IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

1427

Multi-Timescale Ensemble ()-Learning for Markov
Decision Process Policy Optimization

Talha Bozkus

Abstract—Reinforcement learning (RL) is a classical tool to
solve network control or policy optimization problems in un-
known environments. The original Q-learning suffers from per-
formance and complexity challenges across very large networks.
Herein, a novel model-free ensemble reinforcement learning algo-
rithm which adapts the classical Q-learning is proposed to handle
these challenges for networks which admit Markov decision pro-
cess (MDP) models. Multiple Q-learning algorithms are run on
multiple, distinct, synthetically created and structurally related
Markovian environments in parallel; the outputs are fused using
an adaptive weighting mechanism based on the Jensen-Shannon
divergence (JSD) to obtain an approximately optimal policy with
low complexity. The theoretical justification of the algorithm,
including the convergence of key statistics and Q-functions are
provided. Numerical results across several network models show
that the proposed algorithm can achieve up to 55% less average
policy error with up to 50% less runtime complexity than the
state-of-the-art QQ-learning algorithms. Numerical results validate
assumptions made in the theoretical analysis.

Index Terms—Markov decision process (MDP), network opti-
mization, ensemble learning, reinforcement learning, Q-learning

1. INTRODUCTION

ARKOV Decision Processes (MDPs) are natural math-

ematical tools for modeling sequential decision-making
problems in many large real-world networks [1], [2], [3]. When
the underlying system dynamics are observable, the optimiza-
tion problem of MDPs can be solved by dynamic programming
[4]. However, these algorithms are not directly applicable to
problems where the underlying MDP is unknown (or non-
observable), in which case model-free Reinforcement Learn-
ing (RL) algorithms such as @-learning can be employed to
simulate the system dynamics and learn the policies and value
functions [5].

Manuscript received 19 July 2023; revised 30 November 2023 and
19 January 2024; accepted 26 February 2024. Date of publication 4 March
2024; date of current version 20 March 2024. This work was supported in
part by ARO under Grant W911NF1910269; in part by DOE under Grant DE-
SC0021417; in part by Swedish Research Council under Grant 2018-04359;
in part by NSF under Grant CCF-2008927, Grant CCF-2200221, Grant CIF-
2311653, and Grant RINGS-2148313; in part by ONR under Grant 503400-
78050 and Grant N00014-15-1-2550; and in part by USC + Amazon Center on
Secure and Trusted Machine Learning. The associate editor coordinating the
review of this manuscript and approving it for publication was Dr. Shaofeng
Zou. (Corresponding author: Talha Bozkus.)

The authors are with the Ming Hsieh Department of Electrical and Com-
puter Engineering, University of Southern California, Los Angeles, CA 90007
USA (e-mail: bozkus@usc.edu; ubli@usc.edu).

Digital Object Identifier 10.1109/TSP.2024.3372699

and Urbashi Mitra

, Fellow, IEEE

Q@-learning can be employed to solve a variety of optimiza-
tion and control problems in unknown environments [6], [7],
[8], [9]. However, it suffers from several performance and
complexity challenges across large MDPs, including high es-
timation bias and estimation variance, training instability, slow
convergence, and high sample complexity. To this end, several
variants of ()-learning have been developed to handle these
challenges. Estimation bias is considered in [10], [11], and the
estimation variance and training stability are examined in [12],
[13]. The convergence rate is improved in [14], and training data
efficiency is considered in [15]. In [16], [17], strategies specific
to wireless networks are considered. As these algorithms have
different objectives, their strategies and implementations also
differ. Similar to the original)-learning, a single @-function
estimator is employed in [14], [15]. On the other hand, multiple
(Q-function estimators are used in [10], [12], [13], [18], [19], in
which each estimator is initialized independently, and their out-
puts are fused into a single estimate via a weighting mechanism.
These algorithms directly operate on the original Markovian
environment; however, ()-learning algorithms using multiple
Q@-function estimators on multiple Markovian environments
have not been well-studied. We will see that the performance
and complexity of ()-learning can be further improved by em-
ploying multiple)-function estimators on multiple structurally
related synthetic Markovian environments operating at differ-
ent time-scales.

Despite extensive prior work [20], [21], achieving efficient
and scalable exploration in large Markovian environments re-
mains a major challenge in reinforcement learning. Too little
exploration may cause the agent to behave greedily. Conse-
quently, some parts of the environment may never be visited,
and the agent may keep selecting sub-optimal actions and get
stuck in a local optimum. On the other hand, too much ex-
ploration may yield a high accumulated cost, preventing the
utilization of previous experiences, and be computationally ex-
pensive for very large environments. While the previous work
generally employs a single efficient exploration strategy [20],
[21], we herein propose a two-level exploration strategy, i.e.
there are two different sources of exploration: at the algorithm-
level, we use one of the existing exploration techniques (such
as epsilon-greedy ()-learning [5]), and at the environment-level,
we utilize multiple, distinct, synthetically created and struc-
turally related Markovian environments, which provide dif-
ferent orders of relationships between states. As we consider
products of the probability transition matrix of the original

1053-587X © 2024 1EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 10,2024 at 05:19:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5178-8676
https://orcid.org/0000-0002-8896-1177
mailto:bozkus@usc.edu
mailto:ubli@usc.edu

1428

system to construct our synthetic systems, we deem our ap-
proach as having multiple time scales, corresponding to the
n-hop transition matrices of the Markov chain. Our goal is to
improve the exploration capabilities of the agent and accelerate
the exploration stage of ()-learning.

To this end, we propose a novel ensemble ()-learning al-
gorithm, where multiple (Q-learning algorithms are run in
parallel on multiple distinct, synthetically created and struc-
turally related Markovian environments. Their outputs are fused
into a single Q-function estimate using an adaptive weighting
mechanism based on a Jensen—Shannon divergence between the
distributions corresponding to the @Q-functions of different en-
vironments. In the end, an approximately optimal deterministic
policy is obtained with low complexity. In our prior work [22],
[23], we introduced similar algorithms and presented prelimi-
nary findings. That initial analysis yielded significant insights
into the advantages of employing multiple Markovian environ-
ments to improve the accuracy and complexity of the original
(Q-learning. Herein, we provide significant improvements over
that preliminary work: (i) We propose a more interpretable
and computationally cheaper way to construct multiple syn-
thetic Markovian environments. (ii) We remove the constraints
and approximations on the structure of the network models;
hence, our current design is applicable to a wider range of
networks. (iii) We provide a more complete theoretical analysis
of the proposed algorithm. (iv) We utilize a new distance metric
based on the JSD to improve the accuracy of the adaptive
weighting mechanism.

The main contributions of the paper are as follows: (i) We
systematically construct the multiple synthetic Markovian en-
vironments to enable an efficient and scalable exploration in
Q-learning. (ii) We propose a novel Q-learning algorithm based
on an ensemble of the -functions from multiple Marko-
vian environments. (iii) We provide theoretical analyses on
the convergence and error variance of the proposed algorithm.
(iv) We simulate the algorithm on several large real-world net-
work classes. Numerical results show that the proposed method
outperforms the state-of-the-art ()-learning algorithms on all
networks, achieving up to 55% less average policy error with
up to 50% less runtime complexity. In addition, simulations
confirm the theoretical analyses.

We use the following notation: the vectors are bold lower case
(x), matrices and tensors are bold upper case (A), and sets are
in calligraphic font (S).

II. SYSTEM MODEL AND TOOLS

A. Infinite Horizon Discounted Cost MDP Model

MDPs are characterized by 4-tuples {S, A, p, ¢}, where S
and A denote the finite state and action spaces, respectively.
We denote s; as the state and a; as the action taken at dis-
crete time period ¢. The transition from state s to s’ under
action a occurs with probability p,(s,s’) =p(s’' =st41]s=
s¢,a = ay), which is stored in the (s, s’,a)" element of the
three-dimensional probability transition tensor (PTT) P, and a
bounded average cost cq(s) =, cgPa (5,5) Ea(s,s) is in-
curred, which is stored in the (s, a)*" element of the cost matrix

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

C, where ¢, (s, s’) is the instantaneous transition cost from state
s to s’ under action a. We denote the probability transition
matrix (PTM) and cost vector under the action a by P, and
Cq, respectively. We focus on infinite horizon discounted cost
MDPs, where ¢ =Z1 U {0}. Our goal is to solve Bellman’s
optimality equation:

v*(s) =minv,(s) =minE, lz v, (s¢)]s0 = s], (1)
t=0

2)

7 (s) = argmin v (s),
™

forall s € S, where v is the value function [4] under the policy
m, v* is the optimal value function, 7 is the optimal policy, and
~ € (0,1) is the discount factor. The policy 7 can define either
a specific action per state (deterministic) or a distribution over
the action space per state (stochastic) for each time period. If
the policy does not change over time, i.e.,m; = 7, V¢, then it is
deemed stationary. There always exists a deterministic station-
ary policy that is optimal given a finite state and action spaces
[4]. Hence, we, herein, consider deterministic and stationary
policies.

B. Q-Learning

When the system dynamics (p and ¢) are unknown or non-
observable, ()-learning can be used to solve (1) and (2).
Q-learning seeks to find the optimal policy 7* by learning the
@ functions for all (s, a) pairs using the following update rule:

Qls,0) & (1 =)Q(s,0) + a(ca(s) +7 min Q(<',a")), B

where « € (0, 1) is the learning rate. In practice, e-greedy poli-
cies are used to tackle the exploration-exploitation trade-off to
ensure that sufficient sampling of the system is captured by vis-
iting each state-action pair sufficiently many times [5]. To this
end, a random action is taken with probability € (exploration),
and a greedy action that minimizes the Q-function of the next
state is taken with probability 1 — € (exploitation). The agent
interacts with the environment and collects samples {s, a, s’, ¢}
to update @-functions using (3). The learning strategy must
specify the trajectory length () (the number of states in a tra-
jectory) and the minimum number of visits to each state-action
pair (v), which is generally used as a termination condition for
the sampling operation. -functions converge to their optimal
values with probability one, i.e., Q(s, a) wrl, Q* (s, a) for all
(s,a) if necessary conditions are satisfied [24]. The optimal
policy and value functions can be inferred from the @)-functions
as follows:

m*(s) = argmin Q*(s,a), v*(s)=minQ*(s,a). (4)
acA acA
C. Prior Work on Ensemble (@Q-Learning and Model
Ensembles

There has been extensive work on ensemble Q-learning al-
gorithms in the RL literature. For instance, [19] extends double
@-learning [10] to reduce estimation bias through multiple esti-
mators, while [25] enhances training stability by reducing error

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 10,2024 at 05:19:04 UTC from IEEE Xplore. Restrictions apply.

BOZKUS AND MITRA: MULTI-TIMESCALE ENSEMBLE Q-LEARNING FOR MARKOV DECISION PROCESS POLICY OPTIMIZATION

accumulation based on bootstrapping error. In [26], a robust
@-learning method employs random convex combinations of
multiple Q-functions, and [12] reduces approximation error
variance through @Q)-function averaging for more stable training.
A randomized ensemble double Q)-learning is presented in [13]
to improve sample efficiency, while [27] employs pessimisti-
cally trained offline ()-functions for the same purpose.

A variety of works have also leveraged model ensembles for
a variety of RL problems. For example, [28] approximates the
real environment using a linear combination of pre-trained mod-
els. To improve sample complexity, [29] utilizes an ensemble
of deep neural networks, [30] employs an ensemble of boot-
strapped models encoding probability distributions, and [31]
introduces an ensemble of Bayesian neural network-based dy-
namics models. Moreover, [32] improves exploration via model
disagreement based on uncertainty estimates from ensembles.

Despite this prior work, -learning algorithms using multi-
ple QQ-function estimators on multiple Markovian environments
(i.e., multiple models) have not been well-studied. By combin-
ing the power of ensemble ()-learning and model ensembles,
we will see that sampling and training can be accelerated, and
more accurate and stable Q-functions can be produced.

D. Sampling and Creating Multiple Markovian Environments

There are several ways to create multiple environments (and
the corresponding PTTs) based on the PTT of the original
environment P. A natural strategy is to employ some function
of P (or PT). In particular, the probability p,(s,s’) should
be related across different environments, and the PTTs of dif-
ferent environments should be row-stochastic (i.e. each PTM
corresponding to a different action is row-stochastic) or can
be converted into row-stochastic environments by employing
appropriate normalization without changing the original struc-
ture. We herein propose to use n-hop PTTs (P™) because
(i) they describe the m-step transition probabilities between
states; hence, they are interpretable, corresponding to multi-
ple time-scales, (ii) they are easily computable using efficient
matrix multiplication methods, (iii) they are inherently row-
stochastic, and (iv) they lead to a nice mathematical analysis
(as will be shown later).

There are various factors that suggest employing n-hop
Markovian environments could improve the exploration capa-
bilities of the overall system in several ways: (i) They enable
the agent to traverse longer trajectories and uncover new state-
action pairs beyond its immediate reach, potentially expedit-
ing the agent’s understanding of the environment with fewer
interactions. (ii) They enable the agent to learn from indi-
rect experiences by simulating trajectories that are not directly
observed. (iii) They can encourage the agent to consider longer-
term rewards and take actions that may not have immediate re-
wards, leading to better long-term performance, particularly in
environments with sparse rewards or long-term dependencies.
(iv) They enable the agent to exploit environment patterns by
exploring longer trajectories that uncover complex relationships
between actions and outcomes, which can be particularly valu-
able in structured or repetitive environments such as mazes or

1429

Algorithm 1 Sampling & Creating Multiple Environments
Input: [, v, K, M™

Output: M™ forn € {2,3,. K}

Initialize each element of P, with IS SI foraec A

—

2: while each (s, s’) in M) not experienced v times do

3: Choose an initial state s randomly from S

4: repeat [times

5 Sample {s, a, s'} from M)

6: Po(s,s) «—Pu(s,s)+1

7: end

8: end while

9: Normalize the sum of each row in 13(1 tol foraec A

10: forn€{2,3,..., K} do

11: Create P" by taking n'" matrix power of P, forac A
12: Denote /\/l(”) as the synthetic Markovian environment

corresponding to the P
: end for

—_
(95}

puzzles, where the agent must learn to identify and leverage
patterns to achieve its objectives. (v) They can help the agent
to better handle environments with changing dynamics by en-
abling it to learn from past experiences that may no longer be
directly relevant to the current state of the environment.

The process of sampling, estimation, and constructing mul-
tiple Markovian environments is explained in Algorithm 1.
The inputs are the original Markovian environment, denoted
by M), from which the sampling process is performed, the
trajectory length (I), the number of times each different state
transition (s — ') in M) must be experienced (v), and the
total number of Markovian environments (K'). The outputs are
the K — 1 synthetic Markovian environments (SME), denoted
by M™ forn = 2,3, ..., K. The underlying PTT, P, is initially
unknown as per the model-free assumption and needs to be
estimated to create the PTTs of the multiple environments. Let
P denote the estimated PTT, and P, denote the PTM for the
action @ in P for each a € A. In line 1, we initialize each
element of 15a with ﬁ so that it is a valid PTM for each
a € A. We keep sampling from M (1) and updating the elements
of P until each one-step transition between different states
under different actions in M) is experienced at least v times
to ensure that P is a sufficiently accurate estimate of P in
lines 2-8. This procedure is known as sample averaging [33].
We normalize f’a row-wise such that the sum of each row in
P, is 1 for each a € A in line 9. We then create the n-hop PTTs
using P in line 11. Each different P inherently corresponds
to a different Markovian environment and is denoted by M (™)
in line 12. The relationship between the original Markovian
environment M (Y and the synthetic Markovian environments

™) (n > 1) is given in Fig. 1.

Other approaches to estimate P include function approx-
imations and approximate maximum likelihood estimation
techniques [34], [35], [36]. However, these approaches have
drawbacks: (i) Non-linear function approximations such as
neural networks lack interpretability. (ii) They do not appear

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 10,2024 at 05:19:04 UTC from IEEE Xplore. Restrictions apply.

1430

MM

M)

u P4 matrix

1 i power
—_—

—
| A| many } i |A| many
PTMs PTMs

The relationship between M (1) and M (™),

Fig. 1.

to offer significant computational advantages over sample av-
eraging in sparse Markovian environments. (iii) They gener-
ally do not exploit the structural properties of the system.
(iv) Training and parameter optimization can be computa-
tionally challenging.

The estimation quality affects the accuracy of P (and thus
/\/l(")) differently for each n. As n increases, the error from
imperfect sampling accumulates due to matrix multiplications.
Consequently, higher-order environments may have low accu-
racy if sampling in the original environment is not done suffi-
ciently. This suggests that n should not be chosen very large
for practical purposes, as we shall see in the numerical results.

III. NEQL ALGORITHM AND ANALYSIS

In this section, we present the n-hop Ensemble Q-Learning
(nEQL) algorithm (Algorithm 2). It is a model-free algorithm
since the system dynamics, including transition probabilities
and costs, are unknown. Our approach utilizes K — 1 SMEs
(M) for ne2,...,K) in addition to the original Marko-
vian environment (M), resulting in a total of K Markovian
environments. The high-level comparison between the origi-
nal @-learning algorithm, conventional ensemble ()-learning
algorithms and proposed -learning algorithm is shown in
Fig. 2, where Q™ represents the Q-function estimator of the
Q-learning run on M ™ for n € [1, K.

The inputs to Algorithm 2 consist of the trajectory length (1),
the minimum number of visit requirement to each state-action
pair (v), the update ratio at time ¢ (u; € [0, 1]), the total num-
ber of Markovian environments (K), the empty (-tables for
K different environments (Q(™) for n € {1,2, ..., K}), and K
different Markovian environments (M) forn € {1,2, ..., K'})
since Algorithm 2 requires access to all Markovian environ-
ments. Let w; be the weight vector of size K at time t (with
wgn) being the n*" element of w;). The weight vector at t =0
(W) is initialized randomly to break the symmetry in line 1
(i.e. each element is chosen randomly from [0, 1], and the vector
is softmax-normalized so that ZnK:1 wé") = 1). The iterations
continue until each state-action pair in M) is visited at least

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

Algorithm 2 n-hop Ensemble)-Learning (nEQL)

Input: 1, v, u;, K, Q, M™ nec{1,2,.. K}
Output: Q%, &

1: Initialize wo randomly, Q¥ < 0, t < 0

2: while each (s, a) pair in M) not visited v times do

3: choose common initial state for all M (™) randomly

4: repeat [times

5: for each n e {1,..., K} do

6: sample {s,a, s’, ¢} from M (") and update an)
using (3)

7: convert Q! into probabilities Q" state-wise
using the negative softmax

8: w™ « 1 - AISD(QV(IQ™)

: end for

10: w; < softmax(wy)

11: Qifyy w Qi + (1—u) Yoo wi QP

12: t—t+1

13 end

14: end while
15: 7(s) < argmin,, Q%(s,a’)

[MO MO] [ALY [ME)
l l L |
QM QW [Q) Q) | Q)

(a) Original QL (b) Ensemble QL (c) Proposed QL

Fig. 2. Classification of Q-learning (QL) algorithms based on their strategies
and implementation.

v times (in line 2) to ensure that different state-action dynamics
are sufficiently represented.

At the end of each trajectory (i.e. every ! time step), all
K Markovian environments are reset, and a common ini-
tial state is assigned randomly from {1,2,...,|S|}, as indi-
cated in line 3. In line 6, independent samples are collected
from each different Markovian environment, and corresponding
(Q-tables are updated independently. We emphasize that given
the common initial state, different actions are taken following
the epsilon-greedy policy of each different environment. As
a result, different next state and cost pairs are observed for
different environments. This procedure is repeated [times, after
which a random but common initial state is set. In line 7, the
@-functions are converted into probabilities per state using the
negative softmax function. For example, if the Q-functions for a
given state are [1, 1.4, 0.8, 2] (assuming four actions), we input
the negative of the Q-functions ([-1, -1.4, -0.8, -2]) to softmax
function, and compute the corresponding probabilities as [0.31,
0.21, 0.37, 0.11]. Recall that we are doing cost minimization;

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 10,2024 at 05:19:04 UTC from IEEE Xplore. Restrictions apply.

BOZKUS AND MITRA: MULTI-TIMESCALE ENSEMBLE Q-LEARNING FOR MARKOV DECISION PROCESS POLICY OPTIMIZATION

thus, the smaller Q-function is more likely to correspond to
the optimal action. In line 8, we compute the distance between
the probability distributions le) and QE”) using the averaged
Jensen-Shannon divergence (AJSD) defined as follows:

AISD(QM Q™) = |ZJSD 5,)Q (5,:), (5)

where Qﬁ") (s,:) is the probability vector of size |.A|, and JSD
between probability distributions p and ¢ is defined as [37]:

(.0 =5 [K1 (1750) v 11 (25 2)]. @

where KL denotes the Kullback-Leibler divergence using base
2. Although there are several distance measures, including [,
distance between le) and QE”’) or KL divergence between
QE” and QE”), we employ JSD because (i) JSD is a symmetric
measure in contrast to the KL divergence. (ii) JSD is a smoothed
and bounded version of KL divergence (bounded to [0,1] and
hence AJSD is also bounded to [0,1]); thus, it is robust to noise,
outliers, or small perturbations in the Q-functions. (iii) Numer-
ical results show that it provides superior performance to the
other measures (see [38]). Herein, a larger w,ﬁ") implies that the
two sets of probabilities (le) versus an)) are closer, so are
the corresponding Q-functions (le versus Qtn)). The vector
w, is softmax-normalized in line 10 and used to update the
Q-function output of Algorithm 2, Q¢¢, in line 11. When updat-
ing Qi, previous experience are exploited by utilizing fraction
uy of the Qit from the previous iteration (exploitation), while
multiple Markovian environments are sampled based on their
weights (exploration), and their contributions are weighted by
1 — uy. In the end, the estimated policy 7 is obtained from Q
in line 15.

The Q! (iterative) is updated adaptively using the current
weight vector wy; hence, it captures asymmetric information
between different Markovian environments, i.e., how the utility
of samples obtained from M (™) may change during iterations.
It is likely that M) provides more useful samples at the
beginning as it is the original environment, and there are not
enough samples to capture the higher-order relationships versus
the first-order relationships. On the other hand, M () for larger
n contributes more as the iterations increase as the first-order
relationships may not aid as much in exploration.

The weights in Algorithm 2 (W,E"), ne{l,2,..,K}) con-
verge due to the fact that the distinct Q)-functions converge to
their optimal values via Q-learning [24], and the weights are
calculated based on the attendant QQ-functions. We will also
verify the convergence of the weights numerically.

We emphasize that there exists a potentially distinct op-
timal policy for each K different Markovian environment
(ie. my,m5,...,mj)) corresponding to different ()-functions
QW, QM) ...,Q¥)). Algorithm 2 also yields an ensemble
policy (#) corresponding to the Q-function output Q. We will
demonstrate that Q' converges to the optimal Q-functions of
the original environment (Q(") *) in the mean-square sense, and
thus the ensemble policy (7) also converges to the optimal
policy of the original environment 7} . This implies that we can

1431

obtain the optimal policy 77, which is the ultimate goal, using
our proposed algorithm with significantly lower complexity.
Our proposed algorithm combines features of online and of-
fline RL methods. Initially, we construct the PTT of the original
environment (P) by sampling from the original environment
until P is a sufficiently accurate estimate of P. Then, we update
the corresponding Q-functions (Q(")) by continuously interact-
ing with the original environment in real-time, which is the on-
line part of our approach. The PTTs of the multiple SMEs Pm)
are constructed using P, and the corresponding @Q-functions
(Q™) are updated by collecting synthetic samples from the
nt" environment, which is the offline part. We emphasize that
the estimated PTT (P) and PTTs of multiple SMEs (P") are
constructed only once and not further updated using the newly
collected samples in real-time, which is computationally expen-
sive because of the need to perform matrix multiplications to
construct P™ and normalize P and P" at each iteration. Updat-
ing P beyond a certain point also results in minimal accuracy
improvements, as illustrated in Fig. 7. It is also important to
note that our approach is different from hybrid RL [39], [40],
[41], where the agent generally has access to an offline dataset
and subsequently collects new data through interacting with the
environment. On the other hand, our algorithm continuously
updates the QQ-functions in real-time while also leveraging pre-
collected data to produce more accurate and stable Q-functions
with low complexity.

A. Theoretical Analysis

In this section, we provide several theoretical results for
Algorithm 2. Assume the Q-function errors of the n'" envi-
ronment follows an arbitrary distribution D,, with zero mean
and finite variance as follows:!

=) o

“Qi (s.0) - Q'(s.0) ~ Do (0.5

for all (s,a) and n with A\, >0 where Q* is the optimal
Q@-functions of the original Markovian environment. Prior work
has considered the distribution D,, to be uniform, non-uniform,
or normal for the n =1 case [13], [42], [43], [44]. Herein,
we make no assumptions on D,,. Simulations verify that the
true distributions D,, are, in fact, very close to the normal
distributions with zero-mean and finite variance for all n (see
Fig. 9(b) and Fig. 9(e)).

Let E and V be the expectation and variance operators, A =
MaXne 10, i) A and & (s,a) Qi (s, a) — Q* (s,).

Proposition 1: Let u; be a constant: u; = u. Under Assump-
tion (7), Algorithm 2 produces unbiased ()-functions in the limit
ielim; oo E[&(s,a)] = 0. If the Q-function errors of a given
environment at different times are independent i.e. Xt(ln) (s,a) L

X (s,a) ur

Xt(:)(s,a) for all s,a,n, t; # to, the error variance in the
limit can be upper bounded as: lim;_, o, V[E:(s,a)] < (hzg A2,

(see Appendix A)

'We observe that one can construct small state-space examples that do
not adhere to this assumption; however, for the large scale examples we
consider, numerical results suggest that the assumption is valid (see Fig. 9(b)
and Fig. 9(e)).

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 10,2024 at 05:19:04 UTC from IEEE Xplore. Restrictions apply.

1432

This proposition shows that under the assumption (7), Q¥ is
an unbiased estimator of Q™ in the limit, and the upper bound on
the error variance can be controlled by the parameters v and .
Herein, a larger A implies a higher uncertainty in the Q-function
errors, which makes the upper bound on the variance looser.
On the other hand, when the algorithm converges (t — o), a
larger u leads to less reliance on SMEs, reducing the uncer-
tainty arising from multiple environments and yielding a tighter
upper bound.

The zero-mean assumption in (7) is only employed to sim-
plify the analysis of Proposition 1. Nevertheless, this assump-
tion can be relaxed as follows:

Corollary 1: Proposition 1 is valid under the assumption that
the Q-function errors follow arbitrary distributions, that is:

" \ A
deth (S,) Q (Saa)NDn <Mn73>a (8)

if the Weighted combination of the means at different times
is 0, ie., Z 1wt pn =0, where p, is the mean of the
distribution D,,. (see Appendix B)

This assumption is less restrictive than (7) since it only re-
quires the weighted convex combination of means to be zero,
allowing different means to be non-zero. This result can be
numerically validated by Fig. 9(b) and Fig. 9(e).

We emphasize that there is estimation bias between Q)
and Q™ for n > 1 since these Q-functions are obtained from
different environments, and this is reflected by the non-zero
means in Equation (8); however, the sign of estimation error
(i.e., whether it is overestimation or underestimation) depends
on n. As will be seen later, Algorithm 2 produces unbiased
output (Q™). This follows as (i) Algorithm 2 uses a weighted
combination of different Q)-functions to update Q** and thus the
effect of underestimation and overestimation cancel each other,
and (ii) a small weight is assigned to the)-function with high
bias, minimizing the impact of individual biases.

Corollary 2: TIf we remove the independence assumption in
Proposition 1, the upper bound on the error Variance in the limit
can be updated as: lim; o, V[E;(s,a)] < (1+u) + 8+Z; A2,
(see [38])

The relaxation of the independence assumption introduces a
bias term to the upper bound estimation, resulting in a looser
bound than the one in Proposition 1. Nevertheless, a smaller A
or a larger u tightens the bound as in Proposition 1.

Corollary 3: If we use the form u; =1 — eTZ with ¢4 >0
and the independence assumption in Proposition 1, the error
variance converges to zero: lim;_, o, V[&(s,a)] = 0.

We choose the parameter u; such that 7% 1 as u should
be small initially to explore multiple environments in the be-
ginning (exploration) and should increase to utilize previously
obtained samples with time (exploitation i.e. less reliance on
the synthetic environments as we learn Q? better). Herein,
using multiple Markovian environments accelerates the conver-
gence of Qi towards Q*, while adjusting u; pushes Q' in
the desired direction. Consequently, Algorithm 2 converges and
yields the optimal Q-functions in the mean-square sense, which
can be shown by combining the results of Proposition 1 and
Corollary 3. We will numerically verify that the independence

x" (s, a)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

assumption is almost always satisfied. The parameter c4 adjusts
the decay rate of u;, which is crucial to tune the amount of ex-
ploration. In particular, a larger ¢4 implies a slower decay rate,
which is needed for larger networks, where more exploration is
necessary. This result aligns with Proposition 1 and Corollary 2,
as larger values of u lead to tighter upper bounds on the error
variance and u = 1 makes the upper bounds zero.

The structure of u; (u; 100, 1) prevents error accumulation
in Q" due to the potential lack of knowledge about Q1)
especially in the initial stages. Even if weights at time ¢ (w) are
incorrectly assigned, potentially leading to errors in computing
Q" ,, the impact of this contribution to the final Q-function
estimate is outweighed by that of Q?H due to scaling by uy,
which increases over time (u; < u41). Herein, Qiig is calcu-
lated using updated weights (w4 1), which are computed based
on a more accurate estimate of Q%)

The convergence proof of the algorithm in our prior work
[23] can be adapted to show the convergence of the Algorithm 2
deterministically without any distribution or independence as-
sumption on the @-function errors.

Proposition 2: The upper bound on the error variance de-
creases with the number of Markovian environments K as
V[Ei(s,a)] < % for all ¢, where ¢(\, u) is a constant of K.
(see Appendix C)

The proposition shows that increasing the number of Marko-
vian environments (()-learning algorithms running on differ-
ent environments simultaneously) reduces the upper bound on
variance. This aligns with the primary objective of ensemble
algorithms. Unlike the bound in Proposition 1, this upper bound
explicitly depends on K, is valid without any assumptions on in-
dependence or structure of u;, and holds for all £. The decay rate
of the upper bound is determined by the function ¢(\, u), which
incorporates both A\ and u. Furthermore, numerical results will
show that increasing K may not always yield an increasing
reduction in the upper bound, i.e. there is a diminishing return
of increasing K.

Proposition 3: Let the output policy of Algorithm 2 be 7,
and the Q-functions of the n*" environment under the policy 7
be Q;r”). Then, Algorithm 2 produces Q-functions on different
environments that satisfy the following upper bound:

Q|| < R Sl

Q-
H L=a" 1=y

||C73'||7 (9)

where n > 1, the norm || - || is the I3 norm, and c; is the cost
vector under the policy 7. (see Appendix D)

This proposition shows that the)-functions of different
environments under the same policy are closely related as a
result of the structural relationship between different Markovian
environments. As n — 0o, the upper bound primarily depends
on the cost function, eliminating the influence of the learning
parameter . This suggests n should not be chosen very large
for practical purposes. Note that this behavior should not imply
the monotonicity of the Q-functions as a function of n, as will
be seen later, i.e. ||Q;1) - Q™ || is a non-monotonic function
of n. It is also worth emphasizing that this result holds without
any assumptions on the independence or structure of ;.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 10,2024 at 05:19:04 UTC from IEEE Xplore. Restrictions apply.

BOZKUS AND MITRA: MULTI-TIMESCALE ENSEMBLE Q-LEARNING FOR MARKOV DECISION PROCESS POLICY OPTIMIZATION

Proposition 4: The QE}”) satisfy the following (partial) or-
dering when v — 1 (i.e. when the underlying discounted MDP
starts to resemble an undiscounted MDP): (see Appendix E)

Q" () = Q7" (5) = QF™ () 2 Q™ ()., (10)
for all s, where Qg}l)(s) is the largest and n is an odd number.

This proposition enables assessing the utility of various
Markovian environments by ordering the (Q-functions and facil-
itates determining the most useful (informative) environments
to be used in Algorithm 2.

Assume we want to use K = 4 environments. A challenge
is to determine which combination of four environments to
include in our algorithm, for example: {15,274 37d 4th} g
{15t 2nd 3rd 5th1 etc. Herein, the notation n'* simply refers
to the matrix power used to create Markovian environments. It is
important to note that n can be greater than K, (i.e., n is not lim-
ited to [1, K7]). Thus, in this example, using the 5! environment
does not necessarily require using the first five environments
as the 4" environment is not used. Herein, we want to collect
diverse n-hop information from different environments while
avoiding environments that do not contribute much to achieving
the optimal solution. To this end, we assess the similarity of
QM (for n > 1) to Q) based on the given orderings. Q")
and Q® are the most similar, making it a logical choice to
include both environments. The 3"¢ environment is added to
explore its potential usefulness, given the uncertain similarity
between Q(®) and Q). In contrast, Q¥ is less similar to Q")
than Q(Q); thus, we do not include the 4" environment, while
we can potentially explore more useful environments. Due to
the same reason, we also want to explore the 5" environment.
Hence, a reasonable selection is to use 1°¢, Z”d, 37d and 5th
environments. We emphasize that we use K = 4 environments,
but one of the environments is constructed using the 5 matrix
power, which is greater than K. While this approach may not
always be optimal, it offers a pragmatic strategy when prior
information is lacking.

We emphasize that this result is valid without any indepen-
dence or structural assumption on u;. Moreover, this result is
particularly useful for network settings when long-term plan-
ning is more important, for example, when the future costs are
more important than the immediate costs or taking some actions
may not minimize the immediate rewards, but they will be more
beneficial in the long run.

IV. NUMERICAL RESULTS

In this section, we consider a variety of performance metrics
to assess the accuracy and complexity performance of Algo-
rithm 1 and 2 across different network models.

A. Network Models

We consider four different network models, which differ in
their design, complexity, and implementation. (See [38] for
further details)

1433

10—

Packet Buffer

(a) SISO network model

Battery

Battery

T ~(1|

Battery

N(0,0?)
(b) MISO network energy harvesting model with relays

Fig. 3. Examples of wireless network models.

1) Randomized Graphs: We consider the Erdés-Rényi (ER)
random-directed graph model. The PTM has |S| nodes, and
each edge is created with a probability 0.2. We create |.A| many
PTMs and concatenate them to obtain the PTT, which is used
for sampling and creating the SMEs. The cost function assigns
a uniform [0, 1] random cost to each state-action pair.

2) Cliff-Walking Environment: We consider the cliff-
walking environment [5]. The number of columns is chosen to
be approximately three times the number of rows in the grid
so that the number of states is equal to |S| (for example, 60
columns and 20 rows — 1800 states). If the agent moves to
the cliff region, a unit cost is incurred. Moving to the safe grid
results in a negative unit cost, while any other movement incurs
a cost of 0.01.

3) SISO Wireless Network Model: We consider the model
of [17], in which there is a single transmitter (TX) and receiver
(RX) as shown in Fig. 3(a). The goal is to determine when the
transmitter should fransmit data or remain silent to minimize
the sum of transmission and packet drop costs.

4) MISO Energy Harvesting Wireless Network With Gaus-
sian Interference Channels and Multiple Relays: We consider
the model of [45]. An example network with three transmitters
(TX;, TX9, TX3), a single receiver (RX), and two relays (Ry,
Ro) is shown in Fig. 3(b). The goal is to determine when
transmitters should directly transmit or transmit through relays
in order to maximize the overall throughput while minimizing
the sum of battery and packet drop costs for each transmitter.

B. Average Policy Error Results

Let 7w* be the optimal policy from (2), and 7 be the output
policy of Algorithm 2. Since our main concern is optimal con-
trol, we define the average policy error (APE) as follows:

S
TR

APE = 5] Z 1 (7™ (s) #7(s)).

Y

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 10,2024 at 05:19:04 UTC from IEEE Xplore. Restrictions apply.

1434

0.6
]
@
3044
S
o
Cl)
o
©
@ 0.2
>
<

0.0 1

0 1000 2000 3000 4000
Iterations
Fig. 4. APE performances across different environments.

We analyze the performance of Algorithm 2 over J-learning in
Fig. 4. The simulation is carried out using model-4 with network
size 5000 with the following parameters: v = 0.95, ayy = ﬁ,
ug=1-— eﬁoto, v =40, [=10, K = 4. These parameters are
optimized through cross-validation (see Section IV-F for
further details). We choose the epsilon value for each distinct
Q-learning algorithm as follows: e§") =max((c,)* 0.01)
for n=1,2,3,4 with ¢y =0.95,¢, =c3=0.97,c4 =0.99.
We choose these parameters to prioritize learning from useful
environments over random exploration. Faster decay rates
(i.e., smaller c,) are applied to environments that closely
resemble the original environment, informed by Proposition 4.
The curves represent APE of @-learning algorithms on the
original environment M) and three different SMEs M (")
for n = 2,3,4, while Q% represents the APE of Algorithm 2.
Clearly, a near-zero APE (around 0.05) can be achieved with a
significantly small number of iterations (around 500). The sharp
decline in the Q" curve at the beginning (up to the 200"
iteration) corresponds to the exploration stage, followed by the
exploitation stage. Compared to any other algorithm, the explo-
ration stage in Algorithm 2 is fast, which shows the advantages
of utilizing multiple Markovian environments to enable a deep
and efficient exploration and accelerate the overall training.
Notice that individual @Q-learning algorithms can only achieve
a slightly higher APE than that of Algorithm 2 if they run for
a significantly long time. We observe that the APE results are
not monotonic across n (APE of Q-learning run on M®) is
lower than that of M®)), which is in line with Proposition 4.

In order to provide a performance comparison, we employ
several ()-learning algorithms, each with different objectives
and strategies (number of estimators). Table I provides an
overview of these algorithms. Specifically, we focus on value-
based model-free algorithms which follow the same strategy as
Algorithm 2 to ensure a fair comparison. We also include two
algorithms using multiple models (environments): Ensemble
Graph Q-Learning (EGQL) [23] and Model-ensemble trust-
region policy optimization (TRPO) [29]. EGQL adopts a differ-
ent strategy to create multiple SMEs instead of n-hop systems,
employs a weighting mechanism based on policies rather than
@-functions, and imposes several constraints and assumptions
on the system model. TRPO takes a different approach by using
an ensemble of deep neural networks for modeling both dynam-
ics and policy (model-based strategy compared to our hybrid

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

TABLE I
(Q-LEARNING ALGORITHM AND VARIANTS

Algorithm Objective Strategy
Est. | Env.
Simple Q (Q) [4] - Single | Single
Speedy Q (SQ) [14] Convergence rate Single | Single
Double Q (DQ) [10] Bias Multi | Single
MaxMin Q (MMQ) [18] Bias & variance Multi | Single
Ensemble Bootst. Q (EBQ) [19] Bias Multi | Single
Averaged DQN (ADQN) [12] Stability, Variance Multi | Single
Model Ensemble (TRPO) [29] |Sample Complexity, Stability | Multi | Multi
Ensemble Graph Q (EGQL) [23]| Variance, Learning speed | Multi | Multi
n-hop Ensemble Q (nEQL) Variance, Learning speed | Multi | Multi

¥4 - (SJQ /wk-x o *
-

< . <04
= g
o gy = o
£ 0.3 = £
] w03
> >
202 =2
s So2
& &
go1 © 0.1
[[
E 2

0.0 0.0

0 5000 10000 15000 20000 0 5000 10000 15000 20000
Network size Network size
(a) APE for model-1 (b) APE for model-2

o =« Q g_J 0.6 = Q
% 057 -+ so < ¥ sQ
= -+ DQ T 057 -« DQ
=] S
S 041 —m mmQ g - MMQ
& --- EBQ o 047 . eso
k_>; 0.31 -~ ADON ? 0.3 ~® ADON
3 TRPO 3 TRPO
A 0.21 —— EGQL ~ o 24 —& EGQL
% nEQL g nEQL
8% § © 0.1 §
2.l g

0.0 < 0.0

0 5000 10000 15000 20000 0 5000 10000 15000 20000

Network size Network size

(c) APE for model-3 (d) APE for model-4

Fig. 5. APE results across different network models.

scheme). It fits this ensemble to a single real-world dataset (in
contrast to our use of multiple datasets, some synthetically gen-
erated) and employs supervised learning for training, unlike this
work. For further details regarding the parameter optimization
of each algorithm, refer to [38].

The APE of different algorithms across network size and dif-
ferent models are given in Fig. 5(a)-5(d). Overall, our proposed
algorithm consistently achieves a lower APE compared to other
algorithms: 30% less for model-1, 35% less for model-2, 45%
less for model-3, and 55% less for model-4. The APE gains
become more clear for larger networks as using multiple Marko-
vian environments enables deep and efficient exploration by
combining the n-hop relationships between states into a single
estimate, and the weighting mechanism based on JSD enables
the algorithm fully exploit the most useful environments during
training by assigning higher weights.

The proposed algorithm demonstrates significant APE gains,
particularly with model-3 and model-4, showing its effective-
ness and practicality across real-world networks. In general,
ADQN, EBQ, and EGQL produce the lowest APE among other
algorithms; however, they have inferior performance compared
to nEQL because neural network-based algorithms (ADQN and

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 10,2024 at 05:19:04 UTC from IEEE Xplore. Restrictions apply.

BOZKUS AND MITRA: MULTI-TIMESCALE ENSEMBLE Q-LEARNING FOR MARKOV DECISION PROCESS POLICY OPTIMIZATION

TRPO) do not leverage the structural properties of multiple
Markovian environments. The performance of EBQ shows the
advantages of ensemble algorithms. However, it does not em-
ploy a weighting mechanism when calculating the ensemble
but uses simple averaging; thus, it performs worse than nEQL,
which employs an adaptive weighting mechanism. The per-
formance of EGQL underscores the benefits of using multiple
environments (i.e., model ensemble). Nevertheless, it relies on
a less accurate and less robust weighting mechanism, does not
make use of the simplicity of the n-hop systems, and suffers
from the constraints on the system model. We also observe that
as the model complexity increases (from model-1 to model-4),
the APE of all algorithms increases. The proposed algorithm,
however, yields the least increase in APE, making it the most
accurate algorithm. The APE order of the other algorithms
remains consistent across different models.

The network models considered herein can be well-modeled
with discrete state-spaces with |S| < 20000 (as in [17], [22],
[23], [45]). Numerical simulations show that the performance
between the proposed algorithm (tabular-based) and ADQN
(neural-network-based) varies as a function of the network size.
While there is no clear performance difference for small net-
works (|S| < 1000), the proposed algorithm offers up to 35%
less APE with 20% less runtime for modest-sized networks
(1000 < |S| < 10000). For large networks (10000 < |S| <
20000), the advantages of our algorithm become more apparent
(55% less APE with 50% less runtime) because of (i) the
challenging state-space design for ADQN, (ii) the increased
overfitting risk in sparse state spaces for ADQN in data-limited
regions, and (iii) the simple averaging mechanism in ADQN
that does not capture the changes in the distribution of the
@-functions over time.

We observe that our algorithm inherits several properties
from the traditional ()-learning algorithm and hence is partic-
ularly tailored to finite, but large discrete state-action spaces.
For networks with continuous state-spaces, the tabular nature
of our algorithm may pose limitations. To this end, replacing
tabular)-learning with deep @Q-networks is worth exploring.

C. Computational Complexity Results

The Algorithm 2 can be shown to have the following aver-
age time-complexity O (% f(, e)), where f is some non-
monotonic function of [and e. The derivation closely follows
that presented in [22]. The runtime complexity increases with
the network size (|S| and |A|) as well as the number of visit
requirement to each state-action pair (v). On the other hand,
the non-monotonicity of f in [, e implies that there are optimal
values for [, €; thus, parameter-tuning is required. The complex-
ity is also inversely proportional to the number of Markovian
environments (K'), which may seem counter-intuitive. How-
ever, the number of samples that need to be collected from each
Markovian environment decreases with K, leading to an overall
reduction in the training runtime complexity.

The runtime of nEQL includes time spent on sampling (visit-
ing each state-action pair at least v times), constructing multiple
SMEs K — 1 times using matrix power operations, and the

1435

1.75 4
F 1.50 1
2
S 1.25 -
0
$ 100+
@ 0.75 -
£
2 0.50
=
& 0.25 -

0.00 A

10000 15000 20000

Network size

0 5000

Fig. 6. Runtimes for different algorithms.

time until convergence of ()-learning algorithms on different
Markovian environments. The overall runtime is determined by
the slowest (Q-learning algorithm, as they are run in parallel.
Other algorithms’ runtime results represent the time until each
algorithm converges. This runtime measure also serves as a
measure of computational power complexity. Across fixed net-
work sizes and four different models, the runtime of algorithms
is comparable. Therefore, a single runtime result is presented
in Fig. 6. The proposed algorithm achieves 50% less runtime
than the other algorithms across large networks, which can be
attributed to several reasons: (i) Utilizing multiple Markovian
environments reduces the need for long trajectories to capture
distant node relationships. (ii) The amount of exploration is im-
proved due to the running of multiple Markovian environments
simultaneously. (iii) The algorithm can be terminated early
with minimal APE as shown in Fig. 4. (iv) The average run-
time complexity decreases with K hyperbolically. (v) Employ-
ing different epsilon-greedy policies allows us to capture the
distinct characteristics of different Markovian environments.
The complexity reduction is independent of the network model
or underlying assumptions, making the proposed algorithm an
efficient approach for learning various complex environments.

The original -learning has a relatively lower runtime than
the other benchmarks as it is a straightforward algorithm. SQ
aims to improve the learning (and convergence) rate; therefore,
it also produces a relatively lower runtime. EGQL also uses a
strategy similar to the current approach using multiple models,
which makes it relatively faster than other benchmarks. On the
other hand, EBQ has multiple estimators, while ADQN and
TRPO suffer from the need for long training periods, which
becomes computationally intractable for large networks. It is
worth noting that as the model complexity increases (e.g.,
Q — NQ — ADQN), the corresponding APE generally de-
creases, but the runtime complexity increases. However, nEQL
achieves a small APE with a small runtime, overcoming the
performance-complexity trade-off.

To solve (1) and (2), one could consider using dynamic
programming methods such as value iteration instead of
@-learning, given that we estimate the PTTs of multiple Marko-
vian environments using P". We herein follow a similar it-
erative procedure to Algorithm 2. While we keep sampling
to update P continuously, we construct the PTTs of multiple
SMEs using the current estimate of P every 10 iterations, and
obtain the value functions v{™ for n € {1,2, ..., K'} using the

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 10,2024 at 05:19:04 UTC from IEEE Xplore. Restrictions apply.

1436
‘a
2
S 0.4
-8
c
$o03
z
@
Qo
§ 0.2
@
§o01
©
£
3 0.0
w T T T T
0 1000 2000 3000
Number of samples
Fig. 7. Estimation error between P and P vs number of samples collected

using sample averaging.

value iteration algorithm. We then assign the weights wﬁ”’ as:

W,En) — —val) - vgn)Hg, Vn (12)
(13)

We finally update the value function of the proposed algo-
rithm v& similar to Algorithm 2 using u; (with the same form
as in Corollary 3). We carry out these operations iteratively k
times, where k is sufficiently large to ensure the convergence.
This approach has runtime-complexity O(k|S|?|.A]) since we
carry out value iteration k times, which has a complexity
of O(|S|?|A]). In our simulations, with the settings in Sec-
tion IV-B, this strategy incurs 50% more runtime complexity
and 60% more APE across large networks, making it inferior
to our proposed algorithm.

In order to show the computational advantages of Propo-
sition 4 in determining the optimal set of Markovian envi-
ronments to be employed in Algorithm 2, we choose K =4
environments over the set of orders n=1{1,2,3,4,5,6} by
(1) using partial ordering from Proposition 4 and (ii) trying
every possible distinct combination of four Markovian environ-
ments and choosing the one that minimizes APE (i.e. exhaus-
tive search). The same simulation settings in Section IV-B are
employed. Numerical results show that Proposition 4 gives the
optimal set of Markovian environments with 35% less runtime
complexity than exhaustive search. The complexity reduction
further increases with the network size and K, which implies
that Proposition 4 is particularly useful for large networks.

We demonstrate the quality of the estimation of the PTT P
as a function of the total number of samples collected from the
original Markovian environment M (1) in Algorithm 1 in Fig. 7
using sample averaging [33]. We employ the model-4 with a
network size of 5000. We measure the quality of the estimation
via the [5 norm as follows:

wy — softmax(wy),

1 .
estimation error = A Z IPo — Pullo. (14)

acA

Numerical simulations show that an estimation error below
0.05, which requires around 1800 samples, can produce a suffi-
ciently accurate Pin Algorithm 1, leading to less than 10% APE
in Algorithm 2. We observe that a relatively small number of
samples is sufficient for estimating P to achieve a small APE,
which can be attributed to the sparsity and several structural
properties of the underlying PTT of the network model (as in

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

’) 2 —— Simulation variance
N - W
0.6 o @ ~~=~ Upper bound (Proposition 1)
Y - Wm Upper bound (Corallary 1)
1 [w a Error in simulation variance
) \ [—_——C) o
Soal N 5
2 0.4 ' ~ N LA~ g 1
c >
g 5
g 5
0.2
0
0 2000 4000 0 2000 4000

Iterations lterations

(b) Simulation error variance vs upper
bounds on error variance

(a) Weights across iterations

0.6

1
i
AARN
T

S C ISV

I
>
~

=~

o
N

Error expectation
Error variance

0.0
4000 0

0 2000
Iterations

1000
Iterations

2000

(c) Simulation error expectation (d) Simulation error variance vs K

—— Simulation
Theoretical upper bound

Magnitude
~N w
wn =

[g
=]

=
w

2 4 6 8 10
n

(e) Q-function norm difference vs n

Fig. 8. Numerical validation of assumptions for theoretical results.

[22]). These features also allow us to use shorter trajectories
(I~ 10) and select random initial states more frequently in
Algorithm 1, thereby further accelerating the exploration of the
entire state-space.

D. Convergence of Weights

We herein demonstrate the changing weights over time using
the simulation settings from Section IV-B in Fig. 8(a). There
is a sharp increase in w(!) at the beginning because M) is
the original environment, and there are not enough samples
to capture the higher-order relationships. Moreover, it is not
clear which M provides the most useful samples as the
weights w(™ for n > 1 keep changing. As iterations continue,
w1 decreases up to some point, but M) remains the most
useful environment. The weights w(™) for n > 1 increase and
converge to a fixed value. The final magnitudes of w(™ are non-
monotonic across n (w(P) > w® > w® > w®), validating
the partial ordering of Proposition 4. We note that similar weight
patterns can be also shown across different network parameters
and models, although (i) the final values of the weights, (ii) the
order of environment utilities, and (iii) the iteration index at
which the weights converge may vary.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 10,2024 at 05:19:04 UTC from IEEE Xplore. Restrictions apply.

BOZKUS AND MITRA: MULTI-TIMESCALE ENSEMBLE Q-LEARNING FOR MARKOV DECISION PROCESS POLICY OPTIMIZATION

E. Numerical Validation of Propositions

In this section, we simulate the results in the propositions and
compare theoretical results with simulation results. The same
simulation settings in Section IV-B are employed.

We compute the simulation variance of the @-function errors
numerically as follows:

2

1A 1A
V[gt(sva)]zTAt Z &i(s,a)’~ oA, Z (s, a)|,
t=t—A, t=t—A,

s5)

with A; < t. The upper bounds on the variance from Proposi-
tion 1 and Corollary 2 (with u; = 0.5 and A = 1) and the sim-
ulation variance (with (s,a) = (6,2) and A; = 20) are shown
in Fig. 8(b), where the blue-shaded region represents the sim-
ulation error. As iterations continue, the simulation variance
becomes smaller than the upper bound from Proposition 1;
hence, using a time-varying u; produces more accurate results.
The simulation variance eventually converges to zero, which
is in line with Corollary 3. Herein, A is chosen to be 1, and
changing A may affect the initial error variance and its decay
rate. Furthermore, the simulation bias (i.e., the expectation of
£1(6,2)) is shown in Fig. 8(c), where the blue-shaded area
represents the simulation error. The simulation bias eventually
converges to zero, which is consistent with Fig. 8(b) and shows
the accuracy of the assumption (8).

The simulation error variances across different K are shown
in Fig. 8(d). For each K, the simulation variance reduces and
converges to zero eventually. The convergence may require
more than 3000 iterations, particularly with small K, due to
slower convergence as indicated by the theoretical runtime com-
plexity in Section IV-C. Hence, small non-zero error variances
are observed at ¢ = 3000. At a fixed iteration index, the sim-
ulation variance also reduces as K increases, which is in line
with Proposition 2. We also observe the diminishing return of
increasing K. In particular, the reduction in error variance from
K systems to K + 1 systems becomes less significant as K
increases. This implies that increasing K may not always yield
substantial improvements because increasing K results in new
environments that exhibit high structural similarity with those
of lower; the corresponding PTTs converge to fixed tensors.
Consequently, sampling from these new environments may not
provide novel samples. Furthermore, a larger K leads to a
reduction in the weights assigned to existing environments,
which diminishes the impact of each individual environment
on the ensemble estimate.

Both the upper bound on the [, norm difference between
the Q-function vectors of the original environment and n*"
environment under the output policy of Algorithm 2 as a func-
tion of n € [2,10] (from Proposition 3) and the actual norm
difference is illustrated in Fig. 8(e), where the blue curve is
the mean, and the blue shaded area is the standard devia-
tion of the results over 20 simulations. The norm difference,
which represents the utility of the n!” order environment, ex-
hibits a non-monotonic behavior across different n, and the
results align with Proposition 4. We also observe that the upper

1437

u=2.56,0=128 u=0,0=1.86

—— Normal fit
0.30 = Actual data

°
n

== Normal fit
mmm Actual data

I
IS

0.25
Z

= 0.20
o

o
w

Probability

o
N

]
£ 0.15
-

0.10

o
h

0.05

0.00 0.0-
6 8 10 -10 =5 0 5 10

Q-function values Q-function errors

(a) The distribution of Q{") (6,2) and (b) The distribution of X% (6,2)
normal fit and normal fit

p=2.58,0=2.40

0.35 — = Normal fit
W Actual data 4

— [1,2,4,8,16]
--- [3,6,12]

------ 5, 10]
—e- [7,14]
Tl [9,18]

Q-function

8 2 4 6 8 10 12 14 16 18
Q-function values n

(c) The distribution of Q%*(6,2) and (d) Partial ordering of Q-functions
normal fit for s =6

—— Mean
Standard deviation

I
IS
e
N
o

GAWwN e

o
w
e
=
v

°
N

Probability

o

B
e
=]
v

Averaged Distance Correlation
=}
=
o

e
o
o

0.0

(f) The averaged distance correlation

(e) Normal fit to Xt(n)(G, 2) for dif-
across different n

ferent n

Fig. 9. Numerical validation of assumptions in theoretical results.

bound converges as n increases, yet the tightness of the bound
depends on n.

The estimated distributions of le)(s,a), Xt(”)(s,a) and

i (s, a) over time (until convergence) for (s, a,n) = (6,2, 2)
are shown in Fig. 9(a), Fig. 9(b) and Fig. 9(c), respectively.
These distributions can be accurately modeled using normal
distributions with corresponding means and variances. Further-
more, we observe that /'\,’t(2)(67 2) has zero-mean, which shows
the accuracy of the zero-mean assumption (7) and thus also the
relaxed assumption (8). Similarly, Fig. 9(e), which shows the
normal fitting of Fig. 9(b) duplicated for various values of n,
demonstrates that the ()-function errors of different environ-
ments can be well-modeled by zero-mean normal distributions
with different variances. This figure further validates the as-
sumptions (7) and (8). Similar results are also achieved for
different (s, a) pairs.

The Q-function of s =6 of the n'" environment under the
output policy of Algorithm 2 is shown in Fig. 9(d) for n €
[1,20]. The simulation is carried out withy = 1 — 10~°. We ob-
serve that partial orderings given in Proposition 4 hold. For
example we have QS)(G) > fo) (6) > Qﬁ4)(6) > Q;S) (6) and

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 10,2024 at 05:19:04 UTC from IEEE Xplore. Restrictions apply.

1438

TABLE II
OPTIMIZED HYPER-PARAMETER VALUES OF ALGORITHM 2

’Params‘ Small Networks |Modest-Sized Networks | Large Networks ‘

l le(l,5]
K K e{2,3}
ar |c1 €{10%,5-10%}

c2 €{0.9,0.95}
c3 €10.01,0.1}

ut |cq €{10%,5-102%}

1€ [5,10]
K €{3,4,5}
c1 € {102,103}

ca € {0.95,0.99}
e € {0.01,0.05}

cq € {102,103}

1 € [10,20]
K €{5,6,7,8}
c1 € {10%,10%}

c2 € {0.99,0.999}
c3 € {0.005,0.01}

cs €{5-103,10%}

€t

QS)(G) > QE}G)(G) > Q;m)(ﬁ) but the relationships between
the @-functions of different partial ordering groups are non-
monotonic across 7 such as fo) (6) > fo) (6) and QEA:)(G) >
Q;m) (6). Extensive simulations demonstrate that similar order-
ings hold for all states s.

To assess the practicality of the assumption employed in
Proposition 1, we comg)ute the averaged distance correlation
(ADC) [46] between X, (6, 2) and X, (6,2) with n € [2, 10]
and averaging the results over all #; # t5 € [0,5000]. ADC is
particularly used because it captures both linear and non-linear
correlations, is robust to outliers, and does not assume any
particular distribution of the variables like Pearson’s correlation
coefficient. The results are shown in Fig. 9(f). For example,
for n = 2, the ADC is almost 0, indicating that the)-function
errors of the 2" environment at different times are independent.
When n is modestly large, the ADC is sufficiently small to
infer that the correlation is not statistically significant, and the
independence assumption holds. However, for very large values
of n, weak correlations may emerge, suggesting that very large
values of n might not provide the best performance.

There are several reasons that explain the independence of
the Q-function errors at different times: (i) Each environment
is Markovian; hence, the errors in (Q-function estimates can
be considered independent. (ii) Each environment is station-
ary (with constant transition probabilities and reward distribu-
tions over time), and the errors in Q-function estimates can
be assumed independent across different time steps. (iii) The
epsilon-greedy policy introduces randomness during the action
selection process. (iv) The time-varying learning rate (o), ep-
silon probability (e;) and the update ratio (u;) introduces time-
dependent randomness and variability.

F. Parameter Tuning

The parameters of Algorithm 2 require fine-tuning across
various settings. We discuss how to select v, [, K, o, €; for
small (/S| < 10%), modest-sized (|S| € [10%,10%]), and large
networks (|S| > 10%). Table II summarizes the parameters that
yield near-optimal APE values in our numerical results. How-
ever, optimal parameter selection requires cross-validation.

The number of visits (v) needed for each state-action pair is
independent of network size. The proposed algorithm allows a
small v, around v =/ 40, to achieve near-optimal performance.
Additionally, the proposed algorithm enables us to have short

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

trajectories (!) while ensuring: (i) near-optimal APE perfor-
mance, (ii) minimized runtime and computations per trajectory,
(iii) sufficient capture of samples from neighboring states, (iv)
preservation of initial state importance despite discounting in
long trajectories, and (v) prevention of following redundant
paths and loops that provide no new samples.

Increasing the number of Markovian environments (K)
reduces the average runtime complexity of the algorithm.
However, there are drawbacks to consider: (i) emphasizing
high-order node relationships may lead to the loss of low-order
node relationships, (ii) 21D converges to a fixed tensor as n
increases, rendering samples from corresponding SMEs redun-
dant and potentially degrading performance, (iii) a diminishing
return is observed in the error variance (as shown in Fig. 8(d)),
and (iv) memory requirements increase. Hence, K should be
small enough to avoid these drawbacks, while also increasing
with the network size to prevent a rise in other parameters
(specifically v,) and reduce runtime complexity.

The learning rate (cy) must adhere to the convergence con-
ditions of @-learning [24] and have a suitable decay to adjust
the learning speed. We assume the form a; = ﬁ, where
¢1 > 0 determines the decay rate and should increase with |S]|,
v, [, and K. On the other hand, the parameter ¢; is essential
for balancing exploration and exploitation. We use the form
e: = max((c2)’, c3), where co > 0 adjusts the decay rate, and
0 < c3 < 1 determines the minimum exploration probability.
As the system parameters increase, co should also increase to
ensure sufficient exploration. Furthermore, c3 should be small
and positive, allowing for exploration with a low probability
when the policy is nearly converged.

The parameter u; is time-varying such that wu, 2% 1 to
balance between exploration and exploitation as explained after
Corollary 3. To this end, there are several possible choices for
the structure of u,, including u; = 1 — e and w=1-— ﬁ
with ¢4 >0 or uy =1 — (c4)? with ¢4 € (0, 1). Numerical re-
sults show that the performance of the algorithm is maxifmized
for the network models we considered with u; =1 — e with
optimized c4. In particular, this specific choice leads to 15% less
APE with 20% less runtime complexity than the other two al-
ternative choices using the simulation settings in Section IV-B.
Additionally, this choice of w; maintains stable performance
even when network parameters change significantly, making it
a robust choice.

G. Memory Complexity

The memory needs of the proposed algorithm increase with
K as the Q-functions of K different Markovian environments
need to be stored in tables. To alleviate this challenge, several
strategies can be employed, including a linear and non-linear
approximation of ()-functions or state aggregation methods
[47], [48], [49], [50]. In our prior work [22], we proposed a
special state-action aggregation algorithm to handle the increas-
ing memory complexity of a model-free learning algorithm,
similar to Algorithm 2, where)-functions of state-action pairs
that incur the same cost are grouped into a single @-function.
The algorithm is applicable to networks that have bounded and

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 10,2024 at 05:19:04 UTC from IEEE Xplore. Restrictions apply.

BOZKUS AND MITRA: MULTI-TIMESCALE ENSEMBLE Q-LEARNING FOR MARKOV DECISION PROCESS POLICY OPTIMIZATION

smoothly changing cost functions (as in model-2, 3, and 4)
and can significantly reduce the memory needs while negligibly
increasing the APE.

We note that more sophisticated function approximation
algorithms can also be designed to work with any kind of
network; however, they require the design of optimal basis func-
tions, selection of appropriate features, or design of aggregation
schemes, which are out of the scope of this paper.

V. CONCLUSION

In this paper, we presented a novel ensemble ()-learning algo-
rithm to overcome the performance and complexity challenges
of the original Q)-learning across large MDPs. The proposed
algorithm employs multiple @Q-function estimators on multiple,
distinct, synthetically created, and structurally related Marko-
vian environments that run at different time-scales and fuses the
outputs into a single estimate based on an adaptive weighting
mechanism using Jensen-Shannon divergence. Extensive sim-
ulations across a variety of real-world networks show that the
proposed algorithm produces a near-optimal policy with sig-
nificantly lower complexity and outperforms other ()-learning
algorithms in terms of accuracy and complexity. Several the-
oretical upper bounds on the error variance are given, and it
is shown that the error variance decreases with the number of
Markovian environments. An upper bound on the difference be-
tween the Q-functions of different environments is also given.
In the end, it is shown that the simulation results closely follow
the theoretical results. Our analysis provides initial insights and
justifications for the advantages of leveraging multiple synthetic
Markovian environments in ensemble reinforcement learning.
However, there are areas for further improvement and under-
standing of the nEQL algorithm. Specifically, our ongoing work
focuses on devising computationally efficient sampling meth-
ods to ensure good data coverage (as described in [51]) across
all Markovian environments. Additionally, we are exploring
alternative approaches to construct synthetic systems that go
beyond relying on n-hop environments to further improve the
generalizability and practicality of our algorithm. Finally, we
are working on the extension of the proposed algorithm to
continuous state-spaces.

APPENDIX
A. Proof of Proposition 1

The following expressions are valid for all (s,a) pairs;
hence, we drop the (s, a) notation for simplicity. We first prove
the expectation.

lim & = hm Q - Q. (16)
t—o0

Y _ t—i—1 M) _ o*
—tlgrolo(l w) E U g WZ Q,; Q. 17)

) o t—i—1 (n) (n) *
725201 uZu Zw (Q Q)

n=1
(18)

1439

K
= lim (1 —u) Y w7y wia, (19)

t—o0

where (17) follows from the explicit expression for Q:, which
can be obtained by repeatedly plugging the expression of Q%! ;

in Q” in line 11 in Algorithm 2, (18) follows from the fact
that 325 W,E") = 1forallt,and (1 —u) Y- jut~"" ' =1as
t — o0, and (19) follows from (7). If we take the expectation
of both sides:

t—1 K
. _ o t—i—1 (n) [(n):| _
Jim E[&] = lim (1 —u) Z;u Z—:lwl E | X, 0
(20
which follows from the linearity of expectation and (7).
We now prove the upper bound on the variance.
Am Vied =
. _ t—i—1 (n) 4(n)
—tllg)loV (1 uZu Zw X, 21)
t—1
_ _ (t—i—1) (n)
S [ZU [o)

—I—QZZWW

n=1m=n+1
< fim (- wy [Z
£23 3w [y [<n>}v[xgm>]”

n=1m=n+1
(23)

Fur
o (1
i

< lim (1 —u)
t—>oo

w?y [Xi(n)}

el

K K
+23) wiwm \/V [x™] v [X(m)m. (24)
n=1m=1
t—1 K St
_ 2 2(t—i—1) n) A\
Stliglo(l u) [z;u [Z:lwl 3
K K 22
+23 > W H 25)
n=1m=1
_ 2(t—i—1)
gtlggo (1—u) [Zu A] (26)
(1—u)
A%, 27
~ (14w @7)

where (21) follows from (19), (22) follows from the properties
of the variance operator and the independence assumption, (23)
follows from the Cauchy-Schwarz inequality for the variance,
(24) follows from the fact that W,En) <1 and dropping the
constraint in the second summation, (25) follows from (7; and
A =max,, \,, (26) follows from the fact that Z 1 WE =1
for all ¢, and (27) follows from the infinite geometric sum
formula and u € (0,1).

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 10,2024 at 05:19:04 UTC from IEEE Xplore. Restrictions apply.

1440

B. Proof of Corollary 1

We can show the expectation result as follows:

hm E[&] = hm 1—u) iut it Zw(n)E [X(" } (28)
1_0 | nKl

= tlirgo(l —u) ‘ utmit Z wgn),un. (29)

=0, 30)

where (28) follows from (20), (29) follows from (8), and (30)
follows from the condition in Corollary 1. The proof for the
result on the upper bound of the variance in Proposition 1
remains unchanged.

C. Proof of Proposition 2

We firstly bound the weight w(™ into a tighter interval than
[0,1]. We first do the calculations for n # 1. The maximum
value of w(™) is obtained when Q) = Q™ and Q* is max-
imally different than Q) for all i % n. In this case, w(™ =1,
and w(*) =0 for all 7 ¢ {n,1}. When we apply the softmax
operator on the w, we obtain the following:

(n) o e (&

“%r (k-2 S K (31

which follows as there are K > 1 different weights, and
w() =1. On the other hand, the maximum value of w) is
obtained when Q) is maximally different than Q) for all
1 # 1. In this case, w) =1, and w® =0 for all i # 1. When
we apply the softmax on w, we obtain the following:

wlh—__°¢ °

—. 32
e+(K-1)~ K (32)
Combining (31) and (32), the following holds for all n:
w < — 33
= (33)

We note that this bound is useful for K > 2. On the other
hand, the minimum value of w(™ for n # 1 is obtained when
QW is maximally different than Q™ and Q) = Q) for
all i # n. In this case, w(™ =0, and w® =1 for all i # n.
When we apply the softmax operator on the w, we obtain
the following:

1 e !

mny - -
W 1+e(K —

> —. 34
1)~ K (34
which follows because I{ > 1. Similarly, the minimum value of
w1 is obtained when Q) = Q") for all i # 1. In this case,
w(?) =1 for all i. When we apply the softmax operator on the
w, we obtain the following:

wi =L (35)
Combining (34) and (35), the following holds for all n:
1
w > — 36
7 (36)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

Combining (33) and (36), the weights w(™) can be shown to
take values in the followmg interval: w(™ € [%, £]. Then, the

term Zn 1 (w (")) in (22) can be upper bounded as:
2

S <3 () <

(37)

The following expressions are valid for all (s, a) pairs; hence,
we drop the (s, a) notation for simplicity. Using (37), (7), and
A = max, \,, we can show the following:

ZW (")]<Z(0[] < &

Let up =0 and u; = (1 — u;) H;;H u;. Using the explicit
expression for Qi’, which can be obtained by repeatedly plug-
ging the expression of Qi ; in Q¥ in line 11 in Algorithm 2
and the facts that 22:0 u; = 1 and ug = 0, the following can
be derived:

2
. (3%)

t—1 K
=3w) wQl", (39)
1=0 n=1
Then we can show the following:
t—1 K
-V Z i Z WE”UQ(")] . (40)
- t—1t—1
:Z an)X(n) +QZZuu]C0V
=0 i=0 j#i
X (Z Wz(n)Xi(n)v Z Wj('n)‘){j(n)) (41)
- t—1 t—1
Zz Zw”)){(”) +23° 3w
i=0 1=0j=1+1
K K
X |V (Zw)X(”)>V<Z wg.")X;”)). 42)
n=1 n=1
62)\2 t—1 t—1 t—1
<=3 a§+2z Z Wil |- (43)
=0 1=0 j=1i+1
< dA) (44)

where (40) follows from (39), (41) follows from the properties
of the variance operator, (42) follows from the Cauchy-Schwarz
inequality for the variance, (43) follows from (38), and (44)
follows as ¢(\,) is a constant of K.

D. Proof of Proposition 3

If the spectral norm of a matrix A is less than 1 (||A| < 1),
then the following can be shown [52]:

o0
-1 _ i
=2 AL
i=0

(45)

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 10,2024 at 05:19:04 UTC from IEEE Xplore. Restrictions apply.

BOZKUS AND MITRA: MULTI-TIMESCALE ENSEMBLE Q-LEARNING FOR MARKOV DECISION PROCESS POLICY OPTIMIZATION

where I is the identity matrix. The @-functions under policy 7
can be obtained using Bellman’s equation as follows [4]:

Qi =1 —~Pz) ‘e,

where P and c; are PTM and cost vectors under policy 7,
respectively. The matrix inversion in (46) can be expressed as
an infinite sum using (45) since the spectral norm of P is 1 (as
it is a PTM), and when scaled by ~, its spectral norm becomes
strictly less than 1. Then, we can proceed as follows:

(46)

QY - QY =(I—9Pz)er — (I— P2 Ter. (47)
n—2
= [P Z’YP S (vPR)*
k=0
+3° (" = 4))PY | s 48)
7=0
n—2
gvPﬁZ (YP#)" > (vPx) es (49)
=0 k=0

where (47) follows from (46), (48) follows from the fact that
Y|IPx|| <1, (45) and grouping the common terms in the ex-
pansions, and (49) follows from the facts that v < 1 and the
elements of P; and that c; are non-negative. If we take the
norm of both sides, we obtain:

1QY - QM < 7P+ > (vPs)" Z il (50)
=0 k=0
o n—2
S’Y”P% VP=ID™ > - (VIP=D)
=0 k=0
(51)
<va’“ (52)
gl 1—7"*1
— e, 53
<oy lesl (53)

where (50) follows from (49), (51) follows from the upper
bound on the norm of a matrix-vector product [54], (52) follows
from the fact that v||P#|| < 1, and (53) follows from the finite
and infinite geometric sum formulas.

E. Proof of Proposition 4
We analyze Q;") when v — 1.

lim Q" = lim (I —P2) "¢ (54)
y—1 ~y—1
=I-P7)" (55)
=cx +Plcr + (P2)%cr + (P2)3cr + ..., (56)

which follows from (45). Then, we can write the following:

th()—c,,—&—P c,r—i—P cw—i—P?’c,r 57
’y—>

lim1 QS}) — Cr + P?Tc7T + Pic7T + Pfrc.,r + (58)
vy

lim QY —cp +Plcr +Pler +Pler+... (59
¥

1441

We observe that Qg)
that Q;") contains for all n # 1. We also have the following
partial orderings in the limiting case (y — 1):

is the largest since it has all the terms

QY >qQl >qQW >ql"... (60)
QY > QY > v . ©1)
Q¥ > Q" > Q... (62)
Q" >qQ">qQ..., (63)

which follow as the elements of P and c; are non-negative.

ACKNOWLEDGMENT

The authors thank Prof. Tara Javidi of UCSD for ongoing
discussions regarding this work and for suggesting that we
consider multi-hop transition matrices based on our work on
co-link approximations [45].

REFERENCES

[1] Y. Chen, Q. Zhao, and A. Swami, “Distributed spectrum sensing and
access in cognitive radio networks with energy constraint,” /IEEE Trans.
Signal Process., vol. 57, no. 2, pp. 783-797, Feb. 2009.

[2] F. Zhang and V. K. N. Lau, “Closed-form delay-optimal power control
for energy harvesting wireless system with finite energy storage,” IEEE
Trans. Signal Process., vol. 62, no. 21, pp. 5706-5715, Nov. 2014.

[3] S. Chai and V. K. N. Lau, “Online trajectory and radio resource
optimization of cache-enabled UAV wireless networks with content and
energy recharging,” IEEE Trans. Signal Process., vol. 68, pp. 1286—
1299, 2020.

[4] D. Bertsekas, Reinforcement Learning and Optimal Control. Belmont,
MA, USA: Athena Scientific, 2019.

[5] R.S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[6] D. V. Djonin and V. Krishnamurthy, “Q-learning algorithms for con-
strained Markov decision processes with randomized monotone poli-
cies: Application to MIMO transmission control,” IEEE Trans. Signal
Process., vol. 55, no. 5, pp. 2170-2181, May 2007.

[7] S. Kar, J. M. E. Moura, and H. V. Poor, “QD-learning: A collabora-
tive distributed strategy for multi-agent reinforcement learning through
consensus + innovations,” IEEE Trans. Signal Process., vol. 61, no. 7,
pp. 1848-1862, Apr. 2013.

[8] M. H. Ngo and V. Krishnamurthy, “Monotonicity of constrained optimal
transmission policies in correlated fading channels with ARQ,” IEEE
Trans. Signal Process., vol. 58, no. 1, pp. 438-451, Jan. 2010.

[9] Z. Hajiakhondi-Meybodi, A. Mohammadi, M. Hou, and K. N. Pla-
taniotis, “DQLEL: Deep Q-learning for energy-optimized LoS/NLoS
UWB node selection,” IEEE Trans. Signal Process., vol. 70, pp. 2532—
2547, 2022.

[10] H. Hasselt, “Double Q-learning,” in Proc. Adv. Neural Inf. Process. Syst.,

vol. 23, pp. 2613-2621, 2010.

[11] C. D’Eramo, M. Restelli, and A. Nuara, “Estimating maximum expected
value through Gaussian approximation,” in Proc. Int. Conf. Mach.
Learn., PMLR, 2016, pp. 1032-1040.

O. Anschel, N. Baram, and N. Shimkin, “Averaged-DQN: Variance
reduction and stabilization for deep reinforcement learning,” in Proc.
Int. Conf. Mach. Learn., PMLR, 2017, pp. 176-185.

[13] X. Chen, C. Wang, Z. Zhou, and K. W. Ross, “Randomized ensembled

[12]

double Q-learning: Learning fast without a model,” 2021. [Online].
Available: https://arxiv.org/abs/2101.05982
[14] M. Ghavamzadeh, H. Kappen, M. Azar, and R. Munos, “Speedy

Q-learning,” in Proc. Adv. Neural Inf. Process. Syst., vol. 24, pp. 2411-
2419, 2011.

[15] M. Riedmiller, “Neural fitted Q iteration—first experiences with a data
efficient neural reinforcement learning method,” in Proc. Eur. Conf.
Mach. Learn., Springer, 2005, pp. 317-328.

[16] L. Liu and U. Mitra, “On sampled reinforcement learning in wireless
networks: Exploitation of policy structures,” IEEE Trans. Commun.,
vol. 68, no. 5, pp. 2823-2837, May 2020.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 10,2024 at 05:19:04 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/2101.05982

1442

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

L. Liu, A. Chattopadhyay, and U. Mitra, “On solving MDPs with large
state space: Exploitation of policy structures and spectral properties,”
IEEE Trans. Commun., vol. 67, no. 6, pp. 4151-4165, Jun. 2019.

Q. Lan, Y. Pan, A. Fyshe, and M. White, “Maxmin Q-learning: Con-
trolling the estimation bias of Q-learning,” 2020. [Online]. Available:
https://arxiv.org/abs/2002.06487

O. Peer, C. Tessler, N. Merlis, and R. Meir, “Ensemble bootstrap-
ping for Q-learning,” in Proc. Int. Conf. Mach. Learn., PMLR, 2021,
pp. 8454-8463.

S. Amin, M. Gomrokchi, H. Satija, H. van Hoof, and D. Precup,
“A survey of exploration methods in reinforcement learning,” 2021.
[Online]. Available: https://arxiv.org/abs/2109.00157

R. McFarlane, “A survey of exploration strategies in reinforcement
learning,” McGill Univ., Montreal, QC, Canada, Rep. 3, pp. 1718, 2018.
T. Bozkus and U. Mitra, “Ensemble link learning for large state space
multiple access communications,” in Proc. 30th Eur. Signal Process.
Conf. (EUSIPCO), 2022, pp. 747-751.

T. Bozkus and U. Mitra, “Ensemble graph Q-learning for large scale
networks,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), 2023, pp. 1-5.

F. S. Melo, “Convergence of Q-learning: A simple proof,” In-
stitute of Systems and Robotics, Lisbon, Portugal, Tech. Rep.,
pp- 1-4, 2001. [Online]. Available: http://users.isr.ist.utl.pt/~mtjspaan/
readingGroup/ProofQlearning.pdf

A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine, “Stabilizing
off-policy Q-learning via bootstrapping error reduction,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 32, pp. 11784-11794, 2019.

R. Agarwal, D. Schuurmans, and M. Norouzi, “An optimistic perspective
on offline reinforcement learning,” in Proc. Int. Conf. Mach. Learn.,
PMLR, 2020, pp. 104-114.

S. Lee, Y. Seo, K. Lee, P. Abbeel, and J. Shin, “Offline-to-online
reinforcement learning via balanced replay and pessimistic Q-ensemble,”
in Proc. Conf. Robot Learn. (PMLR), 2022, pp. 1702-1712.

A. Modi, N. Jiang, A. Tewari, and S. Singh, “Sample complexity of
reinforcement learning using linearly combined model ensembles,” in
Proc. Int. Conf. Artif. Intell. Statist. (PMLR), 2020, pp. 2010-2020.

T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel, “Model-
ensemble trust-region policy optimization,” 2018, arXiv:1802.10592.
K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep reinforce-
ment learning in a handful of trials using probabilistic dynamics models,”
in Proc. Adv. in Neural Inf. Process. Syst., vol. 31, pp. 4759-4770, 2018.
Y. Yao, L. Xiao, Z. An, W. Zhang, and D. Luo, “Sample efficient re-
inforcement learning via model-ensemble exploration and exploitation,”
in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), Piscataway, NJ, USA:
IEEE Press, 2021, pp. 4202-4208.

D. Pathak, D. Gandhi, and A. Gupta, “Self-supervised exploration
via disagreement,” in Proc. Int. Conf. Mach. Learn., PMLR, 2019,
pp. 5062-5071.

B. A. Craig and P. P. Sendi, “Estimation of the transition matrix of
a discrete-time Markov chain,” Health Econ., vol. 11, no. 1, pp. 33—
42, 2002.

M. Awiszus and B. Rosenhahn, “Markov chain neural networks,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, 2018,
pp. 2180-2187.

C. Sherlaw-Johnson, S. Gallivan, and J. Burridge, “Estimating a Markov
transition matrix from observational data,” J. Oper. Res. Soc., vol. 46,
no. 3, pp. 405-410, 1995.

J. Tugnait, “Adaptive estimation and identification for discrete systems
with Markov jump parameters,” IEEE Trans. Autom. Control, vol. AC-
27, no. 5, pp. 1054-1065, Oct. 1982.

J. Lin, “Divergence measures based on the Shannon entropy,” /IEEE
Trans. Inf. Theory, vol. 37, no. 1, pp. 145-151, Jan. 1991.

T. Bozkus and U. Mitra. “Supplementary appendix.” 2023. [Online].
Available: https://github.com/talhabozkus/Multi-Timescale-Ensemble-
QLearning

Y. Song, Y. Zhou, A. Sekhari, J. A. Bagnell, A. Krishnamurthy, and
W. Sun, “Hybrid RL: Using both offline and online data can make RL
efficient,” 2022, arXiv:2210.06718.

A. Nair, M. Dalal, A. Gupta, and S. Levine, “Accelerating online
reinforcement learning with offline datasets,” 2020. [Online]. Available:
https://arxiv.org/abs/2006.09359

T. Xie, N. Jiang, H. Wang, C. Xiong, and Y. Bai, “Policy fine-
tuning: Bridging sample-efficient offline and online reinforcement

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

learning,” in Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021,
pp. 27395-27407.

S. Thrun and A. Schwartz, “Issues in using function approximation for
reinforcement learning,” in Proc. Connectionist Models Summer School,
Hillsdale, NJ, USA: Lawrence Erlbaum, vol. 6, 1993, pp. 1-9.

H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. AAAI Conf. Artif. Intell., vol. 30,
no. 1, pp. 2094-2100, 2016.

C. D’Eramo et al., “Gaussian approximation for bias reduction in
Q-learning,” J. Mach. Learn. Res., vol. 22, no. 1, pp. 12690-12740,
2021.

T. Bozkus and U. Mitra, “Link analysis for solving multiple-access
MDPs with large state spaces,” IEEE Trans. Signal Process., vol. 71,
pp. 947-962, 2023.

G. J. Székely, M. L. Rizzo, and N. K. Bakirov, “Measuring and testing
dependence by correlation of distances,” Ann. Statist., vol. 35, no. 6,
pp. 2769-2794, 2007, doi: 10.1214/009053607000000505.

F. S. Melo and M. I. Ribeiro, “Q-learning with linear function approxi-
mation,” in Proc. 20th Annu. Conf. Learn. Theory (COLT), San Diego,
CA, USA: Springer, Jun. 13-15, 2007, pp. 308-322.

V. Mnih et al., “Playing atari with deep reinforcement learning,” 2013,
arXiv:1312.5602.

D. Russo, “Approximation benefits of policy gradient methods with
aggregated states,” Manage. Sci., vol. 69, no. 11, pp. 6898-6911, 2023.
L. Li, T. J. Walsh, and M. L. Littman, “Towards a unified theory of
state abstraction for MDPs,” in Proc. Int. Symp. Artif. Intell. Math.
(Al&Math), 2006, pp. 531-539.

P. Rashidinejad, B. Zhu, C. Ma, J. Jiao, and S. Russell, “Bridging offline
reinforcement learning and imitation learning: A tale of pessimism,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021, pp. 11702-11716.
G. Strang, Linear Algebra and Its Applications. Belmont, CA, USA:
Brooks/Cole, 2006.

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

Talha Bozkus received the B.Sc. degree in electrical and electronics engineer-
ing from Bilkent University, Turkey, in 2020. He is currently working toward
the Ph.D. degree with Ming Hsieh Department of Electrical and Computer
Engineering, University of Southern California, Los Angeles, CA, USA.
His research interests include signal processing, network optimization, and
reinforcement learning. He was the recipient of a USC Annenberg Fellowship
for graduate study and the Bilkent University Comprehensive Scholarship for
his undergraduate studies.

Urbashi Mitra (Fellow, IEEE) received the B.S. and M.S. degrees from
the University of California at Berkeley, Berkeley, CA, USA, and the Ph.D.
degree from Princeton University, Princeton, NJ, USA. She is currently the
Gordon S. Marshall Chair of engineering with the University of Southern
California. Her research interests include wireless communications, biological
communication, underwater acoustic communications, communication and
sensor networks, and the detection, estimation, and the interface of communi-
cation, sensing, and control. She was a recipient of the 1996 National Science
Foundation CAREER Award and the 1997 OSU College of Engineering
MacQuigg Award for Teaching, the 2000 OSU College of Engineering Lumley
Award for Research, the 2001 Okawa Foundation Award, the Texas Instru-
ments Visiting Professorship (Rice University, Fall 2002), the 2009 DCOSS
Applications and Systems Best Paper Award, the Best Paper Award from the
2012 GLOBECOM Signal Processing Symposium for Communications, the
2012 U.S. National Academy of Engineering Lillian Gilbreth Lectureship,
the 2014 to 2015 IEEE Communications Society Distinguished Lecturer, the
Women in Communications Engineering Technical Achievement Award from
the IEEE Communications Society in 2017, the 2016 U.K. Royal Academy
of Engineering Distinguished Visiting Professorship, the 2016 USA Fulbright
Scholar Award, the 2016 to 2017 U.K. Leverhulme Trust Visiting Profes-
sorship, and the 2021 USC Viterbi School of Engineering Senior Research
Award. She was the inaugural Editor-in-Chief of IEEE TRANSACTIONS ON
MOLECULAR, BIOLOGICAL AND MULTI-SCALE COMMUNICATIONS. She was
an Associate Editor of IEEE TRANSACTIONS ON SIGNAL PROCESSING, from
2012 to 2015, IEEE TRANSACTIONS ON INFORMATION THEORY, from 2007
to 2011, IEEE JOURNAL OF OCEANIC ENGINEERING, from 2006 to 2011, and
IEEE TRANSACTIONS ON COMMUNICATIONS, from 1996 to 2001.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 10,2024 at 05:19:04 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/2002.06487
https://arxiv.org/abs/2109.00157
http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf
http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf
https://github.com/talhabozkus/Multi-Timescale-Ensemble-QLearning
https://github.com/talhabozkus/Multi-Timescale-Ensemble-QLearning
https://arxiv.org/abs/2006.09359
http://dx.doi.org/10.1214/009053607000000505

