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ABSTRACT
Topologically ordered phases in 2 + 1 dimensions are generally characterized by three mutually related features: fractionalized (anyonic)
excitations, topological entanglement entropy, and robust ground state degeneracy that does not require symmetry protection or sponta-
neous symmetry breaking. Such a degeneracy is known as topological degeneracy and can be usually seen under the periodic boundary
condition regardless of the choice of the system sizes L1 and L2 in each direction. In this work, we introduce a family of extensions of
the Kitaev toric code to N level spins (N ≥ 2). The model realizes topologically ordered phases or symmetry-protected topological phases
depending on the parameters in the model. The most remarkable feature of topologically ordered phases is that the ground state may
be unique, depending on L1 and L2, despite that the translation symmetry of the model remains unbroken. Nonetheless, the topological
entanglement entropy takes the nontrivial value. We argue that this behavior originates from the nontrivial action of translations permuting
anyon species.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0134010

I. INTRODUCTION
In the studies of many-body systems, one is often interested in the properties of ground states and low energy excitations. Ground state

degeneracy that does not originate from spontaneous symmetry breaking or fine-tuning of parameters is called topological degeneracy.1–3

Such a degeneracy is robust against any local perturbations, including symmetry-breaking ones. In two dimensions, the order of topological
degeneracy Ndeg depends on the genus g of the manifold on which the system is defined.

In topologically ordered phases with U(1) symmetry (e.g., fractional quantum Hall systems), Ndeg ≥ qg when the filling is ν = 1/q. This
degeneracy can be proven by a flux-threading type argument,4 assuming the appearance of fractional excitations with U(1) charge 1/q. More
generally, there usually exist closed string operators that describe processes of creating a pair of anyonic excitations, dragging them apart,
and pair-annihilating them again after forming a non-contractible loop. These loops commute with the Hamiltonian but not among them.
Non-commutativity of loop operators implies the topological degeneracy. In particular, the topological degeneracy Ndeg on a torus (g = 1) is
often equal to the number of distinct anyonic excitations. The topological degeneracy is also tied with the topological entanglement entropy,5,6

which is given by Stopo = − log 𝒟, where𝒟 is the total quantum dimension and𝒟2 is nothing but the number of distinct anyonic excitations
for Abelian topological order. Therefore, it is often stated that the ground state degeneracy on torus, anyonic excitations, and topological
entanglement entropy appear all at the same time.

In this work, we introduce a family of extensions of the Kitaev toric code7,8 to N-level spins (N = 2, 3, 4, . . .), which contains an integer
parameter a (1 ≤ a ≤ N). The original model corresponds to the (N, a) = (2, 1) case. The model describes topologically ordered phases when
a is not a multiple of rad(N) (the radical of N; see Sec. IV) and phases with no topological order when a is a multiple of rad(N). In particular,
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when N and a are coprime, these phases are characterized by the topological entanglement entropy Stopo = −logN, independent of system
sizes L1,L2.

For a generic integer N, the case of a = 1 is the standard ZN toric code8 discussed widely, for example, in Refs. 9–12, which shows
topological degeneracy Ndeg = N2 regardless of the choice of L1 and L2. The case of a = N − 1 (N ≥ 3) was discussed in Refs. 13–16, although
the ground state degeneracy on torus was not fully investigated. When N is odd and a = N − 1, we find that the topological degeneracy occurs
only when both L1 and L2 are even,

Ndeg =

⎧⎪⎪
⎨
⎪⎪⎩

N2
(both L1 and L2 are even),

1 (otherwise).
(1)

The most striking situation of our model arises when N is a prime number and a is a primitive root modulo N (see Sec. III A). In this case,
Ndeg is given by (see Sec. V A for the proof)

Ndeg =

⎧⎪⎪
⎨
⎪⎪⎩

N2
(both L1 and L2 aremultiples ofN − 1),

1 (otherwise).
(2)

This means that the minimum system size to observe the degeneracy is L1 = L2 = N − 1, for which the Hilbert space dimension is N2(N−1)2

(for example, 11200 forN = 11, for which a = 2, 6, 7, 8 are the primitive roots). It is thus nearly impossible to see the topological degeneracy for
a large N in any numerical studies. Therefore, the uniqueness of the ground state for a sequence of Li cannot be used as a proof of the absence
of topological order, although the converse might still be the case: topological degeneracy Ndeg > 1 in a sequence of Li implies a nontrivial
topological order. Note that, if an open boundary condition is assumed instead of the periodic one, a unique ground state can be realized even
in the original Z2 toric code due to the absence of any Wilson loops or constraints among stabilizers.

There is a more famous example, calledWen’s plaquette model,17 in which topological degeneracy depends on the system size. There are
also more recent examples of this type behavior.18–22 However, in these examples, the ground state degeneracy on torus is at least two. Our
example demonstrates that there are even cases where the ground state is unique and excitations are all gapped in a sequence of Li, despite their
nontrivial topological order. It is interesting to contrast with a known theorem about topological quantum field theory (TQFT), according to
which the phase is invertible (i.e., no topological order) ifNdeg = 1 on torus (and technically, on sphere as well).23 Our example shows that the
relation between lattice models and corresponding effective field theories can be quite subtle. We will also show that the degeneracy can be
understood in terms of the TQFT if the finite-size torus in the lattice system is viewed as a torus in continuum but with symmetry defect lines
(or twisted boundary conditions) corresponding to the translation symmetry action in the low-energy theory.

The rest of this work is organized as follows. We summarize the definition and basic properties of our model in Sec. II. We review basic
mathematical facts in number theory in Sec. III. Overall properties of our model for given integers N and a are summarized in Sec. IV. Then,
the ground state degeneracy of the model in topologically ordered phases is studied in Sec. V. The relation of our model to the standard ZN
toric code model is clarified in Sec. VI. Topological properties such as the topological entanglement entropy and anyon statistics in our model
are discussed in Sec. VII. Finally, we study the cases with no topological order in Sec. VIII. We then conclude in Sec. IX.

II. DEFINITION OF MODEL
In this section, we explain the definition and basic properties of the ZN toric code. Throughout this work, N is an integer greater than 1.

A. Lattice of N -level spins
In our model, an N-level spin is placed on each link of square lattice. See Fig. 1 for the illustration. The action of operators X̂r and Ẑr on

the N-level spin at r is represented by N-dimensional unitary matrices,

X :=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

1

1
. . .

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3)
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FIG. 1. (a) The definition of a vertex operator Âv and a plaquette operator B̂p. (b) Pairs of magnetic excitations created by X̂aℓ
r . (c) Pairs of electric excitations created by Ẑaℓ

r .

Z :=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

ω

ω2

. . .

ωN−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4)

ω := e
2πi
N , (5)

which generalize the Pauli matrices. All matrix elements left blank are zero. They satisfy

ZN
= XN

= 1, (6)

ZX = ωXZ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

ω

ω2

. . .

ωN−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (7)

Operators for different spins commute so that

ẐN
r = X̂

N
r = 1, (8)

ẐrX̂r′ = ω
δr,r′ X̂r′ Ẑr. (9)

Note that, when N ≥ 3, matrices X and Z are not Hermitian and X̂†
r ≠ X̂r and Ẑ†

r ≠ Ẑr .
The role of X̂r and Ẑr can be interchanged by the global unitary transformation ÛY , whose action on each spin is represented by

UY :=
1
√
N

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 ⋅ ⋅ ⋅ 1

1 ω ω2
⋅ ⋅ ⋅ ωN−1

1 ω2 ω4
⋅ ⋅ ⋅ ω2(N−1)

⋮ ⋮ ⋮
. . . ⋮

1 ωN−1 ω2(N−1)
⋅ ⋅ ⋅ ω(N−1)

2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (10)

We have UYXU†
Y = Z and UYZU†

Y = X
†.
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The positions of spins on the horizontal and vertical links are set to r = (m1 +
1
2 ,m2) and (m1,m2 +

1
2), respectively, where

mi = 0, 1, . . . ,Li − 1 (i = 1, 2) and Li is a positive integer,

Λ := {(m1,m2 +
1
2
),(m1 +

1
2
,m2) ∣ mi = 0, 1, . . . ,Li − 1}. (11)

We impose the periodic boundary condition and identify X̂r+(n1L1 ,n2L2) with X̂r and Ẑr+(n1L1 ,n2L2) with Ẑr for any n1,n2 ∈ Z and r ∈ Λ. The sets
of vertices𝒱 and plaquettes𝒫 are given by

𝒱 := {(m1,m2) ∣mi = 0, 1, . . . ,Li − 1}, (12)

𝒫 := {(m1 +
1
2
,m2 +

1
2
) ∣ mi = 0, 1, . . . ,Li − 1}. (13)

The total number of spins in the system is 2L1L2, and the dimension of the Hilbert space is N2L1L2 .

B. Hamiltonian and stabilizers
The Hamiltonian of the model reads as

Ĥ := −∑
v∈𝒱

1
2
(Âv + h.c.) −∑

p∈𝒫

1
2
(B̂p + h.c.), (14)

which is invariant under translation T̂i (i = 1, 2), defined by

T̂iX̂rT̂†
i = X̂r+ei , T̂iẐrT̂†

i = Ẑr+ei. (15)

As illustrated in Fig. 1(a), a vertex operator Âv (v ∈𝒱) is defined by

Â(m1 ,m2) := X̂
X̂ −a2
+
X̂

X̂ −a1

= X̂−a1
(m1+

1
2 ,m2)

X̂−a2
(m1 ,m2+

1
2 )
X̂
(m1−

1
2 ,m2)

X̂
(m1 ,m2−

1
2 )

(16)

and a plaquette operator B̂p (p ∈𝒫) is

B̂
(m1+

1
2 ,m2+

1
2 )

:= Ẑ−a1
Ẑ−1
◻

Ẑ a2
Ẑ

= Ẑ
(m1+1,m2+

1
2 )
Ẑ−1
(m1+

1
2 ,m2+1)Ẑ

−a1
(m1 ,m2+

1
2 )
Ẑa2
(m1+

1
2 ,m2)

. (17)

Integers a1 and a2 (1 ≤ a1, a2 ≤ N) are important parameters of this model. It is easy to verify that Âv’s (v ∈𝒱) and B̂p’s (p ∈𝒫) all commute
with each other regardless of a1 and a2. For brevity, we set a1 = a2 = a in the following, but a1 ≠ a2 cases can be treated in the same way.

The eigenstates of the Hamiltonian can be chosen as simultaneous eigenstates of all Âv’s (v ∈𝒱) and B̂p’s (p ∈𝒫). Since

ÂN
v = B̂

N
p = 1, (18)

eigenvalues of operators Âv and B̂p are N-fold, 1,ω, . . . ,ωN−1.

C. A ground state
A ground state of the Hamiltonian Ĥ can be constructed explicitly following the discussion for the original toric code, for example, in

Ref. 24. Let ∣ϕ0⟩ be the “ferromagnetic” product state, satisfying

Ẑr ∣ϕ0⟩ = ∣ϕ0⟩ (∀r ∈ Λ), (19)

T̂i∣ϕ0⟩ = ∣ϕ0⟩. (20)

It has the eigenvalue +1 for all plaquette operators,
B̂p∣ϕ0⟩ = ∣ϕ0⟩ (∀p ∈𝒫). (21)
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Now, we introduce a projection operator,

P̂ :=
1

NL1L2∏
v∈𝒱

N−1

∑
ℓ=0

Âℓ
v , (22)

which satisfies

P̂ 2
= P̂, (23)

ÂvP̂ = P̂Âv = P̂, (24)

B̂pP̂ = P̂B̂p, (25)

T̂iP̂ = P̂T̂i. (26)

Then, the state

∣Φ0⟩ :=

¿
Á
ÁÀNL1L2

NC
P̂∣ϕ0⟩ (27)

satisfies both

Âv∣Φ0⟩ = ∣Φ0⟩ (∀v ∈𝒱), (28)

B̂p∣Φ0⟩ = ∣Φ0⟩ (∀p ∈𝒫), (29)

suggesting that ∣Φ0⟩ is a ground state with the energy eigenvalue EGS = −2L1L2. Here, NC > 0 is the normalization factor given by

NC = ⟨ϕ0∣∏
v∈𝒱

N−1

∑
ℓ=0

Âℓ
v ∣ϕ0⟩ = ∑

{ℓv}

⟨ϕ0∣∏
v∈𝒱

Âℓv
v ∣ϕ0⟩. (30)

It can be shown that NC counts the number of global constraints among the vertex operators of the form

∏
v∈𝒱

Âℓv
v = 1 (0 ≤ ℓv ≤ N − 1), (31)

and there is an equal number of constraints among the plaquette operators,

∏
p∈𝒫

B̂ℓp
p = 1 (0 ≤ ℓp ≤ N − 1). (32)

In our model, the total number of vertex operators and plaquette operators, 2L1L2, coincides with the total number of spins in the system.
Hence, there would be no ground state degeneracy if all stabilizers were independent. Indeed, as we demonstrate in Sec. V, the number of
constraints NC is related to the ground state degeneracy as Ndeg = N2

C.
The state ∣Φ0⟩ is translation invariant,

T̂i∣Φ0⟩ = ∣Φ0⟩, (33)

because ∣ϕ0⟩ is translation invariant and P̂ commutes with T̂i. As we show below, the model has a nonzero excitation gap. Furthermore, all
correlation functions of X̂r and Ẑr are short-ranged. For example,

⟨Φ0∣X̂†
r X̂r′ ∣Φ0⟩ = ⟨Φ0∣Ẑ†

r Ẑr′ ∣Φ0⟩ = δr,r′. (34)

These observations imply the absence of translation symmetry breaking.

D. Quasiparticle excitations

We introduce (open) string operators X̂(i)p,p′ (i = 1, 2) by

X̂(1)
(m1−

1
2 ,m2+

1
2 ),(m

′
1+

1
2 ,m2+

1
2 )

:=
m′1−m1

∏
ℓ=0

X̂aℓ

(m1+ℓ,m2+
1
2 )
, (35)

X̂(2)
(m1+

1
2 ,m2−

1
2 ),(m1+

1
2 ,m

′
2+

1
2 )

:=
m′2−m2

∏
ℓ=0

X̂aℓ

(m1+
1
2 ,m2+ℓ)

(36)
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and Ẑ(i)v,v′ (i = 1, 2) by

Ẑ(1)
(m1 ,m2),(m′1+1,m2)

:=
m′1−m1

∏
ℓ=0

Ẑam
′
1−m1−ℓ

(m1+ℓ+
1
2 ,m2)

, (37)

Ẑ(2)
(m1 ,m2),(m1 ,m′2+1)

:=
m′2−m2

∏
ℓ=0

Ẑam
′
2−m2−ℓ

(m1 ,m2+ℓ+
1
2 )
. (38)

In these expressions, we assumed 0 ≤ m1 ≤ m′1 ≤ L1 − 1 and 0 ≤ m2 ≤ m′2 ≤ L2 − 1.
The state

X̂(1)
(m1−

1
2 ,m2+

1
2 ),(m

′
1+

1
2 ,m2+

1
2 )
∣Φ0⟩ (39)

contains a pair of plaquettes operators with eigenvalues not equal to 1 [see Fig. 1(b) for the illustration], which are called magnetic excitations.

In this state, the eigenvalues of B̂
(m1−

1
2 ,m2+

1
2 )

and B̂
(m′1+

1
2 ,m2+

1
2 )

are ω and ω−a
m′1−m1+1 , respectively. The eigenvalues of other plaquette operators

remain +1. In the derivation of these relations, we used the general property of exponents (zm)n = zmn for z ∈ C and m,n ∈ Z. Similarly, the
state

Ẑ(1)
(m1 ,m2),(m′1+1,m2)

∣Φ0⟩ (40)

has the eigenvalues ωam
′
1−m1+1 and ω−1 for the vertex operators Â(m1 ,m2) and Â(m′1+1,m2), respectively. String operators along x2 direction also

create pairs of electric or magnetic excitations at their ends [see Fig. 1(c)].
A single plaquette operator or a vertex operator with eigenvalue ωq

(q = 1, 2, . . . ,N − 1) costs an energy

Δq := 1 −
1
2
(ωq
+ ω−q) = 1 − cos(

2πq
N
), (41)

2 ≥ Δq ≥ Δ1 = 1 − cos(
2π
N
). (42)

The excitation energy of a pair Δpair can thus be bounded by

4 ≥ Δpair ≥ 2Δ1. (43)

These electric and magnetic excitations can be further divided into equivalence classes up to local excitations (i.e., excitations that can be
created locally), which are called anyon types. They will be discussed in Sec. VII C.

III. BASIC FACTS FROM NUMBER THEORY
In this section, we review basic mathematical facts in number theory to set up notations for Sec. IV and below.

A. Multiplicative order and primitive root
Given a positive integer n and a positive integer a coprime to n, the multiplicative order of amodulo n is defined as the smallest positive

integer ℓ such that
aℓ = 1 mod n, (44)

which we denote by Mn(a) in this work. For example, Mn(a) = 1 if and only if a = 1 (mod n). In addition, for n ≥ 3, Mn(a) = 2 if a = −1
(mod n). Conversely, the relation in Eq. (44) implies that n and a are coprime. In the following applications, the integer n is chosen to be N
itself or a divisor of N that is coprime to a.

The multiplicative order is related to Euler’s totient function φ(n), which is defined as the number of positive integers smaller than n
that are relatively prime to n. By definition, 1 ≤ φ(n) ≤ n − 1. If and only if n is prime, φ(n) = n − 1.

Euler’s theorem,25 aφ(n) = 1mod n, implies thatMn(a) is a divisor of φ(n). Thus,

1 ≤Mn(a) ≤ φ(n). (45)

Integers a that saturate the upper bound, i.e.,Mn(a) = φ(n), are called the primitive roots modulo n. The primitive roots exist if and only if n
is 2, 4, pk, or 2pk, where p is an odd prime number and k is a positive integer. It follows that, when n is a prime number, there exists an integer
a such that

Mn(a) = n − 1. (46)
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Finally, suppose that n′ is also a positive integer coprime to a. In this case, Mnn′(a) is a multiple of both Mn(a) and Mn′(a) because
aMnn′ (a) = 1 (mod nn′) also implies aMnn′ (a) = 1 (mod n) and aMnn′ (a) = 1 (mod n′). In particular,

Mn′′(a) ≥Mn(a) (47)

when n′′ is a multiple of n.
These mathematical facts underlie our results quoted in Eqs. (1) and (2).

B. Prime factorization and divisors of N
Suppose that the integer N (N ≥ 2) can be prime factorized into

N =
n

∏
j=1

prjj = p
r1
1 p

r2
2 ⋅ ⋅ ⋅ p

rn
n , (48)

where pj’s ( j = 1, 2, . . . ,n) are prime numbers and rj’s are positive integers. The radical of N is defined as the product of all distinct prime
factors of N,

rad(N) :=
n

∏
j=1

pj = p1p2 ⋅ ⋅ ⋅ pn. (49)

We denote the set of all (positive) divisors of N by DN ,

DN =

⎧⎪⎪
⎨
⎪⎪⎩

n

∏
j=1

p
r′j
j

RRRRRRRRRRR

0 ≤ r′j ≤ r j
⎫⎪⎪
⎬
⎪⎪⎭

, (50)

which includes 1, N, and rad(N), for example.
Without loss of generality, let us arrange prime factors pj’s of N in Eq. (48) in such a way that

⎧⎪⎪
⎨
⎪⎪⎩

a/pj ∉ Z ( j = 1, 2, . . . ,m),
a/pj ∈ Z ( j = m + 1, . . . ,n).

(51)

Then, the largest divisor of N that is coprime to a is given by

Na :=
m

∏
j=1

prjj = p
r1
1 p

r2
2 ⋅ ⋅ ⋅ p

rm
m ≤ N. (52)

By definition, we have

Na = N ⇔ gcd(N, a) = 1 (i.e.,m = n), (53)

Na = 1 ⇔ a/rad(N) ∈ Z (i.e.,m = 0). (54)

Here, gcd(p, q, r, . . .) for integers p, q, r, . . . represents their greatest common divisor. By definition, p/gcd(p, q) and q/gcd(p, q) are positive
integers. Since Na is a multiple of any d ∈ DN that is coprime to a,MNa(a) is a multiple ofMd(a).

IV. CLASSIFICATION OF PHASES IN THE (N ,a) MODEL
Our model describes two distinct types of phases with or without topological order depending on whether a (1 ≤ a ≤ N) is a multiple of

rad(N) or not. Here, we provide a brief summary of the main features of the two phases.

Case 1: When a is not a multiple of rad(N), our model exhibits topological degeneracy for some sequences of L1 and L2. The ground
state degeneracy on the torus is given by

Ndeg = [gcd(a
L1 − 1, aL2 − 1,Na)]

2. (55)

For example, Ndeg = N2
a when both L1 and L2 are multiples of MNa(a) and Ndeg = 1 when L1 and L2 are not simultaneously multiples

of Md(a) for any d ∈ DN coprime to a, except for d = 1. Correspondingly, there are N2
a species of anyons. This class thus falls into

topologically ordered phases. It contains the important class of a being coprime to N. Examples include the cases of a = 1 and a = N − 1
previously discussed in the literature. The size dependence of Ndeg can be understood from the translation symmetry action on the
anyon excitations, which will be discussed in Sec. VII D.

J. Math. Phys. 64, 051901 (2023); doi: 10.1063/5.0134010 64, 051901-7

© Author(s) 2023

 10 M
ay 2024 01:57:13

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Case 2: When a is a multiple of rad(N), the ground state is unique regardless of the choice of L1 and L2. The model thus realizes a trivial
phase with regard to topological orders, but it still might be a nontrivial symmetry protected topological phase. As simplest examples,
we discuss the cases of N = a and N = a2.

We study these two cases separately in Secs. V and VII and in Sec. VIII.

V. GROUND STATE DEGENERACY IN TOPOLOGICALLY ORDERED PHASES
In this section, we show that, when a is not a multiple of rad(N), the order of ground state degeneracy Ndeg is greater than one for some

sequences of L1 and L2.

A. The case of gcd(N ,a) = 1
We start with the simplest case where a is coprime to N.

1. When both L1 and L2 are multiples of MN (a)
Suppose that both L1 and L2 are multiples of MN(a) so that aL1 = aL2 = 1modN. In this case, the ground state degeneracy and the

low-energy excitations are basically the straightforward extension of the original toric code. For example, when a = 1, MN(a) = 1 and the
assumption automatically holds for any L1 and L2. In contrast, when N ≥ 3 and a = N − 1,MN(a) = 2 and both L1 and L2 need to be even.

When both L1 and L2 are multiples ofMN(a), there are two sets of global constraints among the stabilizers Âv’s and B̂p’s,

L1−1

∏
m1=0

L2−1

∏
m2=0

Âam1+m2

(m1 ,m2)
=

L1−1

∏
m1=0

X̂−a
m1 (aL2−1)

(m1 ,− 1
2 )

L2−1

∏
m2=0

X̂−a
m2 (aL1−1)

(−
1
2 ,m2)

= 1 (56)

and
L1−1

∏
m1=0

L2−1

∏
m2=0

B̂a(L1−1−m1)+(L2−1−m2)

(m1+
1
2 ,m2+

1
2 )

=

L1−1

∏
m1=0

Ẑa(L1−1−m1)(aL2−1)
(m1+

1
2 ,0)

L2−1

∏
m2=0

Ẑ−a
(L2−1−m2)(aL1−1)

(0,m2+
1
2 )

= 1, (57)

implying that NC in Eq. (30) is N. In the derivation, we used definitions in Eqs. (16) and (17) and the periodic boundary conditions, such as
X̂
(L1− 1

2 ,m2)
= X̂

(−
1
2 ,m2)

and X̂
(m1 ,L2− 1

2 )
= X̂

(m1 ,− 1
2 )
. These constraints imply that not all vertex operators and plaquettes operators are indepen-

dent. For example, the eigenvalues of Âv0 [v0 := (0, 0)] and B̂p0 [p0 := (L1 −
1
2 ,L2 −

1
2)] are automatically fixed once the eigenvalues of other

Âv’s and B̂p’s are chosen.
Correspondingly, there are four independent closed string operators, illustrated in Figs. 2(a) and 2(b), which commute with every term

in the Hamiltonian,

X̂ (1) := X̂(1)
(−

1
2 ,L2−

1
2 ),(L1−

1
2 ,L2−

1
2 )
=

L1−1

∏
ℓ=0

X̂aℓ

(ℓ,L2− 1
2 )
, (58)

X̂ (2) := X̂(2)
(L1− 1

2 ,−
1
2 ),(L1−

1
2 ,L2−

1
2 )
=

L2−1

∏
ℓ=0

X̂aℓ

(L1− 1
2 ,ℓ)

(59)

and

Ẑ (1) := Ẑ(1)
(0,0),(L1 ,0)

=

L1−1

∏
ℓ=0

ẐaL1−1−ℓ

(ℓ+ 1
2 ,0)

, (60)

Ẑ (2) := Ẑ(2)
(0,0),(0,L2)

=

L2−1

∏
ℓ=0

ẐaL2−1−ℓ

(0,ℓ+ 1
2 )
, (61)

where X̂(i)p,p′ and Ẑ(i)v,v′ are defined in Eqs. (35)–(38). These operators satisfy [see Eq. (9)]

Ẑ (1)X̂ (2) = ω X̂ (2)Ẑ (1), (62)

Ẑ (2)X̂ (1) = ω X̂ (1)Ẑ (2), (63)

and

[Ẑ (1), Ẑ (2)] = [X̂ (1), X̂ (2)] = 0, (64)

[Ẑ (1), X̂ (1)] = [X̂ (2), Ẑ (2)] = 0. (65)

Hence, as the set of independent stabilizers commute with Ĥ, one can choose the following set of operators:
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FIG. 2. Illustration of (a) closed string operators X̂ (1) and X̂ (2), (b) closed string operators Ẑ (1) and Ẑ (2), (c) open string operators that control the eigenvalues of plaquette
operators B̂p (p ≠ p0), and (d) open string operators that control the eigenvalues of vertex operators Âv (v ≠ v0).

● The vertex operators Âv (v ∈𝒱, v ≠ v0) and the plaquette operators B̂p (p ∈𝒫, p ≠ p0). There are in total N2(L1L2−1) different
combinations of eigenvalues.

● Closed string operators Ẑ (i) (i = 1, 2). There are N2 different combinations of eigenvalues.

Starting from the ground state ∣Φ0⟩ in Eq. (27), which has the eigenvalue +1 for all of these 2L1L2 operators, one can generate all N2L1L2 states
in the Hilbert space by using the open string operators illustrated in Figs. 2(c) and 2(d) and the closed loop operators X̂ (i) (i = 1, 2). They
can be distinguished by N2(L1L2−1) ×N2

= N2L1L2 distinct combinations of eigenvalues of these stabilizers. In particular, all degenerate ground
states can be written as [X̂ (1)] j1[X̂ (2)] j2 ∣Φ0⟩ ( j1, j2 = 0, 1, . . . ,N − 1), which has the eigenvalue ω ji of Ẑ (i). Hence, the order of topological
degeneracy is

Ndeg = N
2. (66)

The closed loop operators in Eqs. (58) and (59) create a pair of magnetic excitations at xi = ± 1
2 , dragging the one at xi = 1

2 all the way
to xi = Li − 1

2 = −
1
2 and annihilating them in pair. The pair annihilation requires that magnetic excitations with eigenvalues ω and ω−1 meet.

This is possible only when Li is a multiple ofMN(a).

2. When L1 or L2 is not a multiple of MN (a)
Next, we consider the case where L1 or L2 is not a multiple ofMN(a). Without loss of generality, we assume that L1 is not a multiple of

MN(a).
Let us introduce a product of string operators associated with the plaquette p = (m1 +

1
2 ,m2 +

1
2) ∈𝒫,

X̂(1)p := [X̂ (1)
(−

1
2 ,m2+

1
2 ),p
]
aL1−1−m1

X̂(1)
p,(L1− 1

2 ,m2+
1
2 )
. (67)

The first factor creates magnetic excitations with eigenvalues ωaL1−1−m1 and ω−a
L1 at the plaquettes (− 1

2 ,m2 +
1
2) and p, respectively. The second

factor creates magnetic excitations with eigenvalues ω and ω−a
L1−1−m1 at the plaquettes p and (L1 − 1

2 ,m2 +
1
2), respectively. Combining these

two effects, the operator X̂(1)p create a singlemagnetic excitation with eigenvalue ω1−aL1 at the plaquette p. In fact, X̂(1)p satisfies

ÂvX̂(1)p = X̂(1)p Âv, (68)
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B̂p′ X̂
(1)
p = ω(1−a

L1 )δp,p′ X̂(1)p B̂p′ (69)

for any v ∈𝒱 and p′ ∈𝒫. Since L1 is not a multiple ofMN(a), ω1−aL1
≠ 1.

Similarly, the following operator can be introduced for each vertex v = (m1,m2) ∈𝒱:

Ẑ(1)v := Ẑ(1)
(0,m2),v

[Ẑ (1)v,(L1 ,m2)
]
am1

, (70)

which satisfies

Âv′ Ẑ
(1)
v = ω(a

L1−1)δv,v′ Ẑ(1)v Âv′ , (71)

B̂pẐ(1)v = Ẑ(1)v B̂p (72)

for any v′ ∈𝒱 and p ∈𝒫. Hence, Ẑ(1)v creates a single electric excitation with eigenvalue ωaL1−1
≠ 1 at the vertex v.

To proceed, let us assume further that aL1 − 1 is coprime to N. In this case,

ℓ(aL1 − 1)modN (ℓ = 1, 2, . . . ,N − 1) (73)

are all different and are not equal to 0modN. Therefore, the eigenvalue of the plaquette operator B̂p (the vertex operator Âv) can be freely
controlled by [X̂ (1)p ]

ℓ
([Ẑ (1)v ]

ℓ
) without affecting others, implying the absence of global constraints involving B̂p or Âv, such as the ones of

the form in Eq. (31) (i.e., NC = 1).
Moreover, operators X̂(1)v (v ∈𝒱) and Ẑ(1)p (p ∈𝒫) all commute with each other. Hence, starting from the ground state ∣Φ0⟩ satisfying

Eqs. (28) and (29), one can generate all N2L1L2 states in the Hilbert space by successively applying Ẑ(1)v ’s and X̂(1)p ’s. In particular, there is no
state other than ∣Φ0⟩ that has eigenvalue +1 for all vertex operators and plaquette operators. This proves the uniqueness of the ground state

Ndeg = 1, (74)

given that aL1 − 1 is coprime to N. This condition is satisfied, for example, (i) when N is prime and L1 is not a multiple ofMN(a) (in this case,
aL1 − 1 ≠ 0modN) and (ii) whenN is odd, a = N − 1, and L1 is not a multiple ofMN(a) = 2 (in this case, aL1 − 1 = −2modN). This completes
the proof of Eqs. (1) and (2).

The gap to the first excited states is given by Δq in Eq. (41), although these states are created by nonlocal operators X̂(1)p and Ẑ(1)v . Local
excitations are still given by pairs of magnetic excitations and electric excitations, for which the exaction gap is bounded by Eq. (43).

B. General case
Next, we discuss the most general case where a/rad(N) ∉ Z but a is not necessarily coprime to N. In this case, we will see that Na in

Eq. (52) plays the role of N in the above discussion.
Let us list up all constraints among Âv’s and B̂p’s of the form of Eqs. (31) and (32). We have

L1−1

∏
m1=0

L2−1

∏
m2=0

Ânam1+m2

(m1 ,m2)
=

L1−1

∏
m1=0

X̂−a
m1 (aL2−1)n

(m1 ,− 1
2 )

L2−1

∏
m2=0

X̂−a
m2 (aL1−1)n

(−
1
2 ,m2)

(75)

and
L1−1

∏
m1=0

L2−1

∏
m2=0

B̂na(L1−1−m1)+(L2−1−m2)

(m1+
1
2 ,m2+

1
2 )

=

L1−1

∏
m1=0

Ẑa(L1−1−m1)(aL2−1)n
(m1+

1
2 ,0)

L2−1

∏
m2=0

Ẑ−a
(L2−1−m2)(aL1−1)n

(0,m2+
1
2 )

. (76)

Here, n ∈ DN is a parameter specified shortly. In order to set the products in Eqs. (75) and (76) to be 1, we need

(aL1 − 1)n = (aL2 − 1)n = 0 mod N. (77)

To solve this equation, let us define di,a ∈ DN (i = 1, 2) by

di,a := gcd(aLi − 1,Na). (78)

This is the largest divisor d of N such that (i) d is coprime to a and (ii) Li is a multiple ofMd(a). For example, di,a = N when a = 1 and di,a = 1
when aLi − 1 is coprime to N. The smallest positive integer n ∈ DN satisfying Eq. (77) is given by

n = na :=
N
da

, (79)
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where
da := gcd(d1,a,d2,a) = gcd(aL1 − 1, aL2 − 1,Na). (80)

After all, we find the following set of global constraints:

⎛

⎝

L1−1

∏
m1=0

L2−1

∏
m2=0

Ânaam1+m2

(m1 ,m2)

⎞

⎠

n′

= 1, (81)

⎛

⎝

L1−1

∏
m1=0

L2−1

∏
m2=0

B̂naa(L1−1−m1)+(L2−1−m2)

(m1+
1
2 ,m2+

1
2 )

⎞

⎠

n′

= 1, (82)

where n′ = 0, 1, 2, . . . ,da − 1, suggesting thatNC in Eq. (30) is given by da. These constraints imply that not all vertex operators and plaquettes
operators are independent. For example, the eigenvalues of Âna

v0 and B̂
na
p0 can be automatically fixed once the eigenvalues of other Âv’s and B̂p’s

are chosen. Then, as the set of independent stabilizers commuting with Ĥ, one can choose the following set of operators:

● The vertex operators Âv (v ∈𝒱, v ≠ v0) and the plaquette operators B̂p (p ∈𝒫, p ≠ p0). There are in total N2(L1L2−1) different
combinations of eigenvalues.

● The residual free parts of Âv0 and B̂p0 . The eigenvalues of these operators can be written asω
x+daℓ (ℓ = 0, 1, . . . ,na − 1), where the value

of x (x = 0, 1, . . . ,da) is automatically determined by the constraints in Eqs. (81) and (82). Hence, there are effectively n2a different
combinations of eigenvalues.

● Loop operators [X̂ (1)]n1,a and [Ẑ (1)]n1,a (or [X̂ (2)]n2,a and [Ẑ (2)]n2,a ), where ni,a := N/di,a (i = 1, 2). Their eigenvalues are di,a-fold:
ωni,a j (j = 0, 1, . . . ,di,a − 1), which include ωnaj ′ ( j ′ = 0, 1, . . . ,da − 1) as a subset. As detailed below, only d2a different eigenvalues of
these operators can be manipulated without affecting the eigenvalues of other stabilizers.

Hence, starting from the ground state ∣Φ0⟩ in Eq. (27), one can generate all N2L1L2 states in the Hilbert space, which can be distinguished
by N2(L1L2−1) × n2a × d2a = N2L1L2 distinct combinations of eigenvalues of these stabilizers. This implies that the order of the ground state
degeneracy is given by Eq. (55).

It remains to show that the eigenvalues of stabilizers can be manipulated as stated above. Clearly, open string operators illustrated in
Figs. 2(c) and 2(d) can be used to control the eigenvalues of Âv (v ∈𝒱, v ≠ v0) and B̂p (p ∈𝒫, p ≠ p0). The remaining operators satisfy the
following algebra:

Ẑ (i)Âv0 = ω
αi Âv0 Ẑ

(i), (83)

X̂ (i)B̂p0 = ω
−αi B̂p0 X̂

(i), (84)

Ẑ (1)X̂ (2) = ω X̂ (2)Ẑ (1), (85)

Ẑ (2)X̂ (1) = ω X̂ (1)Ẑ (2), (86)

where αi (0 ≤ αi ≤ N − 1) is defined by
αi = aLi − 1 mod N, (87)

which is coprime to a and a multiple of di,a = gcd(αi,Na). All these operators commute with Âv (v ∈𝒱, v ≠ v0) and B̂p (p ∈𝒫, p ≠ p0) and
thus do not change their eigenvalues.

1. Case 1: α1 = α2 = 0
When α1 = α2 = 0, N is coprime to a and both L1 and L2 are multiples ofMN(a). This case was covered in Sec. V A 1.

2. Case 2: Either α1 = 0 or α2 = 0
Next, we discuss the case when either α1 = 0 or α2 = 0. Without loss of the generality, here, we assume α1 ≠ 0 and α2 = 0. In this case, N

is again coprime to a, and we have d1,a = da = gcd(α1,N) and d2,a = N.
Since α1/d1,a is coprime to n1,a = N/d1,a, there exists an integer ℓ1 (1 ≤ ℓ1 ≤ n1,a − 1) such that

ℓ1
α1
d1,a
= 1 mod n1,a. (88)

Then, we can control the eigenvalues of Âv0 and B̂p0 by [X̂
(1)
]
ℓ1 and [Ẑ (1)]ℓ1 ,

[X̂ (1)]ℓ1 Âv0 = Âv0[X̂
(1)
]
ℓ1 , (89)
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[Ẑ (1)]ℓ1 Âv0 = ω
da Âv0[Ẑ

(1)
]
ℓ1 , (90)

[X̂ (1)]ℓ1 B̂p0 = ω
−da B̂p0[X̂

(1)
]
ℓ1 , (91)

[Ẑ (1)]ℓ1 B̂p0 = B̂p0[Ẑ
(1)
]
ℓ1 (92)

without affecting the eigenvalues of [X̂ (1)]n1,a and [Ẑ (1)]n1,a . We can also control the eigenvalues of [X̂ (1)]n1,a and [Ẑ (1)]n1,a by X̂ (2) and Ẑ (2),

X̂ (2)[X̂ (1)]n1,a = [X̂ (1)]n1,a X̂ (2), (93)

Ẑ (2)[X̂ (1)]n1,a = ωn1,a [X̂ (1)]n1,a Ẑ (2), (94)

X̂ (2)[Ẑ (1)]n1,a = ω−n1,a [Ẑ (1)]n1,a X̂ (2), (95)

Ẑ (2)[Ẑ (1)]n1,a = [Ẑ (1)]n1,a Ẑ (2) (96)

without affecting the eigenvalues of Âv0 and B̂p0 . Since n1,a = na = N/da, this is what we needed.

3. Case 3: α1 ≠ 0 and α2 ≠ 0
Finally, we discuss the case when α1 ≠ 0 and α2 ≠ 0. We define operators X̂ (ℓ1 ,ℓ2) := [X̂ (1)]ℓ1[X̂ (2)]ℓ2 and Ẑ (ℓ1 ,ℓ2) := [Ẑ (1)]ℓ1[Ẑ (2)]ℓ2 .
Since a and αi are coprime, da in Eq. (80) can also be written as gcd(α1,α2,N). It follows that gcd(α1,α2)/da is coprime to na = N/da.

Thus, there exists an integer b0 such that

b0
gcd(α1,α2)

da
= 1 mod na. (97)

Furthermore, Bézout’s lemma tells us the existence of integers b1 and b2 such that

b1α1 + b2α2 = gcd(α1,α2). (98)

Therefore, we have
ℓ1
α1
da
+ ℓ2

α2
da
= 1 mod na (99)

with ℓi = b0bi mod na (0 ≤ ℓi ≤ na − 1). The eigenvalues of Âv0 and B̂p0 can be controlled by X̂ (ℓ1 ,ℓ2) and Ẑ (ℓ1 ,ℓ2),

X̂ (ℓ1 ,ℓ2)Âv0 = Âv0 X̂
(ℓ1 ,ℓ2), (100)

Ẑ (ℓ1 ,ℓ2)Âv0 = ω
da Âv0 Ẑ

(ℓ1 ,ℓ2), (101)

X̂ (ℓ1 ,ℓ2)B̂p0 = ω
−da B̂p0 X̂

(ℓ1 ,ℓ2), (102)

Ẑ (ℓ1 ,ℓ2)B̂p0 = B̂p0 Ẑ
(ℓ1 ,ℓ2). (103)

This process might affect the eigenvalues of the closed loop operators [X̂ (i)]ni,a and [Ẑ (i)]ni,a .
Next, suppose that

ℓ′1
α1
da
+ ℓ′2

α2
da
= 0 mod na. (104)

In this case, X̂ (ℓ
′
1 ,ℓ
′
2) and Ẑ (ℓ

′
1 ,ℓ
′
2) commute with Âv0 and B̂p0 . For example, one can set ℓ′1 = −(α2 + b2N)/ gcd(α1 + b1N,α2 + b2N) and

ℓ′2 = (α1 + b1N)/ gcd(α1 + b1N,α2 + b2N), with b1, b2 ∈ Z being free parameters. Choosing ℓ′1 and ℓ′2 properly, we can realize

gcd(
n1,a
na

ℓ′2,da) = 1. (105)

See Appendix A for the proof. Assuming this and using the relations

X̂ (ℓ
′
1 ,ℓ
′
2)[X̂ (1)]n1,a = [X̂ (1)]n1,a X̂ (ℓ

′
1 ,ℓ
′
2), (106)

X̂ (ℓ
′
1 ,ℓ
′
2)[Ẑ (1)]n1,a = ω−n1,aℓ

′
2 [Ẑ (1)]n1,a X̂ (ℓ

′
1 ,ℓ
′
2), (107)

Ẑ (ℓ
′
1 ,ℓ
′
2)[X̂ (1)]n1,a = ωn1,aℓ′2 [X̂ (1)]n1,a Ẑ (ℓ

′
1 ,ℓ
′
2), (108)

Ẑ (ℓ
′
1 ,ℓ
′
2)[Ẑ (1)]n1,a = [Ẑ (1)]n1,a Ẑ (ℓ

′
1 ,ℓ
′
2), (109)

we can control the eigenvalues of [X̂ (1)]n1,a and [Ẑ (1)]n1,a by a multiple of ωna without affecting the eigenvalues of Âv0 and B̂p0 . This completes
the proof of Eq. (55).
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VI. RELATION TO THE STANDARD ZN TORIC CODE
In this section, we clarify the relation of our model in Eq. (14) to the a = 1 ZN toric code with a twisted boundary condition. This

connection for a prime N is implied by the result in Ref. 26, but our discussion goes more generally whenever N and a are coprime.
Let us consider a modified Hamiltonian

Ĥ ′ = −∑
v∈𝒱

MN(a)−1

∑
ℓ=0

1
2
(Âaℓ

v + h.c.) −∑
p∈𝒫

MN(a)−1

∑
ℓ=0

1
2
(B̂aℓ

p + h.c.), (110)

We still assume the periodic boundary condition. This model is equivalent to Ĥ in Eq. (14) in the sense that it is written as the sum of the
same set of stabilizers Âv (v ∈𝒱) and B̂p (p ∈𝒫) in Eqs. (16) and (17) with a1 = a2 = a. The ground states are still given by those who have
eigenvalue +1 for all Âv (v ∈𝒱) and B̂p (p ∈𝒫), and the ground state degeneracy remains unchanged.

We introduce a local unitary operator Ûr (r ∈ Λ), whose action on the local spin is given by a unitary matrix U i,j := δj,1+mod[(i−1)a,N]. This
operator satisfies

ÛrX̂aℓ
r Û†

r = X̂
aℓ−1
r , (111)

ÛrẐaℓ
r Û†

r = Ẑ
aℓ+1
r , (112)

ÛMN(a)
r = 1. (113)

Here and hereafter, X̂±a
−ℓ

r [ℓ = 1, 2, . . . ,MN(a)] should be understood as X̂±a
MN (a)−ℓ

r (recall that aMN(a) = 1modN). The global operator
∏r∈ΛÛr is a symmetry of Ĥ ′ as it commutes with Ĥ ′. When gcd(N, a) ≠ 1, such a unitary operator does not exist.

Now, let us define a twist operator

Û :=
L1−1

∏
m1=0

L2−1

∏
m2=0
[Û
(m1+

1
2 ,m2)

Û
(m1 ,m2+

1
2 )
]
m1+m2

. (114)

The twist operator converts the stabilizers Âv and B̂p away from the boundary (i.e., 1 ≤ m1 ≤ L1 − 2 and 1 ≤ m2 ≤ L2 − 2) to those for a = 1,

ÛÂ(m1 ,m2)Û
†
= (Â (1)

(m1 ,m2)
)
a1−m1−m2

, (115)

ÛB̂
(m1+

1
2 ,m2+

1
2 )
Û †
= (B̂ (1)

(m1+
1
2 ,m2+

1
2 )
)
a1+m1+m2

. (116)

Here, Â(1)v and B̂(1)p represent Âv and B̂p in Eqs. (16) and (17) for a1 = a2 = 1, respectively. Therefore, except for boundary terms,

ÛĤ ′Û †
= −∑

v∈𝒱

MN(a)−1

∑
ℓ=0

1
2
[(Â (1)v )

aℓ

+ h.c.] −∑
p∈𝒫

MN(a)−1

∑
ℓ=0

1
2
[(B̂ (1)p )

aℓ

+ h.c.] (117)

is equivalent to the standard ZN toric code (a = 1). Boundary terms are given by

Â(1)
(0,m2)

:= X̂−a
L1

(
1
2 ,m2)

X̂−a
L1

(0,m2+
1
2 )
X̂
(L1− 1

2 ,m2)
X̂aL1
(0,m2−

1
2 )
, (118)

Â(1)
(m1 ,0)

:= X̂−a
L2

(m1+
1
2 ,0)

X̂−a
L2

(m1 , 12 )
X̂aL2
(m1−

1
2 ,0)

X̂
(m1 ,L2− 1

2 )
, (119)

Â(1)
(0,0) := X̂

−aL1+L2
(

1
2 ,0)

X̂−a
L1+L2

(0, 12 )
X̂aL2
(L1− 1

2 ,0)
X̂aL1
(0,L2− 1

2 )
, (120)

and

B̂(1)
(L1− 1

2 ,m2+
1
2 )

:= Ẑa−L1
(0,m2+

1
2 )
Ẑ−1
(L1− 1

2 ,m2+1)Ẑ
−1
(L1−1,m2+

1
2 )
Ẑ
(L1− 1

2 ,m2)
, (121)

B̂(1)
(m1+

1
2 ,L2−

1
2 )

:= Ẑ
(m1+1,L2− 1

2 )
Ẑ−a

−L2
(m1+

1
2 ,0)

Ẑ−1
(m1 ,L2− 1

2 )
Ẑ
(m1+

1
2 ,L2−1)

, (122)

B̂(1)
(L1− 1

2 ,L2−
1
2 )

:= Ẑa−L1
(0,L2− 1

2 )
Ẑ−a

−L2
(L1− 1

2 ,0)
Ẑ−1
(L1−1,L2− 1

2 )
Ẑ
(L1− 1

2 ,L2−1)
. (123)

See Fig. 3 for the illustration. These boundary terms can be understood as a result of twisted boundary condition,

X̂r+(L1 ,0) = (Û
†
)
L1 X̂rÛ L1 = X̂aL1

r , (124)
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FIG. 3. The standard ZN toric code with a twisted boundary condition.

Ẑr+(L1 ,0) = (Û
†
)
L1 ẐrÛ L1 = Ẑa−L1

r , (125)

X̂r+(0,L2) = (Û
†
)
L2 X̂rÛ L2 = X̂aL2

r , (126)

Ẑr+(0,L2) = (Û
†
)
L2 ẐrÛ L2 = Ẑa−L2

r . (127)

This boundary condition modifies the translation symmetries to T̂′1 :=∏
L2−1
m2=0[Û

†
(
1
2 ,m2)

Û †
(0,m2+

1
2 )
]
L1 T̂1 and T̂′2 :=∏

L1−1
m1=0

[Û †
(m1 , 12 )

Û †
(m1+

1
2 ,0)
]
L2 T̂2, and the original translation symmetries in Eq. (15) are broken.

When N and a are not coprime, our model in Eq. (14) cannot be mapped to the standard ZN toric code in this way. In fact, as we shall
see in Sec. VII, they have different topological orders and cannot be mapped to each other by local unitary transformations.

VII. TOPOLOGICAL PROPERTIES IN TOPOLOGICALLY ORDERED PHASES
In Sec. V, we showed that the order of ground state degeneracy under the periodic boundary condition can be 1 depending on the

system size. Then, one might suspect that the system is not in a topologically ordered phase. In this section, we show this is not the case
by demonstrating nontrivial topological entanglement entropy and anyonic excitations in the system. In addition, we discuss how the size
dependence of the ground state degeneracy can be understood by viewing the lattice system as a continuum torus but with lattice translation
symmetry defects.

A. Topological entanglement entropy
Here, we compute the topological entanglement entropy Stopo of the ground state of our model. We use the Kitaev–Preskill prescription,5

Stopo = (SA + SB + SC) − (SAB + SBC + SCA) + SABC, (128)

where
SR := −tr[ρ̂R log ρ̂R] (129)

is the von Neumann entropy of the subregion R of the system and ρ̂R := trR̄∣Φ0⟩⟨Φ0∣ (trR̄ represents the partial trace over the complement of
the region R) is the reduced density matrix of the ground state ∣Φ0⟩. The von Neumann entropy shows the area law behavior SR = α∂R + Stopo
(∂R is the length of the boundary of the region R). The formula in Eq. (128) is designed in such a way that contributions from the area law
term cancel.

The von Neumann entropy SR for a stabilizer Hamiltonian can be computed easily.10,27 Let G be the multiplicative group generated by
all Âv’s (v ∈𝒱), B̂p’s (p ∈𝒫) and possible closed string operators for which ∣Φ0⟩ has the eigenvalue +1. Suppose that ∣Φ0⟩ is the unique state
that has the eigenvalue +1 for all operators in G. Then, the projector onto ∣Φ0⟩ can be written as

∣Φ0⟩⟨Φ0∣ = P̂G :=
1
∣G∣∑ĝ∈G

ĝ. (130)
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We have ĝP̂G = P̂Gĝ = P̂G for any ĝ ∈ G due to the rearrangement theorem. To see Eq. (130), it is enough to check that P̂G∣Φ0⟩ = ∣Φ0⟩ and
P̂G∣Ψ⟩ = 0 if there exists ĝ∗ ∈ G such that ĝ∗∣Ψ⟩ = λ∗∣Ψ⟩with λ∗ ≠ 1. The former is simply the definition of ∣Φ0⟩. The latter follows by applying
P̂G = P̂Gĝ∗ to the state ∣Ψ⟩,

(P̂G∣Ψ⟩) = P̂Gĝ∗∣Ψ⟩ = λ∗(P̂G∣Ψ⟩). (131)

As tr[ĝ] is nonzero only when ĝ is identity, the order of the group G is given by ∣G∣ = N2L1L2 . Similarly, trR̄[ĝ] can be nonzero only when
ĝ is identity over R̄. Thus,

ρ̂R =
1
∣G∣∑ĝ∈G

trR̄[ĝ] =
1

NnR ∑
ĝ∈GR

ĝ =
∣GR∣

NnR P̂GR , (132)

where nR is the number of N-level spins in R and GR is the subgroup of G supported in R. In the last step, we introduced the projector

P̂GR :=
1
∣GR∣
∑
ĝ∈GR

ĝ. (133)

Therefore, ρ̂R has only one nonzero eigenvalue λ = ∣GR∣/NnR , whose order of degeneracy is nλ = NnR/∣GR∣ = 1/λ. Therefore,10,27

SR = −nλλ log λ = nR logN − log ∣GR∣. (134)

Up to this point, no assumption has been made on a.
When a is coprime to N, ∣GR∣ is given by NmR , where mR is the number of generators of G supported in R.10 Therefore, the formula in

Eq. (134) reduces to
SR = (nR −mR) logN. (135)

Using this formula, we find that the topological entanglement entropy of our model is

Stopo = − logN, (136)

regardless of L1 and L2, as far as a is coprime to N. For example, for the subregions A, B, and C illustrated in Fig. 4(a), we have

Stopo
logN

= (3 + 3 + 5) − (5 + 7 + 7) + 7 = −1. (137)

We confirm this result by the exact diagonalization up to L1 = L2 = 3 and N = 3.
When N and a have a common divisor, one needs to directly use the formula in Eq. (134). For example, let us take positive, mutually

coprime integers N1, N2, a′ and set N = N1N2 and a = N1a′. For the subregions A, B, and C illustrated in Fig. 4(a), we find

Stopo = [(3 logN − log N1) + (3 logN − log N1) + (5 logN − 3 log N1)]

− [(5 logN − 3 log N1) + (7 logN − 3 log N1) + (7 logN − 3 log N1)] + (7 logN − 3 log N1)

= − logN + log N1 = − log N2 = − log Na. (138)

Generators of GR used in the calculation are shown in Figs. 4(b)–4(g) using region C as an example. This result is what one would expect from
the ZNa topological order. However, more generally, we have

Stopo = − logN + log [gcd(N, a)]

= − log Na − log [
N

Nagcd(N, a)
]. (139)

By definition [see Eqs. (48) and (52)], N/[Nagcd(N, a)] is a positive integer. When it is larger than one, Stopo is shifted from the expected
value −logNa. We examine this additional contribution to Stopo in detail below.

B. Spurious contributions
It is known that the topological entanglement entropy may suffer from spurious contributions and may become nonzero even when the

ground state does not have a topological order.10,28,29 Thus, we need to verify that the nonzero topological entanglement entropy found in
Sec. VII A is the legitimate one.

In Ref. 28, it was shown that such spurious contributions can be captured by another combination of entropies computed for a dumbbell-
shaped configuration,

Sdumb := (SABC + SB) − (SAB + SBC). (140)
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FIG. 4. (a) Subregions A, B, and C used in the computation of Stopo. (b)–(g) Generators of GC. (b)–(d) Âv and B̂p themselves, and (e)–(g) Â
N

gcd(N,a)
v and B̂

N
gcd(N,a)
p . When

N = N1N2 and a = N1a′ (N1, N2, and a′ are mutually coprime), then N
gcd(N,a) = N2.

Regions A, B, and C must be chosen carefully,28 and here, we assume those illustrated in Fig. 5(a).
When a is coprime to N, we find

Sdumb

logN
= (11 + 3) − (7 + 7) = 0, (141)

implying that Stopo in Eq. (136) is physical. This remains true more generally when N/[Nagcd(N, a)] = 1.
This is no longer the case when N/[Nagcd(N, a)] > 1. For example, when N = a2 (a > 1), there are no anyons (Na = 1) and the phase

must be topologically trivial as we will discuss in Sec. VIII. However, in this case, N/[Nagcd(N, a)] = a > 1 and Stopo in Eq. (139) becomes

Stopo = 0 − log a = −0.5 logN. (142)

This nonzero value comes from the spurious contribution originating from subsystem symmetries. Subsystem symmetries are rigid string
operators that cannot be deformed freely, unlike the Wilson loop operators, but commute with the Hamiltonian. In our model, subsystem
symmetries exist when Na ≠ N. They have nontrivial contribution to Stopo and Sdumb when their ends have a shape illustrated by dashed lines
in Figs. 4(b) and 4(c), which occurs when N/[Nagcd(N, a)] > 1. Indeed, when N = a2 (a > 1), we find

Sdumb

logN
= (7.5 + 2.5) − (5.5 + 5.5) = −1. (143)
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FIG. 5. (a) Subregions A, B, and C used in the computation of Sdumb. (b)–(g) Generators of GABC. Those simply given by Âv and B̂p are omitted. (b) and (c) Subsystem
symmetry operators. (d)–(f) B̂a

p.

We illustrate generators of GABC used in the calculation in Figs. 5(b)–5(f). These behaviors imply that N = a2 cases realize subsystem
symmetry-protected topological (SSPT) phases, and we will come back to this point in Sec. VIII C.

C. Anyons
When a is coprime to N, all magnetic and electric excitations can be understood as anyons with nontrivial mutual braiding statistics.

They are created in pairs by open string operators, as in Sec. II D, or by extended string operators in Eqs. (67) and (70) without forming a pair.
The appearance of anyonic excitations is another hallmark of topologically ordered phases.

When a is not coprime toN, some of magnetic and electric excitations are trivial in the sense they can be created locally without forming
a pair. To see this, let us focus on divisors of N given by

dk :=
N

gcd(ak,N)
∈ DN (k = 1, 2, 3, . . .). (144)

If k < k′, dk/dk′ is a positive integer because

dk
dk′
=
gcd(ak

′
,N)

gcd(ak,N)
= gcd

⎛

⎝

ak
′

gcd(ak,N)
,

N
gcd(ak,N)

⎞

⎠
≥ 1. (145)
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In particular, dk = Na for every k ≥ max{r j}nj=m+1, where Na is defined in Eq. (52) and rj’s are powers appearing in the prime factorization in
Eq. (48). Therefore, all dk’s are multiples of Na.

The string operator

X̂(1)v,dk
:= [X̂ (1)v,v+(k,0)]

dk =
k−1

∏
ℓ=0

X̂dkaℓ

(m1+1+ℓ,m2+
1
2 )

(146)

creates a single magnetic excitation with the eigenvalueωdk of B̂v. The eigenvalue of B̂v+(k,0) remainsω−dka
k
= 1.We can do the same for electric

excitations. Hence, a magnetic or electric excitation with the eigenvalue ωℓNa (ℓ ∈ Z) can be created locally by [X̂ (1)v,Na
]
ℓ without forming a pair.

Conversely, if q is not a multiple of Na, excitations with eigenvalue ωq need to be created in pairs. Therefore, only excitations with the charge
q = 1, 2, . . . ,Na − 1 are nontrivial.

Generally, we label the anyonic excitations by their electric and magnetic charges qe and qm, where qe, qm ∈ {0, 1, . . . ,Na − 1}. The topo-
logical order of this model is thus identical to that of the standard ZNa toric code model, i.e., the same anyon types, fusion rules, and braiding
statistics. In particular, they satisfy the following fusion rule:

(qe, qm) × (q′e, q
′

m) = ([qe + q
′

e]Na , [qm + q
′

m]Na). (147)

Here, [x]Na means xmodNa. Thus, we may view the anyons as an Abelian group𝒜= ZNa × ZNa , with the multiplication given by fusion.
However, if we take into account lattice translation symmetry, the system can have distinct translation symmetry-enriched topological

phases30 as the standard ZNa toric code. More specifically, under a unit translation in x1 or x2, an anyon (qe, qm) becomes

Ti : (qe, qm)→ (aqe, a−1qm). (148)

This action is well-defined since for every q = 1, 2, . . . ,Na − 1, there exists ℓ (1 ≤ ℓ ≤ Na − 1) such that q = aℓ modNa. Then, aq := aℓ+1 and
a−1q := aℓ−1 modNa. When q = 0, aq = a−1q = 0.

We should mention that to completely describe the symmetry-enriched topological order, there are further information beyond the
permutation action.30 However, they are not relevant for our purpose, so we will not consider them in more details.

D. Symmetry defects

When a ≠ 1, the Ti action generally changes anyon types. We can also see that TMNa (a)
i keeps all anyon types invariant, so effectively Ti

generates a ZMNa (a) symmetry group of the low-energy topological theory. In this section, we will use ρak to denote the permutation

ρak : (qe, qm)→ (a
kqe, a−kqm). (149)

Before we continue, it will be very useful to understand the properties of (point-like) symmetry defects, i.e., dislocations in this case.30–36

Generally, each symmetry defect is uniquely associated with a group element, which determines the symmetry action that takes place when
moving around the defect. We denote the set of all defects associated with symmetry group element g by𝒞g . Note that for g = 1, trivial defects
are nothing but the anyons. Symmetry defects are always at the end points of defect lines, which can be intuitively thought of as branch cuts
where the symmetry action takes place. Just like anyons, defects can fuse with each other to new defects, and the fusion rules must respect the
group multiplication structure. Defects can also fuse with anyons, which do not change the associated group element. See Ref. 30 for a more
systematic discussion of defect fusion rules.

Let us consider the ρak defects. We pick one of them as a reference and denote it by σak ,0. The other defects can be obtained by fusing σak ,0
with anyons. Naively, one might think that the number of different defect types is the same as the number of anyon types. However, due to
the permutation action, we also have the following fusion rule:

((ak − 1)qe, (a−k − 1)qm) × σak ,0 = σak ,0 (150)

for any qe, qm. To see this, one can locally create a pair of anyons (qe, qm) and (−qe,−qm) near the defect, move (qe, qm) around the defect so
it becomes (akqe, a

−kqm), and then fuse it again with (−qe,−qm) to give [(ak − 1)qe, (a
−k
− 1)qm]. In other words, σak ,0 and σak ,0 × ((a

k
− 1)

qe, (a−k − 1)qm) are related by a local operation, so must be the same type of defect.
Therefore, the defect types should be identified with a quotient of the group of anyons 𝒜 by the subgroup generated by (ak − 1, 0)

and (0, a−k − 1).30,35 We will denote by [qe, qm] the equivalence classes of anyons under this quotient. Define tak = gcd(a
k
− 1,Na) = gcd(a−k

− 1,Na) [the second equality follows from gcd(ak,Na) = 1]; then, we can label the defects by σak ,[qe ,qm] with qe,m = 0, 1, . . . , tak as representatives
of the equivalence classes,

(qe, qm) × σak ,0 = σak ,[qe ,qm]. (151)
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These different types of defects can be uniquely labeled by the braiding phases of ρak -invariant anyons around the defect. We can now define
σak ,0 as the defect where all such braiding phases are 1.

As an example, if Na is a prime and a ≠ 1modNa, then the subgroup generated by ak − 1 for 0 < k < Na − 1 is basically the entire group
ZNa . Hence, the quotient group has a single element, and there is only a unique type of defect.

We also need to know how the ρak defects transform under the ρ
ak
′ action. It is clear that σak ,0 is invariant under ρak′ . Hence, the action

on σak ,[qe ,qm] is given by
ρ
ak
′ : σak ,[qe ,qm] → σ

ak ,[ak
′
qe ,a−k

′
qm]

. (152)

Let us now consider the ground state degeneracy on a torus, with a ρak1 defect line in one direction and a ρak2 defect line in the other
direction. According to the general theory in Ref. 30, the ground state degeneracy is equal to the number of ρak defect types invariant under
ρ
ak
′ action given in Eq. (152).
We now show that the number of such ρak1 defects is

gcd (ak − 1, ak
′
− 1,Na)

2. (153)

To see why, first, note that the invariance of σak ,[qe ,qm] under ρak′ means that qe, qm satisfy

[(ak
′
− 1)qe, (a−k

′
− 1)qm] = [0, 0]. (154)

Without any loss of generality, we can restrict qe, qm ∈ {0, 1, . . . , tak}. Clearly, we can treat the electric and magnetic sector separately, so we
will focus on the electric sector and suppress the subscript e. To shorten notations, define b1 = ak − 1, b2 = ak

′

− 1, and ti = gcd(bi,Na). In the
electric sector, Eq. (154) means that there exists an integer r such that

b2q ≡ b1r modNa. (155)

Given q, this is possible if and only if t1 = gcd(b1,Na) divides b2q. In other words, there exists an integer r′ such that

b2q = t1r′. (156)

The smallest positive integer q that makes it solvable is t1
gcd(t1 ,b2)

. Note that gcd(t1, b2) = gcd(gcd(b1,Na), b2) = gcd(b1, b2,Na). Therefore, the
number of solutions is precisely gcd(b1, b2,Na). The same argument works for the magnetic sector, so together, we find that the total number
of solutions to Eq. (154) is given by gcd (b1, b2,Na)

2
= gcd (ak − 1, ak

′
− 1,Na)

2.
We now show that knowing the permutation action of Ti on anyons is enough to derive the topological degeneracy. Here, the key is to

think of a L1 × L2 torus as a torus in continuum, but with a TL1
1 defect line along x2 and a TL2

2 defect line along x1. Intuitively, this is because
traveling across the torus in the xi direction is the same as translating by Li. With this picture, the ground state degeneracy is obtained by
substituting k = L1 and k′ = L2, which reproduces the result in Eq. (55). In our model, as shown in Sec. VI, when a and N are coprime, we
can indeed explicitly map the Hamiltonian on a torus to the standard toric code (where translation symmetry acts trivially) with a twisted
boundary condition or equivalently with symmetry defect lines wrapping around the two non-contractible cycles, in full agreement with the
argument in this section. The standard toric code has a smooth continuum limit; thus, the finite-lattice effect is completely captured by the
defect lines, establishing the continuum picture at the microscopic level.

VIII. PHASES WITH NO TOPOLOGICAL ORDER
In this section, we consider the case when a is a multiple of rad(N).

A. Uniqueness of the ground state
Let us demonstrate the uniqueness of the ground state regardless of the choice of the system size L1 and L2 although it is already implied

by our general formula in Eq. (55) with Na = 1.
Let ℓ0 be the smallest positive integer such that

aℓ0 = 0 mod N. (157)

To see that ℓ0 indeed exists, let us write rM := max{ri}ni=1, where ri’s are powers appearing in the prime factorization of N in Eq. (48). Because
rad(N)rM =∏n

j=1p
rM
j is a multiple of N and also because arM is a multiple of rad(N)rM , we have

arM = 0 mod N. (158)

Therefore, ℓ0 is in the range 1 ≤ ℓ0 ≤ rM.
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Then, our discussion in Sec. II C implies that the state

X̂(1)
(m1+

1
2 ,m2+

1
2 ),(m1+ℓ0+

1
2 ,m2+

1
2 )
∣Φ0⟩ (159)

contains a magnetic excitation with eigenvalue ω at the plaquette p = (m1 +
1
2 ,m2 +

1
2). The eigenvalue of the plaquette operator

B̂
(m1+ℓ0+

1
2 ,m2+

1
2 )

remains 1. Most importantly, the string operator in Eq. (159) is local in the sense that its length ℓ0 does not depend on
the system size. Hence, a single elementallymagnetic excitation can be created locally. Similarly, the state

Ẑ(1)
(m1−ℓ0 ,m2),(m1 ,m2)

∣Φ0⟩ (160)

contains an electric excitation with the eigenvalues ω−1 at the vertex v = (m1,m2). The rest of the discussion proceeds exactly the same as in
Sec. V A 2. Therefore,

Ndeg = 1 (161)

for any L1 and L2.

B. Example 1: N = a
As an example, let us discuss the case of N = a. In this case, the Hamiltonian is completely decoupled,

Ĥ =∑
r∈Λ

ĥr , (162)

ĥ(m1 ,m2) =
1
2
(X̂
(m1−

1
2 ,m2)

X̂
(m1 ,m2−

1
2 )
+ h.c.) −

1
2
(Ẑ
(m1 ,m2−

1
2 )
Ẑ−1
(m1−

1
2 ,m2)

+ h.c.). (163)

The ground state of ĥr is unique and has the energy gap Δ1. We denote the ground state by ∣ϕ0⟩r . Then, the unique ground state of Ĥ is given
by the product state ⊗r∈Λ∣ϕ0⟩r . Therefore, this phase is completely trivial. Indeed, the topological entablement entropy in Eq. (128) vanishes

Stopo
logN

= (3 + 3 + 5) − (5 + 8 + 8) + 10 = 0 (164)

for the subregions in Fig. 4(a).

C. Example 2: N = a 2

Next, we discuss the case of N = a2. We argue that this case realizes a SSPT phase.37,38

To this end, we study the property of the model obtained by rotating the one introduced in Sec. II by 45○ (see Fig. 6). Spins are now
defined on square lattice sites r = (m̄1, m̄2) with m̄1, m̄2 ∈ Z. Vertices and plaquettes can be associated with odd (even) sites,

𝒱̄ := {(m̄1, m̄2) ∣ (−1)m̄ 1+m̄ 2 = −1}, (165)

𝒫̄ := {(m̄1, m̄2) ∣ (−1)m̄ 1+m̄ 2 = +1}. (166)

The Hamiltonian is given by

Ĥ := −∑
v∈𝒱̄

1
2
(Âv + h.c.) −∑

p∈𝒫̄

1
2
(B̂p + h.c.), (167)

where

Â(m̄1 ,m̄2) = X̂
−a
(m̄1+1,m̄2+1)X̂

−a
(m̄1 ,m̄2+1)X̂(m̄1 ,m̄2)X̂(m̄1+1,m̄2), (168)

B̂(m̄1 ,m̄2) = Ẑ(m̄1+1,m̄2+1)Ẑ
−1
(m̄1 ,m̄2+1)Ẑ

−a
(m̄1 ,m̄2)

Ẑa
(m̄1+1,m̄2)

. (169)

1. Charge pumping
Let us work with the periodic boundary condition first. We identify r + (n1L̄1,n2L̄2) with r for n1,n2 ∈ Z. Both L̄1 and L̄2 are assumed to

be even. Unit translation symmetries of the model shift r by either (1, 1) or (1,−1).
The model has subsystem symmetries,

X̂m̄2 :=
L̄1−1

∏
m̄1=0

X̂(m̄1 ,m̄2), (170)
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FIG. 6. The model rotated by 45○, corresponding to the L̄1 = L̄2 = 6 case. Dashed lines represent the original square lattice before the rotation. (a) Plaquette operators and
vertex operators. (b) Subsystem symmetries. The red jagged line represents the symmetry flux across the link between (L̄1 − 1, 2 j2 + 1) and (0, 2j2 + 1). (c) Edge zero
modes under an open boundary condition protected by subsystem symmetries.

Ẑm̄2 :=
L̄1−1

∏
m̄1=0

Ẑ(−1)
m̄ 1

(m̄1 ,m̄2)
(171)

for each m̄2 separately, as illustrated in Fig. 6(b), which act only on a single row. When N = a2, these operators can be rewritten in terms of
stabilizers as

X̂m̄2 =

L̄1/2

∏
j1=0

Â(2 j1+1,m̄2)Â
a
(2 j1 ,m̄2+1), (172)

Ẑm̄2 =

L̄1/2

∏
j1=0

B̂(2 j1−1,m̄2−1)B̂
a
(2 j1 ,m̄2−2) (173)

when m̄2 is even and

X̂m̄2 =

L̄1/2

∏
j1=0

Â(2 j1 ,m̄2)Â
a
(2 j1+1,m̄2+1), (174)

Ẑm̄2 =

L̄1/2

∏
j1=0

B̂−1
(2 j1 ,m̄2−1)B̂

−a
(2 j1+1,m̄2−2) (175)

when m̄2 is odd. Hence, in the ground state ∣Φ0⟩ where all vertex operators and plaquette operators take the value +1, we have

X̂m̄2 ∣Φ0⟩ = Ẑm̄2 ∣Φ0⟩ = ∣Φ0⟩ (176)

for all m̄2.
Now, we insert a symmetry flux associated with the subsystem symmetry Ẑm̄2=2 j2+1 at the link between m̄1 = L̄1 − 1 and m̄1 = 0. This

operation multiplies a factor ω−a to the vertex term Â
(L̄1−1,2 j2) [the red shaded vertex in Fig. 6(b)],

Ĥ ′ = Ĥ +
1 − ω−a

2
Â
(L̄1−1,2 j2) + h.c. (177)

In the ground state ∣Φ′0⟩ of Ĥ ′, the eigenvalue of Â(L̄1−1,2 j2) is thus modified to ωa. Therefore, using Eqs. (172) and (174), we find

X̂2 j2 ∣Φ
′

0⟩ = ω
a
∣Φ′0⟩. (178)

Namely, the charge ωa is pumped for the subsystem symmetry X̂2 j2 upon inserting the symmetry flux associated with the subsystem symmetry
Ẑ2 j2+1. This pumped charge is a topological invariant that distinguishes this phase from product states.
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2. Zero energy edge states
Next, let us consider the open boundary condition. We impose the subsystem symmetries X̂m̄2 and Ẑm̄2 in Eqs. (170) and (171) for every

m̄2, including the edges.
We introduce two sets of generalized Pauli matrices,

σ̂x2 j,L := X̂(0,2 j)X̂
−a
(0,2 j+1), (179)

σ̂z2 j,L := Ẑ(0,2 j)Ẑ
a
(0,2 j−1), (180)

and

σ̂x2 j,R := X̂
(L̄1−1,2 j)X̂

−a
(0,2 j+1), (181)

σ̂z2 j,R := Ẑ
(L̄1−1,2 j)Ẑ

a
(0,2 j−1), (182)

which commute with all stabilizers in the bulk Hamiltonian. They satisfy

σ̂z2 j,sσ̂
x
2j ′ ,s′ = ω

δs,s′ δ j,j ′ σ̂x2j ′ ,s′ σ̂
z
2 j,s (183)

for s, s′ = L,R and j, j ′ = 1, 2, . . . , L̄22 − 1. A pair of σ̂x2 j,s and σ̂z2 j,s generates a ZN × ZN symmetry, implying N-fold degeneracy, and there
are L̄2 − 2 such pairs. This N L̄ 2−2-fold degeneracy cannot be lifted by perturbations on the edges, as long as the subsystem symmetries are
maintained. In contrast, the two edges at m̄2 = 0 and m̄2 = L̄2 − 1 can be gapped by edge perturbations.

IX. DISCUSSIONS
As a concluding remark, let us discuss implications of our example on the Lieb–Schultz–Mattis (LSM)-type theorems,39–53 which for-

mulate necessary conditions for the unique ground state with a nonzero excitation gap under the periodic boundary condition. When one of
these conditions are not satisfied, the appearance of ground state degeneracy or gapless excitations is guaranteed. The ground state degeneracy
originates from either spontaneous symmetry breaking or topological degeneracy. Hence, violation of LSM-type conditions in symmetric and
gapped phases can be used as a sufficient condition for a nontrivial topological order.45,47

There are a variety of such theorems applicable to quantum many-body systems in different settings. For example, in one dimension, an
early version of LSM theorems for quantum spin chains with spin-rotation symmetry states that S needs to be an integer in the presence of
the time-reversal symmetry.39,40 More generally, S −m (m is the magnetization per unit cell) must be an integer to realize a unique gapped
ground state.41 Similarly, in fermionic systems with U(1) symmetry, the filling ν (the average number of fermions per unit cell) must be an
integer.42 These results apply to any sequence of L1. One can even start with the infinite system from the beginning.52,53

In contrast, there is usually a restriction on the choice of the sequence of Li’s in higher-dimensional extensions of these theorems. In the
formulation, one usually starts with a finite size systemwith the length Li in xi direction (i = 1, . . . ,d) and considers the limit L1, . . . ,Ld → +∞.
For example, for spin systems, the arguments in Refs. 44 and 46 are effective only when L2, . . . ,Ld are all odd. For particle systems, the
discussions in Refs. 43 and 51 assume that L2, . . . ,Ld are coprime to q when ν = p/q. There is a way to remove such a restriction by modifying
the boundary condition to a tilted one,54 but this argument is not about the original periodic boundary condition. Namely, changing the
boundary condition from the periodic one to the tilted one might affect the degeneracy or excitation gap.

As we demonstrated through an example, a topologically ordered phase may not show topological degeneracy on torus depending on the
sequence of system size. Hence, even when all the LSM-type conditions are fulfilled and the ground state is indeed unique in some sequences
of the system size, it still might be the case that the ground state is actually topologically ordered.
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APPENDIX A: PROOF OF EQ. (105)

Here, we demonstrate the validity of Eq. (105). As stated in the main text, we set

ℓ′2 = r :=
α1 + b1N

gcd(α1 + b1N,α2 + b2N)
. (A1)

Using the properties of the greatest common divisor, we find

da = gcd(α1,α2,N) = gcd(α1 + b1N,α2 + b2N,N) (A2)

and

d1,a = gcd(α1,N) = gcd(α1 + b1N,N)

= da gcd(r
gcd(α1 + b1N,α2 + b2N)

da
,
N
da
)

= da gcd(r,
N
da
). (A3)

In the last line, we used the fact that N/da is coprime to gcd(α1 + b1N,α2 + b2N)/da. Hence, Eq. (105) can be rewritten as

gcd
⎛
⎜
⎝

r

gcd(r, N
da
)
,da
⎞
⎟
⎠
= 1. (A4)

Below, we prove the following statement: for any integer N ≥ 2 and integers α1 and α2 in the range 1 ≤ α1,α2 ≤ N − 1, there always exist
integers b1 and b2 such that Eq. (A4) holds.55 In particular, b2 can be set 0. Since this is trivially the case when da = 1, in the following, we
assume da ≠ 1. We introduce shorthands α′1 := α1/da, α′2 := α2/da, and N′ := N/da.

For an integer m and a prime p, let us denote by νp(m) the largest non-negative integer ν such that pν divides m. Suppose that
e j := νp j(da) ≥ 1 for j = 1, 2, . . . , J. In other words, da can be prime-factorized as da =∏J

j=1 p
e j
j . Then, Eq. (A4) holds if and only if

νp j(r) ≤ νp j(N
′
) (A5)

for all j = 1, 2, . . . , J. In addition, by definition,

νp j(r) = νp j(
α′1 + b1N′

gcd(α′1 + b1N′,α′2 + b2N′)
)

≤ νp j(α
′

1 + b1N
′
). (A6)

Therefore, if
νp j(α

′

1 + b1N
′
) ≤ νp j(N

′
) (A7)

simultaneously for all j = 1, 2, . . . , J, Eq. (A5) is fulfilled. In the following, we write n j := νp j(N
′
) andm j := νp j(α

′

1).
Let us derive the condition for Eq. (A7). When nj ≥ mj, we need

νp j

⎛

⎝

α′1
pm j
j
+ b1

N′

pm j
j

⎞

⎠
≤ n j −m j (A8)
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with α′1/p
m j
j ≠ 0mod pj. In this case, we can set b1 = 0mod pj. On the other hand, whenmj > nj, we need

νp j

⎛

⎝

α′1
pn j
j
+ b1

N′

pn j
j

⎞

⎠
= 0 (A9)

with α′1/p
n j
j = 0mod pj and N

′
/pn j

j ≠ 0mod pj. In this case, we can set b1 = 1mod pj. After all, we found a condition of the form b1 = xj mod pj
for each j = 1, 2, . . . , J. The Chinese remainder theorem guarantees the existence b1 in the range 0 to −1 +∏J

j=1p j such that these conditions
are simultaneously satisfied.

APPENDIX B: REDUCTION OF GENERALIZED PAULI MATRICES

When N1 and N2 are coprime, the N = N1N2-level spin can be decomposed into the tensor product of N1- and N2-level spins. To see
this, let us write the matrices in Eqs. (3) and (4) as X(N) and Z(N), respectively. We have

VX(N)N1+N2V†
= X(N1)⊗ X(N2), (B1)

VZ(N)V†
= Z(N1)⊗ Z(N2), (B2)

where [V]i1i2 ,i := δi−1,mod (N2(i1−1)+N1(i2−1),N) and [Z(N1)⊗ Z(N2)]i1i2 , j1 j2 := [Z(N1)]i1 , j1[Z(N2)]i2 , j2 for i1 = 1, . . . ,N1, i2 = 1, . . . ,N2, and
i = 1, . . . ,N. These reduction formulas can be readily shown by using the representations in Eqs. (3) and (4).

Let us discuss the implication of these relations. Suppose that N = N1N2 and N1 and N2 are coprime. We introduce another modified
Hamiltonian,

Ĥ ′′ := −∑
v∈𝒱

1
2
(ÂN1+N2

v + h.c.) −∑
p∈𝒫

1
2
(B̂p + h.c.), (B3)

where Âv and B̂p are vertex and plaquette operators in Eqs. (16) and (17) with a1 = a2 = a. The eigenstates of this Hamiltonian are also identical
to those for Ĥ in Eq. (14), and the ground state degeneracy remains unchanged.

Let V̂ be the global unitary operator whose action on each N level spin is given by the unitary matrix V above. Using the reduction
formulas, we find

V̂Ĥ ′′V̂ †
= −∑

v∈𝒱

1
2
(Âv(N1)⊗ Âv(N2) + h.c.) −∑

p∈𝒫

1
2
(B̂p(N1)⊗ B̂p(N2) + h.c.), (B4)

where Âv(Ni) and B̂p(Ni) (i = 1, 2) are vertex and plaquette operators forN i-level spins. Ground states have the eigenvalue +1 for all Âv(Ni)’s
and B̂p(Ni)’s. This result indicates that, if we denote the ground state degeneracy of the our model for N-level spin by Ndeg(N),

Ndeg(N) = Ndeg(N1)Ndeg(N2). (B5)

Indeed, this is consistent with our result in Eq. (55) because

gcd(aL1 − 1, aL2 − 1,N1N2) = gcd(aL1 − 1, aL2 − 1,N1) gcd(aL1 − 1, aL2 − 1,N2), (B6)

when N1 and N2 are coprime. More generally, for the form of N in Eq. (48), we have

Ndeg(N) =
n

∏
j=1

Ndeg(p
r j
j ). (B7)

However, this decomposition alone is not sufficient to derive Eq. (55). One still has to compute Ndeg(p
r j
j ), and this requires an investigation,

which is almost as hard as what we did in this work.
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