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Deep learning (DL) has proven to be effective in detecting sophisticated malware that is constantly evolving.
Even though deep learning has alleviated the feature engineering problem, finding the most optimal DL model’s
architecture and set of hyper-parameters, remains a challenge that requires domain expertise. In addition, many
of the proposed state-of-the-art models are very complex and may not be the best fit for different datasets.
A promising approach, known as Automated Machine Learning (AutoML), can reduce the domain expertise
required to develop custom DL models by automating the ML pipeline key components, namely hyperparameter
optimization and neural architecture search (NAS). AutoML reduces the amount of human trial-and-error
involved in designing DL models, and in more recent implementations can find new model architectures with
relatively low computational overhead.

Research on the feasibility of using AutoML for malware detection is very limited. This work provides a
comprehensive analysis and insights on using AutoML for both static and online malware detection. For static,
our analysis is performed on two widely used malware datasets: SOREL-20M to demonstrate efficacy on large
datasets; and EMBER-2018, a smaller dataset specifically curated to hinder the performance of machine learning
models. In addition, we show the effects of tuning the NAS process parameters on finding a more optimal malware
detection model on these static analysis datasets. Further, we also demonstrate that AutoML is performant in
online malware detection scenarios using Convolutional Neural Networks (CNNs) for cloud IaaS. We compare
an AutoML technique to six existing state-of-the-art CNNs using a newly generated online malware dataset with
and without other applications running in the background during malware execution. We show that the AutoML
technique is more performant than the state-of-the-art CNNs with little overhead in finding the architecture.
In general, our experimental results show that the performance of AutoML based static and online malware
detection models are on par or even better than state-of-the-art models or hand-designed models presented in
literature.

1. Introduction the file or system in question, ranging from details of the file header in
static analysis, to holistic operating system level performance metrics
in the case of online analysis. The reasons to use a specific analysis ap-
proach depend on the use case and availability of data. For simple file
scanning, static analysis is the fastest method, since there is no need
to run the executable in question, whereas, collecting data from a run-

ning executable in dynamic analysis may give more insight into the true

1.1. Overview and motivation

Malware is becoming a more profitable domain for malicious actors
with the rise of digital connectivity and the growing critical infras-
tructures reliance. These cyberattacks have costed the industry billions
(Anderson et al., 2019) of dollars. The increase and impact of such cy-

berattacks has called for novel and sophisticated defense mechanisms
in response to those that wish to protect digital assets from malware
attacks.

There are several existing approaches for malware analysis, includ-
ing static (Nath and Mehtre, 2014; Shalaginov et al., 2018), dynamic
(Alotaibi, 2019; Tobiyama et al., 2016; Willems et al., 2007), and online
analysis (Kimmel et al., 2021; Kimmell et al., 2021; McDole et al., 2020,
2021). Each of these analysis methods collect different features from
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behavior and intent of a questionable executable. On the other hand,
unlike dynamic and online analysis, static analysis can be crippled us-
ing well-known obfuscation techniques.

Machine learning (ML), especially DL, has become a popular tech-
nique to develop malware detection solutions, and has shown promising
results (Sahin and Bahtiyar, 2020) because of its ability to learn gener-
alized patterns to identify unseen malware. As such, research works
(Aryal et al., 2021, 2022; Brown et al., 2022; Gupta et al., 2023; Kim-
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mell et al., 2021; Kolosnjaji et al., 2016; Mishra et al., 2019; Pascanu et
al., 2015; Tobiyama et al., 2016; Xiao et al., 2019; Xie et al., 2020) have
employed different types of ML models to detect malware on a variety
of systems and data sources, depending on the use case. These pro-
posed solutions have utilized both traditional ML algorithms and, more
recently, deep learning algorithms. Approaches (Abou-Assaleh et al.,
2004; Fan et al., 2016) that rely on traditional machine learning mod-
els require domain experts for feature engineering, which, in most cases,
is burdensome and laborious. On the contrary, deep learning based ap-
proaches (Agrawal et al., 2019; Ganesh et al., 2017; Jha et al., 2020;
Kimmel et al., 2021; Luckett et al., 2016; Raff et al., 2018a; Rudd et
al., 2019; Sewak et al., 2018; Vinayakumar et al., 2019; Wang et al.,
2019; Yeo et al., 2018) eliminate the feature engineering step and are
gaining more traction. Some works (McDole et al., 2020; Rezende et al.,
2018) have utilized state-of-the-art DL models (e.g., ResNet (He et al.,
2016), DenseNet (Iandola et al., 2014), and VGG16 (Simonyan and Zis-
serman, 2014)) that perform well in general and train it on malware
data; however, these models are usually very complex and require a
rigorous tuning process to achieve the desired high performance. In ad-
dition, such models are usually designed for tasks like image, text, or
voice recognition and can be inadequate for malware detection. Conse-
quentially, works (Raff et al., 2018a) have focused on manually crafting
model architectures that fit the malware detection domain. However,
these approaches not only require heavy tuning, but also high technical
skills in both the ML and the malware domains.

Automated Machine Learning (AutoML) (He et al., 2021) seeks to
automate the process of finding an optimal model architecture for the
given data and tuning this model to achieve higher performance. In
addition, it can also reduce the work needed to redesign a malware
detection model as malware and data sources evolve overtime. Even
though AutoML pipelines require more computational time to produce
a model, they significantly reduce the work hours and expertise needed
to find a performant model.

AutoML holds significant promise for malware detection, automat-
ing the dual tasks of discovering the ideal machine learning architecture
tailored for this purpose and subsequently refining this selected model.
Despite its potential, AutoML is still in its developmental phase, and
comprehensive exploration of its applicability, especially in malware
detection, remains limited.

Building on this, AutoML serves as a potent tool for domain experts,
even those without the formal “Data Scientist” designation, enabling
them to harness machine learning more effectively. The efficacy of Au-
toML, like many machine learning realms, often hinges on the volume
of accessible data and the intricacy of the given task. Domains rich in
data, such as our focus on malware detection, as well as simulated en-
vironments that can generate vast amounts of data, are well-poised to
reap the benefits of AutoML. While our discussion centers on its util-
ity in static and online malware detection, AutoML’s potential can be
extrapolated to other cybersecurity areas like Network Intrusion De-
tection, Security Log Analysis, and Threat Intelligence. Essentially, any
domain with ample high-quality data suited for deep learning might
find AutoML advantageous.

With the growth in malware sophistication and machine learning
complexity, especially in deep learning, finding the most performant
deep neural architecture without a significant increase in human hours
spent is critical. This paper aims to study the feasibility of integrat-
ing AutoML into the malware detection pipeline to remove the need
to hand design and tune ML models. In particular, we focus on using
deep learning, specifically Feed Forward Neural Networks (FFNNs) and
Convolutional Neural Networks (CNNs). FFNNs have a high level of
expressive power and require much less feature engineering than tra-
ditional machine learning approaches. Convolutional Neural Networks
can model complex functions with image shaped data as input with lit-
tle to no feature engineering, only requiring framing the data in a 2d
vector. Further, we focus on both data that is gathered through static
analysis, specifically focusing on portable executable (PE) files which
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are the predominant executable format in the Windows operating sys-
tem, and online data captured from running, internet connected, Linux
servers in cloud IaaS with malware executed on them. The main contri-
butions of this work are:

We study the feasibility of using AutoML for deep learning based
static malware detection and demonstrate the effectiveness of the
produced AutoML Deep FFNN models by showing that they are
comparable to manually crafted models, even without significantly
tuning the AutoML pipeline.

We provide insights and analysis of the automation parameters of
the AutoML process on static malware data, and show how these
parameters can affect the performance of the found optimal model.
We show that AutoML derived Convolutional Neural Networks can
preform better than state-of-the-art Convolutional Neural Networks
on online malware data, with little overhead in deriving the model
architecture.

We discuss ideas and future directions for improving the efficiency
and performance of AutoML models that are designed for malware
detection.

The rest of this work is organized as follows. Section 2 discusses
background and related works in this domain. Section 3 shows the
application of AutoML in two popular static malware datasets, with
comparison to other works, and discussion of the presented AutoML
methodology. Section 4 focuses on one-shot AutoML applied to CNNs
to detect malware in online cloud IaaS, with comparison to detection
results of state-of-the-art CNNs on the same dataset. Section 5 presents
ideas for future work and improvements, as well as the conclusion to
the findings in this work.

2. Background and related works
2.1. Malware detection

2.1.1. Static analysis

Static analysis involves analyzing features that can be observed in a
binary without running the binary executable. Static analysis methods
may include observations such as: file entropy; n-gram analysis of byte
sequences in a binary; imports and API calls; strings found within the
binary; header information. The major benefit of static analysis is its
speed and low overhead, since the binary is not executed.

One of the most simple forms of static analysis for malware detec-
tion is looking up the signature of a binary, most often the file hash.
This method is extremely efficient if the binary’s hash is documented,
but has no ability to detect modified or new malware. A more popu-
lar method of static analysis looks at n-grams of bytes in the binary.
Authors in Abou-Assaleh et al. (2004) measured frequency of common
n-gram bytes in Windows binaries to determine if the binary is ma-
licious. The frequency of n-grams across both malicious and benign
binaries were used to train a K-nearest-neighbors classifier. While this
approach showed good results (at the time published), it is unclear if
it would show as good of results in modern malware detection. This
approach additionally has proven to be computationally expensive and
offers diminishing returns as n increases (Raff et al., 2018b). Another
work (Fan et al., 2016) has taken it a step further from n-gram byte
analysis to analyzing instruction sequences in questionable binaries.

To reduce the overhead imposed by the essential feature engineering
in traditional ML, some researchers have focused on deep learning ap-
proaches. Authors in Raff et al. (2017) used recurrent neural networks
to analyze the first 300 bytes of the header of Windows PE files. Work in
Raff et al. (2018a) utilizes convolutional layers within a neural network
to extract information on Windows PE headers to determine binary in-
tent. Authors in Vinayakumar et al. (2019) implemented what they call
Windows-Static-Brain-Droid, which implements multiple architectures in
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a voting scheme. The features for the architecture are both raw byte in-
formation and parsed features from the binary. The raw byte features
feed into various architectures based on Raff et al. (2018a). The parsed
features feed into multiple traditional classifiers and a FFNN. Section 3
will focus on developing an optimized neural architecture similar to
Vinayakumar et al. (2019)’s FFNN.

2.1.2. Dynamic analysis

Unlike static analysis, dynamic analysis executes a binary to monitor
its behavior. This is most often carried out in a sandboxed environment
to restrict the binaries access to other resources which a malware could
attack. Data collected from the execution behavior of malware allows
for greater insight into a questionable binary’s intent and nature. Au-
thors in Fan et al. (2016); Luckett et al. (2016) utilized system calls
captured during execution to detect malware. Work in Fan et al. (2016)
utilizes traditional machine learning approaches, while Luckett et al.
(2016) uses neural networks for classification. Authors in Tobiyama et
al. (2016), look at API calls made in 5 minute intervals to classify bi-
naries as benign or malicious. These calls were passed to a CNN for
classification. In Huang and Stokes (2016), authors use FFFNs to clas-
sify binaries based on extracted API calls from dynamic execution.

Compared to static analysis, these methodologies require extra com-
putational overhead and time to detect malware. However, dynamic
analysis will not be able to detect sophisticated malware that can detect
the presence of an emulation sandbox or the lack of network connectiv-
ity that is often found with isolated emulation environments.

2.1.3. Online analysis

Where dynamic analysis only analyzes the execution of a single bi-
nary, online analysis collects data from an entire system to monitor (in
real time) for malware execution. This allows for continuous monitoring
of an open system (not in a sandbox), with full access to all resources.
Additionally, this allows for collection of execution details that extend
beyond that of a single binary. This can include both knowledge of nor-
mal execution of a given system as well has effects to adjacent processes
from live malware execution.

The authors in Demme et al. (2013); Ozsoy et al. (2015) utilize
performance counters from an entire system to detect the presence
of malware. Guan et al. (2012) proposed using system calls to detect
malware in online systems with ensembles of Bayesian predictors and
decision trees. Others have proposed using memory features (Xu et al.,
2017). McDole et al. (2021) and Abdelsalam et al. (2019) show that per-
process performance metrics from Ubuntu machines can provide high
detection performance when ingested with a CNN. The process data
is structured in the shape of an image, with the rows denoting differ-
ent processes and the columns denoting different performance metrics
for each process, collected from the target machine. Abdelsalam et al.
achieves 89.5% detection accuracy using shallow CNNs, while McDole
et al. achieves 92.9% detection accuracy using state-of-the-art CNNs on
the same dataset. Kimmel et al. (2021) uses recurrent neural networks
(RNNSs) on the same dataset as McDole et al. and Abdelsalam et al., but
organizes the inputs to the RNN as sequences of unique process features,
all from the same time slice. They achieve 99.61% detection accuracy
with this technique. Online malware detection can incur high overhead
with continuous monitoring of systems, but provides real-time detection
performance on evasive and low-lying malware in a live environment
without requiring the identification of a suspicious executable.

2.2. Deep learning for malware detection

Using deep learning for malware detection has been researched ex-
tensively and spans approaches that utilize various types of deep learn-
ing algorithms including CNNs (Abdelsalam et al., 2018; Ganesh et al.,
2017; McDole et al., 2020; Wang et al., 2019; Yeo et al., 2018), RNNs
(Agrawal et al., 2019; Jha et al., 2020; Kimmel et al., 2021), feed for-
ward neural networks (FFNNs) (Rudd et al., 2019; Sewak et al., 2018;
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Vinayakumar et al., 2019), etc. Deep learning approaches presented in
these works have the advantage over traditional ML models as they do
not require hand designed features in order to be performant. Although
these approaches impose additional performance overhead as compared
to some traditional ML algorithms, many have shown to be more perfor-
mant under some conditions (Kamath et al., 2018), with high accuracy
in malware detection (Kimmell et al., 2021).

Despite the fact that deep learning approaches have shown tremen-
dous results for malware detection, most of these works fall short be-
cause either (1) they utilize state-of-the-art models that are not tailored
specifically for malware detection and may not be optimal for the data
available, or (2) they have hand designed their models specifically for
malware detection, without AutoML, which requires extensive domain
experts’ knowledge and hand tuning. Fortunately, AutoML can help
overcome these obstacles and attain higher optimal results; however,
the feasibility of utilizing AutoML for malware detection is hardly ex-
plored.

2.3. AutoML overview

2.3.1. Neural architecture search

The performance of a model is highly dependent on the design of
its architecture. A neural architecture search aims to find the architec-
ture design that achieves the highest performance on unseen validation
data. We consider a change in architecture design to constitute a change
to the number or configuration of trainable parameters, or the layers’
activation function.

2.3.2. One-shot search methodology

Many recent NAS methodologies focus on the computer vision do-
main. This field is heavily dependent on convolutional neural networks.
Many types of layers within these networks, given the same shape of
input, will produce the same shape of output. A network whose layers
meet this condition is, intuitively, easily mutable; layers can be swapped
out interchangeably, allowing the next layer to accept any chosen layer
type’s input since they share the same output shape as shown in Fig. 1.
Many types of layers can be substituted for Layer N and maintain the
same output shape of (1, 16, 16). This property allows for an algo-
rithm to test multiple layer choices at each layer of a network to find
the best architecture configuration. The work presented in Pham et al.
(2018) can create a super-graph which contains multiple sub-graphs rep-
resenting all permutations of networks given the choices of each layer.
A similar work, (Liu et al., 2018) relaxes the constraints of the categor-
ical layer choice to a softmax choice, such that the categorical choice
is now continuous, and a gradient can be used to find the best layer
choices through training by backpropagation.

These NAS methodologies are used to learn an entire network archi-
tecture or learn the architecture of a cell that is repeated throughout
the network. As long as each of the operations (layer) choices produce
the same shape of output, the specific operation choices within a cell
can be anything. This possibility allows for designing not only convo-
lutional cells, but also recurrent cells. This allows the algorithm to find
both CNNs and RNNs, or a combination of both.

These algorithms, known as One-Shot algorithms, find the most per-
formant network configuration in “one-shot”, without the need to train
the network from scratch multiple times, by leveraging the output shape
property.

2.3.3. Multi-trial search methodology

Multi-Trial NAS solutions, as opposed to one-shot, require many
trials of different network configurations to find a performant architec-
ture. In the past, before the invention of clever one-shot methodologies,
this was the only way to test out different network architectures. Today,
some types of networks still rely on multi-trial NAS, such as networks
that can’t easily swap out layers because of layer output shapes. There
has been some work to improve the efficiency of this process, such as
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Fig. 1. Example Convolutional Layer Output Shapes.

Wei et al. (2016), through weight sharing. This allows each trial to run
for a much shorter amount of time by leveraging the learned parameters
from previous trials, and only optimizing for new parameters. How-
ever, these algorithms, if not carefully controlled, can become unstable
in later trials. For this reason, our work with deep feed forward neural
networks in Section 3 utilizes the more primitive multi-trial methodol-
ogy in searching for the most performant architecture.

2.3.4. NAS search space

The NAS search space is the total space containing the values of
all valid model configurations. During the NAS process, architecture
configurations are drawn from this space and evaluated. The search
space is arbitrarily large, so reasonable constraints are placed in order
to bound the cost of time required to search and limit the complexity of
the chosen model. For example, a model depth of 1,000 layers is a valid
choice for an architecture, but it will produce a very complex model
with a considerably high training time. For this reason, upper bound-
aries are usually provided. For example, in our proposed approach in
Section 3, we set the number of layers’ upper bound to 14 to limit the
complexity of the model architectures available within the search space.
Beside bounding the range of the search space, we also considered the
sampling granularity and distribution of the search space. For example,
in Section 3 we set the granularity in selecting a layer’s width to 128
neurons in order to limit the number of available selections while still
maintaining an appropriate level of expression of its effect on model
performance. In order to simplify the NAS process, when a parameter
value is selected from the search space, we fix this value throughout the
model, instead of on a per-layer basis.

2.3.5. Automated ML for malware detection

Automated machine learning has recently been used in a variety of
fields. Several AutoML works have been designed for specific domains,
such as processes developed for the computer vision domain (Liu et al.,
2018; Pham et al., 2018). However, AutoML is still at nascent stage
which is yet to see wider adoption and application in cybersecurity.

The field of malware detection has barely seen the presence of Au-
toML, and to the best of our knowledge has only been presented in a few
works. Research in Kundu et al. (2021) tested both AutoGluon-Tabular!
and Microsoft NNI? on the EMBER-2018 dataset (Anderson and Roth,
2018), a malware dataset based on static analysis. These frameworks
are used to tune hyper-parameters of a LightGBM model to best clas-
sify binaries from the dataset. Authors also used a proprietary dataset
to evaluate the AutoML frameworks. This approach yielded a 3.2% in-
crease of True Positive Rate above the EMBER-2018 baseline results
with the same classifier. AutoGluon-Tabular produced these results vs
a 2.2% increase with Microsoft NNI. Their approach largely used tra-
ditional machine learning methods as well as a FFNN in the ensemble
offered with AutoGluon-Tabular. The authors of Isingizwe et al. (2021)
use AutoML to detect malware from encrypted network traffic. They
used TLS fields as parameters to form their AutoML process. This work

! https://auto.gluon.ai/stable/index.html.
2 https://github.com/Microsoft/nni.
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Fig. 2. Feed Forward Neural Network.

used a python package mljar-supervised,® utilizing many traditional ML
models as well as a deep neural network in an ensemble.

3. Automated machine learning for static malware detection
3.1. Deep feed forward neural networks

Deep Feed Forward Neural Networks (FFNNs) are an extension of
the simple perceptron network, except they often contain one or more
hidden layers. FFNNs without convolutional or recurrent layers can also
be referred to as Multi-Layer Perceptrons (MLPs).

FFNN s pass input data through each layer in the model sequentially,
applying each layer’s function to the previous layer’s output, forming
what can be seen as an acyclic graph from input to output with data
flowing only one way. Fig. 2 shows an example FFNN. Each node within
a layer can apply an activation function to the sum of each of its inputs,
shown as the function lines within each node in the figure. Each con-
nection between nodes has a specific weight applied to the output of a
specific node into another node. W, and W, represent the set of weights
between each layer, each weight in each set corresponding to a connec-
tion between two unique nodes. The network can have any number of
hidden layers.

Deep FFNNs require backpropagation through gradient descent to
train weights of each layer of the network sequentially, backward
through the network, from output to input. Through the processes of
backpropagation, activation functions such as sigmoid and tanh can
lead to a problem called vanishing gradients. This occurs because re-
peatedly taking the gradient of these functions, as backpropagation
occurs, results in a value that approaches zero. For this reason, idempo-
tent activation functions such as Rectified Linear Unit (ReLU) are often
used in hidden layers of deep networks to solve the vanishing gradient
problem. Additionally, functions like ReLU and Exponential Linear Unit
(ELU) are cheaper to compute than sigmoid and tanh, but still allow for
the network to learn non-linear functions. However, sigmoid like func-
tions allow for an output to be mapped to a probability, and are often
used on the output layer of a network to allow for each output neuron
to produce a binary decision. Fig. 2 shows the input and hidden layer
activation functions as ReLU, and the output layer’s activation function
as sigmoid.

3.2. Search methodology

During the neural architecture search, an architecture selected from
the search space is evaluated using an evaluation metric (F1-score our

3 https://supervised.mljar.com/.
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Fig. 3. Automated Machine Learning Process.

case), indicating the model performance based on which a strategy is
employed to select the next architecture choice for subsequent evalua-
tion. The next architecture selection in this work is based on a random
selection strategy, where, regardless of the previous result, each new
architecture choice is randomly selected without duplication. The NAS
selects a number of random architecture configurations from the search
space. These are referred to as trials. In each trial, a model is trained
based on the selected architecture for a predefined number of epochs.
Afterward, the model is evaluated at the end of every epoch using the
evaluation score of the validation set. The model configuration that
achieves the highest score will pass to the next phase, that is hyper-
parameter tuning.

3.2.1. Hyper-parameter tuning

Once an architecture is selected during the NAS phase, the next
phase, as shown in Fig. 3, searches for the optimal hyper-parameters
of the chosen architecture. The hyper-parameters of the model are
tune-able values that affect the model performance but do not alter
the architecture of the model itself. This can include the batch size,
optimizer, learning rate, dropout rate, etc. Just as in the NAS phase,
the hyper-parameter tuning phase also has a bounded search space
with a defined sampling granularity. With the hyper-parameter search
space, we also define the sampling distribution. The hyper-parameter
search phase uses the Tree-structured Parzen Estimator (TPE) strategy
(Bergstra et al., 2011) in selecting the next set of hyper-parameters to
test.

3.2.2. Final model selection

After the hyper-parameter tuning phase is complete, the results from
the NAS phase and hyper-parameter tuning phase are combined to be
the final model configuration. The model is then trained and evaluated
after every epoch using the evaluation score of the validation set, and
the highest performing epoch is saved as the final trained model to be
evaluated on the test set.

3.3. Static malware data sources

We use two popular static malware datasets - EMBER-2018 (An-
derson and Roth, 2018) and SOREL-20M (Harang and Rudd, 2020),
extensively used in the literature. We use these datasets with more prim-
itive AutoML to explore the results of this methodology on datasets that
have had high result benchmarks set.

3.3.1. EMBER-2018 dataset (Anderson and Roth, 2018)
EMBER is considered to be the first attempt to create an appropri-
ately large static malware dataset. The dataset contains features ex-

tracted from benign and malicious portable executable (PE) files using
the ‘Library to Instrument Executable Formats’ (LIEF) (Thomas, 2017).
The samples in the dataset are labeled as either malicious, benign, or
unknown. Only the samples labeled malicious or benign are considered
in this work. There are approximately 600 K samples in the training set
and 200 K samples in the test set. Since there is no validation set pro-
vided, we excluded and used the last 20% of the training set (i.e. 120 K
samples) as the validation set. There are two versions of the EMBER
dataset: EMBER-2017 and EMBER-2018. EMBER-2018 was specifically
curated so that the training and testing sets would be harder to classify.
We used EMBER-2018 in our experiments. However, to fairly compare
our results to other works that used EMBER-2017, we test and report
our model’s (found with EMBER-2018) performance against EMBER-
2017 dataset.

3.3.2. SOREL-20M dataset (Harang and Rudd, 2020)

Sophos Labs” released SOREL-20M dataset in 2020 to address some
shortcomings of EMBER dataset. This dataset contains 12,699,013 train-
ing samples, 2,495,822 validation samples, and 4,195,042 testing sam-
ples. SOREL-20M uses the same features from the EMBER-2018 dataset.
The samples in the SOREL-20M dataset contain the same binary mali-
cious label as EMBER-2018, but also contain extra metadata, including
the number of anti-virus vendors that flagged a sample as malicious and
the tags that anti-virus vendors associated with a sample. Included in
these tags are labels such as dropper, adware, downloader, etc. Authors
in Rudd et al. (2019) have shown that the use of this metadata can help
to improve performance, and our work in this section will allow the
possibility of a model to use this auxiliary information in the training
process.

3.4. AutoML tuning and training

3.4.1. NAS phase configuration

The full architecture search space for both the EMBER-2018 and
SOREL-20M experiments is shown in Table 1. The available options
for Activation and Tag Head Activation are not applicable since the
choices are either Rectified Linear Unit (ReLU) or Exponential Linear
Unit (ELU). Similarly, for Use Counts and Use Tags, the choices are ei-
ther True or False.

As mentioned previously, the SOREL-20M dataset has readily avail-
able labels each containing a binary malicious label, an encoding of the
vendor tags, and a numerical count of the vendors flagging the sample

4 https://www.sophos.com/en-us/labs.
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Table 1
Architecture Search Space.
Parameter Minimum  Maximum Granularity
Depth 1 14 1
Width 128 1920 128
Activation - - -
Tag Head Depth* 1 3 1
Tag Head Width* 16 112 16
Tag Head Activation* - - -
Use Counts* - -
Use Tags* - -
*SOREL-20M Models Only
Table 2
Hyper Parameter Search Space.
Parameter Minimum  Maximum  Granularity — Distribution
Batch Size (SOREL-20M) 128 16384 1024 quniform
Batch Size (EMBER) 32 8192 32 quniform
Learning Rate 0.0001 1.0 - loguniform
Dropout 0.0 0.50 0.05 quniform
Tag Loss Weight* 0.0 1.0 .05 quniform

*SOREL-20M Models Only

as malicious. These additional labels were made available during the ar-
chitecture search process through the use of additional output heads of
the model to predict the count of the vendors flagging the sample ma-
licious and predict any tags associated with the sample from anti-virus
vendors. These additional heads were made optional through the use
of two additional architecture search parameters: Use Counts and Use
Tags, as shown in Table 1. Design for additional heads, their respective
loss functions, and the network design is inspired by Rudd et al. (2019).
The architecture search selects 150 random architecture configurations
from the search space. The number of trials was chosen to cover both
the search space and minimize cost. However, further investigation is
required to analyze the effects of the number of trials on the selected
models’ performance as explained in subsection 3.6. The SOREL-20 and
EMBER-2018 NAS was run for 10 and 25 epochs, respectively.

The highest achieved Fl-score of a model during any point of its
trial (instead of the F1-score of the final epoch) is chosen as the fitness
score so that a model configuration’s ability is more accurately repre-
sented, as the model’s performance may fluctuate during the training
process. Even though random search has been shown to give adequate
results with a sufficient amount of trials (Bergstra and Bengio, 2012;
Cheng, 2010), trial count remains a parameter to be investigated in fu-
ture work.

3.4.2. Hyper-parameter tuning phase configuration

The full hyper-parameter search space is shown in Table 2. The
quniform distribution behaves like the sampling granularity in the NAS
phase. The loguniform samples from a logarithmic distribution such
that the logarithm of the values returned will be uniformly distributed.
Learning rate is sampled from this distribution to allow smaller values
to be as likely sampled as larger values. We set the batch size mini-
mum, maximum, and sampling granularity larger for the SOREL-20M
experiments due to the size of the dataset as compared to EMBER-2018.
Similar to the NAS phase parameters configuration, we believe that the
minimum, maximum, and sampling granularity values requires further
investigation.

In Rudd et al. (2019), using the SOREL-20M dataset, the authors
use a loss weight of 0.1 for the vendor count head and vendor tag head,
and a 1.0 loss weight for the malicious decision head. These loss weights
can be considered a hyper-parameter available for tuning since altering
the value does not change the architecture of the model. In our work,
the malicious decision head loss weight is fixed to 1.0 while the aux-
iliary loss head weights are variable between 0.0 and 1.0 each. Note,
only the tag head loss weight is included in Table 2 because the high-
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Table 3

Found Optimal Parameters.
Parameter SOREL-20M EMBER-2018
Depth 8 3
Width 1920 1664
Activation ReLU ReLU
Dropout 0.15 0.30
Learning Rate 0.000439 0.000269
Batch Size 3072 1440
Use Count Head False -
Use Tag Head True -
Tag Head Depth 1 -
Tag Head Width 112 -

Tag Head Activation ELU -
Tag Head Loss Weight ~ 0.70 -

est achieving model during the SOREL-20M NAS phase did not have a
vendor count head, and therefore did not utilize that parameter. The
models are trained for 10 and 25 epochs in the case of SOREL-20M and
EMBER, respectively. F1-score is again used as the evaluation metric in
selecting the highest performing model.

3.5. Experimental results
3.5.1. Evaluation metrics

We use four evaluation metrics along with receiver operating char-
acteristic (ROC) and area under the curve (AUC).

TP+TN

Accuracy = (@]
TP+TN+FP+FN

Precision = _Ir 2)
TP+ FP

Recall = _TIP 3)

TP+ FN
F1 — score =2% Precision X Recall )

Precision+ Recall

Positive refers to a malicious sample, whereas, negative refers to a
benign sample. TP, FP, TN and FN are true positives, false positives,
true negatives and false negatives, respectively. Precision suffers when
benign samples are labeled as malicious (high FP), while recall suffers
when malicious samples are labeled as benign (high FN). F1-score is the
harmonic mean of precision and recall, so it signifies models that have
both high precision and recall. If a model has high precision but low
recall or vice versa, the F1-score will be low.

3.5.2. Results

After the experiments, using F1-score as an evaluation metric at each
phase of the process, the found architectures and hyper-parameters are
shown in Table 3.

The detection results are listed in Table 4 and Table 5 for SOREL-
20M and EMBER datasets, respectively. Also included in this table is the
AUC with a maximum false positive rate (FPR) of 0.1%, the accuracy,
Fl-score, true positive rate (TPR) at 0.1% FPR, and TPR at 1% FPR.
The table also contains results using loss as a performance metric for
SOREL-20M and EMBER-2018; this is to show the difference in F1-score
and loss as a performance metric in the final stage, this will be brought
up in the discussion section of this section. Some other works shown
in the tables only report a subset of the metrics, but are still shown for
comparison.

In particular, for SOREL-20M, Table 4 shows our AUC results are on
par with the FENN ensemble from Nguyen et al. (2021) and slightly ex-
ceed Rudd et al. (2019), the work that presented the auxiliary model
heads for SOREL-20M. Our model significantly exceeds the AUC under
0.1% FPR of the only other work (Nguyen et al., 2021), which reported
this parameter. The accuracy of our model is similar but higher than
Nguyen et al. (2021). We reported TPR at 0.1% and 1% FPR for com-
parison to Rudd et al. (2019), where it can be seen our model performed
better in both.
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Table 4
SOREL-20M Dataset Results.
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Work Perf. Metric AUC AUC £ 0.1% FPR Accuracy F1-Score TPR: 0.1% FPR TPR: 1% FPR

ALOHA Rudd et al. (2019) - 0.997 - - 0.922 0.972

FFNN Ensemble Nguyen et al. (2021) - 0.998 0.0927 0.988 - -

LightGBM Ensemble Nguyen et al. (2021) - 0.984 0.0446 0.861 - - -

Our Work F1-Score 0.998 0.966 0.990 0.984 0.965 0.993

Our Work Loss 0.998  0.969 0.990 0.984 0.963 0.995

Table 5
EMBER Dataset Results.

EMBER 2018

Work Perf. Metric AUC AUC < 0.1% FPR Accuracy F1-Score TPR: 0.1% FPR TPR: 1% FPR

AutoGluon Ensemble Kundu et al. (2021) - - - - 0.900 -

Malconv w/ GCG Raff et al. (2020) - 0.980 - 0.933 - - -

LightGBM Ensemble Nguyen et al. (2021) - 0.986 0.0605 0.940 - - -

Detection Pipeline Loi et al. (2021) - 0.995 - 0.969 - - -

Our Work F1-Score 0.984 0.614 0.958 0.958 0.417 0.969

Our Work Loss 0.981 0.573 0.918 0.921 0.188 0.951

EMBER 2017

Work Perf. Metric AUC AUC < 0.1% FPR Accuracy F1-Score TPR: 0.1% FPR TPR: 1% FPR

DeepMalNet Vinayakumar et al. (2019) - - 0.989 0.989 - -

MalConv Raff et al. (2018a) - - - 0.988 0.988 - -

Our Work F1-Score 0.999 0.916 0.992 0.992 0.956 0.997

With respect to EMBER-2018 in Table 5, Loi et al. (2021) performs 1.0 1 —
slightly better in their reported metrics, AUC and accuracy, whereas Jee=
the rest of their metrics are not reported. Our model chosen in the final ,"
training phase is similar to other results in AUC and accuracy, surpass- 0.8 1 ,‘
ing (Raff et al., 2020) in AUC, and surpassing both (Nguyen et al., 2021; "
Raff et al., 2020) in accuracy. The AUC under 0.1% FPR of our model % 1
far surpasses the results of Nguyen et al. (2021). The TPR at 0.1% is ~ 0.6 — ,’
the only reported metric of Kundu et al. (2021), which is significantly ;% ;
higher than our results. Due to limited metrics provided by other related e 77
works, it is difficult to compare the efficacy of our AutoML method in S 0.4 =4 !
a holistic sense. The results from EMBER-2017 (with the optimal pa- = ”
rameters from EMBER-2018) are reported in the bottom of Table 5. The ]
authors in Vinayakumar et al. (2019) and Raff et al. (2018a) only re- 0.2 - ,'
ported accuracy and F1-score of their results. Our model’s accuracy and i —— SOREL-20M
F1-score are slightly higher than their results, but with metrics close to Pig — = EMBER
100%, this is significant. 0.0 drrmm=m T m T : . ; .
1075 10°4 1073 102 1071 10°

The results show that models developed with our proposed AutoML
pipeline are similar to those found with hand designed solutions, and
sometimes even exceed the performance. This shows the efficacy of in-
tegrating AutoML into a malware detection pipeline, eliminating the
need to hand designed models, which is difficult, time consuming, and
requires high technical skills.

Fig. 4 shows the ROC curve for both the EMBER-2018 and SOREL-
20M experiments, note the logarithmic scale on the x-axis denoting the
FPR. An ROC curve shows the TPR for each respective FPR. Given the
magnitude increase of training data in SOREL-20M over EMBER-2018,
it is no surprise the TPR of SOREL-20M is higher than EMBER-2018 at
any FPR. SOREL-20M TPR falls off much slower than EMBER-2018, and
never goes below 0.8 TPR in the graph.

The training and evaluation were performed on a virtual machine
equipped with 92 vCPUs and 448 GB of memory. Additionally, it in-
corporated 8 Tesla V100 GPUs, each with 16 GB of VRAM. While the
number of cores and memory might have been excessive for the task at
hand, the presence of 8 GPUs facilitated parallel training sessions for
neural network hyperparameter optimization.

3.6. Discussion and analysis

3.6.1. Meta-hyper-parameter selection
As mentioned earlier, many of the parameters governing the NAS
and Hyper-Parameter tuning phases are selected based on our experi-

False Positive Rate

Fig. 4. ROC using F1-Score for Selection.

ence to simplify the process and provide a balance between the cost of
training and detection results. We discuss below some of these parame-
ters.

3.6.2. Epochs per trial

The number of epochs per trial is an important parameter that di-
rectly affect the NAS process. This was especially a consideration for
the SOREL-20M trials, since the dataset is an order of magnitude larger
than the EMBER-2018 dataset and therefore took much longer to train.

Initially, the number of epochs for the SOREL-20M NAS trials was
set to 3. This implies that the model configurations with the highest
performance after training for 3 epochs would perform the best overall.
To test this, we increased the number of epochs to 10 and 20 to help in
better understanding of the impact of epochs per trial on the selected
models’ performance during the NAS. The results of these experiments
are shown in Fig. 5. The primary consideration here is with the perfor-
mance trend of SOREL-20M, but EMBER-2018 is shown as well.

This graph shows the Fl-score average of the top 30 selected mod-
els at any given epoch. The F1-score for each model is calculated as the
highest F1-score reached up to and including a given epoch. At each
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Fig. 6. Top 30 Preforming Models Average Complexity by Epoch.

epoch, the 30 models with the highest Fl-score, as described above,
are averaged together. At any epoch, the top 30 set of models may be
different if any model in the experiment achieves results that puts the
model in the top 30 for that epoch. It can be seen that there is a cor-
relation between top model performance and the number of epochs, in
a seemingly logarithmic relationship. As long as a model is not so com-
plex that it over-fits the training data, a more complex model should,
intuitively, preform as well as or better than a less complex model.
However, a good choice for the number of epochs should be where the
curve start to straighten so that the model doesn’t become too complex
and, in turn, require a massive amount of training time. Fig. 6 shows
that as the number of training epochs per trial increases so does the
average complexity of the top 30 performing models. The model com-
plexity in the figure represents the average product of width and depth
of the hidden layers of the top 30 model configurations during the NAS
phase, which results in the number of trainable parameters in a given
model.

3.6.3. NAS and tuning-parameters phases evaluation metric

We use Fl-score as an evaluation metric to select the models that
have both high recall and precision. After getting the final selected
model during the NAS and hyper-tunning-parameter phases, we train
and evaluate the model using both Fl-score and binary cross-entropy
loss. The results shown in the ROC curves in Fig. 7 shows that both
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Fig. 7. ROC using Loss vs F1 for Selection.

metrics can reach comparable results. This indicates that, besides F1-
score, other metrics could also be explored, including accuracy, AOC,
binary cross-entropy loss, etc. and are left to future work.

3.6.4. Search space bounding and strategy

The search space values are one of the most important factors in
the AutoML process. As shown in Table 3, the width parameter (i.e.
1664) of selected model for EMBER-2018 dataset is found to be less than
the maximum value (i.e. 1920). However, the width of the SOREL-20M
model was the maximum available value in the bounded search space.
This indicates that an even wider model might preform better than
the found model had the search space been bigger. Selecting optimal
search space values is still an open question. The choice of the search
strategy for the NAS and tuning-parameter phases is random search
and TPE, respectively. In this section, these strategies were chosen be-
cause of their simplicity. However, a more adequate strategy tailored
to malware detection could potentially result in better selected AutoML
models.

3.6.5. Cost of current implementation

The SOREL-20M experiments took ~30 minutes per epoch to run,
with 16 experiments running simultaneously. The EMBER-2018 exper-
iments took ~5 minutes per epoch, with 24 experiments running si-
multaneously. Overall, the experiments took ~5600 minutes and ~1560
minutes to run both SOREL-20M and EMBER-2018 experiments, respec-
tively. This is the time to run the NAS and hyper-parameter phases of
the process, excluding the final model training. The time to train the
final model is not reported, as the computational cost is insignificant
compared to the previous two phases.

The current implementation of the proposed methodology uses a
multi-trial NAS, where each set of model parameters selected from the
NAS search space are trained to the specified epoch limit. Other imple-
mentations of multi-trial NAS try to optimize this process through early
stopping and weight sharing (Li and Talwalkar, 2020). Even though
these methods may introduce instability into the process, they can re-
duce the computational cost.

It can be concluded that it is more expensive to use AutoML than
to train hand-designed models. This cost trade-off should be taken
into account as the proposed methodology becomes more refined. Fu-
ture implementations may significantly reduce the time to complete
the AutoML process. This can be achieved through more sophisticated
NAS implementations and intelligent search strategies that can reduce
the number of trials required or the number of epochs required per
trial.
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4. Automated machine learning for online malware detection

This section will focus on using one-shot AutoML for malware detec-
tion in online cloud environments using Convolutional Neural Networks
(CNNs).

4.1. Convolutional neural networks

CNNs are a widely used type of deep learning model designed for im-
age type data. CNNs work differently than regular deep FFNNs, where
the output of every node is passed into every node of the next layer.
CNNs receive a 3 dimensional input (channels, height, width). CNNs
have filters, whose values are learned, that convolve across input chan-
nels to detect edges. The primitive edges detected in earlier layers can
be combined in later layers to learn more complex shapes. The core
of CNN layers falls into two categories: normal and reduction convolu-
tional layers. Normal convolutional layers use filters to convolve across
the input to produce data with more channels, keeping the same height
and width. Reduction cells to reduce the width and height of its input
data to reduce the number of trainable parameters in the next layer or
cell. The output of the convolutional layers is passed through a pooling
layer to reduce the input dimension to 1 for dense layers to produce the
network output (prediction).

CNNs are used in this section because process performance metric
data can be grouped together in the form of an image, with rows de-
noting unique processes and columns denoting performance features of
these processes.

4.2. Online cloud testbed

Fig. 8 illustrate the testbed utilized to generate the online malware
dataset in an OpenStack® instance hosted by the University of Texas at
San Antonio. All virtual machines used to create this dataset had open
and unrestricted internet access, as well as a public IP address. Each
virtual machine is running a fully up-to-date Ubuntu 18.04 instance.
The experiments are controlled and data gathered by a controller node
within the OpenStack testbed. Each VM contains programs to collect
data from their respective sources, which at the end of the experiment
is collected by the controller node. Before each experiment, each target

5 https://www.openstack.org/.
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Collection Point

J Network Data
m— Collection

-10 0 10 20 30
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Fig. 10. Data Collection Phases.

VM is reset to a clean state. Each virtual machine has 2 CPU cores, 4
GB of RAM, and 40 GB of disk space.

4.3. Application and baseline sets

To best understand the behavior of malware on a full, online system,
it may help to include malware data when the machine is idle and fully
operational. For the purposes of this dataset, the fully operational server
will be an Apache web server hosting a WordPress application, with a
MySQL database on the backend. To model real world end users of the
server, an on ON/OFF Pareto distribution following NS2° parameters is
utilized to mimic the distribution of client requests to the webserver.
All malware was run with only user level privileges.

4.3.1. Malware source and selection

The malware selected for this data came from a variety of sources,
including VirusTotal,” MalShare,® VirusShare,’ Linux-Malware-Sam-
ples,' and MalwareBazarr.!! The gathered samples were tested for
ability to execute on the target hardware in case the mutable header
field of the malware had been altered, in which case the malware may
not run on the target hardware. Also, samples that lead to corruption
of the collected data during the experimentation process were removed
from consideration after the fact. In total 4077 malware samples were
considered.

4.3.2. Data collection

The experiment length for this dataset is 10 minutes - meaning data
is collected for the entirety of 10 minutes. Halfway through a given
experiment, the malware being tested is executed. Therefore, every ex-
periment contains an equal amount of benign and malicious activity.

6 http://www.isi.edu/nsnam/ns/doc/node509.html.

7 https://www.virustotal.com/.

8 https://www.malshare.com/.

9 https://virusshare.com/.

10 https://github.com/MalwareSamples/Linux-Malware-Samples.
11 https://bazaar.abuse.ch/.
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This can be seen in Fig. 9. There are multiple random benign SSH con-
nections made to each target box throughout the experiment to mask
the SSH connection used to spawn the malware execution.

The methods by which different sources of data are collected con-
tain both continuous and discrete collection. Network data is collected
continuously throughout the experiment, and starts 10 s early to allow
for a delta to be taken, since the collection is a running total of network
activity per process. Per-process data is collected at an interval of ev-
ery 10 s, taking the instantaneous value of the monitored metrics. The
collection over time for each data source as shown in Fig. 10. Specifics
of each type of data collected will be discussed in the following subsec-
tions.

4.3.3. Per-processes performance data

Performance metrics are collected on a per-process basis. This data
is collected every 10 s for the duration of the experiment. The python
library psutil is used to collect this data.

Process IDs (PIDs) would, at first, seem like an easy way to identify
a unique process thought the experiment, but this doesn’t hold true. A
Linux kernel by default has a maximum PID of 32768, at which point
PIDs begin getting re-used. Therefore, it is feasible that in a highly ac-
tive system that creates many new processes and closes old ones, that
a single PID may identify more than one process during the experiment
run-time. Instead, a tuple of the entire command line (including argu-
ments) of the process and a hash of the executable (if applicable) is
collected. This is much less likely to collide with the identifier of an-
other process.

4.3.4. Per-process network data
Many data collection tools do not allow for the collection of network
traffic statistics in a per-process basis. However, the tool Nethogs'? al-

12 https://github.com/raboof/nethogs.
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lows for the grouping of bandwidth by process, and is used to collect
network bandwidth data in the experiments. A python wrapper is used
to interact with the Nethogs library for data collection.

The network bandwidth data (bytes in/out) per process is recorded
as a running total, therefore network data collection is started 10 s
early, and the delta between each record is used in post-processing. In
order to match network data to process data, the PID at a given times-
tamp in the network data can be compared to the records in the process
data, which ultimately holds the primary key to denote a unique pro-
cess.

4.3.5. Combined data and representation

In order to include network data with per-process performance met-
rics, the data is combined. First, any record of the data collection agents
is removed from the per-process performance data. The data that is left
in process data will be the basis by which network usage is searched in
network data. The discrete process data is grouped by collection time
(every 10 s), and any matching network data between collection times
is added to the latter process data collection record. That is for a given
unique process record p taken at collection time N, any matching net-
work data records for p between the previous collection time N-1 and
current collection time N, will be added to the process record of p at
collection time N. A sample feature table for a unique process is shown
here in Table 6.

To feed the data to models, the data is represented as a single chan-
nel (grayscale) image. The columns of this image are the collected
performance metrics and the rows are unique processes. As shown
in Fig. 11, the image dimensions are represented as (channels, rows,
columns) and are selected to be (1, 64, 64). The first 26 columns and
second 26 columns each contain performance metrics for the rows of
processes. That is, the 56 used columns of the input are divided into
two sections of 26 features, each of these meta-columns representing a
unique processes features. The first 32 rows of the first meta-column are
reserved for commonly occurring processes found in the training set, so
that in every input sample, a process that is commonly occurring will
be in the same spot in the data in every input sample.

There are 12 blank columns, padded with 0, on the right side of
the image that are used as padding so the image can maintain a square
shape. The image shape is selected to be square and a power of 2 to en-
sure there are no dimensionality problems when feeding the data into
a variety of CNN models. A total of 128 unique processes can be in-
cluded in an image, and the top 32 processes that occur very frequently
throughout the data will always be placed in the same row and column
throughout all samples.

4.4. Methodology

We used one-shot learning to find a performant CNN to detect mal-
ware from the performance metric data. The Darts (Liu et al., 2018)
AutoML methodology is applied to search for an optimal CNN archi-
tecture from the training data. The code for this is adapted from the
Microsoft NNI implementation of Darts. Darts works to find normal and
reduction convolutional cells by figuring out layer connections between
nodes in the repeated cells. The found architecture will be a normal
and reduction convolutional layer in a CNN with a specified number
of layers (cells), nodes per cell, and channels per node. Increasing the
number of nodes, and even more so increasing the number channels
per node, can create large memory overhead in the neural architecture
search. Darts finds the connections between nodes in a cell by posing
the probability of a connection being the best as a softmax, so the best
connections can be found using gradient descent. For further explana-
tion on the DARTS AutoML process, refer to the original paper Liu et al.
(2018).

The choices for connections between nodes in a cell are skip connect
(identity for normal cells and factorized reduction for reduction cells),
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Table 6
Features Sample.
Metric Value Metric Value Metric Value
num_fds 78 cpu_percent 0.0 cpu_time_user 0.15
cpu_time_system 1.7 cpu_time_children_user 7.64 cpu_time_children_system 3.1
context_switches_voluntary 1390 context_switches_involuntary =~ 430 num_threads 1
memory_info_rss 9113600 memory_info_vms 163598336 memory_info_shared 6795264
memory_info_text 1376256 memory_info_lib 0 memory_info_data 18956288
memory_info_dirty 0 memory_info_pss 2922496 memory_info_swap 0
io_read_count 53242 io_write_count 18782 io_read_bytes 320275456
io_write_bytes 113713152 io_read_chars 248760749 io_write_chars 152977520
sent_bytes 0.0 recv_bytes 0.0
skip_connect memory usage during the NAS and the complexity and predictive per-
formance of the found architecture. The selections made are to allow
dil_conv_5x5 the model to fit on a single GPU while achieving good predictive per-
formance. The impact of these choices is discussed (Liu et al., 2018).
an_P001_3X3 0 A dropout rate of 0.30 is used in the neural architecture search, the
same as used in all the rest of the model training. The Darts architecture
c_{k-2} dil_conv_3x3 3 search is run for 30 epochs (approximately 13 hours), using the training
2 data. A batch size of 96 is used, the same as the original Darts paper.
sep_conv_3x3 The found architecture is then trained using the same hyper parameters
- 1 —fc_{k} as the models it is compared to, described next.
dil_conv_5x5
4.5.3. Training parameters
¢ {k-1} sep_conv_5x5 ) In order to compare the performance of Darts to state-of-the-art
— CNNs, these models will be trained the same way as the found Darts
sep_conv_3x3 3 models: Resnet18, Resnet50, Resnet101, Densenet121, Densenet169, and
Densenet201. All the considered models share the same hyper parame-

dil_conv_5x5

dil_conv_5x5

Fig. 13. Found Normal Cell.

dilated convolution (5x5 or 3x3), separable convolution (3x3 or 5x5), av-
erage pooling (3x3), or max pooling (3x3). These were the choices in the
original Darts paper and are also used here. Stochastic Gradient Descent
(SGD) optimizer and a learning rate scheduler are both used, with the
same parameters as described in Liu et al. (2018).

The general architecture for the entire network is shown in Fig. 12.
The CNN part of the model is either be found by with the Darts method-
ology or is a state-of-the art CNN for comparison.

4.5. Training and results

4.5.1. Data splits

Given 4077 total malware experiments per set (baseline/applica-
tion), running for 10 minutes each, with data points at every 10 s,
246,620 total samples are available in the baseline and application
dataset. 80% of the experiments are used for training, 10% for valida-
tion, and 10% for testing. No experiment (malware sample) is contained
in more than one set (training/validation/testing). Also, the baseline
training set consists of the same malware as the application training
set, and the same is true for validation and test sets. A mean and stan-
dard deviation are calculated using the training set in the baseline and
application set, and is used to normalize each of the respective datasets.

4.5.2. Neural architecture search

The Darts network for the baseline data is found, with the meta net-
work parameters set at 5 layers, 5 nodes per cell, and 5 channels per
node. Due to a performance decrease when the same Darts parameters
are applied to the application dataset, the Darts model for the appli-
cation set is fixed at 7 layers, 5 nodes per cell, and 9 channels per
node. These choices are somewhat arbitrary, but have direct impact on
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ters. The models are each trained for 100 epochs, use the Adam opti-
mizer with a learning rate of 0.0005, learn on a batch size of 512, and
have a dropout rate of 0.30. For each model, the epoch with the low-
est validation loss is used on the test set to produce the final results for
that model.

4.5.4. Results

The best found normal and reduction convolutional cells structures
in the baseline darts model are shown in Figs. 13 and 14, respectively.
The two input nodes in each cell are the outputs of the previous two
cells, or in the case of the first cell the duplicated output of the first
layer of Darts. All the node outputs are concatenated to be the cell
output.

The training and evaluation was conducted on a VM with 14 vCPUs,
100 GB of memory, and an RTX A6000 GPU with 48 GB of VRAM.

The predictive results of the test set are shown in Table 7. This ta-
ble shows the accuracy, precision, recall, F1-score, and Area Under the
Curve (AUC) for each model. Additionally, to model a real world sce-
nario, a threshold is calculated from the validation set, such that the
validation false positive rate is 1.00%. This models a scenario where
many false positives can become overwhelming for analysts to deal
with, so an effort is made to minimize them by increasing the detec-
tion threshold of the malware detection model. When the threshold is
increased, this can create a delay in a positive malware detection, in
real time, through false negatives at the beginning of malware execu-
tion. This is shown in the table as Delay @ Low FPR, and is the average
number of seconds elapsed before a successful detection after the mal-
ware injection point. Also shown in this section of the table is True
Positive Rate TPR and False Positive Rate FPR at the high detection
threshold (low FPR) on the test set.

Both of the Darts models that were tried are shown in the Applica-
tion section of Table 7. The first model has 5 layers, 5 nodes per cell,
and 7 channels per node. The second Darts model has 7 layers, 5 nodes
per cell, and 9 channels per node. The Darts models in both baseline and
application datasets perform better in almost every area than state-of-
the-art models. In the baseline set, Resnet18 and Resnet50 show better
precision and recall than the Darts model, respectively. It can, however,
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Fig. 14. Found Reduction Cell.

Table 7

Online Detection Results.
Baseline
Model Accuracy Precision Recall F1-Score AUC Delay @ Low FPR TPR @ Low FPR FPR @ Low FPR
Resnet18 0.97463 0.99387 0.95511 0.97411 0.99877 10.56373 s 0.96321 0.00735
Resnet50 0.97913 0.96266 0.99689 0.97948 0.99892 9.60784 s 0.96681 0.00759
Resnet101 0.98897 0.98856 0.98937 0.98897 0.99927 3.60294 s 0.98814 0.01045
Densenet121 0.98358 0.99079 0.97621 0.98344 0.99896 7.81863 s 0.97367 0.00816
Densenet169 0.98346 0.97972 0.98733 0.98351 0.99838 6.66667 s 0.97490 0.01086
Densenet201 0.98570 0.99148 0.97981 0.98561 0.99907 5.90686 s 0.98005 0.00898
Darts AutoML 0.98917 0.98674 0.99166 0.98919 0.99954 3.03922 s 0.98986 0.01094
Application
Model Accuracy Precision Recall F1-Score AUC Delay @ Low FPR TPR @ Low FPR FPR @ Low FPR
Resnet18 0.96246 0.94401 0.98709 0.96507 0.99417 21.33995 s 0.92964 0.01945
Resnet50 0.96667 0.96196 0.97512 0.96850 0.99480 14.54094 s 0.94084 0.01541
Resnet101 0.97953 0.97627 0.98500 0.98061 0.99728 10.19851 s 0.96470 0.01446
Densenet121 0.97239 0.97116 0.97644 0.97379 0.99414 13.44913 s 0.95592 0.01937
Densenet169 0.96164 0.94393 0.98554 0.96429 0.99248 28.31266 s 0.90368 0.01386
Densenet201 0.96078 0.94631 0.98103 0.96336 0.99276 27.89082 s 0.90671 0.01558
Darts AutoML (5 Layer) 0.97672 0.97755 0.97815 0.97785 0.99659 13.15136 s 0.95623 0.01171
Darts AutoML (7 Layer) 0.98611 0.98520 0.98842 0.98681 0.99907 4.01985 s 0.98694 0.01532

be seen that the Darts model has a higher F1-score signifying that the
Darts model better balances precision and recall on the test set better
than either of the other models. The Darts model also has the lowest
delay, and is under 10 s, meaning that most of the malware in each ex-
ecution experiment was detected in the first time slice after injection.
Additionally, many of the state-of-the-art models are shown to impose
a significant delay in the detection of the malware, with some averag-
ing over 2 time slices, or over 20 s for a successful detection. The Darts
models don’t always have the lowest FPR at the high detection thresh-
old, but all results in this column are shown to be close to the 1% target
to validate the delay and TPR results.

Accuracy, Precision, Recall, and F1-Score are shown for each model
in both sets in Figs. 15 and 16. The average malicious prediction delay
is also shown in Figs. 17 and 18. The higher performance difference
between the Darts models and state-of-the-art models in the application
set vs the baseline set, suggests the need for AutoML derived models as
data becomes more complex. Data from a server during real world use
is more noisy and allows for malware execution to better hide within
this noise. The neural architectures that are specifically derived based
on this more complex data for this use case are more performant at
identifying malware execution than generic architectures.

5. Future work and conclusion
5.1. Future work

This work describes the usefulness of AutoML for malware detec-
tion. Future works can expand on the ideas of this work with different

search algorithms and malware data sources, as well as create tools to
even further automate the process to make layman use of these method-
ologies easier.

5.1.1. Recurrent neural networks

Recurrent Neural Networks have shown near perfect results with
online per-process performance metric data (Kimmel et al., 2021). The
Darts methodology can also be used to derive recurrent cells, and this
methodology should be examined on the dataset from Section 4 in the
future.

5.1.2. Per-layer granularity

In our work in Section 3, once the width of the hidden layer is se-
lected from the search space, it is fixed throughout the hidden layers
of a model leading to a rectangular shape of the hidden layers in the
model. However, an equivalent or a more optimal model may contain
variable size layers with potentially fewer trainable parameters. A NAS
process that allowed this level of granularity without an explosion of
the NAS search space would prove valuable.

5.1.3. Refinement of meta-hyper-parameters

The set values of the meta-hyper-parameters have a significant ef-
fect on the efficacy of the AutoML process. Works such as Feurer and
Hutter (2018) have developed methods to optimize a search strategy
within the given confines of the meta-hyper-parameters in a data driven
way. Finding the appropriate bounds of these parameters, specifically
tailored to the malware detection domain, is yet to be explored.
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Addition of auxiliary output heads to the NAS search space can also
be considered meta-hyper-parameters. One of the potential labels that
can be given to this data may not be of use in a strictly detection set-
ting, but may help derive a more performant model for the required
objective with auxiliary loss, just as discussed in Rudd et al. (2019).
Automatic inclusion of these in the search space based on label data
would be valuable in automatic model searching. If hyper-parameter
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tuning is also performed as part of the AutoML process, the tuning al-
gorithm can also be considered a meta-hyper-parameter. Depending on
the evaluation metric, or rather intended performance (low false posi-
tive rate, high accuracy, etc), the found optimal parameters may differ.
Algorithms such as differentiable evolution can also allow for optimiza-
tion for multiple objectives (evaluation metrics).

5.1.4. Deep learning types and ensemble learning

In Section 3, we only used FFNNs for the SOREL-20M and EMBER-
2018 datasets. An analysis of using various deep learning models can
be very useful. Further, malware data can be extracted in many forms
and types of data (e.g., time series and image data). Training a machine
learning model on combined dynamic time series data and statically
extracted tabular data can enhance the model’s detection ability. How-
ever, designing such a model can be very difficult and, as such, AutoML
is the perfect candidate for this task. An AutoML system that can intel-
ligently conform to other sources of heterogeneous data is an area for
future work.

In addition, AutoML can be utilized for ensemble learning. For in-
stance, an AutoML system that can train multiple sub-models of differ-
ent types and ensemble the sentiment of the sub-models would allow
for more robust application in practice. Works such as Erickson et al.
(2020) ensemble many types of machine learning models, including
FFNNS, to achieve better results. Extending this to other deep learn-
ing model types could prove beneficial for malware detection.

5.1.5. User friendly AutoML

Designing AutoML models can be easier than designing a deep learn-
ing model from scratch, but an even more automated deep learning
approach would be helpful for those with knowledge of their own data,
but not necessarily deep learning. An AutoML system that could be
instantiated with only training data inputs, type of data (vector, im-
age, time-series), and primary and auxiliary labels would allow even
broader access to malware detection solutions using deep learning. This
framework would be able to automatically select a model type of deep
learning architectures and use AutoML techniques to find a performant
architecture to suit the data, making maximal use of any provided aux-
iliary information. Ideally, this would combine the methodologies and
discussions from both Sections 3 and 4. It would perform all phases
of the AutoML process efficiently, and be able to set applicable meta-
hyper-parameters from details of the provided training data.

5.2. Conclusion
In conclusion, we conjecture that Automated Machine Learning of-

fers an effective solution for detecting malware in both static and online
cloud IaaS environments. We found that AutoML generated models
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can perform just as well or even better than state-of-the-art models
or models that have been handcrafted by experts with domain knowl-
edge in machine learning and malware. We explored the performance
of AutoML on two popular datasets static malware datasets in Sec-
tion 3, SOREL-20M used to demonstrate efficacy on large datasets; and
EMBER-2018, a dataset that was specifically curated to hinder the per-
formance of machine learning models; with results in Tables 4 and 5.
Our work on static malware datasets showed the feasibility of using
AutoML as a tool for malware detection while reducing the external
complexity and expertise required to train DL models.

We further explored one-shot AutoML on a new online cloud IaaS
malware dataset using CNNs. Our results show that AutoML approaches
can be utilized by cloud service providers and malware detection ven-
dors to find custom deep learning models for malware detection utiliz-
ing any of a variety of data sources. The online approach we have shown
can derive a custom CNN that is more capable than state-of-the-art mod-
els and contains cells that are more complex than what can feasibly
be derived by hand. Importantly, we demonstrated that the difference
in detection ability between AutoML models and state-of-the-art mod-
els becomes more pronounced as the noise in the input data increases,
approaching the noise levels seen in real-world applications. We also
elaborate on future directions to mature the use of AutoML research
towards cybersecurity domains.
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