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ABSTRACT

Topologically ordered phases in 2 + 1 dimensions are generally characterized by three mutually related features: fractionalized (anyonic)
excitations, topological entanglement entropy, and robust ground state degeneracy that does not require symmetry protection or sponta-
neous symmetry breaking. Such a degeneracy is known as topological degeneracy and can be usually seen under the periodic boundary
condition regardless of the choice of the system sizes L, and L, in each direction. In this work, we introduce a family of extensions of
the Kitaev toric code to N level spins (N > 2). The model realizes topologically ordered phases or symmetry-protected topological phases
depending on the parameters in the model. The most remarkable feature of topologically ordered phases is that the ground state may
be unique, depending on L; and L, despite that the translation symmetry of the model remains unbroken. Nonetheless, the topological
entanglement entropy takes the nontrivial value. We argue that this behavior originates from the nontrivial action of translations permuting
anyon species.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0134010

I. INTRODUCTION

In the studies of many-body systems, one is often interested in the properties of ground states and low energy excitations. Ground state
degeneracy that does not originate from spontaneous symmetry breaking or fine-tuning of parameters is called topological degeneracy.'
Such a degeneracy is robust against any local perturbations, including symmetry-breaking ones. In two dimensions, the order of topological
degeneracy Ny, depends on the genus g of the manifold on which the system is defined.

In topologically ordered phases with U(1) symmetry (e.g., fractional quantum Hall systems), Ngeg > g° when the filling is v = 1/q. This
degeneracy can be proven by a flux-threading type argument,* assuming the appearance of fractional excitations with U(1) charge 1/q. More
generally, there usually exist closed string operators that describe processes of creating a pair of anyonic excitations, dragging them apart,
and pair-annihilating them again after forming a non-contractible loop. These loops commute with the Hamiltonian but not among them.
Non-commutativity of loop operators implies the topological degeneracy. In particular, the topological degeneracy N, on a torus (g = 1) is
often equal to the number of distinct anyonic excitations. The topological degeneracy is also tied with the topological entanglement entropy,
which is given by Siopo = —log 9, where D is the total quantum dimension and &” is nothing but the number of distinct anyonic excitations
for Abelian topological order. Therefore, it is often stated that the ground state degeneracy on torus, anyonic excitations, and topological
entanglement entropy appear all at the same time.

In this work, we introduce a family of extensions of the Kitaev toric code” to N-level spins (N = 2,3,4,...), which contains an integer
parameter a (1 < a < N). The original model corresponds to the (N,a) = (2, 1) case. The model describes topologically ordered phases when
a is not a multiple of rad(N) (the radical of N; see Sec. V) and phases with no topological order when a is a multiple of rad(N). In particular,
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when N and a are coprime, these phases are characterized by the topological entanglement entropy Stopo = —log N, independent of system
sizes L1, L;.

For a generic integer N, the case of a = 1 is the standard Zy toric code® discussed widely, for example, in Refs. 9-12, which shows
topological degeneracy Ngeg = N? regardless of the choice of L; and L,. The case of a = N — 1 (N > 3) was discussed in Refs. 1316, although
the ground state degeneracy on torus was not fully investigated. When N is odd and a = N — 1, we find that the topological degeneracy occurs
only when both L; and L, are even,

N*  (bothL; and L, areeven),
Ndeg = . (1)
1 (otherwise).
The most striking situation of our model arises when N is a prime number and 4 is a primitive root modulo N (see Sec. III A). In this case,
Ngeg is given by (see Sec. VV A for the proof)
N*  (bothL; and L, are multiples of N — 1),
Ndeg = . (2)
1 (otherwise).

This means that the minimum system size to observe the degeneracy is L = L, = N — 1, for which the Hilbert space dimension is N> s
(for example, 11 for N = 11, for which a = 2,6,7, 8 are the primitive roots). It is thus nearly impossible to see the topological degeneracy for
alarge N in any numerical studies. Therefore, the uniqueness of the ground state for a sequence of L; cannot be used as a proof of the absence
of topological order, although the converse might still be the case: topological degeneracy Ny > 1 in a sequence of L; implies a nontrivial
topological order. Note that, if an open boundary condition is assumed instead of the periodic one, a unique ground state can be realized even
in the original Z; toric code due to the absence of any Wilson loops or constraints among stabilizers.

There is a more famous example, called Wen’s plaquette model,'” in which topological degeneracy depends on the system size. There are
also more recent examples of this type behavior.'* ** However, in these examples, the ground state degeneracy on torus is at least two. Our
example demonstrates that there are even cases where the ground state is unique and excitations are all gapped in a sequence of L;, despite their
nontrivial topological order. It is interesting to contrast with a known theorem about topological quantum field theory (TQFT), according to
which the phase is invertible (i.e., no topological order) if Ngeg = 1 on torus (and technically, on sphere as well).”” Our example shows that the
relation between lattice models and corresponding effective field theories can be quite subtle. We will also show that the degeneracy can be
understood in terms of the TQFT if the finite-size torus in the lattice system is viewed as a torus in continuum but with symmetry defect lines
(or twisted boundary conditions) corresponding to the translation symmetry action in the low-energy theory.

The rest of this work is organized as follows. We summarize the definition and basic properties of our model in Sec. II. We review basic
mathematical facts in number theory in Sec. I11. Overall properties of our model for given integers N and a are summarized in Sec. I'V. Then,
the ground state degeneracy of the model in topologically ordered phases is studied in Sec. V. The relation of our model to the standard Zy
toric code model is clarified in Sec. V1. Topological properties such as the topological entanglement entropy and anyon statistics in our model
are discussed in Sec. VII. Finally, we study the cases with no topological order in Sec. VIII. We then conclude in Sec. IX.

Il. DEFINITION OF MODEL

In this section, we explain the definition and basic properties of the Zy toric code. Throughout this work, N is an integer greater than 1.

A. Lattice of N-level spins

In our model, an N-level spin is placed on each link of square lattice. See Fig. | for the illustration. The action of operators X, and Z, on
the N-level spin at r is represented by N-dimensional unitary matrices,
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1
w
Z:= o’ : “@
N-1
w
2ni
wi=eVN, (5)
which generalize the Pauli matrices. All matrix elements left blank are zero. They satisfy
ZN=xV=1, (6)
1
w
ZX=wXZ= '’ 7)
N-1
w
Operators for different spins commute so that
=% =1, (8)
2k, =o' K2 ©)
Note that, when N > 3, matrices X and Z are not Hermitian and X! # X, and Z{ # Z,.
The role of X, and Z, can be interchanged by the global unitary transformation Uy, whose action on each spin is represented by
1 1 1 1
1 w W’ V!
1 2 4 2(N-1)
Uy:= —|1 W [ w 10
=S (10)
1 N-1 wZ(N—l) w(N—l)Z
We have UyXU! = Z and UyZU} = X'.
J. Math. Phys. 64, 051901 (2023); doi: 10.1063/5.0134010 64, 051901-3
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The positions of spins on the horizontal and vertical links are set to r= (m; + %,mz) and (my, my + %), respectively, where
m;=0,1,...,L;i — 1 (i = 1,2) and L; is a positive integer,

1 1
A= {(ml,mz + E),(ml + E,mZ)

We impose the periodic boundary condition and identify XHM LinLy) With X, and ZH(,,I Li.mL,) With Z, for any ny,n; € Zand r € A. The sets
of vertices 7" and plaquettes 2 are given by

mi:O,l,...,Li—l}. (11)

V= {(ml,m2)|mi:0,1,...,L,-—1}, (12)
1 1
9"::{(m1+5,m2+5)|m,—:O,l,...,L,-—l}. (13)

The total number of spins in the system is 2L; L, and the dimension of the Hilbert space is N*"'"2,

B. Hamiltonian and stabilizers
The Hamiltonian of the model reads as

A== LA e he) - 3 L8+ he), (14)
ve? peP 2

which is invariant under translation T; (i = 1,2), defined by
P = Xpvey TiaT = Zuve (15)

As illustrated in Fig. 1(a), a vertex operator A, (v € %) is defined by

o—a S—a
X
(ma+1my) " (mymy+1)

X(mym) X (mims=3) (16)

and a plaquette operator B, (p € P) is
\ A
Bimsimyy =2 B2
= Z(m1+l,m2+%)Zzi'll+%,m2+l)ZE:;lbmz+%)Zzzml+%‘mZ)' 17)
Integers a; and a; (1 < a1,a, < N) are important parameters of this model. It is easy to verify that A,’s (v € 7) and B,’s (p € &) all commute

with each other regardless of a; and a,. For brevity, we set a; = a, = a in the following, but a; # a, cases can be treated in the same way.
The eigenstates of the Hamiltonian can be chosen as simultaneous eigenstates of all A,’s (v € 7) and B,’s (p € &). Since

AY =B} =1, (18)

eigenvalues of operators A, and B, are N-fold, 1, @, ..., 0"

C. A ground state

A ground state of the Hamiltonian H can be constructed explicitly following the discussion for the original toric code, for example, in
Ref. 24. Let |¢,) be the “ferromagnetic” product state, satisfying

€1:/5°10 ¥20Z Aen 0L

Zilgo) = |go) (VreA), (19)
Tilgo) = [¢o). (20)
It has the eigenvalue +1 for all plaquette operators,
Bylo) = |¢o) (VpeP). 21
J. Math. Phys. 64, 051901 (2023); doi: 10.1063/5.0134010 64, 051901-4

© Author(s) 2023


https://scitation.org/journal/jmp

Journal of : e o _ _
Mathematical Physics scitation.org/journal/jmp
Now, we introduce a projection operator,
b L IIY A (22)
N& ve? £=0

which satisfies
p?=p, (23)
AP =PA, =P, (24)
ByP = PBy, (25)
T.p = PT. (26)

Then, the state
on) =\ N Bl @)

satisfies both

A, Do) = Do) (Yve?), (28)
By|®o) = [@o) (VpeP), (29)

suggesting that |@y) is a ground state with the energy eigenvalue Egs = —2L; L,. Here, N¢ > 0 is the normalization factor given by

N-1
Ne = (9ol [T Avlgo) = 3 (dol [T AV I0). (30)

ve?/ =0 {e,} ve?

It can be shown that N¢ counts the number of global constraints among the vertex operators of the form

[TAr=1 (0<t,<N-1), 31)
ve?

and there is an equal number of constraints among the plaquette operators,

[1B7=1 (0<6<N-1). (32)
peP

In our model, the total number of vertex operators and plaquette operators, 2L; L, coincides with the total number of spins in the system.
Hence, there would be no ground state degeneracy if all stabilizers were independent. Indeed, as we demonstrate in Sec. V, the number of
constraints N¢ is related to the ground state degeneracy as Nyeg = Ne.
The state |®y) is translation invariant, .
Ti|®o) = |®o), (33)

because |¢,) is translation invariant and P commutes with T:. As we show below, the model has a nonzero excitation gap. Furthermore, all
correlation functions of X, and Zr are short-ranged. For example,

(Do|X1 X,/ |®o) = (D0l Z]Z| Do) = 8., (34)
These observations imply the absence of translation symmetry breaking.

D. Quasiparticle excitations

We introduce (open) string operators 5(;2, (i=1,2) by

’
my

|
3

(1) "ot
Xm-tmse Do ) = 1L Xlnvemsssy 35)
@ "
A o
Kottty = 11 Ko tmann (36)
J. Math. Phys. 64, 051901 (2023); doi: 10.1063/5.0134010 64, 051901-5
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and ZE?, (i=1,2) by

’
mi—m

A (1) o Aumqul%

Z(m,,mz),(m{+l,m2) T E’ (m1+£+%,m2)’ (37)
2) 1t my—m)~L

% a

Z(ml,m2)>(m1,m£+1) = H) Z(ml,mz+é+%)' (38)

In these expressions, we assumed 0 < m; < my<L —land0<my<mh<L,—1.
The state
£ 1y[o) (39)
2

(=L 1), (L

contains a pair of plaquettes operators with eigenvalues not equal to 1 [see Fig. 1(b) for the illustration], which are called magnetic excitations.

"M

A A +1
In this state, the eigenvalues of B(,,, 1, .1y and B, 1,, ,1)are wand ™ , respectively. The eigenvalues of other plaquette operators
2 2 2’ 2

remain +1. In the derivation of these relations, we used the general property of exponents (z™)" = z™" for z € C and m, n € Z. Similarly, the
state

Z) Do) (40)

(my,my),(m{+1,my)

mf —my+1 A A
has the eigenvalues * ' and @™ for the vertex operators A(imy,my) and Ay 41,m,), respectively. String operators along x; direction also

create pairs of electric or magnetic excitations at their ends [see Fig. 1(c)].

A single plaquette operator or a vertex operator with eigenvalue w? (g = 1,2,...,N — 1) costs an energy
1 - 2nq
Ag=1-=(0+w™ :l—cos(—), 41
gi=1- 3 ) N (41)
2
22quA1:1—cos(ﬁ”). (42)

The excitation energy of a pair Ap.ir can thus be bounded by

4 > Apair > 2A;. (43)

These electric and magnetic excitations can be further divided into equivalence classes up to local excitations (i.e., excitations that can be
created locally), which are called anyon types. They will be discussed in Sec. VII C.

lll. BASIC FACTS FROM NUMBER THEORY

In this section, we review basic mathematical facts in number theory to set up notations for Sec. I'V and below.

A. Multiplicative order and primitive root

Given a positive integer n and a positive integer a coprime to 7, the multiplicative order of a modulo 7 is defined as the smallest positive
integer ¢ such that

a* = 1 mod n, (44)

which we denote by M, (a) in this work. For example, M,(a) =1 if and only if a = 1 (mod n). In addition, for n >3, M,(a) =2 ifa=-1
(mod n). Conversely, the relation in Eq. (44) implies that n and a are coprime. In the following applications, the integer # is chosen to be N
itself or a divisor of N that is coprime to a.

The multiplicative order is related to Euler’s totient function ¢(#), which is defined as the number of positive integers smaller than n
that are relatively prime to n. By definition, 1 < ¢(n) < n — 1. If and only if  is prime, ¢(n) = n - 1.

Euler’s theorem,”’ a?™ = 1 mod n, implies that M, (a) is a divisor of ¢(n). Thus,

1 < My(a) < p(n). (45)

Integers a that saturate the upper bound, i.e., M, (a) = ¢(n), are called the primitive roots modulo n. The primitive roots exist if and only if n
is 2, 4, pk ,or 2pk, where p is an odd prime number and k is a positive integer. It follows that, when 7 is a prime number, there exists an integer
a such that

Mu(a)=n-1 (46)

€1:/5°10 ¥20Z Aen 0L
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Finally, suppose that n” is also a positive integer coprime to a. In this case, M, (a) is a multiple of both M,(a) and M,,(a) because
a9 2 1 (mod nn') also implies aMw () = 1 (mod n) and @™ () = 1 (mod n'). In particular,

M, (a) > My(a) (47)

when n’ is a multiple of 7.
These mathematical facts underlie our results quoted in Egs. (1) and (2).

B. Prime factorization and divisors of N

Suppose that the integer N (N > 2) can be prime factorized into
" T
N =T1p}=pi'py--pirs (48)
j=1

where p/’s (j=1,2,...,n) are prime numbers and r;’s are positive integers. The radical of N is defined as the product of all distinct prime
factors of N,

rad(N) =[] pj =pip2-+pn (49)

j=1

We denote the set of all (positive) divisors of N by Dy,

. Ogr;- Sr,}, (50)

which includes 1, N, and rad(N), for example.
Without loss of generality, let us arrange prime factors p;’s of N in Eq. (48) in such a way that

i ¢7Z i=1,2,...,m),
a/pj ¢ G m) (51)
alpieZ (j=m+1,...,n).
Then, the largest divisor of N that is coprime to a is given by
n 7 T T T,
Na:=[1p] =pip>---pw <N. (52)
j=1
By definition, we have
N.=N << gcd(N,a) =1 (ie,m=n), (53)
N.=1 < a/rad(N)€eZ (ie.,m=0). (54)

Here, gcd(p, g7, . . .) for integers p, g, 1, . .. represents their greatest common divisor. By definition, p/gcd(p, q) and q/gcd(p, q) are positive
integers. Since N, is a multiple of any d € Dy that is coprime to a, My, (a) is a multiple of M (a).

IV. CLASSIFICATION OF PHASES IN THE (N, a) MODEL

Our model describes two distinct types of phases with or without topological order depending on whether a (1 < a < N) is a multiple of
rad(N) or not. Here, we provide a brief summary of the main features of the two phases.

Case 1: When a is not a multiple of rad(N), our model exhibits topological degeneracy for some sequences of L; and L,. The ground
state degeneracy on the torus is given by
Nueg = [ged(a" — 1,a" — 1,N,)]%. (55)

For example, Nyeg = N? when both L; and L, are multiples of My, (a) and Ngeg = 1 when L; and L; are not simultaneously multiples
of My(a) for any d € Dy coprime to a, except for d = 1. Correspondingly, there are N2 species of anyons. This class thus falls into
topologically ordered phases. It contains the important class of a being coprime to N. Examples include the casesofa=1anda =N -1
previously discussed in the literature. The size dependence of N4, can be understood from the translation symmetry action on the
anyon excitations, which will be discussed in Sec. VII D.
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Case 2: When a is a multiple of rad(N'), the ground state is unique regardless of the choice of L; and L,. The model thus realizes a trivial
phase with regard to topological orders, but it still might be a nontrivial symmetry protected topological phase. As simplest examples,
we discuss the cases of N = a and N = a%.

We study these two cases separately in Secs. V and VII and in Sec. VIII.

V. GROUND STATE DEGENERACY IN TOPOLOGICALLY ORDERED PHASES

In this section, we show that, when a is not a multiple of rad(N), the order of ground state degeneracy Ny, is greater than one for some
sequences of L; and L.

A. The case of ged(N, a) =1
We start with the simplest case where a is coprime to N.
1. When both L; and L; are multiples of My (a)

Suppose that both L; and L, are multiples of My(a) so that ¥ = ¢** = 1 mod N. In this case, the ground state degeneracy and the
low-energy excitations are basically the straightforward extension of the original toric code. For example, when a = 1, My(a) = 1 and the
assumption automatically holds for any L; and L,. In contrast, when N > 3anda = N — 1, My(a) = 2 and both L; and L, need to be even.

When both L, and L are multiples of My (a), there are two sets of global constraints among the stabilizers A,’s and Bp’s,

Li—1L,-1 amm Li-1 ml(uLZ 1) A umz(aLl -1
H H A(m1 mz) H (m _1 H _1 mz) =1 (56)
my=0 my=0
and
Li—1 L1 (Ly=1=mp ) +(Ly=1-my) RO ml)( Ly _ _a(a=1-m) (4L
ha a 1) 27T (a1 -1)
H H B(m]+%,mz+%) - H (mi+1.0) H (0my+1) =1 (57)
my=0 my=0

1mply1ng that Nc in Eq. (w()) is N. In the derivation, we used definitions in Egs. (16) and (17) and the periodic boundary conditions, such as
X( Li-tm) = =X (-1m) and X (milo-1) = =X (mi=1)- These constraints imply that not all vertex operators and plaquettes operators are indepen-
dent. For example, the eigenvalues of Ay, [vo:= (0,0)] and By, [po := (L1 - 2 ,Ly — 1)] are automatically fixed once the eigenvalues of other

A,’s and Bp’s are chosen.
Correspondingly, there are four independent closed string operators, illustrated in Figs. 2(a) and 2(b), which commute with every term
in the Hamiltonian,

L-1

@) ._ M _ fra

A= Xy ety = [T ety (58)
£ 4@ Lﬁl X (59)

T (Ll 1-1 )(Ll_’LZ_l) s (Llfi’e)

and

R o 60
(0,0),(L;,0) H (e+1.0) (60)
AR %) A 61
(0,0),(0,L,) — H (0.e+1) (61)

where XSIZ' and Z‘(/iv), are defined in Egs. (35)-(38). These operators satisfy [see Eq. (9)]

ZWx@ _yx@z0) (62)
FASD OIS OV AON (63)
and
[ZM,2P1=x®, %] =0, (64)
ZM 5O [x®, 2] =0, (65)

Hence, as the set of independent stabilizers commute with H, one can choose the following set of operators:
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FIG. 2. lllustration of (a) closed string operators X () and X @ (b) closed string operators Z ") and Z @ (c) open string operators that control the eigenvalues of plaquette
operators By (p # py), and (d) open string operators that control the eigenvalues of vertex operators A, (v # vo).

e The vertex operators A, (ve %, v # vy) and the plaquette operators Bp (peP, p#+p,). There are in total N2 different
combinations of eigenvalues.

e Closed string operators Z " (i = 1,2). There are N? different combinations of eigenvalues.

Starting from the ground state |®y) in Eq. (27), which has the eigenvalue +1 for all of these 2L, L, operators, one can generate all N*"''2 states
in the Hilbert space by using the open string operators illustrated in Figs. 2(c) and 2(d) and the closed loop operators X M (i=1,2). They
can be distinguished by N>12271) » N? = N2hiE digtinct combinations of eigenvalues of these stabilizers. In particular, all degenerate ground
states can be written as [X (V] [X ®]%|dy) (jy»j, = 0,1,...,N = 1), which has the eigenvalue w’ of 2. Hence, the order of topological
degeneracy is

Ngeg = N°. (66)

The closed loop operators in Eqs. (58) and (59) create a pair of magnetic excitations at x; = :I:%, dragging the one at x; = % all the way

toxi=Li—j = —% and annihilating them in pair. The pair annihilation requires that magnetic excitations with eigenvalues w and ™" meet.

This is possible only when L; is a multiple of My(a).
2. When L; or L; is not a multiple of My (a)

Next, we consider the case where L; or L, is not a multiple of My (a). Without loss of generality, we assume that L; is not a multiple of
M N ( a) .
Let us introduce a product of string operators associated with the plaquette p = (m; + 3,m, + 1) € &,

Ly—1-m)

X0 = [x“) ] 0 (67)

(=5ma+3)p p(Li=5mt3)

—1- L
"and ™" at the plaquettes (=1,m2 + 1) and p, respectively. The second

gli-1-m

L
The first factor creates magnetic excitations with eigenvalues *

factor creates magnetic excitations with eigenvalues w and w™ at the plaquettes p and (L; — 1, m, + ), respectively. Combining these

1_al/1

two effects, the operator X 1(,1) create a single magnetic excitation with eigenvalue w at the plaquette p. In fact, X}Sl) satisfies

2 (D) _ () 4
AKXV =xVA,, (68)

€1:/5°10 ¥20Z Aen 0L

J. Math. Phys. 64, 051901 (2023); doi: 10.1063/5.0134010 64, 051901-9
© Author(s) 2023


https://scitation.org/journal/jmp

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

ByX(" = o1 a)s, 7 XVB, (69)

1-ah

for any v e 7 and p’ € Z. Since L; is not a multiple of My (a), w #1.
Similarly, the following operator can be introduced for each vertex v = (my,m,) € 7-

M ._ 50 o)
20 =20 0 |25 (70)
which satisfies
A ,251) _ w(“L'_l)aw’Zgl)A ., 71)
B2 - 208, (72)

A L
for any v' € 7" and p € P. Hence, 7V creates a single electric excitation with eigenvalue w* ' # 1 at the vertex v.
To proceed, let us assume further that ah —1is coprime to N. In this case,

((a" -1)modN (£=1,2,...,N-1) (73)

are all different and are not equal to 0 mod N. Therefore, the eigenvalue of the plaquette operator B, (the vertex operator A,) can be freely
controlled by [X f,l)]e ([z ,(,1)]4) without affecting others, implying the absence of global constraints involving B, or A,, such as the ones of
the form in Eq. (31) (i.e., N¢ = 1).

Moreover, operators X" (v € 7) and ZI(,I) (p € &) all commute with each other. Hence, starting from the ground state |®) satisfying

Egs. (28) and (29), one can generate all N2 states in the Hilbert space by successively applying 705 and Xél)’s. In particular, there is no
state other than |®o) that has eigenvalue +1 for all vertex operators and plaquette operators. This proves the uniqueness of the ground state

Ndeg =1, (74)

given that @™ — 1 is coprime to N. This condition is satisfied, for example, (i) when N is prime and L; is not a multiple of My (a) (in this case,
a"" —1+0mod N) and (ii) when N is odd, a = N — 1, and L; is not a multiple of My (a) = 2 (in this case, a" —1=-2mod N). This completes
the proof of Egs. (1) and (2).

The gap to the first excited states is given by A, in Eq. (41), although these states are created by nonlocal operators 5(1(,1) and 2. Local
excitations are still given by pairs of magnetic excitations and electric excitations, for which the exaction gap is bounded by Eq. (43).

B. General case

Next, we discuss the most general case where a/rad(N) ¢ Z but a is not necessarily coprime to N. In this case, we will see that N, in
Eq. (52) plays the role of N in the above discussion.
Let us list up all constraints among A,’s and B,’s of the form of Eqs. (31) and (32). We have

LlLol o, -1 —a"‘l(a’z l)an—l o™ (g1 1)
[T TT A = H ey TLXCE (75)
my=0my=0 my=0 2
and

Lol Ll omyegotomy B2 @m0 m1em)
Amz 1mimm)R S mm) Aatl V(a2-1)n —a'2m ") (g1 - l)n

H H (mi+Lmy+1) = H Z(m]+1,0) H Z(0m2+1) (76)

=0my=0 my=0 2 my=0

Here, n € Dy is a parameter specified shortly. In order to set the products in Egs. (75) and (76) to be 1, we need
(" —=1)n=(a" = 1)n =0 mod N. (77)
To solve this equation, let us define dis € Dy (i = 1,2) by
dig = gcd(aL‘ - 1,N,). (78)

This is the largest divisor d of N such that (i) d is coprime to a and (ii) L; is a multiple of M;(a). For example, di, = N whena =1and d;, = 1
when a" — 1 is coprime to N. The smallest positive integer n € Dy satisfying Eq. (77) is given by
N

== o, 79
n=no= o (79)
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where
da = ged(die, dra) = ged(a" - 1,0 = 1,N,). (80)

After all, we find the following set of global constraints:

’

Li—1L,-1 "n amtm g
H H (my,my) =1 (81)
=0m,=0

’

Li—1L,-1 N (Ly—1=mp)+(Ly—1-my) g
1—[ H B 1=1=my 2=1-my -1, (82)
(m+1my+1

wheren’ =0,1,2,...,d, — 1, suggesting that N¢ in Eq. (30) is given by da. These constraints imply that not all vertex operators and plaquettes
operators are 1ndependent For example, the eigenvalues of A and B can be automatically fixed once the eigenvalues of other A,’s and BP s

are chosen. Then, as the set of independent stabilizers commutlng w1th H, one can choose the following set of operators:

e The vertex operators A, (ve 7, v+ v) and the plaquette operators Bp (peP, p+p,). There are in total N2LL-1) Gifferent
combinations of eigenvalues.

o Theresidual free parts of Av(, and Bpﬂ. The eigenvalues of these operators can be written as @ it (£=0,1,...,n, — 1), where the value
of x (x=0,1,...,d,) is automatically determined by the constraints in Eqs. (81) and (82). Hence, there are effectively 2 different
combinations of eigenvalues

e Loop operators [X (V]" and [Z(]"« (or [X@P]™< and [Z (2)]"2“) where niq := N/dia (i = 1,2). Their eigenvalues are d;,-fold:
W' (j=0,1,...,dia — 1), which include " ' (j'=0,1,...,d, — 1) as a subset. As detailed below, only d> different eigenvalues of
these operators can be manipulated without affecting the eigenvalues of other stabilizers.

Hence, starting from the ground state |®o) in Eq. (27), one can generate all N21%2 states in the Hilbert space, which can be distinguished
by N2ila=h) o 2 5 @2 = N?hil2 distinct combinations of eigenvalues of these stabilizers. This implies that the order of the ground state
degeneracy is given by Eq. (55).

It remains to show that the eigenvalues of stabilizers can be manipulated as stated above. Clearly, open string operators illustrated in
Figs. 2(c) and 2(d) can be used to control the eigenvalues of A, (v € 7, v # v) and B, (p € P, p # p,). The remaining operators satisfy the
followmg algebra:

204, =04, 29, (83)
KO8, — B, X0, (84)
W@y x @50 (85)
%M _ 5 W5@ (86)
where a; (0 < a; < N — 1) is defined by
ai=a” —1 mod N, (87)

which is coprime to a and a multiple of d;, = ged(ai, N4 ). All these operators commute with A, (ve 7, v # v) and B, (p € &, p # p,) and
thus do not change their eigenvalues.

]1.Case 1:a7=a>=0
When a; = a; = 0, N is coprime to a and both L; and L, are multiples of My (a). This case was covered in Sec. V A 1.
2. Case 2: Eithera«; =0 oraz=0

Next, we discuss the case when either a; = 0 or a; = 0. Without loss of the generality, here, we assume a1 # 0 and a; = 0. In this case, N
is again coprime to a, and we have di , = d, = gcd(a1,N) and da s = N.
Since a1 /d1,q is coprime to n1,, = N/di 4, there exists an integer £; (1 < ¢; < ny, — 1) such that

él =1 mod ny,. (88)
dla

Then, we can control the eigenvalues of A,, and By, by [X (V1% and [Z (1]

(XD A, = A, X1 (89)
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(201" Ay = ™A [Z20]", (90)
[X(l)]zlgpo = w_d“Bpo [X(l)]el, (91)
(201" By, = B, [2V]" (92)

without affecting the eigenvalues of [X ()]"« and [Z(1)]". We can also control the eigenvalues of [X 1]+ and [Z () ]"4 by X ® and Z®),

) Ma _ [X(l)]"mj((z), (93)
Ma _ ()Ma [X(l)]nmz(z)’ (94)
N O ) (95)
ma [ maz @ (96)

P
P
[\ %)
&
N
-
@
=)
T LY S

without affecting the eigenvalues of A,, and By,. Since #1,4 = na = N/d,, this is what we needed.
3. Case3:a;+#0 andaz+ 0

Finally, we discuss the case when a; # 0 and a; # 0. We define operators X () .= [ DA [X D% and Z(08) .= [Z(D]0[Z2 D)%,
Since a and a; are coprime, d, in Eq. (80) can also be written as gcd(a1, a2, N). It follows that gcd(a, a2)/da is coprime to 1, = N/d,.
Thus, there exists an integer by such that

bog“‘l(gil"”) =1 mod n,. 97)
Furthermore, Bézout’s lemma tells us the existence of integers b; and b, such that

biag + bay = ged(a, o). (98)
Therefore, we have o .

zld—; + ezd—j =1 mod n, (99)

with £; = bob; mod 1, (0 < €; < ng — 1). The eigenvalues of A,, and Bpo can be controlled byf((é"m and Z(4f2),

X(A,&)AVO :AVOX““ZZ), (100)
Z(el,zz)Ava _ wd“AVOZ(e"eZ), (101)
X(el,zz)épo _ w—duépox(él,éz), (102)
Z(éb@z)gpo - BPUZ(KI’ZZ). (103)

This process might affect the eigenvalues of the closed loop operators [X ()]%« and [Z ()%«
Next, suppose that
e;% + e;% = 0 mod . (104)

In this case, X ‘%) and Z“%) commute with Ay, and By,. For example, one can set £ = —(az + b,N)/gcd(ar + biN, @z + boN) and
0, = (a1 + biN)/ ged(aq + biN, ap + byN), with by, by € Z being free parameters. Choosing ¢] and £; properly, we can realize

gcd(m’” e;,da) -1, (105)

Ng

See Appendix A for the proof. Assuming this and using the relations
X(Zivlﬁ)[x(l)]nm _ [X(l)]nu,ux(lilﬁ)) (106)
X(Zixfé) [Z(l)]”l,u _ w*"l.ae; [Z (1)]"1,/1)‘( (Z{)ZD, (107)
Z(fivfﬁ) [ % (1)]"1,a _ wm,uli; [X(l)]”l,az(e;’eé)’ (108)
JAGE) [ : (1)]n1,a _ [Z(l)]nl,az(zi,lﬁ)’ (109)

Mia

we can control the eigenvalues of [X (V']" and [Z(1]"4 by a multiple of w™ without affecting the eigenvalues of A,, and B,,. This completes

the proof of Eq. (55).
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VI. RELATION TO THE STANDARD Zxy TORIC CODE

In this section, we clarify the relation of our model in Eq. (14) to the a =1 Zy toric code with a twisted boundary condition. This
connection for a prime N is implied by the result in Ref. 26, but our discussion goes more generally whenever N and a are coprime.
Let us consider a modified Hamiltonian

My (a)-1 1 My (a)-1 1

A=-%Y % E(Aﬁﬂh.c.)—z 3 E(B;;Zh.c.), (110)

ve? £=0 peP  £=0

We still assume the periodic boundary condition. This model is equivalent to H in Eq. (14) in the sense that it is written as the sum of the
same set of stabilizers A, (v € %) and Bp (p € P) in Egs. (16) and (17) with a1 = a; = a. The ground states are still given by those who have
eigenvalue +1 forall A, (ve %) and B, (p € ‘%), and the ground state degeneracy remains unchanged.

We introduce a local unitary operator U, (r € A), whose action on the local spin is given by a unitary matrix Ui := 8; 1 +mod((i-1)a,n]- This
operator satisfies

Ux Ut = x4 (111)
U2 vt =2 (112)
oM@ _ g (113)

Here and hereafter, Xf“iz [£=1,2,...,Mn(a)] should be understood as Xf“MN(uH (recall that ¢*¥(*) = 1 mod N). The global operator
[1,eaUr is a symmetry of H' as it commutes with H'. When gcd(N, a) # 1, such a unitary operator does not exist.
Now, let us define a twist operator

Li—1 L—1 -
H H [U(m1+ mz) (ml m2+2):| (114)
=0 my=0
The twist operator converts the stabilizers A, and Bp away from the boundary (i.e., 1 <m; <Ly —2and 1 < mjy < L, — 2) to those fora = 1,
R - (1) gl=mi-my
Ohemay 0" = (A00)) (115)
0B ot - (50 o (116)
(rmi+3my+3) B (m1+ s+ 1) ’

Here, A(" and BISI) represent A, and B, in Eqs. (16) and (17) for a; = a, = 1, respectively. Therefore, except for boundary terms,

NI My (a)-1 1 - (1) ot My (a)-1 5 (1) at
0 VAN S 2[(AV ) +h.c.:|—z > 2[(Bp ) +h.c.] (117)
ve? £=0 peP  £=0
is equivalent to the standard Zy toric code (a = 1). Boundary terms are given by
A (1)
Aoy =X(1 m)X(Om+ X, nmz)X(OmZ_,)) (118)
AM
Al 0y * X(m1+ O)X(m I)X(m lo)X(mle”) (119)
A( ) % _ghitl AiaL|+LzX a2 §e (120)
00) = (‘0) X04) X(u-10) (OL
and
) _pah
Bty Z(0m2+‘)Z(L, fm2+l)Z(L| L 1) 2 (L) (121)
5(1) - 5
Blmri-ny = Z<m1+1Lz~)Z(m+ 0 Zmta- )2 m+ iy (122)
0) e
B(Llfuz”)-*zmiz— V2010 211y -ty (123)

See Fig. 3 for the illustration. These boundary terms can be understood as a result of twisted boundary condition,

A A A A A AL
Kovoy = (OHX 0N = X7, (124)
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FIG. 3. The standard Zy toric code with a twisted boundary condition.

A A A A A —L

Zevqy = (U200 =27, (125)

% A i\Le % 1y L2 ¢t

Xeror) = (U)X U™ =X, (126)

ZrJr(O,Lz) = (U]L)Lzzr[jL2 = Zf_LZ- (127)
This boundary condition modifies the translation symmetries to = anz;lo[Uéymz) IAJ1(L0)MZ+%)]L1 1 and T:= anll_:lo

At At Ly .. . . . I
(U () U (m1+§,0)] T3, and the original translation symmetries in Eq. (15) are broken.

When N and a are not coprime, our model in Eq. (14) cannot be mapped to the standard Zy toric code in this way. In fact, as we shall
see in Sec. V1I, they have different topological orders and cannot be mapped to each other by local unitary transformations.

VIl. TOPOLOGICAL PROPERTIES IN TOPOLOGICALLY ORDERED PHASES

In Sec. V, we showed that the order of ground state degeneracy under the periodic boundary condition can be 1 depending on the
system size. Then, one might suspect that the system is not in a topologically ordered phase. In this section, we show this is not the case
by demonstrating nontrivial topological entanglement entropy and anyonic excitations in the system. In addition, we discuss how the size
dependence of the ground state degeneracy can be understood by viewing the lattice system as a continuum torus but with lattice translation
symmetry defects.

A. Topological entanglement entropy

Here, we compute the topological entanglement entropy Siopo of the ground state of our model. We use the Kitaev—Preskill prescription,”’
Stopo = (Sa + S + Sc) — (Sas + Sec + Sca) + Sasc, (128)

where
SR = —tl‘[f)R 10g fJR] (129)

is the von Neumann entropy of the subregion R of the system and pr := trg|®o){Do| (try represents the partial trace over the complement of
the region R) is the reduced density matrix of the ground state |® ). The von Neumann entropy shows the area law behavior Sg = aOR + Stopo
(OR is the length of the boundary of the region R). The formula in Eq. (128) is designed in such a way that contributions from the area law
term cancel.

The von Neumann entropy Sk for a stabilizer Hamiltonian can be computed easily.'”*" Let G be the multiplicative group generated by
allA,’s (ve 7), By’s (p € ) and possible closed string operators for which |®o) has the eigenvalue +1. Suppose that |®,) is the unique state
that has the eigenvalue +1 for all operators in G. Then, the projector onto |®g) can be written as

1

|CDO)<CDO| = IA)G =
Gl

> & (130)

geG
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We have gPg = Pg = Pg for any § € G due to the rearrangement theorem. To see Eq. (130), it is enough to check that Pg|®p) = |®p) and
Pg|¥) = 0if there exists g € G such that g.|¥) = A.|¥) with 1. # 1. The former is simply the definition of |®p). The latter follows by applying
P = PG(Q* to the state |¥),

(Pg|¥)) = P6ga|¥) = As(Pg

¥)). (131)

As tr[g] is nonzero only when § is identity, the order of the group G is given by |G| = N 2hikz Similarly, trg[¢] can be nonzero only when

¢ is identity over R. Thus,
e e )= g ¥ g e
Glge % NmgS N

A

Pg,, (132)

where ny is the number of N-level spins in R and Gg is the subgroup of G supported in R. In the last step, we introduced the projector

& (133)

Therefore, pr has only one nonzero eigenvalue A = |Gg|/N", whose order of degeneracy is ) = N"*/|Gg| = 1/A. Therefore,' "’
Sr = -mA logA = ng log N - log |Gg|. (134)

Up to this point, no assumption has been made on a.
When a is coprime to N, |Gg| is given by N"%, where mp is the number of generators of G supported in R.
Eq. (134) reduces to

!0 Therefore, the formula in

Sr = (nr — mr) log N. (135)
Using this formula, we find that the topological entanglement entropy of our model is
Stopo = —log N, (136)
regardless of L; and L, as far as a is coprime to N. For example, for the subregions A, B, and C illustrated in Fig. 4(a), we have

Smpo

@=(3+3+5)—(5+7+7)+7=—1. (137)

We confirm this result by the exact diagonalization upto L; =L, =3 and N = 3.
When N and a have a common divisor, one needs to directly use the formula in Eq. (134). For example, let us take positive, mutually
coprime integers N1, N2, a’ and set N = N1N; and a = N,d’. For the subregions A, B, and Cillustrated in Fig. 4(a), we find

Stopo = [(3 logN —log N1) + (3 logN —log N1) + (5 logN — 3 log Ni)]
—[(51logN -3 log Ni) + (7 logN -3 log N1) + (7 logN — 3 log N1)] + (7 logN - 3 log N;)
= —logN +log N1 = —log N, = —log N.. (138)

Generators of Gr used in the calculation are shown in Figs. 4(b)-4(g) using region C as an example. This result is what one would expect from
the Zy, topological order. However, more generally, we have

Stopo = —log N +log [gcd(N, a)]

N
= —log Na—log[m]. (139)

By definition [see Eqs. (48) and (52)], N/[Nagcd(N,a)] is a positive integer. When it is larger than one, Siopo is shifted from the expected
value —log N,. We examine this additional contribution to Sopo in detail below.

B. Spurious contributions

It is known that the topological entanglement entropy may suffer from spurious contributions and may become nonzero even when the
ground state does not have a topological order.'”***” Thus, we need to verify that the nonzero topological entanglement entropy found in
Sec. VII A is the legitimate one.

In Ref. 28, it was shown that such spurious contributions can be captured by another combination of entropies computed for a dumbbell-

p p Y p p
shaped configuration,
Sdumb := (Sasc + SB) — (Sas + Sc)- (140)
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FIG. 4. (a) Subregions A, B, and C used in the computation of Sy (b)~(g) Generators of Ge. (b)~(d) A, and B, themselves, and (e)-(g) A=“" and Bg““”’”. When
N = N;N, and a = Nqa’ (N4, N, and @’ are mutually coprime), then No.

N _
god(N.a)

Regions A, B, and C must be chosen carefully,”® and here, we assume those illustrated in Fig. 5(a).
When a is coprime to N, we find

Sdumb _

logN

(11+43)-(7+7) =0, (141)

implying that Siopo in Eq. (136) is physical. This remains true more generally when N/[Nagcd(N,a)] = 1.
This is no longer the case when N/[Nagcd(N,a)] > 1. For example, when N = a* (a > 1), there are no anyons (N, = 1) and the phase
must be topologically trivial as we will discuss in Sec. VIII. However, in this case, N/[Nagcd(N,a)] = a > 1 and Siopo in Eq. (139) becomes

Stopo = 0 —loga = —0.5 log N. (142)

This nonzero value comes from the spurious contribution originating from subsystem symmetries. Subsystem symmetries are rigid string
operators that cannot be deformed freely, unlike the Wilson loop operators, but commute with the Hamiltonian. In our model, subsystem
symmetries exist when N, # N. They have nontrivial contribution to Siopo and Squmb When their ends have a shape illustrated by dashed lines
in Figs. 4(b) and 4(c), which occurs when N/[N,gcd(N,a)] > 1. Indeed, when N = a* (a > 1), we find

Sdumb
=(75+25)-(55+55)=-1L 143
- (75+25) - (55 +55) (143
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FIG. 5. (a) Subregions A, B, and C used in the computation of Sgums. (b)—(g) Generators of Gagc. Those simply given by A, and B,, are omitted. (b) and (c) Subsystem
symmetry operators. (d)—(f) B;”,.

We illustrate generators of Gapc used in the calculation in Figs. 5(b)-5(f). These behaviors imply that N = a’® cases realize subsystem
symmetry-protected topological (SSPT) phases, and we will come back to this point in Sec. VIII C.

C. Anyons

When a is coprime to N, all magnetic and electric excitations can be understood as anyons with nontrivial mutual braiding statistics.
They are created in pairs by open string operators, as in Sec. I D, or by extended string operators in Egs. (67) and (70) without forming a pair.
The appearance of anyonic excitations is another hallmark of topologically ordered phases.

When 4 is not coprime to N, some of magnetic and electric excitations are trivial in the sense they can be created locally without forming
a pair. To see this, let us focus on divisors of N given by

N

=—— €D k=1,2,3,...). 144
k gcd(ak,N) N ( ) ( )

Ifk <K', di/dy is a positive integer because

dx gcd(ak’,N) - ocd a N .
dy  ged(af,N) ged(af,N) ged(a,N) | ~

(145)
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In particular, dy = N, for every k > max {r;}_,,.1, where N, is defined in Eq. (52) and r;’s are powers appearing in the prime factorization in
Eq. (48). Therefore, all d’s are multiples of N,.
The string operator

k-1
O =[x 1 =TT (146)
£=0

vv+(k0) (m+1+6my+1)

k
~%%" = 1. We can do the same for electric

excitations. Hence, a magnetic or electric excitation with the eigenvalue 0¥ (£ € Z) can be created locally by [X 511\3 1¢ without forming a pair.

Conversely, if q is not a multiple of N,, excitations with eigenvalue w? need to be created in pairs. Therefore, only excitations with the charge
q=12,...,N, — 1 are nontrivial.

Generally, we label the anyonic excitations by their electric and magnetic charges g, and g,,, where g,,4,, € {0,1,...,N, — 1}. The topo-
logical order of this model is thus identical to that of the standard Zx, toric code model, i.e., the same anyon types, fusion rules, and braiding
statistics. In particular, they satisfy the following fusion rule:

creates a single magnetic excitation with the eigenvalue w% of B,. The eigenvalue of BH( k0) Temains

(s @m) % (Ges @) = ([qe + GeINgs [Gm + Gon IN,)- (147)

Here, [x]n, means x mod N,. Thus, we may view the anyons as an Abelian group & = Zy, x Zy,, with the multiplication given by fusion.
However, if we take into account lattice translation symmetry, the system can have distinct translation symmetry-enriched topological
phases’ as the standard Zy, toric code. More specifically, under a unit translation in x; or x, an anyon (g,,4,,) becomes

Ti: (Gesqm) — (agera” ' Gum). (148)

This action is well-defined since for every g = 1,2,...,N, — 1, there exists £ (1 < £ < N, — 1) such that ¢ = a* mod N,. Then, aq := a**! and
a'q:=a""' modN,. Whenq =0,ag=a""q=0.

We should mention that to completely describe the symmetry-enriched topological order, there are further information beyond the
permutation action.”’ However, they are not relevant for our purpose, so we will not consider them in more details.

D. Symmetry defects

When a # 1, the T; action generally changes anyon types. We can also see that T,.M”“ (@) keeps all anyon types invariant, so effectively T;
generates a Zyy, () Symmetry group of the low-energy topological theory. In this section, we will use p « to denote the permutation

k —k
Pt (Gesqm) = (@ Ge- @ Gm)- (149)

30-36

Before we continue, it will be very useful to understand the properties of (point-like) symmetry defects, i.e., dislocations in this case.
Generally, each symmetry defect is uniquely associated with a group element, which determines the symmetry action that takes place when
moving around the defect. We denote the set of all defects associated with symmetry group element g by &,. Note that for g = 1, trivial defects
are nothing but the anyons. Symmetry defects are always at the end points of defect lines, which can be intuitively thought of as branch cuts
where the symmetry action takes place. Just like anyons, defects can fuse with each other to new defects, and the fusion rules must respect the
group multiplication structure. Defects can also fuse with anyons, which do not change the associated group element. See Ref. 30 for a more
systematic discussion of defect fusion rules.

Let us consider the p « defects. We pick one of them as a reference and denote it by o« ;. The other defects can be obtained by fusing o, ,
with anyons. Naively, one might think that the number of different defect types is the same as the number of anyon types. However, due to
the permutation action, we also have the following fusion rule:

((d" - 1)qe, (aF- 1)qm) X Oy =0, (150)

for any q,,q,,. To see this, one can locally create a pair of anyons (g,.q,,) and (-q,, —q,,) near the defect, move (g,,4,,) around the defect so
it becomes (akqe, a_kqm), and then fuse it again with (-g,,—q,,) to give [(d* - l)gq, (a7* - 1)q,,]- In other words, 0,4 and a4 , x ((d-1)
Ge» (a¥ = 1)g) are related by a local operation, so must be the same type of defect.

Therefore, the defect types should be identified with a quotient of the group of anyons < by the subgroup generated by (a* - 1,0)
and (0,a™* — 1).""”” We will denote by [q,,,, ] the equivalence classes of anyons under this quotient. Define ty= ged(a* - 1,N,) = ged(a™*
—1,N,) [the second equality follows from gcd(uk ,Ng) = 1]; then, we can label the defects by Ok Lo with gem = 0,1,.. ., ¢« as representatives
of the equivalence classes,

(qesqm) x 0 = O Lquan]’ (151)
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These different types of defects can be uniquely labeled by the braiding phases of p «-invariant anyons around the defect. We can now define
0, as the defect where all such braiding phases are 1.

As an example, if N, is a prime and a # 1 mod N, then the subgroup generated by a* — 1 for 0 < k < N,, — 1 is basically the entire group
Zn, . Hence, the quotient group has a single element, and there is only a unique type of defect.

We also need to know how the p  defects transform under the p - action. It is clear that o« , is invariant under p /. Hence, the action
on gy, . 1 is given by

pak’ : Oukv[%;‘im] - Uak,[ak,qe,a_k,qm]' (152)

Let us now consider the ground state degeneracy on a torus, with a p , defect line in one direction and a p «, defect line in the other
direction. According to the general theory in Ref. 30, the ground state degeneracy is equal to the number of p + defect types invariant under
p« action given in Eq. (152).

We now show that the number of such p , defects is

ged (dF - 1,8 - 1,N,)?. (153)

To see why, first, note that the invariance of o ) under p  means that q,, q,, satisfy

)[quvqrn
(@ = 1)ge, (@™ ~1)gm] = [0,0]. (154)

Without any loss of generality, we can restrict ge, gm € {0,1,. .., }. Clearly, we can treat the electric and magnetic sector separately, so we

!
will focus on the electric sector and suppress the subscript e. To shorten notations, define b; = ak - 1,b; = a - 1, and t; = gcd(bi, Na). In the
electric sector, Eq. (154) means that there exists an integer r such that

byq = byr mod N,. (155)
Given g, this is possible if and only if t; = gcd(b1, N,) divides b2q. In other words, there exists an integer ' such that
bzq = tlr'. (156)

The smallest positive integer g that makes it solvable is m. Note that ged(t1, b)) = ged(ged(b1,Na), ba) = ged(by, bz, No). Therefore, the

number of solutions is precisely gcd(b1, bz, Na ). The same argument works for the magnetic sector, so together, we find that the total number
of solutions to Eq. (154) is given by ged (b1, b, No)? = ged (af - 1, a —1,N,)%

We now show that knowing the permutation action of T; on anyons is enough to derive the topological degeneracy. Here, the key is to
think of a L; x L, torus as a torus in continuum, but with a TlL‘ defect line along x; and a TZL2 defect line along x;. Intuitively, this is because
traveling across the torus in the x; direction is the same as translating by L;. With this picture, the ground state degeneracy is obtained by
substituting k = L; and k' = L,, which reproduces the result in Eq. (55). In our model, as shown in Sec. VI, when a and N are coprime, we
can indeed explicitly map the Hamiltonian on a torus to the standard toric code (where translation symmetry acts trivially) with a twisted
boundary condition or equivalently with symmetry defect lines wrapping around the two non-contractible cycles, in full agreement with the
argument in this section. The standard toric code has a smooth continuum limit; thus, the finite-lattice effect is completely captured by the
defect lines, establishing the continuum picture at the microscopic level.

VIll. PHASES WITH NO TOPOLOGICAL ORDER

In this section, we consider the case when a is a multiple of rad(N).

A. Uniqueness of the ground state

Let us demonstrate the uniqueness of the ground state regardless of the choice of the system size L, and L, although it is already implied
by our general formula in Eq. (55) with N, = 1.
Let 4y be the smallest positive integer such that
a® =0 mod N. (157)

To see that £y indeed exists, let us write v := max {r; }/,, where r;’s are powers appearing in the prime factorization of N in Eq. (48). Because
rad(N)™ = [T, p;“" is a multiple of N and also because a™ is a multiple of rad(N)™, we have

a™ =0 mod N. (158)

Therefore, £y is in the range 1 < ¢y < ru.
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Then, our discussion in Sec. IT C implies that the state

%M

)
(m,+§,mz+%),(m,+£0+%,mz+%)| 0)

(159)

contains a magnetic excitation with eigenvalue w at the plaquette p = (m; + 3,mz+ 1). The eigenvalue of the plaquette operator
B’(ml o+ my+ 1) Temains 1. Most importantly, the string operator in Eq. (159) is local in the sense that its length £, does not depend on
the system size. Hence, a single elementally magnetic excitation can be created locally. Similarly, the state

Zz | @0) (160)

(m1=Ly,my),(m

contains an electric excitation with the eigenvalues w™" at the vertex v = (my, mz). The rest of the discussion proceeds exactly the same as in
Sec. V A 2. Therefore,
Naeg = 1 (161)

for any L; and L;.

B. Example 1: N = a

As an example, let us discuss the case of N = a. In this case, the Hamiltonian is completely decoupled,

H=Y hy, (162)
reA
. 1/, . 1/, -
h(ml,mz) = E(X(ml—%,mz)x(ml,mz—%) + hC) - E(Z(mhmz—%)z("ﬁ*%,"h) + hC) (163)

The ground state of by is unique and has the energy gap A;. We denote the ground state by |¢o),. Then, the unique ground state of H is given
by the product state ®yea|¢o)r. Therefore, this phase is completely trivial. Indeed, the topological entablement entropy in Eq. (128) vanishes

%:(3+3+5)7(5+8+8)+10:0 ew

for the subregions in Fig. 4(a).

C. Example 2: N = a2

Next, we discuss the case of N = a*. We argue that this case realizes a SSPT phase.’w"':"“
To this end, we study the property of the model obtained by rotating the one introduced in Sec. II by 45° (see Fig. 6). Spins are now
defined on square lattice sites r = (7711, 112 ) with 711, 71, € Z. Vertices and plaquettes can be associated with odd (even) sites,

V= { (A, i) | (-1)™ 7" = -1, (165)
P = {(m,my) | (1) = 41} (166)

The Hamiltonian is given by
Ae-Y %(Aﬁ he)- %(Bp + he), (167)

ve? pe
where

Alining) = X i1y 1) K (g 1) X i) X (g4 1) (168)
Binsin) = Z i+ 11 L g1 i) i L) (169)

1. Charge pumping

Let us work with the periodic boundary condition first. We identify r + (mI: 1 nzﬂz) with r for n, n; € Z. Both L; and L, are assumed to
be even. Unit translation symmetries of the model shift r by either (1, 1) or (1,-1).
The model has subsystem symmetries,

Li-1
X, = H X (s 1) > (170)
=0
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FIG. 6. The model rotated by 45°, corresponding to the Ly = L, = 6 case. Dashed lines represent the original square lattice before the rotation. (a) Plaquette operators and
vertex operators. (b) Subsystem symmetries. The red jagged line represents the symmetry flux across the link between (L1 — 1,2, + 1) and (0, 2j, + 1). (c) Edge zero
modes under an open boundary condition protected by subsystem symmetries.

Li-1

Za = [ 2500 (171)

hy,m
PLSCES

for each 7, separately, as illustrated in Fig. 6(b), which act only on a single row. When N = a?, these operators can be rewritten in terms of
stabilizers as

L/2

X, = H A(Zj1+1,ﬁ12)A‘(l2jl,rh2+l)’ (172)
j1=0

L2

Zml = H B(Zh*llhz*l)ézzjhmz—z) (173)
j1=0

when 1, is even and

L/2

X, = H A(Zjl,rhz)AL(le1+l,rh2+l)’ (174)
71=0

. Lk
Zin, = [] Bjpsin-1)B@j+1m-2) (175)
ji=0

when 1, is odd. Hence, in the ground state |®o) where all vertex operators and plaquette operators take the value +1, we have
X |®o) = Zin, | o) = Do) (176)
for all ;.

Now, we insert a symmetry flux associated with the subsystem symmetry Z, - j,+1 at the link between i1 = L1 — 1 and #i1; = 0. This
operation multiplies a factor w™* to the vertex term A( Li-12j,) [the red shaded vertex in Fig. 6(b)],

N L
2

A, _1aj,y + hee (177)

In the ground state |®g) of H’, the eigenvalue of A( 1,-12),) is thus modified to w”. Therefore, using Egs. (172) and (174), we find
X, |®0) = @), (178)

Namely, the charge «” is pumped for the subsystem symmetry X, ;, upon inserting the symmetry flux associated with the subsystem symmetry
Z5,+1. This pumped charge is a topological invariant that distinguishes this phase from product states.
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2. Zero energy edge states

Next, let us consider the open boundary condition. We impose the subsystem symmetries X, and Z;z, in Egs. (170) and (171) for every
112, including the edges.
We introduce two sets of generalized Pauli matrices,

6§j,L = X(O,Zj)X(_g,ZjH)) (179)
5§j,L = Z(O,Zj)Z?O,Zj—l)’ (180)
and
83k = X(1-12)X (0241 (181)
Gjx = 21,12 2oy (182)

which commute with all stabilizers in the bulk Hamiltonian. They satisfy
&gj,sa';j’,s’ = %051 &’2‘1_ 'y ééj,s (183)

for s,s' =L,Rand j,j' =1,2,..., L _ 1. A pair of 63 js and 63 generates a Zy x Zy symmetry, implying N-fold degeneracy, and there

are L, — 2 such pairs. This NE2.fold degeneracy cannot be lifted by perturbations on the edges, as long as the subsystem symmetries are
maintained. In contrast, the two edges at 71, = 0 and 7, = L, — 1 can be gapped by edge perturbations.

IX. DISCUSSIONS

As a concluding remark, let us discuss implications of our example on the Lieb-Schultz-Mattis (LSM)-type theorems,”” >’ which for-
mulate necessary conditions for the unique ground state with a nonzero excitation gap under the periodic boundary condition. When one of
these conditions are not satisfied, the appearance of ground state degeneracy or gapless excitations is guaranteed. The ground state degeneracy
originates from either spontaneous symmetry breaking or topological degeneracy. Hence, violation of LSM-type conditions in symmetric and
gapped phases can be used as a sufficient condition for a nontrivial topological order.””"’

There are a variety of such theorems applicable to quantum many-body systems in different settings. For example, in one dimension, an
early version of LSM theorems for quantum spin chains with spin-rotation symmetry states that S needs to be an integer in the presence of
the time-reversal symmetry.””"’ More generally, S — m (m is the magnetization per unit cell) must be an integer to realize a unique gapped
ground state.*! Similarly, in fermionic systems with U(1) symmetry, the filling v (the average number of fermions per unit cell) must be an
integer.’? These results apply to any sequence of L;. One can even start with the infinite system from the beginning.”*”’

In contrast, there is usually a restriction on the choice of the sequence of L;’s in higher-dimensional extensions of these theorems. In the
formulation, one usually starts with a finite size system with the length L; in x; direction (i = 1,.. ., d) and considers the limit L;, ..., L; - +oo.
For example, for spin systems, the arguments in Refs. 44 and 46 are effective only when L, ..., L, are all odd. For particle systems, the
discussions in Refs. 43 and 51 assume that L, .. ., L; are coprime to g when v = p/q. There is a way to remove such a restriction by modifying
the boundary condition to a tilted one,”* but this argument is not about the original periodic boundary condition. Namely, changing the
boundary condition from the periodic one to the tilted one might affect the degeneracy or excitation gap.

As we demonstrated through an example, a topologically ordered phase may not show topological degeneracy on torus depending on the
sequence of system size. Hence, even when all the LSM-type conditions are fulfilled and the ground state is indeed unique in some sequences
of the system size, it still might be the case that the ground state is actually topologically ordered.
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APPENDIX A: PROOF OF EQ. (105)

Here, we demonstrate the validity of Eq. (105). As stated in the main text, we set

L=r:= ged(a flbzrl\ll'ilg +bN)’ (AD)
Using the properties of the greatest common divisor, we find
da = gcd(a1, a2, N) = gcd(aqr + biN, az + b2N,N) (A2)
and
di,a = ged(a, N) = ged(ar + biN,N)
~d,ged (rgcd(al + blz,az + sz)’ %)
=daged (r, %) (A3)

In the last line, we used the fact that N/d, is coprime to ged(a1 + biN, oz + b,N) /da. Hence, Eq. (105) can be rewritten as

r
ng(gai(r,Z))du) =1. (A4)

Below, we prove the following statement: for any integer N > 2 and integers a; and &, in the range 1 < a;, a; < N — 1, there always exist
integers b; and b, such that Eq. (A4) holds.” In particular, b, can be set 0. Since this is trivially the case when d, = 1, in the following, we
assume d, # 1. We introduce shorthands & := a1 /ds, &} := az/da, and N' := N/d,.

For an integer m and a prime p, let us denote by v,(m) the largest non-negative integer v such that p" divides m. Suppose that
ej:=vp,(da) 2 1forj=1,2,...,]. In other words, d, can be prime-factorized as d, = 1'[2:1 p;’. Then, Eq. (A4) holds if and only if

vp, () < vp](N') (A5)
forallj=1,2,...,]. In addition, by definition,
v (r)_v 0({+b1NI
PiNTS TR ged(af + b1N', a5 + b2N")
<vp, (o) + biN'). (A6)
Therefore, if
ij(lx; +bN) gvpj(N') (A7)

simultaneously for all j = 1,2,...,J, Eq. (A5) is fulfilled. In the following, we write 7 := v, (N")and mj := Vp, (a1).
Let us derive the condition for Eq. (A7). When n; > m;, we need

) N’
ij(,nl)+h1,n))<l’lj—mj (A8)
pj pj
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with af /p;."’ # 0mod p;. In this case, we can set by = 0mod p;. On the other hand, when m; > nj, we need
! !
a N )
VP;(P@ + blpin»j ) =0 (A9)

with o /p;j = 0modp; and N'/p’;.’ # 0mod p;. In this case, we can set by = 1 mod p;. After all, we found a condition of the form b, = x; mod p;

for eachj=1,2,...,J. The Chinese remainder theorem guarantees the existence b; in the range 0 to —1 + H§=1 pj such that these conditions
are simultaneously satisfied.

APPENDIX B: REDUCTION OF GENERALIZED PAULI MATRICES

When N, and N, are coprime, the N = N1N,-level spin can be decomposed into the tensor product of N;- and N»-level spins. To see
this, let us write the matrices in Egs. (3) and (4) as X(N) and Z(N), respectively. We have

VX(NYN T 2 X(N)) @ X(NL), (B1)
VZ(N)V' = Z(N)) ® Z(N,), (B2)

where [V]iii,i 1= 0i-1mod (N, (i,-1)+N, (i-1)8) and [Z(N1) ® Z(N2) Jisis,ju jo = [Z(N1)]ir.ji [Z(N2) Jis.jp for i =1,...,N1, i2=1,...,N2, and
i=1,...,N. These reduction formulas can be readily shown by using the representations in Egs. (3) and (4).
Let us discuss the implication of these relations. Suppose that N = N1 N, and N; and N, are coprime. We introduce another modified
Hamiltonian,
N 1, . 1 4
H =-% Z(ANN 4 he) - > =(By + hec.), (B3)
7 2 P2
ve pe

where A, and B, are vertex and plaquette operators in Egs. (16) and (17) with a; = a, = a. The eigenstates of this Hamiltonian are also identical
to those for H in Eq. (14), and the ground state degeneracy remains unchanged.
Let V be the global unitary operator whose action on each N level spin is given by the unitary matrix V above. Using the reduction
formulas, we find
AT A 1, . . 1, . A
VA"V = -3 S AN @ A(N) + he) = 3 (By(N1) ® By(Na) + hic), (B4)
ve? peP

where A, (N;) and B,(N;) (i = 1,2) are vertex and plaquette operators for N;-level spins. Ground states have the eigenvalue +1 for all A,(N;)’s
and B, (N;)’s. This result indicates that, if we denote the ground state degeneracy of the our model for N-level spin by Ngeg(N),

Ndeg(N) = Ndeg(Nl )Ndeg(NZ)~ (B5)
Indeed, this is consistent with our result in Eq. (55) because
ged(a" —1,a" = 1,NINy) = ged(a® - 1,a" - 1,N}) ged(a™ - 1,a" - 1,N,), (B6)

when N; and N, are coprime. More generally, for the form of N in Eq. (48), we have
Ndeg(N) = HNdeg(p;j) (B7)
=1

However, this decomposition alone is not sufficient to derive Eq. (55). One still has to compute Ngeg (p? ), and this requires an investigation,
which is almost as hard as what we did in this work.
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