—on the thickening that ensures an injective Frobenius map when the projective variety
is a smooth complete intersection or an arbitrary projective embedding of an elliptic curve. Our bounds
are sharp in the case of hypersurfaces, and in the case of elliptic curves.

1 Introduction

Let X be a closed subscheme of P" defined by an ideal I of S := F[xo,...,x,], where F is a field of
characteristic p > 0. We use X; to denote the t-th thickening of X, that is, the subscheme defined by
I'. Suppose F has characteristic p > t, consider the composition

S/I — §/IP! — s/It,

where P! is the ideal generated by p-th powers of generators of I, the first map is induced by the
Frobenius endomorphism of S, and the second is the canonical surjection. For k an integer, consider
the induced map on cohomology groups
F: Ho(X, 0%) — HY(X:, Ox,).
This paper is motivated by the following question:
Question 1.1. Let X be a smooth subvariety of P", over a field of characteristic p > 0. Does there
exist an integer t < p, depending only on dim X, such that for each k, the map F; as above is

injective?

We prove that the integer t = dim X + 1 suffices in two cases:
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Theorem 1.2. Let X be a smooth subvariety of P, over a field of characteristic p > 0. Suppose
that either

(1) X is an elliptic curve, or
(2) X is a hypersurface, and p > n.

Then the map
F HAmX (X gy) — HIMX (X, Oy,)

is injective when t = dim X + 1.

To give this some context, suppose X is an elliptic curve over a field of positive characteristic. Then
the Frobenius map

Fi: H'(X, 0x) — HY(X, )

is injective if and only if the elliptic curve is ordinary; in contrast, Theorem 1.2 (1) says that F, is injective
independent of whether X is ordinary or supersingular. When X is an elliptic curve in P2, this was proved
earlier as [1, Theorem 4.1], while Theorem 1.2 (2) extends the results of [1] from the Calabi-Yau case to
that of all smooth hypersurfaces.

In the case of a hypersurface of characteristic p in P", it is easy to see that the map fp is injective; see
Remark 2.4. What is striking in Theorem 1.2 (2) is that the n-th thickening suffices independent of the
characteristic. Moreover, the integer n here is sharp: for each n > 2 and each d > n + 1, we construct a
hypersurface X in P", of degree d, for which

Fo1: HVNX, Ox) — HY ' (X1, Ox,,)

is not injective; see Example 3.1. One cannot expect uniform injectivity results for positive twists of
the structure sheaf (see Example 3.3) or without some version of the smoothness hypotheses (see
Example 3.4).

Another affirmative answer to Question 1.1 is when X is a complete intersection in P™:

Theorem 1.3. Let X be a smooth complete intersection in P", over a field of characteristic p > 0.
Then there exists an integer t, depending only on n and on the degrees of the minimal
defining equations, such that the map

Fr: HI™X(X gy) — HI™X(X, 0%,)

is injective provided p > t.

While a bound on t in the theorem above may indeed be obtained using Theorem 4.1 below, we have
not attempted in the present paper to optimize this bound.

We briefly explain the genesis of Question 1.1; it arose organically from certain calculations in the
case of Calabi-Yau hypersurfaces. More precisely, the injectivity of the Frobenius map on thickenings
is closely related to the F-pure thresholds of Mustata, Takagi, and Watanabe [3, 5], that are invariants
of singularities in positive characteristic analogous to characteristic zero log canonical thresholds; for
instance, for a supersingular elliptic curve X of characteristic p in P2, the injectivity of F,: H (X, 6%) —
HY(X,, O%,) yields that the F-pure threshold of the curve is 1 — 1/p; see [1, Remark 2.2]. Analogous
assertions hold for all Calabi-Yau hypersurfaces X in P" provided p is sufficiently large compared to
n; see [1, Theorem 4.1.4 and Lemma 4.5]. Given that the injectivity of the Frobenius map on thickenings
is the key cohomological input in these calculations, it is then natural to formulate Question 1.1 for
arbitrary smooth varieties X in P".
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Remark 1.4. The integer t in Question 1.1 is, in the case of Calabi-Yau hypersurfaces, closely
related to the order of vanishing of the Hasse invariant at [X] on the family of all such
hypersurfaces; see [1, Lemma 4.5]. This was investigated in depth by Ogus [4].

Remark 1.5. Though we do not pursue it here, it would be interesting to understand the role of
projective space in Question 1.1; are there other natural smooth varieties that one may use
instead? We thank Mircea Mustata for highlighting this question.

2 Preliminaries

Let S := F[xo,...,Xn] be a polynomial ring over a field F of characteristic p > 0, and let m denote its
homogeneous maximal ideal. For integer powers q of p, set

mld = xd, ... xhs.

Ring elements and ideals considered in this paper are homogeneous under the standard grading on S.
By the Jacobian ideal of a polynomial f, we mean the ideal J generated by the partial derivatives

fx=0/ox; for 0<ig<n
The ideal J + S is m-primary when Proj S/fS is smooth.

More generally, if f1,...,fc is a regular sequence of homogeneous forms in S, let J denote the ideal
generated by the size ¢ minors of the matrix

iR Yo
X0 e 9Xo
iR P
Xy e dXn

The condition that ProjS/(f1, ..., fo)S is smooth implies that] + (f1, ..., fc)S is m-primary.

Lemma 2.1. Let f be a homogeneous polynomial in S := F[xo, ..., X,] such that ProjS/fSis
smooth. Set d := degf. Then

mn(d—2)+d - }Jrfs'
Proof. The assertion is a statement regarding the Hilbert-Poincaré series of S/(J + fS), and this is
unaffected by enlarging F to an infinite field, so as to use homogeneous prime avoidance as follows:
the ideal J + fS is m-primary, and J is generated in degree d — 1, so f can be extended to a homogeneous
system of parameters for S, where the parameters have degrees d,d — 1,...,d — 1. The socle modulo
these elements is spanned by an element of degree d — 1 + n(d — 2). |

The following is essentially [1, Lemma 3.2]; a proof is sketched for convenience.

Lemma 2.2. Let S :=F[xo, ..., Xy] be a polynomial ring over a field of characteristic p > 0. Then,
for each q := p® and each N > 0, one has

mld g mN = merhan=N o glal
with the convention that m' ;=S fori < 0.

Proof. The pigeonhole principle gives

m e ¢ ld,
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which explains one inclusion. For the other, if s is a homogeneous element of ml® :5 m", then mV
annihilates the element

of the local cohomology module HZ'(S). If this element is nonzero, then it has degree at

least —n — N. [ |
Lemma 2.3. Let f € S :=F[Xo,...,Xn] be a homogeneous form, where F is a field of characteristic
p. Set d := degf, and let t be an integer with 1 < t < p. Then there exists a commutative
diagram

HY(S/fS) —— Anmn(f, HX(S)(-d))

I Jrs

HY(S/f'S) —— Ann (ft, HYHL(S)(~db)),
where, in the vertical map on the right,
F: HIH(S) — HIFL(S)

is the map induced by the Frobenius endomorphism of S.
More generally, suppose fi, ..., fc is a regular sequence of homogeneous forms in S. Setting
d :=>" degfi, one has a commutative diagram

HY=C(S/(fy, ..., f)S) —— Ann((fy,.... ), HE(S)(—d))
li[tl l(fl‘-fc)p"F

HESS/(f . fDS) —— Ann (.. £, HEH(S)(=db),
where f[t] is the map of local cohomology modules induced by
S/(fr--ife) —— SIUT, . f) —— S/ fD,
with the first map induced by Frobenius, and the second being the canonical surjection.

Proof. For the first assertion, note that the commutative diagram

f

0 — S(—d) s S/fs 0
[ 7
0 — S—dty -~ s S/fts 0

induces a commutative diagram of local cohomology modules

0 —— H(S/fS) —— HY(S)(-d) 7, HMYS) —— 0

I ek

0 —— HL(S/f'S) —— HILL(S)(—dt) I, HMYS) —— 0 (2.3.1)

where the rows are exact. The second assertion has a similar inductive proof. ]
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Remark 2.4. It is immediate from the above that the map
B Hy (S/fS) — Hy, (S/fPS)

is injective: the Frobenius action on H%(S) is injective.

3 Hypersurfaces

We begin with the proof of Theorem 1.2 (2), followed by examples illustrating that this result is sharp
in multiple ways.

Proof of Theorem 1.2 (2). Letf € S :=F[xo, ..., X,] be a homogeneous form defining the hypersurface X.
Set d := degf. The map

Fo: HVU(X, Oy) — H 1 (X, Ox,)
is precisely the map
Fet [Hy (S/fS)]o — [Hy (S/f'S)],
so taking t = n in Lemma 2.3, it suffices to prove that
PR HTN Oy — [H O] g

is injective. Computing local cohomology via the Cech complex on the elements Xo, ..., Xn, @ NONZEro
element of [H%1(S)]_, may be expressed as

L S
T o w0

for some integer power q of the characteristic p, where s is a homogeneous element of S with degree
—d+ (n+ 1)q/p. Suppose fP~"F(n) = 0. Then

fpfnsp e m[q],

whereas the assumption 5 # 0 implies that s? ¢ ml?. Take k to be the smallest integer with
fRsP e mld. (3.0.1)
Applying the SP-linear derivations d/9x; to the above, one obtains
kfx fflsP € mld foro0<i<n,

where fy, 1= §f /0x;. Since 1 < k < p —n, the image of k in F is nonzero, so

Jfkflsp c ml,
where ] = (fx,, . - -, fx,)S is the Jacobian ideal of f. It follows that

J+fS)f*1sP < mldl,

Combining this with Lemma 2.1, one obtains

mn(d—2)+d)ck—1sp c m[q]
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so Lemma 2.2 gives
fk—lsp c m(n+1)(q—d)+n + m[q]'

But f*!sP ¢ ml@ by the minimality of k in (3.0.1), so the polynomial f*~'sP must have degree at least
n+ 1(q —d) +n, that s,

kR—-—Dd—pd+n+1q > M+D@@-d+n,

which yields a contradiction since k < p —n. |
The following example illustrates that the n-th thickening in Theorem 1.2 (2) is optimal:

Example 3.1. Fixn > 2 and d > n+ 1, and consider the hypersurface X defined by
fr=xg+ 4
in S:=TF[xo,...,Xn], Where F is a field of characteristic p = —1 mod d. We claim that

Fp1: HVNX, Ox) — H' (Xn-1, Ox, 1)

is not injective. View H""*(X, O) as [H7, (S/fS)],, with the latter computed via the Cech
complex on X, ..., Xn. The hypothesis d > n + 1 ensures that

[
Tl xg-Xn

is a nonzero element [H?, (S/fS)]. We claim that

Fra(n) € [Hy G/,
is zero. For this, it suffices to verify that
xf e o, %, fHs.
Let p = kd — 1, for k an integer. Then np > (nk — 1)d, so it suffices to verify that
Xgﬂz—l)d e (... Xk, s,

Setting y; := x¢ for each i, one has f = yo + - - - + y», 50 the required verification now is

nk—1

€ Ot Gt s
Working modulo (yo + - - - + yn)"~ 1, the element yi*~! is congruent to an element in
IS 2P A U

which is contained in (y%, ..., y%), settling the claim.

Remark 3.2. Regarding negative twists of the structure sheaf, an injectivity result for the
Frobenius action is provided by [1, Theorem 3.5]: Let X be a smooth hypersurface of degree d
in P", over a field of characteristic p > min{d + 1, nd — d — n}. Then

Fi: HYL(X, Ox(—k) — H'" (X, Ox(—pk))

is injective for each k > 1; it is worth emphasizing that no thickening is needed in this case.
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In view of Serre vanishing, one cannot expect similar uniform results when dealing with positive
twists of the structure sheaf:

Example 3.3. Let X be a smooth quartic hypersurface in P?, and consider the map
Fr: HY(X, 0x(1)) — H (X, Ox, (D). (3.3.1)

If this map is injective, then H' (X, 0%, (p)) is nonzero, so p < 4t — 3, thatis, t > (p + 3)/4. It
follows that there is no uniform t, that is, independent of p, for which (3.3.1) is injective.
As such, the injectivity of the map (3.3.1) is equivalent to that of

fPE: [H, (9)] s —> [Hi (S)] (33.2)

p—4t

by Lemma 2.3. If this map is not injective, then fP~t € mPPl; applying differential operators and
imitating the proof of Theorem1.2 (2), one obtains t < (p + 6)/4. Thus, (3.3.2) is injective for
thickenings X; with t > (p + 6)/4.

For an explicit example, consider the hypersurface X defined by f = x§ + x} + x%. We claim
that the least t such that the map (3.3.2) is injective is

22 ifp=1mod 4,

# if p=3 mod 4.

Suppose p = 4k + 1, it suffices to check that fP~®+3/4 = 3% ¢ mlPl which holds since the
monomial xgFx$*x5* occurs in f3* with a nonzero coefficient. If p = 4k + 3, one has

Jqzk(p+5)/4 :fakﬂ c (ng+4‘ lelk+4‘ X;Lk+4) c m[p],

so (3.3.2) in not injective with t = (p + 5)/4. However, (3.3.2) is injective for t = (p + 9)/4 by the
bound recorded previously.

Example 3.4. Consider X in P? defined by x3 — x2x,. This hypersurface is not smooth and,
indeed, the least t with

Fi: H'(X, Ox) — HY(X¢, Ox,)

injective increases with the characteristic p as follows:

_|E ifp=1mods,
|2 ifp=5modé6.

These are straightforward calculations using binomial expansions, and are omitted.

4 Complete Intersections
The proof of Theorem 1.3 relies on the following:
Theorem 4.1. Let S := F[xo, ..., Xn] be a polynomial ring over a field F of positive characteristic p.
Let fi,...,fc be a regular sequence of homogeneous forms in S, defining a smooth projective

variety ProjS/(f1,...,fo)S. Set d; := degfi, and d := Y d;.
If tis an integer with t < p, and

tdi > m+1—-c)d—-0)+1
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foreach 1 <1< c, then the map
Frg: [H 6/ (fr - JOS)o — [HR /(... SO0,

as defined in Lemma 2.3, is injective.

Proof. In view of Lemma 2.3, it suffices to verify that for t as in the theorem, the map
(frfP " [HT O]y — HO)g

is injective when restricted to the annihilator of (f1, ..., f)S. Consider a nonzero element 5 of [H%1(S)]_,
that is annihilated by (f4, ..., fo)S. Then

B s
"= x|’

where q is a power of p, and s € S is homogeneous of degree —d + (n + 1)q/p. The condition that n is
annihilated by each f; implies that fis € ml%?], and hence that

ffPemld for 1gige 4.1.1)
Suppose that

(fi---f"F =0,

then
(fr-foP's? € mld,

Consider the partial order on c-tuples where (k1,..., k) < (I1,..., L) if k; < for each i; let (ky, ..., k) be
a minimal c-tuple with the property that k; < p —t for each i, and

Rl fRes? ¢ mld, 4.1.2)

Applying the differential operators 9/0x; to the above, we obtain

¥

1 k-1 ks
ol e
1

ke _
TLpotfle fisp o ke f o fl
1

% . _ -
- (a—&kifz---fc T a—)ékcﬁ---fc,l) kol el e mldl (4.1.3)

for each i with 0 <1 < n. The ideal generated by the entries of the product matrix

Lo L\ (ke fe
z?;" d@ch" Ref1-- - feo1

contains the ideal

J(k1f2"'f5y ey kcfl"‘fc—‘l)

where ] is Jacobian ideal: selecting any c rows of the matrix (4f;/3x;), one may multiply on the left by the
classical adjoint of the resulting ¢ x c submatrix. Hence, (4.1.3) gives

JRifo-fo, ooy Refr oo foon) fR7 L fRe 1P € mld),
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Frobenius on the Cohomology of Thickenings | 9

Since sP ¢ ml? as F() # 0, some k; must be nonzero in (4.1.2). After relabelling the elements f;, assume
without loss of generality that k; is nonzero. Then

TS s c ml
and using (4.1.1) and (4.1.2) we can moreover conclude that

U+ 57 ) s fles? < ol

The ideal J + (f1,f2,...,fc)S is m-primary by the smoothness hypothesis, hence so is the ideal J +
(f1, 5””, .. ,fcpfkc)S. We claim that

m < T+ (0 TS,

where

N:=d1+(Zdi(p—ki))+(n+1—c)(d—c)—n.

i=2
The proof of the claim follows that of Lemma 2.1: the ideal ] is generated in degree d — c, so after
enlarging the field F, the regular sequence f1, 5’*’*’, .. ,ff’kc can be extended to a homogeneous system
of parameters for S by choosing n + 1 — ¢ elements from ], each of degree d — c. It follows that

mN }flflffz .. .fgecsp c m[‘i],
and Lemma 2.2 gives

foifl L flgt € mld g mV = mld 4 mODenN,

The minimality assumption on (ki, ..., k) in (4.1.2) implies that

ki-igke | fhegh ¢ mld)

and hence that

fl—l ;ez__,fckfsp e mtha-n-N
Examining degrees, one has
k1 —1ck
deg(fy Y57 - ffsP) > m4+1q-n—N,

that is,

C
(ky — Ddi + D _kidi—pd+ (M +1)q > M+ 1g—n-N,

i=2

which simplifies to
Mm+1-0@d-0 > (p—kdi.
Butp—Fk; > t,so (n+1—c)(d—c) > tdy, which contradicts the assumption on t. [ ]
Using Theorem 4.1, we obtain:

Proof of Theorem 1.3. Let X = ProjS/(f1, ..., fo)S for f; as in the previous theorem, and choose t; such
that

todi > M+1-0@d-0o+1
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10 | B.Bhattetal.

foreachi. Thenfort > c(to — 1) + 1 and p > t, one has
S/(flr“'rfc) —_— S/(ff],,fg) e S/(fl/'”rfc)t — S/(ftor'“r LEU)/
with the first map induced by Frobenius, and the others being canonical surjections. But

Fpup: [HE5S/ (1, fOS)]y — HR S/ SO,
is injective by Theorem 4.1; it factors through
Fot [HESS/ (1 fOD)]o — HES/ (1, ... f)'D)]o,

which is therefore injective. ]

5 Elliptic Curves

It remains to settle Theorem 1.2 (1), that is, to prove:

Theorem 5.1. Let X be an elliptic curve in P", over a field of characteristic p > 0. Then the
Frobenius map

Fy: HY(X, Ox) — H'(X2, O%,)
is injective.

Proof. The statement is insensitive to replacing the ground field F by its algebraic closure, so we assume
F is algebraically closed. For the proof, it will be convenient to generalize the construction of F, slightly
by allowing arbitrary ambient spaces as follows:

Given an F-scheme P, and a closed immersion i: X — P, write 2i(X) c P for the square-zero
thickening defined by I%; the Frobenius on P induces a map 2i(X) —> X. We call the closed immersion
(X C P) good if the pullback

H (X, Ox) — H*(2X, Oyx),

induced by the Frobenius on P, is injective. Thus, the identity map X — X is good exactly when the
elliptic curve X is ordinary. The theorem amounts to showing that the given closed immersion X c P"
is good.

First, observe that goodness descends: given closed immersions (X c P) and (X ¢ P') with a map
P' — P compatible with the inclusion of X, if (X c P’) is good, sois (X C P).

Next, we recall a good pair coming from moduli spaces. Let f: 4 — .#11 be the universal curve over
the moduli space of elliptic curves. After choosing an F-point on X, the elliptic curve X gets identified
as a fibre %; of f at an F-point x € .#, classifying the elliptic curve X. Set 2¢; = V(%) C €. As
11 1s a smooth (Deligne-Mumford) curve, the closed immersion (X = % C 2%) is a square-zero
thickening whose ideal may be identified with ty ®r 0%, where t, is the tangent space to .#;, at x
(whence ty = H*(X, Tx) by deformation theory). Critically, Igusa’s theorem on the reducedness of the
supersingular locus [2] implies that (X C 2%%) is good.

We now prove that (X c P") is good. Let s be a suitable Hilbert scheme of elliptic curves in P", and let
g: & —> s be the universal elliptic curve, so we have a tautological closed immersion i : 2" — P%,
as well as a distinguished point y € . (F) corresponding to X such that the fibre of 1, over y identifies
with X C P".Set2.2; := V(Ié{y) C & .Forgetting the embedding givesamapr: # — 1, withn(y) =X;
we shall prove this map is smooth at y. Granting the smoothness, let us first complete the proof of the
theorem. We have a fibre square

X — ¢

Ls b

H—"— M,
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Frobenius on the Cohomology of Thickenings | 11

with 7 being smooth aty € J#, and the vertical maps being relative smooth curves. As tangent vectors
can be lifted along smooth maps, it follows that the map

X=2Zy C2Zy) — X =% C2%)

of square-zero thickenings admits a section, so the goodness of one is equivalent to the goodness of the
other by descent of goodness, whence (X = 2y C 22y) is good by the last paragraph. But we have maps

X=2c2Z) — XCcZX)— XcPh

of closed immersions, so the descent of goodness implies that (X c P") is good.

It remains to prove the smoothness of the map n: # — .#;, from the Hilbert scheme to the
moduli space at y. As the target is smooth, it suffices to prove the source is smooth and that this map
is surjective on tangent spaces. If we write Ix C Op for the ideal sheaf of X, then the obstruction to
smoothness of /¢ at y is given by

Exty (I/I%, Ox) = H' (X, (/D))
while the tangent map t, identifies with the map
Homy (Ix/1%, 6%) — H'(X, Tx)
arising from the standard exact sequence

0 —— Ty —— Tply —— (x/I3)Y —— 0

as the boundary map on global sections. Thus, it is enough to check that the second and third terms
in the sequence above have no H!. Now Tp: is a quotient of @p:(1)"*! by the Euler sequence, so the
same is true on restriction to X. As H**(X, —) = 0, the functor H(X, —) is right exact, so the vanishing of
HY(X, Opr(1)|x) by Riemann-Roch implies both the desired vanishings. [ |
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