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Abstract—Internet of Things (IoT) devices are omnipresent
due to their ease of use and level of connectivity. Because
of wide deployment, IoT network traffic security is a large
issue, especially as the devices become more common at the
edge of the connected ecosystem. In general, low-powered IoT
devices themselves are not inherently secure, so tailored security
mechanisms are needed to make the ecosystem secure. The
incorporation of the cloud also adds new security issues with
the cloud service provider (CSP). In addition, several smart
applications necessitate deploying edge-based infrastructure due
to their real-time computation and communication requirements,
while also having the ability to detect and mitigate different cyber
attacks and remain light-weight. In this paper, we propose a
machine learning-based approach to detect and classify different
edge IoT network traffic driven cyber attacks, and evaluate
their strengths and weaknesses. Particularly, we will compare
eleven machine learning models to determine the best security
agent trained for attack detection and classification on an edge
IoT cyber security dataset with fourteen different attacks. We
also provide experimental evaluation and analysis of our work,
followed by our conclusion.

Index Terms—Internet of Things, Edge IoT, Machine Learning,
Attack Detection and Classification

I. INTRODUCTION

The world of Internet of Things (IoT) is expanding fast, and
IoT-related security concerns are becoming increasingly more
important. The domain of IoT includes physical technologi-
cal devices that contain various processing abilities, sensors,
software, and connections to other tools and systems. Experts
predict that by 2025, there will be approximately 40 billion
connected IoT devices around the world, compared to about
19 billion in 2022 [1].

Cloud IoT involves cloud computing, which includes on-
demand access to computational resources, data storage, tools,
and internet applications hosted at a remote data center by a
cloud service provider (CSP) [2]. It allows for lower IT costs,
improved efficiency, and greater scalability [2]. Appropriate
security of IoT devices and their CSP(s) is crucial to the
continuation of the technology and security of data as a whole,
as loT devices are becoming more prevalent in our day-
to-day lives, and hackers take any opportunity they can to
steal or modify sensitive data. Unfortunately, cloud computing
involves broader attack surfaces, leading to more ways for
hackers to remotely access information while it is in transit or
at rest, effectively decreasing the security of the data. This is
also due to the data being controlled and accessed by a third

party, the CSP. Cloud IoT is also not always able to perform
calculations in real time, so sectors where time matters most
struggle. Because of these vulnerabilities, and a growing need
for more real-time data computation and communication, [oT
systems are being connected to more “local” edge devices.

Edge IoT, a part of IoT generally not involving the cloud,
is made up of IoT devices that process data as close to the
source device as possible, like with smart homes and glucose
monitors. This allows for faster and more reliable services with
lower latency, eliminating the time issue with cloud IoT. Edge
IoT devices consist of physical hardware that is located at the
edge of a network and can collect, process, and execute data in
almost real-time with limited assistance from the cloud [17].
They are able to do this because they contain a greater amount
of memory, processing power, and computing resources than
normal IoT devices. Edge 1oT is generally used where time
matters most, whether this be for making more money in a
business or saving someone’s life.

In general, Edge computing requires nodes that are near the
end user, while cloud computing can be accessed from virtu-
ally anywhere. Because of this, the response time (latency) of
edge is extremely low in comparison to possible hundreds of
milliseconds for cloud computing. Processing for edge com-
puting occurs at the edge nodes, while cloud processing occurs
remotely. Cloud storage can be extremely large, however, edge
computing storage is much more constrained. The operation
environment for cloud computing is decided upon by the cloud
operator. On the other hand, the edge computing environment
is chosen by the customer. Edge [oT’s computing capability
is much lower than that of cloud IoT, as the cloud has far
more resources. Therefore, both cloud and edge computing
have their uses. The cloud is for large tasks that do not need
low latency, while edge computing is for tasks that require
low latency, but do not necessarily need a lot of computational
power in comparison.

Because IoT devices are being moved to the edge, there
is a greater focus on their security at the edge layer itself.
Even without the connection to the cloud, edge IoT devices
possess vulnerabilities that need to be protected against. Some
of the common attacks that edge IoT devices are still vulner-
able to include: denial-of-service (DoS)/distributed denial-of-
service (DDoS) attacks, information gathering attacks, man-
in-the-middle (MITM) attacks, injection attacks, and malware
attacks. To assist in the security of these edge IoT-driven
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ecosystems, attack detection and classification must be used
and deployed to identify when an attack takes place and the
specific type of cyber attack that is carried out. Furthermore,
machine learning (ML) and neural network techniques can
be used to train a model to recognize and classify different
types of attacks, which can lead to a more accurate, timely
prevention and response to growing cyber attacks at the edge.

In this paper, we review popular methods of securing [oT
systems with both edge and cloud architecture. After analyzing
the advantages and disadvantages of both architectures, we
propose an intersection of using edge IoT network data and
ML models for cyber attacks detection and classification. We
chose a public edge IoT dataset, referred Edge-IloTset Cyber
Security Dataset of IoT & IIoT [18], with fourteen types of
attacks, along with normal data, to compare eleven ML models
and find the best ones for detecting the majority of the Edge
IoT attacks.

The key contributions of this paper are:

1) We demonstrate that the network traffic data extracted
from edge IoT devices can be used to secure edge IoT
systems against attacks using machine learning.

We compare the performance of eleven machine learning
algorithms in detecting and classifying fourteen different
types of attacks.

We conjecture that machine learning models AdaBoost
(AB), Random Forest (RF), and Decision Tree (DT) are
successful in detecting and classifying the majority of
attacks with high accuracy.

2)

3)

The rest of the paper is organized as follows: Section II
covers an overview of related work and highlights limitations
of existing approaches. Section III discusses the threat model
and IoT architecture, different types of attacks detected and
classified, problem definition, and proposed solution method-
ology. Section IV presents the implementation and testing
procedure of our proposed approach, as well as results and
discussion. Lastly, Section V covers the conclusion, a sum-
mary of findings, and future work.

II. RELATED WORK

Figure 1 shows the categorization of the research problems
and solution methodologies covered in the literature reviewed
in this paper. These works are organized first based on if
they were a survey or they covered a specific aspect of
security. Further, they were separated into types of security
methods: blockchain, edge computing, machine learning, and
fog computing. Works in [7], [36]-[39], discusses multiple
environments where solutions have been developed for cloud
IoT, including smart cities, healthcare, and smart homes. Some
of these include intrusion detection systems, access control
models and architectures, the use of secure communication
protocols, multi-factor authentication, predictive analysis of
users activities, and identity-based encryption. These works
bring various security issues to attention that pertain to cloud
IoT, as a lot of data from IoT devices is stored in some form
of cloud. Some of these problems include data security at rest
and in transit, data loss, breaches, and data integrity.
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Fig. 1. IoT Network Security Tree Diagram

Authors in [8], discuss several cloud IoT security chal-
lenges. The first is data privacy, to which they propose a
“User-driven Privacy Enforcement for Cloud-based Services
in the IoT (UPECSI)”, which utilizes model-driven privacy,
interaction with user, and privacy enforcement points as its
main components. The model-driven privacy focuses on in-
tegrating privacy within the cloud service itself, while users
from various levels of access are offered interaction to under-
stand their requirements and create a transparent ecosystem.
Additionally, the privacy enforcement points, which reside in
the IoT gateway, make sure user-defined policies are followed
while data is outsourced to the cloud. Another approach they
addressed was developers meeting the privacy requirements of
the IoT device in the design phase before it is even launched.
This approach entails privacy by design. The second security
challenge defined is authentication and confidentiality, and this
paper proposes a two-way authentication security scheme for
IoT systems based on the Datagram Transport Layer Security
(DTLS) protocol, which is placed between the transport and
application layer. This scheme is backed by the RSA and
designed for the 6LoWPANs. The third challenge is access
control, for which this paper spotlights a method that identifies
data holders and data collectors as the two types of actors.
Data holders and collectors only receive data that they are
required to and nothing more. Likewise, a data collector
is also responsible for authenticating the data holders and
points of origin. They highlight a cipher-text policy-based
encryption approach for IoT data storage and secure access
in the cloud. Their method also reduces storage overhead of
public keys, and a user access control list (UACL) is created
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to support authorization access per user. This paper promotes
heterogeneity-supportive hybrid models to meet organizational
needs for trust, privacy, context, knowledge, and not just
subjects, objects, and the interactions between them.

A. Confidentiality

1) Blockchain: In [15], authors proposed IoT using
blockchain, which is defined as data security with a distributed,
decentralized, shared ledger where each entry is coupled with
the previous using cryptographic hash keys. With the presence
of these keys in each block, it makes it effectively too time-
consuming for attackers to modify the data in the blocks. This
paper also highlights the benefits of using blockchain with [oT
devices. Data coming from IoT devices can be stored securely
in blockchain, where the data can be encrypted using a hash
key that is verified by miners. The use of blockchain can also
help to prevent spoofing attacks and data loss through the use
of its secure blocks. It can additionally prevent unauthorized
access through the use of asymmetric encryption, where both
public and private keys are used.

Work in [9] highlights that cloud includes security con-
cerns like data protection, confidentiality, and data integrity,
but software defined networking (SDN), with the addition
of blockchain, can be used to solve those problems. SDN
virtualizes the network by separating the data plane, where
data traffic flows, and the control plane, where the network
is managed. SDN allows for dynamic control of network
throughput, individualizing device connection attributes, and
enforcing individual network security policies. However, SDN
has vulnerabilities to distributed denial of service (DDoS)
attacks when it is merged with cloud storage. Blockchain can
be added to combat this issue and enforce confidentiality in
the network. The combination of cloud, SDN, and blockchain
is termed “Block-SDoTCloud”, where a distributed secure
blockchain is created with a cloud storage environment based
on SDN. The authors propose their solution architecture with
five layers: perception layer, infrastructure layer/IoT networks,
SDN layer, blockchain layer, and cloud layer. The perception
layer can comprehend data from the real world and interact
with the IoT application environment. It collects data in real-
time and then passes it along with some form of identifica-
tion. The infrastructure layer/loT networks includes devices,
like routers, switches, smart TVs, etc., that transmit data
via SDN gateways. The SDN layer includes the gateways,
southbound API, dynamic controllers, northbound API, and
applications plane. It allows for mobility management, smart
optimization, switching, routing, load balancing, reliability,
and network monitoring. The blockchain layer includes the
ledger of connected entries using cryptographic hash keys.
It provides access control, confidentiality, tamper-resistance,
and security to the data stored in each block. The cloud layer
includes the cloud storage and secure transmission to and from
it. With the addition of SDN and blockchain, this layer is
effectively made more secure. Block-SDoTCloud model shows
better throughput in comparison to OpenFlow-based SDN, and
also provides protection against DDoS attacks.
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B. Integrity

Work in [3], addresses the issue of security and trust compli-
cations being transferred from IoT devices to the cloud envi-
ronment. This paper proposes the trust assessment framework
for Cloud IoT. It includes the security-based trust assessment
model, which covers various security features such as risk
management, information security, and physical security. An-
other work [16], explores the trust issues of dynamic IoT cloud
computing. The authors include the usage of both vertical and
horizontal computing structures in the “extended IoT cloud”,
where IoT devices, edge, fog, and cloud are integrated in a
layered infrastructure. This paper includes a framework with
a vertical IoT cloud for trustworthy computing. For dynamic
IoT networks, authors created a policy definition model and
advanced access control, called Resource and Role hierarchy
Based Access Control (RRBAC).

1) Edge Computing: In [15], edge computing is described
as where a small edge server is located between the user
and the cloud or fog to process data closer to the user. This
helps to keep the data local, making it less vulnerable to
data tampering in transit. Additionally, edge computing has
less data compliance issues. Data cleaning and aggregating
can also be done at edge nodes, which allows for lower
bandwidth if data needs to be sent somewhere. As discussed
in [4], collecting large amounts of data from IoT devices
and storing it in one core cloud infrastructure is not scalable
in the long term. This paper proposes the “loT-aware mul-
tilayer (packet/optical) transport software defined networking
and edge/cloud orchestration architecture,” which dynamically
distributes IoT edge processing based on the network resource
state. It also contains a congestion avoidance mechanism
and IoT-traffic control. The authors also utilize SDN-enabled
containers to assess an edge node and integrate with the “IoT-
aware SDN and cloud orchestration platform,”.

As discussed in [5], IoT devices are connected to the cloud
through Message Queuing Telemetry Transport (MQTT). [oT
uses WiFi, Bluetooth, cellular networks, and Ethernet. Radio
frequency identification (RFID) allows wireless communica-
tion between devices. Scheduling tasks and load balancing is
an issue in general networking, and it is just as much of an is-
sue in edge computing. Because edge relies on databases, they
are vulnerable to the same concerns. As highlighted, because
edge devices are usually personal, trust and authentication is
of importance. Edge devices are also concerned with privacy,
digital security, and physical security.

C. Authentication

1) Machine Learning: The paper, [15], defines ML as
training algorithms to detect anomalies or unwanted activity to
increase security. This can be used in IoT devices to protect
against different types of attacks. For instance, by using a
multi-layer perceptron (MLP) discriminator, IoT networks can
prevent denial of service (DoS) attacks, and by utilizing a
Q-learning-based offloading strategy, like Dyna-Q, or non-
parametric Bayesian techniques, an IoT network can be pro-
tected against eavesdropping. Additionally, privacy-preserving
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scientific computations (PPSCs) can prevent privacy leakage
on IoT devices, and digital fingerprinting can be adjusted to
work with IoT devices with support vector machines (SVMs)
and artificial neural networks (ANNSs) to identify, track, and
monitor the devices accurately. Authors in [10] propose a
deep neural network (DNN) for IoT network security using
an autoencoder neural network (AENN). By keeping in mind
the causative, exploratory, and priority violation attacks, as
well as the behavior of evasion, the AENN is able to predict
intermediate attacks. Their network also circumvents high
data analysis time and data overfitting by indicating if input
samples cannot be used, and it works in an unsupervised
environment, where unknown attacks can be predicted using
learned parameters. By examining the network traffic before
transmitting data, the AENN is able to prevent intermediate
attacks early, as most cause the network to appear busy.
Moreover, the AENN uses three phases to detect intermediate
attacks: sensing, transmission, and feedback. They also utilized
back-propagation learning to lessen deviations and minimize
the false alarm rate. The proposed solution increased security
while minimizing latency and decreased the number of inter-
mediate attacks. Their AENN had above a 97% accuracy for
detecting no attack, a jamming attack, data poisoning, and a
priority violation attack.

D. Limitations of Literature

The literature explored show that there are many limitations
in the current security of IoT ecosystems. Many of them
propose solutions involving blockchain, fog computing, ma-
chine learning, or edge computing, but each of these have
their own set of problems as well. Blockchain, for one, isn’t
scalable, is vulnerable to phishing, routing, and Sybil attacks,
and generally has poor endpoint security [11]. Fog computing
has issues in authentication, trust, privacy, and security [12].
Machine learning is vulnerable to adversarial attacks, data
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poisoning, online system manipulation, transfer learning at-
tacks, data confidentiality and trustworthiness, reproducibility,
and overfitting [13]. Lastly, edge computing has problems
with data storage, backup, and protection, password risks and
authentication, and perimeter defense [14].

Several works [19]-[23], [25], [26], [28], [32], [33] in the
literature have demonstrated the use of machine learning-based
solutions to detect and classify cyber attacks. However, most
of them are either applied on a different domain, only detected
selected attacks, or used a selected ML algorithm without
comparing the performance of different models, as shown in
Table 1. This table shows (see the last row in red) how our
approach is different in terms of domain and models used, as
none of them cover both the edge IoT environment, as many
models, or as many attacks as ours does.

This paper aims to address the following limitations:

1) Unlike traditional host-based approaches in [19]- [21],
[30], [32], and [33], and a cloud environment in [23]-
[28] and [31]- [33], we aim to focus on edge IoT systems
to detect and classify cyber attacks.

Unlike the experiments done in [19], [20], [22], [23],
[25], [26], [28], and [31], we use eleven different ma-
chine learning models to compare their performance.
Unlike the attack classification analysis done in [19],
[23], [26], [28], and [31], we cover fourteen different
attacks, as detailed in the next section.

2)

3)

III. SYSTEM ARCHITECTURE AND PROPOSED
METHODOLOGY

A. Multi-layered loT Architecture

Figure 2 displays a threat system model for an IoT system
with edge and cloud layers. It depicts that a user sometimes
interacts with both an edge and cloud user interface to use an
IoT device. The edge interface connects the user to various
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sensors, actuators, and then eventually an IoT device and
device controller. If the data collection, computation, and
execution can be done all locally, then an edge node, or
gateway, does not need to be used, and the system stays at
the edge layer. At this layer, both physical and logical local
attacks can be performed by malicious actors. However, if
an edge IoT device cannot perform all of the computations
locally, an edge node is used to send the data to a cloud data
center, which assists in larger computations and executions.
This brings in the cloud layer of the system, wherein more
physical and logical remote attacks can occur. As more edge
IoT driven use-cases are getting developed, it is important to
deploy security mechanisms at the edge of the ecosystem.

B. Problem Definition and Threat Model

IoT devices are not inherently secure. Most IoT devices are
small and are only made to collect data and send it out to
the cloud. This means that data transfer is one of the most
important parts of IoT to secure. Edge devices are different
in that they are made to execute as many computations as
possible locally, so they effectively remove the potential attack
surfaces dealing with the cloud. This is why we chose to use
an edge IoT dataset, as they are more secure without the
connection to the cloud. Still, edge devices have their own
vulnerabilities that attackers can exploit, so attack detection
and classification can be carried out to know how to better
secure them.

Our goal in this paper is to detect and classify the following
cyber attacks orchestrated at the IoT edge layer [22].

1) DDoS_UDP: This is a DDoS attack where a large
quantity of User Datagram Protocol (UDP) packets are
transmitted to an edge server to overload it and prevent
it from processing and responding to legitimate requests.
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2)

3)

4)

5)

6)

7)

8)

9)

Attackers will typically impersonate the UDP packets’
source [P address.

DDoS_ICMP: This is a DDoS attack where the attacker
floods the IoT device with Internet Control Message
Protocol (ICMP) echo queries, or pings, to make it
unable to respond to legitimate queries.

Ransomware: This is a type of malware attack where
the attacker takes the IoT device or files hostage by
restricting access and then demands a ransom to restore
access.

DDoS_HTTP: This is a type of DDoS attack where the
attacker floods the IoT server with Hypertext Transfer
Protocol (HTTP) queries and causes it to overload.
SQL _injection: This is a type of injection attack where
a Structured Query Language (SQL) query is modified
by an injected query fragment that the attacker puts in,
causing the attacker to gain access to the target IoT
database and be able to alter the data .

Uploading: This is a type of injection attack where an at-
tacker uploads a malware program file into a web server
associated with an IoT system to gain administrative
privileges.

DDoS_TCP: This is a type of DDoS attack where
the attacker floods the IoT network with requests for
Transmission Control Protocol (TCP) connections faster
than it can handle, effectively disabling it.

Backdoor: This is a type of malware attack where the
attacker takes advantage of vulnerabilities in the IoT
system to gain unauthorized remote access. This then
lets the attacker manage the IoT system’s files, install
software, and monitor the system as a whole.
Vulnerability_scanner: This is a type of information
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gathering attack where the IoT network is automatically
scanned for environmental, internal, or external vulner-
abilities.

Port_Scanning: This is a type of information gathering
attack where IoT device ports are automatically scanned
to find which are open or closed, and what security
protocol they use if they have one.

Cross-Site Scripting (XSS): This is a type of injection
attack where an attacker injects malicious scripts into a
website associated with the IoT device, so they can gain
access to vulnerable data.

Password: This is a type of malware attack where an
attacker tries to find the password to an IoT device or
system through successive attempts.

Man-in-the-middle (MITM): This is a type of attack
that alters or hinders the communication between two
legitimate points in the IoT network.

Fingerprinting: This is a type of information gathering
attack where an attacker identifies the operating system
(OS) of the target device to determine system vulnera-
bilities and map the remote network.

10)

11)

12)

13)

14)

C. Proposed Approach

The proposed solution methodology combines edge comput-
ing and machine learning to identify IoT attacks and create a
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TABLE 11
CNN HEAD MODEL

Layer Number  Type  Activation =~ Number of Neurons
1 Dense  ReLU 256
2 Dense  ReLU 128
3 Dense  Softmax 15

more secure method of transferring data for IoT devices. Edge
computing was chosen specifically because many IoT devices
that can perform quick computations locally with minimal
cloud involvement are exploding in popularity, as they are
more secure and have better processing speed.

The system architecture for our proposed approach, as
designed by Orange [35], is shown in Figure 3. The specific
types of detection and classification machine learning models
that were compared for best performance were: Random
Forest (RF), XGBoost (XGB), Gaussian Naive Bayes (GNB),
Convolutional Neural Network (CNN) with a ResNet50 base
[34] and a custom head model - as shown in Table II,
Classification and Regression Tree (CART), AdaBoost (AB),
K-Nearest Neighbors (KNN), Multilayer perceptron (MLP) -
a type of Artificial Neural Network (ANN), Support Vector
Machine (SVM), Logistic Regression (LR), and Decision Tree



TABLE IIT
MODEL HYPERPARAMETERS

Model Hyperparameters
num_trees = 10
num_attr_each_split = sqrt(70)
smallest_subset_split = 5
objective = multi:softprob
n_estimators = 100

n/a

optimizer = Adam
learning_rate = 0.001

loss = categorical_crossentropy
ccp_alpha = 0

criterion = gini
min_samples_leaf = 1
min_samples_split = 2

splitter = best

num_estimators = 50
learning_rate = 1.0
classif_algorithm = SAMME.R
num_neighbors = 5

metric = Euclidean

weight = Uniform
neurons_per_hidden_layer = 100
activation = ReLU

solver = Adam

regularization = 0.0001
max_iter = 400

replicable _training = true
C=1.0

kernel = RBF

g = auto

num_tolerance = 0.0010
iter_limit = 100

regularization = L2

strength = 0.110
induce_binary_tree = true
min_num_instances_in_leaves = 2
smallest_subset_split = 5
max_tree_depth = 100
stop_when_maj_reaches (%) = 95

RF

XGB
GNB

CNN

CART

AB

KNN

ANN

SVM

LR

DT

(DT). The hyperparameters used for these models are outlined
in Table III. The Edge-IloTset Cyber Security Dataset of [oT &
IIoT was used for experimentation [18]. This dataset contains
both normal and attack IoT network traffic data.

1V. EXPERIMENT
A. Implementation and Testing

To preprocess the data, each CSV file was first uploaded
to Google Colaboratory, consisting of fourteen attacks and
thirteen types of normal IoT network traffic data. The at-
tacks included were: DDoS_UDP, DDoS_ICMP, Ransomware,
DDoS_HTTP, SQL_injection, Uploading, DDoS_TCP, Back-
door, Vulnerability_scanner, Port_Scanning, Cross-Site Script-
ing (XSS), Password, Man-in-the-middle (MITM), and Finger-
printing. The normal data consisted of sensors that detected
the following: sound, temperature, humidity, ultrasonic waves,
water level, pH level, soil moisture, heart rate, flame level,
servo motor speed, stepper motor speed, DC motor speed, and
IR receiver frequencies. Next, the CSV files were converted
to data frames, and random samples were taken from each
of them before combining them all into one data frame. We
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Normal 241e1
DDoS_UDP 14498
DDoS_ICMP 13096
DDoS_HTTP 10495
SQL_injection 10282
DDoS_TCP 10247
Uploading 10214
Vulnerability_scanner 18862
Password 9972
Backdoor 9865
Ransomware 9689
XSS 9543
Port_Scanning 8921
Fingerprinting 853
MITM 358

Name: Attack_type, dtype: inté4

Fig. 4. Preprocessed Class Numbers

# Gain ratio
1 http.request.method-0.0 2 1.000
—
2 magt.topic-0.0 2 1.000
—
3 matt.protoname-0.0 2 1.000
e
4 mgtt.conack.flags-0.0 2 1.000
i
5 http.referer-0.0 2 1.000
B ———
6 http.request.version-0.0 2 1.000
B ———
7 dns.gry.name.len-0.0 2 0.997
B ———
8 dns.gry.namelen-0 2 0.997
g http.referer-0 2 0.982
—
10 maqt.topic-0 2 0.925
—_—
11 @ maqtt.protoname-0 2 0,923
—
12 matt.conack.flags-0 2 0.922
——
13 dns.gry.name.len-1.0 2 0.861
—
14 http.request.version-0 2 0.826
—
15 [@ http.request.method-0 2 0.826
PR
16 [ udptime delta 0.784
17 @ udp.stream A
—_—
1z @ icmp.checksum A
—_—
19 @ icmp.seq_le .
—
20 @ dns.gry.qu .

21 @ http.content_length

o

tep.flags.ack
M tepflags

hitp.request.version-HTTP/1.1

2

,u
s = als s |s s
= =3 i o o ~ =
02 8 & 2 & 5

2

ra

24 0451

http.request.method-GET 0.421

tepack
@ tep.

http.request.version-HTTP/1.0

Fa

25
26 0.410

0.404

o

NERRRRNRN

2

§

2 @ dns.gry.name

0.389

(5

29 http.response

30 m tcpiseq 0.383

Fig. 5. Top 30 Data Features - (C) Categorical and (N) Numerical

eradicated features that were either unnecessary for attack
detection and classification - like full URLs or messages -
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or had all zeroes or null data. Figure 4 shows the normal data
and attack numbers after preprocessing the data. This ended
up with the data having a total of 70 unique features, with
the top 30 being shown in Figure 5. The top features were
found through the ranking in Orange and feature importance
functions in the RF and XGB models. After the data was
cleaned, we conducted a random grid search to determine
the hyperparameters - shown in Table III. Then the data was
split into 70% training, 10% validation, and 20% testing. To
assess, we used the Scikit-Learn library in Python on Google
Colaboratory Pro (Colab) with 25.5GB for system RAM and
166.8GB of disk space for five of the models, and the machine
learning tool, Orange, for eight of them. The RF and GNB
models were done in both Colab and Orange, so the best-
performing one was chosen for the results. Furthermore, the
models were evaluated based on accuracy, precision, recall,
and F1 scores. The equations below include shorthand for
the number of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN).

) B TP+ TN
Y = TP Y FP+ TN + FN
Precision — TP
recision = 7TP T FP
TP
Recall = m
2T P
F1 -
Seore = b T FP I FN
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TABLE IV
DETAILED MODEL RESULTS

Model | Accuracy | Precision | Recall F1

RF 0.984 0.993 0.979 | 0.986
XGB 0.945 0.949 0.925 | 0.933
GNB 0.792 0.698 0.850 | 0.766
CNN 0.928 0.941 0.928 | 0.923
CART 0.931 0.910 0913 | 0912

AB 0.999 0.999 0.999 | 0.999
KNN 0.703 0.704 0.703 | 0.698
ANN 0.825 0.848 0.825 | 0.825
SVM 0.531 0.600 0.531 | 0.511

LR 0.380 0.251 0.380 | 0.275

DT 0.971 0.970 0.971 | 0.970

B. Results

Figure 6 shows the statistical evaluation results for each
model, and Table IV presents a more detailed version. Figures
7, 8, and 9 in Appendix A display the confusion matrices for
the AB, RF, and DT models, respectively.

C. Discussion

Each of the models performed relatively well in identifying
the Normal data in the dataset, except for the LR model,
which had an accuracy of 21.2%. However, the attack data
identifications were more varied. The AB model produced the
best results for the dataset overall with an average F1 score
and accuracy of 99.9%. The RF model came in second with
an average F1 score of 98.6% and an accuracy of 98.4%.
The DT model was a close third with an average 97.0% F1
score and 97.1% accuracy. The rest of the models achieved
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similar results above an average of 70.0% for the F1 score and
accuracy, except for the KNN, SVM, and LR models. The LR
model was the worst-performing model, with an average F1
score of 27.5% and an accuracy of 38.0%. The KNN model
achieved mediocre results due to the scale of the data, and
the SVM model didn’t perform well due to the target classes
overlapping in some areas and the dataset being fairly big.
The reason for the LR model’s poor performance was mainly
due to its issue with discrete values, as it normally handles
continuous values better. In addition, the classification problem
deals with higher dimensions that are not best suited for SVM
and LR.

As for the specific classes, the Fingerprinting attacks were
among the highest misclassified attacks across all models. The
AB model performed the best on them, with a 99.3% accuracy
for correct classifications, while the RF model had 87.3% and
the DT model a 16.0%. The Uploading attacks were another
of the highest misclassified, with the AB model having an
accuracy of 99.7%, the RF model a 96.3%, and the DT model
a 92.0%. In contrast, the DDoS_UDP and MITM attacks were
among the highest correctly classified attacks across all of the
models, with over half of them scoring 100.0% accuracy.

It was noted that different models performed better or
worse on different attacks, regardless of the overall accuracy
recorded. Additionally, our proposal was limited to analyzing
static IoT network traffic data, rather than live data, and using
only one dataset. In all, an AB model is the best-performing
choice out of the eleven for edge IoT device attack detection
and classification of the attacks in this dataset.

V. CONCLUSION AND FUTURE WORK

IoT is a rapidly growing sector in the technology field,
and there are a lot of security concerns that come along
with this growth. [oT devices are everywhere and affect
everyone, whether someone is exercising in the park with their
smartwatch, working at a smart industrial plant, or cooking in
their smart kitchen. These devices constantly give and receive
huge amounts of sensitive data, so their security is a definite
concern. The addition of cloud and cloud service providers
(CSPs) adds even more security vulnerabilities due to the level
of connectivity that the nature of a cloud network provides.
Multi-tenancy, misconfiguration, and CSP trust are all common
issues that can lead to security issues with IoT devices in a
cloud environment.

After looking over each of these papers, we are even more
aware of the issues that cloud IoT, specifically, brings to the
realm of technology. Sensitive data is more at risk of exposure
due to the distance it travels between the IoT device and the
cloud server. Proper network-layer protocols and encryption
must be used to ensure secure data in transit. Additionally,
there is a loss of control when a client begins to use a
CSP to manage and access their IoT device data. In most
cases, the provider has a large amount of control over the
data storage and even the software used for the device, so a
lot of the system transactions happen behind the scenes and
away from the client’s eyes. This brings in the concept of
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provider trust, in which the client has to trust their provider
to handle their information with the best and most up-to-
date security procedures, so that the data is not modified,
deleted, or stolen. Even without adding the cloud, many
issues exist within IoT networks, like confidentiality, integrity,
authentication, availability, and scalability. And, with edge [oT
devices especially, the security impact can be disastrous. With
all of these issues, many of the papers reviewed proposed
framework solutions to mitigate some vulnerabilities in and out
of the cloud for IoT devices. Unfortunately, there will never be
a catch-all solution to the problems of cloud and IoT, due to
the nature of the devices and the cloud environment itself, but
the frameworks shown are helpful ways to protect sensitive
information, nonetheless.

In this work, we compared eleven different machine learning
models with edge IoT network traffic data, including both
diverse normal data and attacks, as a way to combine the
aspects of machine learning and the edge to better secure
the data. The machine learning models were used to assist in
determining the best attack detection and classification model
for fourteen different attacks. Through our experiments, we
determined that an AdaBoost model is the best-performing
model choice out of the eleven tested for the dataset used.

For future work, the results obtained in this paper will be
fed through several digital forensics tools to determine the
best one for attack reconstruction with anti-forensics in mind.
Additional future work could include using multiple datsets
and live data analysis.
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APPENDIX A
CONFUSION MATRICES FOR TOP PERFORMING MODELS

Predicted
Backdoor DDoS HTTP DDoS ICMP DDoS TCP DDoS UDP Fingerprinting ~ MITM Normal Password Port Scanning Ransomwars SQL injection Uploading Vulnerability scanner XSS b3
Actual Backdoor | 100.0% 00% 0.0% 00% 0.0% 00% 00% 00% 00% 00% 0.0% 00% 00% 00% 00% 6388
DDoS§_HTTP 0.0% 1000 % 0.0% 00% 0.0% 00% 00% 00% 0.0% 00% 0.0% 00% 0.0% 00% 00% 7383
DDoS_ICMP 00% 0.0% 100.0% 0.0% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 9194
DDoS_TCP 0.0% 00% 00%  1000% 00% 00% 00% 00% 00% 00% 00% 0.0% 0.0% 00% 00% 7149
DDoS_UDP 0.0% 00% 00% 00% 100.0% 00% 00% 00% 00% 00% 00% 0.0% 00% 00% 00% 10035
Fingerprinting 03% 00% 00% 00% 00% 993% 00% 00% 0.0% 02% 02% 00% 00% 00% 00% 599
MIT™ 0.0% 00% 0.0% 0.0% 0.0% 00% [1000% 0.0% 0.0% 00% 0.0% 0.0% 0.0% 00% 00% 235
Normal 0.0% 00% 0.0% 0.0% 0.0% 00% 0.0% 1000% 00% 00% 0.0% 0.0% 0.0% 00% 00% 16888
Password 0.0% 00% 0.0% 0.0% 0.0% 00% 00% 00% | 1000% 0.0% 00% 0.0% 0.0% 00% 00% 6904
Port_Scanning 00% 00% 0.0% 00% 00% 00% 00% 00% 0.0% 1000 % 0.0% 00% 00% 00% 00% 6269
Ransomware 00% 0.0% 00% 00% 00% 00% 00% 00% 00% 00% 999% 00% 00% 00% 00% 6835
5QL_injection 0.0% 0.0% 00% 0.0% 00% 00% 00% 00% 01% 0.0% 00% 99.9% 0.0% 00% 00% 7210
Upleading 0.0% 0.0% 0.0% 0.0% 0.0% 00% 00% 00% 02% 00% 0.0% 01%  997% 00% 00% 7170
Vulnerability_scanner 0.0% 00% 00% 00% 00% 00% 00% 00% 0.0% 00% 00% 00% 00% 1000% 00% 7142
XS$ 0.0% 02% 0.0% 0.0% 00% 00% 00% 00% 0.0% 00% 0.0% 00% 0.0% 00% 997% 6637
b3 6894 7400 9193 7149 10035 598 235 16888 6922 6271 6829 721 7151 7142 6620 106538
Fig. 7. AB Model Confusion Matrix

Predicted
Backdoor DDoS_HTTP DDoS_ICMP DDoS_TCP DDoS_UDP Fingerprinting ~ MITM  Normal Password Port_Scanning Ransomware SQL injection Uploading Vulnerability_scanner XSS ¥
Actugl Backdoor 980 % 00% 00% 0.0% 00% 01% 00% 00% 00% 10% 09% 00% 00% 00% 00% 6888
DDoS_HTTP 00% 560% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 01% 19% 7383
DDoS_ICMP 00% 00% 1000 % 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 9194
DDoS_TCP 00% 00% 00%  1000% 00% 00% 00% 00% 0% 00% 00% 00% 00% 00% 00% 7149
DDoS_UDP 00% 00% 00% 00%  1600% 00%  00% 00% 00% 00% 00% 00% 00% 00% 00% 10035
Fingerprinting 17% 00% 00% 0% 00% 873% 00% 00% 00% 2% 48% 00% 0% 00% 00% 599
MITM 00% 00% 00% 00% 00% 00% 1000% 00% 00 % 00% 00% 00% 0% 00% 00% 235
Normal 00% 00% 0% 00% 00% 00% 00% 1000% 00% 00% 00% 00% 0% 00% 00% 16888
Password 00% 00% 00% 0.0% 00% 00% 00% 00%  963% 00% 00% 19% 28% 00% 00% 6904
Port_Scanning 0% 00% 00% 00% 00% 00%  00% 00% 0% 1000 %. 00% 00% 00% 00% 00% 6269
Ransomware 07% 00% 00% 00% 00% 01% 00% 00% 00% 13% 880% 00% 00% 00% 00% 6835
SQL_injection 00% 00% 00% 00% 00% 00% 00% 00% 18% 00% 00% 95T% 25% 00% 00% 7210
Uploading 00% 00% 00% 00% 00% 0%  00% 00% 7% 00% 00% 20% 963% 00% 00% 770
Vulnerability_scanner 0% 10% 00% 00% 00% 00% 00% 00% 00% 00% 0% 00% 0% 82% D08% Ti42
XSS 00% 31% 00% 00% 00% 00% 00% 00% 00 % 00% 0% 00% 00% 01% 959% 6637
¥ 6807 7514 9193 7149 10035 536 235 16388 6832 6458 8791 7179 7273 7022 6626 106538

Fig. 8. RF Model Confusion Matrix

Predicted
Backdoor DDoS_HTTP DDoS ICMP DDoS TCP DDoS UDP Fingerprinting ~ MITM Normal Password Port_Scanning Ransomware SQL injection Uploading Vulnerability scanner XSS 3
Actusi Backdoor  983% 00% 00% 00% 00% 01% 00% 00% 00% 06% 09% 00% 00% 00% 00% 6888
DDoS_HTTP 00% 97T % 00% 00% 00% 00% 00% 00% 00% 00 % 0% 00% 00% 02% 20% 7383
DDoS_ICMP 0% 0% 1000 % 00% 00 % 0% 00% 00% 00% 0% 00% 0% 0% 00% 00% 9194
DDoS_TCP 0% 0% 00% 100.0 % 00% 00% 00% 00% 00% 00% 0% 00% 0% 00% 00% 7149
DDoS_UDP 00% 0% 00% 00% 1000 % 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 10035
Fingerprinting 50% 00% 686 % 00% 00% 160% 00% 00% 00% 60% 43% 00% 00% 00% 00% 599
MITM 00% 00% 00% 00% 00% 00% 1000% 00% 00% 00% 00% 00% 00% 00% 00% 235
Nermal 00% 0% 0% 00% 02% 00% 00%  998% 00% 0% 00% 00% 00% 00% 00% 16888
Password 00% 0% 0% 00% 00% 00% 00% 00% | 958% 00% 00% 14% 26% 00% 00% 6904
Port_Scanning 07% 0% 00% 00% 00% 04% 00% 00% 00% 9%88% 01% 00% 00% 00% 00% 6269
Ransomware 13% 00% 00% 00% 00 % 04% 00% 00% 00% 5% 968 % 0% 00% 00% 00% 6835
SQL_injection 00% 00% 0% 00% 00% 00% 00% 00% 42% 0% 00% 939% 18% 00% 00% 7210
Uploading 00% 00% 00% 00% 0% 00% 00% 00% 41% 00% 00% 319% 920% 00% 00% 7170
Vulnerability_scanner 00% 14% 00% 00% 0% 00% 00% 00% 00% 0% 0% 00% 00% 9B4%  21%  Ti42
XSS 00% 16% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 12% 942% 6637
)3 5931 7621 3612 7147 10061 156 235 16860 7212 6373 6717 7150 6922 6384 6557 106538

Fig. 9. DT Model Confusion Matrix
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