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Leveraging Digital Cousins for Ensemble
Q-Learning in Large-Scale Wireless Networks
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Abstract—Optimizing large-scale wireless networks, including
optimal resource management, power allocation, and through-
put maximization, is inherently challenging due to their non-
observable system dynamics and heterogeneous and complex
nature. Herein, a novel ensemble Q-learning algorithm that
addresses the performance and complexity challenges of the tra-
ditional Q-learning algorithm for optimizing wireless networks
is presented. Ensemble learning with synthetic Markov Decision
Processes is tailored to wireless networks via new models for
approximating large state-space observable wireless networks.
In particular, digital cousins are proposed as an extension of
the traditional digital twin concept wherein multiple Q-learning
algorithms on multiple synthetic Markovian environments are
run in parallel and their outputs are fused into a single Q-
function. Convergence analyses of key statistics and Q-functions
and derivations of upper bounds on the estimation bias and
variance are provided. Numerical results across a variety of real-
world wireless networks show that the proposed algorithm can
achieve up to 50% less average policy error with up to 40%
less runtime complexity than the state-of-the-art reinforcement
learning algorithms. It is also shown that theoretical results
properly predict trends in the experimental results.

Index Terms—Reinforcement learning, Q-learning, Markov
decision processes, wireless networks.

I. INTRODUCTION

THE optimization of large-scale real-world wireless net-
works is challenging due to their inherent complexity,

dynamic nature, and many unobservable features [1], [2], [3].
To overcome these challenges, digital twins have been proposed
as a solution within next-generation wireless networks [4], [5].
In the context of wireless networks, digital twins function as
virtual, exact replicas of key systems, including IoT, edge, and
mobile devices, as well as network infrastructures and commu-
nication protocols. They provide a framework for the model-
ing, simulation, troubleshooting, and optimization of a variety
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of problems, such as dynamic resource allocation, interfer-
ence and latency minimization, and optimal spectrum allocat-
ion [6], [7], [8].

Herein, we use Markov Decision Processes (MDPs) to model
wireless networks. MDPs provide a mathematical framework
for modeling sequential decision-making problems under un-
certainty [9]. In real-world scenarios, the underlying system
dynamics of wireless networks are often non-observable or
difficult to estimate accurately [10]. To this end, we will adapt
model-free reinforcement learning approaches, in particular,
Q-learning, to optimize wireless networks. Our approach will
also incorporate model estimation.

Q-learning [9] has been widely employed for the optimiza-
tion of wireless networks [11], [12], [13]. However, it suf-
fers from certain limitations, particularly when dealing with
large state-space wireless networks. Several variants of the Q-
learning algorithm have been proposed to address these limita-
tions. The estimation bias is considered in [14], [15], whereas
the work of [16], [17] deals with the estimation variance.
Other methods improve learning speed [18] and sample ef-
ficiency [19], deal with the high dimensionality of the state
space [20], [21], and address exploration challenges [22], [23].
On the other hand, the work of [24], [25] is tailored to the
optimization of wireless networks. These algorithms can also
be categorized based on their implementation strategies, with
some using a single Q-function estimator on a single Marko-
vian environment [9], [18], [19], while others employ multiple
Q-function estimators on a single Markovian environment [14],
[15], [16], [17]. The design of multiple Q-function estimators
that can be employed on multiple Markovian environments
has not been well-studied (see [26], [27], [28]). However, the
multiplicity of Markovian environments can accelerate training,
improve data efficiency, and yield more accurate and stable
Q-functions.

The traditional digital twin approach of employing exact
replicas of the original Markovian system can leverage the best
outcomes from different replicas (such as the most accurate or
stable Q-functions) and enable parallel exploration of diverse
states and actions. Moreover, digital twins with the same algo-
rithms, but different parameter values, can enable more efficient
parameter optimization. Despite their promising advantages,
traditional digital twins have several challenges [29], [30]. They
lack the ability to incorporate variations or alternative represen-
tations of the original Markovian environment, which restricts
the adaptability of the algorithm to different scenarios and set-
tings. Creating replicas that precisely mimic noisy, dynamic,
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or uncertain environments can enhance noise. Insufficient or
biased sampling in the original environment negatively affects
the accuracy of the digital twins, leading to sub-optimal learning
and decision-making.

Herein, we offer the concept of digital cousins for wireless
networks in the context of reinforcement learning to overcome
these challenges of traditional digital twins by exploiting our
prior work [26], [27], [28], [31]. Digital cousins are distinct, yet
structurally related synthetic Markovian environments (SMEs).
These environments are inherently different, but share similar
characteristics and dynamics, enabling improved performance
with respect to exploration and optimization. In particular,
digital cousins enable the reinforcement learning agent to ex-
plore longer trajectories, discover new state-action pairs, and
learn from indirect experiences, which facilitates faster learning
of the environment. These environments also help the agent
exploit patterns, particularly in structured environments as
found in wireless networks, and adapt to changing dynamics
by leveraging past experiences. Overall, these advantages re-
sult in substantial improvements in the speed, data efficiency,
accuracy, and robustness of the Q-learning algorithm, as will
be shown later. It is worth noting that digital cousins improve
exploration, and thus learning, in part because each different
Markovian environment runs at a different time scale.

Our previous work [31] presented low-complexity tech-
niques for modeling and approximating observable MDPs for
policy optimization. Furthermore, we emphasized the advan-
tages of utilizing multiple SMEs to improve the accuracy
and complexity of the traditional Q-learning algorithm across
non-observable MDPs for policy learning in [26], [27], [28].
The current work synthesizes both approaches and specifi-
cally focuses on the optimization of real-world wireless net-
works that vary in topology, scale, complexity, objective, and
implementation.

The current work has key differences with respect to [28],
which lead to significant improvements. Firstly, we particularly
focus on the optimization of different wireless networks versus
the unstructured networks considered in [28]. The structured
nature of wireless networks enables efficient learning by
estimating the underlying model of different SMEs with lower
complexity as well as the design of structural state-aggregation
algorithms to minimize the memory complexity of the
Q-learning algorithm across large state-spaces. In particular, we
employ a more accurate, robust, and practical way of modeling
multiple SMEs through the use of co-link matrices; in [28],
powers of the probability transition matrix are employed. The
current approach captures complex, bidirectional, and inter-
dependent dynamics of Markovian transitions within wireless
networks and enhances the robustness of multiple SMEs against
variability and uncertainties inherent in these transitions.

Secondly, our proposed algorithm utilizes a straightforward
policy comparison as the cost metric, avoiding the complexi-
ties of the divergence metric for Q-functions in [28]. This de-
sign results in increased computational efficiency and enhanced
resilience to noise, errors, and numerical instabilities in the
Q-functions. These two key changes, the use of co-link matrices
to model different SMEs and direct policy optimization, also

yield improvements in our theoretical results. Our bounds are
more accurate and require fewer assumptions, approximations,
and constraints on system parameters than our prior work.
Throughout the paper, we highlight the differences between the
current work and our prior work [28].

Asynchronous Advantage Actor-Critic (A3C) [32] concep-
tually resembles our approach, Ensemble Synthetic Q-learning
(ESQL). Both A3C and ESQL involve parallel learning to ex-
plore the state space; however, these strategies have fundamen-
tal differences. In particular, A3C is an actor-critic algorithm
that models the critic (value function) and actor (policy) via
neural networks. Thus, A3C suffers from the classical chal-
lenges of neural networks with respect to training time, compu-
tational complexity, robustness, and interpretability. Moreover,
the critic’s value function may be inaccurate or inconsistent
with the actor’s policy, leading to instability. ESQL utilizes
Q-learning and hence obviates these issues.

With regards to parallel learning, A3C uses multiple copies
of the same environment (like digital twins). In contrast, ESQL
constructs synthetic environments that are distinct but struc-
turally related and mutually informative in a model-based
fashion (digital cousins, not twins). In A3C, each network is
an independent neural network initialized differently and ex-
plores the same environment in different ways, whereas, in
ESQL, each network is an independent Q-learning learning
different representations of the original environment through
n-hop/multi-time-scale information. Unlike A3C, which peri-
odically synchronizes network parameters, ESQL requires no
synchronization; instead, Q-functions from each environment
contribute to the global Q-function with weighting, enabling
exploitation of the most useful environments. As ESQL exploits
structural properties of multiple environments, data-efficient
estimation strategies are possible to reduce sample complexity,
and structural-state-action aggregation algorithms can mitigate
memory complexity unlike A3C. Finally, while A3C offers
performance that is competitive with ESQL, it does so with a
significant increase in computational complexity; furthermore,
the performance advantage of A3C for small networks degrades
as the network grows in size.

The main contributions of the paper are as follows:
(i) We leverage the innovative concept of digital cousins as

an extension of traditional digital twins and new models for
approximating large state-space observable wireless networks
to construct multiple distinct, yet structurally related SMEs for
ensemble model-free learning.

(ii) We propose a novel ensemble learning algorithm, where
multiple Q-learning algorithms are run in parallel on multiple
SMEs. Their outputs are fused into a single Q-function estimate
via a policy comparison between different environments to pro-
duce a near-optimal deterministic policy with low complexity.

(iii) We analyze the stability and convergence of the proposed
algorithm from deterministic and probabilistic perspectives and
provide upper-bound analysis on estimation bias and variance.
We also consider a wider range of independence assumptions
on the error from each digital cousin versus [28]. This im-
proved analysis is facilitated by our tailored focus on wire-
less networks.
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(iv) Numerical simulations across different real-world wire-
less networks show that the proposed algorithm outperforms
the state-of-the-art reinforcement learning algorithms as well
as methods proposed in our prior work [26], [27], [28] by
achieving up to 50% less average policy error with up to
40% less runtime complexity. A considerable amount of reduc-
tion in memory complexity is also achieved through an orig-
inal structural state-action aggregation algorithm. In addition,
the experimental results are shown to follow the theoretical
results closely.

We use the following notation: vectors are bold lower case
(x); matrices are bold upper case (A); sets are in calligraphic
font (S); and scalars are non-bold (α).

II. SYSTEM MODEL AND METHODS

A. Infinite Horizon Discounted Cost MDP Model

MDPs consist of 4-tuples {S , A, p, c}, where S and A denote
the finite state and action spaces, respectively. We denote st

as the state and at as the action taken at discrete time period
t. The transition from state s to s1 under action a occurs with
probability paps, s1q, which is stored in the ps, s1, aqth element
of the three-dimensional probability transition tensor (PTT) P,
and a bounded average cost capsq “ ř

s1PS pa ps, s1q ĉaps, s1q is
incurred, which is stored in the ps, aqth element of the cost ma-
trix C, where ĉaps, s1q is the instantaneous transition cost from
state s to s1 under action a. We denote the probability transition
matrix (PTM) and cost vector under the action a by Pa and
ca, respectively. We focus on infinite horizon discounted cost
MDPs, where t “ Z` Y t0u. Our goal is to solve Bellman’s
optimality equation:

v˚psq “ min
π

vπpsq “ min
π

Eπ

« 8ÿ

t“0

γtcatpstq|s0 “ s

ff
, (1)

π˚psq “ argmin
π

vπpsq, (2)

for all s P S , where vπ is the value function [9] under the
policyπ, v˚ is the optimal value function, π˚ is the optimal
policy, and γ P p0, 1q is the discount factor. The policy π can
define either a specific action per state (deterministic) or a
distribution over the action space per state (stochastic) for each
time period. If the policy does not change over time, i.e., πt “ π,
@t, then it is deemed stationary. There always exists a deter-
ministic stationary policy that is optimal given a finite state and
action spaces [9]. Hence, we herein consider deterministic and
stationary policies.

B. Model-Free Reinforcement Learning: Q-Learning

When the system dynamics (p and c) are unknown or non-
observable, Q-learning can be used to solve (1) and (2). The
objective of Q-learning is to determine the optimal policy π˚

by learning the Q functions for all state-action pairs ps, aq. This
learning process is governed by the update rule:

Qps, aqÐ p1 ´ αqQps, aq ` αpcapsq ` γ min
a1PA

Qps1, a1qq,
(3)

where α P p0, 1q is the learning rate. In practice, ϵ-greedy poli-
cies are used to tackle the exploration-exploitation trade-off
to ensure that sufficient sampling of the system is captured
by visiting each state-action pair sufficiently many times [9].
To this end, a random action is taken with probability ϵ (ex-
ploration), and a greedy action that minimizes the Q-function
of the next state is taken with probability 1 ´ ϵ (exploitation).
By interacting with the environment and collecting samples
ts, a, s1, cu, the agent updates the Q-functions using (3). The
learning strategy involves determining the trajectory length (l)
(the number of states in a trajectory), and the minimum num-
ber of visits to each state-action pair (v), which is generally
used as a termination condition for the sampling operation.
Q-functions converge to their optimal values with probability
one, i.e.,Qps, aq w .p.1ÝÝÝÝÑ Q˚ps, aq for all ps, aq if necessary con-
ditions are satisfied [33]. The optimal policy and value functions
can be derived from the Q-functions as:

π˚psq “ argmin
aPA

Q˚ps, aq, v˚psq “ min
aPA

Q˚ps, aq. (4)

C. Extension of Digital Twins: Digital Cousins

In our prior work [26], [27], [28], we introduced the novel
concept of digital cousins for general networks, which repre-
sents a set of closely related synthetic Markovian environments
that share analogous structures and characteristics with both the
original Markovian environment and each other. This approach
effectively captures the essence of the original Markovian envi-
ronment while introducing variations, addressing many of the
limitations of traditional digital twins.

There are several ways to create SMEs (and the correspond-
ing PTTs) based on the PTT of the original environment P.
A natural approach is to employ a function of P or PT .
It is desirable to maintain a consistent relationship between
transition probabilities paps, s1q across different environments
while ensuring that the PTTs of different environments are row-
stochastic or can be converted to such form via appropriate
normalization techniques without altering the underlying struc-
tures. We herein employ the colink method, which was origi-
nally introduced in [34], which involves constructing a set of
symmetric matrices based on the original probability transition
matrix. Our prior work [31] demonstrated the effectiveness of
the colink method for policy optimization in large state-space
wireless networks (with known P). Herein, the structure of
wireless networks can be exploited to improve the estimation of
the co-link matrices for learning in contrast to the unstructured
network models considered in [28].

The colink method produces the nth order similarity tensor,
denoted by Lpnq (Lpnq

i is the matrix for the ith action), which
can be expressed as:

Lpnq
i

def“
n´2ÿ

k“0

Pn´k´1
i pPT

i qk`1 ` pPT
i qn´k´1Pk`1

i , @i P A,

(5)

where Pi is the PTM corresponding to the ith action in P.
We employ l1 normalization on Lpnq

i , @i P A (so that the sum
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Fig. 1. The relationship between Lp1q (= P̂), Lpnq, Mp1q and Mpnq.

of each row in Lpnq
i is 1). This transformation preserves the

structure of Lpnq while generating row-stochastic PTMs, as dis-
cussed in [31]. The resulting synthetic Markovian environment,
denoted as Mpnq, captures the n-step probabilistic transitions
between states represented by Lpnq.

When dealing with large dimensions of P or a high order
n, utilizing (5) can pose computational challenges due to the
increasing number of matrix multiplications involved. However,
it is possible to overcome this issue by leveraging the structural
properties of P. By exploiting properties such as diagonal,
circulant, Toeplitz, or block structures, alternative approaches
can be developed to compute (5) with significantly lower com-
plexity [31].

The original PTT, P, is initially unknown; thus, it needs to
be estimated to create the PTTs of multiple SMEs. If the num-
ber of one-step transitions between states can be counted, the
transition probabilities can be accurately estimated via sample
averaging [35]. If there is a particular structure in one-step
transition probabilities, as found in wireless networks, a more
data-efficient estimation can also be performed [26], [31]. We
denote the estimated PTT by P̂, and construct Lpnq using P̂.
The relationship between the original Markovian environment
(Mp1q) and the nth synthetic Markovian environment (Mpnq,
ną 1) is given in Fig. 1.

The accuracy of Lpnq and Mpnq is affected by the quality
of sampling and the order n. Insufficient sampling can lead to
accumulated errors during matrix multiplications, resulting in
lower accuracy for higher-order environments (i.e. for large n).
Additionally, as n increases, the interpretation of Lpnq becomes
less intuitive, making it challenging to understand state transi-
tions over longer time horizons. While Lpnq tends to converge
to a fixed tensor as n increases, this convergence may also cause
the loss of underlying system dynamics. In particular, our prior
work [31] showed the existence of an optimal n that maximizes
the accuracy of the estimated policy. We underline that this
optimal n is not large, of the order 5.

The use of colink methods provides several advantages over
our prior approach [28]. Co-link modeling effectively captures
bidirectional relationships in Markovian transitions, which

Algorithm 1 Ensemble Synthetic Q-Learning (ESQL)

Input: l, v, ut, K, Qpnq, n P t1, 2, ..., Ku
Output: Qit, π̂

1: Initialize w0 randomly, Qit
0 Ð 0, tÐ 0

2: while each ps, aq pair in Mp1q not visited v times do
3: choose common initial state for all Mpnq randomly
4: repeat l times
5: for each n P t1, ..., Ku do
6: sample ts, a, s1, cu from Mpnq and update Qpnq

t

using (3)
7: πpnq

t psqÐ argmina1 Q
pnq
t ps, a1q

8: wpnq
t Ð 1

|S|
ř|S|

j“1 1pπp1q
t pjq “ πpnq

t pjqq
9: end for

10: wt Ð softmaxpwtq
11: Qit

t`1 Ð utQit
t ` p1 ´ utq

řK
n“1 wpnq

t Qpnq
t

12: tÐ t ` 1
13: end
14: end while
15: π̂psqÐ argmina1 Qitps, a1q

Fig. 2. Comparison of Q-learning (QL) algorithms based on their imple-
mentation strategies.

enables improved modeling of feedback loops and other in-
terdependencies seen in wireless networks [31]. Incorporating
bidirectional relationships can also enhance the robustness of
the synthetic Markovian environments against stochastic im-
pairments that might be present in the underlying Markovian
transitions. The nature of colink representations also ensures
sufficient variability across multiple SMEs.

III. ALGORITHM

This section introduces the proposed algorithm, Ensemble
Synthetic Q-Learning (ESQL) (Algorithm 1). We leverage K ´
1 SMEs (Mpnq for n P t2, ..., Ku), in addition to the origi-
nal Markovian environment Mp1q, resulting in a total of K
Markovian environments. The comparison between the tradi-
tional Q-learning algorithm, conventional ensemble Q-learning
algorithms, and the proposed algorithm is given in Fig. 2, where
Qpnq represents the Q-function estimator for the Q-learning
algorithm running on Mpnq for n P t1, 2, ..., Ku.

Algorithm 1 has several inputs: the trajectory length (l), the
minimum number of visits required for each state-action pair
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(v), the update ratio at time t (ut P r0, 1s), the total number
of Markovian environments (K), and the empty Q-tables for
the K different environments (Qpnq for n P t1, 2, ..., Ku). Let
wt denote the weight vector of size K at time t, where wpnq

t

represents the nth element of wt. At t “ 0, the weight vector
w0 is initialized randomly in line 1. Each element is chosen
uniformly random from the range [0,1], and the vector is sub-
sequently softmax-normalized to ensure that

řK
n“1 wpnq

0 “ 1.
This initialization serves to break the symmetry. The iterations
continue until each state-action pair in Mp1q is visited at least
v times (in line 2), ensuring sufficient capture of different state-
action dynamics. At the end of each trajectory (i.e. every l time
step), all K Markovian environments are reset, and a common
initial state is assigned randomly from t1, 2, ..., |S|u, as indi-
cated in line 3. Independent samples are collected from each
different Markovian environment, and corresponding Q-tables
are updated independently in line 6. We note that although the
initial states are the same, different actions are taken following
the epsilon-greedy policy of each different environment; thus,
different next-state and cost pairs are observed for different
environments. This procedure is repeated l times, after which
a random but common initial state is set.

In line 7, we obtain a set of individual policies, πpnq
t ,

by minimizing the current Q-functions Qpnq
t . In line 8, we

compute the correct estimation rate vectorwt, and its nth

element (wpnq
t ) represents how close the individual policy πpnq

t

is to the policy of the original environment πp1q
t . Hence, wpnq

t

is a good indicator of how useful the most recent samples from
Mpnq are for constructing the ensemble output. In line 10,
the vector wt is softmax-normalized, and used to update the
Q-function output of Algorithm 1, denoted as Qit

t , in line 11.
During the update of Qit

t , the algorithm balances exploitation
by utilizing a fraction ut of the Qit

t from the previous iteration,
while promoting exploration by sampling multiple Markovian
environments based on their weights, with their contributions
weighted by 1 ´ ut. The estimated policy π̂ is derived from Qit

in line 15.
Our approach directly optimizes policies and compares the

optimal policies of different environments to determine weights
(in lines 7-8) in contrast to [28], where the Q-functions are
optimized and utilized in the weighting mechanism (see Algo-
rithm 1 of [28], lines 7-8). This approach simplifies algorithm
design and improves performance in several ways. Firstly, pol-
icy comparison is computationally efficient, as it only involves
comparing selected actions instead of the entire Q-table, re-
sulting in faster computation. Secondly, updating the policy di-
rectly robustifies against bias, error, or noise in the Q-functions.
Thirdly, policies are represented by discrete actions, which
eliminates issues associated with taking the difference between
small Q-functions, thus providing numerical stability. Lastly,
direct policy optimization yields more interpretable results.

The iterative update of Qit
t with the current weight vector wt

captures asymmetric information between different Markovian
environments. Initially, Mp1q provides more useful samples as
it is the original Markovian environment, and there are lim-
ited observations for higher-order relationships versus the first-
order relationships. As iterations progress, Mpnq for larger n

contributes more, improving exploration and reducing reliance
on the first-order relationships.

We emphasize that our proposed algorithm combines the
features of online and offline RL methods. In real-time, we
estimate the PTT of the original environment through sampling
and update the corresponding Q-functions (online part). Si-
multaneously, we construct PTTs for multiple SMEs and learn
their Q-functions using pre-collected data (offline part). Unlike
hybrid RL algorithms [36], which uses both offline and online
data collection, our approach continuously updates Q-functions
in real-time while leveraging pre-collected data for improved
accuracy and stability.

While our approach includes model-based learning compo-
nents such as estimating the PTT of the original Markovian
environment, it differs from model-based reinforcement learn-
ing [37] in several ways: (i) We focus on learning Q-functions
using Q-learning across multiple Markovian environments to
determine optimal policies, rather than accurately modeling
environment dynamics. (ii) The estimated PTT is used to gen-
erate multiple SMEs to facilitate learning and exploration, and
is not directly used for decision-making. (iii) We focus on
sampling-driven cost collection as opposed to explicit cost func-
tion estimation.

A. Deterministic Analysis

We next present a set of theoretical results for Algorithm 1,
including convergence results and stability analysis in a de-
terministic setting. We underscore that in [28], the analysis is
mostly for the case of a distributional assumption on the Q-
function errors. We shall tackle the probabilistic analysis for
our current framework in the sequel. In addition to a series
of results for the deterministic case; our analysis herein has
some key differences from that in [28]. As previously noted,
the incorporation of wireless networks and the use of co-link
representations for the network dynamics enables us to exploit
structures, facilitating tighter results. Additionally, given the
consideration of direct policy comparison versus a divergence
error metric for the Q-functions in [28], there are additional
simplifications and tighter results possible. Finally, we observe
that several results in [28] require assumptions and approxi-
mations. An example assumption is needing a particular time-
varying update ratio to ensure convergence, whereas, herein, we
can employ a constant update ratio ut “ u.

Proposition 1: Let ∆it
t ps, aq denote the Q-function update

of the output of Algorithm 1 for ps, aq from time t to t ` 1 as:
∆it

t ps, aq “ Qit
t`1ps, aq ´ Qit

t ps, aq. Then,

lim
tÑ8

|∆it
t ps, aq ´ ∆it

t´1ps, aq| “ 0, (6)

for all ps, aq. (See Appendix-A)
This proposition provides insight into the behavior of the Q-

function updates over time. In particular, as more iterations are
performed, the updates to the Q-function become increasingly
stable, indicating the stabilization of the overall learning pro-
cess. Our result leverages the convergence properties of the tra-
ditional Q-learning [9] and the convergence of the weights. We
note that Proposition 3 [28] bounds the difference between the
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Q-functions of the original Markovian environment and differ-
ent SMEs; while Proposition 1 herein shows that the ensemble
Q-function converges to a fixed Q-function, and consequently,
the ensemble policy converges to a fixed policy.

Proposition 2: Let ϵpnq
t ps, aq be the weighted Q-function

update of the nth environment for ps, aq from time t to t ` 1
as: ϵpnq

t ps, aq “ wpnq
t`1Q

pnq
t`1ps, aq ´ wpnq

t Qpnq
t ps, aq. Moreover,

let θpnqps, aq be the smallest positive constant that satisfies
|ϵpnq

t ps, aq|ď θpnqps, aq for all t, n, ps, aq. Then,

lim
tÑ8

|∆it
t ps, aq|ď

Kÿ

n“1

θpnqps, aq, (7)

for all ps, aq. (See Appendix-B)
The proposition provides an upper bound on |∆it

t ps, aq| in
the limit depending on the characteristics of the weighted Q-
function updates in each environment. The environments with
larger θpnq values will have a greater impact on the bound.
Furthermore, a tighter upper bound indicates more stable and
controlled updates, potentially leading to faster convergence
and improved learning efficiency.

Proposition 2 bounds the summed error over each Markovian
environment and thus, this bound is implicitly a function of the
number of Markovian environments, K. In contrast, Proposi-
tion 2 [28] shows that the scaling of the error variance between
the ensemble Q-function and the optimal one is bounded by
a constant that scales inversely with K. It should be noted
that both propositions directly exploit the bounded nature of
key functions albeit rather different ones: weighted Q-function
errors and update ratio u here and the weights and the softmax
operator in [28].

Corollary 1: It takes at most t “
log

ˆ
1´ β

řK
n“1 θpnqps,aq

˙

logpuq iter-
ations to ensure that |∆it

t ps, aq|ď β for any β ą 0 and ps, aq.
(See Appendix-C)

By appropriately choosing the parameter u in Algorithm 1,
we can effectively control the speed of convergence and the
accuracy of the Q-function updates. In particular, a larger u
leads to faster convergence.

Proposition 3: If there exist positive constants φpnqps, aq P
p0, 1q such that

|ϵpnq
t`1ps,aq|

|ϵpnq
t ps,aq| ď φpnqps, aq for all n, t, ps, aq, then

lim
tÑ8

|∆it
t ps, aq| “ 0 (8)

for all ps, aq. (See Appendix-D)
This proposition provides a sufficient deterministic condition

for the convergence of Algorithm 1. If the weighted Q-function
update of each Markovian environment is non-increasing over
time, Algorithm 1 converges to the optimal Q-functions. We
will show numerically for different settings that the constants
φpnqps, aq exist with high probability. We establish this result
by utilizing the non-increasing nature of weighted Q-function
errors under the assumption of constant ut, while Corollary 2 of
[28] relies on a strict time-varying form on the update ratio of
the algorithm and independence assumptions on the stochastic
Q-function errors.

Proposition 4: The weights wpnq
t in Algorithm 1 converge to

the following final weights:

wpnq “ e
1
S
ř|S|

j“1 1pπp1qpjq“πpnqpjqq
řK

i“1 e
1
S
ř|S|

j“1 1pπp1qpjq“πpiqpjqq
, (9)

where πpnq “ arg min
µ

pI ´ γL̃pnq
µ q´1cµ and L̃pnq

µ is the l1-

normalized version of Lpnq
µ for all n.

This proposition shows that the final weights of Algorithm 1
can be computed without relying on the Q-functions. Further-
more, the final weights are non-monotonic across the order n,
but the weight for the original system (n “ 1) is always the
largest. We note that the order of weights can change across
iterations, as will be shown numerically. This result can be
easily shown using the compact expression for the Q-functions
[9] and the fact that the weight vector w is normalized using the
softmax operator in Algorithm 1. We herein have a closed-form
solution to the convergent weights of Algorithm 1; thus, one
can directly compare the relative importance of each Markovian
environment. In contrast, Proposition 4 [28] provides a partial
ordering between the Q-functions of any Markovian environ-
ment; thus, the results are less precise.

B. Probabilistic Analysis

The results above did not make any assumptions about the
underlying distributions of the Q-function errors. Herein, as
in [28], we assume that the Q-function errors follow a distribu-
tion. In particular, the distribution D has zero-mean and finite
variance as follows:

X pnq
t ps, aq def“ Qpnq

t ps, aq ´ Q˚ps, aq „ D
´
0,

λ2
n

3

¯
, (10)

for all n, ps, aq with λn ą 0 where Q˚ is the optimal Q-
functions of the original Markovian environment. Unlike prior
studies that assumed specific distributions for D [38], we take
a more general approach by adopting a common distribution
family that governs the Q-function errors across all environ-
ments, as employed and validated in [27], [28]. This assumption
is reasonable due to the shared state and action space, the use of
the same cost function, and common learning parameters across
all Markovian environments. Simulations also confirm that the
true distribution D exhibits a zero-mean and finite variance for
all n (see Fig. 8(g)). A key difference between our current work
and our prior work [28] is that we herein consider a variety
of different independence assumptions on the errors between
different Markovian environments, which capture the dynamics
of different wireless network environments more effectively
relative to [28].

Let E and V be the expectation and variance operators, λ “
max

nPt1,2,...,Ku
λn, and Etps, aq def“ Qit

t ps, aq ´ Q˚ps, aq.

Proposition 5: Let ut be constant: ut “ u. Under assumption
(10), Algorithm 1 produces unbiased Q-functions in the limit
i.e. lim

tÑ8
ErEtps, aqs “ 0 for all ps, aq, and the upper bounds on

the error variance in the limit based on different independence
assumptions are given in Table I. (See Appendix-E)
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TABLE I
UPPER BOUNDS ON lim

tÑ8 VrEtps, aqs

Independence Assumption Upper Bound

X pnq
t K X pmq

t @t, X pnq
t1

K X pnq
t2

@n (strict) p1´uq
p1`uq

λ2

3

X pnq
t1

K X pnq
t2

@n (modest) p1´uq
p1`uqλ

2

no independence assumption 2λ2

p1`uq2 ` p1´uq
p1`uqλ

2

This proposition shows that under the assumption (10), Qit
t is

an unbiased estimator of Q˚ in the limit, and the variance of the
error can always be upper bounded. Clearly, the stricter inde-
pendence assumption leads to a tighter bound. Herein, a larger λ
implies a higher uncertainty in the Q-function errors, yielding
looser upper bounds. On the other hand, when the algorithm
converges (t Ñ 8), a larger u leads to less reliance on SMEs.
We note that when there is high uncertainty in the system,
upon initialization, the digital cousins provide observations at
multiple time scales, improving exploration. However, it should
be underscored that the optimal Q-functions for each SME may
not be the same, and be different from that of the original
Markovian environment. Thus, as uncertainty diminishes, we
want a lower reliance on SMEs and, thus, a larger u.

Corollary 2: By assuming a specific time-varying structure
on the parameter ut, as stated in Proposition 5, and an inde-
pendence assumption on the Q-function errors, it is possible
to derive a sufficient probabilistic condition for convergence
for Algorithm 1. This condition can be employed to show
convergence when Proposition 3 fails to apply [27].

IV. NUMERICAL RESULTS

In this section, we evaluate the accuracy and complexity of
the proposed algorithm in wireless networks, considering four
distinct wireless network models. These models vary in their
topology, scale, complexity, objective, and implementations
and serve as representative examples that accurately depict the
complexities and challenges of real-world wireless networks.
The detailed descriptions and parameter optimizations can be
found in [39]. We assume that data arrivals to each transmitter
in the first three network models follow an independent and
identically distributed distribution, such as Bernoulli as in [31].

A. Wireless Network Models

1) MISO Network With Interference Channels: There are
multiple transmitters (TX1, TX2, TX3) and a single receiver
(RX) as shown in Fig. 3(a). Each transmitter has a finite-
length buffer that stores the incoming data packets, and the
channel between each transmitter and receiver is modeled with
a multi-state Gilbert-Elliot channel model [31] with different
parameters. Each transmitter experiences its own channel to the
receiver; furthermore, collisions can occur due to interference
between transmitters transmitting simultaneously. The magni-
tude of interference is inversely proportional to the distance
between transmitters. The objective is to determine when each

Fig. 3. Examples of wireless network models.

transmitter should transmit data or remain silent given the
buffer load of each transmitter and overall channel conditions in
order to minimize the overall cost. The cost function has three
components: the buffer cost, the channel cost (incurred when
the transmitter transmits under unfavorable channel conditions),
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and the collision cost (proportional to the number of data pack-
ets being transmitted simultaneously).

2) MISO Energy Harvesting Network With Multiple Relays:
There are multiple transmitters (TX1, TX2, TX3), multiple re-
lays (R1, R2), and a single receiver (RX) as shown in Fig. 3(b).
Each transmitter is equipped with a finite-sized battery that
stores the harvested energy packets in discrete units. All the
channels are modeled with a standard Gilbert-Elliot model,
and the channel parameters are chosen such that the channel
between transmitters and relays as well as relays and receivers
are more likely to be in a good state than the direct channel
between transmitters and receivers (due to shorter distance and
less interference). The outputs of the relays are corrupted by
AWGN noise. The objective is to determine when transmitters
should directly transmit or transmit through relays given the
battery load of each transmitter and overall channel conditions
in order to minimize the overall cost. The cost function consists
of three components: the negative throughput (inversely propor-
tional to successfully received packets), the drop cost (balancing
relays’ load), and the battery consumption cost (proportional to
total battery usage).

3) MIMO Network With Interference Channels: We con-
sider a MIMO network model with multiple transmitters (TX1,
TX2, TX3), and multiple receivers (RX1, RX2, RX3, RX4) as
shown in Fig. 3(c). Each transmitter is equipped with a finite-
sized data buffer for storing incoming data packets. All the
channels are modeled with a standard Gilbert-Elliot model,
and the channels between closer TX-RX pairs (such as TX1

and RX1) are more likely to be in a good state compared to
the channels between farther TX-RX pairs (such as TX1 and
RX4) due to shorter distance and less interference. Each channel
allows only one data transmission at a time. If a transmitter
needs to send data to multiple receivers, the channels in the best
conditions will be used to optimize transmission. Transmitters
sending packets to the same receiver cause interference with
each other. The magnitude of interference is inversely propor-
tional to the distance between the transmitters. The objective is
to determine how many data packets each transmitter should
transmit given the buffer load of each transmitter and overall
channel conditions in order to minimize the overall cost. The
cost function comprises four components: the buffer cost, the
channel cost, the collision cost, and the receiver load cost (bal-
ancing receivers’ load).

4) MIMO Network With Mobile Transmitters: We consider
a MIMO network model with multiple mobile transmitters
(TX1, TX2, TX3, TX4) and multiple fixed receivers (RX1, RX2,
RX3) as shown in Fig. 3(d). Each transmitter moves randomly
at different constant speeds within possible directions, as indi-
cated by the red arrows. Their movement is constrained within a
specified bounded area. They can only move in integer multiples
of unit steps and are not allowed to occupy the same location as
receivers. The channel between the pair of transmitters and re-
ceivers follows a path-loss model. The objective is to determine
the optimal association between transmitters and receivers
given the speed of transmitters, the positions of transmitters and
receivers, and the overall channel conditions in order to mini-
mize the overall cost. The black arrows illustrate one possible

Fig. 4. APE performances across different environments.

association. The cost function comprises three components: the
negative throughput, the receiver load cost, and the interference
cost (inversely proportional to the squared distance between
transmitters transmitting to the same receiver).

B. Average Policy Error (APE) Performance

Let π˚ be the optimal policy from (2), and π̂ be the output
policy of Algorithm 1. We define the average policy error
(APE) as follows:

APE “ 1

|S|
|S|ÿ

s“1

1 pπ˚psq ‰ π̂psqq. (11)

We analyze the APE performance of Algorithm 1 in com-
parison to the traditional Q-learning running on the original
Markovian environment Mp1q and four different SMEs Mpnq

for n “ t2, 3, 4, 5u in Fig. 4, where Qit represents the APE of
Algorithm 1. The simulations are conducted using the MIMO
network with interference channels with a network size of
40000 using the following parameter values: K “ 5, ut “ 0.5,
v “ 50, l “ 15, γ “ 0.99, αt “ 1

1` t
1000

, ϵt “ minp0.99t, 0.01q,
λ “ 1, where λn for n P t1, 2, 3, 4, 5u are estimated numeri-
cally. The parameters are optimized through cross-validation
(see [39] for details). The simulation is carried out 50 times,
and the APE results are averaged. Clearly, a near-zero APE can
be achieved with a significantly small number of iterations (less
than 0.1 APE within 500 iterations), as can be seen in Fig. 4. The
sharp decline in the Qit curve at the initial stages corresponds to
the exploration phase, followed by the exploitation phase. Com-
pared to other Q-learning algorithms, the exploration stage in
Algorithm 1 is significantly fast, highlighting the advantages of
leveraging multiple SMEs to enhance exploration capabilities.
Furthermore, the APE results demonstrate a non-monotonic
pattern across various n values, with the original environment
Mp1q consistently achieving the smallest APE, as predicted by
Proposition 4.

For comparison, we consider several value-based model-free
reinforcement learning algorithms with different objectives and
implementation strategies (number of estimators and Marko-
vian environments). To ensure a fair comparison, all algorithms
follow the same strategy as Algorithm 1. Table II provides
an overview of these algorithms. For specific details on the
parameter optimization of each algorithm, see [39].
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TABLE II
Q-LEARNING ALGORITHM AND VARIANTS

Algorithm Objective Strategy
Estimator Environment

Simple Q (Q) [9] - Single Single
Speedy Q (SQ) [18] Convergence rate Single Single
Double Q (DQ) [14] Bias Multi Single

MaxMin Q (MMQ) [17] Bias & variance Multi Single
Ensemble Bootst. Q (EBQ) [15] Bias Multi Single

Averaged DQN (ADQN) [16] Stability, Variance Multi Single
Ensemble Synthetic Q (ESQL) Variance, Learning speed Multi Multi

Fig. 5. APE of different algorithms across different models.

The APE of different algorithms as a function of net-
work size across different network models are given in
Fig. 5(a)–5(d). The proposed algorithm consistently outper-
forms other algorithms, achieving a lower APE across all mod-
els. In particular, it achieves 30% less APE for model-1, 40%
less APE for model-2, 45% less APE for model-3, and 50%
less APE for model-4. This performance improvement can be
attributed to several reasons. Firstly, the utilization of mul-
tiple Markovian environments allows for deep and efficient
exploration by aggregating higher-order relationships between
states into a single estimate. Secondly, the adaptive weighting
mechanism, based on policy comparison, exploits the most

informative environments during training by assigning higher
weights, unlike ensemble methods such as MMQ, DQ, or EBQ.
Lastly, the algorithm leverages structural similarities among
multiple Markovian environments, providing an advantage over
neural network-based algorithms like ADQN that do not uti-
lize such properties. The APE gains become larger for larger
networks, which highlights the practicality of the algorithm in
large-scale wireless networks.

We also compare the performance of the proposed algorithm
with the algorithms presented in our prior work [26], [27],
[28] where the co-link representations are not used, and the
cost-metric is the divergence between Q-functions. To ensure
a fair comparison, we simulate each algorithm on the MIMO
wireless network with interference channels with a network size
of 40000. The parameters in Section IV-B are employed for the
proposed algorithm. For the other algorithms, we individually
optimize the hyperparameters by cross-validation. Extensive
simulations demonstrate that the proposed algorithm achieves
a 15% less APE (with 10% less runtime) compared to [26], a
15% less APE (with 20% less runtime) compared to [27], and
a 10% less APE (with 10% less runtime) compared to [28].
Furthermore, we observe that varying network parameters, such
as arrival probability, buffer size, and the number of transmitters
and receivers within a reasonable range, lead to a 25% change
in APE for [26], a 20% change in APE for [27], a 20% change
in APE for [28], and only a 5% change in APE for the pro-
posed algorithm, which indicates that the proposed algorithm
is the most robust amongst our prior approaches. These results
highlight that the proposed algorithm is particularly well-suited
for optimizing wireless networks due to their unique structural
properties [31].

We also compare to non-Q-learning RL algorithms: (i) Value
function-based policy sampling and reconstruction (PSR) [40],
(ii) Improved Sarsa (ISARSA) [41], (iii) Model-ensemble trust-
region policy optimization (METRPO) [42], and (iv) Asyn-
chronous Advantage Actor Critic (A3C) [32]. The simulations
are carried out using the same settings in Section IV-B. See [39]
for further details.

ESQL achieves up to 25 % less APE than other algorithms
across large networks, as demonstrated in Fig. 5(e). PSR faces
challenges in accurately estimating the value function, sen-
sitivity to network parameters, and the need for near-perfect
estimation of the PTT P̂. Although METRPO utilizes an en-
semble of deep neural networks, highlighting the power of
ensemble learning, it does not leverage the structural properties
of multiple Markovian environments and faces challenges in
generalization across large networks. A3C produces a similar
performance to ESQL (even slightly outperforms it for small
network sizes) as both methods employ parallel learning. While
there is no clear performance difference for small and modest-
sized networks, ESQL achieves up to 25% less APE for large
networks because A3C suffers from the limitations of digital
twins, the challenges to achieve fine-tuned training and accurate
generalization for large networks, and the lack of utilization
of the structure of the underlying network. Finally, as will be
seen, A3C achieves its performance at the expense of high
computational complexity.
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C. Average Runtime Complexity Performance

The average runtime complexity of Algorithm 1 can be
shown to be O

´
|S||A|v

K fpl, ϵq
¯

, where f is a non-monotonic
function of l and ϵ. The proof of the runtime complexity of al-
gorithms presented in [26], [27] is applicable here. The runtime
complexity increases with the network size (|S| and |A|) and
the number of visits to each state-action pair (v). However, the
non-monotonicity of the function f with respect to l and ϵ sug-
gests the existence of optimal values for these parameters, ne-
cessitating parameter-tuning. The complexity is also inversely
proportional to the number of Markovian environments (K),
which may seem counter-intuitive. This result follows from the
fact that the number of samples that need to be collected from
each Markovian environment decreases with K [26], [27].

The runtime of the proposed algorithm consists of three main
components: sampling (ensuring each state-action pair is visited
at least v times), constructing multiple SMEs K ´ 1 times using
(5), and the time until the slowest Q-learning algorithm on
different SMEs converge (as they run in parallel). For other
algorithms, their runtime represents the time until convergence.
The runtimes of algorithms are consistently comparable across
fixed network sizes and different network models. Thus, a single
runtime result is presented in Fig. 6(a). The proposed algorithm
achieves 40% less runtime than the other algorithms across
large state-spaces as it utilizes higher-order SMEs to capture
distant node relationships, reducing the need for long trajec-
tories that are required for small-order SMEs. In addition, the
algorithm improves exploration by running multiple Markovian
environments simultaneously. This result is consistent with both
Fig. 4 and the theoretical average runtime complexity.

We also present the runtime complexity of our algorithm
compared to non-Q-learning algorithms (in Section IV-B) in
Fig. 6(b). Overall, the proposed algorithm achieves up to 40%
less runtime complexity than other algorithms across large net-
works. ISARSA is a simple algorithm and thus has relatively
lower complexity than the other algorithms. In contrast, PSR
exhibits high complexity due to increased sampling to obtain an
accurate estimate of PTT and policy interpolation, and neural-
network-based approaches (A3C and METRPO) suffer from
long training for multiple networks.

We underline that as the algorithm complexity increases (e.g.,
Q Ñ SQ Ñ ADQN), the corresponding APE generally de-
creases, but the runtime complexity increases. However, the
proposed algorithm achieves a small APE with a small runtime,
overcoming the performance-complexity trade-off. We also see
that the complexity reduction is independent of the network
model, making the proposed algorithm an efficient approach for
learning various complex environments.

D. Memory Complexity Analysis

Memory complexity is a critical concern in our algorithm, as
we need to store Q-functions for K different environments. This
issue is a common drawback in similar algorithms [14], [15],
[17], yet it is exacerbated here as a result of K different envi-
ronments. To address this concern, we introduced a state-action
aggregation method in our previous work [26]. This approach

Fig. 6. Runtime of different algorithms.

Fig. 7. APE and memory reduction through state aggregation vs k.

is based on the intuition that, under a smooth cost function, the
Q-functions of neighboring states, for a given action, exhibit
minimal differences. In other words, if the changes in the cost
function for neighboring states are bounded by a small constant,
we can represent the Q-functions of the k nearest neighboring
states (including the state itself) using a single Q-function.
Choosing a large value for k minimizes memory requirements
and runtime complexity (since the size of state space is reduced)
but comes at the cost of information loss, leading to a larger
APE. Thus, a trade-off exists between the APE, and memory
needs as well as runtime complexity.

The simulations are carried out using the same settings in
Section IV-B. (One can observe that the cost function of the
network model meets the specified condition.) The results are
given in Fig. 7, with the y-axes showing the APE and the
percentage reduction in complexity (memory and runtime),
respectively, while the x-axis represents the number of nearest
neighbors k. For clarity, the case k “ 0 implies no aggregation.
While the APE increases with k, the reduction in the memory
needs and runtime complexity also increases. Thus, by appro-
priately choosing k, a good performance-complexity balance
can be achieved. We also emphasize that the proposed state-
action aggregation idea can similarly minimize the memory
requirements for all four wireless network models.

E. Numerical Consistency of Propositions

In this section, we simulate the results in the propositions and
compare theoretical results with simulation results. The same
simulation settings in Section IV-B are employed.

The magnitude of the difference between the consecutive
Q-function updates for the state-action pair ps, aq averaged over
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Fig. 8. Simulation of theoretical results.

all state-action pairs over time is shown in Fig. 8(a), where the
blue curve and shaded area represent the mean and standard
deviation over 50 simulations. The magnitude consistently con-
verges to zero with increasing iterations, as shown by Propo-
sition 1, which shows that Algorithm 1 produces increasingly
stable updates over time. We note that similar curves with
different initial magnitudes and decay rates can also be shown
for different ps, aq pairs.

The magnitude of the Q-function updates for the state-
action pair ps, aq “ p7, 1q over time, |∆it

t p7, 1q|, is depicted in
Fig. 8(b). The blue curve and shaded area represent the mean
and standard deviation over 50 simulations. Additionally, the
dotted curve illustrates the upper bound on |∆it

t p7, 1q| from
Proposition 2. Clearly, the magnitude of the updates in the
limit can be upper bounded. The tightness of the upper bound

depends on the state-action pair and the system parameters
(including K). Furthermore, the result shows that the magnitude
of the updates converges to zero as the iterations progress,
thereby confirming the convergence of Algorithm 1 as stated
in Proposition 3. To further validate the convergence result
and practicality of Proposition 3, we observe that the constants
φpnqp7, 1q for n “ 1, 2, 3, 4, 5 exist and are all less than 1. (In
particular, the values are 0.998, 0.9925, 0.9898, 0.9946, and
0.9808, respectively.)

The weights of five different Markovian environments (Mpnq

for n “ 1, 2, 3, 4, 5) over time are illustrated in Fig. 8(c). Ini-
tially, there is a sharp increase in the weight wp1q because Mp1q

is the original environment, and there are insufficient samples to
capture the higher-order relationships. Additionally, it is unclear
which Mpnq provides the most useful samples, as the weights
wpnq for ną 1 continue to fluctuate. Moreover, it is not clear
which Mpnq provides the most useful samples as the weights
wpnq for ną 1 keep changing. As the iterations continue, the
weight wp1q gradually decreases up to a certain point, but Mp1q

remains the most useful environment. On the other hand, the
weights wpnq for ną 1 increase and eventually converge to a
fixed value. The final magnitudes of these weights, however,
exhibit a non-monotonic pattern across n, and can be shown to
follow the compact expression in Proposition 4. Similar patterns
can be observed across different networks and models, although
there may be variations in (i) the final weight values, (ii) the
order of environment utilities, and (iii) the iteration index at
which the weights converge.

We approximate the expectation of the Q-function errors
numerically as follows:

ErEtps, aqs « 1

2∆t

t`∆tÿ

t1“t´∆t

Etps, aq, (12)

with ∆t ! t. The expectation of the Q-function error for the
state-action pair ps, aq “ p7, 1q, ErEtp7, 1qs over time, in Propo-
sition 5 is shown in Fig. 8(d), where the result is averaged over
50 simulations. Clearly, the expectation of the Q-function errors
converges to zero with iterations. We approximate the variance
of the Q-function errors similarly as follows:

VrEtps, aqs « 1

2∆t

t`∆tÿ

t1“t´∆t

Etps, aq2–
” 1

2∆t

t`∆tÿ

t1“t´∆t

Etps, aq
ı2

,

(13)

with ∆t ! t. The three upper bounds on the error variance based
on different independence assumptions from Proposition 1 and
the simulation variance for ps, aq “ p7, 1q (with ∆t “ 20) are
shown in Fig. 8(e), where the blue curve and shaded area
represents the mean and standard deviation over 50 simulations.
Clearly, a more strict independence assumption leads to a tighter
upper bound. Moreover, as iterations continue, the simulation
variance becomes smaller than all upper bounds and eventually
converges to zero, which is in line with Fig. 8(a) and 8(b).
Herein, the choice of λ and u may change the initial error
variance and its decay rate. These two results (the expectation
and variance converging to zero) show that the distribution
assumption (10) is accurate. Similarly, Fig. 8(g) demonstrates
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Fig. 9. The effect of the order n on performance.

that the Q-function errors of different environments, across
various values of n, can be well-modeled by zero-mean normal
distributions with different variances, which further validates
the assumption (10).

To assess the practicality of Proposition 5 and indepen-
dence assumptions, we employ the averaged distance correla-
tion (ADC) metric [43]. In particular, we compute the ADC
between X pn1q

t1 p7, 1q and X pn2q
t2 p7, 1q for n1, n2 P r2, 10s and

average the results over all t1 ‰ t2 P r0, 5000s. The ADC cap-
tures both linear and non-linear correlations without assuming
specific variable distributions like Pearson’s correlation coef-
ficient. The results are presented in Fig. 8(f). For all n1 “ n2

(right diagonal), the ADC is very close to 0, indicating inde-
pendent Q-function errors across different times, validating the
modest independence assumption. When n1 and n2 are close,
the ADC is almost 0, also confirming the strict independence
assumption. However, for larger and distant n1 and n2, weak
correlations may emerge. Thus, the strict independence assump-
tion may not always hold contrary to the modest indepen-
dence assumption.

F. Optimization of the Order n

Determining the optimal set of environments involves
determining the optimal number of environments as well
as their identity (e.g. for K “ 4, t1st, 2nd, 3rd, 4thu versus
t1st, 2nd, 3rd, 5thu versus all other collections of four possi-
ble environments). We offer a strategy in [28] for arbitrary
graphs/networks, whereas herein, we utilize an approach from
[31] where we proposed the colink representation for wireless
network policy optimization. In particular, we adapt the classi-
cal definition of the Bellman error (BE) (see [44], [45]) to the
difference between the Q-functions of the original environment
and nth environment under the policy π as:

BEpQpnq
π q “ cπ ` γPπQpnq

π ´ Qp1q
π . (14)

In [31], the true PTT is known; herein, we apply the algo-
rithm presented in [31] to the estimated PTT (P̂) to obtain the
approximate policy to be used in (14). We then select the top K
orders (environments) that minimize the l2 norm }BEpQpnq

π q}2.
We present the Bellman error across n P r2, 10s in Fig. 9(a)

using two methods: (i) Bellman search (blue curve) using
[31] and (14) and (ii) Greedy method (orange curve) that
exhaustively searches the environment and policy that mini-
mize the APE of Algorithm 1. The same simulation settings

in Section IV-B are employed. The Bellman error clearly ex-
hibits a non-monotonic behavior with n, but small values of
n generally produce smaller errors. While the blue curve con-
sistently shows higher Bellman errors for all n (since it uses
an approximate policy), the relative ranking of orders is similar
across the two methods, which suggests that the Bellman search
can effectively rank environments. For K “ 3, Bellman search
provides an ordered set {2,4,3} while the greedy approach
selects {2,3,4}. Thus, both methods find the same set of en-
vironments, but the relative informativeness for environments
3 and 4 are flipped. Similar trends apply to different K values.
Overall, the Bellman search achieves 94% accuracy in finding
the optimal K environments (for K P r2, 10s) and has 70% less
runtime complexity than the greedy method, hence enabling an
effective initialization of Algorithm 1, which is particularly use-
ful for real-world wireless applications with time, memory or
resource constraints.

The sensitivity of Algorithm 1 with respect to order n is
shown in Fig. 9(b). In particular, we initialize Algorithm 1 with
the first ten Markovian environments (K “ 10). Then, we run
the algorithm with K “ 9 after excluding the nth environment
for n P r2, 10s and report the absolute change in APE. While
APE changes vary with n, the maximum change in APE is under
10%, highlighting the robustness of Algorithm 1 with respect to
n. The result also closely follows Fig. 9(a) as the set of orders
that lead to the largest change in APE are the same as the orders
that minimize the Bellman error. Similar results can also be
shown for different network settings.

G. Practical Implications and Interpretability

By integrating the novel concept of digital cousins into en-
semble Q-learning, the proposed algorithm effectively accounts
for the influence of actions and states that span multiple hops in
the wireless network graph. This addresses scenarios like mul-
tiple packet changes in transmitter buffers, significant channel
quality variations, or multi-step movements of mobile trans-
mitters. This could enhance the performance, reliability, and
robustness of real-world wireless networks.

When there is a high probability of multiple data arrivals
within a short period, considering buffer occupancy changes
beyond a single data packet (nth digital cousin (environment)
considers n packet changes at a time) helps transmitters proac-
tively adjust their transmission strategies to avoid buffer con-
gestion, leading to more stable buffer occupancy levels. If there
is a high probability of consecutive data losses, transmitters
can dynamically adjust the transmission rate to maintain a
reliable communication link. This can improve overall net-
work robustness, particularly for densely populated networks
with many transmitters and receivers. On the other hand, when
there is a high probability of the channel deteriorating in the
next time steps, transmitters must avoid making sub-optimal
decisions. Without considering n-hop transitions, transmitters
might assume the good channel conditions will persist and con-
tinue transmitting data continuously. However, by incorporating
n-hop transition information, transmitters can intelligently an-
ticipate the potential deterioration in the channel in the future
and adjust their transmission rate to avoid unnecessary energy
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consumption. Similarly, more balanced traffic loads at receivers
can be achieved via traffic smoothing by considering n-step
movements and future locations of transmitters in wireless net-
works with mobile transmitters.

H. Open Questions

The proposed algorithm provides a novel implementation of
digital cousins via the colink method and enables reductions
in sample and runtime complexities as well as performance
improvements over the consideration of general graphs [28].
As noted previously, one open question is designing a modest
complexity strategy for determining the optimal number of
environments (K) to employ in Algorithm 1. While more envi-
ronments improve performance and reduce runtime complex-
ity, there are diminishing returns as seen [28]. ESQL inherits
several properties from traditional Q-learning and hence is par-
ticularly tailored to finite but large discrete state-action spaces.
Thus, another open question is addressing continuous state-
action spaces; thus discretization or approximation via neural
networks is an option. However, we see that given the struc-
tural properties of wireless networks, a pure non-parametric
approach such as a neural network also has its own limitations.
The quality of sampling and the accuracy of the estimated PTT
also impacts performance as discussed in Section II-C; whether
further improvements are possible, given that our current strat-
egy explicitly exploits the structure in the PTT and associated
colink matrices, is unclear. There are also design issues involved
in determining an appropriate normalization strategy to form
the digital cousins, as colink matrices are not necessarily row-
stochastic. Hence, one can consider alternative methods such as
ℓ1, ℓ2, linear, softmax, min-max, etc).

V. CONCLUSION

We herein presented a novel Q-learning algorithm to mitigate
the performance and complexity challenges of the traditional
Q-learning to solve policy optimization for real-world wireless
networks by leveraging the novel concept of digital cousins.
Digital cousins are a collection of distinct but structurally re-
lated synthetic Markovian environments that offer strong im-
provements over traditional digital twins. The current work
synthesizes the notion of digital cousins with low complexity,
high-performance modeling of wireless networks via co-link
representations. The proposed algorithm employs multiple Q-
function estimators on these environments and fuses the outputs
into a single estimate based on an adaptive weighting mech-
anism. Simulations across a variety of representative wireless
networks show that the proposed algorithm produces a near-
optimal policy with significantly lower complexity and out-
performs the existing Q-learning and several state-of-the-art
RL algorithms and prior work in terms of accuracy, runtime
complexity, and robustness. The stability and convergence of
the algorithm are rigorously analyzed from deterministic and
probabilistic viewpoints, and several theoretical upper bounds
on the first and second-order statistics of the Q-function errors
are given. It is also shown that the simulation results closely
follow the theoretical results.

APPENDIX

A. Proof of Proposition 1

The following expressions are valid for all ps, aq pairs; hence,
we drop the ps, aq notation for simplicity. The Q-function out-
put of Algorithm 1 can be expressed as follows:

Qit
t “ p1 ´ uq

t´1ÿ

i“0

ut´i´1
Kÿ

n“1

wpnq
i Qpnq

i , (15)

which can be obtained by repeatedly plugging the expression
of Qit

t´1 into the expression of Qit
t in line 11 in Algorithm 1

for all t. Using (15) and algebraic manipulations, the following
can be shown:

Qit
t ´ uQit

t´1 “ p1 ´ uq
Kÿ

n“1

wpnq
t´1Q

pnq
t´1. (16)

Let ∆it
t “ Qit

t`1 ´ Qit
t and ϵpnq

t “ wpnq
t`1Q

pnq
t`1 ´ wpnq

t Qpnq
t .

If we rewrite (16) with the variable change t Ñ t ` 1, and
subtract (16) from the new expression side by side, we obtain
the following:

∆it
t ´ u∆it

t´1 “ p1 ´ uq
Kÿ

n“1

”
wpnq

t Qpnq
t ´ wpnq

t´1Q
pnq
t´1

ı
. (17)

Then, we can show the following:

∆it
t “ u∆it

t´1 ` p1 ´ uq
Kÿ

n“1

ϵpnq
t´1. (18)

ă∆it
t´1 ` p1 ´ uq

Kÿ

n“1

ϵpnq
t´1, (19)

where (18) follows from (17) and the definition of ϵpnq
t´1 and

(19) follows from the fact that u P p0, 1q. Then, using (19) and
the triangle inequality, we can bound the difference between
consecutive updates as follows:

|∆it
t ´ ∆it

t´1|ă p1 ´ uq
Kÿ

n“1

|ϵpnq
t´1|. (20)

By the convergence of Q-learning, limtÑ8 Qpnq
t´1 “ Qpnq

t ,
and by the convergence of the weights from Proposition 4,
limtÑ8 wpnq

t´1 “ wpnq
t for all n. Thus, limtÑ8 |ϵpnq

t´1| “ 0 for all
n, and limtÑ8 |∆it

t ´ ∆it
t´1| “ 0.

B. Proof of Proposition 2

If we express (17) with the variable change t Ñ t ´ 1, mul-
tiply by u, and then add to the expression (17) side by side, we
obtain the following:

∆it
t ´ u2∆it

t´2 “ p1 ´ uq
Kÿ

n“1

ϵpnq
t´1 ´ uϵpnq

t´2. (21)

If we carry out the same operation for all t, we obtain the
following:

∆it
t ´ ut∆it

0 “ p1 ´ uq
t´1ÿ

k“0

uk
Kÿ

n“1

ϵpnq
t´k´1. (22)
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Using the fact that∆it
0 “ 0, we obtain the compact expression

for ∆it
t as follows:

∆it
t “ p1 ´ uq

t´1ÿ

k“0

uk
Kÿ

n“1

ϵpnq
t´k´1. (23)

Let θpnq be the smallest positive constant that satisfies
|ϵpnq

t |ď θpnq for all t, n. Then, we proceed as follows:

|∆it
t |ď p1 ´ uq

t´1ÿ

k“0

uk
Kÿ

n“1

ˇ̌
ϵpnq
t´k´1

ˇ̌
. (24)

ď p1 ´ uq
t´1ÿ

k“0

uk
Kÿ

n“1

θpnq. (25)

ď
Kÿ

n“1

θpnqp1 ´ utq, (26)

where (24) follows by taking the absolute value of both sides in
(23) and using the triangle inequality, (25) follows the definition
of θpnq, and (26) follows from the sum of finite geometric series
and the fact that u P p0, 1q. If we take the limit of both sides,
using the fact that limtÑ8 ut “ 0, the result follows.

C. Proof of Corollary 1

We want to find the time index t at which the |∆it
t |ď β. If we

convert (26) into equality and solve for t as follows, we obtain
the desired result: β “ řK

n“1 θ
pnqp1 ´ utq.

D. Proof of Proposition 3

Assume there exist constants φpnq P p0, 1q such that
|ϵpnq

t`1|
|ϵpnq

t | ď
φpnq for all n, t. We choose φ “ max

nPt1,2,..Ku
φpnq, and proceed

as follows:

|∆it
t |ď p1 ´ uq

t´1ÿ

k“0

uk
Kÿ

n“1

ˇ̌
ˇϵpnq

t´k´1

ˇ̌
ˇ (27)

ď p1 ´ uq
t´1ÿ

k“0

uk
Kÿ

n“1

ˇ̌
ˇϵpnq

0 φt´k´1
ˇ̌
ˇ (28)

ď p1 ´ uq
t´1ÿ

k“0

ukφt´k´1
ˇ̌
ˇ

Kÿ

n“1

ϵpnq
0

ˇ̌
ˇ (29)

ď p1 ´ uq
t´1ÿ

k“0

maxpu,φqt´1
ˇ̌
ˇ

Kÿ

n“1

ϵpnq
0

ˇ̌
ˇ (30)

ď p1 ´ uqt maxpu,φqt´1
ˇ̌
ˇ

Kÿ

n“1

ϵpnq
0

ˇ̌
ˇ, (31)

where (27) follows from (24), (28) follows from by repeti-
tively plugging the inequality expression for |ϵpnq

t´1| (|ϵpnq
t´1|ď

φpnq|ϵpnq
t´2|) into the expression for |ϵpnq

t | (|ϵpnq
t |ď φpnq|ϵpnq

t´1|)
for all t, (29) follows from the fact that φpnq is a positive
constant, (30) follows from by bounding the term by choosing
the maximum of u and φ, and (31) follows from the fact that u
and φ are independent of time index k. If we take the limit of
both sides in (31):

lim
tÑ8

|∆it
t | “ 0, (32)

which follows from the fact that u,φ P p0, 1q.

E. Proof of Proposition 5

We first prove the expectation.

lim
tÑ8

Et “ lim
tÑ8

Qit
t ´ Q˚. (33)

“ lim
tÑ8

p1 ´ uq
t´1ÿ

i“0

ut´i´1
Kÿ

n“1

wpnq
i Qpnq

i ´ Q˚. (34)

“ lim
tÑ8

p1 ´ uq
t´1ÿ

i“0

ut´i´1
Kÿ

n“1

wpnq
i pQpnq

i ´ Q˚q.

(35)

“ lim
tÑ8

p1 ´ uq
t´1ÿ

i“0

ut´i´1
Kÿ

n“1

wpnq
i X pnq

i , (36)

where (34) follows from (15), (35) follows from the fact thatřK
n“1 wpnq

t “ 1 for all t, and p1 ´ uqřt´1
i“0 ut´i´1 “ 1 as t Ñ

8, and (36) follows from (10). If we take the expectations of
both sides:

lim
tÑ8

ErEts “ lim
tÑ8

p1 ´ uq
t´1ÿ

i“0

ut´i´1
Kÿ

n“1

wpnq
i ErX pnq

i s “ 0

(37)

which follows from the linearity of expectation and (10).
We now prove the upper bound on the variance for the modest

independence case. limtÑ8 VrEts “

“ lim
tÑ8

V
«

p1 ´ uq
t´1ÿ

i“0

ut´i´1
Kÿ

n“1

wpnq
i X pnq

i

ff
. (38)

“ lim
tÑ8

p1 ´ uq2
«

t´1ÿ

i“0

u2pt´i´1q
«

Kÿ

n“1

pwpnq
i q2VrX pnq

i s

` 2
Kÿ

n“1

Kÿ

m“n`1

wpnq
i wpmq

i CovpX pnq
i , X pmq

i q
ffff

. (39)

ď lim
tÑ8

p1 ´ uq2
«

t´1ÿ

i“0

u2pt´i´1q
«

Kÿ

n“1

pwpnq
i q2VrX pnq

i s

` 2
Kÿ

n“1

Kÿ

m“n`1

wpnq
i wpmq

i

b
VrX pnq

i sVrX pmq
i s

ffff
. (40)

ď lim
tÑ8

p1 ´ uq2
«

t´1ÿ

i“0

u2pt´i´1q
«

Kÿ

n“1

wpnq
i VrX pnq

i s

` 2
Kÿ

n“1

Kÿ

m“1

wpnq
i wpmq

i

b
VrX pnq

i sVrX pmq
i s

ffff
. (41)

ď lim
tÑ8

p1 ´ uq2
«

t´1ÿ

i“0

u2pt´i´1q
«

Kÿ

n“1

wpnq
i

λ2

3

` 2
Kÿ

n“1

Kÿ

m“1

wpnq
i wpmq

i

λ2

3

ffff
. (42)

ď lim
tÑ8

p1 ´ uq2
«

t´1ÿ

i“0

u2pt´i´1qλ2

ff
. (43)

ď p1 ´ uq
p1 ` uqλ

2, (44)
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where (38) follows by taking the variance of both sides in
(36), (39) follows from the properties of the variance operator
and the modest independence assumption, (40) follows from
the Cauchy-Schwarz inequality for the variance, (41) follows
from the fact that wpnq

t ď 1 and dropping the constraint in the
second summation, (42) follows from (10) and λ “ max

n
λn,

(43) follows from the fact
řK

n“1 wpnq
t “ 1 for all t, and (44)

follows from the infinite geometric sum formula and u P p0, 1q.
If we assume strict independence, the cross terms in (39)

to (42) disappear, and the upper bound will be smaller by a
factor of 3. Refer to [39] for the proof of the upper bound on
the variance for no independence case.
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