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Abstract—Internet of Things (IoT) devices are omnipresent
due to their ease of use and level of connectivity. Because
of wide deployment, IoT network traffic security is a large
issue, especially as the devices become more common at the
edge of the connected ecosystem. In general, low-powered IoT
devices themselves are not inherently secure, so tailored security
mechanisms are needed to make the ecosystem secure. The
incorporation of the cloud also adds new security issues with
the cloud service provider (CSP). In addition, several smart
applications necessitate deploying edge-based infrastructure due
to their real-time computation and communication requirements,
while also having the ability to detect and mitigate different cyber
attacks and remain light-weight. In this paper, we propose a
machine learning-based approach to detect and classify different
edge IoT network traffic driven cyber attacks, and evaluate
their strengths and weaknesses. Particularly, we will compare
eleven machine learning models to determine the best security
agent trained for attack detection and classification on an edge
IoT cyber security dataset with fourteen different attacks. We
also provide experimental evaluation and analysis of our work,
followed by our conclusion.

Index Terms—Internet of Things, Edge IoT, Machine Learning,
Attack Detection and Classification

I. INTRODUCTION

The world of Internet of Things (IoT) is expanding fast, and

IoT-related security concerns are becoming increasingly more

important. The domain of IoT includes physical technologi-

cal devices that contain various processing abilities, sensors,

software, and connections to other tools and systems. Experts

predict that by 2025, there will be approximately 40 billion

connected IoT devices around the world, compared to about

19 billion in 2022 [1].

Cloud IoT involves cloud computing, which includes on-

demand access to computational resources, data storage, tools,

and internet applications hosted at a remote data center by a

cloud service provider (CSP) [2]. It allows for lower IT costs,

improved efficiency, and greater scalability [2]. Appropriate

security of IoT devices and their CSP(s) is crucial to the

continuation of the technology and security of data as a whole,

as IoT devices are becoming more prevalent in our day-

to-day lives, and hackers take any opportunity they can to

steal or modify sensitive data. Unfortunately, cloud computing

involves broader attack surfaces, leading to more ways for

hackers to remotely access information while it is in transit or

at rest, effectively decreasing the security of the data. This is

also due to the data being controlled and accessed by a third

party, the CSP. Cloud IoT is also not always able to perform

calculations in real time, so sectors where time matters most

struggle. Because of these vulnerabilities, and a growing need

for more real-time data computation and communication, IoT

systems are being connected to more ”local” edge devices.

Edge IoT, a part of IoT generally not involving the cloud,

is made up of IoT devices that process data as close to the

source device as possible, like with smart homes and glucose

monitors. This allows for faster and more reliable services with

lower latency, eliminating the time issue with cloud IoT. Edge

IoT devices consist of physical hardware that is located at the

edge of a network and can collect, process, and execute data in

almost real-time with limited assistance from the cloud [17].

They are able to do this because they contain a greater amount

of memory, processing power, and computing resources than

normal IoT devices. Edge IoT is generally used where time

matters most, whether this be for making more money in a

business or saving someone’s life.

In general, Edge computing requires nodes that are near the

end user, while cloud computing can be accessed from virtu-

ally anywhere. Because of this, the response time (latency) of

edge is extremely low in comparison to possible hundreds of

milliseconds for cloud computing. Processing for edge com-

puting occurs at the edge nodes, while cloud processing occurs

remotely. Cloud storage can be extremely large, however, edge

computing storage is much more constrained. The operation

environment for cloud computing is decided upon by the cloud

operator. On the other hand, the edge computing environment

is chosen by the customer. Edge IoT’s computing capability

is much lower than that of cloud IoT, as the cloud has far

more resources. Therefore, both cloud and edge computing

have their uses. The cloud is for large tasks that do not need

low latency, while edge computing is for tasks that require

low latency, but do not necessarily need a lot of computational

power in comparison.

Because IoT devices are being moved to the edge, there

is a greater focus on their security at the edge layer itself.

Even without the connection to the cloud, edge IoT devices

possess vulnerabilities that need to be protected against. Some

of the common attacks that edge IoT devices are still vulner-

able to include: denial-of-service (DoS)/distributed denial-of-

service (DDoS) attacks, information gathering attacks, man-

in-the-middle (MITM) attacks, injection attacks, and malware

attacks. To assist in the security of these edge IoT-driven
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ecosystems, attack detection and classification must be used

and deployed to identify when an attack takes place and the

specific type of cyber attack that is carried out. Furthermore,

machine learning (ML) and neural network techniques can

be used to train a model to recognize and classify different

types of attacks, which can lead to a more accurate, timely

prevention and response to growing cyber attacks at the edge.

In this paper, we review popular methods of securing IoT

systems with both edge and cloud architecture. After analyzing

the advantages and disadvantages of both architectures, we

propose an intersection of using edge IoT network data and

ML models for cyber attacks detection and classification. We

chose a public edge IoT dataset, referred Edge-IIoTset Cyber

Security Dataset of IoT & IIoT [18], with fourteen types of

attacks, along with normal data, to compare eleven ML models

and find the best ones for detecting the majority of the Edge

IoT attacks.

The key contributions of this paper are:

1) We demonstrate that the network traffic data extracted

from edge IoT devices can be used to secure edge IoT

systems against attacks using machine learning.

2) We compare the performance of eleven machine learning

algorithms in detecting and classifying fourteen different

types of attacks.

3) We conjecture that machine learning models AdaBoost

(AB), Random Forest (RF), and Decision Tree (DT) are

successful in detecting and classifying the majority of

attacks with high accuracy.

The rest of the paper is organized as follows: Section II

covers an overview of related work and highlights limitations

of existing approaches. Section III discusses the threat model

and IoT architecture, different types of attacks detected and

classified, problem definition, and proposed solution method-

ology. Section IV presents the implementation and testing

procedure of our proposed approach, as well as results and

discussion. Lastly, Section V covers the conclusion, a sum-

mary of findings, and future work.

II. RELATED WORK

Figure 1 shows the categorization of the research problems

and solution methodologies covered in the literature reviewed

in this paper. These works are organized first based on if

they were a survey or they covered a specific aspect of

security. Further, they were separated into types of security

methods: blockchain, edge computing, machine learning, and

fog computing. Works in [7], [36]–[39], discusses multiple

environments where solutions have been developed for cloud

IoT, including smart cities, healthcare, and smart homes. Some

of these include intrusion detection systems, access control

models and architectures, the use of secure communication

protocols, multi-factor authentication, predictive analysis of

users activities, and identity-based encryption. These works

bring various security issues to attention that pertain to cloud

IoT, as a lot of data from IoT devices is stored in some form

of cloud. Some of these problems include data security at rest

and in transit, data loss, breaches, and data integrity.

Fig. 1. IoT Network Security Tree Diagram

Authors in [8], discuss several cloud IoT security chal-

lenges. The first is data privacy, to which they propose a

“User-driven Privacy Enforcement for Cloud-based Services

in the IoT (UPECSI)”, which utilizes model-driven privacy,

interaction with user, and privacy enforcement points as its

main components. The model-driven privacy focuses on in-

tegrating privacy within the cloud service itself, while users

from various levels of access are offered interaction to under-

stand their requirements and create a transparent ecosystem.

Additionally, the privacy enforcement points, which reside in

the IoT gateway, make sure user-defined policies are followed

while data is outsourced to the cloud. Another approach they

addressed was developers meeting the privacy requirements of

the IoT device in the design phase before it is even launched.

This approach entails privacy by design. The second security

challenge defined is authentication and confidentiality, and this

paper proposes a two-way authentication security scheme for

IoT systems based on the Datagram Transport Layer Security

(DTLS) protocol, which is placed between the transport and

application layer. This scheme is backed by the RSA and

designed for the 6LoWPANs. The third challenge is access

control, for which this paper spotlights a method that identifies

data holders and data collectors as the two types of actors.

Data holders and collectors only receive data that they are

required to and nothing more. Likewise, a data collector

is also responsible for authenticating the data holders and

points of origin. They highlight a cipher-text policy-based

encryption approach for IoT data storage and secure access

in the cloud. Their method also reduces storage overhead of

public keys, and a user access control list (UACL) is created
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to support authorization access per user. This paper promotes

heterogeneity-supportive hybrid models to meet organizational

needs for trust, privacy, context, knowledge, and not just

subjects, objects, and the interactions between them.

A. Confidentiality

1) Blockchain: In [15], authors proposed IoT using

blockchain, which is defined as data security with a distributed,

decentralized, shared ledger where each entry is coupled with

the previous using cryptographic hash keys. With the presence

of these keys in each block, it makes it effectively too time-

consuming for attackers to modify the data in the blocks. This

paper also highlights the benefits of using blockchain with IoT

devices. Data coming from IoT devices can be stored securely

in blockchain, where the data can be encrypted using a hash

key that is verified by miners. The use of blockchain can also

help to prevent spoofing attacks and data loss through the use

of its secure blocks. It can additionally prevent unauthorized

access through the use of asymmetric encryption, where both

public and private keys are used.

Work in [9] highlights that cloud includes security con-

cerns like data protection, confidentiality, and data integrity,

but software defined networking (SDN), with the addition

of blockchain, can be used to solve those problems. SDN

virtualizes the network by separating the data plane, where

data traffic flows, and the control plane, where the network

is managed. SDN allows for dynamic control of network

throughput, individualizing device connection attributes, and

enforcing individual network security policies. However, SDN

has vulnerabilities to distributed denial of service (DDoS)

attacks when it is merged with cloud storage. Blockchain can

be added to combat this issue and enforce confidentiality in

the network. The combination of cloud, SDN, and blockchain

is termed ”Block-SDoTCloud”, where a distributed secure

blockchain is created with a cloud storage environment based

on SDN. The authors propose their solution architecture with

five layers: perception layer, infrastructure layer/IoT networks,

SDN layer, blockchain layer, and cloud layer. The perception

layer can comprehend data from the real world and interact

with the IoT application environment. It collects data in real-

time and then passes it along with some form of identifica-

tion. The infrastructure layer/IoT networks includes devices,

like routers, switches, smart TVs, etc., that transmit data

via SDN gateways. The SDN layer includes the gateways,

southbound API, dynamic controllers, northbound API, and

applications plane. It allows for mobility management, smart

optimization, switching, routing, load balancing, reliability,

and network monitoring. The blockchain layer includes the

ledger of connected entries using cryptographic hash keys.

It provides access control, confidentiality, tamper-resistance,

and security to the data stored in each block. The cloud layer

includes the cloud storage and secure transmission to and from

it. With the addition of SDN and blockchain, this layer is

effectively made more secure. Block-SDoTCloud model shows

better throughput in comparison to OpenFlow-based SDN, and

also provides protection against DDoS attacks.

B. Integrity

Work in [3], addresses the issue of security and trust compli-

cations being transferred from IoT devices to the cloud envi-

ronment. This paper proposes the trust assessment framework

for Cloud IoT. It includes the security-based trust assessment

model, which covers various security features such as risk

management, information security, and physical security. An-

other work [16], explores the trust issues of dynamic IoT cloud

computing. The authors include the usage of both vertical and

horizontal computing structures in the “extended IoT cloud”,

where IoT devices, edge, fog, and cloud are integrated in a

layered infrastructure. This paper includes a framework with

a vertical IoT cloud for trustworthy computing. For dynamic

IoT networks, authors created a policy definition model and

advanced access control, called Resource and Role hierarchy

Based Access Control (RRBAC).

1) Edge Computing: In [15], edge computing is described

as where a small edge server is located between the user

and the cloud or fog to process data closer to the user. This

helps to keep the data local, making it less vulnerable to

data tampering in transit. Additionally, edge computing has

less data compliance issues. Data cleaning and aggregating

can also be done at edge nodes, which allows for lower

bandwidth if data needs to be sent somewhere. As discussed

in [4], collecting large amounts of data from IoT devices

and storing it in one core cloud infrastructure is not scalable

in the long term. This paper proposes the “IoT-aware mul-

tilayer (packet/optical) transport software defined networking

and edge/cloud orchestration architecture,” which dynamically

distributes IoT edge processing based on the network resource

state. It also contains a congestion avoidance mechanism

and IoT-traffic control. The authors also utilize SDN-enabled

containers to assess an edge node and integrate with the “IoT-

aware SDN and cloud orchestration platform,”.

As discussed in [5], IoT devices are connected to the cloud

through Message Queuing Telemetry Transport (MQTT). IoT

uses WiFi, Bluetooth, cellular networks, and Ethernet. Radio

frequency identification (RFID) allows wireless communica-

tion between devices. Scheduling tasks and load balancing is

an issue in general networking, and it is just as much of an is-

sue in edge computing. Because edge relies on databases, they

are vulnerable to the same concerns. As highlighted, because

edge devices are usually personal, trust and authentication is

of importance. Edge devices are also concerned with privacy,

digital security, and physical security.

C. Authentication

1) Machine Learning: The paper, [15], defines ML as

training algorithms to detect anomalies or unwanted activity to

increase security. This can be used in IoT devices to protect

against different types of attacks. For instance, by using a

multi-layer perceptron (MLP) discriminator, IoT networks can

prevent denial of service (DoS) attacks, and by utilizing a

Q-learning-based offloading strategy, like Dyna-Q, or non-

parametric Bayesian techniques, an IoT network can be pro-

tected against eavesdropping. Additionally, privacy-preserving
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TABLE I
DIFFERENCES AMONG RELATED WORKS WITH RESPECT TO ARCHITECTURE DOMAIN, MODELS, AND ATTACKS CLASSIFIED

scientific computations (PPSCs) can prevent privacy leakage

on IoT devices, and digital fingerprinting can be adjusted to

work with IoT devices with support vector machines (SVMs)

and artificial neural networks (ANNs) to identify, track, and

monitor the devices accurately. Authors in [10] propose a

deep neural network (DNN) for IoT network security using

an autoencoder neural network (AENN). By keeping in mind

the causative, exploratory, and priority violation attacks, as

well as the behavior of evasion, the AENN is able to predict

intermediate attacks. Their network also circumvents high

data analysis time and data overfitting by indicating if input

samples cannot be used, and it works in an unsupervised

environment, where unknown attacks can be predicted using

learned parameters. By examining the network traffic before

transmitting data, the AENN is able to prevent intermediate

attacks early, as most cause the network to appear busy.

Moreover, the AENN uses three phases to detect intermediate

attacks: sensing, transmission, and feedback. They also utilized

back-propagation learning to lessen deviations and minimize

the false alarm rate. The proposed solution increased security

while minimizing latency and decreased the number of inter-

mediate attacks. Their AENN had above a 97% accuracy for

detecting no attack, a jamming attack, data poisoning, and a

priority violation attack.

D. Limitations of Literature

The literature explored show that there are many limitations

in the current security of IoT ecosystems. Many of them

propose solutions involving blockchain, fog computing, ma-

chine learning, or edge computing, but each of these have

their own set of problems as well. Blockchain, for one, isn’t

scalable, is vulnerable to phishing, routing, and Sybil attacks,

and generally has poor endpoint security [11]. Fog computing

has issues in authentication, trust, privacy, and security [12].

Machine learning is vulnerable to adversarial attacks, data

poisoning, online system manipulation, transfer learning at-

tacks, data confidentiality and trustworthiness, reproducibility,

and overfitting [13]. Lastly, edge computing has problems

with data storage, backup, and protection, password risks and

authentication, and perimeter defense [14].

Several works [19]–[23], [25], [26], [28], [32], [33] in the

literature have demonstrated the use of machine learning-based

solutions to detect and classify cyber attacks. However, most

of them are either applied on a different domain, only detected

selected attacks, or used a selected ML algorithm without

comparing the performance of different models, as shown in

Table I. This table shows (see the last row in red) how our

approach is different in terms of domain and models used, as

none of them cover both the edge IoT environment, as many

models, or as many attacks as ours does.

This paper aims to address the following limitations:

1) Unlike traditional host-based approaches in [19]- [21],

[30], [32], and [33], and a cloud environment in [23]-

[28] and [31]- [33], we aim to focus on edge IoT systems

to detect and classify cyber attacks.

2) Unlike the experiments done in [19], [20], [22], [23],

[25], [26], [28], and [31], we use eleven different ma-

chine learning models to compare their performance.

3) Unlike the attack classification analysis done in [19],

[23], [26], [28], and [31], we cover fourteen different

attacks, as detailed in the next section.

III. SYSTEM ARCHITECTURE AND PROPOSED

METHODOLOGY

A. Multi-layered IoT Architecture

Figure 2 displays a threat system model for an IoT system

with edge and cloud layers. It depicts that a user sometimes

interacts with both an edge and cloud user interface to use an

IoT device. The edge interface connects the user to various
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Fig. 2. Multi-layered IoT Architecture and Threat Model

sensors, actuators, and then eventually an IoT device and

device controller. If the data collection, computation, and

execution can be done all locally, then an edge node, or

gateway, does not need to be used, and the system stays at

the edge layer. At this layer, both physical and logical local

attacks can be performed by malicious actors. However, if

an edge IoT device cannot perform all of the computations

locally, an edge node is used to send the data to a cloud data

center, which assists in larger computations and executions.

This brings in the cloud layer of the system, wherein more

physical and logical remote attacks can occur. As more edge

IoT driven use-cases are getting developed, it is important to

deploy security mechanisms at the edge of the ecosystem.

B. Problem Definition and Threat Model

IoT devices are not inherently secure. Most IoT devices are

small and are only made to collect data and send it out to

the cloud. This means that data transfer is one of the most

important parts of IoT to secure. Edge devices are different

in that they are made to execute as many computations as

possible locally, so they effectively remove the potential attack

surfaces dealing with the cloud. This is why we chose to use

an edge IoT dataset, as they are more secure without the

connection to the cloud. Still, edge devices have their own

vulnerabilities that attackers can exploit, so attack detection

and classification can be carried out to know how to better

secure them.

Our goal in this paper is to detect and classify the following

cyber attacks orchestrated at the IoT edge layer [22].

1) DDoS UDP: This is a DDoS attack where a large

quantity of User Datagram Protocol (UDP) packets are

transmitted to an edge server to overload it and prevent

it from processing and responding to legitimate requests.

Attackers will typically impersonate the UDP packets’

source IP address.

2) DDoS ICMP: This is a DDoS attack where the attacker

floods the IoT device with Internet Control Message

Protocol (ICMP) echo queries, or pings, to make it

unable to respond to legitimate queries.

3) Ransomware: This is a type of malware attack where

the attacker takes the IoT device or files hostage by

restricting access and then demands a ransom to restore

access.

4) DDoS HTTP: This is a type of DDoS attack where the

attacker floods the IoT server with Hypertext Transfer

Protocol (HTTP) queries and causes it to overload.

5) SQL injection: This is a type of injection attack where

a Structured Query Language (SQL) query is modified

by an injected query fragment that the attacker puts in,

causing the attacker to gain access to the target IoT

database and be able to alter the data .

6) Uploading: This is a type of injection attack where an at-

tacker uploads a malware program file into a web server

associated with an IoT system to gain administrative

privileges.

7) DDoS TCP: This is a type of DDoS attack where

the attacker floods the IoT network with requests for

Transmission Control Protocol (TCP) connections faster

than it can handle, effectively disabling it.

8) Backdoor: This is a type of malware attack where the

attacker takes advantage of vulnerabilities in the IoT

system to gain unauthorized remote access. This then

lets the attacker manage the IoT system’s files, install

software, and monitor the system as a whole.

9) Vulnerability scanner: This is a type of information
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Fig. 3. System Architecture Diagram Developed in Orange

gathering attack where the IoT network is automatically

scanned for environmental, internal, or external vulner-

abilities.

10) Port Scanning: This is a type of information gathering

attack where IoT device ports are automatically scanned

to find which are open or closed, and what security

protocol they use if they have one.

11) Cross-Site Scripting (XSS): This is a type of injection

attack where an attacker injects malicious scripts into a

website associated with the IoT device, so they can gain

access to vulnerable data.

12) Password: This is a type of malware attack where an

attacker tries to find the password to an IoT device or

system through successive attempts.

13) Man-in-the-middle (MITM): This is a type of attack

that alters or hinders the communication between two

legitimate points in the IoT network.

14) Fingerprinting: This is a type of information gathering

attack where an attacker identifies the operating system

(OS) of the target device to determine system vulnera-

bilities and map the remote network.

C. Proposed Approach

The proposed solution methodology combines edge comput-

ing and machine learning to identify IoT attacks and create a

TABLE II
CNN HEAD MODEL

Layer Number Type Activation Number of Neurons

1 Dense ReLU 256
2 Dense ReLU 128
3 Dense Softmax 15

more secure method of transferring data for IoT devices. Edge

computing was chosen specifically because many IoT devices

that can perform quick computations locally with minimal

cloud involvement are exploding in popularity, as they are

more secure and have better processing speed.

The system architecture for our proposed approach, as

designed by Orange [35], is shown in Figure 3. The specific

types of detection and classification machine learning models

that were compared for best performance were: Random

Forest (RF), XGBoost (XGB), Gaussian Naive Bayes (GNB),

Convolutional Neural Network (CNN) with a ResNet50 base

[34] and a custom head model - as shown in Table II,

Classification and Regression Tree (CART), AdaBoost (AB),

K-Nearest Neighbors (KNN), Multilayer perceptron (MLP) -

a type of Artificial Neural Network (ANN), Support Vector

Machine (SVM), Logistic Regression (LR), and Decision Tree
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TABLE III
MODEL HYPERPARAMETERS

Model Hyperparameters

RF

num trees = 10
num attr each split = sqrt(70)
smallest subset split = 5

XGB
objective = multi:softprob
n estimators = 100

GNB n/a

CNN

optimizer = Adam
learning rate = 0.001
loss = categorical crossentropy

CART

ccp alpha = 0
criterion = gini
min samples leaf = 1
min samples split = 2
splitter = best

AB

num estimators = 50
learning rate = 1.0
classif algorithm = SAMME.R

KNN

num neighbors = 5
metric = Euclidean
weight = Uniform

ANN

neurons per hidden layer = 100
activation = ReLU
solver = Adam
regularization = 0.0001
max iter = 400
replicable training = true

SVM

C = 1.0
kernel = RBF
g = auto
num tolerance = 0.0010
iter limit = 100

LR
regularization = L2
strength = 0.110

DT

induce binary tree = true
min num instances in leaves = 2
smallest subset split = 5
max tree depth = 100
stop when maj reaches (%) = 95

(DT). The hyperparameters used for these models are outlined

in Table III. The Edge-IIoTset Cyber Security Dataset of IoT &

IIoT was used for experimentation [18]. This dataset contains

both normal and attack IoT network traffic data.

IV. EXPERIMENT

A. Implementation and Testing

To preprocess the data, each CSV file was first uploaded

to Google Colaboratory, consisting of fourteen attacks and

thirteen types of normal IoT network traffic data. The at-

tacks included were: DDoS UDP, DDoS ICMP, Ransomware,

DDoS HTTP, SQL injection, Uploading, DDoS TCP, Back-

door, Vulnerability scanner, Port Scanning, Cross-Site Script-

ing (XSS), Password, Man-in-the-middle (MITM), and Finger-

printing. The normal data consisted of sensors that detected

the following: sound, temperature, humidity, ultrasonic waves,

water level, pH level, soil moisture, heart rate, flame level,

servo motor speed, stepper motor speed, DC motor speed, and

IR receiver frequencies. Next, the CSV files were converted

to data frames, and random samples were taken from each

of them before combining them all into one data frame. We

Fig. 4. Preprocessed Class Numbers

Fig. 5. Top 30 Data Features - (C) Categorical and (N) Numerical

eradicated features that were either unnecessary for attack

detection and classification - like full URLs or messages -
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or had all zeroes or null data. Figure 4 shows the normal data

and attack numbers after preprocessing the data. This ended

up with the data having a total of 70 unique features, with

the top 30 being shown in Figure 5. The top features were

found through the ranking in Orange and feature importance

functions in the RF and XGB models. After the data was

cleaned, we conducted a random grid search to determine

the hyperparameters - shown in Table III. Then the data was

split into 70% training, 10% validation, and 20% testing. To

assess, we used the Scikit-Learn library in Python on Google

Colaboratory Pro (Colab) with 25.5GB for system RAM and

166.8GB of disk space for five of the models, and the machine

learning tool, Orange, for eight of them. The RF and GNB

models were done in both Colab and Orange, so the best-

performing one was chosen for the results. Furthermore, the

models were evaluated based on accuracy, precision, recall,

and F1 scores. The equations below include shorthand for

the number of true positives (TP), true negatives (TN), false

positives (FP), and false negatives (FN).

Accuracy =
TP + TN

TP + FP + TN + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 Score =
2TP

2TP + FP + FN

TABLE IV
DETAILED MODEL RESULTS

Model Accuracy Precision Recall F1

RF 0.984 0.993 0.979 0.986
XGB 0.945 0.949 0.925 0.933
GNB 0.792 0.698 0.850 0.766
CNN 0.928 0.941 0.928 0.923
CART 0.931 0.910 0.913 0.912

AB 0.999 0.999 0.999 0.999
KNN 0.703 0.704 0.703 0.698
ANN 0.825 0.848 0.825 0.825
SVM 0.531 0.600 0.531 0.511
LR 0.380 0.251 0.380 0.275
DT 0.971 0.970 0.971 0.970

B. Results

Figure 6 shows the statistical evaluation results for each

model, and Table IV presents a more detailed version. Figures

7, 8, and 9 in Appendix A display the confusion matrices for

the AB, RF, and DT models, respectively.

C. Discussion

Each of the models performed relatively well in identifying

the Normal data in the dataset, except for the LR model,

which had an accuracy of 21.2%. However, the attack data

identifications were more varied. The AB model produced the

best results for the dataset overall with an average F1 score

and accuracy of 99.9%. The RF model came in second with

an average F1 score of 98.6% and an accuracy of 98.4%.

The DT model was a close third with an average 97.0% F1

score and 97.1% accuracy. The rest of the models achieved
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similar results above an average of 70.0% for the F1 score and

accuracy, except for the KNN, SVM, and LR models. The LR

model was the worst-performing model, with an average F1

score of 27.5% and an accuracy of 38.0%. The KNN model

achieved mediocre results due to the scale of the data, and

the SVM model didn’t perform well due to the target classes

overlapping in some areas and the dataset being fairly big.

The reason for the LR model’s poor performance was mainly

due to its issue with discrete values, as it normally handles

continuous values better. In addition, the classification problem

deals with higher dimensions that are not best suited for SVM

and LR.

As for the specific classes, the Fingerprinting attacks were

among the highest misclassified attacks across all models. The

AB model performed the best on them, with a 99.3% accuracy

for correct classifications, while the RF model had 87.3% and

the DT model a 16.0%. The Uploading attacks were another

of the highest misclassified, with the AB model having an

accuracy of 99.7%, the RF model a 96.3%, and the DT model

a 92.0%. In contrast, the DDoS UDP and MITM attacks were

among the highest correctly classified attacks across all of the

models, with over half of them scoring 100.0% accuracy.

It was noted that different models performed better or

worse on different attacks, regardless of the overall accuracy

recorded. Additionally, our proposal was limited to analyzing

static IoT network traffic data, rather than live data, and using

only one dataset. In all, an AB model is the best-performing

choice out of the eleven for edge IoT device attack detection

and classification of the attacks in this dataset.

V. CONCLUSION AND FUTURE WORK

IoT is a rapidly growing sector in the technology field,

and there are a lot of security concerns that come along

with this growth. IoT devices are everywhere and affect

everyone, whether someone is exercising in the park with their

smartwatch, working at a smart industrial plant, or cooking in

their smart kitchen. These devices constantly give and receive

huge amounts of sensitive data, so their security is a definite

concern. The addition of cloud and cloud service providers

(CSPs) adds even more security vulnerabilities due to the level

of connectivity that the nature of a cloud network provides.

Multi-tenancy, misconfiguration, and CSP trust are all common

issues that can lead to security issues with IoT devices in a

cloud environment.

After looking over each of these papers, we are even more

aware of the issues that cloud IoT, specifically, brings to the

realm of technology. Sensitive data is more at risk of exposure

due to the distance it travels between the IoT device and the

cloud server. Proper network-layer protocols and encryption

must be used to ensure secure data in transit. Additionally,

there is a loss of control when a client begins to use a

CSP to manage and access their IoT device data. In most

cases, the provider has a large amount of control over the

data storage and even the software used for the device, so a

lot of the system transactions happen behind the scenes and

away from the client’s eyes. This brings in the concept of

provider trust, in which the client has to trust their provider

to handle their information with the best and most up-to-

date security procedures, so that the data is not modified,

deleted, or stolen. Even without adding the cloud, many

issues exist within IoT networks, like confidentiality, integrity,

authentication, availability, and scalability. And, with edge IoT

devices especially, the security impact can be disastrous. With

all of these issues, many of the papers reviewed proposed

framework solutions to mitigate some vulnerabilities in and out

of the cloud for IoT devices. Unfortunately, there will never be

a catch-all solution to the problems of cloud and IoT, due to

the nature of the devices and the cloud environment itself, but

the frameworks shown are helpful ways to protect sensitive

information, nonetheless.

In this work, we compared eleven different machine learning

models with edge IoT network traffic data, including both

diverse normal data and attacks, as a way to combine the

aspects of machine learning and the edge to better secure

the data. The machine learning models were used to assist in

determining the best attack detection and classification model

for fourteen different attacks. Through our experiments, we

determined that an AdaBoost model is the best-performing

model choice out of the eleven tested for the dataset used.

For future work, the results obtained in this paper will be

fed through several digital forensics tools to determine the

best one for attack reconstruction with anti-forensics in mind.

Additional future work could include using multiple datsets

and live data analysis.
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APPENDIX A

CONFUSION MATRICES FOR TOP PERFORMING MODELS

Fig. 7. AB Model Confusion Matrix

Fig. 8. RF Model Confusion Matrix

Fig. 9. DT Model Confusion Matrix
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