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Abstract

We present a general algebraic framework for gauging a 0-form compact, connected Lie
group symmetry in (2+1)d topological phases. Starting from a symmetry fractionaliza-
tion pattern of the Lie group G, we first extend G to a larger symmetry group G̃, such
that there is no fractionalization with respect to G̃ in the topological phase, and the effect
of gauging G̃ is to tensor the original theory with a G̃ Chern-Simons theory. To restore
the desired gauge symmetry, one then has to gauge an appropriate one-form symmetry
(or, condensing certain Abelian anyons) to obtain the final result. Studying the consis-
tency of the gauging procedure leads to compatibility conditions between the symmetry
fractionalization pattern and the Hall conductance. When the gauging can not be consis-
tently done (i.e. the compatibility conditions can not be satisfied), the symmetry G with
the fractionalization pattern has an ’t Hooft anomaly and we present a general method
to determine the (3+1)d topological term for the anomaly. We provide many examples,
including projective simple Lie groups and unitary groups to illustrate our approach.
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1 Introduction

For quantum phases of matter with global symmetry, it has proven remarkably fruitful to con-
sider coupling the system to gauge fields of global symmetry. Coupling to background gauge
fields provides universal ways to characterize symmetry actions on the low-energy degrees
of freedom. When the gauge field is made dynamical, the “gauging” procedure often reveals
intriguing connections between different theories that are otherwise hard to perceive [1, 2],
and has been indispensable in our current understanding of a large family of exotic quantum
phases. It is also important to understand the ’t Hooft anomalies, i.e. obstructions to con-
sistently gauging the symmetry, which can be used to constrain the low energy dynamics of
strongly-coupled systems.

In this work we study gauging Lie group symmetry in a 2+1d bosonic topological phase. A
generic 2+1d bosonic gapped phase can be characterized by a pair (C, c−), where C is a modu-
lar tensor category (MTC) that algebraically encodes all universal properties of the anyons in
the bulk and c− is the chiral central of edge states of this phase [3]. This pair (C, c−) equiva-
lently describes a 2+1d topological quantum field theory (TQFT) [4–6]. When the topological
phase preserves a certain (0-form) global symmetry group G, there can be distinct G-symmetric
phases all with the same topological order, known as symmetry-enriched topological (SET)
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phases [7–10]. Different SET phases can be distinguished by the G actions on the anyons,
which can be fully described within the tensor category framework [7].

When G is unitary, from every G-symmetric topological phase (C, c−), a new topological
phase (D, c′−) can be constructed from gauging the G symmetry of (C, c−), namely coupling the
original topological phase (C, c−) to a dynamical (one-form) G gauge field. Generally, different
SET phases lead to distinct (D, c′−) when D is endowed with G gauge structure. When G is a
finite group, G gauging of a MTC is a well-understood procedure [7,11–13]. Roughly speaking,
one introduces new objects carrying G fluxes (e.g conjugacy classes of G), and then projects
to G-invariant states. Both steps can be formulated as well-defined mathematical operations
on tensor categories. However, when G is continuous, while the general idea remains similar,
a purely algebraic formulation of gauging has been lacking, partly because now the dynamics
of G gauge fields is much more complicated than the finite group case and actually affects
the outcome of gauging in a fundamental way. A simple example to illustrate the difference
between the continuous and finite group gauging is when the topological phase is completely
trivial i.e. no anyons and no non-trivial invertible topological order protected by G symmetry.
In this case, gauging G formally leads to a (untwisted) G gauge theory. When G is finite, the
resulting G gauge theory has a deconfined phase. In contrast, for G = U(1) or a simple Lie
group, a pure G gauge theory (without Chern-Simons term) is always confined. In Ref. [14]
we considered the G = U(1) case and provided an algebraic description of gauging a U(1)-
symmetric topological phase.

In this paper, we will focus on the case where G is a compact connected Lie group. For
such G, we establish a general formalism for this gauging procedure and provide an algebraic
description of the resulting topological phase (D, c′−). We should note that due to complica-
tions in non-Abelian gauge theory, the approach used in Ref. [14] for G = U(1) can not be
easily generalized to other Lie groups. To solve the problem, we develop a new unified for-
mulation for gauging connected continuous groups using group extension and one-form sym-
metry in the topological phase. It has been recognized that higher-form symmetry provides
a natural language to understand SET phases, for the following reason: anyons are created
by line operators, which transform under (often emergent) one-form global symmetry [15],
thus different SET phases can be distinguished by how the global 0-form symmetry interplays
with the one-form symmetry [16] generated by the line operators that create Abelian anyons.1

Here we summarize the basic idea. The starting point is the observation that for a connected
Lie group G, the symmetry action can be completely captured by projective representations of
anyons under G, known as symmetry fractionalization. We then formally enlarge the symme-
try group to G̃, so that the anyons transform linearly under G̃, which essentially means that G̃
acts trivially in the topological phase. Gauging G̃ just gives a G̃ Chern-Simons theory decou-
pled from C. Next, we gauge a suitable one-form symmetry in the resulting theory to obtain
the correct gauge group G. Crucially, in the last step, being able to consistently gauge the
one-form symmetry imposes compatibility conditions between the symmetry fractionalization
pattern and the G Hall response in the SET phase. When the compatibility conditions can not
be satisfied, the gauging can not be done consistently, which implies that the symmetry action
in the SET phase has an ’t Hooft anomaly. Using the relation with the anomaly of the one-form
symmetry, we can derive the topological terms for background G gauge fields in 3+1d that
uniquely characterize the anomaly flow.

The work is organized as follows. In section 2, we discuss gauging 0-form symmetry G
that has a simple Lie algebra, which excludes the case of U(1) symmetry. We then apply the
formalism to all projective simple Lie groups. In section 3, we discuss gauging general compact
connected Lie group symmetry. In section 4 we give a field theoretic derivation of the gauging
procedure using the one-form symmetry explicitly, and apply it to a gapless example. In sec-

1In higher dimensions, different SET phases can be understood using higher-form symmetries [51].
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tion 5 we conclude and discuss some future directions. In Appendix A we review the ’t Hooft
anomaly of one-form symmetry in 2+1d. In Appendix B we show that the Schur multiplier
for projective representations that are linear representation for a central extension multiplies
when we take the tensor product of the representation. In Appendix C we show that our con-
struction is compatible with the SL(2,Z) action on theories with U(1) 0-form symmetry as
discussed in Ref. [17].

Throughout the work we assume all Lie groups under consideration are compact and con-
nected. We will also use the same notation for a 2+1d topological phase, its corresponding
MTC and the associated 2+1d TQFT. The central charge c− will be kept implicit unless needed
explicitly.

We will use Hn(G, M) to denote the degree-n group cohomology for a group G, with M an
Abelian group. When G is continuous, Hn(G, M) should be understood as the Borél cohomol-
ogy. For a closed manifold X , Hn(X , M) will denote the singular cohomology with coefficient
in M . We note that Hn(G, M) can also be defined as Hn(BG, M) where BG is the classifying
space for G.

2 Gauging global symmetry G with simple Lie algebra

Consider a 2+1d topological phase C with 0-form global symmetry G, where G is a connected
Lie group with a simple Lie algebra. Before gauging G, we first review two key aspects of
the global 0-form G symmetry of a 2+1d topological phase C. The first aspect concerns the G
symmetry fractionalization pattern in the 2+1d topological phase C, namely how the G actions
are fractionalized when they act on the anyons in the MTC (or TQFT) C. The second aspect
pertains to the Hall response of this 2+1d topological phase C with respect to the continuous
symmetry group G.

First, we review the characterization of a G-symmetry fractionalization pattern in a 2+1d
topological phase C [7–9]. When we view C as an MTC or a TQFT, the G action on C is specified
by the G action on the anyons in C. The compactness, the connected-ness and the continuity
of G together forbid G to permute the anyon types in C as they are intrinsically discrete in
nature.2 Therefore, the G action on the MTC C is fully characterized by the projective repre-
sentation each anyon carries under G. To be more precise, each type of anyon a ∈ C carries a
set of U(1) phases ωa(g, h), which characterizes the failure of group multiplication of the G
projective representation carried by the anyon a. The associativity requires ωa(g, h) to satisfy
the two-cocycle condition:

ωa(g, h)ωa(gh, k) =ωa(g, hk)ωa(h, k) , ∀g, h, k ∈ G , and a ∈ C . (1)

A consistent G-action on the MTC C requires the compatibility between the projective phases
and the fusion rule of the MTC:

ωa(g, h) ·ωb(g, h) =ωc(g, h) , if N c
ab > 0 , (2)

for any g, h ∈ G. N c
ab is the fusion multiplicity of the fusion channel from a × b to c. As is

shown in Ref. [7], a consistent set of phases {ωa}a∈C for all anyons in C can be fully specified
by an element w ∈H2(G,A) through

ωa(g, h) = Maw(g,h) , for all anyon a ∈ C . (3)

2More formally, the group homomorphism from G to the group of braided tensor auto-equivalences Aut(C) is
trivial, because Aut(C) is finite.

4

https://scipost.org
https://scipost.org/SciPostPhys.14.5.100


SciPost Phys. 14, 100 (2023)

Here, A is the group of Abelian anyons in C. w should be viewed as an Abelian-anyon-valued
two-cocycle and Maw(g,h) is the braiding statistics between the anyon a and the Abelian anyon
w(g, h) associated with the pair g, h ∈ G. Hence, each two-cocycle w ∈ H2(G,A) fully char-
acterizes a G symmetry fractionalization pattern of 2+1d topological phase C.

In addition to the G symmetry fractionalization, the 2+1d topological phase C can exhibit
a Hall response with respect to the continuous symmetry group G. This G Hall response is a
generalization of the U(1) Hall response for a 2+1d U(1)-charge-conserving topological phases
and can be captured by the following effective response action:

Sresponse[A] =

∫

−σH

4π
Tr
�

−AdA+
2i
3

A3
�

, (4)

which is a Chern-Simons action of the background one-form G gauge field A. σH is the gen-
eralized Hall conductance with respect to G. Due to our convention, −σH plays the role of
the “level” of the Chern-Simons term in Eq. (4). Formally, this effective action is obtained
from integrating out the “matter fields” in the topological phase C in the presence of the back-
ground A. As exemplified in the case of a 2+1d U(1)-charge-conserving topological phases,
the Hall conductance σH can take a fractional value in the presence of non-trivial symmetry
fractionalization. Here, σH is “fractional” when −σH is a fraction of the standard quantized
values allowed for a stand-alone Chern-Simons theory with the gauge group G. For a consis-
tent global 0-form G symmetry on the topological phase C, there are consistency conditions
between the G symmetry fractionalization pattern and the value of the Hall conductance σH .
These consistency conditions have not been systematically studied before beyond the case with
a U(1) global symmetry. We will discuss these consistency conditions explicitly as we develop
the framework for gauging the symmetry G in the 2+1d topological state G.

In the rest of this section, we introduce an alternative method using group extensions
and one-form symmetries to characterize the G symmetry fractionalization pattern in 2+1d
topological phase C. We use this group-extension-based method to discuss the consistency
conditions between the Hall conductance and the symmetry fractionalization pattern. Then,
we establish the general framework to gauge the symmetry G of the topological phase C and
provide a general expression for the topological phase D that is the outcome of gauging G.
Detailed examples will also be provided below.

2.1 Symmetry fractionalization and central extension

There is an alternative (but equivalent) method to characterize the G symmetry fractionaliza-
tion pattern in 2+1d topological phase C using central extension of G and one-form symme-
tries. This method to characterize the G symmetry fractionalization lays the foundation for
the general framework for the gauging G symmetry explained in Sec. 2.3.

Recall that, in this section, we focus on a compact, connected Lie group G with a simple
Lie algebra. We can consider a central extension of G to its universal cover G̃:

1→ K → G̃→ G→ 1 , (5)

where K = π1(G) is mapped to the center Z(G̃) of G̃ under the group homomorphism K → G̃.
K and Z(G̃) are both finite Abelian groups. This central extension is associated with a cocy-
cle µ ∈ H2(G, K) in the second Borel group cohomology of G with K coefficients, which is
equivalent to H2(BG, K), the second singular cohomology on the classifying space BG.

Any projective representation of G can be realized as a linear representation of the univer-
sal cover G̃ [18]. Hence, the projective phases ωa(g, h) assigned to each anyon a ∈ C can be
encoded by a group homomorphism qa : K → U(1) for each a ∈ C such that
ωa(g, h) = qa(µ(g, h)) for any g, h ∈ G. The mathematical definition of the homomorphism
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qa can be found in App. B. In physics terms, the homomorphism qa : K → U(1) implies that
the anyon a carries charge qa under the group K . Here “charge” refers to a one-dimensional
representation of the group. For reasons that will become clear later, the group K should be
treated as a one-form symmetry of the topological phase C. qa is the charge under the one-
form K symmetry carried by the worldline operator of the anyon a in the TQFT C. The consis-
tency condition Eq. (2) which can be rewritten as

qa · qb = qc , if N c
ab > 0 , (6)

is essentially the requirement that the one-form K symmetry charges assigned to the anyons are
compatible with the fusion rule. This condition guarantees a consistent one-form K symmetry
action on the entire TQFT C.

According to Ref. [19], the maximal faithful one-form symmetry group of the TQFT C
is given by the group A of all the Abelian anyons in C. The associated one-form symmetry
actions are generated by the worldlines of the Abelian anyons. Therefore, a consistent one-
form K symmetry of the TQFT C must factor through A via a group homomorphism v : K →A.
The one-form action of k ∈ K is generated by the worldlines of the anyon v(k) ∈A.

The two-cocycle w ∈H2(G,A) that encodes the G symmetry fractionalization in C is simply
the image of µ ∈ H2(G, K) under the map H2(G, K) → H2(G,A) induced by the homomor-
phism v : K →A. Hence, this homomorphism v : K →A is an equivalent way to fully encode
the G symmetry fractionalization in C. Explicitly, the two-cocycle w is given by

w(g, h) = v(µ(g, h)) . (7)

In particular, every element in H2(G,A) can always be expressed using the data µ, v as above
for any finite Abelian group A, and thus there is one-to-one correspondence between H2(G,A)
and these data (µ, v). Note that, in the current discussion, µ and also K are already fixed by
the central extension Eq. (5) from G to its universal cover G̃.

It turns out that when a 2+1d topological state C has a 0-form global symmetry G, it is
natural to extend the global symmetry to G̃. Since π1(G̃) is trivial, the topological state C is
free of any symmetry fractionalization with respect to G̃. Physically, the equivalent statement
is that all the anyons of C must carry linear representations of G̃ (like the topologically trivial
local degrees of freedom do) because G̃ mathematically does not admit any projective rep-
resentations. In the special case where G = G̃, the topological state C cannot exhibit any G
symmetry fractionalization. In general, the extension of the symmetry from G to G̃ will be an
important tool in establishing the general procedure of gauging the symmetry G.

Note that a G symmetry fractionalization pattern encoded by v : K → A (or equivalently
by w ∈ H2(G,A)) may or may not result in an ’t Hooft anomaly with respect to G. We will
discuss the ’t Hooft anomaly in later subsections as we establish the framework for gauging G
symmetry.

We remark that the description of G symmetry fractionalization here applies to the finite
group case as well, as long as the finite group does not permute anyons in the topological
phase C.

2.2 Quantization of Hall response

As mentioned above, the G symmetry fractionalization pattern in the topological phase C may
allow for fractional values of the Hall conductance σH . In other words, the quantization
condition of σH may change due to the fractionalization. To determine the allowed values
of σH , we first establish our convention for the normalization of the Lie algebra of G. Note
that G̃ and G share exactly the same Lie algebra. Hence, a Chern-Simons term with a gauge
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group G shares the same local expression as a Chern-Simons term with a gauge group G̃. We
can normalize the shared Lie algebra of G and G̃, such that the level of a stand-alone Chern-
Simons theory with a gauge group G̃ is quantized to integers Z. With the same normalization,
the level of a stand-alone Chern-Simons theory with a gauge group G should be quantized
to rZ for some integer r ≥ 1 in general. In this convention, a fractional value of the Hall
conductance σH means that −σH does not necessarily quantize to rZ.

However, we argue now that σH is always an integer regardless of the G symmetry frac-
tionalization in the topological state C. To see why this is the case, we first observe that when
the global symmetry is extended from G to G̃, the Hall response of the topological state C with
respect to G̃ should be given by the same effective action Eq. (4) with the same level −σH
but with A viewed as a G̃ gauge field, since the two gauge groups are locally the same. The
Hall conductance σH and, hence, the level remain unchanged under the symmetry extension
because G and G̃ share the same Lie algebra. Recall that the topological phase C exhibits
no symmetry fractionalization with respect to G̃. Hence, the G̃ symmetry can be viewed as
effectively decoupled from C. In this case, the G̃ Hall conductance σH must have the same
quantization condition as the level of a pure Chern-Simons theory with gauge group G̃, i.e.
σH ∈ Z.

Note that this quantization condition σH ∈ Z for the Hall conductance is independent of
the G symmetry fractionalization pattern in C. More refined consistency conditions between
σH and the symmetry fractionalization pattern will be discussed in the next subsection where
we discuss the general procedure to gauge G. There is no closed form expression for the
allowed values of σH under a certain G symmetry fractionalization pattern. But the idea
is straightforward. Only when the Hall conductance σH and the symmetry fractionalization
pattern are compatible with each other can there be a well-defined 0-form global symmetry G
that can be consistently gauged. Their compatibility is encoded in the conditions Eq. (9) to be
explained in the next subsection. For a given G symmetry fractionalization pattern, if there is
no σH ∈ Z that satisfies the conditions encoded in Eq. (9), the G symmetry with the symmetry
fractionalization pattern in C has an ’t Hooft anomaly. This point will be demonstrated by
examples in later subsections.

2.3 General procedure for gauging G

Now we discuss the general procedure to gauge the 0-form global symmetry G of the 2+1d
topological phase C. In field-theoretic terms, the gauging of the symmetry G amounts to cou-
pling the TQFT C to a dynamical one-form gauge field with gauge group G. Instead of directly
doing so, we perform the gauging of G in two steps. In the first step, we extend the global
symmetry to G̃ and gauge G̃ by coupling the TQFT C to a dynamical one-form G̃ gauge field.
The resulting theory has a one-form K symmetry that acts on the G̃ gauge fields as an elec-
tric one-form symmetry. In the second step, we further gauge this K one-form symmetry to
account for the difference between a dynamical G gauge field and a dynamical G̃ gauge field.
After the second step, we obtain the TQFT D that is the final result of gauging the G symmetry
of the 2+1d topological phase C. The explicit expression of D is given by

D = (C ⊠ G̃−σH
)/K . (8)

In the following, we will explain this two-step gauging process in detail and clarify the
notations in Eq. (8). Along the way we will also derive the consistency conditions between
the Hall conductance σH and the symmetry fractionalization pattern.

In the first step, when the symmetry group is enlarged to G̃, the symmetry effectively acts
trivially on the TQFT C due to the lack of G̃ symmetry fractionalization in C. Hence, gaug-
ing G̃ amounts to promoting the G̃-version of effective action in Eq. (4) to a dynamical G̃
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Chern-Simons gauge theory at level −σH . We denote this dynamical Chern-Simons theory
which is a TQFT as G̃−σH

. After gauging G̃, we obtain the TQFT C ⊠ G̃−σH
. We have identi-

fied K × K one-form symmetry in this gauged theory. The first K subgroup acts on C via the
homomorphism v : K →A to encode the G symmetry fractionalization pattern. The action of
the group element k ∈ K is generated by the worldline of the Abelian anyon v(k) ∈ A ⊂ C.
For the G̃−σH

part, the one-form symmetry K acts as an electric one-form symmetry via the
map to the center of Lie group G̃ given in Eq. (5). In the language of TQFT, each group el-
ement k ∈ K corresponds to an Abelian anyon s(k) ∈ G̃−σH

whose worldline generates the
corresponding electric one-form symmetry action in G̃−σH

Chern-Simons theory. We will be
particularly interested in the diagonal subgroup K of K × K , generated by the set of Abelian
anyons TK = {(v(k), s(k)) ∈ C ⊠ G̃−σH

}k∈K . The fusion algebra within this set TK is given by
the Abelian group K .

In the second step, we gauge this diagonal one-form K symmetry of C⊠ G̃−σH
to obtain our

final result D shown in Eq. (8). In the language of MTC, gauging this one-form symmetry K is
equivalent to the condensation of the set TK in C⊠ G̃−σH

. One can view the condensation of TK
as the definition of the notation “/K” in Eq. (8). If the original 0-form global symmetry G is
microscopically well-defined on the TQFT C, the set TK must be able to consistently condense
completing the gauging procedure of G. Equivalently, the one-form group K should have no ’t
Hooft anomaly and can be consistently gauged. Hence, the consistency condition boils down
to the requirement that all of the Abelian anyons in TK have bosonic self- and mutual-statistics:

θv(k)θ̃s(k) = 1 ,

Mv(k)v(k′)M̃s(k)s(k′) = 1 ,
(9)

for any k, k′ ∈ K . Here, θv(k) is the topological spin of the Abelian anyon v(k) in the MTC C.
Mv(k)v(k′) is the mutual braiding statistics between the anyons v(k) and v(k′) in C. θ̃s(k) and
M̃s(k)s(k′) are the topological spin and the braiding statistics in the MTC G̃−σH

. Once the sym-
metry fractionalization, encoded by v : K → A, is specified, we can view Eq. (9) as the
compatibility condition for the allowed values of Hall conductance σH .

For a G symmetry fractionalization pattern v, if there is no value of σH ∈ Z for TK to
consistently condense, there is a fundamental obstruction in gauging the symmetry G in the
topological phase C. This obstruction is the ’t Hooft anomaly for the 0-form global symmetry G
with the given symmetry fractionalization pattern in C. The method to analyze the ’t Hooft
anomaly is provided in the next subsection.

Having established the general procedure to gauge G, we can calculate the chiral central
charge c′− of the resulting TQFT D:

c′− = c− + c̃− , (10)

which is the sum of the original chiral central charge c− of C and the chiral central charge c̃−
of the TQFT G̃−σH

. In general, gauging the global symmetry G causes a change in the chiral
central charge unless the Hall conductance σH is zero.

Before presenting explicit examples of our gauging procedure, we would like to comment
on the special case with σH = 0. The results in Eq. (8), Eq. (10) and the consistency con-
straints from Eq. (9) are still applicable. We will then need to use the physical fact that a
pure G̃ gauge theory without Chern-Simons term in 2+1d is always in the confined phase. In
other words, G̃0 is a completely trivial TQFT (i.e. no anyons and c̃− = 0). In this case, any
anyon of C that carries a projective representation of G must be confined because they cannot
be screened by local degrees of freedom, which can only carry linear representations of G. The
anyons of C that are left unconfined after G is gauged form the TQFT D = (C ⊠ G̃0)/K = C/K .
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2.4 ’t Hooft anomaly

For a given symmetry fractionalization pattern in the 2+1d topological phase C, if there is
no compatible G Hall conductance σH that can satisfy the conditions Eq. (9), there is an
obstruction to gauging the 0-form global symmetry G caused by an ’t Hooft anomaly. In this
subsection, we discuss the general method to characterize such ’t Hooft anomalies.

Regardless of the compatibility condition Eq. (9), we can carry out the first step of the two-
step of gauging G with any integer G Hall conductanceσH ∈ Z. The resulting TQFT is given by
C ⊠ G̃−σH

. In the second step, the gauging of the diagonal one-form symmetry K of C ⊠ G̃−σH

can be obstructed if Eq. (9) cannot be satisfied. This obstruction to gauging the one-form
symmetry K can be understood as an ’t Hooft anomaly of one-form symmetry K in C ⊠ G̃−σH

,
and can be directly calculated from the topological spins and braiding statistics among the set
of Abelian anyons TK whose worldlines generate the one-form K symmetry actions. [15,20,21]

’t Hooft anomaly of the one-form symmetry K in 2+1d is associated with a unique 3+1d
symmetry protected topological (SPT) phase with K one-form symmetry via the anomaly in-
flow mechanism [15,21,22]. That is, the boundary theory of the 3+1d K one-form symmetry
SPT phase realizes the same anomaly. The 3+1d K one-form symmetry SPT phase can be fully
characterized by a 3+1d effective action SK-SPT[B] for a background two-form K gauge field B
associated with the one-form global symmetry K . In Appendix A we give a brief summary of
one-form anomaly and explicit expressions for SK-SPT[B], which will be used frequently later.
Only when all the Abelian anyons in TK have bosonic self- and mutual-statistics, namely when
Eq. (9) is satisfied, will the 3+1d K one-form symmetry SPT phase become topologically trivial
resulting in no one-form anomaly on its 2+1d boundary.

The ’t Hooft anomaly for the one-form K symmetry in the TQFT C ⊠ G̃−σH
originates from

the ’t Hooft anomaly of 2+1d topological phase C for the 0-form global symmetry G. This ’t
Hooft anomaly for G symmetry in 2+1d can be characterized by a corresponding 3+1d bulk
effective action SG-SPT[A] of a 3+1d G 0-form symmetry SPT phase for the background one-
form G gauge field A associated with the 0-form global symmetry G. We derive SG-SPT[A] as
follows. In the second step of the two-step procedure, gauging the one-form symmetry K of
the TQFT C ⊠ G̃−σH

amounts to coupling this TQFT to a two-form K gauge field B, which
is a K-valued two-cocycle in the spacetime. The purpose of this step is to account for the
difference between the one-form G̃ gauge field, which is already introduced in C ⊠ G̃−σH

,
and the one-form G gauge field, which we eventually want to couple C to. In particular, the
holonomy in the two-form K gauge field B produces the obstruction class in lifting an G bundle
on the spacetime to a G̃ bundle, or in physics terms lifting an G one-form gauge field to a G̃
one-form gauge field. In fact, this obstruction class is already encoded via the two-cocycle
µ ∈ H2(G, K) ∼= H2(BG, K) introduced in the group extension Eq. (5). Here we directly
treat µ as two-cocycle in H2(BG, K). A G one-form gauge field A, or equivalently a G bundle,
on a spacetime manifold X can be viewed as a map from X to BG. It induces a pullback from
H2(BG, K) to H2(X , K)which maps µ ∈ H2(BG, K) to a K-valued two-cocycle µ[A] ∈ H2(X , K).
This two-cocycle µ[A] is the obstruction class of lifting the G gauge field A to a G̃ gauge field.
Hence, the two-form K gauge field B should be set to the obstruction class, i.e. [19,23]

B = µ[A] . (11)

Using this relation, we can obtain the 3+1d bulk effective action SG-SPT[A] of the 3+1d G
0-form symmetry SPT phase:

SG-SPT[A] = SK-SPT[B = µ[A]] , (12)

that characterizes the ’t Hooft anomaly in the 2+1d topological phase C for the 0-form global
symmetry G. Explicit forms of SK-SPT[B] can be found in Appendix. A. The compatibility con-
dition Eq. (9) can also be thought of as the condition for SG-SPT[A] and the corresponding
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bulk 3+1d 0-form G-SPT to be topologically trivial. We remark that there can be situations
where SK-SPT is non-trivial as an effective action of a non-trivial K one-form symmetry SPT
phase while SG-SPT[A] describes a trivial G 0-form symmetry SPT phase in 3+1d. This situa-
tion occurs when SG-SPT[A] can be rewritten as a Θ-term Θ

8π Tr(F ∧ F) with the field strength
F = dA+A∧A and theΘ-angleΘ. TheΘ-angle is not topologically protected and can be always
smoothly deformed to zero without changing the topological nature of the G 0-form symmetry
SPT phase. In terms of anomalies, the equivalent statement is that the ’t Hooft anomaly of the
0-form symmetry G is the equivalence class of the bulk action defined up to a local countert-
erm of the G background gauge field on the boundary. In particular, the local counterterms
include Chern-Simons terms of the background gauge field A, which is essentially equivalent
to the Θ-term in the 3+1d bulk.

2.5 Example: G = SO(3)

For G = SO(3), we should consider the following group extension to its universal cover
G̃ = SU(2):

1→ K = Z2→ SU(2)→ SO(3)→ 1 . (13)

For a 2+1d topological phase C, the SO(3) symmetry fractionalization pattern is given by the
homomorphism v from K = Z2 to the group of Abelian anyons A in C. In this case, this
homomorphism v is fully determined by the image of the generator of K = Z2. We will just
denote this image, which is an Abelian anyon in A, as v1. This Abelian anyon v1 ∈ C satisfies
the fusion rule v2

1 = 1. Hence, its topological spin must take one of four values θv1
= eiπn/2 for

n= 0,1, 2,3. The braiding statistics Mv1a between v1 and any anyon a ∈ C must be ±1. When
Mv1a = 1, the anyon a carries a linear (or an integer-spin) representation of SO(3). When
Mv1a = −1, the anyon a carries a projective (half-integer-spin) representation SO(3). Note
that all half-integer-spin representations of SO(3) are projective representations of SO(3) and
they correspond to the same nontrivial projective class in H2(SO(3),U(1)) = Z2.

For the SO(3) Hall response, according to our convention, we normalize the Lie algebra
so(3) shared by SO(3) and SU(2) such that the level of a stand-alone SU(2) Chern-Simons
theory can be any integer, while the level of a stand-alone SO(3) Chern-Simons theory must
be quantized to 4Z in bosonic systems [24]. With this normalization, by the general argument
in Sec. 2.2, the SO(3)Hall conductanceσH of the 2+1d topological phase C must be an integer,
i.e. σH ∈ Z. Applying the compatibility condition Eq. (9) between the Hall conductance σH
and the symmetry fractionalization pattern, we obtain

θv1
e−iπσH/2 = 1 , (14)

which is explained in greater detail below when we discuss the gauging of G. Notice that for
any value of the topological spin θv1

= eiπn/2 for n = 0, 1,2, 3, there always exist compatible
choices of the SO(3) Hall conductance σH ∈ Z. When θv1

̸= 1, the Hall conductance σH must
be fractional, i.e. σH /∈ 4Z. The fact that a compatible choice of σH always exists is consistent
with the fact that there is no bosonic SO(3) symmetry protected topological (SPT) phase in
3+1d [25] and, hence, no ’t Hooft anomaly for SO(3) 0-form symmetry in 2+1d.

Now we gauge the 0-form global SO(3) symmetry of C following the two-step gauging pro-
cedure. After the first step, we obtain the TQFT C⊠SU(2)−σH

. The one-form K = Z2 symmetry
in the sector C is generated by the worldline of the Abelian anyon v1. In the SU(2)−σH

sec-

tor, the anyons are labeled by j = 0, 1
2 , 1, 3

2 , ..., |σH |
2 where j represents the spin/representation

under the gauge group SU(2) when we view SU(2)−σH
as a gauge theory. The one-form sym-

metry K , acting as an electric one-form symmetry in the SU(2)−σH
sector, is generated by the

worldline of the anyon j = |σH |
2 which is the only nontrivial Abelian anyon in SU(2)−σH

. The
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topological spin of this anyon j = |σH |
2 in the TQFT SU(2)−σH

is given by θ̃
j= |σH |

2
= e−iπσH/2.

Gauging the one-form K = Z2 symmetry of C ⊠ SU(2)−σH
generated by the worldline of the

Abelian anyon (v1, j = |σH |
2 ) ∈ C ⊠ SU(2)−σH

amounts to condensing this anyon (v1, j = |σH |
2 ).

The requirement that (v1, j = |σH |
2 )must have a bosonic self-statistics leads to the compatibility

condition Eq. (14). The final result of gauging the SO(3) symmetry of C is given by

D = (C ⊠ SU(2)−σH
)/Z2 , (15)

whose chiral central charge is given by c′− = c− −
3σH
|σH |+2 .

An explicit example is given by the case with the topological phase C = SU(2)k whose
anyons are labeled by j′ = 0, 1

2 , 1, 3
2 , ..., |k|2 . In this case, the only non-trivial SO(3) symmetry

fractionalization patterns is given by choosing v1 = |k|/2. Physically, this symmetry fraction-
alization pattern assigns a spin- j′ representation of the global symmetry SO(3) to the anyon
j′. Based on Eq. (14), a compatible SO(3) Hall conductance σH must satisfy the condition
σH ≡ k mod 4. After gauging G = SO(3), the resulting TQFT is D = (SU(2)k⊠SU(2)−σH

)/Z2

whose chiral central charge is c′− =
3k
|k|+2 −

3σH
|σH |+2 .

Another explicit example pertains to the case with C = SU(2)k⊠SU(2)1 whose anyons are
labeled by ( j′, j′′) with j′ = 0, 1

2 , 1, 3
2 , ..., |k|2 and j′′ = 0, 1

2 . We can choose the SO(3) symmetry
fractionalization pattern such that v1 = (

k
2 , 1

2). A choice of compatible SO(3) Hall conductance
is σH = k + 1. In this case, the gauging of the SO(3) global symmetry results in the TQFT
D = (SU(2)k⊠SU(2)1⊠SU(2)−(k+1))/Z2 which turns out be equivalent to MTCs for the minimal
model CFTs M(k + 2, k + 1) for k ≥ 1. Note that, in this example with C = SU(2)k ⊠ SU(2)1,
the gauging of the SO(3) symmetry in the bulk parallels the coset construction of the 1+1d
minimal model CFTs M(k+2, k+1) from the product of Wess-Zumino-Witten models SU(2)k
and SU(2)1 [26]. A more general discussion on the relation between gauging a continuous
symmetry in a 2+1d topological phase and the coset construction for 1+1d CFT is given Sec. 5.

2.6 Example: G = SO(N) with N > 3

For G = SO(N) with N > 3, the central extension to its universal cover G̃ = Spin(N) is given
by:

1→ K = Z2→ Spin(N)→ SO(N)→ 1 . (16)

This central extension is characterized by the two-cocycle

µ= w2 ∈H2(SO(N),Z2)∼= H2(BSO(N),Z2) ,

where w2 is the second Stiefel-Whitney class (on BSO(N)) and BSO(N) is the classifying space
of SO(N). Similar to Sec. 2.5, for a 2+1d topological phase C whose subset of Abelian anyon
is A, the SO(N) symmetry fractionalization pattern in C is fully characterized by the image
v1 ∈A of the generator of K = Z2 under the homomorphism v : K →A. Again, the Z2 fusion
rule of v1 implies that its topological spin must be θv1

= eiπn/2 for some n ∈ {0, 1,2, 3} and
its braiding statistics with any anyon a ∈ C must be Mv1a = ±1. When Mv1a = 1, the anyon
a carries a linear representation of the global symmetry SO(N). When Mv1a = −1, the anyon
a carries a spinor (projective) representation of the global symmetry SO(N). Note that the
spinor and the linear representations are the only two projective classes because
H2(SO(N), U(1)) = Z2.

For the SO(N) Hall response, we normalize the Lie algebra so(N) shared by SO(N) and
Spin(N) such that a stand-alone Spin(N) Chern-Simons theory can have any integer level.
When N > 3, with this normalization, the levels of a stand-alone SO(N) Chern-Simons theory

11

https://scipost.org
https://scipost.org/SciPostPhys.14.5.100


SciPost Phys. 14, 100 (2023)

(in a bosonic system) is quantized to 2Z, which is different from the SO(3) case. Based on
Sec. 2.2, the SO(N) Hall response should be quantized: σH = Z. The compatibility condition
Eq. (9) between the symmetry fractionalization and the Hall response can be simplified to

θv1
· (−1)σH = 1 . (17)

Again, this relation is obtained from the consistency of the gauging procedure which will be
explained in greater detail below. Note that when θv1

= ±i, there is no choice of σH ∈ Z to
satisfy this compatibility condition. In fact, we will show that the absence of the compatible
choice ofσH is due to the ’t Hooft anomaly for the G symmetry associated with these symmetry
fractionalization patterns with θv1

= ±i.
Now we carry out the two-step gauging procedure to gauge the 0-form global SO(N) sym-

metry in C. In the first step, we obtain the TQFT C ⊠ Spin(N)−σH
with a one-form K = Z2

symmetry. In the C sector, this one-form K = Z2 symmetry action is generated by the world-
line of the Abelian anyon v1 ∈ A ∈ C. On the Spin(N)−σH

, this one-form K = Z2 symmetry
action is generated by the worldline of the Abelian anyon s ∈ Spin(N)−σH

. Viewing Spin(N)−σH

as a gauge theory with gauge group Spin(N), this Abelian anyons s carries the gauge group
representation whose Dynkin label is given by (|σH |, 0, ..., 0). [27] The topological spin of this
Abelian anyon s ∈ Spin(N)−σH

is given by θs = (−1)σH . In the second step, gauging the
one-form K = Z2 symmetry C ⊠ Spin(N)−σH

, which is equivalent to the condensation of the
Abelian anyon (v1, s) ∈ C ⊠ Spin(N)−σH

, requires (v1, s) to have a bosonic self-statistics. This
requirement leads to the compatibility condition Eq. (17).

When θv1
= eiπn/2 with n= 1 or n= 3, there is no choice of σH ∈ Z to satisfy the condition

Eq. (17). This is an indication of ’t Hooft anomaly. We now derive the ’t Hooft anomaly for
the SO(N) symmetry associated with this symmetry fractionalization following the method
introduced in Sec. 2.4. Regardless of the condition Eq. (17), we can, nevertheless, still make
a choice of σH ∈ Z and perform the first step of the two-step gauging procedure, which yields
the TQFT C⊠Spin(N)−σH

. The violation of the condition Eq. (17) indicates that the one-form
K = Z2 symmetry in C⊠Spin(N)−σH

is anomalous and, hence, cannot be gauged. The anomaly
matches that on the surface of a 3+1d K one-form symmetry SPT phase, whose effective action
in the 3+1d spacetime is given by [15,21,22]

SK-SPT[B] =
π(n− 2σH)

2

∫

P(B) . (18)

Here, B is the two-form background K = Z2 gauge field associated with the one-form K symme-
try. Mathematically, B is a Z2-valued two-cocycle in the spacetime manifold. See Appendix A
for a review of one-form anomaly in 2+1d. To obtain the effective action of the 3+1d SO(N)
0-form symmetry SPT phase, we need to set B to be the obstruction class w2[A] of lifting a
SO(N) gauge field A to a Spin(N) gauge field. i.e

B = w2[A] . (19)

Here, we obtain w2[A] ∈ H2(X ,Z2) from a pullback of w2 ∈ H2(BSO(N),Z2) where X denotes
the spacetime manifold. w2[A] is famously known as the second Stiefel-Whitney class of the
corresponding SO(N) gauge bundle. The pullback from w2 ∈ H2(BSO(N),Z2) is a standard
way to construct it. Plugging Eq. (19) into Eq. (18) results in an effective action of a 3+1d
SO(N) 0-form symmetry SPT phase:

SSO(N)-SPT =
π(n− 2σH)

2

∫

P(w2[A]) , (20)
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for the SO(N) gauge field A. The ’t Hooft anomaly on the boundary of this 3+1d SO(N) 0-form
symmetry SPT phase is exactly that in the 2+1d topological phases C with the SO(N) symmetry
fractionalization pattern specified by the Abelian anyon v1 and its SO(N)Hall conductanceσH .
On a closed 3+1d spacetime manifold, we can rewrite SSO(N)-SPT as

SSO(N)-SPT =
π(n− 2σH)

2

∫

p1[A] + nπ

∫

w4[A] , (21)

where p1[A] is the first Pontryagin class and w4[A] is the fourth Stiefel-Whitney class of the
SO(N) gauge bundle. This rewriting has made use of the fact that p1[A] = P(w2[A]) + 2w4
mod 4 [28]. We’ve also dropped the term 2σHπ

∫

w4[A] which always evaluates to 2πZ on a
closed manifold for any integer σH . We should view the first term in Eq. (21) as a Θ-term of
the SO(N) gauge field with Θ = π(n−2σH )

2 . Because Θ can be continuously tuned to 0, such a
Θ-term is not topologically robust and, hence, does not imply the ’t Hooft anomaly on in the
2+1d topological phase C. It is the second term in Eq. (21) that determines the equivalence
class of the SPT phase in this effective action. More specifically, the SO(N) SPT phase is trivial
when n is even and non-trivial when n is odd, which is in agreement the with the fact that
SO(N) SPT phases in 3+1d have H4(SO(N), U(1)) = Z2 classification [29, 30]. Note that the
‘Hooft anomaly is completely determined by the symmetry fractionalization class (specified
by v1).

Recall the integer n is defined by θv1
= eiπn/2. When θv1

= ±i, namely when v1 is a
semion or an anti-semion, there is a non-vanishing SO(N) ’t Hooft anomaly in the 2+1d topo-
logical phase C. In fact, in this case, C can always be factorized into C = C′ ⊠ {1, v1} where
{1, v1} the sector is a (anti-)semion TQFT. The SO(N) ’t Hooft anomaly entirely results from
the (anti-)semion v1 carrying a spinor representation of SO(N). The N = 5 case was consid-
ered in Ref. [31].

When θv1
= ±1, even though there is no SO(N) ’t Hooft anomaly present in the 2+1d topo-

logical phase C, the SO(N) Hall conductance still need to follow the compatibility condition
n − 2σH = 0 mod 4, which is equivalent to Eq. (17), to make sure that the entire effective
action Eq. (21) is trivial. In field-theoretic terms, choosing a compatible Hall conductance
σH is equivalent to choosing an SO(N) Chern-Simons counterterm that can ensure the consis-
tency in gauging the 0-form global symmetry SO(N). Such consistency physically implies the
microscopic realizability of the corresponding SO(N)-symmetric topological phase C. In the
absence of the ‘t Hooft anomaly, the resulting theory D after gauging G = SO(N) is given by

D = (C ⊠ Spin(N)−σH
)/Z2 . (22)

2.7 Example: G = PSO(4N + 2)

For G = PSO(4N + 2), the central extension to the universal cover G̃ = Spin(4N + 2) is given
by

1→ K = Z4→ Spin(4N + 2)→ PSO(4N + 2)→ 1 . (23)

For a 2+1d topological phase C with a 0-form global PSO(4N + 2) symmetry, the symme-
try fractionalization pattern is encoded by the homomorphism v : K = Z4 → A, which can
be fully specified by the image v1, an Abelian anyon in A, of the generator of Z4 under v.
The fusion rule of v1 must be either (1) Z2 or (2) Z4 for the consistency of the homomor-
phism v : K = Z4→A.

In either case (1) or case (2), the topological spin of v1 must be θv1
= ei2πn/8 for

some n ∈ {0,1, 2, ..., 7}. The braiding statistics between v1 and any anyon a ∈ C must be
Mav1

= ±1,±i. If Mav1
= +1, the anyon a carries a linear representation of PSO(4N + 2). If
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Mav1
= i (Mav1

= −i), the anyon a carries the left-handed (right-handed) spinor projective
representation of PSO(4N + 2). If Mav1

= −1, the anyon a carries the vector projective repre-
sentation of PSO(4N + 2). The PSO(4N + 2) Hall conductance σH must satisfy the condition

θv1
e−i2π (2N+1)σH

8 = ei2πn/8e−i2π (2N+1)σH
8 = 1 , (24)

which can be satisfied when σH ≡ n(2N + 1) mod 8. After gauging the 0-form global
PSO(4N + 2) symmetry of C, we obtain the topological phase

D = (C ⊠ Spin(4N + 2)−σH
)/Z4 . (25)

The K = Z4 one-form symmetry action in C⊠Spin(4N+2)−σH
is generated by the worldlines of

the set of Abelian anyons TK=Z4
= {(vm

1 , sm)}m=0,1,2,3, where s ∈ Spin(4N+2)−σH
is the Abelian

anyon whose worldline generates the K = Z4 one-form symmetry action in the Spin(4N+2)−σH

sector. The factor e−i2π (2N+1)σH
8 in the condition Eq. (24) is given by the topological spin θ̃s of

the anyon s ∈ Spin(4N+2)−σH
. We see that there is no obstruction in gauging for any choice of

v1, which suggests that there is no ’t Hooft anomaly for PSO(4N+2) 0-form symmetry in 2+d.

2.8 Example: G = PSO(4N)

For G = PSO(4N) with some positive integer N , the central extension to the universal cover
G̃ = Spin(4N) is given by

1→ K = Z2 ×Z2→ Spin(4N)→ PSO(4N)→ 1 , (26)

where the Z2 × Z2-valued two-cocycle associated with this extension is denoted as
µ ∈ H2(PSO(4N),Z2 × Z2). For a 2+1d topological phase C with a 0-form global PSO(4N)
symmetry, the G = PSO(4N) symmetry fractionalization pattern is encoded by the homomor-
phism v : K = Z2 × Z2 → A. This homomorphism v can be fully specified by the image
v1, v2 ∈A of the two generators of the two Z2 factors in K = Z2×Z2 under v. The topological
spins θv1,2

and the mutual statistics Mv1v2
must satisfy

θv1
= eiπn1/2 , θv2

= eiπn2/2 , Mv1v2
= (−1)n12 , (27)

for some integers n1,2 ∈ {0,1, 2,3} and n12 ∈ {0,1}. We show below that the compatible values
of the PSO(4N) Hall conductance σH ∈ Z must satisfy

n1 − 2σH ≡ 0 mod 4 ,

n2 − NσH ≡ 0 mod 4 , (28)

n12 −σH ≡ 0 mod 2 ,

which does not always have integer solutions for σH . An example with no integer solution for
σH is provided below. If these compatibility conditions are satisfied, we can gauge the 0-form
global G = PSO(4N) symmetry of the 2+1d topological phase C resulting in the TQFT

D = (C ⊠ Spin(4N + 2)−σH
)/(Z2 ×Z2) . (29)

The gauging of the K = Z2 × Z2 one-form symmetry in C ⊠ Spin(4N + 2)−σH
is described by

the condensation of the set of Abelian anyons TK = {(v
m1
1 , sm1

1 )× (v
m2
2 , sm2

2 )|m1,2 = 0,1} where
s1,2 ∈ Spin(4N + 2)−σH

are the Abelian anyons whose worldlines generate the K = Z2 × Z2
one-form symmetry action in the Spin(4N + 2)−σH

sector. The topological spins and mutual
statistics of s1,2 are given by

θ̃s1
= e−iπσH , θ̃s2

= e−iπNσH/2 , M̃s1s2
= (−1)σH . (30)
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Requiring Abelian anyons in TK to have bosonic self- and mutual-statistics leads to the com-
patibility conditions in Eq. (29).

Note that, for certain combination of n1, n2 and n12, the compatibility condition in Eq. (29)
does not admit any integer solution for the PSO(4N) Hall conductance σH . When the con-
ditions Eq. (29) are violated, the 2+1d topological phase C exhibit an ’t Hooft anomaly for
the PSO(4N) 0-form symmetry, characterized by the following 3+1d effective action for the
PSO(4N) 0-form symmetry SPT phase:

SPSO(4N)-SPT =
π(n1 − 2σH)

2

∫

P(µ(1)[A]) +
π(n2 − NσH)

2

∫

P(µ(2)[A])

+π(n12 −σH)

∫

µ(1)[A]∪µ(2)[A] , (31)

where A is a PSO(4N) one-form gauge field and µ[A] is a K = Z2×Z2-valued two-cocycle that
captures the obstruction to lift the PSO(4N) gauge bundle (described by A) to an Spin(4N)
gauge bundle. µ(1)[A] and µ(2)[A] are the restrictions of the K = Z2 ×Z2-valued two-cocycle
µ[A] to the first and the second Z2 factor respectively. A simple example with an anomalous
PSO(4N) 0-form global symmetry is given by C = U(1)2 where we choose v2 to be the trivial
anyon and v1 to be the semion in U(1)2. One can easily check that for any integer value σH ,
the PSO(4N) 0-form symmetry SPT phase effective action Eq. (31) is topologically non-trivial
indicating a non-trivial PSO(4N) ’t Hooft anomaly in C.

2.9 Example: G = PSU(N)

For G = PSU(N) with some positive integer N , the central extension to the universal cover
G̃ = SU(N) is given by

1→ K = ZN → SU(N)→ PSU(N)→ 1 . (32)

For a 2+1d topological phase C with a 0-form global PSU(N) symmetry, the symmetry frac-
tionalization pattern is encoded by the homomorphism v : K = ZN → A, which can be fully
specified by the image v1, an Abelian anyon in A, of the generator of ZN under v. The topo-
logical spin of v1 must satisfy θv1

= ei 2π
2N n for some n ∈ {0,1, ..., 2N − 1} when N is even and

θv1
= ei 2π

N n for some n ∈ {0,1, ..., N − 1} when N is odd. The PSU(N) Hall conductance σH
must satisfy the compatibility condition

θv1
e−i2π (N−1)σH

2N = 1 , (33)

which always admit integer solutions for σH . When the G = PSU(N) symmetry is gauged, the
resulting TQFT is given by

D = (C ⊠ SU(N)−σH
)/ZN . (34)

Note that the K = ZN one-form symmetry acts on the SU(N)−σH
sector as the electric one-form

symmetry of the SU(N) Chern-Simons gauge theory. The K = ZN one-form symmetry actions
on the C sector are generated by the worldline of the Abelian anyon v1.
Let us consider the solvability of the compatibility condition. For odd N , we can take
σH = −2n to solve the condition. For even N , we need to solve congruence equation
(N − 1)σH ≡ n (mod 2N). One solution is σH = (N − 1)n. The solvability of the compati-
bility condition is consistent with the absence of ’t Hooft anomaly for PSU(N) symmetry in
(2+1)d, as H4(PSU(N), U(1)) = Z1 [32].
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Table 1: Symmetry fractionalization data, compatibility condition for the Hall con-
ductance σH and the gauged TQFT D for G = PE6 and PE7.

G G̃ K θv1
compatible σH D

PE6 E6 Z3 e2πin/3, n ∈ {0,1, 2} θv1
e−

4πi
3 σH = 1 (C ⊠ (E6)−σH

)/Z3

PE7 E7 Z2 e2πin/4, n ∈ {0,1, 2,3} θv1
e

2πi
4 σH = 1 (C ⊠ (E7)−σH

)/Z2

2.10 Example: G = PSp(N)

For G = PSp(N) with a positive integer N , the central extension to the universal cover
G̃ = Sp(N) is given by

1→ K = Z2→ Sp(N)→ PSp(N)→ 1 . (35)

Note that our convention is such that Sp(1) ≡ SU(2). For a 2+1d topological phase C with
a 0-form global PSp(N) symmetry, the symmetry fractionalization pattern is encoded by the
homomorphism v : K = Z2 → A, which can be fully specified by the image v1, an Abelian
anyon in A, of the generator of Z2 under v. The topological spin of v1 must satisfy θv1

= e
2πi
4 n

for some n ∈ {0,1, 2,3}, similar to the SO case. The PSp(N) Hall conductance σH must satisfy
the compatibility condition

θv1
e−

2πi
4 NσH = 1 . (36)

In other words, NσH ≡ n (mod 4). It has no solution if n is odd and N is even, in which case
the symmetry fractionalization pattern has ’t Hooft anomaly. When there is no anomaly, the
gauged theory is

D = (C ⊠ Sp(N)−σH
)/Z2 . (37)

Following the prescription in Sec. 2.4, we find the 3+1d anomaly action:

SPSp(N)-SPT =
2π(n− NσH)

4

∫

P(w2[A]) , (38)

for the PSp(N) background gauge field A. It can be further simplified using the following
relation: l[A] = 1

2P(w2[A]) + w4[A], where l is the instanton number l[A] = 1
8π2

∫

Tr(F ∧ F).
Then we find

SPSp(N)-SPT = π(n− NσH)l[A] +πn

∫

w4[A] . (39)

It turns out that for odd N , we gave w4[A] = 0 [33,34], so the action contains only the l[A] term
and, consequently, the ’t Hooft anomaly on the boundary is trivial when we include suitable
local Chern-Simons counterterms. In other words, the term proportional to l[A] can be viewed
as a Θ-term whose Θ-angle can be continuously tuned to 0 without changing the equivalence
class the ‘t Hooft anomaly. This is consistent with the observation that it is always possible
to find σH ∈ Z so n − NσH is even. For even N , w4 class can be nontrivial [33, 34], which
captures the ’t Hooft anomaly of the PSp(N) symmetry. Similar to the SO(N) case discussed in
Sec. 2.6, any TQFT that saturates the anomaly must have a (anti-)semion subtheory, where the
(anti-)semion transforms projectively under PSp(N), e.g. as the fundamental representation
of Sp(N).
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2.11 Example: Projective Exceptional Lie groups

For G = PE6 and PE7, the extensions to E6 and E7 are given by the data listed in Table. 1. In
either case, K is a cyclic group with a single generator. Hence, the image v1 of the generator
of K under the homomorphism v : K → A fully specifies the G symmetry fractionalization
patterns in a 2+1d topological phase C. The possible values of the topological spin θv1

, the
compatibility condition for the Hall conductance σH and the final result D after gauging G are
listed in Table. 1. In either case, there is no ’t Hooft anomaly for the 0-form symmetry G.

Other projective exceptional Lie groups PE8, PG2 and PF4 are their own universal cover,
namely PG = G for G = E8,G2 and F4. Hence, these projective exceptional Lie groups do
not allow any non-trivial symmetry fractionalization in a 2+1d topological phase C. The Hall
conductance σH is quantized to Z. Gauging G = PE8, PG2 or PF4 simply leads to D = C⊠G−σH

in these cases.

3 Gauging general compact connected Lie group symmetry

3.1 General procedure

In this section, we discuss the gauging of the 0-form global symmetry group G that is a general
compact connected Lie group. The strategy of gauging G is the same as the case of a compact
connected Lie group with a simple Lie algebra discussed in Sec. 2. We use a group extension to
encode the G symmetry fractionalization in a 2+1d topological phase C. This group extension
enables us to carry out the two-step procedure to gauge the global symmetry G of C. The
extra complication in the case of a general compact connected Lie group G comes from the
fact that the universal cover of G becomes non-compact when G contains U(1) subgroups in
its center. For example, the universal cover of U(1) is R. Hence, we consider an alternative
group extension to circumvent this difficulty.

The G symmetry fractionalization in a 2+1d topological phase C is still encoded by the
corresponding two-cocycle w ∈ H2(G,A) where A is the group of Abelian anyons in C. To
re-express the same symmetry fractionalization pattern encoded by w, we need to consider a
certain central extension of G:

1→ K → G̃→ G→ 1 , (40)

where K is a finite Abelian group, G̃ is a connected compact Lie group, and the extension is
specified by µ ∈ H2(G, K). In order for this extension to be sufficient for the characterization
of the symmetry fractionalization pattern, there should exist a homomorphism v : K → A
such that the homomorphism H2(G, K) → H2(G,A) induced by v maps µ ∈ H2(G, K) to
w ∈ H2(G,A). When G has a simple Lie algebra (and, hence, does not include any U(1)
subgroups in its center), the central extension to its universal cover is always sufficient for any
symmetry fractionalization pattern. In the more general case, the group extension that can
capture a given symmetry fractionalization pattern w ∈ H2(G,A) is not necessarily unique.
Nevertheless, for a given G symmetry fractionalization pattern w, once the global symmetry is
extended to a suitable G̃ that is sufficient for the characterization of w (via the homomorphism
v : K → A), there is no G̃ symmetry fractionalization in C. We will demonstrate by examples
that different extensions lead to the same final result after the two-step gauging procedure.

As a compact connected Lie group, G can always be written as a quotient by a finite cen-
tral subgroup of a product of simply connected compact Lie groups and U(1)’s, and so is the
extension G̃. [35] With respect to the global symmetry G, the Hall response in 2+1d topo-
logical phase C can be captured by an effective Chern-Simons action denoted as SG-CS. When
the symmetry is extended to G̃, there is a corresponding effective Chern-Simons action SG̃-CS
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with G̃ gauge fields, which is locally the same as SG-CS and captures the G̃ Hall response in
C. For the same reason discussed in Sec. 2.2, the Hall conductance (or the level) SG̃-CS must
follow the standard quantization of a G̃ Chern-Simons theory, while the Hall conductance (or
the level) of SG-CS can be a fraction of the allowed values for a stand-alone G Chern-Simons
theory depending on the G symmetry fractionalization in C.

Anticipating that we will consider gauging the one-form symmetry group K , it is important
that when G̃ is gauged, the dynamical Chern-Simons gauge theory with action SG̃-CS, denoted
as G̃-CS, has a K electric one-form symmetry group. This subtlety was absent when G̃ is
compact and a universal cover as in Sec. 2, but requires an additional constraint on σH (be-
yond just the standard level quantization of a G̃ Chern-Simons gauge theory) when G̃ allows
nontrivial magnetic monopoles classified by π1(G̃). Because of the Chern-Simons term, in
general G̃ monopoles are charged under G̃ in ways depending on the level σH , allowing some
Wilson lines to end on the monopole. Thus the electric one-form symmetry group K must
transform these lines trivially, which provides additional constraint on σH . Explicit examples
are provided below.

It is also worth pointing out that, for a general G, unlike the case of Lie group with simple
Lie algebra, the G̃ Hall conductance after the symmetry extension can be different from the
G Hall conductance before the extension. We will see via examples that such difference can
occur when a U(1) subgroup in the center of G is extended to a multi-fold cover in G̃.

Now we are ready to perform the two-step gauging procedure. First, we extend the global
symmetry to G̃ and gauge it. The resulting TQFT is given by C ⊠ G̃-CS. In the second step, we
gauge one-form K symmetry of C ⊠ G̃-CS to obtain the final result

D = (C ⊠ G̃-CS)/K . (41)

The gauging of this one-form K symmetry can rephrased as the condensation of the set of
Abelian anyons TK = {(v(k), s(k))|k ∈ K} in C ⊠ G̃-CS whose worldlines generate the one-
form K symmetry action in C ⊠ G̃-CS. As discussed in Sec. 2.3, this condensation requires the
bosonic self- and mutual-statistics between all the Abelian anyons in TK . This requirement can
be viewed as the compatibility conditions between the symmetry fractionalization pattern and
the G Hall response in the 2+1d topological phase C. If there is no choice of G Hall response
compatible with a given symmetry fractionalization pattern in C, there is an ’t Hooft anomaly
present in this system which can be calculated using the method introduced in Sec. 2.4.

3.2 Example: G = U(1)

In this subsection, we consider a 2+1d topological state C with a 0-form global G = U(1)
symmetry. A general method to gauge a U(1) symmetry in a 2+1d TQFT has already been
studied in Ref. [ [14]] via MTC constructions. In the following, we show that the same result
can be obtained using the two-step gauging procedure introduced in Sec. 3.1.

We begin by briefly reviewing the fractionalization of a 0-form U(1) global symmetry in
a 2+1d topological state C [7, 36]. Under the 0-form U(1) global symmetry, each anyon a in
the topological phase C can carry a fractional charge qa that is well defined up to an integer.
A consistent choice of fractional charges qa for all anyons a ∈ C can be encoded by a single
Abelian anyon v1 ∈ C via

ei2πqa = Mav1
, (42)

where Mav1
is the braiding statistics between the anyon a and the Abelian anyon v1. Physically,

the Abelian anyon v1, referred to as the “vison” in Ref. [14], is identified as the anyon excita-
tion generated by the insertion of a 2π flux of the global U(1) symmetry. The relation above
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physically means that the braiding statistics between an anyon a ∈ C and the vison v1 is equiv-
alent to the Aharonov-Bohm phase accumulated when a fractional charge qa moves around a
2π flux. Making a choice of the vison v1 is equivalent to choosing a U(1) symmetry fractional-
ization pattern from H2(U(1),A) =A. With respect to the 0-form U(1) global symmetry, the
topological phase C can also exhibit a quantum Hall response with a Hall conductance σH . It
is well-known that the U(1) quantum Hall conductance σH matches the fractional charge qv1

carried by the vison v1 modulo integers, i.e. qv = σH mod Z [36, 37], which can be proven
by the Laughlin argument. Moreover, the Hall conductance σH and the topological spin θv1

of the vison v1 must satisfy the a consistency relation eiπσH = θv1
[37]. As we will see in

the discussion below, we will re-derive this consistency relation based on the fact if the 2+1d
topological phases C has a consistent U(1) 0-form U(1) global symmetry, one must be able to
consistently gauge it.

For the vison v1, let r be a positive integer such that vr
1 = 1, i.e. r copies of the vison v

fuse into a trivial anyon. From the TQFT perspective, the worldline of the vison v1 generates
a one-form K = Zr symmetry of the TQFT C. The fractional charge qa of each anyon a ∈ C
can now be viewed as the charge of the worldline of anyon a under this one-form K = Zr
symmetry. Now, we perform the group extension of the original 0-form symmetry group U(1):

1→ K = Zr → U(1)→ U(1)→ 1 , (43)

where the U(1) group in the middle is essentially the r-fold cover of the original group U(1)
(i.e. the second U(1) in the exact sequence above). In order to distinguish these two U(1)’s,
we will refer to the original symmetry group as G = U(1) and its r-fold cover as G̃. The
homomorphism v : K = Zr → A, which encodes the same U(1) symmetry fractionalization
pattern specified by the vison v1, maps the generator of K = Zr to v1 ∈A.

When the 0-form symmetry G = U(1) is enlarged to its r-fold cover G̃=U(1), the topolog-
ical phase C no longer has any non-trivial charge fractionalization with respect to G̃. That is
because a fractional charge qa of the anyon a with respect to G corresponds to the charge rqa
with respect to G̃. Since ei2πrqa = Mavr

1
= 1 (because vr

1 is the trivial anyon), rqa must be an
integer.

With respect to the original 0-form symmetry group G = U(1), the quantum Hall responses
of the topological state C can be captured by an effective response action G−σH

that is a U(1)
Chern-Simons term at level −σH . The G = U(1) symmetry fractionalization in C in general
allows for a fractional value of −σH in this effective Chern-Simons response action. When
the 0-form G = U(1) symmetry is enlarged to its r-fold cover G̃, the G−σH

Chern-Simons term
in the effective response action can be naturally extended to a G̃−r2σH

Chern-Simons term.
Since there is no G̃ symmetry fractionalization in C, −r2σH must be an even integer, namely
r2σH ∈ 2Z the standard quantized values allowed for a stand-alone U(1) Chern-Simons gauge
theory (in a bosonic system). In addition, for a dynamical G̃−r2σH

Chern-Simons gauge the-
ory to have a well-defined K = Zr one-form symmetry, the condition rσH ∈ Z must be sat-
isfied. The statement that rσH must be an integer agrees with the fact that σH (modulo
integers) equals to the fractional charge qv1

(under G = U(1)) carried by the vison v1 and

θvr
1
= θ r2

v1
= eiπr2σH = 1 because vr

1 = 1 ∈ C is topologically trivial.
Now we can follow the two-step procedure to gauge the original 0-form G = U(1) global

symmetry of the 2+1d topological phase C. In the first step, we gauge the enlarged symmetry
G̃, resulting in C⊠U(1)−r2σH

. In the second step, we gauge the one-form K = Zr symmetry to
obtain the final result

D = (C ⊠U(1)−r2σH
)/Zr . (44)

The gauging of the one-form K = Zr symmetry of C ⊠ U(1)−r2σH
is equivalent to the con-

densation of a set of Abelian anyons TK whose worldlines generate the one-form K = Zr
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symmetry action in C ⊠U(1)−r2σH
. The one-form K = Zr symmetry action on C is generated

by the worldline of the vison v1. To discuss how the one-form K = Zr symmetry acts on the
U(1)−r2σH

sector, let’s denote the anyons in U(1)−r2σH
as xm with m= 0, 1, ..., r2σH −1. Here

x0 is the trivial anyon. The worldline of the Abelian anyon x rσH generates the one-form Zr
symmetry in U(1)−r2σH

(we have already shown rσH ∈ Z above). The gauging of the one-form
K = Zr symmetry in the TQFT C⊠U(1)−r2σH

is implemented by condensing the set of Abelian
anyons TK = {(vm

1 , xmrσH )|m = 0, 1, .., r − 1}. Under fusion, the Abelian anyons in TK form
the group K = Zr . The consistency of the condensation of TK requires these Abelian anyons
to have bosonic self- and mutual-statistics, which boils down to the condition that

θv1
e−iπσH = 1 , (45)

where the factor e−iπσH = θ̃x rσH is the topological spin of the anyon x rσH in the U(1)−r2σH

sector. Note that this condition is exactly the compatibility condition between the Hall con-
ductanceσH and the vison topological spin θv1

mentioned earlier. Here, we re-derive the same
compatibility condition from the perspective of gauging G = U(1) because a consistent and
anomaly-free 0-form symmetry G = U(1) must imply a consistent way to gauge it and vice
versa. It is also obvious that the compatibility condition can always be satisfied for some σH .

Note that, in the gauging procedure explained above, the positive integer r is defined by
the condition vr

1 = 1 ∈ C. There are infinitely many integers that satisfy the condition: let r1
be the smallest positive integer such that vr1

1 = 1, namely the vison v1 has a Zr1
fusion rule

in C. A positive integer r satisfies vr
1 = 1 if and only if it is a multiple of r1, i.e. r = nr1 with

a positive integer n. Therefore, the one-form group K = Zr and the group extension is not
unique. In the following, we show that this non-uniqueness of K does not affect the final result
of gauging.

In gauging the one-form symmetry K , the set of Abelian anyons
TK = {(vm

1 , xmrσH ) |m = 0,1, .., r − 1} to be condensed in C ⊠ U(1)−r2σH
contains a subset

T ′n = {(v
m′r1
1 , xm′r1rσH ) = (1, xm′r1rσH ) | m′ = 0,1, .., n − 1} which only contains non-trivial

anyon contents in the U(1)−r2σH
sector. Instead of directly condensing the entire set TK at

once to obtain Eq. (44), we can first condense the subset of the Abelian anyons T ′n ⊂ TK and
then condense the rest of TK . It is straightforward to check that the condensation of T ′n in
C ⊠ U(1)−r2σH

results in the TQFT C ⊠ U(1)−r2
1σH

. After we further condense the rest of the
Abelian anyons in TK (but not in the already condensed set T ′n ), we obtain the TQFT

D = (C ⊠U(1)−r2
1σH
)/Zr1

. (46)

Essentially, we’ve shown that the TQFTs (C ⊠U(1)−r2σH
)/Zr with different choices of r (such

that vr
1 = 1 ∈ C) are all equivalent to the TQFT (C ⊠ U(1)−r2

1σH
)/Zr1

, which is exactly the
result obtained in Ref. [14]. Hence, the non-uniqueness of the integer r, which is equivalent
to the non-uniqueness of the one-form symmetry group K , does not affect the final result of
the gauging procedure explained in Sec. 3.1. In fact, such non-uniqueness of the one-form
symmetry group K generally occurs when the Lie group G, the 0-form global symmetry group,
contains at least one U(1) subgroup in its center. As exemplified here, this non-uniqueness of
K generally does not affect the final result of the gauging of G via the two-step procedure.

3.3 Example: G = U(N)

We will now consider G = U(N)where N ≥ 1 is an integer. Recall that U(N) = SU(N)×U(1)
ZN

. The
central extension needed to capture the U(N) symmetry fractionalization in a 2+1d topological

20

https://scipost.org
https://scipost.org/SciPostPhys.14.5.100


SciPost Phys. 14, 100 (2023)

phase C takes the general form

1→ K = ZrN → G̃ = SU(N)×U(1)→ U(N)→ 1 , (47)

where r is a positive integer and the generator of K = ZrN is mapped, under
K = ZrN → SU(N) × U(1), to the product of the generator of the ZN center subgroup of
the SU(N) factor and the 2π

rN rotation in the U(1) factor. The U(N) symmetry fractionalization
pattern in C is encoded by the homomorphism v : K = ZrN → A which can be fully specified
by the image v1, an Abelian anyon in A, of the generator of K = ZrN under v. This conclusion
is consistent with H2[U(N),A] =A.

The G = U(N) Hall response in the topological phase C can be captured by the following
effective action

SU(N) response[A] =

∫

−σ(1)H

4π
Tr
�

−AdA+
2i
3

A3
�

+

∫

−(σ(2)H −σ
(1)
H /N)

4π

�

− Tr(A)d Tr(A)
�

, (48)

where A is a one-form U(N) gauge field. This effective response action contains two different
response coefficients σ(1)H and σ(2)H . Once we extend the symmetry to G̃ = SU(N)×U(1), the
effective action in Eq. (48) is naturally extended to the action of a SU(N)−σ(1)H

⊠U(1)−r2N2σ
(2)
H

Chern-Simons theory. Since the (bosonic) topological order C has no symmetry fractionaliza-
tion under G̃, the following quantization condition must hold: σ(1)H ∈ Z and r2N2σ

(2)
H ∈ 2Z.

In addition, to ensure that the K = ZrN one-form symmetry has a well-defined action on the
U(1)−r2N2σ

(2)
H

sector, σ(2)H must satisfy the condition rNσ(2)H ∈ Z. The compatibility condition

between the symmetry fractionalization is given by

θv1
e−i2π

(N−1)σ(1)H
2N e−iπσ(2)H = 1 , (49)

which always admits solutions for σ(1)H and σ(2)H that respect the quantization condition above.
This is consistent with the fact that there is no ’t Hooft anomaly for U(N) 0-form symmetry in
2+1d.

Once the U(N) symmetry of C is gauged, the resulting TQFT is given by

D = (C ⊠ SU(N)−σ(1)H
⊠U(1)−r2N2σ

(2)
H
)/ZrN . (50)

To describe this result using anyon condensation, we need to introduce the Abelian anyon
s ∈ SU(N)−σ(1)H

whose worldline generates the electric one-form symmetry in the SU(N)−σ(1)H

Chern-Simons gauge theory. Its topological spin is given by θ̃s = e−i2π
(N−1)σ(1)H

2N . In the
U(1)−r2N2σ

(2)
H

sector, we denote all the anyons as xm for m = 0, 1, ..., r2N2|σ(2)H | − 1. The

worldline of the Abelian anyon s′ = x rN |σ(2)H | ∈ U(1)−r2N2σ
(2)
H

generates the K = ZrN

one-form symmetry action in the U(1)−r2N2σ
(2)
H

sector. The topological spin of s′ is given

by θ̃s′ = e−iπσ(2)H . The TQFT D is obtained from condensing the set of Abelian anyons
TK = {(vm

1 , sm, s′m)}m=0,1,...,rN−1 in the TQFT C ⊠ SU(N)−σ(1)H
× U(1)−r2N2σ

(2)
H

. The compati-

bility condition Eq. (49) is simply derived from the requirement that the Abelian anyons in
TK must have bosonic self- and mutual-statistics. We remark that if C has a trivial topological

order, D reduces to U(N)−σ(1)H ,−Nσ(2)H
=
�

SU(N)−σ(1)H
⊠U(1)−N2σ

(2)
H

�

/ZN , where we’ve used the

fact that U(1)−N2σ
(2)
H
= U(1)−r2N2σ

(2)
H
/Zr for any integer r with the Zr quotient generated by

s′N ∈ U(1)−r2N2σ
(2)
H

. In this case, the resulting TQFT D = U(N)−σ(1)H ,−Nσ(2)H
is simply a (bosonic)

G = U(N) Chern-Simons gauge theory.
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3.4 Example: G = U(N)/ZM

Our last example is G = U(N)/ZM . Examples of microscopic theories with such symmetry
include SU(M)k Chern-Simons theory coupled to N flavors of fermions in the fundamental
representation, and U(k)M Chern-Simons theory with N flavors of scalars in the fundamental
representation [16].3 In the SU(M)k theory with matter, the ZM ⊂ U(N) flavor symmetry
is identified with the center of the gauge group, and thus the faithful 0-form global ymme-
try is U(N)/ZM . In the theory of U(k)M coupled to massive scalar fields, the fundamental
U(1) monopole must be dressed with M scalars to be gauge invariant, and hence the cen-
ter ZM ⊂ U(N) symmetry acts trivially on the monopole operators, and the faithful 0-form
global symmetry is U(N)/ZM . Upon giving the matter fields equal masses, these two theo-
ries can flow to pure SU(M)k+N/2 and U(k)M Chern-Simons theories, respectively, enriched by
G = U(N)/ZM 0-form symmetry. It is worthwhile to point out that, in these examples above,
M needs to be even for the theories to be bosonic. But in general, there is no constraint on the
even-odd-ness of M and N for a bosonic topological phase in 2+1d.4

In the following, we first discuss some general mathematical properties of the group
G = U(N)/ZM and its possible extensions. Then we discuss the the symmetry fractionalization,
general gauging process and the ’t Hooft anomaly of G = U(N)/ZM symmetry in 2+1d.

3.4.1 Mathematical properties

Let us discuss mathematical properties of the group G = U(N)/ZM . We can write it as a finite
quotient of SU(N)×U(1):

U(N)/ZM =
SU(N)×U(1)
ZM ×ZN

. (51)

Unpacking this definition, a group element of U(N)/ZM is an equivalence class of group ele-
ments (g1, g2) ∈ SU(N)×U(1) with the following identification

(g1, g2)∼ (e−
2πi
N g1, e

2πi
N g2)∼ (g1, e

2πi
M g2) . (52)

The 2nd (singular) cohomology group of the classifying space BG is generated by three
elements: w(N)2 , w(M)2 , and c1. w(N)2 is ZN -valued, w(M)2 is ZM -valued and c1 is integer-valued.
A G = U(N)/ZM bundle on a spacetime manifold X (viewed as a map from X to BG) induces
a pullback for each of w(N)2 , w(M)2 , and c1, giving rising to the characteristic classes of the

G = U(N)/ZM bundle. w(M)2 is the obstruction class to lifting the U(N)/ZM bundle to a U(N)
bundle. c1 is the first Chern class of the U(N)/ZM bundle. The G = U(N)/ZM bundle induces
a corresponding PSU(N) bundle. w(N)2 is the obstruction class to lifting the induced PSU(N)
bundle to an SU(N) bundle. For any U(N)/ZM bundle, these characteristic classes must obey
the relation [16]:

c1 =
M
L

w(N)2 +
N
L

w(M)2 mod
MN

L
, (53)

where L = gcd(M , N).
For the purpose of characterizing the G = U(N)/ZM symmetry fictionalization in a 2+1d

topological state, the general form of group extension we can consider is given by

1→ K → SU(N)× Ũ(1)→ U(N)/ZM → 1 , (54)

3In such examples, there is also charge conjugation symmetry, which we ignore here.
4For example, SU(M)k theory with N fundamental scalars and U(k)M with N fundamental fermions also have

U(N)/ZM 0-form symmetry, where the theories are bosonic for every M , N . After giving the matter masses, the
theories flow to pure bosonic Chern-Simons theories enriched by the 0-form U(N)/ZM symmetry.
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with

K = (ZM r ×ZN r)/Zr , (55)

and an integer r. If we use (g1, g̃2) to label group elements of the extension SU(N)×Ũ(1), K is
embedded in SU(N)×Ũ(1) such that the generator the ZN r factor is mapped to (e−

2πi
N , e

2πi
rN ) and

the generator the ZM r factor is mapped to (1, e
2πi
rM ). Since (e−

2πi
N , e

2πi
rN )N = (1, e

2πi
rM )M = (1, e

2πi
r ),

the Zr subgroup of ZM r and that of ZN r must be identified, which explains the quotient by Zr
in the definition of K . Notice that, when r = 1, this group extension is exactly the inverse of
the quotient given in Eq. (51). For a general integer r, one can think of the extension Eq. (54)
as the inverse of the quotient Eq. (51) followed by a r-fold-cover extension from U(1) to Ũ(1).

3.4.2 Symmetry fractionalization and gauging

Using the general group extension given in Eq. (54), a G = U(N)/ZM symmetry fraction-
alization pattern of a 2+1d topological phase C can be characterized by the homomorphism
v : K →A. Such a homomorphism v can be fully specified by the image v1 ∈A of the genera-
tor of the ZrM factor of K and the image v2 ∈ A of the generator of the ZrN factor of K . The
structure of K requires the following fusion rules for v1 and v2:

vrM
1 = vrN

2 = 1 , vM
1 = vN

2 . (56)

The topological spins and mutual statistics of v1 and v2 must satisfy

θv1
= ei

2πn1
2rM , θv2

= ei
2πn2
2rN , Mv1v2

= ei
2πn12

r L , (57)

where n1, n2 and n12 are integers such that n1rM and n2rN are both even and

n1M
2r
=

n2N
2r

mod 1 ,
n12M

r L
=

n2

r
mod 1 ,

n12N
r L

=
n1

r
mod 1 . (58)

Now, we discuss the U(N)/ZM Hall response in the topological phase C. The Lie algebra
of G = U(N)/ZM allows us to locally express a U(N)/ZM gauge field A using an SU(N) gauge
field ASU(N) and a U(1) gauge field AU(1). The G = U(N)/ZM Hall response action can be locally
written as

∫

−σ(1)H

4π
Tr
�

−ASU(N)dASU(N) +
2i
3
(ASU(N))3

�

+

∫

−σ(2)H N2M2

4πL2
AU(1)dAU(1) , (59)

where the U(1) gauge field AU(1) is normalized such that the first Chern class of a G = U(N)/ZM

bundle can be effectively written as c1 =
MN

L
dAU(1)

2π . When M = 1, this response action reduces
to the response theory given in Eq. (48).

When we extend the symmetry to G̃ = SU(N) × Ũ(1) following Eq. (54) and gauge G̃,
the response action above leads to the Chern-Simons theory SU(N)−σ(1)H

⊠ Ũ(1)−σ(2)H N2M2r2/L2 .

Such a Chern-Simons theory needs to be well-defined as a bosonic TQFT and needs to have
a K one-form symmetry, which results in the quantization conditions:

σ
(1)
H ∈ Z ,

σ
(2)
H N2M2r2

L2
∈ 2Z ,

σ
(2)
H N M r

L
∈ Z . (60)

To reduce the burden of notations, we will also define

k1 = σ
(1)
H , k2 =

σ
(2)
H N2M2r2

L2
. (61)
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The quantization condition for k1,2 are then given by

k1 ∈ Z , k2 ∈ 2Z , k2 ∈
N M r

L
Z . (62)

Now we discuss the K one-form symmetry actions. In the SU(N)−k1
sector, the ZrM factor

of K acts trivially while the ZrN factor acts as the electric one-form symmetry of the SU(N)−k1

Chern-Simons theory, generated by the worldline of the Abelian anyon s2 ∈ SU(N)−k1
whose

topological spin is θ̃s2
= e−i

2π(N−1)k1
2N . For the Ũ(1)−k2

sector, we denote all the anyons as xm

for m = 0, 1, ...., |k2| − 1. The factor ZrM of the K one-form symmetry is generated by the

worldline of the Abelian anyon s′1 = x
k2
rM and the factor ZrN is generated by the worldline of

the Abelian anyon s′2 = x
k2
rN . The topological spins and mutual statistics of s′1,2 are given by

θ̃s′1
= e−i

2πk2
2r2M2 , θ̃s′1

= e−i
2πk2

2r2N2 , and M̃s′1s′2
= e−i

2πk2
r2MN .

Following our general two-step gauging procedure, when we gauge the 0-form global
U(N)/ZM global symmetry of C, we obtain the topological phase

D = (C ⊠ SU(N)−k1
⊠U(1)−k2

)/K , (63)

where the gauging of the one-form symmetry K is equivalent to the condensation of the Abelian
anyons b1 = (v1, 1, s′1) and b2 = (v2, s2, s′2) in the TQFT C ⊠ SU(N)−k1

⊠ U(1)−k2
. For the

consistency of such condensation, we require the conditions

θb1
= θv1

θ̃s′1
= ei

2πn1
2rM e−i

2πk2
2r2M2 = 1 , (64)

θb2
= θv2

θ̃s2
θ̃s′1
= ei

2πn2
2rN e−i

2π(N−1)k1
2N e−i

2πk2
2r2N2 = 1 , (65)

Mb1 b2
= Mv1v2

M̃s′1s′2
= ei

2πn12
r L e−i

2πk2
r2MN = 1 . (66)

These conditions above are the compatibility condition for the Hall conductance σ(1)H = k1

and σ(2)H = L2

N2M2r2 k2 in the symmetry fractionalization pattern specified by v1 and v2. We can
always choose

k2 =
rMN

L
n12 + r2MN t2 , (67)

for some t2 ∈ Z to make sure that Mb1 b2
= 0, while maintaining the quantization condition

k2 ∈ 2Z and k2 ∈
N M r

L Z. However, θb1
= θb2

= 1 does not always have solutions that respects
the quantization condition Eq. (62). When the solution does not exist, the 2+1d topological
state C has an anomalous G = U(N)/ZM symmetry.

3.4.3 ’t Hooft Anomaly

To analyze the G = U(N)/ZM ’t Hooft anomaly, we can always first let k2 to take the form in
Eq. (67). In this case, the topological spins of b1 and b2 are given by

θb1
= exp

§

i
2π
2M

�

n1

r
−

Nn12

r L
− N t2

�ª

,

θb2
= exp

§

i
2π
2N

�

n2

r
−

Mn12

r L
−M t2 − (N − 1)k1

�ª

. (68)

Using the conditions in Eq. (58), we can conclude that θM2

b1
= θN2

b2
= ±1 and θ2M

b1
= θ2N

b2
= 1.

In the following, we analyze the cases with even MN and odd MN separately.
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Case 1: even MN - When MN is even, the form of Eq. (68) and the conditions in Eq. (58)
guarantee that at least one of θM2

b1
and θN2

b2
equals to 1. With the further observation

bM
1 = bN

2 ∈ C ⊠ SU(N)−k1
⊠ U(1)−k2

, we can conclude θM2

b1
= θN2

b2
= 1.5 Knowing that

θN2

b2
= 1, there must exist a choice of k1 ∈ Z such that θb2

= 1, which indicates that the
non-trivial ’t Hooft anomaly is induced by the non-trivial topological spin θb1

of the Abelian
anyon b1 ∈ C ⊠ SU(N)−k1

⊠U(1)−k2
.

The worldline of b1 generates the ZrM subgroup of the K one-form symmetry of
C ⊠ SU(N)−k1

⊠ U(1)−k2
. The two-form background gauge field B1 associated with this ZrM

one-form subgroup symmetry is a ZrM -valued two-cocycle in the spacetime that satisfies

B1 = w(M)2 [A] mod M , (69)

where A is the background G = U(N)/ZM gauge field.6 When w(N)2 [A] = 0, B1 further satisfies

N
L

B1 = c1[A] mod
rMN

L
, (70)

which, according to Eq. (53), effectively extends Eq. ((69)) beyond “mod M”.
Since θM2

b1
= 1 and θ2M

b1
= 1, the ’t Hooft anomaly induced by the non-trivial topological

spin θb1
only concerns B1 mod M for both even and odd M . The 3+1d G = U(N)/ZM 0-form

symmetry SPT phase effective action that captures this anomaly is given by

SU(N)/ZM -SPT =

∫

2π
2M

�

n1

r
−

Nn12

r L
− N t2

�

P(w(M)2 [A]) , for even M ,

SU(N)/ZM -SPT =

∫

2π
M

�

n1

2r
−

Nn12

2r L
−

1
2

N t2

�

w(M)2 [A]∪ w(M)2 [A] , for odd M ,

(71)

where P is the generalized Pontryagin square that maps a ZM -valued two-cocycle to a Z2M -
valued four-cocycle for even M . The property that θM2

b1
= 1 and θ2M

b1
= 1 ensure that the two

expressions within the big parenthesis above both evaluate to integers.
Case 2: odd MN - When MN is odd, we can always find k1 ∈ Z such that θb2

= (−1)nb2

for nb2
∈ {0,1}. Both θb1

and θb2
, as long as they are finite, can lead to an ’t Hooft anomaly.

Similar to b1, the worldline of b2 generates the ZrN subgroup of the K one-form symmetry
of C ⊠SU(N)−k1

⊠U(1)−k2
. The two-form background gauge field B2 associated with this ZrN

one-form subgroup symmetry is a ZrN -valued two-cocycle in the spacetime that satisfies

B2 = w(N)2 [A] mod N , (72)

where A is the background G = U(N)/ZM gauge field. When w(M)2 [A] = 0, B1 further satisfies

M
L

B2 = c1[A] mod
rMN

L
. (73)

Note M
L is an odd integer.

Since both M and N are odd, θM2

b1
= θN2

b2
= (−1)nb2 which implies nb2

=
�

n1
r −

Nn12
r L − N t2

�

mod 2. The ‘t Hooft anomaly induced by both θb1
and θb2

can be captured by the effective

5Note that we have used the fact that the Abelian anyon s2 ∈ SU(N)−k1
has a ZN fusion rule.

6To understand this relation, one can first consider condensing the anyon bM
1 which would reduce the ZrM -

valued two-cocycle B1 to a ZM -valued one. Once bM
1 is condensed, the worldline of b1 becomes the generator of a

ZM one-form symmetry, which is the same ZM appearing on the right hand side of Eq. (51).
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action of a 3+1d U(N)/ZM 0-form symmetry SPT phase:

SU(N)/ZM -SPT =

∫

2π
M

(1+ nb2
M)

2

�

n1

r
−

Nn12

r L
− N t2

�

w(M)2 [A]∪ w(M)2 [A]

−
∫

πnb2

�

n1

r
−

Nn12

r L
− N t2

�

c2
1 . (74)

Note that
(1+nb2

M)
2

�

n1
r −

Nn12
r L − N t2

�

must be an integer for either nb2
= 0,1. When

w(M)2 [A] = 0, the c2
1 term accounts for effect of a non-trivial θb2

. The term proportional
to c2

1 can be viewed as a Θ-term. Its coefficient, namely the “Θ-angle”, can be continu-
ously tuned to 0 without changing the topological nature of the U(N)/ZM 0-form symme-

try SPT phase. One can further simplify the effective action by replacing the factor
(1+nb2

M)
2

in the first term by (1+M)
2 . This replacement only changes the effective action by an ex-

tra term 2π
2

�

n1
r −

Nn12
r L − N t2

�

∫

w(M)2 [A] ∪ w(M)2 [A] when nb2
= 0. However, when nb2

= 0,

θM2

b1
= θN2

b2
= 1 implies that 1

2

�

n1
r −

Nn12
r L − N t2

�

∈ Z. Therefore, the extra term is always an
integer multiple of 2π and, hence, trivial. Now, we can use the following simplified effective
action for the 3+1d U(N)/ZM 0-form symmetry SPT phase to characterize the ’t Hooft anomaly
for the U(N)/ZM symmetry in the 2+1d topological state C:

S′U(N)/ZM -SPT =

∫

2π
M

1+M
2

�

n1

r
−

Nn12

r L
− N t2

�

w(M)2 [A]∪w(M)2 [A] . (75)

4 Field theoretic approach to symmetry fractionalization and one-
form symmetry

In this section we provide more explicit, field-theoretical description of gauging 0-form symme-
try using the one-form symmetry. The discussion in this section holds also for gapless systems,
and the systems can be bosonic or fermionic, as long as the G 0-form symmetry only acts on
the line operators according to the fractionalization class µ and does not act on local operators.
An example is the ν= 5/2 fractional quantum Hall effective field theory proposed in Ref. [38]
enriched by U(1) 0-form symmetry.

4.1 General procedure

Consider A 0-form symmetry G, which can be a general group. Suppose the field theory for
the physical system under consideration has a one-form symmetry A, which means that the
theory can be coupled to a background two-form gauge field B for the one-form symmetry. We
assume that G acts on the field theory of the physical system through the one-form symmetry
A by the relation

B = µ[A] , (76)

where µ ∈ H2(BG,A) labels the symmetry fractionalization class. In other words, the field
theory coupled to the above configuration of the background two-form gauge field B, whose
value is expressed in terms of the one-form background gauge field A for the global G symmetry
as shown above. It is crucial for our derivation below that Eq. (76) is the only coupling to the
G gauge field A. In particular, G does not act on local operators. In a TQFT, this assumption
is naturally satisfied (with A identified with the group of Abelian anyons) since there are no
nontrivial local operators. For non-topological, possibly gapless theories, the discussion only
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applies to those that satisfy the assumption. Note that the notation µ was used to denote the
extension class H2(BG, K) in Sec. 2 and Sec. 3. In this section, µ ∈ H2(BG,A) denotes the the
symmetry fractionalization class.

As discussed previously, the anomaly of the 0-form symmetry is given by the anomaly of
the one-form symmetry, as described by the 3+1d effective action:

2π

∫

h[B] = 2π

∫

h[µ[A]] , (77)

where h : A×A→ R/Z is the quadratic function on the one-form symmetry group A given
by the topological spin of the corresponding topological line operators that generate the one-
form symmetry. This 3+1d effective action 2π

∫

h[B] can be viewed as that of a 3+1d SPT
phase with one-form symmetry A. In the following, we will enrich the theory with G 0-form
symmetry by “embedding” the 0-form symmetry in one-form symmetry, as characterized by
µ ∈ H2(BG,A), and only the image of µ in A is relevant in the following discussion. More
explicitly, we view µ as a map from all 2-cycles of BG to A, then Imµ is defined as the image
of this map.7

When there exists a 2+1d local counterterm S[A] of the G background gauge field that can
cancel the bulk topological term via

2π

∫

h[µ[A]] +

∫

dS[A] = 0 mod 2π , (78)

we can add such a local counterterm S[A], and the G symmetry is not anomalous. In the pre-
vious discussions in Sec. 2 and Sec. 3, the counterterms S[A] are given by Chern-Simons terms
with the gauge group G. They essentially capture the Hall response of the physical systems
with respect to the continuous symmetry G. There are different such local counterterms, dif-
fered by stacking a well-defined SPT phase with G symmetry. If no such local counterterm that
can cancel the bulk term exists, the G symmetry is anomalous. Once we select a counterterm
S[A] that satisfies Eq. (78), we can gauge the G symmetry by promoting A to be a dynamical
field.

Suppose the G symmetry is not anomalous. Let us fix a choice of local counterterm S[A]
(i.e. fixing the Hall conductance), and gauge the 0-form G symmetry. To implement the
relation B = µ[A], we can promote B to be a dynamical field, and introduce a Lagrangian
multiplier one-form gauge field a that takes value in the Poincaré dual Â = Hom(A,U(1)) (it
is isomorphic to A for finite Abelian group A), which contributes the 2+1d action

∫

〈a, B −µ[A]〉=
∫

〈a, B〉 −
∫

〈a,µ[A]〉 , (79)

where 〈, 〉 is the bilinear pairing induced by the canonical pairing of A and Â. Denote the
partition function of the 2+1d theory C coupled to gauge field B by ZC[B]. The theory D after
gauging the G symmetry has the partition function

ZD =
∑

B

ZC[B]ZG̃[B], ZG̃[B]≡
∑

a,A

ei
∫

〈a,B〉e−i
∫

〈a,µ[A]〉eiS[A] . (80)

In the partition function ZG̃[B = 0], a is a Lagrangian multiplier that enforces µ[A] to be trivial.
This means that the G background gauge field is also G̃ background gauge field with extension
class µ[A],

1→ Imµ→ G̃→ G→ 1 . (81)
7When G is finite, we can give a more algebraic description of Imµ: consider all group two-cocycles µ(g, h)

for g, h ∈ G, and form all formal products of a finite number of the two-cocycles, such that the expressions are
invariant under coboundary transformations. These are basically the 2-cycles of BG. For a given µ in H2(G,A),
these expressions should evaluate to a finite subset of A, defined as Imµ.
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where Imµ is the image of µ in A defined earlier. The partition function ZG̃[0] is thus a G̃
gauge theory with action S[A], where A as a G̃ gauge field is constrained to have trivial µ[A].
Here, we have essentially extended G using the “minimal” choice of K that is sufficient to
capture the symmetry fractionalization pattern specified by µ ∈ H2(BG,A).

This G̃ gauge theory described by the partition function ZG̃[B] has a one-form symmetry
generated by s = ei

∮

a (there can be multiple generators collectively denoted by s) that cou-
ples to B in the partition function ZG̃[B]. Since B effectively takes value in Imµ due to the
Lagrangian multiplier a, s generates an Imµ one-form symmetry in the G̃ gauge theory. Like-
wise, in the theory C there are Abelian anyons v that generate the one-form symmetry Imµ
⊂A which couples to B.

In the partition function ZD =
∑

B ZC[B]ZG̃[B] of the gauged theory D, the summation
over B implies that we gauge the diagonal Im µ one-form symmetry generated by v ⊗ s in the
tensor product of the theory C and the G̃ gauge theory with action S[A]. Thus, we find that
after gauging the G symmetry, the theory D is

C ⊠
�

G̃ gauge theory with action S[A]
�

Im µ
, (82)

where the local counterterm S[A] can be chosen to be a topological action of the G̃ gauge field.
In particular, S[A] are chosen to be Chern-Simons terms of G̃ for all compact connected Lie
group G discussed in Sec. 2 and Sec. 3 where C is a 2+1d topological phase and the Chern-
Simons counterterms naturally reflects the Hall response.

In the following we will illustrate the above discussion using the examples
G = U(1) , U(N) ,U(N)/ZM . We compare the results of these field theoretic discussions with
the previous discussion in Sec. 3. Moreover, we consider an example where we gauge the 0-
form global symmetry G in a gapless theory.

4.2 Example: G = U(1)

Let’s consider a 2+1d topological phase C with a 0-form G = U(1) global symmetry. Any U(1)
symmetry fractionalization can be captured by coupling C to the U(1) background gauge field
A via the A-valued two-form gauge field B for the one-form symmetry:

B = ιc1 , (83)

where c1 is the first Chern class of the background U(1) gauge field. A is the one-form sym-
metry of the topological phase C, generated by the group of Abelian anyons in C. ι : Z→ A
is a homomorphism, which can be specified by the image Abelian anyon v1 ∈ A of the gen-
erator of Z. Here, the symmetry fractionalization class is given by ιc1 ∈ H2(U(1),A). This
Abelian anyon v1 is referred to as the “vison” in Sec. 3.2 and in Ref. [14]. More concretely,
if A =

∏

ZNi
, we can denote the Abelian anyon v1 by its component qi ∈ ZNi

, collectively
as {qi} ∈ A =

∏

ZNi
. Let Bi be the ZNi

-valued two-form gauge field associated with the ZNi

factor of A. The relation above is Bi = qic1 mod Ni . Let us denote the order of the Abelian
anyon v1 by r, namely the v1 has a Zr fusion rule. Then, K = Zr which is the image of ιc1.
Hence, G̃ = Ũ(1), which is the extension of G = U(1) by K , is the r-fold covering of G = U(1),

The anomaly of the one-form symmetry can be described by topological spin of the Abelian
anyon v1. The topological spin of an Abelian anyon is encoded in a quadratic function
h : A → R/Z via ei2πh. Since v1 has a Zr fusion rule, the topological spin of the v1 can be
θv1
= e

i2πn
2r for some integer n. Note that since vr

1 = 1, we must have θ r2

v1
= eπinr = 1, so nr

must be an even integer. For n ̸= 0 mod 2r in bosonic systems, there is an anomaly for the
Zr subgroup one-form symmetry. For B = ιc1, the anomaly is described by the 3+1d effective
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action

2π

∫

h[B] = 2π
n
2r

∫

c2
1 , (84)

which can be canceled via Eq. (78) by a local counterterm

S[A] =
k− n/r

4π
AdA , (85)

where we have included a properly-quantized Chern-Simons term for G = U(1) labeled by
an integer k that is even for bosonic theories. Such properly quantized Chern-Simons term
does not depend on the bulk. Physically, the coefficient k − n/r is related to the U(1) Hall
conductance σH = −k + n/r of the topological phase C. In terms of G̃ gauge field Ã, A= rÃ,
and the action for G̃ is Ũ(1)kr2−nr :

S[Ã] =
kr2 − nr

4π
ÃdÃ . (86)

We observe that in terms of G̃ = Ũ(1) gauge field, the above Chern-Simons term is properly-
quantized, but not in terms of the G = G̃/Zr gauge field, unless n= 0 mod 2r.

Since the bulk term Eq. (84) is canceled by the local counterterm Eq. (85) via Eq. (78),
the G = U(1) symmetry is free of any ’Hooft anomaly, and after gauging the symmetry G, the
theory becomes

D =
C × Ũ(1)kr2−nr

Zr
, (87)

where the Zr quotient denotes gauging the diagonal Zr subgroup one-form symmetry gener-
ated by the tensor product of v and the charge-(kr − n) Wilson line of Ũ(1)kr2−nr . This result
is exactly Eq. (46) that we obtained earlier.

4.3 Example: G = U(N)

Let’s consider a 2+1d topological phase C with a 0-form G = U(N) global symmetry. Similar to
the U(1) case, a U(N) symmetry fractionalization can be captured by coupling C to the U(N)
background gauge field A via the A-valued two-form gauge field B:

B = µ[A] = ιc1 , (88)

where c1 is the first Chern class of the background U(N) gauge field A and ι : Z → A is a
homomorphism, which can be specified by the image Abelian anyon v1 ∈ A of the generator
of Z. This is completely in parallel with the discussion in the previous example on U(1).

We denote the order of the Abelian v1 as r ′. The Abelian anyon v1 must have a topological
spin θv1

= ei2πn/(2r ′), for some integer n. Note that nr ′ must be even in the bosonic theory C.
The anomaly of the one-form symmetry can be described by the topological spin h of the

Abelian anyon v1. The anomaly is described by the bulk effective action

2π

∫

h[µ[A]] = 2π
n

2r ′

∫

c2
1 . (89)

Since c1 = Tr dA
2π for the U(N) gauge field A, this term can always be canceled by a fractional-

level Chern-Simons term U(N)0,−nN/r ′ . More generally, we can further include an extra prop-
erly quantized Chern-Simons term U(N)k1,k2

with integers k1, k2. For bosonic theories, k1, k2
should satisfy k1 − k2 ∈ NZ, and k1 + (k2 − k1)/N ∈ 2Z. Hence, the general fractional-level
Chern-Simons counterterm that can cancel Eq. (89) takes the form U(N)k1,k2−N/r ′ . Let us
denote such Chern-Simons action by SU(N)k1,k2−nN/r′

[A]. Physically, this action SU(N)k1,k2−nN/r′
[A]
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captures the U(N) Hall response of the topological phase C. In particular, we should identify
k1 with the −σ(1)H and k2/N − n/r ′ with −σ(2)H defined in Eq. (48).

Let’s describe the theory after gauging the G = U(N) symmetry. Following the derivation
in, the total partition function after gauging the 0-form G = U(N) symmetry is

ZD =
∑

B

ZC[B]ZG̃[B], ZG̃[B]≡
∑

a,A

ei
∫

〈a,B〉e−i
∫

〈a,µ[A]〉e
iSU(N)k1,k2−nN/r′

[A]
. (90)

From this partition function, the resulting theory D naively takes the form (C ⊠X )/A , where
X is the theory whose partition function is given by ZG̃[B]. X has an A one-form symmetry
and couples to the two-form gauge field B for the A one-form symmetry. In fact, after we
integrate out the Lagrangian multiplier filed a, B only takes values in the Zr ′ subgroup, which
is the image of µ= ιc1, of A. Hence, the quotient by A can be effectively replaced by gauging
a diagonal Zr ′ one-form symmetry that acts on both C and X .

Let’s describe the theory X without coupling to B field. We note that in e−i
∫

〈a,µ[A]〉, the
field a acts as a Lagrangian multiplier that enforces c1 to be a multiple of r ′. Hence, we can
write

c1 = r ′ c̃1 , (91)

where c̃1 is the first Chern class of a U(1) bundle whose gauge group is denoted as Ũ(1). This
Ũ(1), which is the center subgroup of the extend group G̃, is essentially the r ′-fold covering of
the center U(1) subgroup of original symmetry group G = U(N). Since the obstruction w(N)2 to

lifting a G = U(N) bundle to a SU(N)×U(1) bundle satisfies c1 = w(N)2 mod N , this means w(N)2
is a multiple of r ′ for G̃ bundle, and the faithful ZN quotient in U(N) = (SU(N)× U(1))/ZN
becomes a ZN/gcd(N ,r ′) quotient after the extension. The extension group is thus

G̃ ∼=
SU(N)× Ũ(1)
ZN/gcd(N ,r ′)

. (92)

For instance, if r ′ = N , then the group G̃ is SU(N) × Ũ(1). If r ′ = 1, the extension is
trivial, i.e. G̃ = G. In general, the G̃ bundles are particular U(N) bundles that satisfy
c1 mod N = w(N)2 ∈ r ′Z.
We can write X as an SU(N) × Ũ(1) Chern-Simons gauge theory subject to the faithful
ZN/gcd(N ,r ′) quotient

X =
SU(N)k1

⊠ Ũ(1) r′2
gcd(N ,r′)2

N(k2−nN/r ′)

ZN/gcd(N ,r ′)
, (93)

where the ZN/gcd(N ,r ′) quotient is generated by the Wilson line ρr ′ , where

ρ =WSU(N) ⊗WŨ(1) , (94)

where WSU(N) is the SU(N)Wilson line in the k1-index symmetric tensor representation which
generates the electric ZN center one-form symmetry of SU(N)k1

, and WŨ(1) is the charge
r ′

gcd(N ,r ′)(k2 − nN/r ′) Wilson line of Ũ(1) gauge field in Ũ(1) r′2
gcd(N ,r′)2

N(k2−nN/r ′)
. The Chern-

Simons action that describes the theory X essentially is obtained from SU(N)k1,k2−nN/r′
[A] in

Eq. (90) by extending the U(1) center gauge group to its r ′-fold cover. The Chern-Simons
action for X is properly quantized. That is to say the ZN/gcd(N ,r ′) quotient in the expression of

X is free of any anomaly, which is due to the fact that ρr ′ has a bosonic topological spin

θ̃ρr′ = exp
§

i2π
�

k1(N − 1)
2N

r ′2 + r ′2
k2 − nN/r ′

2N

�ª

= exp
§

i2π
�

r ′2
�

k1

2
+

k2 − k1

2N

�

−
nr ′

2

�ª

= 1 , (95)
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where we’ve used the condition that U(N)k1,k2
is a properly quantized bosonic Chern-Simons

term for a U(N) gauge group, and nr ′ is even in bosonic theory C.
X has an Abelian anyon ρ that satisfies ρr ′ = 1. It has topological spin

θ̃ρ = exp
§

i2π
�

k1(N − 1)
2N

+
k2 − nN/r ′

2N

�ª

= exp
§

i2π
��

k1

2
+

k2 − k1

2N

�

−
n

2r ′

�ª

= exp
n

−i2π
n

2r ′

o

, (96)

where we’ve again used the condition that U(N)k1,k2
is a properly quantized bosonic Chern-

Simons term for a U(N) gauge field.
Thus, the theory D after gauging the 0-form symmetry G = U(N) is

D = C ⊠X
Zr ′

=
C ⊠ SU(N)k1

⊠ Ũ(1) r′2
gcd(N ,r′)2

N(k2−nN/r ′)

ZN r ′/gcd(N ,r ′)
, (97)

where the quotient is generated by condensing v ⊗ ρ, whose worldline generates
the Zr ′ one-form symmetry in C ⊠ X and the ZN r ′/gcd(N ,r ′) one-form symmetry in
C ⊠ SU(N)k1

⊠ Ũ(1) r′2
gcd(N ,r′)2

N(k2−nN/r ′)
. This result of D is equivalent to the result Eq. (50) in

Sec. 3.3. We simply need to identify the Abelian anyon v1 in this subsection with the Abelian
anyon v1 introduced in Sec. 3.3 and set r = r ′

gcd(r ′,N) . Note that for the Abelian anyon v1 that
characterizes the symmetry fractionalization pattern in C, when v1 has a Zr ′-fusion rule, the
minimal choice of K in the group extension Eq. (47) is given by K = ZrN = ZN r ′/gcd(r ′,N). The
Abelian anyon ρ ∈ SU(N)k1

⊠ Ũ(1) r′2
gcd(N ,r′)2

N(k2−nN/r ′)
appearing in this subsection should be

identified with the Abelian anyon (s, s′) introduced in Sec. 3.3.

4.4 Example: G = U(N)/ZM

4.4.1 Symmetry fractionalization

Let’s consider a 2+1d topological phase C with a 0-form G = U(N)/ZM global symmetry. The
U(N)/ZM symmetry fractionalization in C can be described by coupling C to the U(N)/ZM
background gauge field A via the A-valued two-form gauge field B:

B = µ[A] , (98)

where µ ∈ H2(BU(N)/ZM ,A).
We will discuss µ[A] in more details as follows. As discussed in Sec. 3.4.1, for a U(N)/ZM
background gauge field A, or equivalently for a U(N)/ZM gauge bundle, there are three type
of characteristic classes: w(M)[A], w(N)[A] and c1. We will drop the “[A]” part to simplify the
notation in the following. Recall that w(M)[A] is aZM -valued two-cocycle, w(N)[A] isZN -valued
two-cocycle and c1 is a Z-valued two-cocycle, which satisfy the relation Eq. (53):

c1 =
M
L

w(N)2 +
N
L

w(M)2 mod
N M

L
, (99)

with L ≡ gcd(M , N). The fractionalization class µ ∈ H2(BU(N)/ZM ,A) can be expressed as a
linear combination of w(N)2 , w(M)2 , c1

µ[A] = ι(N)w(N)2 + ι(M)w(M)2 + ιc1 , (100)
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with homomorphisms ι(N) : ZN →A, ι(M) : ZM →A, and ι : Z→A. More explicitly, in terms
of A=

∏

i ZNi
, the expression of µ[A] is

µ[A]i = αiw
(N)
2 + βiw

(M)
2 + γic1 mod Ni , αi ,βi ,γi ∈ ZNi

, (101)

where µ[A]i is the restriction of the A-valued two-cocycle to the ZNi
factor of A.

We remark that one might worry that the coefficients αi , βi , γi could be fractional due to the
relation Eq. 99. Given A=

∏

ZNi
, such fractional terms can be written as

pi

di

�

c1 −
M
L

w(N)2 −
N
L

w(M)2

�

mod Ni , (102)

where di , pi are integers, and di is a divisor of MN/L, such that the above expression is an
integer, but the coefficients for c1, w(N)2 , w(M)2 separately may not be integers. For such term

to be well-defined, in particular invariant under shifting w(N)2 by a multiple of N , we need
pi MN/(Ldi) = 0 mod Ni . But this is equivalent to setting the above expression to be zero
modulo Ni , since c1 −

M
L w(N)2 − N

L w(M)2 is a multiple of MN/L by the relation (99). Another

way to see this is that we can first express µ[A] in terms of independent w(N)2 , w(M)2 , c1, then
impose the relation (99) by a Lagrangian multiplier. Then it is clear that the coefficients αi ,
βi , γi represent homomorphisms from ZN ×ZM ×Z to A.
The image of the generator of ZN under the homomorphism ι(N) is an Abelian anyon
u1 = {αi} ∈ A =

∏

i ZNi
. Similarly, the images of the generators of ZM and Z under ι(M)

and ι respectively are Abelian anyons u2 = {βi} and u3 = {γi}. Let’s denote the order of u3 by
r ′. Also considering that µ[A] must be invariant under changing w(N)2 , w(M)2 by multiples of N
and M respectively, the Abelian anyons u1, u2 and u3 satisfy

uN
1 = 1 , uM

2 = 1 , ur ′
3 = 1 . (103)

We can view the three Abelian anyons (u1, u2, u3) as a parameterization of the symmetry frac-
tionalization pattern µ ∈ H2(BU(N)/ZM ,A). Since w(N)2 , w(M)2 , c1 obey the relation (99), the
parameterization of µ in terms of u1, u2, u3 has a redundancy given by adding multiples of
c1−

M
L w(N)2 − N

L w(M)2 . That is to say that there are equivalent classes of such parameterizations
given by the equivalence relation:

(u1, u2, u3)∼ (u1uM/L , u2uN/L , u3u−1) , (104)

for any Abelian anyon u that satisfies uMN/L = 1. Note that this relation does not mean the
anyons are identified in the TQFT. Rather, it means that two sets of (u1, u2, u3) related in
the way shown above correspond to the same symmetry fractionalization pattern µ. From
(u1, u2, u3), we can define two combinations of Abelian anyons that do not depend on the
choice of u:

v1 := u2uN/L
3 , v2 := u1uM/L

3 , (105)

which satisfy

vM r ′/gcd(r ′,MN/L)
1 = 1 , vN r ′/gcd(r ′,MN/L)

2 = 1 , v−N
2 vM

1 = 1 . (106)

Since v1 and v2 are the same within a given equivalent class of (u1, u2, u3), one can view them
as a non-redundant parameterization of the symmetry fractionalization pattern µ, as we did
in Sec. 3.4.2. To more explicitly connect the current discussion with the previous discussion in
Sec. 3.4.2, we should identify the parameter r introduced in Sec. 3.4.2 with r ′/gcd(r ′, MN/L)
(or a multiple of r ′/gcd(r ′, MN/L)). Then, the Abelian anyons v1, v2 obey the fusion algebra
K = (ZM r ×ZN r)/Zr given in Eq. (55). 8

8Or equivalently, for v1, v2 to have all the possible spins as the anyons that obey K = (ZM r × ZN r)/Zr fusion
rule, we can consider the case with r ′ = MN r/L.

32

https://scipost.org
https://scipost.org/SciPostPhys.14.5.100


SciPost Phys. 14, 100 (2023)

4.4.2 ’t Hooft Anomaly

The anomaly for the G = U(N)/ZM symmetry for the fractionalization class µ can be computed
from the anomaly of the one-form symmetry via the relation (98). The anomaly for the one-
form symmetry is described by the topological spins and mutual statistics of the Abelian anyons
u1, u2 and u3 in the TQFT C, denoted by the quadratic function h : A→ R/Z. The topological
spins and mutual statistics of u1, u2, u3 can be parameterized as

θu1
= e2πin′1/(2N) , θu2

= e2πin′2/(2M) , θu3
= e2πin′3/(2r ′) ,

Mu1,u2
= e2πin′12/gcd(M ,N) , Mu1,u3

= e2πin′13/gcd(N ,r ′) , Mu2,u3
= e2πin′23/gcd(M ,r ′) , (107)

for some integers n′1, n′2, n′3, n′12, n′13, and n′23. Also, n′1N , n′2M and n′3r ′ are all even integers
for the TQFT C in a bosonic system. We will see in the following that the ‘t Hooft anomaly
only depends on the equivalent classes of (u1, u2, u3) (defined by the equivalence relation Eq.
(104)) and, hence, is intrinsic to the symmetry fractionalization pattern µ.
Denote by h the R/Z-valued quadratic function on A that encodes the topological spins of the
Abelian anyons in A via ei2πh. The anomaly contribution induced by the one-form symmetry
is described by the 3+1d effective action

Sanom = 2π

∫

h[B] = 2π

∫

h[µ[A]]

= 2π

∫ �

n′1
2N

P(w(N)2 ) +
n′2

2M
P(w(M)2 ) +

n′3
2r ′

c2
1

�

+ 2π

∫ �

n′12

L
w(N)2 ∪ w(M)2 +

n′13

gcd(N , r ′)
w(N)2 ∪ c1 +

n′23

gcd(M , r)
w(M)2 ∪ c1

�

, (108)

where the first line uses (98). Here, we have adopted a short hand notation P . For P(w(N))
with even N , P should be understood as the Pontryagin square and P(w(N)) is a Z2N -valued
four-cocycle. For P(w(N))with odd N , it should be understood as P(w(N)) = w(N)∪w(N), which
is a ZN -valued four-cocycle. P(w(M)) should be interpreted similarly. Using the relation (99),
we can express it as

Sanom = 2π

∫ ��

n′1
2N
+

n′13M/L

gcd(N , r ′)

�

P(w(N)2 ) +

�

n′2
2M
+

n′23N/L

gcd(M , r ′)

�

P(w(M)2 ) +
n′3
2r ′

c2
1

�

+ 2π

∫ �

n′12

L
+

n′13N/gcd(N , r ′)

L
+

n′23M/gcd(M , r)

L

�

w(N)2 ∪ w(M)2 .

(109)

We can show that this anomaly can be expressed in terms of the statistics of v1 = u2uN/L
3 and

v2 = u1uM/L
3 which are given by θv1

= e2πihv1 , θv2
= e2πihv2 , and Mv1,v2

= e2πiS12 with

hv2
=

n′1
2N
+

n′13M/L

gcd(N , r ′)
+

n′3(M/L)
2

2r ′
, hv1

=
n′2

2M
+

n′23N/L

gcd(M , r ′)
+

n′3(N/L)
2

2r ′
,

S12 =
n′12

L
+

n′13N/L

gcd(N , r ′)
+

n′23M/L

gcd(M , r ′)
+

n′3
r ′

MN
L2

. (110)

We introduce Z-valued cochains w̃(N r)
2 and w̃(M r)

2

w̃(N r)
2 := w(N)2 + Nc1 , w̃(M r)

2 := w(M)2 +Mc1 , (111)
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where we’ve taken lifts of w(N)2 , w(M)2 to integer cochains. These integer lifts of w(N)2 , w(M)2 (still
denoted using same notations here) are chosen such that

c1 =
M
L

w(N)2 +
N
L

w(M)2 . (112)

We can then write the anomaly as

Sanom = 2π

∫

�

hv1
P
�

w̃(N r)
2

�

+ hv2
P
�

w̃(M r)
2

�

+ S12w̃(N r)
2 ∪ w̃(M r)

2

�

+ Stheta ,

Stheta = −2π

∫ �

n′3
2r ′

P
�

M
L

w(N)2 +
N
L

w(M)2 + 2
MN

L
c1

�

+
n′3
r ′

�

MN
L

�2

c2
1 +

n′1N + n′2M

2
c2
1 +

n′3
2r ′

c2
1

�

= −2π

∫ �

n′3
r ′

�

1+
2MN

L
+

3M2N2

L2

�

+
n′1N + n′2M

2

�

c2
1 . (113)

Note that the last term Stheta of Sanom can be rewritten as a term entirely proportional to c2
1 ,

which can be viewed as a Θ-term. Such a term which can be canceled by a local counterterm.
The anomaly does not depend on the choices of integer lifts of w(N)2 and w(M)2 as manifested in
Eq. (109). After making such a choice, the rewriting of Sanom above shows that the anomaly
only depends on the statistics of v1 and v2. Thus. we can interpret the anomaly as coming
from condensing v1, v2. Recall that v1 and v2 are intrinsic to the symmetry fractionalization
pattern µ. Here, we’ve introduced the integer lifts of w(N)2 and w(M)2 to argue that the anomaly

is intrinsic to the symmetry fractionalization pattern µ. In all of the following discussions, w(N)2

and w(M)2 should still be viewed as ZN - and ZM -valued two-cocycles.
To connect to the previous discussions in Sec. 3.4, we need to consider a value of r that is
a multiple of r ′/gcd(r ′, MN/L) as discussed above. v1 and v2 used in this subsection are
identified with v1 and v2 introduced in Sec. 3.4.2.The parameters n1, n2 and n12 introduced
in Eq. (58) corresponds to hv1

, hv2
and S12 via hv2

= n2
2N r , hv1

= n1
2M r , S12 =

n12
Lr :

n1 = 2M rhv1
= rn′2 + 2rn′23

M
gcd(M , r ′)

N
L
+ n′3

r
r ′

MN2

L2
,

n2 = 2N rhv2
= rn′1 + 2rn′13

N
gcd(N , r ′)

M
L
+ n′3

r
r ′

N M2

L2
,

n12 = LrS12 = rn′12 + rn′13
N

gcd(N , r ′)
+ rn′23

M
gcd(M , r ′)

+ n′3
r
r ′

MN
L

. (114)

We want to exam if the bulk term Sanom from the one-form anomaly can be canceled
by a “fractional-level” Chern-Simons counterterm

�

SU(N)k′1 ×U(1)k′2
�

/(ZN × ZM ) for the
G = U(N)/ZM = (SU(N)×U(1))/(ZN × ZM ) gauge field, which can be written as corre-
lated SU(N)/ZN gauge field and U(1)/(ZN × ZM ) = U(1)/ZMN/L

∼= U(1) gauge field (the
ZN × ZM quotient generated by g ∼ ge2πi/N g ∼ e2πi/M g for an U(1) element g is equiva-

lent to the ZMN/L quotient g ∼ e2πi
�

tM
N +

tN
M

�

g = e2πiL/(MN)g for integers tN , tM that satisfy
tN N + tM M = L). The action S[A] of the G = U(N)/ZM gauge field is given by the two gauge
fields as

S[A] = k′1CSPSU(N) +
k′2 L2

M2N2
CSU(1) , (115)

where CSPSU(N) represents a Chern-Simons term for the PSU(N) gauge field obtained from re-
stricting the G = U(N)/ZM gauge field A to the PSU(N) subgroup. CSU(1) represents the Chern-
Simons term for the U(1) gauge field obtained from restricting the G = U(N)/ZM gauge field A
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to the center U(1) subgroup. This action S[A] physically characterizes the G = U(N)/ZM Hall
response in the 2+1d topological phase C. We note that k′1, k′2 in general can be any real num-
bers (they will be be chosen suitably in the following anomaly considerations), which simply
gives rise to the Θ-terms in the bulk. For our purpose of canceling the anomaly contribution
from Sanom, we can take the local Chern-Simons counterterms such that k′1 is an integer. Then
while the SU(N)k′1 Chern-Simons term does not depend on the bulk, the PSU(N)k′1 Chern-

Simons term gives rise to the bulk term
∫

2πk′1
N−1
2N P(w(N)2 ) which can be viewed as a Θ-term

with Θ-angle 2πk′1. Such a term always evaluates to a multiple of 2π(N −1)/(2N). On top of
the anomaly Eq. (109) in the bulk, S[A] contributes to the anomaly by

Scsc = 2π

∫ �

k′1
N − 1
2N

P(w(N)2 ) +
1
2

k′2
L2

M2N2
c2
1

�

. (116)

In the following we will examine whether the bulk topological term in Eq. (109) can be
canceled by a Chern-Simons counterterm S[A] for the 0-form symmetry G = U(N)/ZM . We
will discuss the cases of even MN (i.e. at least one of M , N is even) and odd MN (i.e. both
M , N are odd) separately.
Case 1: even MN - Let us take the Chern-Simons counterterm S[A] with

k′2 = −
n′3M2N2

L2r ′ +
MN

L k′′2 for integer k′′2 . Using (99), we can write

Scsc = 2π

∫ �

k′1
N − 1
2N

P(w(N)2 ) +

�

1
2

k′′2
L

MN
−

n′3
2r ′

�

c2
1

�

= 2π

∫

�

k′1
N − 1
2N

P(w(N)2 ) + k′′2

�

M
2N L

P(w(N)2 ) +
N

2M L
P(w(M)2 ) +

1
L

w(M)2 ∪w(N)2

��

− 2π
n′3
2r ′

∫

c2
1 mod 2π . (117)

Combining (109) and (117), we can first choose k′′2 so that the w(N)2 ∪w(M)2 terms are canceled.
This cancellation determines k′′2 up to Lm for some m ∈ Z. Then, we choose k′1 to cancel the

P(w(N)2 ) term. The total anomaly we are left with is given by

SU(N)/ZM -SPT = Scsc + Sanom (118)

= 2π

�

n′2
2M
−

N/L
2M

·
�

mL + n′12 + n′13
N

gcd(N , r ′)
− n′23

M
gcd(M , r ′)

�

�∫

P(w(M)2 ) ,

which can be viewed as an effective action of a bulk 3+1d U(N)/ZM SPT phase that de-
scribes the ’t Hooft anomaly of the G = U(N)/ZM 0-form symmetry on the boundary. By
choosing a suitable m ∈ Z, and using the property that there exist integers t ′N , t ′M such that
N t ′N + 2M t ′M = gcd(2M , N), we can reduce the anomaly to

SU(N)/ZM -SPT =
2π
2M

�

n′2 −
N
L

�

n′12 + n′13
N

gcd(N , r ′)
− n′23

M
gcd(M , r ′)

�

mod gcd(2M , N)
�

×
∫

P(w(M)2 ) . (119)

Note that making a choice of m amounts to adding local counterterms to the effective ac-
tion and does not change the equivalence class of this 3+1d U(N)/ZM symmetry SPT phase.
In terms of the statistics of v1, v2 in (114), the 3+1d effective action that characterizes the
G = U(N)/ZM ‘t Hooft anomaly in the 2+1d topological phase C is given by

SU(N)/ZM -SPT =
2π
2M

�

n1

r
−

N
L

n12

r
mod gcd(2M , N)

�

∫

P(w(M)2 ) , (120)
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which agrees with the anomaly in (71).
We note that if M is odd, N needs to be even, and N/L is even. In the case, since the topo-
logical spin of u2 is e2πin′2/(2M), n′2 must be even for C to be a bosonic system. Thus, the above
action SU(N)/ZM -SPT in (119) is always a multiple of 2π/M when M is odd, and thus the action
SU(N)/ZM -SPT is well-defined.
When M = 1, N/L is even, n′2 = 0, and the anomaly is trivial, which is in agreement with
Sec. 3.3.
For the case of u1 = 1, u3 = 1, r = 1, Ref. [16] discussed the anomaly on spin manifolds. Our
discussion above agrees with the result of Ref. [16] and is not limited to spin manifolds.
The total bulk topological term SU(N)/ZM -SPT represents a trivial ’t Hooft anomaly if and only if

ℓ := n′2 −
N
L

�

n′12 + n′13
N

gcd(N , r ′)
− n′23

M
gcd(M , r ′)

�

= 0 mod gcd(2M , N) . (121)

When the anomaly is trivial, the fractional part of the quantum Hall response is

σ
(2)
H = −

L2

M2N2
k′2 = +

n′3
r ′
+

L
MN

�

ℓ

gcd(2M , N)
t ′N + n′12 + n′13

N
gcd(N , r ′)

+ n′23
M

gcd(M , r ′)

�

,

σ
(1)
H = −k′1 =











































−(N + 1)

�

n1 +
2n′13MN/L

gcd(N , r ′)
−

M
L

�

ℓ

gcd(2M , N)
t ′N + n′12

+n′13
N

gcd(N , r ′)
+ n′23

M
gcd(M , r ′)

��

, N even ,

−
�

n1 +
2n′13MN/L

gcd(N , r ′)
−

M
L

�

ℓ

gcd(2M , N)
t ′N + n′12

+n′13
N

gcd(N , r ′)
+ n′23

M
gcd(M , r ′)

��

, N odd ,

(122)

where we note that when N is odd, both M and n′1 are even. We can stack an additional
layer of integer quantum Hall response labeled by integers p, p′. This stacking corresponds to
shifting ℓ→ ℓ+p′ gcd(2M , N), and then k′1→ k′1+2N p (for even N) or k′1→ k′1+N p (for odd
N) Here, by integer quantum Hall response, we refer to a U(N)/ZM Chern-Simons effective
response action with properly quantized levels.

Case 2: odd MN - Let us take the Chern-Simons counterterm S[A] with k′2 = −
n′3M2N2

L2r ′

+ MN
L

�

1+ MN
L

�

k′′2 for an integer k′2. Using (99), we can write

Scsc = 2π

∫ �

k′1
N − 1
2N

P(w(N)2 ) +

�

1
2

�

1+
MN

L

�

k′′2
L

MN
−

n′3
2r ′

�

c2
1

�

= 2π

∫

�

k′1
N − 1
2N

P(w(N)2 ) + k′′2

��

1+
MN

L

�

M
2N L

P(w(N)2 ) +
�

1+
MN

L

�

N
2M L

P(w(M)2 )
��

+ 2π

∫

k′′2
1
L

w(M)2 ∪ w(N)2 − 2π
n′3
2r ′

∫

c2
1 mod 2π , (123)

where we note that the coefficient in front of P(w(N)2 ) is always an integer multiple of 1/N ,

and similarly the coefficient in front of P(w(M)2 ) is always an integer multiple of 1/M .

Combining (109) and (123), we can first choose k′′2 to cancel the term w(N)2 ∪ w(M)2 (with

freedom Lm for m ∈ Z), and then choose k′1 to cancel the term P(w(N)2 ). Then, we are left

36

https://scipost.org
https://scipost.org/SciPostPhys.14.5.100


SciPost Phys. 14, 100 (2023)

with the 3+1d effective action

SU(N)/ZM -SPT = Scsc + Sanom

= 2π

�

n′2
2M
+

n′23N/L

gcd(M , r ′)
−

N/L
2M

�

1+
MN

L

�

·
�

mL + n′12 + n′13
N

gcd(N , r ′)
+ n′23

M
gcd(M , r ′)

�

�

×
∫

P(w(M)2 ) . (124)

By choosing a suitable m ∈ Z, we can reduce SU(N)/ZM -SPT to

SU(N)/ZM -SPT

=
2π
2M

�

n′2 + 2n′23
MN

L gcd(M , r ′)
−

N
L

�

1+
MN

L

�

�

n′12 +
n′13N

gcd(N , r ′)
+

n′23M

gcd(M , r ′)

�

mod (2L)

�

×
∫

P(w(M)2 ) . (125)

Note that since n′2 is even (due to the consistency of the topological spin of u2 in a bosonic
system), we have

MN
L

�

n′2 + 2n′23
MN/L

gcd(M , r ′)

�

= 0 mod 2L , (126)

Thus we can rewrite the 3+1d effective action SU(N)/ZM -SPT, which characterizes the ‘t Hooft
anomaly in the 2+1d topological phase C, as

SU(N)/ZM -SPT

=
2π
2M

�

1+
MN

L

�

�

n′2 + 2n′23
MN

L gcd(M , r ′)
−

N
L

�

n′12 +
n′13N

gcd(N , r ′)
+

n′23M

gcd(M , r ′)

�

mod (2L)

�

×
∫

P(w(M)2 ) . (127)

Note that the (1+MN/L) prefactor can be replaced by (1+M). Since N/L is odd, the differ-
ence between the prefactors (1+MN/L) and (1+M) is a multiple of 2M . This replacement
keeps the effective action SU(N)/ZM -SPT invariant modulo 2π. Written in terms of the statistics
of v1, v2 in (114), the 3+1d effective action that captures the ‘t Hooft anomaly is given by

SU(N)/ZM -SPT =
2π
M

1+M
2

�

n1

r
−

N
L

n12

r
mod (2L)

�

∫

P(w(M)2 ) , (128)

which agrees with the result in (75).
For the case of u1 = 1, u3 = 1, r = 1, Ref. [16] discussed the anomaly on spin manifolds. Our
discussion above agrees with the result of Ref. [16] and is not limited to spin manifolds.
In general, the U(N)/ZM ’t Hooft anomaly vanishes if and only if

ℓ := n′2 + 2n′23
MN

L gcd(M , r ′)
−

N
L

�

1+
MN

L

�

�

n′12 +
n′13N

gcd(N , r ′)
+

n′23M

gcd(M , r ′)

�

= 0 mod 2L .

(129)
When the term can be canceled, the fractional part of the quantum Hall response is

σ
(2)
H = −

L2

M2N2
k′2 =

n′3
r ′
+
�

1+
L

MN

��

ℓ

L
tN + n′12 + n′13

N
gcd(N , r ′)

+ n′23
M

gcd(M , r ′)

�

,

σ
(1)
H = −k′1 = −

�

n1 +
2n′13MN/L

gcd(N , r ′)

−
M
L

�

1+
MN

L

��

ℓ

L
tN + n′12 + n′13

N
gcd(N , r ′)

+ n′23
M

gcd(M , r)

�

�

. (130)
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Note that when N is odd, n′1 must be even. We can stack additional integer quantum Hall re-
sponse labeled by integers p, p′ that corresponds to shifting ℓ→ ℓ+2p′L, and then k′1→ k′1+N p.

4.5 A gapless example

Consider SU(N)k with N f massless fermions in the adjoint representation of SU(N). For
N f = 1, the phase diagram of the theory is proposed in Ref. [39] and it is believed to have
a critical point. For k < N/2, this critical point is described by the Goldstino that results
from the spontaneously broken N = 1 supersymmetry [40]. The discussion below applies to
general N f .
The theory has ZN center one-form symmetry that acts on the SU(N) fundamental Wilson line.
Let us enrich the theory with a G = U(1) 0-form global symmetry, by coupling the theory to
the following ZN two-form gauge field B for the one-form ZN symmetry

B = qc1 mod N , (131)

where q is an integer, and c1 is the first Chern class of the background U(1) gauge field. Without
loss of generality, we can take q to be a divisor of N . This means that the fundamental Wilson
line carries fractional U(1) charge q/N . This 0-form U(1) symmetry does not act on the local
operators. One can extend the symmetry group G to G̃ = Ũ(1), which is the r-fold covering of
U(1), with r = N/q (Here, we take q to be a divisor of N for simplicity).
The one-formZN symmetry is anomalous. The anomaly can be calculated from the bare Chern-
Simons term SU(N)k+NN f /2 obtained by giving the fermions a mass. In the presence of back-
ground two-form gauge field B, the SU(N) gauge field becomes a PSU(N) gauge field, and
the SU(N) Chern-Simons term becomes a PSU(N) Chern-Simons term. This PSU(N) Chern-
Simons term is not well-defined by itself in 2+1d. It can be viewed as the boundary of a 3+1d
bulk with an effective action

2π
(k+ NN f /2)(N − 1)

2N

∫

P(B) . (132)

For the configuration B = qc1, this bulk term can be canceled, via Eq. (78), by the Chern-
Simons term

S[A] =
−q2(k+ NN f /2)(N − 1)/N + k′

4π
AdA , (133)

where A is the U(1) gauge field, and k′ is an integer that represents a properly quantized Chern-
Simons term k′

4πAdA. This cancellation implies that anomaly for the one-form symmetry does
not induce any non-trivial ’t Hooft anomaly for the 0-form global symmetry G = U(1).
In terms of the G̃ = Ũ(1) gauge field Ã related to A by A= rÃ= N

q Ã, S[A] can be written as a
Ũ(1)κ Chern-Simons term with

κ= −N(N − 1)(k+ NN f /2) + k′
N2

q2
. (134)

Gauging the 0-form global symmetry G = U(1) produces the theory

SU(N)k × Ũ(1)κ
Zr

+ N f adjoint fermions , (135)

where the adjoint fermions do not carry any gauge charge under Ũ(1).
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5 Conclusion and Discussion

In this work we develop a general procedure for gauging a compact, connected Lie group
symmetry in a 2+1d topological phase. The procedure can be formulated algebraically using
the data of the underlying MTC and the symmetry fractionalization class. We also provide a
field theory derivation for the result, which can be applied to certain gapless theories as well.
While we focus on gauging of the 2+1d topological phase, there is a closely related construc-
tion for chiral 1+1d conformal field theories (CFT) on the boundary. Gauging a finite group
symmetry is equivalent to orbifolding the boundary CFT. When the CFT has Lie group sym-
metry, e.g. Wess-Zumino-Witten theories, gauging a Lie subgroup is essentially equivalent to
the coset construction [41–43]. Thus our results can be understood as a general categorical
description of cosets. For instance, take Gk Wess-Zumino-Witten model for simply connected G
and gauge a Lie group symmetry H gives the coset (G/H)k. If G, H have common center C , the
representations of the current algebra are that of G, H subject to selection rule, and this corre-
sponds to a bulk (G×H)/C Chern-Simons theory [44], which is related to the G Chern-Simons
theory corresponding to the Gk Wess-Zumino-Witten model by gauging an H/C symmetry.
The gauged theory can in principle have an emergent 0-form Øπ1(G) = Hom(π1(G),U(1))
symmetry for the monopoles of the dynamical G gauge field. The monopoles are classified by
π1(G), [45] and the associated symmetry is its Pontryagin dual Øπ1(G). In the general gauging
procedure discussed in the preceding sections, we have focused on the topological order of
the resulting theory, and have not considered how the dual symmetry acts. In the case of
G = U(1), aspects of the dual symmetry, which is also U(1) in this case, on the gauged theory
are discussed in App. C and in Ref. [14]. It is particularly relevant when before gauging the
system has σH = 0. Then after gauging, if the dual U(1) symmetry is present, it can become
spontaneously broken leading to Goldstone modes.
Let us now briefly discuss what happens when G is a simple Lie group. In this case, the dual
symmetry group Øπ1(G) is a finite Abelian group. We will assume that it is present, namely
not explicitly broken, after gauging, i.e. we do not include deformation by the topologically
non-trivial monopole operators of the G gauge field to break the dual symmetry explicitly. In
the simplest case, suppose that we gauge the G symmetry in a completely trivial gapped state
(in the trivial invertible phase with G symmetry). The gauging procedure gives the theory
G̃0/π1(G). Here we take G̃ to be the universal cover of G, and K = π1(G). G̃0 stands for the
standard Yang-Mills theory of gauge group G̃ (where the subscript “0” simply means that the
Chern-Simons level is 0). Also, we assume here that the matter fields in the original trivial
gapped states remains gapped in the gauging process. Since G̃ is simply-connected, the G̃ Yang-
Mills theory is in a completely featureless confined phase. Now the second step of gauging the
center 1-form π1(G) symmetry leads to the spontaneous breaking of the magnetic 0-form

symmetry Øπ1(G), giving rise to |π1(G)| vacua on S2. 9 When σH ̸= 0, the gauged theory
D is obtained from gauging the 1-form K symmetry in C ⊠ G̃−σH

. Therefore, the resulting

topological phase is enriched by the magnetic 0-form K̂ =Øπ1(G) symmetry. The action of K̂
in D is generally complicated, but it can be described in the following way: gauging the K̂
symmetry in D should give back the C ⊠ G̃−σH

theory. This fact completely determines how K̂
acts in the D theory. To give a simple example, let us consider C = SU(2)2 with σH = 2. Then
gauging produces [SU(2)2⊠SU(2)−2]/Z2, which has the topological order of the Z2 toric code.
The generator of the magnetic symmetry π1(SO(3)) = Z2 acts as the electro-magnetic duality
symmetry in the toric code (with stacking of a non-trivial Z2 SPT phase, but the symmetry is

9This follows from the fact that gauging the one-form symmetry π1(G) in the trivial theory produces free two-
form gauge theory with Abelian gauge group π1(G), which can be dualized to topological point operators valued
in π1(G), whose value labels the vacua.
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not fractionalized on the particles).
We discuss some directions for future work.
In the finite group case, gauging the symmetry is done first by introducing symmetry defects
and constructing a G-crossed braided tensor category, and then taking the equivariantization
(i.e. projecting to G-invariant space) to obtain the gauged theory. Generalization of G-crossed
braided tensor category for Lie group symmetry is challenging, but for our purpose it is not
necessary. In our approach we sidestep the intermediate defect theory by using the group
extension G̃. By construction G̃ has no fractionalization and thus gauging G̃ simply gives a de-
coupled Chern-Simons theory, whose topological order is well-understood. It is an interesting
question to see how the two approaches are related. From our two-step gauging procedure,
the issue essentially reduces to understanding G̃ defects in a G̃ SPT phase and how its gaug-
ing leads to G̃ Chern-Simons theory, from a purely algebraic viewpoint. This is an interesting
question for future work.
In this work, we have considered general compact connected Lie groups. An important con-
sequence of the connected-ness is that the symmetry can not permute anyons, which greatly
simplifies gauging. When the Lie group has multiple connected components, e.g. the O(N)
group, the 0-form symmetry, such as the reflection in O(N), can also permute the anyons.
We now briefly outline how our gauging procedure can be generalized to a Lie group G with
multiple components. For such a Lie group, the identity component G0 (i.e. the connected
component that contains the identity) is a normal subgroup, and we have the following group
extension:

1→ G0→ G→ G/G0 = H → 1 . (136)

Here the quotient H is a finite group. For an example, if G = O(N), then G0 = SO(N), H = Z2,
and indeed we have

O(N) =

¨

SO(N)×Z2 , N odd ,

SO(N)⋊Z2 , N even .
(137)

Gauging G can be carried out in two steps. First, we can gauge the identity component G0.
This can be done using the two-step gauging procedure developed in this work. Then once G0
is gauged, H remains a global symmetry in the resulting topological phase and can be further
gauged following the established procedure [7].
Now there is a new ingredient in the ’t Hooft anomaly. The anomaly of G0 can be derived as
before from the obstruction in gauging G0. If G0 is non-anomalous and can be consistently
gauged, we need to check whether H remains a good symmetry in the gauged theory. If not,
then there must be a mixed anomaly between G0 and H. In fact, a more careful analysis shows
that when there is a mixed anomaly, gauging G0 results in the extension of H. Depending on
the nature of the anomaly, H may be extended to a larger 0-form symmetry group, or a two-
group [46].
We note that the symmetry fractionalization pattern H2(G,A) = H2(BG,A) can be formally
viewed as classifying families of gapped states in the same topological phase over the param-
eter space BG. The classifying space BG here can be replaced by any smooth closed manifold
X , where H2(X ,A) partially classifies family of topological phases over the parameter space
X [3, 47]. This information also provides a way to couple the topological quantum field the-
ory to a sigma model with X as the target space.10 This is relevant when a global continuous
symmetry is spontaneously broken in a topological phase (e.g. quantum Hall ferromagnet),
and the topological field theory is coupled to the Goldstone modes [48].
In our construction, we couple the theory to G = G̃/K gauge field, where the quotient can be
interpreted as coupling to G̃ gauge field and then gauging a K one-form symmetry. Instead
of gauging a relativistic one-form symmetry, we can gauge a subsystem one-form symmetry

10We thank Anton Kapustin for discussing on this point.
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that acts only along a direction, by introducing foliated gauge field Bk that obeys the relation
Bkek = 0 with respect to foliation one-form ek (for instance, see Ref. [49]). We can use such
procedure to construct fracton phases in general higher dimensions.
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A One-form symmetry anomaly in 2+1d

Let us review the anomaly for one-form symmetry in 2+1d. The symmetry is generated by
topological line operators that obey an Abelian fusion rule. Let us denote the set of such topo-
logical line operators by A, they generate the intrinsic one-form symmetry of the theory. Such
line operators can have non-trivial braiding statistics, and open lines create Abelian anyons
in the theory. When the statistics is non-trivial, the symmetry cannot be gauged, and there
is an ’t Hooft anomaly for the one-form symmetry [21]. We note that if the Abelian anyons
are bosons, the corresponding one-form symmetry can be gauged, which is in effect the same
as condensing the Abelian anyons. The statistics of the Abelian anyons can be encoded in a
quadratic function h : A→ U(1) ∼= R/Z that gives the spin of the Abelian anyons. For a ∈ A,
the topological spin is θa = e2πih[a]. Denote the background two-form gauge field for the one-
form symmetry by Bint. The anomaly can be described by the 3+1d SPT phase with one-form
symmetry given by the effective action [21]

Sanom = 2π

∫

h[Bint] . (A.1)

Explicitly, ifA=
∏

ZNi
, denote the component of an Abelian anyon a by ai ∈ ZNi

, the quadratic
function can be parameterized by integers pi j as

h[a] =
∑

i

pii

2Ni
a2

i +
∑

i< j

pi j

gcd(Ni , N j)
aia j mod 1 . (A.2)

The 3+1d effective action is

Sanom = 2π

∫

 

∑

i

pii

2Ni
P
�

(Bint)i
�

+
∑

i< j

pi j

gcd(Ni , N j)
(Bint)i ∪ (Bint) j

!

, (A.3)

where (Bint)i is the component of Bint for the ZNi
factor of A, and P is the Pontryagin square

operation:

P(x) =
¨

x̃ ∪ x̃ − x̃ ∪1 δ x̃ mod 2Ni , Ni even ,

x ∪ x mod Ni , Ni odd .
(A.4)

Here x̃ is an integral lift of x . Note that when Ni is odd, pi must be even.
More generally, we can couple the theory to K-valued two-form gauge field B by the homo-
morphism v : K →A, by setting [19]

Bint = v(B) . (A.5)
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Then the anomaly for the K one-form symmetry, which is an extrinsic symmetry compared to
the intrinsic one-form symmetry A, is given by the bulk effective action

Sanom = 2π

∫

h[v(B)] . (A.6)

B Projective representation and universal cover

The elements of G̃, which is obtained from the central extension Eq. (5), can be described by
(k, g) ∈ K × G with the multiplication law

(k, g) · (k′, g ′) = (kk′µ(g, g ′), g g ′) , (B.1)

where µ ∈H2(G, K) is a K-valued two-cocycle of group G. For linear representation R̃a of G̃,

R̃a(1, g) · R̃a(1, g ′) = R̃a((µ(g, g ′), 1)(1, g g ′)) = R̃a(µ(g, g ′))R̃a(1, g g ′) , (B.2)

where R̃a(µ(g, g ′)) is a U(1) phase since the extension is central and (µ(g, g ′), 1) is a central
element of G̃. Thus, R̃a◦µ can be viewed as the projective 2-cocycle of the projective represen-
tation of G, i.e. R̃a ◦ µ ∈H2(G, U(1)). The homomorphism qa : K → U(1) essentially induces
the map from the K-valued cocycle µ to the U(1)-valued cocycle qa(µ)≡ Ra ◦µ.
Consider the fusion of two linear representations R̃a, R̃b of G̃. They satisfy

R̃a ⊗ R̃b(1, g) · R̃a ⊗ R̃b(1, g ′) =R̃a((µ(g, g ′)(1, g g ′))⊗ Rb((µ(g, g ′)(1, g g ′))

=R̃a(µ(g, g ′))R̃b(µ(g, g ′))
�

R̃a ⊗ R̃b(1, g g ′)
�

, (B.3)

In the last line, we’ve used the fact that the extension is central and, consequently, R̃a(µ(g, g ′))
and R̃b(µ(g, g ′)) are U(1) phases proportional to the identity matrix. Thus, for central exten-
sions,

R̃a(µ(g, g ′)) · R̃b(µ(g, g ′)) =
�

R̃a ⊗ R̃b

�

(µ(g, g ′)) . (B.4)

This reproduces the relation (2). The discussion can be generalized to general group extension
[50].

C SL(2,Z) action for U(1) 0-form symmetry

For 2+1d topological phases with U(1) 0-form symmetry, we can perform SL(2,Z) transfor-
mation to map one topological phase to another [17]. S,T are the generators of the general
SL(2,Z) transformation. Denote the partition function of a 2+1d topological phase coupled
to a U(1) background gauge field A as Z[A]. Each of the S and T operations transforms the
topological phase to a new one whose partition is given by

T : Z[A]→ Z ′[A] = Z[A]e
i

4π

∫

AdA , S : Z[A]→ Z ′[A] =
∑

a

Z[a]e
i

2π

∫

adA , (C.1)

where
∑

a represents the path integral over the dynamical gauge field a. The S operation
represents gauging the original U(1) symmetry without adding additional local counterterm.
The gauged theory has a dual U(1)′ symmetry.
We note that for bosonic theories, the operation S,T 2 are well-defined, while T is not. Here,
we will use the method of Sec. 4 to consider general bosonic or fermionic theories, where S,T
are both well-defined operations.
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Let us start with a theory C with Zr subgroup one-form symmetry, generated by a line operator
of topological spin θv = e2πi n

2r for some integer n. Then we can gauge the U(1) symmetry to
obtain

�

ST k
�

C =
C ×U(1)−nr+kr2

Zr
, (C.2)

where we take the Hall response in the theory C to be −n/(2πr) by choosing suitable n (which
is now not just defined mod 2r, but an integer). The T k operation changes the Chern-Simons
counterterm to k−n/r

4π AdA. We note that the theory
�

ST k
�

C has Z|−n+kr| one-form symmetry

generated by the Wilson line v′ of U(1) charge r, which has topological spin θv′ = e2πi r
2(−n+kr) .

For our purpose, the transformation is PSL(2,Z) =SL(2,Z)/Z2, where the quotient is generated
by S2. There are two relations to check using our construction for gauging the U(1) symmetry:
(1) S2 = 1 and (2) (ST )3 = 1. That means both of S2 = 1 and (ST )3 = 1 map a 2+1d
topological phase with a 0-form U(1) symmetry back to itself.

C.1 Relation for S2

Let us verify that S2 maps the original theory C back to itself. This property of S2 is also
discussed in Ref. [14] for a 2+1d bosonic topological phases C. In the following, we revisit the
property of S2 using the gauging approach developed in this work. The following derivation
is applicable to both bosonic and fermionic topological phase C. We have

�

S2
�

C =
C ×U(1)−nr ×U(1)′rn

Zr ×Zn
, (C.3)

where the Zr ×Zn quotients are generated by

Zr : v ⊗ (U(1)-charge n)⊗ (U(1)′-charge 0) , Zn : 1⊗ (U(1)-charge r)⊗ (U(1)′-charge r) .
(C.4)

Let us denote the U(1) and U(1)′ gauge fields by a and a′. The Abelian Chern-Simons terms
in the numerator of (C.12) is

−nr
4π

ada+
nr
4π

a′da′ . (C.5)

The Zn quotient can be implemented by the following change of variables, where we demand
that ã, ã′ are properly quantized U(1) gauge fields:

ã = −na , ã′ = a+ a′ . (C.6)

The action becomes that of Zr gauge theory, denoted as (Zr)nr :
11

nr
4π

ã′dã′ +
r

2π
ã′dã . (C.8)

Thus

S2C =
C × (Zr)nr

Zr
. (C.9)

11The theory (ZN )k can be described by U(1)×U(1) gauge fields a, b with the Chern-Simons term [20,52,53]

k
4π

ada+
N
2π

ad b , (C.7)

where b acts as Lagrangian multiplier that enforces a to have holonomy that takes value in 2π
N Z. Thus

∮

a represents
the Wilson line of the ZN gauge field, while

∮

b represents the magnetic operator that has e2πi/N braiding with
∮

a.
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Using the duality [27]
C × (Zr)nr

Zr
←→ C , (C.10)

we find that
S2C = C . (C.11)

C.2 Relation for (ST )3

Let us verify that (ST )3 = 1. Applying (ST )3 to the 2+1d topological phase C, we have

(ST )3 C =
C ×U(1)−nr+r2 ×U(1)′−r(−n+r)+(−n+r)2 ×U(1)′′n(−n+r)+n2

Zr ×Z|−n+r| ×Zn

=
C ×U(1)(−n+r)r ×U(1)′−n(−n+r) ×U(1)′′nr

Zr ×Z|−n+r| ×Zn
, (C.12)

where the quotients are generated by

Zr : v ⊗ (U(1)-charge (−n+ r)) ,

Z|−n+r| : (U(1)-charge r)⊗
�

U(1)′-charge n
�

,

Zn :
�

U(1)′-charge (−n+ r)
�

⊗
�

U(1)′′-charge r
�

, (C.13)

where the trivial Wilson line is not written explicitly.
Let us denote the U(1), U(1)′, and U(1)′′ gauge fields by a, a′, and a′′ respectively. The Abelian
Chern-Simons terms in the numerator of Eq. (C.12) is

(−n+ r)r
4π

ada+
−n(−n+ r)

4π
a′da′ +

nr
4π

a′′da′′ . (C.14)

The Z|−n+r|×Zn quotient can be implemented by the following change of variables, where we
demand that ã, ã′, ã′′ are properly quantized U(1) gauge fields:

ã = (n− r)a , ã′ = −n(a+ a′) , ã′′ = a+ a′ + a′′ . (C.15)

The action becomes that of U(1)1 × (Zr)nr :

1
4π
(ã+ ã′)d(ã+ ã′) +

nr
4π

ã′′dã′′ +
r

2π
ã′′dã′ . (C.16)

Thus

(ST )3 C = U(1)1 ×
C × (Zr)nr

Zr
. (C.17)

Using the duality [27]
C × (Zr)nr

Zr
←→ C , (C.18)

we find that
(ST )3 C = U(1)1 × C . (C.19)

Thus we find that (ST )3 = 1 up to the invertible Chern-Simons theory U(1)1 (which is equiv-
alent to the gravitational Chern-Simons term with chiral central charge 1), in agreement with
the result in Ref. [17].
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