
Computers & Security 137 (2024) 103582

Available online 10 November 2023
0167-4048/© 2023 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Automated machine learning for deep learning based malware detection

Austin Brown ∗, Maanak Gupta, Mahmoud Abdelsalam

A R T I C L E I N F O A B S T R A C T

Keywords:
Malware detection
Automated machine learning
Deep learning
Cloud security
Static malware analysis
Online malware analysis

Deep learning (DL) has proven to be effective in detecting sophisticated malware that is constantly evolving. 
Even though deep learning has alleviated the feature engineering problem, finding the most optimal DL model’s 
architecture and set of hyper-parameters, remains a challenge that requires domain expertise. In addition, many 
of the proposed state-of-the-art models are very complex and may not be the best fit for different datasets. 
A promising approach, known as Automated Machine Learning (AutoML), can reduce the domain expertise 
required to develop custom DL models by automating the ML pipeline key components, namely hyperparameter 
optimization and neural architecture search (NAS). AutoML reduces the amount of human trial-and-error 
involved in designing DL models, and in more recent implementations can find new model architectures with 
relatively low computational overhead.
Research on the feasibility of using AutoML for malware detection is very limited. This work provides a 
comprehensive analysis and insights on using AutoML for both static and online malware detection. For static, 
our analysis is performed on two widely used malware datasets: SOREL-20M to demonstrate efficacy on large 
datasets; and EMBER-2018, a smaller dataset specifically curated to hinder the performance of machine learning 
models. In addition, we show the effects of tuning the NAS process parameters on finding a more optimal malware 
detection model on these static analysis datasets. Further, we also demonstrate that AutoML is performant in 
online malware detection scenarios using Convolutional Neural Networks (CNNs) for cloud IaaS. We compare 
an AutoML technique to six existing state-of-the-art CNNs using a newly generated online malware dataset with 
and without other applications running in the background during malware execution. We show that the AutoML 
technique is more performant than the state-of-the-art CNNs with little overhead in finding the architecture. 
In general, our experimental results show that the performance of AutoML based static and online malware 
detection models are on par or even better than state-of-the-art models or hand-designed models presented in 
literature.

1. Introduction

1.1. Overview and motivation

Malware is becoming a more profitable domain for malicious actors 
with the rise of digital connectivity and the growing critical infras-
tructures reliance. These cyberattacks have costed the industry billions 
(Anderson et al., 2019) of dollars. The increase and impact of such cy-
berattacks has called for novel and sophisticated defense mechanisms 
in response to those that wish to protect digital assets from malware 
attacks.

There are several existing approaches for malware analysis, includ-
ing static (Nath and Mehtre, 2014; Shalaginov et al., 2018), dynamic 
(Alotaibi, 2019; Tobiyama et al., 2016; Willems et al., 2007), and online 
analysis (Kimmel et al., 2021; Kimmell et al., 2021; McDole et al., 2020, 
2021). Each of these analysis methods collect different features from 

* Corresponding author.
E-mail addresses: ambrown2000@gmail.com (A. Brown), mgupta@tntech.edu (M. Gupta).

the file or system in question, ranging from details of the file header in 
static analysis, to holistic operating system level performance metrics 
in the case of online analysis. The reasons to use a specific analysis ap-
proach depend on the use case and availability of data. For simple file 
scanning, static analysis is the fastest method, since there is no need 
to run the executable in question, whereas, collecting data from a run-
ning executable in dynamic analysis may give more insight into the true 
behavior and intent of a questionable executable. On the other hand, 
unlike dynamic and online analysis, static analysis can be crippled us-
ing well-known obfuscation techniques.

Machine learning (ML), especially DL, has become a popular tech-
nique to develop malware detection solutions, and has shown promising 
results (Sahin and Bahtiyar, 2020) because of its ability to learn gener-
alized patterns to identify unseen malware. As such, research works 
(Aryal et al., 2021, 2022; Brown et al., 2022; Gupta et al., 2023; Kim-

https://doi.org/10.1016/j.cose.2023.103582
Received 7 August 2023; Received in revised form 7 October 2023; Accepted 3 November 2023



Computers & Security 137 (2024) 103582

2

A. Brown, M. Gupta and M. Abdelsalam

mell et al., 2021; Kolosnjaji et al., 2016; Mishra et al., 2019; Pascanu et 
al., 2015; Tobiyama et al., 2016; Xiao et al., 2019; Xie et al., 2020) have 
employed different types of ML models to detect malware on a variety 
of systems and data sources, depending on the use case. These pro-
posed solutions have utilized both traditional ML algorithms and, more 
recently, deep learning algorithms. Approaches (Abou-Assaleh et al., 
2004; Fan et al., 2016) that rely on traditional machine learning mod-
els require domain experts for feature engineering, which, in most cases, 
is burdensome and laborious. On the contrary, deep learning based ap-
proaches (Agrawal et al., 2019; Ganesh et al., 2017; Jha et al., 2020; 
Kimmel et al., 2021; Luckett et al., 2016; Raff et al., 2018a; Rudd et 
al., 2019; Sewak et al., 2018; Vinayakumar et al., 2019; Wang et al., 
2019; Yeo et al., 2018) eliminate the feature engineering step and are 
gaining more traction. Some works (McDole et al., 2020; Rezende et al., 
2018) have utilized state-of-the-art DL models (e.g., ResNet (He et al., 
2016), DenseNet (Iandola et al., 2014), and VGG16 (Simonyan and Zis-
serman, 2014)) that perform well in general and train it on malware 
data; however, these models are usually very complex and require a 
rigorous tuning process to achieve the desired high performance. In ad-
dition, such models are usually designed for tasks like image, text, or 
voice recognition and can be inadequate for malware detection. Conse-
quentially, works (Raff et al., 2018a) have focused on manually crafting 
model architectures that fit the malware detection domain. However, 
these approaches not only require heavy tuning, but also high technical 
skills in both the ML and the malware domains.

Automated Machine Learning (AutoML) (He et al., 2021) seeks to 
automate the process of finding an optimal model architecture for the 
given data and tuning this model to achieve higher performance. In 
addition, it can also reduce the work needed to redesign a malware 
detection model as malware and data sources evolve overtime. Even 
though AutoML pipelines require more computational time to produce 
a model, they significantly reduce the work hours and expertise needed 
to find a performant model.

AutoML holds significant promise for malware detection, automat-
ing the dual tasks of discovering the ideal machine learning architecture 
tailored for this purpose and subsequently refining this selected model. 
Despite its potential, AutoML is still in its developmental phase, and 
comprehensive exploration of its applicability, especially in malware 
detection, remains limited.

Building on this, AutoML serves as a potent tool for domain experts, 
even those without the formal “Data Scientist” designation, enabling 
them to harness machine learning more effectively. The efficacy of Au-
toML, like many machine learning realms, often hinges on the volume 
of accessible data and the intricacy of the given task. Domains rich in 
data, such as our focus on malware detection, as well as simulated en-
vironments that can generate vast amounts of data, are well-poised to 
reap the benefits of AutoML. While our discussion centers on its util-
ity in static and online malware detection, AutoML’s potential can be 
extrapolated to other cybersecurity areas like Network Intrusion De-
tection, Security Log Analysis, and Threat Intelligence. Essentially, any 
domain with ample high-quality data suited for deep learning might 
find AutoML advantageous.

With the growth in malware sophistication and machine learning 
complexity, especially in deep learning, finding the most performant 
deep neural architecture without a significant increase in human hours 
spent is critical. This paper aims to study the feasibility of integrat-
ing AutoML into the malware detection pipeline to remove the need 
to hand design and tune ML models. In particular, we focus on using 
deep learning, specifically Feed Forward Neural Networks (FFNNs) and 
Convolutional Neural Networks (CNNs). FFNNs have a high level of 
expressive power and require much less feature engineering than tra-
ditional machine learning approaches. Convolutional Neural Networks 
can model complex functions with image shaped data as input with lit-
tle to no feature engineering, only requiring framing the data in a 2d 
vector. Further, we focus on both data that is gathered through static 
analysis, specifically focusing on portable executable (PE) files which 

are the predominant executable format in the Windows operating sys-
tem, and online data captured from running, internet connected, Linux 
servers in cloud IaaS with malware executed on them. The main contri-
butions of this work are:

• We study the feasibility of using AutoML for deep learning based 
static malware detection and demonstrate the effectiveness of the 
produced AutoML Deep FFNN models by showing that they are 
comparable to manually crafted models, even without significantly 
tuning the AutoML pipeline.

• We provide insights and analysis of the automation parameters of 
the AutoML process on static malware data, and show how these 
parameters can affect the performance of the found optimal model.

• We show that AutoML derived Convolutional Neural Networks can 
preform better than state-of-the-art Convolutional Neural Networks 
on online malware data, with little overhead in deriving the model 
architecture.

• We discuss ideas and future directions for improving the efficiency 
and performance of AutoML models that are designed for malware 
detection.

The rest of this work is organized as follows. Section 2 discusses 
background and related works in this domain. Section 3 shows the 
application of AutoML in two popular static malware datasets, with 
comparison to other works, and discussion of the presented AutoML 
methodology. Section 4 focuses on one-shot AutoML applied to CNNs 
to detect malware in online cloud IaaS, with comparison to detection 
results of state-of-the-art CNNs on the same dataset. Section 5 presents 
ideas for future work and improvements, as well as the conclusion to 
the findings in this work.

2. Background and related works

2.1. Malware detection

2.1.1. Static analysis
Static analysis involves analyzing features that can be observed in a 

binary without running the binary executable. Static analysis methods 
may include observations such as: file entropy; n-gram analysis of byte 
sequences in a binary; imports and API calls; strings found within the 
binary; header information. The major benefit of static analysis is its 
speed and low overhead, since the binary is not executed.

One of the most simple forms of static analysis for malware detec-
tion is looking up the signature of a binary, most often the file hash. 
This method is extremely efficient if the binary’s hash is documented, 
but has no ability to detect modified or new malware. A more popu-
lar method of static analysis looks at n-grams of bytes in the binary. 
Authors in Abou-Assaleh et al. (2004) measured frequency of common 
n-gram bytes in Windows binaries to determine if the binary is ma-
licious. The frequency of n-grams across both malicious and benign 
binaries were used to train a K-nearest-neighbors classifier. While this 
approach showed good results (at the time published), it is unclear if 
it would show as good of results in modern malware detection. This 
approach additionally has proven to be computationally expensive and 
offers diminishing returns as n increases (Raff et al., 2018b). Another 
work (Fan et al., 2016) has taken it a step further from n-gram byte 
analysis to analyzing instruction sequences in questionable binaries.

To reduce the overhead imposed by the essential feature engineering 
in traditional ML, some researchers have focused on deep learning ap-
proaches. Authors in Raff et al. (2017) used recurrent neural networks 
to analyze the first 300 bytes of the header of Windows PE files. Work in 
Raff et al. (2018a) utilizes convolutional layers within a neural network 
to extract information on Windows PE headers to determine binary in-
tent. Authors in Vinayakumar et al. (2019) implemented what they call 
Windows-Static-Brain-Droid, which implements multiple architectures in 



Computers & Security 137 (2024) 103582

3

A. Brown, M. Gupta and M. Abdelsalam

a voting scheme. The features for the architecture are both raw byte in-
formation and parsed features from the binary. The raw byte features 
feed into various architectures based on Raff et al. (2018a). The parsed 
features feed into multiple traditional classifiers and a FFNN. Section 3
will focus on developing an optimized neural architecture similar to 
Vinayakumar et al. (2019)’s FFNN.

2.1.2. Dynamic analysis
Unlike static analysis, dynamic analysis executes a binary to monitor 

its behavior. This is most often carried out in a sandboxed environment 
to restrict the binaries access to other resources which a malware could 
attack. Data collected from the execution behavior of malware allows 
for greater insight into a questionable binary’s intent and nature. Au-
thors in Fan et al. (2016); Luckett et al. (2016) utilized system calls 
captured during execution to detect malware. Work in Fan et al. (2016)
utilizes traditional machine learning approaches, while Luckett et al. 
(2016) uses neural networks for classification. Authors in Tobiyama et 
al. (2016), look at API calls made in 5 minute intervals to classify bi-
naries as benign or malicious. These calls were passed to a CNN for 
classification. In Huang and Stokes (2016), authors use FFFNs to clas-
sify binaries based on extracted API calls from dynamic execution.

Compared to static analysis, these methodologies require extra com-
putational overhead and time to detect malware. However, dynamic 
analysis will not be able to detect sophisticated malware that can detect 
the presence of an emulation sandbox or the lack of network connectiv-
ity that is often found with isolated emulation environments.

2.1.3. Online analysis
Where dynamic analysis only analyzes the execution of a single bi-

nary, online analysis collects data from an entire system to monitor (in 
real time) for malware execution. This allows for continuous monitoring 
of an open system (not in a sandbox), with full access to all resources. 
Additionally, this allows for collection of execution details that extend 
beyond that of a single binary. This can include both knowledge of nor-
mal execution of a given system as well has effects to adjacent processes 
from live malware execution.

The authors in Demme et al. (2013); Ozsoy et al. (2015) utilize 
performance counters from an entire system to detect the presence 
of malware. Guan et al. (2012) proposed using system calls to detect 
malware in online systems with ensembles of Bayesian predictors and 
decision trees. Others have proposed using memory features (Xu et al., 
2017). McDole et al. (2021) and Abdelsalam et al. (2019) show that per-
process performance metrics from Ubuntu machines can provide high 
detection performance when ingested with a CNN. The process data 
is structured in the shape of an image, with the rows denoting differ-
ent processes and the columns denoting different performance metrics 
for each process, collected from the target machine. Abdelsalam et al. 
achieves 89.5% detection accuracy using shallow CNNs, while McDole 
et al. achieves 92.9% detection accuracy using state-of-the-art CNNs on 
the same dataset. Kimmel et al. (2021) uses recurrent neural networks 
(RNNs) on the same dataset as McDole et al. and Abdelsalam et al., but 
organizes the inputs to the RNN as sequences of unique process features, 
all from the same time slice. They achieve 99.61% detection accuracy 
with this technique. Online malware detection can incur high overhead 
with continuous monitoring of systems, but provides real-time detection 
performance on evasive and low-lying malware in a live environment 
without requiring the identification of a suspicious executable.

2.2. Deep learning for malware detection

Using deep learning for malware detection has been researched ex-
tensively and spans approaches that utilize various types of deep learn-
ing algorithms including CNNs (Abdelsalam et al., 2018; Ganesh et al., 
2017; McDole et al., 2020; Wang et al., 2019; Yeo et al., 2018), RNNs 
(Agrawal et al., 2019; Jha et al., 2020; Kimmel et al., 2021), feed for-
ward neural networks (FFNNs) (Rudd et al., 2019; Sewak et al., 2018; 

Vinayakumar et al., 2019), etc. Deep learning approaches presented in 
these works have the advantage over traditional ML models as they do 
not require hand designed features in order to be performant. Although 
these approaches impose additional performance overhead as compared 
to some traditional ML algorithms, many have shown to be more perfor-
mant under some conditions (Kamath et al., 2018), with high accuracy 
in malware detection (Kimmell et al., 2021).

Despite the fact that deep learning approaches have shown tremen-
dous results for malware detection, most of these works fall short be-
cause either (1) they utilize state-of-the-art models that are not tailored 
specifically for malware detection and may not be optimal for the data 
available, or (2) they have hand designed their models specifically for 
malware detection, without AutoML, which requires extensive domain 
experts’ knowledge and hand tuning. Fortunately, AutoML can help 
overcome these obstacles and attain higher optimal results; however, 
the feasibility of utilizing AutoML for malware detection is hardly ex-
plored.

2.3. AutoML overview

2.3.1. Neural architecture search
The performance of a model is highly dependent on the design of 

its architecture. A neural architecture search aims to find the architec-
ture design that achieves the highest performance on unseen validation 
data. We consider a change in architecture design to constitute a change 
to the number or configuration of trainable parameters, or the layers’ 
activation function.

2.3.2. One-shot search methodology
Many recent NAS methodologies focus on the computer vision do-

main. This field is heavily dependent on convolutional neural networks. 
Many types of layers within these networks, given the same shape of 
input, will produce the same shape of output. A network whose layers 
meet this condition is, intuitively, easily mutable; layers can be swapped 
out interchangeably, allowing the next layer to accept any chosen layer 
type’s input since they share the same output shape as shown in Fig. 1. 
Many types of layers can be substituted for Layer N and maintain the 
same output shape of (1, 16, 16). This property allows for an algo-
rithm to test multiple layer choices at each layer of a network to find 
the best architecture configuration. The work presented in Pham et al. 
(2018) can create a super-graph which contains multiple sub-graphs rep-
resenting all permutations of networks given the choices of each layer. 
A similar work, (Liu et al., 2018) relaxes the constraints of the categor-
ical layer choice to a softmax choice, such that the categorical choice 
is now continuous, and a gradient can be used to find the best layer 
choices through training by backpropagation.

These NAS methodologies are used to learn an entire network archi-
tecture or learn the architecture of a cell that is repeated throughout 
the network. As long as each of the operations (layer) choices produce 
the same shape of output, the specific operation choices within a cell 
can be anything. This possibility allows for designing not only convo-
lutional cells, but also recurrent cells. This allows the algorithm to find 
both CNNs and RNNs, or a combination of both.

These algorithms, known as One-Shot algorithms, find the most per-
formant network configuration in “one-shot”, without the need to train 
the network from scratch multiple times, by leveraging the output shape 
property.

2.3.3. Multi-trial search methodology
Multi-Trial NAS solutions, as opposed to one-shot, require many 

trials of different network configurations to find a performant architec-
ture. In the past, before the invention of clever one-shot methodologies, 
this was the only way to test out different network architectures. Today, 
some types of networks still rely on multi-trial NAS, such as networks 
that can’t easily swap out layers because of layer output shapes. There 
has been some work to improve the efficiency of this process, such as 



Computers & Security 137 (2024) 103582

4

A. Brown, M. Gupta and M. Abdelsalam

Fig. 1. Example Convolutional Layer Output Shapes.

Wei et al. (2016), through weight sharing. This allows each trial to run 
for a much shorter amount of time by leveraging the learned parameters 
from previous trials, and only optimizing for new parameters. How-
ever, these algorithms, if not carefully controlled, can become unstable 
in later trials. For this reason, our work with deep feed forward neural 
networks in Section 3 utilizes the more primitive multi-trial methodol-
ogy in searching for the most performant architecture.

2.3.4. NAS search space
The NAS search space is the total space containing the values of 

all valid model configurations. During the NAS process, architecture 
configurations are drawn from this space and evaluated. The search 
space is arbitrarily large, so reasonable constraints are placed in order 
to bound the cost of time required to search and limit the complexity of 
the chosen model. For example, a model depth of 1,000 layers is a valid 
choice for an architecture, but it will produce a very complex model 
with a considerably high training time. For this reason, upper bound-
aries are usually provided. For example, in our proposed approach in 
Section 3, we set the number of layers’ upper bound to 14 to limit the 
complexity of the model architectures available within the search space. 
Beside bounding the range of the search space, we also considered the 
sampling granularity and distribution of the search space. For example, 
in Section 3 we set the granularity in selecting a layer’s width to 128 
neurons in order to limit the number of available selections while still 
maintaining an appropriate level of expression of its effect on model 
performance. In order to simplify the NAS process, when a parameter 
value is selected from the search space, we fix this value throughout the 
model, instead of on a per-layer basis.

2.3.5. Automated ML for malware detection
Automated machine learning has recently been used in a variety of 

fields. Several AutoML works have been designed for specific domains, 
such as processes developed for the computer vision domain (Liu et al., 
2018; Pham et al., 2018). However, AutoML is still at nascent stage 
which is yet to see wider adoption and application in cybersecurity.

The field of malware detection has barely seen the presence of Au-
toML, and to the best of our knowledge has only been presented in a few 
works. Research in Kundu et al. (2021) tested both AutoGluon-Tabular1

and Microsoft NNI2 on the EMBER-2018 dataset (Anderson and Roth, 
2018), a malware dataset based on static analysis. These frameworks 
are used to tune hyper-parameters of a LightGBM model to best clas-
sify binaries from the dataset. Authors also used a proprietary dataset 
to evaluate the AutoML frameworks. This approach yielded a 3.2% in-
crease of True Positive Rate above the EMBER-2018 baseline results 
with the same classifier. AutoGluon-Tabular produced these results vs 
a 2.2% increase with Microsoft NNI. Their approach largely used tra-
ditional machine learning methods as well as a FFNN in the ensemble 
offered with AutoGluon-Tabular. The authors of Isingizwe et al. (2021)
use AutoML to detect malware from encrypted network traffic. They 
used TLS fields as parameters to form their AutoML process. This work 

1 https://auto .gluon .ai /stable /index .html.
2 https://github .com /Microsoft /nni.

Fig. 2. Feed Forward Neural Network.

used a python package mljar-supervised,3 utilizing many traditional ML 
models as well as a deep neural network in an ensemble.

3. Automated machine learning for static malware detection

3.1. Deep feed forward neural networks

Deep Feed Forward Neural Networks (FFNNs) are an extension of 
the simple perceptron network, except they often contain one or more 
hidden layers. FFNNs without convolutional or recurrent layers can also 
be referred to as Multi-Layer Perceptrons (MLPs).

FFNNs pass input data through each layer in the model sequentially, 
applying each layer’s function to the previous layer’s output, forming 
what can be seen as an acyclic graph from input to output with data 
flowing only one way. Fig. 2 shows an example FFNN. Each node within 
a layer can apply an activation function to the sum of each of its inputs, 
shown as the function lines within each node in the figure. Each con-
nection between nodes has a specific weight applied to the output of a 
specific node into another node. 𝑊1 and 𝑊2 represent the set of weights 
between each layer, each weight in each set corresponding to a connec-
tion between two unique nodes. The network can have any number of 
hidden layers.

Deep FFNNs require backpropagation through gradient descent to 
train weights of each layer of the network sequentially, backward 
through the network, from output to input. Through the processes of 
backpropagation, activation functions such as sigmoid and tanh can 
lead to a problem called vanishing gradients. This occurs because re-
peatedly taking the gradient of these functions, as backpropagation 
occurs, results in a value that approaches zero. For this reason, idempo-
tent activation functions such as Rectified Linear Unit (ReLU) are often 
used in hidden layers of deep networks to solve the vanishing gradient 
problem. Additionally, functions like ReLU and Exponential Linear Unit 
(ELU) are cheaper to compute than sigmoid and tanh, but still allow for 
the network to learn non-linear functions. However, sigmoid like func-
tions allow for an output to be mapped to a probability, and are often 
used on the output layer of a network to allow for each output neuron 
to produce a binary decision. Fig. 2 shows the input and hidden layer 
activation functions as ReLU, and the output layer’s activation function 
as sigmoid.

3.2. Search methodology

During the neural architecture search, an architecture selected from 
the search space is evaluated using an evaluation metric (F1-score our 

3 https://supervised .mljar .com/.



Computers & Security 137 (2024) 103582

5

A. Brown, M. Gupta and M. Abdelsalam

Fig. 3. Automated Machine Learning Process.

case), indicating the model performance based on which a strategy is 
employed to select the next architecture choice for subsequent evalua-
tion. The next architecture selection in this work is based on a random 
selection strategy, where, regardless of the previous result, each new 
architecture choice is randomly selected without duplication. The NAS 
selects a number of random architecture configurations from the search 
space. These are referred to as trials. In each trial, a model is trained 
based on the selected architecture for a predefined number of epochs. 
Afterward, the model is evaluated at the end of every epoch using the 
evaluation score of the validation set. The model configuration that 
achieves the highest score will pass to the next phase, that is hyper-
parameter tuning.

3.2.1. Hyper-parameter tuning
Once an architecture is selected during the NAS phase, the next 

phase, as shown in Fig. 3, searches for the optimal hyper-parameters 
of the chosen architecture. The hyper-parameters of the model are 
tune-able values that affect the model performance but do not alter 
the architecture of the model itself. This can include the batch size, 
optimizer, learning rate, dropout rate, etc. Just as in the NAS phase, 
the hyper-parameter tuning phase also has a bounded search space 
with a defined sampling granularity. With the hyper-parameter search 
space, we also define the sampling distribution. The hyper-parameter 
search phase uses the Tree-structured Parzen Estimator (TPE) strategy 
(Bergstra et al., 2011) in selecting the next set of hyper-parameters to 
test.

3.2.2. Final model selection
After the hyper-parameter tuning phase is complete, the results from 

the NAS phase and hyper-parameter tuning phase are combined to be 
the final model configuration. The model is then trained and evaluated 
after every epoch using the evaluation score of the validation set, and 
the highest performing epoch is saved as the final trained model to be 
evaluated on the test set.

3.3. Static malware data sources

We use two popular static malware datasets - EMBER-2018 (An-
derson and Roth, 2018) and SOREL-20M (Harang and Rudd, 2020), 
extensively used in the literature. We use these datasets with more prim-
itive AutoML to explore the results of this methodology on datasets that 
have had high result benchmarks set.

3.3.1. EMBER-2018 dataset (Anderson and Roth, 2018)
EMBER is considered to be the first attempt to create an appropri-

ately large static malware dataset. The dataset contains features ex-

tracted from benign and malicious portable executable (PE) files using 
the ‘Library to Instrument Executable Formats’ (LIEF) (Thomas, 2017). 
The samples in the dataset are labeled as either malicious, benign, or 
unknown. Only the samples labeled malicious or benign are considered 
in this work. There are approximately 600 K samples in the training set 
and 200 K samples in the test set. Since there is no validation set pro-
vided, we excluded and used the last 20% of the training set (i.e. 120 K 
samples) as the validation set. There are two versions of the EMBER 
dataset: EMBER-2017 and EMBER-2018. EMBER-2018 was specifically 
curated so that the training and testing sets would be harder to classify. 
We used EMBER-2018 in our experiments. However, to fairly compare 
our results to other works that used EMBER-2017, we test and report 
our model’s (found with EMBER-2018) performance against EMBER-
2017 dataset.

3.3.2. SOREL-20M dataset (Harang and Rudd, 2020)
Sophos Labs4 released SOREL-20M dataset in 2020 to address some 

shortcomings of EMBER dataset. This dataset contains 12,699,013 train-
ing samples, 2,495,822 validation samples, and 4,195,042 testing sam-
ples. SOREL-20M uses the same features from the EMBER-2018 dataset. 
The samples in the SOREL-20M dataset contain the same binary mali-
cious label as EMBER-2018, but also contain extra metadata, including 
the number of anti-virus vendors that flagged a sample as malicious and 
the tags that anti-virus vendors associated with a sample. Included in 
these tags are labels such as dropper, adware, downloader, etc. Authors 
in Rudd et al. (2019) have shown that the use of this metadata can help 
to improve performance, and our work in this section will allow the 
possibility of a model to use this auxiliary information in the training 
process.

3.4. AutoML tuning and training

3.4.1. NAS phase configuration
The full architecture search space for both the EMBER-2018 and 

SOREL-20M experiments is shown in Table 1. The available options 
for Activation and Tag Head Activation are not applicable since the 
choices are either Rectified Linear Unit (ReLU) or Exponential Linear 
Unit (ELU). Similarly, for Use Counts and Use Tags, the choices are ei-
ther True or False.

As mentioned previously, the SOREL-20M dataset has readily avail-
able labels each containing a binary malicious label, an encoding of the 
vendor tags, and a numerical count of the vendors flagging the sample 

4 https://www .sophos .com /en -us /labs.



Computers & Security 137 (2024) 103582

6

A. Brown, M. Gupta and M. Abdelsalam

Table 1
Architecture Search Space.

Parameter Minimum Maximum Granularity

Depth 1 14 1
Width 128 1920 128
Activation - - -
Tag Head Depth∗ 1 3 1
Tag Head Width∗ 16 112 16
Tag Head Activation∗ - - -
Use Counts∗ - - -
Use Tags∗ - - -

∗SOREL-20M Models Only

Table 2
Hyper Parameter Search Space.

Parameter Minimum Maximum Granularity Distribution

Batch Size (SOREL-20M) 128 16384 1024 quniform
Batch Size (EMBER) 32 8192 32 quniform
Learning Rate 0.0001 1.0 - loguniform
Dropout 0.0 0.50 0.05 quniform
Tag Loss Weight∗ 0.0 1.0 .05 quniform

∗SOREL-20M Models Only

as malicious. These additional labels were made available during the ar-
chitecture search process through the use of additional output heads of 
the model to predict the count of the vendors flagging the sample ma-
licious and predict any tags associated with the sample from anti-virus 
vendors. These additional heads were made optional through the use 
of two additional architecture search parameters: Use Counts and Use 
Tags, as shown in Table 1. Design for additional heads, their respective 
loss functions, and the network design is inspired by Rudd et al. (2019). 
The architecture search selects 150 random architecture configurations 
from the search space. The number of trials was chosen to cover both 
the search space and minimize cost. However, further investigation is 
required to analyze the effects of the number of trials on the selected 
models’ performance as explained in subsection 3.6. The SOREL-20 and 
EMBER-2018 NAS was run for 10 and 25 epochs, respectively.

The highest achieved F1-score of a model during any point of its 
trial (instead of the F1-score of the final epoch) is chosen as the fitness 
score so that a model configuration’s ability is more accurately repre-
sented, as the model’s performance may fluctuate during the training 
process. Even though random search has been shown to give adequate 
results with a sufficient amount of trials (Bergstra and Bengio, 2012; 
Cheng, 2010), trial count remains a parameter to be investigated in fu-
ture work.

3.4.2. Hyper-parameter tuning phase configuration
The full hyper-parameter search space is shown in Table 2. The 

quniform distribution behaves like the sampling granularity in the NAS 
phase. The loguniform samples from a logarithmic distribution such 
that the logarithm of the values returned will be uniformly distributed. 
Learning rate is sampled from this distribution to allow smaller values 
to be as likely sampled as larger values. We set the batch size mini-
mum, maximum, and sampling granularity larger for the SOREL-20M 
experiments due to the size of the dataset as compared to EMBER-2018. 
Similar to the NAS phase parameters configuration, we believe that the 
minimum, maximum, and sampling granularity values requires further 
investigation.

In Rudd et al. (2019), using the SOREL-20M dataset, the authors 
use a loss weight of 0.1 for the vendor count head and vendor tag head, 
and a 1.0 loss weight for the malicious decision head. These loss weights 
can be considered a hyper-parameter available for tuning since altering 
the value does not change the architecture of the model. In our work, 
the malicious decision head loss weight is fixed to 1.0 while the aux-
iliary loss head weights are variable between 0.0 and 1.0 each. Note, 
only the tag head loss weight is included in Table 2 because the high-

Table 3
Found Optimal Parameters.

Parameter SOREL-20M EMBER-2018

Depth 8 3
Width 1920 1664
Activation ReLU ReLU
Dropout 0.15 0.30
Learning Rate 0.000439 0.000269
Batch Size 3072 1440
Use Count Head False -
Use Tag Head True -
Tag Head Depth 1 -
Tag Head Width 112 -
Tag Head Activation ELU -
Tag Head Loss Weight 0.70 -

est achieving model during the SOREL-20M NAS phase did not have a 
vendor count head, and therefore did not utilize that parameter. The 
models are trained for 10 and 25 epochs in the case of SOREL-20M and 
EMBER, respectively. F1-score is again used as the evaluation metric in 
selecting the highest performing model.

3.5. Experimental results

3.5.1. Evaluation metrics
We use four evaluation metrics along with receiver operating char-

acteristic (ROC) and area under the curve (AUC).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛=
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(4)

Positive refers to a malicious sample, whereas, negative refers to a 
benign sample. TP, FP, TN and FN are true positives, false positives, 
true negatives and false negatives, respectively. Precision suffers when 
benign samples are labeled as malicious (high FP), while recall suffers 
when malicious samples are labeled as benign (high FN). F1-score is the 
harmonic mean of precision and recall, so it signifies models that have 
both high precision and recall. If a model has high precision but low 
recall or vice versa, the F1-score will be low.

3.5.2. Results
After the experiments, using F1-score as an evaluation metric at each 

phase of the process, the found architectures and hyper-parameters are 
shown in Table 3.

The detection results are listed in Table 4 and Table 5 for SOREL-
20M and EMBER datasets, respectively. Also included in this table is the 
AUC with a maximum false positive rate (FPR) of 0.1%, the accuracy, 
F1-score, true positive rate (TPR) at 0.1% FPR, and TPR at 1% FPR. 
The table also contains results using loss as a performance metric for 
SOREL-20M and EMBER-2018; this is to show the difference in F1-score 
and loss as a performance metric in the final stage, this will be brought 
up in the discussion section of this section. Some other works shown 
in the tables only report a subset of the metrics, but are still shown for 
comparison.

In particular, for SOREL-20M, Table 4 shows our AUC results are on 
par with the FFNN ensemble from Nguyen et al. (2021) and slightly ex-
ceed Rudd et al. (2019), the work that presented the auxiliary model 
heads for SOREL-20M. Our model significantly exceeds the AUC under 
0.1% FPR of the only other work (Nguyen et al., 2021), which reported 
this parameter. The accuracy of our model is similar but higher than 
Nguyen et al. (2021). We reported TPR at 0.1% and 1% FPR for com-
parison to Rudd et al. (2019), where it can be seen our model performed 
better in both.



Computers & Security 137 (2024) 103582

7

A. Brown, M. Gupta and M. Abdelsalam

Table 4
SOREL-20M Dataset Results.

Work Perf. Metric AUC AUC ≤ 0.1% FPR Accuracy F1-Score TPR: 0.1% FPR TPR: 1% FPR

ALOHA Rudd et al. (2019) - 0.997 - - - 0.922 0.972
FFNN Ensemble Nguyen et al. (2021) - 0.998 0.0927 0.988 - - -
LightGBM Ensemble Nguyen et al. (2021) - 0.984 0.0446 0.861 - - -
Our Work F1-Score 0.998 0.966 0.990 0.984 0.965 0.993
Our Work Loss 0.998 0.969 0.990 0.984 0.963 0.995

Table 5
EMBER Dataset Results.
EMBER 2018

Work Perf. Metric AUC AUC ≤ 0.1% FPR Accuracy F1-Score TPR: 0.1% FPR TPR: 1% FPR

AutoGluon Ensemble Kundu et al. (2021) - - - - - 0.900 -
Malconv w/ GCG Raff et al. (2020) - 0.980 - 0.933 - - -
LightGBM Ensemble Nguyen et al. (2021) - 0.986 0.0605 0.940 - - -
Detection Pipeline Loi et al. (2021) - 0.995 - 0.969 - - -
Our Work F1-Score 0.984 0.614 0.958 0.958 0.417 0.969
Our Work Loss 0.981 0.573 0.918 0.921 0.188 0.951

EMBER 2017

Work Perf. Metric AUC AUC ≤ 0.1% FPR Accuracy F1-Score TPR: 0.1% FPR TPR: 1% FPR

DeepMalNet Vinayakumar et al. (2019) - - - 0.989 0.989 - -
MalConv Raff et al. (2018a) - - - 0.988 0.988 - -
Our Work F1-Score 0.999 0.916 0.992 0.992 0.956 0.997

With respect to EMBER-2018 in Table 5, Loi et al. (2021) performs 
slightly better in their reported metrics, AUC and accuracy, whereas 
the rest of their metrics are not reported. Our model chosen in the final 
training phase is similar to other results in AUC and accuracy, surpass-
ing (Raff et al., 2020) in AUC, and surpassing both (Nguyen et al., 2021; 
Raff et al., 2020) in accuracy. The AUC under 0.1% FPR of our model 
far surpasses the results of Nguyen et al. (2021). The TPR at 0.1% is 
the only reported metric of Kundu et al. (2021), which is significantly 
higher than our results. Due to limited metrics provided by other related 
works, it is difficult to compare the efficacy of our AutoML method in 
a holistic sense. The results from EMBER-2017 (with the optimal pa-
rameters from EMBER-2018) are reported in the bottom of Table 5. The 
authors in Vinayakumar et al. (2019) and Raff et al. (2018a) only re-
ported accuracy and F1-score of their results. Our model’s accuracy and 
F1-score are slightly higher than their results, but with metrics close to 
100%, this is significant.

The results show that models developed with our proposed AutoML 
pipeline are similar to those found with hand designed solutions, and 
sometimes even exceed the performance. This shows the efficacy of in-
tegrating AutoML into a malware detection pipeline, eliminating the 
need to hand designed models, which is difficult, time consuming, and 
requires high technical skills.

Fig. 4 shows the ROC curve for both the EMBER-2018 and SOREL-
20M experiments, note the logarithmic scale on the x-axis denoting the 
FPR. An ROC curve shows the TPR for each respective FPR. Given the 
magnitude increase of training data in SOREL-20M over EMBER-2018, 
it is no surprise the TPR of SOREL-20M is higher than EMBER-2018 at 
any FPR. SOREL-20M TPR falls off much slower than EMBER-2018, and 
never goes below 0.8 TPR in the graph.

The training and evaluation were performed on a virtual machine 
equipped with 92 vCPUs and 448 GB of memory. Additionally, it in-
corporated 8 Tesla V100 GPUs, each with 16 GB of VRAM. While the 
number of cores and memory might have been excessive for the task at 
hand, the presence of 8 GPUs facilitated parallel training sessions for 
neural network hyperparameter optimization.

3.6. Discussion and analysis

3.6.1. Meta-hyper-parameter selection
As mentioned earlier, many of the parameters governing the NAS 

and Hyper-Parameter tuning phases are selected based on our experi-

Fig. 4. ROC using F1-Score for Selection.

ence to simplify the process and provide a balance between the cost of 
training and detection results. We discuss below some of these parame-
ters.

3.6.2. Epochs per trial
The number of epochs per trial is an important parameter that di-

rectly affect the NAS process. This was especially a consideration for 
the SOREL-2OM trials, since the dataset is an order of magnitude larger 
than the EMBER-2018 dataset and therefore took much longer to train.

Initially, the number of epochs for the SOREL-20M NAS trials was 
set to 3. This implies that the model configurations with the highest 
performance after training for 3 epochs would perform the best overall. 
To test this, we increased the number of epochs to 10 and 20 to help in 
better understanding of the impact of epochs per trial on the selected 
models’ performance during the NAS. The results of these experiments 
are shown in Fig. 5. The primary consideration here is with the perfor-
mance trend of SOREL-20M, but EMBER-2018 is shown as well.

This graph shows the F1-score average of the top 30 selected mod-
els at any given epoch. The F1-score for each model is calculated as the 
highest F1-score reached up to and including a given epoch. At each 



Computers & Security 137 (2024) 103582

8

A. Brown, M. Gupta and M. Abdelsalam

Fig. 5. Top 30 Preforming Models Average F1 by Epoch.

Fig. 6. Top 30 Preforming Models Average Complexity by Epoch.

epoch, the 30 models with the highest F1-score, as described above, 
are averaged together. At any epoch, the top 30 set of models may be 
different if any model in the experiment achieves results that puts the 
model in the top 30 for that epoch. It can be seen that there is a cor-
relation between top model performance and the number of epochs, in 
a seemingly logarithmic relationship. As long as a model is not so com-
plex that it over-fits the training data, a more complex model should, 
intuitively, preform as well as or better than a less complex model. 
However, a good choice for the number of epochs should be where the 
curve start to straighten so that the model doesn’t become too complex 
and, in turn, require a massive amount of training time. Fig. 6 shows 
that as the number of training epochs per trial increases so does the 
average complexity of the top 30 performing models. The model com-
plexity in the figure represents the average product of width and depth
of the hidden layers of the top 30 model configurations during the NAS 
phase, which results in the number of trainable parameters in a given 
model.

3.6.3. NAS and tuning-parameters phases evaluation metric
We use F1-score as an evaluation metric to select the models that 

have both high recall and precision. After getting the final selected 
model during the NAS and hyper-tunning-parameter phases, we train 
and evaluate the model using both F1-score and binary cross-entropy 
loss. The results shown in the ROC curves in Fig. 7 shows that both 

Fig. 7. ROC using Loss vs F1 for Selection.

metrics can reach comparable results. This indicates that, besides F1-
score, other metrics could also be explored, including accuracy, AOC, 
binary cross-entropy loss, etc. and are left to future work.

3.6.4. Search space bounding and strategy
The search space values are one of the most important factors in 

the AutoML process. As shown in Table 3, the width parameter (i.e. 
1664) of selected model for EMBER-2018 dataset is found to be less than 
the maximum value (i.e. 1920). However, the width of the SOREL-20M 
model was the maximum available value in the bounded search space. 
This indicates that an even wider model might preform better than 
the found model had the search space been bigger. Selecting optimal 
search space values is still an open question. The choice of the search 
strategy for the NAS and tuning-parameter phases is random search 
and TPE, respectively. In this section, these strategies were chosen be-
cause of their simplicity. However, a more adequate strategy tailored 
to malware detection could potentially result in better selected AutoML 
models.

3.6.5. Cost of current implementation
The SOREL-20M experiments took ≈30 minutes per epoch to run, 

with 16 experiments running simultaneously. The EMBER-2018 exper-
iments took ≈5 minutes per epoch, with 24 experiments running si-
multaneously. Overall, the experiments took ≈5600 minutes and ≈1560 
minutes to run both SOREL-20M and EMBER-2018 experiments, respec-
tively. This is the time to run the NAS and hyper-parameter phases of 
the process, excluding the final model training. The time to train the 
final model is not reported, as the computational cost is insignificant 
compared to the previous two phases.

The current implementation of the proposed methodology uses a 
multi-trial NAS, where each set of model parameters selected from the 
NAS search space are trained to the specified epoch limit. Other imple-
mentations of multi-trial NAS try to optimize this process through early 
stopping and weight sharing (Li and Talwalkar, 2020). Even though 
these methods may introduce instability into the process, they can re-
duce the computational cost.

It can be concluded that it is more expensive to use AutoML than 
to train hand-designed models. This cost trade-off should be taken 
into account as the proposed methodology becomes more refined. Fu-
ture implementations may significantly reduce the time to complete 
the AutoML process. This can be achieved through more sophisticated 
NAS implementations and intelligent search strategies that can reduce 
the number of trials required or the number of epochs required per 
trial.



Computers & Security 137 (2024) 103582

9

A. Brown, M. Gupta and M. Abdelsalam

Fig. 8. Cloud Testbed Setup.

Fig. 9. Experiment Phases.

4. Automated machine learning for online malware detection

This section will focus on using one-shot AutoML for malware detec-
tion in online cloud environments using Convolutional Neural Networks 
(CNNs).

4.1. Convolutional neural networks

CNNs are a widely used type of deep learning model designed for im-
age type data. CNNs work differently than regular deep FFNNs, where 
the output of every node is passed into every node of the next layer. 
CNNs receive a 3 dimensional input (channels, height, width). CNNs 
have filters, whose values are learned, that convolve across input chan-
nels to detect edges. The primitive edges detected in earlier layers can 
be combined in later layers to learn more complex shapes. The core 
of CNN layers falls into two categories: normal and reduction convolu-
tional layers. Normal convolutional layers use filters to convolve across 
the input to produce data with more channels, keeping the same height 
and width. Reduction cells to reduce the width and height of its input 
data to reduce the number of trainable parameters in the next layer or 
cell. The output of the convolutional layers is passed through a pooling 
layer to reduce the input dimension to 1 for dense layers to produce the 
network output (prediction).

CNNs are used in this section because process performance metric 
data can be grouped together in the form of an image, with rows de-
noting unique processes and columns denoting performance features of 
these processes.

4.2. Online cloud testbed

Fig. 8 illustrate the testbed utilized to generate the online malware 
dataset in an OpenStack5 instance hosted by the University of Texas at 
San Antonio. All virtual machines used to create this dataset had open 
and unrestricted internet access, as well as a public IP address. Each 
virtual machine is running a fully up-to-date Ubuntu 18.04 instance. 
The experiments are controlled and data gathered by a controller node 
within the OpenStack testbed. Each VM contains programs to collect 
data from their respective sources, which at the end of the experiment 
is collected by the controller node. Before each experiment, each target 

5 https://www .openstack .org/.

Fig. 10. Data Collection Phases.

VM is reset to a clean state. Each virtual machine has 2 CPU cores, 4 
GB of RAM, and 40 GB of disk space.

4.3. Application and baseline sets

To best understand the behavior of malware on a full, online system, 
it may help to include malware data when the machine is idle and fully 
operational. For the purposes of this dataset, the fully operational server 
will be an Apache web server hosting a WordPress application, with a 
MySQL database on the backend. To model real world end users of the 
server, an on ON/OFF Pareto distribution following NS26 parameters is 
utilized to mimic the distribution of client requests to the webserver. 
All malware was run with only user level privileges.

4.3.1. Malware source and selection
The malware selected for this data came from a variety of sources, 

including VirusTotal,7 MalShare,8 VirusShare,9 Linux-Malware-Sam-
ples,10 and MalwareBazarr.11 The gathered samples were tested for 
ability to execute on the target hardware in case the mutable header 
field of the malware had been altered, in which case the malware may 
not run on the target hardware. Also, samples that lead to corruption 
of the collected data during the experimentation process were removed 
from consideration after the fact. In total 4077 malware samples were 
considered.

4.3.2. Data collection
The experiment length for this dataset is 10 minutes - meaning data 

is collected for the entirety of 10 minutes. Halfway through a given 
experiment, the malware being tested is executed. Therefore, every ex-
periment contains an equal amount of benign and malicious activity. 

6 http://www .isi .edu /nsnam /ns /doc /node509 .html.
7 https://www .virustotal .com/.
8 https://www .malshare .com/.
9 https://virusshare .com/.
10 https://github .com /MalwareSamples /Linux -Malware -Samples.
11 https://bazaar .abuse .ch/.



Computers & Security 137 (2024) 103582

10

A. Brown, M. Gupta and M. Abdelsalam

Fig. 11. Input Data Shape.

Fig. 12. General Architecture.

This can be seen in Fig. 9. There are multiple random benign SSH con-
nections made to each target box throughout the experiment to mask 
the SSH connection used to spawn the malware execution.

The methods by which different sources of data are collected con-
tain both continuous and discrete collection. Network data is collected 
continuously throughout the experiment, and starts 10 s early to allow 
for a delta to be taken, since the collection is a running total of network 
activity per process. Per-process data is collected at an interval of ev-
ery 10 s, taking the instantaneous value of the monitored metrics. The 
collection over time for each data source as shown in Fig. 10. Specifics 
of each type of data collected will be discussed in the following subsec-
tions.

4.3.3. Per-processes performance data
Performance metrics are collected on a per-process basis. This data 

is collected every 10 s for the duration of the experiment. The python 
library psutil is used to collect this data.

Process IDs (PIDs) would, at first, seem like an easy way to identify 
a unique process thought the experiment, but this doesn’t hold true. A 
Linux kernel by default has a maximum PID of 32768, at which point 
PIDs begin getting re-used. Therefore, it is feasible that in a highly ac-
tive system that creates many new processes and closes old ones, that 
a single PID may identify more than one process during the experiment 
run-time. Instead, a tuple of the entire command line (including argu-
ments) of the process and a hash of the executable (if applicable) is 
collected. This is much less likely to collide with the identifier of an-
other process.

4.3.4. Per-process network data
Many data collection tools do not allow for the collection of network 

traffic statistics in a per-process basis. However, the tool Nethogs12 al-

12 https://github .com /raboof /nethogs.

lows for the grouping of bandwidth by process, and is used to collect 
network bandwidth data in the experiments. A python wrapper is used 
to interact with the Nethogs library for data collection.

The network bandwidth data (bytes in/out) per process is recorded 
as a running total, therefore network data collection is started 10 s
early, and the delta between each record is used in post-processing. In 
order to match network data to process data, the PID at a given times-
tamp in the network data can be compared to the records in the process 
data, which ultimately holds the primary key to denote a unique pro-
cess.

4.3.5. Combined data and representation
In order to include network data with per-process performance met-

rics, the data is combined. First, any record of the data collection agents 
is removed from the per-process performance data. The data that is left 
in process data will be the basis by which network usage is searched in 
network data. The discrete process data is grouped by collection time 
(every 10 s), and any matching network data between collection times 
is added to the latter process data collection record. That is for a given 
unique process record p taken at collection time N, any matching net-
work data records for p between the previous collection time N-1 and 
current collection time N, will be added to the process record of p at 
collection time N. A sample feature table for a unique process is shown 
here in Table 6.

To feed the data to models, the data is represented as a single chan-
nel (grayscale) image. The columns of this image are the collected 
performance metrics and the rows are unique processes. As shown 
in Fig. 11, the image dimensions are represented as (channels, rows, 
columns) and are selected to be (1, 64, 64). The first 26 columns and 
second 26 columns each contain performance metrics for the rows of 
processes. That is, the 56 used columns of the input are divided into 
two sections of 26 features, each of these meta-columns representing a 
unique processes features. The first 32 rows of the first meta-column are 
reserved for commonly occurring processes found in the training set, so 
that in every input sample, a process that is commonly occurring will 
be in the same spot in the data in every input sample.

There are 12 blank columns, padded with 0, on the right side of 
the image that are used as padding so the image can maintain a square 
shape. The image shape is selected to be square and a power of 2 to en-
sure there are no dimensionality problems when feeding the data into 
a variety of CNN models. A total of 128 unique processes can be in-
cluded in an image, and the top 32 processes that occur very frequently 
throughout the data will always be placed in the same row and column 
throughout all samples.

4.4. Methodology

We used one-shot learning to find a performant CNN to detect mal-
ware from the performance metric data. The Darts (Liu et al., 2018) 
AutoML methodology is applied to search for an optimal CNN archi-
tecture from the training data. The code for this is adapted from the 
Microsoft NNI implementation of Darts. Darts works to find normal and 
reduction convolutional cells by figuring out layer connections between 
nodes in the repeated cells. The found architecture will be a normal 
and reduction convolutional layer in a CNN with a specified number 
of layers (cells), nodes per cell, and channels per node. Increasing the 
number of nodes, and even more so increasing the number channels 
per node, can create large memory overhead in the neural architecture 
search. Darts finds the connections between nodes in a cell by posing 
the probability of a connection being the best as a softmax, so the best 
connections can be found using gradient descent. For further explana-
tion on the DARTS AutoML process, refer to the original paper Liu et al. 
(2018).

The choices for connections between nodes in a cell are skip connect
(identity for normal cells and factorized reduction for reduction cells), 



Computers & Security 137 (2024) 103582

11

A. Brown, M. Gupta and M. Abdelsalam

Table 6
Features Sample.

Metric Value Metric Value Metric Value

num_fds 78 cpu_percent 0.0 cpu_time_user 0.15
cpu_time_system 1.7 cpu_time_children_user 7.64 cpu_time_children_system 3.1
context_switches_voluntary 1390 context_switches_involuntary 430 num_threads 1
memory_info_rss 9113600 memory_info_vms 163598336 memory_info_shared 6795264
memory_info_text 1376256 memory_info_lib 0 memory_info_data 18956288
memory_info_dirty 0 memory_info_pss 2922496 memory_info_swap 0
io_read_count 53242 io_write_count 18782 io_read_bytes 320275456
io_write_bytes 113713152 io_read_chars 248760749 io_write_chars 152977520
sent_bytes 0.0 recv_bytes 0.0

Fig. 13. Found Normal Cell.

dilated convolution (5x5 or 3x3), separable convolution (3x3 or 5x5), av-
erage pooling (3x3), or max pooling (3x3). These were the choices in the 
original Darts paper and are also used here. Stochastic Gradient Descent 
(SGD) optimizer and a learning rate scheduler are both used, with the 
same parameters as described in Liu et al. (2018).

The general architecture for the entire network is shown in Fig. 12. 
The CNN part of the model is either be found by with the Darts method-
ology or is a state-of-the art CNN for comparison.

4.5. Training and results

4.5.1. Data splits
Given 4077 total malware experiments per set (baseline/applica-

tion), running for 10 minutes each, with data points at every 10 s, 
246,620 total samples are available in the baseline and application 
dataset. 80% of the experiments are used for training, 10% for valida-
tion, and 10% for testing. No experiment (malware sample) is contained 
in more than one set (training/validation/testing). Also, the baseline 
training set consists of the same malware as the application training 
set, and the same is true for validation and test sets. A mean and stan-
dard deviation are calculated using the training set in the baseline and 
application set, and is used to normalize each of the respective datasets.

4.5.2. Neural architecture search
The Darts network for the baseline data is found, with the meta net-

work parameters set at 5 layers, 5 nodes per cell, and 5 channels per 
node. Due to a performance decrease when the same Darts parameters 
are applied to the application dataset, the Darts model for the appli-
cation set is fixed at 7 layers, 5 nodes per cell, and 9 channels per 
node. These choices are somewhat arbitrary, but have direct impact on 

memory usage during the NAS and the complexity and predictive per-
formance of the found architecture. The selections made are to allow 
the model to fit on a single GPU while achieving good predictive per-
formance. The impact of these choices is discussed (Liu et al., 2018).

A dropout rate of 0.30 is used in the neural architecture search, the 
same as used in all the rest of the model training. The Darts architecture 
search is run for 30 epochs (approximately 13 hours), using the training 
data. A batch size of 96 is used, the same as the original Darts paper. 
The found architecture is then trained using the same hyper parameters 
as the models it is compared to, described next.

4.5.3. Training parameters
In order to compare the performance of Darts to state-of-the-art 

CNNs, these models will be trained the same way as the found Darts 
models: Resnet18, Resnet50, Resnet101, Densenet121, Densenet169, and 
Densenet201. All the considered models share the same hyper parame-
ters. The models are each trained for 100 epochs, use the Adam opti-
mizer with a learning rate of 0.0005, learn on a batch size of 512, and 
have a dropout rate of 0.30. For each model, the epoch with the low-
est validation loss is used on the test set to produce the final results for 
that model.

4.5.4. Results
The best found normal and reduction convolutional cells structures 

in the baseline darts model are shown in Figs. 13 and 14, respectively. 
The two input nodes in each cell are the outputs of the previous two 
cells, or in the case of the first cell the duplicated output of the first 
layer of Darts. All the node outputs are concatenated to be the cell 
output.

The training and evaluation was conducted on a VM with 14 vCPUs, 
100 GB of memory, and an RTX A6000 GPU with 48 GB of VRAM.

The predictive results of the test set are shown in Table 7. This ta-
ble shows the accuracy, precision, recall, F1-score, and Area Under the 
Curve (AUC) for each model. Additionally, to model a real world sce-
nario, a threshold is calculated from the validation set, such that the
validation false positive rate is 1.00%. This models a scenario where 
many false positives can become overwhelming for analysts to deal 
with, so an effort is made to minimize them by increasing the detec-
tion threshold of the malware detection model. When the threshold is 
increased, this can create a delay in a positive malware detection, in 
real time, through false negatives at the beginning of malware execu-
tion. This is shown in the table as Delay @ Low FPR, and is the average 
number of seconds elapsed before a successful detection after the mal-
ware injection point. Also shown in this section of the table is True 
Positive Rate TPR and False Positive Rate FPR at the high detection 
threshold (low FPR) on the test set.

Both of the Darts models that were tried are shown in the Applica-
tion section of Table 7. The first model has 5 layers, 5 nodes per cell, 
and 7 channels per node. The second Darts model has 7 layers, 5 nodes 
per cell, and 9 channels per node. The Darts models in both baseline and 
application datasets perform better in almost every area than state-of-
the-art models. In the baseline set, Resnet18 and Resnet50 show better 
precision and recall than the Darts model, respectively. It can, however, 



Computers & Security 137 (2024) 103582

12

A. Brown, M. Gupta and M. Abdelsalam

Fig. 14. Found Reduction Cell.

Table 7
Online Detection Results.
Baseline

Model Accuracy Precision Recall F1-Score AUC Delay @ Low FPR TPR @ Low FPR FPR @ Low FPR

Resnet18 0.97463 0.99387 0.95511 0.97411 0.99877 10.56373 s 0.96321 0.00735
Resnet50 0.97913 0.96266 0.99689 0.97948 0.99892 9.60784 s 0.96681 0.00759
Resnet101 0.98897 0.98856 0.98937 0.98897 0.99927 3.60294 s 0.98814 0.01045
Densenet121 0.98358 0.99079 0.97621 0.98344 0.99896 7.81863 s 0.97367 0.00816
Densenet169 0.98346 0.97972 0.98733 0.98351 0.99838 6.66667 s 0.97490 0.01086
Densenet201 0.98570 0.99148 0.97981 0.98561 0.99907 5.90686 s 0.98005 0.00898
Darts AutoML 0.98917 0.98674 0.99166 0.98919 0.99954 3.03922 s 0.98986 0.01094

Application

Model Accuracy Precision Recall F1-Score AUC Delay @ Low FPR TPR @ Low FPR FPR @ Low FPR

Resnet18 0.96246 0.94401 0.98709 0.96507 0.99417 21.33995 s 0.92964 0.01945
Resnet50 0.96667 0.96196 0.97512 0.96850 0.99480 14.54094 s 0.94084 0.01541
Resnet101 0.97953 0.97627 0.98500 0.98061 0.99728 10.19851 s 0.96470 0.01446
Densenet121 0.97239 0.97116 0.97644 0.97379 0.99414 13.44913 s 0.95592 0.01937
Densenet169 0.96164 0.94393 0.98554 0.96429 0.99248 28.31266 s 0.90368 0.01386
Densenet201 0.96078 0.94631 0.98103 0.96336 0.99276 27.89082 s 0.90671 0.01558
Darts AutoML (5 Layer) 0.97672 0.97755 0.97815 0.97785 0.99659 13.15136 s 0.95623 0.01171
Darts AutoML (7 Layer) 0.98611 0.98520 0.98842 0.98681 0.99907 4.01985 s 0.98694 0.01532

be seen that the Darts model has a higher F1-score signifying that the 
Darts model better balances precision and recall on the test set better 
than either of the other models. The Darts model also has the lowest 
delay, and is under 10 s, meaning that most of the malware in each ex-
ecution experiment was detected in the first time slice after injection. 
Additionally, many of the state-of-the-art models are shown to impose 
a significant delay in the detection of the malware, with some averag-
ing over 2 time slices, or over 20 s for a successful detection. The Darts 
models don’t always have the lowest FPR at the high detection thresh-
old, but all results in this column are shown to be close to the 1% target 
to validate the delay and TPR results.

Accuracy, Precision, Recall, and F1-Score are shown for each model 
in both sets in Figs. 15 and 16. The average malicious prediction delay 
is also shown in Figs. 17 and 18. The higher performance difference 
between the Darts models and state-of-the-art models in the application 
set vs the baseline set, suggests the need for AutoML derived models as 
data becomes more complex. Data from a server during real world use 
is more noisy and allows for malware execution to better hide within 
this noise. The neural architectures that are specifically derived based 
on this more complex data for this use case are more performant at 
identifying malware execution than generic architectures.

5. Future work and conclusion

5.1. Future work

This work describes the usefulness of AutoML for malware detec-
tion. Future works can expand on the ideas of this work with different 

search algorithms and malware data sources, as well as create tools to 
even further automate the process to make layman use of these method-
ologies easier.

5.1.1. Recurrent neural networks
Recurrent Neural Networks have shown near perfect results with 

online per-process performance metric data (Kimmel et al., 2021). The 
Darts methodology can also be used to derive recurrent cells, and this 
methodology should be examined on the dataset from Section 4 in the 
future.

5.1.2. Per-layer granularity
In our work in Section 3, once the width of the hidden layer is se-

lected from the search space, it is fixed throughout the hidden layers 
of a model leading to a rectangular shape of the hidden layers in the 
model. However, an equivalent or a more optimal model may contain 
variable size layers with potentially fewer trainable parameters. A NAS 
process that allowed this level of granularity without an explosion of 
the NAS search space would prove valuable.

5.1.3. Refinement of meta-hyper-parameters
The set values of the meta-hyper-parameters have a significant ef-

fect on the efficacy of the AutoML process. Works such as Feurer and 
Hutter (2018) have developed methods to optimize a search strategy 
within the given confines of the meta-hyper-parameters in a data driven 
way. Finding the appropriate bounds of these parameters, specifically 
tailored to the malware detection domain, is yet to be explored.



Computers & Security 137 (2024) 103582

13

A. Brown, M. Gupta and M. Abdelsalam

Fig. 15. Baseline Results. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

Fig. 16. Application Results.

Fig. 17. Baseline Delay.

Addition of auxiliary output heads to the NAS search space can also 
be considered meta-hyper-parameters. One of the potential labels that 
can be given to this data may not be of use in a strictly detection set-
ting, but may help derive a more performant model for the required 
objective with auxiliary loss, just as discussed in Rudd et al. (2019). 
Automatic inclusion of these in the search space based on label data 
would be valuable in automatic model searching. If hyper-parameter 

Fig. 18. Application Delay.

tuning is also performed as part of the AutoML process, the tuning al-
gorithm can also be considered a meta-hyper-parameter. Depending on 
the evaluation metric, or rather intended performance (low false posi-
tive rate, high accuracy, etc), the found optimal parameters may differ. 
Algorithms such as differentiable evolution can also allow for optimiza-
tion for multiple objectives (evaluation metrics).

5.1.4. Deep learning types and ensemble learning
In Section 3, we only used FFNNs for the SOREL-20M and EMBER-

2018 datasets. An analysis of using various deep learning models can 
be very useful. Further, malware data can be extracted in many forms 
and types of data (e.g., time series and image data). Training a machine 
learning model on combined dynamic time series data and statically 
extracted tabular data can enhance the model’s detection ability. How-
ever, designing such a model can be very difficult and, as such, AutoML 
is the perfect candidate for this task. An AutoML system that can intel-
ligently conform to other sources of heterogeneous data is an area for 
future work.

In addition, AutoML can be utilized for ensemble learning. For in-
stance, an AutoML system that can train multiple sub-models of differ-
ent types and ensemble the sentiment of the sub-models would allow 
for more robust application in practice. Works such as Erickson et al. 
(2020) ensemble many types of machine learning models, including 
FFNNS, to achieve better results. Extending this to other deep learn-
ing model types could prove beneficial for malware detection.

5.1.5. User friendly AutoML
Designing AutoML models can be easier than designing a deep learn-

ing model from scratch, but an even more automated deep learning 
approach would be helpful for those with knowledge of their own data, 
but not necessarily deep learning. An AutoML system that could be 
instantiated with only training data inputs, type of data (vector, im-
age, time-series), and primary and auxiliary labels would allow even 
broader access to malware detection solutions using deep learning. This 
framework would be able to automatically select a model type of deep 
learning architectures and use AutoML techniques to find a performant 
architecture to suit the data, making maximal use of any provided aux-
iliary information. Ideally, this would combine the methodologies and 
discussions from both Sections 3 and 4. It would perform all phases 
of the AutoML process efficiently, and be able to set applicable meta-
hyper-parameters from details of the provided training data.

5.2. Conclusion

In conclusion, we conjecture that Automated Machine Learning of-
fers an effective solution for detecting malware in both static and online 
cloud IaaS environments. We found that AutoML generated models 



Computers & Security 137 (2024) 103582

14

A. Brown, M. Gupta and M. Abdelsalam

can perform just as well or even better than state-of-the-art models 
or models that have been handcrafted by experts with domain knowl-
edge in machine learning and malware. We explored the performance 
of AutoML on two popular datasets static malware datasets in Sec-
tion 3, SOREL-20M used to demonstrate efficacy on large datasets; and 
EMBER-2018, a dataset that was specifically curated to hinder the per-
formance of machine learning models; with results in Tables 4 and 5. 
Our work on static malware datasets showed the feasibility of using 
AutoML as a tool for malware detection while reducing the external 
complexity and expertise required to train DL models.

We further explored one-shot AutoML on a new online cloud IaaS 
malware dataset using CNNs. Our results show that AutoML approaches 
can be utilized by cloud service providers and malware detection ven-
dors to find custom deep learning models for malware detection utiliz-
ing any of a variety of data sources. The online approach we have shown 
can derive a custom CNN that is more capable than state-of-the-art mod-
els and contains cells that are more complex than what can feasibly 
be derived by hand. Importantly, we demonstrated that the difference 
in detection ability between AutoML models and state-of-the-art mod-
els becomes more pronounced as the noise in the input data increases, 
approaching the noise levels seen in real-world applications. We also 
elaborate on future directions to mature the use of AutoML research 
towards cybersecurity domains.

CRediT authorship contribution statement

Austin Brown: Conceptualization, Data curation, Methodology, 
Software, Writing – original draft.Maanak Gupta: Investigation, Super-
vision, Validation, Writing – review & editing.Mahmoud Abdelsalam:
Investigation, Supervision, Visualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

The authors do not have permission to share data.

Acknowledgements

This work is partially funded by the National Science Foundation 
grants 2230609, 2043324 at Tennessee Tech University, and 2230610 
at North Carolina A&T State University.

References

Abdelsalam, M., Krishnan, R., Huang, Y., Sandhu, R., 2018. Malware detection in cloud 
infrastructures using convolutional neural networks. In: IEEE Conference on Cloud 
Computing, pp. 162–169.

Abdelsalam, M., Krishnan, R., Sandhu, R., 2019. Online malware detection in cloud 
auto-scaling systems using shallow convolutional neural networks. In: IFIP Annual 
Conference on Data and Applications Security and Privacy. Springer, pp. 381–397.

Abou-Assaleh, T., Cercone, N., Kešelj, V., Sweidan, R., 2004. N-gram-based detection of 
new malicious code. In: International Computer Software and Applications Confer-
ence, vol. 2.

Agrawal, R., Stokes, J.W., Selvaraj, K., Marinescu, M., 2019. Attention in recurrent neural 
networks for ransomware detection. In: IEEE Conference on Acoustics, Speech and 
Signal Processing.

Alotaibi, A., 2019. Identifying malicious software using deep residual long-short term 
memory. IEEE Access 7.

Anderson, H.S., Roth, P., 2018. EMBER: an Open Dataset for Training Static PE Malware 
Machine Learning Models. ArXiv e-prints.

Anderson, R., Barton, C., Böhme, R., Clayton, R., Ganán, C., Grasso, T., Levi, M., Moore, 
T., Vasek, M., 2019. Measuring the Changing Cost of Cybercrime.

Aryal, K., Gupta, M., Abdelsalam, M., 2021. A survey on adversarial attacks for malware 
analysis. ArXiv preprint arXiv :2111 .08223.

Aryal, K., Gupta, M., Abdelsalam, M., 2022. Analysis of label-flip poisoning attack on 
machine learning based malware detector. In: IEEE International Conference on Big 
Data.

Bergstra, J., Bengio, Y., 2012. Random search for hyper-parameter optimization. J. Mach. 
Learn. Res. 13 (1).

Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B., 2011. Algorithms for hyper-parameter 
optimization. Adv. Neural Inf. Process. Syst. 24.

Brown, P., Brown, A., Gupta, M., Abdelsalam, M., 2022. Online malware classification 
with system-wide system calls in cloud iaas. In: 2022 IEEE 23rd International Confer-
ence on Information Reuse and Integration for Data Science (IRI). IEEE, pp. 146–151.

Cheng, R., 2010. Random search in high dimensional stochastic optimization. In: Pro-
ceedings of the Winter Simulation Conference, Ser. WSC’10. Winter Simulation Con-
ference.

Demme, J., et al., 2013. On the feasibility of online malware detection with performance 
counters. ACM SIGARCH Comput. Archit. News 41 (3).

Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., Smola, A., 2020. 
Autogluon-tabular: robust and accurate automl for structured data. ArXiv preprint 
arXiv :2003 .06505.

Fan, Y., et al., 2016. Malicious sequential pattern mining for automatic malware detec-
tion. Expert Syst. Appl. 52.

Feurer, M., Hutter, F., 2018. Towards further automation in automl. In: ICML AutoML 
Workshop.

Ganesh, M., Pednekar, P., Prabhuswamy, P., Nair, D.S., Park, Y., Jeon, H., 2017. CNN-
based Android malware detection. In: IEEE International Conference on Software 
Security and Assurance.

Guan, Q., Zhang, Z., Fu, S., 2012. Ensemble of Bayesian predictors and decision trees for 
proactive failure management in cloud computing systems. J. Commun.

Gupta, M., Akiri, C., Aryal, K., Parker, E., Praharaj, L., 2023. From chatgpt to threatgpt: 
impact of generative ai in cybersecurity and privacy. IEEE Access.

Harang, R., Rudd, E.M., 2020. Sorel-20m: a large scale benchmark dataset for malicious 
pe detection. ArXiv preprint arXiv :2012 .07634.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

He, X., Zhao, K., Chu, X., 2021. AutoML: a survey of the state-of-the-art. Knowl.-Based 
Syst. 212.

Huang, W., Stokes, J.W., 2016. MtNet: a multi-task neural network for dynamic malware 
classification. In: Int. Conf. on Detection of Intrusions and Malware, and Vulnerability 
Assessment. Springer.

Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., Keutzer, K., 2014. 
Densenet: implementing efficient convnet descriptor pyramids. ArXiv preprint arXiv :
1404 .1869.

Isingizwe, D.F., et al., 2021. Analyzing learning-based encrypted malware traffic classifi-
cation with AutoML. In: IEEE Conference on Communication Technology.

Jha, S., et al., 2020. Recurrent neural network for detecting malware. Comput. Secur. 99.
Kamath, C.N., et al., 2018. Comparative study between traditional machine learning and 

deep learning approaches for text classification. In: ACM Symposium on Document 
Engineering.

Kimmel, J.C., Mcdole, A.D., Abdelsalam, M., Gupta, M., Sandhu, R., 2021. Recurrent 
neural networks based online behavioural malware detection techniques for cloud 
infrastructure. IEEE Access 9.

Kimmell, J.C., Abdelsalam, M., Gupta, M., 2021. Analyzing machine learning approaches 
for online malware detection in cloud. In: IEEE International Conference on Smart 
Computing.

Kolosnjaji, B., Zarras, A., Webster, G., Eckert, C., 2016. Deep learning for classification of 
malware system call sequences. In: Australasian Joint Conference on Artificial Intel-
ligence. Springer.

Kundu, P.P., et al., 2021. An empirical evaluation of automated machine learning tech-
niques for malware detection. In: ACM Workshop on Security and Privacy Analytics.

Li, L., Talwalkar, A., 2020. Random search and reproducibility for neural architecture 
search. In: Uncertainty in Artificial Intelligence. PMLR.

Liu, H., Simonyan, K., Yang, Y., 2018. Darts: differentiable architecture search. ArXiv 
preprint arXiv :1806 .09055.

Loi, N., Borile, C., Ucci, D., 2021. Towards an automated pipeline for detecting and clas-
sifying malware through machine learning. ArXiv preprint arXiv :2106 .05625.

Luckett, P., McDonald, J.T., Dawson, J., 2016. Neural network analysis of system call 
timing for rootkit detection. In: IEEE Cybersecurity Symposium.

McDole, A., Abdelsalam, M., Gupta, M., et al., 2020. Analyzing CNN based behavioural 
malware detection techniques on cloud IaaS. In: International Conference on Cloud 
Computing. Springer.

McDole, A., et al., 2021. Deep learning techniques for behavioral malware analysis in 
cloud IaaS. In: Malware Analysis Using Artificial Intelligence and Deep Learning. 
Springer.

Mishra, P., Khurana, K., Gupta, S., Sharma, M.K., 2019. Vmanalyzer: malware semantic 
analysis using integrated cnn and bi-directional lstm for detecting vm-level attacks in 
cloud. In: International Conference on Contemporary Computing (IC3).

Nath, H.V., Mehtre, B.M., 2014. Static malware analysis using machine learning meth-
ods. In: International Conference on Security in Computer Networks and Distributed 
Systems. Springer.

Nguyen, A.T., et al., 2021. Leveraging Uncertainty for Improved Static Malware Detection 
Under Extreme False Positive Constraints.



Computers & Security 137 (2024) 103582

15

A. Brown, M. Gupta and M. Abdelsalam

Ozsoy, M., Donovick, C., Gorelik, I., Abu-Ghazaleh, N., Ponomarev, D., 2015. Malware-
aware processors: a framework for efficient online malware detection. In: 2015 IEEE 
21st International Symposium on High Performance Computer Architecture (HPCA).

Pascanu, R., Stokes, J.W., Sanossian, H., Marinescu, M., Thomas, A., 2015. Malware clas-
sification with recurrent networks. In: IEEE Conference on Acoustics, Speech and 
Signal Processing.

Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J., 2018. Efficient neural architecture search 
via parameters sharing. In: International Conference on Machine Learning. PMLR.

Raff, E., Sylvester, J., Nicholas, C., 2017. Learning the PE header, malware detection 
with minimal domain knowledge. In: ACM Workshop on Artificial Intelligence and 
Security.

Raff, E., et al., 2018a. Malware detection by eating a whole Exe. In: Workshops at AAAI 
Conference on Artificial Intelligence.

Raff, E., et al., 2018b. An investigation of byte N-gram features for malware classification. 
J. Comput. Virol. Hacking Tech. 14 (1).

Raff, E., et al., 2020. Classifying sequences of extreme length with constant memory ap-
plied to malware detection. ArXiv preprint arXiv :2012 .09390.

Rezende, E., Ruppert, G., Carvalho, T., Theophilo, A., Ramos, F., Geus, P.d., 2018. Mali-
cious software classification using vgg16 deep neural network’s bottleneck features. 
In: Information Technology-New Generations. Springer.

Rudd, E.M., Ducau, F.N., Wild, C., Berlin, K., Harang, R., 2019. ALOHA: auxiliary loss 
optimization for hypothesis augmentation. In: USENIX Security Symposium.

Sahin, M., Bahtiyar, S., 2020. A survey on malware detection with deep learning. In: Int. 
Conf. on Security of Information and Networks.

Sewak, M., Sahay, S.K., Rathore, H., 2018. An investigation of a deep learning based 
malware detection system. In: International Conference on Availability, Reliability 
and Security.

Shalaginov, A., Banin, S., Dehghantanha, A., Franke, K., 2018. Machine learning aided 
static malware analysis: a survey and tutorial. In: Cyber Threat Intelligence. Springer, 
pp. 7–45.

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale im-
age recognition. ArXiv preprint arXiv :1409 .1556.

Thomas, R., 2017. Lief - library to instrument executable formats. https://lief .quarkslab .
com/.

Tobiyama, S., et al., 2016. Malware detection with deep neural network using process 
behavior. In: IEEE Computer Software and Applications Conference, vol. 2.

Vinayakumar, R., et al., 2019. Robust intelligent malware detection using deep learning. 
IEEE Access 7, 46717–46738.

Wang, W., Zhao, M., Wang, J., 2019. Effective Android malware detection with a hybrid 
model based on deep autoencoder and convolutional neural network. J. Ambient 
Intell. Humaniz. Comput. 10 (8).

Wei, T., Wang, C., Rui, Y., Chen, C.W., 2016. Network morphism. In: International Con-
ference on Machine Learning.

Willems, C., et al., 2007. Toward automated dynamic malware analysis using Cwsandbox. 
IEEE Secur. Priv. 5 (2).

Xiao, X., Zhang, S., Mercaldo, F., Hu, G., Sangaiah, A.K., 2019. Android malware detection 
based on system call sequences and lstm. Multimed. Tools Appl.

Xie, W., Xu, S., Zou, S., Xi, J., 2020. A system-call behavior language system for malware 
detection using a sensitivity-based lstm model. In: Proceedings of the 2020 3rd Inter-
national Conference on Computer Science and Software Engineering, pp. 112–118.

Xu, Z., et al., 2017. Malware detection using machine learning based analysis of virtual 
memory access patterns. In: IEEE Design, Automation & Test in Europe Conference & 
Exhibition.

Yeo, M., Koo, Y., Yoon, Y., Hwang, T., Ryu, J., Song, J., Park, C., 2018. Flow-based 
malware detection using convolutional neural network. In: IEEE Conference on Infor-
mation Networking.

Austin Brown Received his B.S. in Computer Science from 
Tennessee Tech University in 2020. He received his M.S in Com-
puter Science from Tennessee Tech University in 2022. His inter-
ests include deep learning, malware research, and cloud comput-
ing.

Maanak Gupta is an Assistant Professor in Computer Sci-
ence at Tennessee Tech University, Cookeville, USA. He received 
M.S. and Ph.D. in Computer Science from the University of Texas 
at San Antonio (UTSA) and has also worked as a postdoctoral fel-
low at the Institute for Cyber Security (ICS) at UTSA. His primary 
area of research includes security and privacy in cyber space fo-
cused in studying foundational aspects of access control, malware 
analysis, AI and machine learning assisted cyber security, adver-
sarial AI and their applications in technologies including cyber 
physical systems, cloud computing, IoT and Big Data. He holds a 

B.Tech degree in Computer Science and Engineering from Kuruskhetra University, India, 
and an M.S. in Information Systems from Northeastern University, Boston. He is senior 
member of IEEE.

Mahmoud Abdelsalam received the B.Sc. degree from the 
Arab Academy for Science and Technology and Maritime Trans-
portation (AASTMT), in 2013, and the M.Sc. and Ph.D. degrees 
from the University of Texas at San Antonio (UTSA), in 2017 and 
2018, respectively. He was working as a Postdoctoral Research 
Fellow with the Institute for Cyber Security (ICS), UTSA, and as 
an Assistant Professor with the Department of Computer Science, 
Manhattan College. He is currently working as an Assistant Pro-
fessor with the Department of Computer Science, North Carolina 
A&T State University. His research interests include computer 

systems security, anomaly and malware detection, cloud computing security and mon-
itoring, CPS security, and applied machine learning.


	Automated machine learning for deep learning based malware detection
	1 Introduction
	1.1 Overview and motivation

	2 Background and related works
	2.1 Malware detection
	2.1.1 Static analysis
	2.1.2 Dynamic analysis
	2.1.3 Online analysis

	2.2 Deep learning for malware detection
	2.3 AutoML overview
	2.3.1 Neural architecture search
	2.3.2 One-shot search methodology
	2.3.3 Multi-trial search methodology
	2.3.4 NAS search space
	2.3.5 Automated ML for malware detection


	3 Automated machine learning for static malware detection
	3.1 Deep feed forward neural networks
	3.2 Search methodology
	3.2.1 Hyper-parameter tuning
	3.2.2 Final model selection

	3.3 Static malware data sources
	3.3.1 EMBER-2018 dataset (Anderson and Roth, 2018)
	3.3.2 SOREL-20M dataset (Harang and Rudd, 2020)

	3.4 AutoML tuning and training
	3.4.1 NAS phase configuration
	3.4.2 Hyper-parameter tuning phase configuration

	3.5 Experimental results
	3.5.1 Evaluation metrics
	3.5.2 Results

	3.6 Discussion and analysis
	3.6.1 Meta-hyper-parameter selection
	3.6.2 Epochs per trial
	3.6.3 NAS and tuning-parameters phases evaluation metric
	3.6.4 Search space bounding and strategy
	3.6.5 Cost of current implementation


	4 Automated machine learning for online malware detection
	4.1 Convolutional neural networks
	4.2 Online cloud testbed
	4.3 Application and baseline sets
	4.3.1 Malware source and selection
	4.3.2 Data collection
	4.3.3 Per-processes performance data
	4.3.4 Per-process network data
	4.3.5 Combined data and representation

	4.4 Methodology
	4.5 Training and results
	4.5.1 Data splits
	4.5.2 Neural architecture search
	4.5.3 Training parameters
	4.5.4 Results


	5 Future work and conclusion
	5.1 Future work
	5.1.1 Recurrent neural networks
	5.1.2 Per-layer granularity
	5.1.3 Refinement of meta-hyper-parameters
	5.1.4 Deep learning types and ensemble learning
	5.1.5 User friendly AutoML

	5.2 Conclusion

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


