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Abstract

The goal of this paper is to describe certain nonlinear topological obstructions for the existence of first-order
smoothings of mildly singular Calabi—Yau varieties of dimension at least 4. For nodal Calabi—Yau threefolds, a
necessary and sufficient linear topological condition for the existence of a first-order smoothing was first given in
[Fri86]. Subsequently, Rollenske-Thomas [RT09] generalized this picture to nodal Calabi—Yau varieties of odd
dimension by finding a necessary nonlinear topological condition for the existence of a first-order smoothing. In
a complementary direction, in [FL22a], the linear necessary and sufficient conditions of [Fri86] were extended to
Calabi—Yau varieties in every dimension with 1-liminal singularities (which are exactly the ordinary double points
in dimension 3 but not in higher dimensions). In this paper, we give a common formulation of all of these previous
results by establishing analogues of the nonlinear topological conditions of [RT09] for Calabi—Yau varieties with
weighted homogeneous k-liminal hypersurface singularities, a broad class of singularities that includes ordinary
double points in odd dimensions.
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1. Introduction

The deformation theory of generalized Fano and Calabi—Yau threefolds with ordinary double points (or
nodes), or more generally isolated canonical hypersurface singularities, has been extensively studied
[Fri86], [Nam94], [NS95], [NamO02], [Ste97], [Gro97]. This paper is part of a series [FL.22a, FL.22b,
FL22c, FL23] that aims to revisit and sharpen these results and explore generalizations to higher
dimensions. A motivating question throughout has been the problem of understanding the local structure
of compactified moduli spaces of Calabi—Yau varieties. Let Y be a generalized Calabi—Yau variety in a
suitable sense (Definition 1.1). Two natural questions arise: (1) Is the first-order deformation space of ¥
unobstructed (i.e., is the moduli space smooth at the point corresponding to Y)? (2) If the singularities
of Y are of some prescribed type, is there a smoothing of Y (i.e. a proper flat morphism )V — A whose
fiber over 0 is isomorphic to ¥ and whose general fiber is smooth)?

To put Question (1) in context, the deformations of a Calabi—Yau manifold Y are unobstructed by the
Bogomolov-Tian-Todorov theorem. This result was generalized to the case where Y is allowed to have
ordinary double points by Kawamata, Ran and Tian [Kaw92], [Ran92], [Tia92]. In [FL22a, FL.22c],
this was further extended to a much wider class of singularities, 1-Du Bois singularities (possibly non-
isolated starting in dimension 4). Turning to Question (2), a natural class of singularities to consider
is isolated Gorenstein canonical (or equivalently rational) singularities. If the singularities are also
local complete intersections, there are no local obstructions to smoothability. For isolated hypersurface
singularities, there is a natural local condition on first-order deformations (i.e., deformations over
Spec C[eg]), which we call a strong first-order smoothing (Definition 1.4). This condition guarantees
that any deformation of Y over A whose associated first-order deformation over Spec C[¢] is a strong
first-order smoothing is a smoothing of Y. If there is a first-order deformation of Y that is a strong first-
order smoothing at every singular point, and if, in addition, the deformation space of Y is unobstructed,
then Question (2) has a positive answer.

Already in dimension 3, there is a somewhat paradoxical aspect to Question (2): the ‘more rational’
the singularities of Y, the harder it is to decide if ¥ is smoothable to first order. In dimension 3, this
corresponds to the fact that there is a certain (linear) topological constraint in order for the ordinary
double points of ¥ to be smoothable [Fri86], whereas no such constraint exists for more complicated
rational hypersurface singularities [NS95], [FL.22a]. In higher dimensions, this phenomenon is even
more striking: if Y has rational hypersurface singularities that are ‘not too rational’ (not 1-Du Bois),
then Y is smoothable at least to first order [FL.22a], but these methods do not apply if the singularities
are ‘too rational’ (1-rational).

A framework for understanding these results is the theory of higher Du Bois and higher rational sin-
gularities. Mustata, Popa and Saito along with their collaborators and the authors have introduced the
notion of k-Du Bois and k-rational singularities for a complex algebraic variety X (for 0 < k£ < dim X),
extending the usual notions of Du Bois and rational singularities, respectively (which correspond to
the case k = 0) [MOPW23], [JKSY22], [FL22c]. If X has local complete intersection (Ici) singular-
ities, then k-rational = k-Du Bois = (k — 1)-rational [CDM?22], [FL22c], [FL24]. Thus, as
k increases, the singularities become milder: A local complete intersection singularity that is k-Du
Bois with k£ > %(dimX — 1) is smooth, and it is an ordinary double point if £ = %(dimX -1).
Varieties with k-rational and k-Du Bois singularities satisfy various vanishing and non-vanishing re-
sults (e.g., [Ste85], [Ste97], [MP20], [FL.24]), which, in turn, are closely related to the deformation
theory of Calabi—Yau varieties in case k = 1 [FL22a]. In particular, the deformation theory of Y is
especially well-behaved when the singularities are 1-Du Bois but not 1-rational. In this case, Question
(1) has a positive answer and, for Question (2), there is a necessary and sufficient condition for the
existence of a strong first-order smoothing in case the singular points of Y are isolated hypersurface
singularities.

As noted above, the methods of [FL22a] unfortunately say nothing about the answer to Question
(2) if the singularities are 1-rational. On the positive side, for odd-dimensional Calabi—Yau varieties ¥
(of dimension at least 5) with only ordinary double points, Rollenske and Thomas found a nonlinear
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obstruction to the existence of a first-order smoothing of ¥ [RT09], which we state more precisely below
(Theorem 1.3). To find an appropriate generalization of this result, we make the following definition
[FL24, Definition 6.10], Definition 2.4: An isolated hypersurface singularity is k-liminal if it is k-Du
Bois, but not k-rational. In dimension 3, the only 1-liminal singularities are ordinary double points.
More generally in odd dimension 2k + 1, the only k-liminal singularities are ordinary double points.
However, ordinary double points in even dimensions are not k-liminal for any value of k. By Lemma 2.7

-1
below, for every n > 3, there exist k-liminal singularities of dimensionn <= 0 < k < [nT] In

particular, for every n > 3, there exist k-liminal singularities of dimension » for some & > 1. Thus,
k-liminal singularities are important boundary/transition cases and are a far-reaching generalization of
ordinary double points in odd dimensions.

Since the ordinary double points are exactly the k-liminal Ici singularities in dimension 2k + 1, the
Rollenske—Thomas theorem can then be rephrased as follows: If Y is a Calabi—Yau variety of dimension
n = 2k + 1 with only k-liminal Ici singularities, there is a topological obstruction to the existence of
a strong first-order smoothing of Y (i.e., a necessary condition for the existence of a strong first-order
smoothing) that is (roughly) k-linear. (In dimension 3, the obstruction is a linear condition, and it is also
sufficient [Fri86].) The main result of this paper is a generalization of the Rollenske—Thomas theorem to
the case where Y is a Calabi—Yau variety with isolated hypersurface weighted homogeneous k-liminal
singularities.

To explain our results in more detail, we begin with the following definition:

Definition 1.1. A canonical Calabi—Yau variety Y is a compact analytic variety Y with at worst canonical
Gorenstein (or equivalently rational Gorenstein) singularities, such that wy = Oy, and such that either
Y is a scheme or Y has only isolated singularities and the 03-lemma holds for some resolution of Y.

For a compact analytic variety Y with at worst ordinary double point singularities, recall that a firsz-
order deformation of Y is a flat proper morphism f: ) — Spec C[e€], together with an isomorphism
from the fiber over O to Y, and these are classified by T%, = Ext! (QL,Oy). Given a class 8 € TL, its
image in H(Y; T;) =P T;, . measures the first-order change to the singularities of Y, and 0 is a

first-order smoothing of Y if the image of 6 in T;,x = Cis nonzero for every x € Ysing. Then by [Fri86,
§4] (also [Fri91, Prop. 8.7]), we have the following:

XEYsing

Theorem 1.2. Suppose that Y is a canonical Calabi—Yau variety of dimension 3 whose only singularities
are ordinary double points. Let w: Y' — Y be a small resolution of the singularities of Y, so that
7 (x) = Cx = P! for every x € Ysing, and let [C] be the fundamental class of Cy in HZ(Y’;Q?,,).
Then a first-order smoothing of Y exists <= there exist ax € C, ay # 0 for every x, such that
Yx eV dx[Cxl = 0in H*(Y';Q3,).

Next, we describe the partial extension of Theorem 1.2 to all odd dimensions n = 2k + 1 > 3 due
to Rollenske-Thomas. For n > 3, there is no small resolution of an ordinary double point. Instead,
consider the standard blowup of a node. The exceptional divisor is an even dimensional quadric, whose
primitive cohomology is generated by the difference [A] — [B], where A and B are two complementary
linear spaces of dimension & such that A - B = 1. For Y a projective variety of dimension 2k + 1 whose
only singular points are nodes and 7 : Y — Y a standard resolution as above, for each x € Yjing, there is
thus a class [Ax] = [Bx] € H(Y; Ql’;”). The following is equivalent to the necessity part of Theorem

1.2 in dimension 3 and generalizes it to all odd dimensional nodal canonical Calabi—Yau varieties
[RT09]:

Theorem 1.3. Suppose that Y is a canonical Calabi-Yau variety of odd dimension n = 2k + 1 whose

only singularities are ordinary double points, and let Y — Y be a standard resolution as above. Then
there exist identifications T}} + = C such that the following holds: If 0 is a first-order smoothing of
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Y with image in T; . equal to A € C via the above isomorphisms T; . = C, then, with notation
as above,

D (A - [B.]) =0 (1.1)

xeycing

in H*(Y; Qk+t),

We can interpret Theorem 1.3 in the following way. First, if there exists a first-order smoothing of
Y, then the classes [A,] — [By] are not linearly independent in H*+!(Y; Qk+1) and in fact satisfy a

linear relation whose coefficients are all nonzero. Second, the image of Tl in HO(Y; TI}), which is a
vector subspace of HO(Y; Tl) is contained in the subvariety of HO(Y; T} ) defined by the nonlinear
Equation 1.1, which is roughly speaking an intersection of affine varieties of Fermat type.

The goal of this paper is to generalize Theorem 1.3. To state the result, let Y be as before a compact
analytic variety with isolated singularities. If x € Y, is a singular point, let 7: Y — Y be some log
resolution of ¥, and let E, = 77 !(x) be the exceptional divisor over x. In the case of ordinary double
points, dim T;’x = 1 for a singular point and there are distinguished classes [A, | —[B,] € H**! (? ; Q;;”)
that are defined locally around the singular points. In general, dim T;’x # 1, so we must define the types
of smoothings to which our methods will apply:

Definition 1.4. Let (X, x) be the germ of an isolated hypersurface singularity, so that T)l(’x = Ox x/J is
a cyclic Ox c-module. Thus, dim Ty  /m, Ty . = 1. Then an element 6, € Ty _ is a strong first-order

smoothing if 0, ¢ mle . In case x is an ordmary double point, 6, € T1 x.x 18 a strong first-order
smoothing < 60, # 0. For a compact Y with only isolated hypersurface smgularltles a first-order
deformation 6 € Tl is a strong first-order smoothing if the image 6 of € in Tl . is a strong first-order
smoothing for every x € Ying. A standard argument (e.g., [FL.22a, Lemma 1. 9]) shows thatif f: Y — A
is a deformation of Y over the disk, then its Kodaira-Spencer class 6 is a strong first-order smoothing
&= Y is smooth, and in particular, the nearby fibers ¥; = f~(¢), 0 < |¢t| < 1, are smooth.

Remark 1.5. For k > 1, a k-liminal singularity is in particular 1-Du Bois. Hence, by [FL22c, Corollary
1.5], a canonical Calabi—Yau variety Y with only isolated k-liminal hypersurface singularities has
unobstructed deformations. In particular, if there exists a strong first-order smoothing of Y, then Y is
smoothable.

To deal with the correct generalization of the class [A,] — [Bx], recall that for each x € ¥y, (assumed
throughout to be an isolated hypersurface singularity), we have the corresponding link L at x. There is
a natural mixed Hodge structure on H*(L) (see, for example, [PS08, §6.2]). Moreover, for all k, there is
a natural map

@: Gk H' (L) — HM(Y; Q") (1.2)
given as the composition
Grip " H"(Ly) = HY(Ex; Q2 (log Ex)|Ex) — Gry* Hit (V) = H¥ (E; Q2 (log Ex) /Q47F)
5, H*N (Y Q079).

In case there is a Hodge decomposition for Y (for example, if Y is Kihler or more generally satisfies the
00-lemma), the above maps are consistent in the obvious sense with the topological maps

H"(Ly) — HE'(Y) > H™(Y),

where via Poincaré duality, the map H"(Ly) — H ntl (?) is the same as the natural map H,,_; (L) —
H,,_1(Y). In the special case where x is an ordinary double point and n = 2k+1,dim H" (L) = 1, so that
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H"(L,) = Cg, for some £, € H"(L,), and, for an appropriate choice of &, ¢(gx) = [Ax] — [Bx] €
Hk+1 (? Qn—k) = gkt (? Qk+1)
) )/; ) )7 .
The link of a k-liminal singularity is formally analogous to that of an ordinary double point in odd
dimensions, by the following result, essentially due to Dimca-Saito [DS12, §4.11] (cf. also [FL24,
Corollary 6.14]):

Theorem 1.6. If (X,x) is the germ of an isolated k-liminal hypersurface singularity and L is the
corresponding link, then dim Gr}‘k H"'(L)=1.

For 1-liminal singularities, we showed [FL.22a, Lemma 5.6, Corollary 5.12] that there is a necessary
and sufficient linear condition for there to exist a strong first-order smoothing of Y, and hence an
actual smoothing by Remark 1.5. This statement (see Theorem 2.11 below for a precise version) can
be viewed as a natural generalization of Theorem 1.2. The main results of this paper, Theorem 4.4
and Corollary 4.5, are then further generalizations that apply to all weighted homogeneous k-liminal
singularities. However, as in Theorem 1.3, we are only able to obtain necessary conditions for £ > 2:

Theorem 1.7. Let Y be a canonical Calabi-Yau variety of dimension n with isolated k-liminal weighted
homogeneous hypersurface singularities and k > 1. For each singular point x € Y, let L be the link at
x, and write Gr’,f—_k H"(Ly) = Hk(Ex;Q;_k(log E)|Ex) = C- &y for some choice of a generator &.
Let ¢: Gr}_k H"(L) =P Gr;‘k H"(L) — H*! (?; Q;‘k) be the natural map.

Finally, for each x € Yiing, fix an identification T; N /mxT; o = C. Then, for each x € Yiing, there
exist cx € C* with the following property: If 0 € Tll/ induces Ay € C, then

xeysing

D, cxdip(en) =0 e HUH T QL h),

X EYsing

In particular, if a strong first-order smoothing of Y exists, then the classes ¢(gyx) are not linearly
independent.

In some sense, the proof of Theorem 1.7 follows the main outlines of [RT09]. A key aspect of our
arguments is that by restricting to weighted homogeneous singularities, we can work as if there exists a
log resolution with a single (smooth) exceptional divisor E as in loc. cit. More precisely, for ¥ with such
singularities, there is the weighted blowup (i.e., an orbifold resolution of singularities Y* — ¥ whose
exceptional divisors E are smooth divisors in the sense of orbifolds). There are stacks naturally associated
toY*and E, a picture that is worked out in detail in [FL.22a, §3] (whose methods we use systematically).
Thus, we can proceed as if Y# and E were smooth and use the familiar numerology of hypersurfaces in
weighted projective space. It would be interesting to generalize the proof of Theorem 1.7 to the case
where the singularities are not necessarily weighted homogeneous.

The outline of this paper is as follows. In §2.1, we collect some necessary preliminaries about isolated
singularities. k-liminal singularities are defined in §2.2, and the stack point of view is recalled in §2.3.
Section 3 deals with the geometry of k-liminal weighted homogeneous singularities and establishes the
existence of a nonzero homogeneous pairing between two one-dimensional vector spaces. In §4.1, this
construction is globalized to establish Theorem 1.7 (Theorem 4.4 and Corollary 4.5). There is also a
brief discussion in §4.2 of the interplay between the Hodge theory of Y or of Y andof a smoothing Y; of Y.

2. Preliminaries
2.1. Some general Hodge theory

Let X be a contractible Stein neighborhood of the isolated singularity x of dimension n > 3, and let
7:X > Xbea good (log) resolution (i.e., 7 is a resolution of singularities, and E = 77! (x) (with
its reduced structure) is a divisor with simple normal crossings). For every coherent sheaf F on X,
Hi()’(\; F) = HY(X;R'n,F).LetU = X — {x} = X - E.Inthe global setting, Y will denote a projective
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variety of dimension n with isolated singularities, Z = Yy the singular locus of Y, and 7: Y >Ya
good (log) resolution at each singular point. We will also use E to denote the exceptional divisor in
this context (i.e., £ = a7l (Z)), again viewed as a reduced divisor, and V = Y - E =Y — Z. Instead of
assuming that Y is projective, it is more generally enough to assume that Y has a resolution satisfying
the 90-lemma.

Lemma 2.1. With Y and n: Y — Y as above, and for all p,q, the groups Hq(}?; Qf?(logE)),
HY(X; Q;(log E)(-E)), HI(Y; Q;(log E)) and H1(Y; Q;(log E)(=E)) are all independent of the
choice of resolution.

Proof. The independence of Hq(?; Q;Z(log E)) is a result of Deligne [Del71, 3.2.5(ii)]. The inde-
pendence of H‘I(?; Q;(log E)(-E)) then follows because HY (?; Ql’;(log E)(-E)) is Serre dual to

H"™4(Y; Q;i_p (log E)). The local results for X can then be reduced to this case (cf. [FL.22a, Remark
3.15]). m]

Remark 2.2. In case Y is projective, we can understand the birational invariance as follows: Let
Q} , be the relative filtered de Rham complex as defined by Du Bois [DB81]. By [DB81, Théoreme
2.4], Qj , is an invariant of Y as an object in the filtered derived category, and the corresponding
Hodge spectral sequence degenerates at E; in case Y is projective. By [PS08, Example 7.25], 95’2 =
Rr, Qg (log E)(—E). Applying the Leray spectral sequence for hypercohomology gives

Grl HP*(Y,Z) = H(Y;QF ,) = H(Y; QF (log E) (~E)).

Hence, H4 (17; Q; (logE)(-E)) = GrfP HP*4(Y, Z) does not depend on the choice of a resolution.
Note that from the exact sequence

- > H"Y(Z) > H\(Y,Z) > H(Y) > H(Z) > - - -,

H!(Y,Z) = H'(Y) except for i = 0, 1 since dim Z = 0. Moreover, the hypercohomology of the exact
sequence

0— Q'?(logE)(—E) — Q')? - Q% /tp — 0
gives the Mayer—Vietoris sequence, an exact sequence of mixed Hodge structures:
- H"YE) > H(Y,Z) » H(Y) » H(E) > - - - .

Finally, the duality between H?* (?; Q% (logE)(—E)) and H* (?; Q% (log E)) corresponds to Poincaré
duality (cf. [PS08, §5.5, B.21, B.24])

H'(Y.Z) = Hi(Y = Z) = (H"'(Y = 2))' (=) = (H*"'(Y ~ E))"(-n).
Lemma 2.3. With Y and n: Y — Y as above, the map
G F B (Y) = B (V; Q4 * (log E) (-E)) — H*! (Y; Q)
is injective for all k > 0.
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Proof. We have the exact sequence
HY(V;: Q) - HYN(E; Q" fri™) = H(V; Q1  (log E) (<E)) — H*' (V; Q7).

By semipurity in the local setting [Ste83, (1.12)], the map H7, (X) — H"(E) is an isomorphism. Since
it factors by excision as Hg()?) = Hg(?) — H"(?) — H"(E), the map H”(?) — H"(E) is therefore
surjective, and hence, by strictness of morphisms, so is the map

Gri " H"(Y) = H*(Y; Q%) — Gry* H"(E) = H* (E; Q7 [7i%).

Thus, the map H**'(Y; Q%‘k(log E)(=E)) — H*(Y; Q;i‘k) is injective. o

2.2. k-Du Bois, k-rational, and k-liminal singularities

The k-Du Bois and k-rational singularities, natural extensions of Du Bois and rational singularities,
respectively (the case k = 0), were recently introduced by [MOPW23], [JKSY22], [KL20], [FL22c] and
[MP22]. The relevance of these classes of singularities (especially for k = 1) to the deformation theory
of singular Calabi—Yau and Fano varieties is discussed in [FL.22a], which additionally singles out the k-
liminal singularities (for k = 1) as particularly relevant to the deformation theory of such varieties. The
k-liminal singularities should be understood as the frontier case between (k — 1)-rational and k-rational.
For the convenience of the reader, we summarize the relevant facts for these classes of singularities.

Definition 2.4. Let (X,x) be the germ of an isolated local complete intersection (Ici) singularity of
dimension n > 3, and let 7: X - Xbea good resolution with exceptional divisor E. Then X is k-Du
Bois if Rin*Qg(log E)(—E)=0fori > 0and p < k, and is k-rational if Rin*Qg (logE) =0fori >0
and p < k. By [FL22c], [MP22], if (X, x) is k-rational, then it is k-Du Bois and by [FL.24], [CDM22],
if (X, x) is k-Du Bois, then it is (k — 1)-rational.

Finally, (X, x) is k-liminal if it is k-Du Bois but not k-rational. In this case, if X is a hypersurface
singularity, then dim Gr%’k H"(L) = 1, by Theorem 1.6.

The following collects some basic facts about k-liminal singularities:
Lemma 2.5. Let X be the germ of an isolated hypersurface singularity.

(i) Ifdim X = 3 and X is not smooth, then X is not 1-rational, and X is 1-liminal <= X is 1-Du
Bois <= X is an ordinary double point.
(i) More generally, if X is a k-Du Bois singularity and k > %(n —1), then X is smooth. If dim X = 2k +1
and X is not smooth, then X is k-Du Bois <= X is k-liminal <= X is an ordinary double point.
(iii) Suppose that X is weighted homogeneous. Viewing X as locally analytically isomorphic to the
subvariety {f = 0} of (C"™1,0), where C* acts on C"™*' with weights ay, . ..,a,s1 > 1, and f is
weighted homogeneous of degree d, define w; = a;/d. Then
(a) X is k-Du Bois &= Y w; > k+1.

(b) X is k-rational ?:11 w; >k + 1.

(©) Xis k-liminal &= Y™ 'w;=k+1.

Proof. (i) This is a result of Namikawa-Steenbrink [NS95, Theorem 2.2] (cf. also [FL.24, Corollary
6.12]).

(ii) This is [DM23, Corollary 6.3] (cf. also [FL.24, Corollary 4.4]).

(iii) This is a result of Saito [Sail6, (2.5.1)] (see also [FL.24, Corollary 6.8]). ]

Remark 2.6. (i) By definition, a 0-liminal singularity is 0-Du Bois (i.e. Du Bois in the terminology
of [Ste83]), but not rational. Thus, these singularities fall outside the scope of this paper. If X is an
isolated normal Gorenstein surface singularity that is Du Bois but not rational, then by [Ste83, 3.8], X
is either a simple elliptic or a cusp singularity. Such singularities are known to be deeply connected to
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degenerations of K3 surfaces. In [FL23], we explore the analogous picture for Calabi—Yau varieties in
higher dimensions in case Y has hypersurface singularities.

(ii) Assume that X is a weighted homogeneous hypersurface singularity. If X is the cone over a smooth
hypersurface E of degree d in P", then, by Lemma 2.5(iii), the k-liminal condition is n + 1 = d(k + 1),
and in particular, n + 1 is divisible by d and by k + 1. Thus, these examples are somewhat sparse. By
Theorem 1.6, the Hodge structure on H"~!(E) is (up to a Tate twist) of Calabi—Yau type. Primarily for
this reason, such hypersurfaces are exceptions to Donagi’s proof for generic Torelli ([Don83]; cf. Voisin
[Voi22] for recent work along these lines).

Despite Remark 2.6(ii) above, there are many examples of isolated weighted homogeneous k-liminal
singularities:

-1
Lemma 2.7. Forall k with 1 < k < [nT] there exists an isolated weighted homogeneous k-liminal

. . . . _ e Cn+
singularity given by a diagonal hypersurface f(z) = z{' + -+ 2,7

-1
2

Proof. Givenksuchthat1 < k < [n }, let f(z) = z]' +---+ ;. First suppose that n = 2a + 1 is

n—1

odd, so [

¢ n+1-2¢
0—
2

] = a. Then choose 2¢ of the ¢; equal to 2 and the remaining n+1-2£ = 2(a+1-{) equal

=a+1-"¢ Here,0 < { < a—1because the value £ = a would give some e; = 1. Then

1 1 2
Zwi—ze—i—§(2€)+(n+1—2€)(—n+1_2£) = (+2,

i

and hence, k = };; w; — 1 = € + 1 can take on all possible values from 1 to a.

Similarly, if n = 2a is even, so that [HT] =a-1,and 1 < ¢ < a-2,choose 2 — 1 of the ¢; to be

+1-(Q20+1
2,2 of the e; to be 4, and the remaining n+ 1 — (20 + 1) = 2a — 2 to be nf() =a—{. Then
Zwi:Zl:l(2€—l)+l+(n+l—(2€+l)) — = )=t+2
,~ e 2 2 n+l-(20+1)

and hence, k = >; w; — 1 = £ + 1 can take on all possible values from 2 to a — 1. For the remaining
possibility k = 1, take n — 1 = 2a — 1 of the e; equal to a and the remaining two equal to 2a to get
2. wi =2 and hence, k = 1. ]

The following then generalizes [RT09, 2.6]:

Lemma 2.8. If the singularities of X are isolated 1-Du Bois Ici singularities, then H°(X ;T;() =
Hl()?; Q"}{l(log E)). In the global case, T}l, = Hl(?; Q;i‘l(log E)), compatibly with the map T; -

HO(Y; T;) and restriction — that is, the following diagram commutes:

H! (Y; Q;i‘l(log E)) —— HO(v; Rlﬂ*Qg‘l (log E))

T}, — HO(Y;T}).
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Proof. First, by a result of Schlessinger (see, for example, [FL22a, Lemma 1.16]), HO(X;T)I() =
H'(U; Tg |U). Clearly, H'(U; T)0(|U) =H\(U; Q")?‘l (log E)|U). The local cohomology sequence gives

H}z(f; Q;:l(logE)) - H'(X; Q;:l(logE)) — HO(X;T)I() — H%()?; Q;’?_l(logE)).

Since 1-Du Bois Ici singularities are rational, H}E(f ; Q';{'(log E)) = 0 by [FL22a, 1.8], and the
1-Du Bois assumption implies that H%; ()?; Q';?‘l(log E)) = 0 (cf. [FL22a, 2.8]). Hence, H’(X; T}() =
H! ()?; Q;:l(log E)). The global case is similar, using T; = H\(V; Q;‘l(log E)|V), and the compati-
bility is clear. O

There is a similar result for 1-rational singularities:

Lemma 2.9. If the singularities of X are isolated 1-rational Ici singularities, then HO(X;T}I() =
Hl()?; Q"){l(log E)(-E)). Globally, Ti, = Hl(?; Q;i‘l(log E)(-E)), and there is a commutative dia-
gram

H\(Y; Q! (log E)(-E)) —— H(Y;R'n.Q% " (log E)(-E))
T}, — HO(Y;Ty).
Proof. Since isolated 1-rational singularities are 1-Du Bois, it suffices by Lemma 2.8 to show that the
map H'(X;Q’;{l(log E)(-E)) — H'(X;Q;l{l(log E)) is an isomorphism. We have the long exact
sequence
HO(E; Q%' (log E)|E) — H! (X; Q! (log E)(-E)) — H' (X; Q! (log E))
— H'(E; le (log E)|E).
Moreover, H' (E; Q"' (log E)|E) = Gr?‘1 H"(L), which has dimension ¢"~ 1! = ¢1.7=2 = 0 by the
X
1-rational condition [FL24, Theorem 5.3(iv)]. Likewise, dim H°(E; Q’;{l (logE)|E) = 1.0 Since X
is a rational singularity, £"~'-% = 0 by a result of Steenbrink [Ste97, Lemma 2]. Hence,
H'(X; Q;:l(log E)(-E)) = H'(X; Q;‘{l(log E)).
The global case and the compatibility are again clear. O

Remark 2.10. In the global case, where we do not make the assumption thgt wy = Oy, the above
lemmas remain true provided that we replace H'(Y; Qg‘l (log E)) resp. H'(Y; Q;_l (logE)(=E)) by

H\(Y; Q;i‘] (log E) ® n*w;y') resp. H'(Y; Q;i‘] (log E)(-E) ® m*wy!).

To illustrate how these results may be used in practice, we give a quick proof of a slight variant of
[FL22a, Corollary 5.8]:

Theorem 2.11. Suppose that Y is a canonical Calabi-Yau variety of dimension n > 3 with isolated
1-liminal hypersurface singularities. Then a strong first-order smoothing of Y exists < for every x €
Z, there exists ay € C, ay # 0, such that 3, ayp(ex) =0in H2(Y;Q;i‘1), where g, € Gr}’] H"(Ly)
is a generator and ¢ is the composition

H'(E: Q' (log E) |E) 2 HA(V: Qi (log E)(-E)) — HA(V; Q™).

In particular, if Y satisfies the above condition, it is smoothable.
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Proof. By Lemma 2.8, there are isomorphisms
H(X;Ty) = H'(U; T2|U) = H'(U; Q"){l(log E)|U).
Following the isomorphism H°(X; T)l() = H\(U; Q’;{l (log E)|U) with the restriction map
H'(U; Q;:l (log E)|U) — H'(E; g;—l (log E)|E)

gives a homomorphism HO(Y;T!) — HI(E;Q;’I(log E)|E), such that the following diagram is
commutative:

Ty — HO(Y:T})

| |

Hl(?;gz;:l(logE)) —— H'(E;Q ' (log E)|E) 2, HZ(?;Q;—I(logE)(—E)).

Here, if as usual E, = 7' (x), Hl(Ex;Q;‘l(log E)|E,) has dimension one for every x € Z by the
1-liminal assumption. Let €, be a basis vector. By [FL22a, Lemma 2.6, Theorem 2.1(v)], the map
T,  — HI(EX;Q”‘I(Iog E)|Ey) is surjective, and its kernel is m,7y . Thus, ¥ has a strong first-
order smoothing <=> for every x € Z, there exists ay € C, ay # 0, such that 3 ,c7 axd(ex) =0
in H2(Y Q" '(log E)(-E)). By Lemma 2.3, the map H2(Y Q” Y(logE)(-E)) — HZ(Y Q” by is
injective. It follows that ¥, a,d(gx) = 0 in HZ(Y,Q;L I(log E)( E)) & Y.axp(ex) =0in
Hz(? ; Q;i‘l). Thus, a strong first-order smoothing exists <= Y, ay¢(ey) = 0. The final statement
then follows from [FL.22c, Corollary 1.5]. O

Remark 2.12. There is a similar result in the 1-liminal Fano case: Assume that Y has only isolated 1-
liminal hypersurface singularities and that a);l is ample. In this case, the above construction produces an

obstruction to a strong first-order smoothing — namely, 3., cAXd(s,) € H? (Y; Q;i‘l (logE)(-E) ®
m*wy'). The group H*(Y; Q’Yi‘l(log E)(-E) ® n*wy") is Serre dual to H"2(Y; Q}%(log E) ® m*wy).
In many cases, H”’z(?; Q;?(log E)) ® n*wy) = 0. For example, if there exists a smooth Cartier divisor

H on Y, thus not passing through the singular points of Y, such that wy = Oy (—H), and in addition
H"3(H; Q! y) = 0, then an argument with the Goresky-MacPherson-Lefschetz theorem in intersection
cohomology [GM&3] shows that

H"2(Y; QL (logE) ® n*wy) = H'2(Y; QL (log E) ® Oy (~H)) = 0

where we identify the divisor H on Y with its preimage 7n*H on Y. The proof of Theorem 2.11 then
shows that, under these assumptions, a strong first-order smoothing of Y always exists, and hence, Y is
smoothable by [FL.22a, Theorem 4.5]. A somewhat stronger statement is proved in [FL.22a, Corollary
4.10].

Remark 2.13. In dimension three, a singular point can be k-liminal only for k = 1. Since this case is
covered by Theorem 2.11, we are free to make the assumption that n > 4, as needed in what follows.

2.3. Weighted homogeneous singularities and quotient stacks

For the remainder of this section, we are concerned with generalizing the above picture, and in particular,
Lemma 2.9, in the context of stacks: Assume that the isolated singularity X is locally analytically
isomorphic to a weighted cone in C"*! over a weighted hypersurface E C WP”". Thus, we may as well
assume that X is the weighted cone as in Lemma 2.5(iii), with an isolated singularity at 0.
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Definition 2.14. Let X be the weighted cone in C"*! over a weighted hypersurface E C WP", where
W P™ is a weighted projective space, and X* the weighted blowup of X as in [F.22a, §3]. Let E, X*, WP"
be the corresponding quotient stacks. If X has an isolated singularity at 0, then X* and E are quotient
stacks for an action of C* on smooth schemes with finite stabilizers. Hence, X # is a smooth stack, Eisa
smooth divisor in X*, and there is a morphism X* — X that defines an isomorphism X* - E — X —{0}.

Globally, let Y be a projective variety of dimension n with isolated weighted homogeneous hyper-
surface singularities. Let 7: Y# — Y denote the weighted blowup of Y at the singularities, and let E
be the exceptional divisor (i.e., E = ! (Z) where Z = Ying). We can also construct a stacky version
of Y# as follows: For each x € Z, we have the corresponding exceptional divisor E,. Let X denote the
corresponding weighted cone in C"*!. There is a (Zariski) open neighborhood U C Y of x and an étale
morphism U — X. We can then pull back the stack X* to a stack U* and glue U* and Y — {x} along the
Zariski open subset U — {x}. Doing this for each singular point defines the stack Y*.

A similar construction works in the analytic category, where we view an analytic stack as a functor
on the category of complex analytic spaces. This allows for the possibility that, in Definition 1.1, Y is a
compact analytic, not necessarily algebraic space.

As in Definition 2.14, let X* be the weighted blowup of X, with X* the associated stack, and let X
be an arbitrary log resolution. Given a projective Y with isolated weighted homogeneous hypersurface
singularities, we define Y* as before and let x: Y > Ybea log resolution. To avoid confusion, we
denote the exceptional divisor of x: Xo>Xorm: ¥ Y by E. We claim that, in the statement of
Lemmas 2.8 and 2.9, we can replace ordinary cohomology with stack cohomology. First, we recall the
following definition, due to Steenbrink [Ste77b, §1], [Ste77a, §2]:

Definition 2.15. Let W be an analytic space that is an orbifold ‘viewed as an analytic space’ (i.e., locally
W = W/G, where G is a small subgroup of GL(n,C) in the sense of [Ste77a] and W is a G-invariant
neighborhood of the origin on C"). Let W, be the open subset where W is (locally) a free quotient so
that, by hypothesis, W — Wy has codimension at least 2. Define QCV to be i*QI‘j\/()’ where i: Wy — W is

the inclusion. If 7: W — W is a resolution of singularities, then Qp = JT*Q%. If (locally) W = W/G

as above, then Qp = (QP )G . If D is an orbifold normal crossing divisor of W in the obvious sense,

then Q) (log D) is deﬁned similarly.

By [§te77b (1.9), (1.12)], the complex (Q7,,, d) is a resolution of the constant sheaf C and, if W is
projective, the hypercohomology spectral sequence with E f’ 4 = H1(W; QP w) = HPY(W;Qf)) =
HP*4(W;C) degenerates at E;. Likewise, if D is an orbifold normal crossing divisor of W, then
HK(W; Q2 w(logD)) = H k(W — D;C), and the analogous spectral sequence also degenerates at E|.

There is an extension of Lemma 2.1 to this situation:

Lemma 2.16. In the notation of Definition 2.14, for all p, q, there are isomorphisms

HY(X*QF, (log E)) = HY(X*,Qf, (log E)) = H(X: Qf (log E)):
HI(Y"; Q) (log E)) = HY(Y*; Q) (log E)) = H(V;QF (log E)),

where QI;(# (logE) and Q;’# (log E) are the sheaves defined in Definition 2.15 for the spaces X* and Y*.
Likewise, with similar definitions on;;# (log E)(-E) and Q}’Z# (log E)(-E),

HY(X*. Q) (log E)(-E)) = HY(X":Q}, (log E)(~E)) = H(X: Q% (log E) (-E)):
HI(Y*". Q) (log E)(-E)) = H (Y";Q) (log E)(=E)) = H!(Y: Q2 (log E) (-E)).

Proof. These statements follow from the arguments of [FL.22a, Lemma 3.13, Lemma 3.14] and
Lemma 2.1. O
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Thus, for example, in the situation of Lemma 2.9, we have the following:

Corollary 2.17. If all of the singularities of Y are weighted homogeneous isolated 1-rational singulari-
ties, then there is a commutative diagram

H'(Y";Q17 (log E)(-E)) —— H(Y; R'7.Q0}' (log E)(-E))

gl lg

H'(Y; Q;—l(log E)(-E)) —— HO(Y;Rln*gg—l(log E)(-E))

gl lg

T}, s HO(Y;Ty).

Here, HO(Y;RIJT*Q;;I(IOg E)(—E)) is a direct sum of terms isomorphic to the corresponding local
terms H' (X*; Q2! (log E) (-E)).

In the local setting, we note the following for future reference:

Lemma 2.18. There is an exact sequence

0— QZ - Qi#(logg)@ — Q]fE_l — 0.

Proof. Poincaré residue induces a surjection Q;? (log E)|E — Of whose kernel is easily checked to be

Q}E as E is smooth. Taking the k" exterior power gives the exact sequence. O

Remark 2.19. With E as in Definition 2.14, we can either think of E as a scheme or as a stack. We will
denote by H'(E) = H'(E;C) the usual singular cohomology. By the remarks at the end of Definition
2.15, there is a spectral sequence E{"? = HI(E;Qf) = HP*(E;C), and it degenerates at E|.
Moreover, the corresponding filtration defines a (pure) Hodge structure on H' (E) [Ste77b]. The method
of proof of [FL.22a, Lemma 3.13] shows that H4(E; Qg) = HY9(E, Qg). Thus, in particular,

Gr?. HP*(E) = H(E; Qg)

As noted in the introduction, the cohomology of the link L of the isolated singularity X carries a mixed
Hodge structure. (We will not try to give a stacky interpretation of L.) Arguments as in the case where
E is smooth show that

Gry HP*(L) = HY(E; QY (log E)|E).

3. Local calculations
3.1. Numerology

In this section, we consider the local case. We keep the notation of the previous section: X is the affine
weighted cone over a hypersurface E in a weighted projective space W P", with an isolated singularity
at 0, and X* is the weighted blowup, with X*, E and WP" the corresponding stacks. Let ay, ..., an+1
be the C* weights, let d be the degree of E, and set w; = a;/d. Setting N = }; a; — d, as a line bundle
on the stack E,

Kg = Op(-N) = Og(d - Zai).

4
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Since }; w; = N/d + 1, the k-liminal condition is equivalent to

k:Zwi—I:N/d e N =dk.

Thus, Kg = Op(-dk). As for Ky#, we have Ky+ = Ox+(rE) for some r € Z. By adjunction,
Kg = Op(~dk) = Ky» ® Oxs (E)E = Oy ((r + DE)|E = O (~(r + DE).
Thus,r+1=dk,r =dk — 1, and
K+ = Oxe((dk = DE) = Oxe (N = DE).
To simplify the notation, set

a:d(k—l):N—d:Zai—Zd.
i

Thus,a =0 < k =1 (i.e., X is 1-liminal). Moreover,

Kg(a) =Kg ® Og(a) = OE(—d).

3.2. Some cohomology calculations

Assumption 3.1. From now on, we assume that X is a k-liminal weighted homogeneous isolated
hypersurface singularity with n = dim X > 4 and k > 2. In particular, X is 1-rational, so that Lemma 2.9
and Corollary 2.17 apply.

Lemma 3.2. With notation as above, if j <2and 1 <i < a— 1, then
H(E; Q' (i) = H (E; Q§2(0)) = 0.

For i = a, we have Hj(E;Qg_l(a)) =0 for j <2 and Hj(E;Qz_z(a)) =0 for j = 0,2, but
dim H'(E; Q"7*(a)) = dim H'(E; Tg(-d)) = L.

Proof. First, H/ (E; Q1 (i)) = H/(E; Kg (i) = H/ (E; O (—kd +i)). We have the exact sequence
0— Owpn(r) = Owpn(r+d) — Og(r+d) — 0.

Since H"(ﬂ";(’)ﬁn(r)) =0fori=1,2,3and all r, H/(E; Kg(i)) = 0 for j = 1,2 and all i. For
j=0,since0<i<a-1=kd-d-1,-kd+i < -d-1 < 0, and hence, HO(E;KQ(i)) =
HY(E; O (—kd +1i)) = 0 in this range as well.

For H/ (E; Qg‘z(i)), note first that, as E has dimension n — 1,

Qi) = Tg ® K (i) = T (—kd +1).
From the normal bundle sequence

0—Tg - Twpr|E — Og(d) — 0,
we therefore obtain

0— TE(—kd+i) - TM"(—kd+l')|E - OE(—kd+d+i) — 0.
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Fori <a—-1,-kd+d+i < —1. Then an argument as before shows that, for j < 2,
HY(E; Q2(0) = HY (E; Tw pr (=kd +1)|E).

‘We have the Euler exact sequence

n+l1

0= O — P Op(a;) > Twpr|E — 0.

i=1

Still assuming that j < 2 and i < a — 1, it suffices to show that
H/*YE; Op(~kd +i)) = H/ (E; Op (=kd +i +a;)) =0

for j < 2. This is certainly true if n > 5, again using —kd +i + a; < a; —d < —1 since X is not
smooth, and hence, a; < d. For n = 4, H*(E; Ofp(=kd +1i)) = H3(E; KE (7)) that is Serre dual to
HO(E; Og(-i)), so we are done as before since i > 1.

To prove the second statement, note that Qg‘l (a) = Kg(a) = Og(-d) and H/ (E; Og(—d)) = 0 for

J < 2 by the same reasons as before. Likewisej Q%‘z(a) = Tg ® Kg(a) = Tg(—d). Via the Euler exact
sequence o

n+l
0 = Op(-d) > @ Op(a; - d) - Twpr (~d) | E - 0,
i=1
we see that H/ (E; Tw pr(—d)|E) = 0 for j < 2. Moreover, the normal bundle sequence gives

0 — Te(—d) = Twpn(—d)|E — Og — 0.

Thus, H*(E; Te(-d)) = H?(E; Tg(—d)) = 0, but the coboundary map H%(Og) — H'(E; Tg(-d)) is
an isomorphism. o

Corollary 3.3. Under Assumption 3.1,

(i) H(E; Q' (log E)(—E)|E) = 0for 1 <i < a;
(i) H'(E; Q7' (log E)(—iE)|E) =0 for | <i<a;
(iii) dim H'(E; Q! (log E) (—aE)|E) = 1.

Proof. By Lemma 2.18, there is an exact sequence
0— Q' (i) » Q' (log E)(—E) |E — Qi (i) — 0.
By Lemma 3.2, if 1 <i < a, then H*(X*; Q7! (log E)(~iE)|E) = 0, and
H'(E: Q' (log E) (~iE)|E) = H' (E; Q57 (1)),
which is O for 1 <i < a and has dimension 1 fori = a. O
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Theorem 3.4. Under Assumption 3.1,

H(X;Ty) = H' (X" QL JL(log E)(—aE)).

Moreover, the natural map HI(X#;Q;?;I (logE)(-aE)) — H'(E; Q;;l(logg)(—ag)lg) induces an

isomorphism
HO(X;Ty)/m H(X;TY) = H' (E; Q' (log E)(—aE)|E).
Proof. For the first part, we have an exact sequence
0— Q% (logE)(—(i + 1)E) — Q% Y(log E)(—iE) — Q% 2L(log E)(—iE)|E — 0.
Thus, by Corollary 3.3, for 1 <i < a, we have an isomorphism
H'(x*; QL S (logE)(—(i + 1)E) — H' (X"; Qb Y(log E)(-iE)),
and by induction, starting with the isomorphism H%(X; Ty,) = H'(X*; Q"X;I (log E)(=E)) of Lemma 2.9

and Corollary 2.17, we see that H%(X; T}l() = H'(X* Q;;l (log E)(—akE)).
To see the final statement, we have an exact sequenceﬁ

H' (X%, Q% L(log E)(=(a + 1)E)) — H'(X*; QL L(log E)(—~aE)) — H'(X*; Q% (log E)(~aE)|E),
and hence an injection
H'(X*; QL Ylog E) (- aE))/ImH (x*; QL Ylog E)(~(a + 1)E)) — H'(X*; QL Y(log E)(~aE)|E).
By Corollary 3.3(iii), dim H' (E; Qg,,‘ (log E)(—aE)|E) = 1. Thus, if the map

HY(X:Ty) [mcHO(X:Ty) — H'(E: Q' (log E) (—aE) |E)

is nonzero, it is an isomorphism. However, to prove that this map is nonzero, it is necessary to consider
the C* picture as in [FL22a, §3]: The vector bundle Q;;l (log E) on X* is of the form p*W for some

vector bundle W on E, where p: X* — E is the naturafmorphism, and Oy+(=E) = p*Og(1). Then

H' (X% Q5 (log £)) = (D H'(E:W(r) = @D HO(X:Tx)(r) = €D H'OGTR) ().

r>0 r>-N r>—d
Here, the final equality holds because —d is the smallest weight occurring in HO(X;T)'() and

—N = —dk < —d. Note also that @, ,_,,; H*(X:Ty)(r) = myH’(X;Ty). Taking the tensor product
with Oy+(—iE) has the effect of shifting the weight spaces by 7 since

PWe Oy(—ig) = p*W® p O (i) = p* (W Og(i)).
Thus,

H' (X", Q' (log E)(~iE)) = @Hl(E W(r+i)) = @H (E;W(r)) = @ HY(X:TYH)(r).

r=0 r>i r>-N+i
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IR

Here, -d > -N+i &= i < N —d = a. This recovers the fact that HI(X#;Q;L‘l(logE)(—iE))
HO(X; T)l() for i < a, whereas
H' (X" Q5 (log E)(~(a+ DE) = €D HO(X:T)(r) = mH(X; Ty),
- r>—d+l1

as claimed. O

3.3. Definition of the nonlinear map

‘We now consider the analogue of [RT(09, Lemma 4.10]. First, we have the subsheaf Ty+(—log E) C Ty#
(on the stack X*), which is the kernel of the map Ty+ — N /x+ or, equivalently, is dual to Q| , (log E).

There is thus a commutative diagram
Ty#(—log E) —_ Ty
QL (log E)(-E) ® Ky, —— Q' @K ).
There are compatible isomorphisms
Tye(dE) = Q' ® Ky ® Ox(dE) = Q' ((d - dk + DE) = Q! (—aE + E);
Ty (~log E)E) = @ (log E) (~E) @ K} ® O (dE) :

= Q3! (log E)((d — dk)E) = Q' (log E) (~akE).

Taking k™ exterior powers, A¥ Tx+ is dual to Q;‘( . and hence is isomorphic to Q’;{;k ® K;{},, and
Ak Ty#(—log E) is dual to Q’;(# (log E) and hence is isomorphic to Q;;k (logE)(-E)® K;{L There are

compatible isomorphisms
k
/\(TK#(C@) = Q1 @ Ky} ® Oxe (dhE) = Q" @ Oy (E);

k
\(Tye (~log E)E)) = Qi (log E) (~E) ® Kb ® Oy (dKE) = Qi (log E).

So we have a commutative diagram

1R

N (T (<log E)AE)) = \* (! (log E)(=aB)| —— (5! (log E) (~aB) E)

Q13 (log E) — Q1 (log E)|E.
There is also the induced map T+ (=log E) — Tk, and the following commutes:

Ty+(-log E) e T

R
Q! (log E)(-E) ® Ky —— Q3 @ K;',
using the adjunction isomorphism Oy+(-E) ® K;{L@ = (Kx# ® Ox+(E)'|E = K.
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The exact sequence of Lemma 2.18 yields an exact sequence

0—- Q' (a) — - Q 2 (log E)(—aE)|E — Q7 (a) — 0.

By Lemma 3.2, there is an induced isomorphism H'(E; Qg#l (logE)(-aE)|E) — H'(E; Q”E‘Q(a)).
Moreover,

Q7 (a) = Tg ® Kg(a) = Te(—kd +a) = Tg(=d).

Taking k™ exterior powers,

k k k
N\Te(-a)) = ( A TE)(—kd> = ( N Te

A combination of wedge product and cup product induces symmetric homogeneous degree k maps

® Kp = Q.

vyr: H' (X*; Q 2l(log E)(—aE)) — H*(X*; Q K(logE));
px# = vys|E: H'(E; Q% Y(log E)(-aE)|E) — H*(E; Q% k(log E)|E),

and a commutative diagram (with nonlinear vertical maps)

H' (X* Q! (log E)(-aE)) —— H'(E; Q' (log E)(—aE)|E)

1% l lﬂg#

HN (X" Q5 (logE))  ——  HNE; QU *(log E)|E).

There are similarly compatible symmetric homogeneous degree k maps

k
Viw: H' (X% Ty (= log E)(dE)) — H* (X% )\ (Tys (- log E)(dE))) = H* (X*; @t (log E));

Hoe: H'(E;Te(~d)) = H'(E; Q3 (a)) — H*(E; /\(TQ(—d))) = H*(E; Q).
The following diagram with nonlinear vertical maps commutes:

H'(E; Qg;l(logﬁ)(—aﬁ)lﬁ) ——  HY(E:Tg(-d)) = H'(E; Qi (a)

Myt l lll;(#

Res
HY(E; Q13F(log E)[E)  ——— H*(E; A" (Te(-d))) = H*(E; Q).
By Lemma 3.2, Corollary 3.3(iii) and Theorem 1.6,

dim Hl(E;Q”;I (log E)(~aE)|E) = dim H' (E; Tg(~d)) = 1;
dlmHk(EQ K(log E)|E) = dim G H™(L) = 1.

The map H* (X*; Qg_#k (logE)) — H*(E; Q”E_k‘l) factors through the (surjective) map

H* (X" Q5" (log E)) — H*(E: Qp* (log E)|E) = Gry* H" (L),
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and the map
H*(E: Q" (log E)|E) = Gry™* H"(L)
— HYE; Q") = G B N(E) = G HY N (E) (1)
is an isomorphism in almost all cases. More precisely, let H(’)H (E) be the primitive cohomology of E
in dimension n — 1, and let H(')"l‘k (E; QkE) = Gr]fF H(’)"1 (E) be the corresponding groups.
Lemma 3.5. If X is not an ordinary double point or if n is even, then the map Gr}’k H"(L) —
H*(E; Qg’k’l) is an isomorphism, and hence,
dim H*(E; QF*") = 1.
If X is an ordinary double point and n = 2k + 1 is odd, then

Gry* H"(L) —» HM(E; Q¥ = G i1 (E)
is injective with image H(’)‘ (E; Qﬁ:) = C([A] - [B]), and hence, dim Hg (E; Qz_) =1.

Proof. As noted in Definition 2.4, if L is the link of the singularity, then dim Gr}*k H"(L) = 1. Then
Lemma 2.18 gives the exact sequence

G * H"(E) — G F (L) — G "' H""Y(E) — Grk H™(E).

Since E is an orbifold weighted hypersurface in WP", Gr; HJ/(E) = 0 except for the cases j = 2i or
i+j =n-1 Thus, Grf * H*(E) = Gr”* "' H""1(E) = 0 unless n = 2(n — k) (i.e., k = gn) or
n+l1=2(n-k) (e, k= %(n — 1)). The first case is excluded since we assumed that X is a singular
point, and the second case only arises if » = 2k + 1 and X is an ordinary double point (Lemma 2.5).
This proves the first statement, and the second statement is the well-known computation of the primitive
cohomology of an even-dimensional quadric. O

Proposition 3.6. The map py+ is not 0. Hence, there exist bases v € H'(E; Q;;l (log E)(—aE)|E) and

e € HX(E; Q’;{;k (log E)|E) of the two one-dimensional vector spaces and a nonzero ¢ € C such that,
forall 2 € C, B

Hxt () = cAke.
Proof. 1t suffices to prove that the map /J;(# is nonzero. Taking the (i + 1)% exterior power of the normal
bundle sequence
0—-Tg(-d) - (Twpr|E)(=d) - Op — 0
gives exact sequences

i+1 i+1

i
0— /\ Te(-(+1)d) — /\(Tun IE)(-(i+ 1)d) — /\ Tg(-id) — 0, *)
and thus a sequence of connecting homomorphisms

i+l

O H'(E; \ Te(=id)) — H™ (E; /\ Te(=(i + 1)d).

We claim the following:
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Claim 3.7. There exists a nonzero element n € H'(E; Tg(—d)), necessarily a generator, such that
Wis (1) = £0p—1 0 -+ 0 D1 ().

Claim 3.8. The connecting homomorphism 0; is an isomorphism for 1 < i < k — 2 and injective for
i=k-1.

Clearly, the two claims imply Proposition 3.6. O

Proof of Claim 3.7. The element n = do(1) € H'(E; T, E(—d)) is the extension class for the extension
0 = Tg(=d) = (Twpr|E)(~d) — O — 0. By the last line of the proof of Lemma 3.2, the
coboundary map 9 is injective, and hence, 7 # 0. Then a calculation shows that, up to sign,

i+l

A € H'(E: Hom( /\ Tg(=id), \ Tg(=(i + 1)d)))

is the corresponding extension class for the extension (). Since the connecting homomorphism is given
by cup product with the extension class, we see that

k
Hyn (1) = = £y 0 -+ 0 01 (1) e HX(E; |\ Tg(=kd)). o

Proof of Claim 3.8. Tt suffices to show that H'(E; /\i“(Tﬂn@)(—(i +1)d)) =0forl <i < k-1.
First, note that

i+1

AT E)=G+ D)) = (! |E) (D ax = -+ 1)d).

k

We have the exact sequence
0= Qy pu(r = d) = Qfy pu (r) = (Q4y pn|E)(r) = 0.

By Bott vanishing (or directly), H/ (E; (ngp,, |E)(r)) =0aslongas1 < j<n-2andj#Corf+1.

In our situation, i < k-1 < k < %(n —1),and thus i < n—i — 1. In particular, i # n —i— 1 orn —i.
Thus, H'(E; A™' (Tw pr|E)(=(i + 1)d)) = 0. o
Remark 3.9. The above calculations are connected with the computation of the Hodge filtration on E.
For example, in case X is a cone over the smooth degree d hypersurface E in P, then H(P"; Kpn ® (n —
k)d) = HO(P"; Opn (—n — 1 + d(k + 1)) = H°(P"; Opn) is identified via residues with F"¥H"(L) =
Gry* H"(L).

4. The global setting
4.1. Deformation theory
We assume the following for the rest of this subsection:

Assumption 4.1. Y is a canonical Calabi—Yau variety of dimension n > 4, all of whose singularities
are k-liminal isolated weighted homogeneous hypersurface singularities, with k > 2, as the case k = 1
has already been considered in Theorem 2.11. We freely use the notation of the previous sections,
especially that of Definition 2.14. In particular, Y# is the weighted blowup at each point x of Z = Ysing.
with exceptional divisor E,, and a, is the integer defined in §2.1. We let Y* and E = 3, ., E  be the
associated stacks. Let E denote the divisor Y., .7 axE .

The argument of Theorem 3.4 shows the following:
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Lemma 4.2. There is a commutative diagram

T;, — 5 o (x# Q;;] (log E)(-dE))

l l

HOY;T)) —— HO(Y; R'7.Q";'(log E)(~GE)).
Y K# = =

We also have the subsheaf 7y +(—log E)) C Ty+. As in §2, globally there is an isomorphism

k
N\ (@3 (tog E)(-aE)) = Q* (log E).
Then the global form of the discussion in §3 yields the following:

Theorem 4.3. There is a commutative diagram

H'(Y*; Q' (log E)(-dE)) —— H'(E;Q",'(logE)(-dE)|E)
Y Y

vz#l lyﬁ

H (Y% QK (logE)) ———  HNE;Q'3*(logE)|E).
Y’ Y’

Here, p1y+ is the sum of the local maps i+ at each component of E, and vy+ is also a homogeneous
map of degree k. Note that after we localize at a singular point x of Y,

dim H* (E _; 1QL X (logE )IE,) = dimGry* H"(Ly) = 1.

By Corollary 3.3(iii), dim H' (E _; .Q;;‘ (log E)(~axE)|E,) = 1 as well, and so the py+ in the diagram,
at each singular point x of ¥, is a homogeneous degree k map between two one-dimensional vector
spaces. For every x € Z, fix an isomorphism H](E Q" L(log E)(— —ayE)|E,) = C (ie. a basis

vector vy € H'(E ; QL 2+ (logE)(—axE)|E)) and a basis vector &y € Gri® H™(Ly). It follows by

Proposition 3.6 that for every x € Z, there exists a nonzero ¢, € C, depending only on the above choices,
such that, for every 1 = (1,) € CZ = H'(E; Q;;l(logg)(—é’g)@),

Hy#() = Z cx/lfcsx.
a xX€Z

Consider the following diagram, where the vertical arrows are homogeneous of degree k and the
bottom row is exact:

H' (@31 (log E)(-GE)) —— H'(Q!';! (log E)(=dE)|E)

Vy# J{ l,“x#

_ d .
HA QR (logE))  ——  HMQF(0gE)E)  —— H“1(Q3*(log E)(-E)).
The above diagram then implies the following: if a class

a = (ay) € H(E; Qy -1 (log E)(~aE)|E)
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is the image of 8 € H' (Y*; Q;;l (log E)(—dE)), then py+ (@) is the image of
vy#(B) € H* (Y*; Q3 (log E)),

and hence, 8 (uy+(a)) = 0 in H**! (Q;’,;k (log E)(=E)).

Returning to the world of spaces, as opposed to stacks, consider a log resolution 7: Y — Y with
exceptional divisor, which we continue to denote by E. Then via the isomorphism

H (V% QU (log E) (=E)) = HM! (V; Q¥ (log E) (<E))

of Lemma 2.16, the coboundary 9 (uy+ ()) defines an element of H**+! (?; Q;i‘k (log E)(—E)). More-
over, if 0(u X (@))isofthe form ), .~ cx/l’;o"'(sx), then it has the same form when viewed as an element
of Hk+! (? ; Q;,i‘k (log E)(—E)), by the commutativity of the diagram

H*(E: Q54 (log E) [E) —— HS (Y% Q7 (log E)(<E))

H*(E; Q™ (log E) | E) — 2, HMY Q- (log E) (—E)).

So finally, we obtain the following:

Theorem 4.4. For every x € Z = Yying, fix isomorphisms
H(Ty ) /mH(Ty ) = H' (Ex; Q%' (log Ex) (—axEy)|Ex) = C.

Write Gr?_k H"(L,) = H*(E,; Q;i‘k (log Ex)|Ex) = C- gy for some fixed choice of a generator €. For
all x € Z, there exist cx € C* depending only on the above identifications, with the following property:
Suppose that the class (0) € @xeym HO(T;,X)/mxHO(T;J) is in the image of @ € T, and let A, € C

be the complex number corresponding to 8 via the above identification. If8 : H* (E; Q;‘k (log E)|E) —
Hk+ ()7; Qg‘k (log E)(—E)) is the coboundary map, then

Z cx/ll;ﬁ(ex) =0.

xX€Z

We can post-compose the coboundary map
d: Gk H"(L) = H*(E; Q;i_k (log E)|E) — H*(Y; Q;i_k (log E)(-E))
with the natural (injective) map
HM(Y; Q¥ (log E)(-E)) — H**! (Y; Q).

Let ¢: Gr'}_k H"(L) = H* (E;Q;‘k (logE)|E) — Hk”(?; Q’)l/‘k) be the above composition. This is
the same as the induced map on Gr’];k of the natural map H" (L) — H"*! (?), which is the Poincaré
dual of the map H,,_ (L) — H,_; (?).
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Corollary 4.5. With the notation and hypotheses of Theorem 4.4, and with ¢: Grl";k H"(L) —
Hk+1 (Y; Q;i‘k) the natural map as above, the following holds in H**! (17; Q;i‘k):

D, cxliplex) =0

xeZ

In particular, if a strong first-order smoothing of Y exists, then for all x € Z, there exists A, € C* with
2ixez Cx/l];‘/’(gx) =0.

Remark 4.6. (i) By Poincaré duality, the map H" (L) — H"! (Y) is the same as the map H,_;(L) —
H,_ I(Y) which factors as H, (L) — H,1(Y) — H,_ ](Y) By Remark 2.2, we can identify
0: Gry~ kKH"(L) — Hk”(Y, Q;i k(log E)(=E)) with the corresponding map

Gry ¥ Hyo1 (L) (—n) — Grg* Hyoy (Y) (—n).

This gives an equivalent statement to Theorem 4.4 that only involves ¥, not the choice of a resolution.

(ii) By Lemma 2.3, the map H**!(Y; Q’)l/‘k (log E)(-E)) — H*(Y; Q;L‘k) is injective. Thus,
Dixez cx/l];go(sx) =0 &= XY,z cx/lﬂ‘ca(sx) = 0, so that Theorem 4.4 and Corollary 4.5 contain the
same information.

Remark 4.7. It is certainly possible for d(e,) = 0. For example, suppose that dimY = 2k + 1 and the
singularities of Y are all k-liminal (i.e., ordinary double points). If Y is a Calabi—Yau hypersurface in
P?k+2 with just a few singular points in general position, then they can be smoothed independently (i.e.,
for every x € Z, there exists a 6 € T)‘, such that A, # 0, but 1,» = 0 for all x” # x). Then d(&x) = 0 for
every x € Z.

Remark 4.8. As in Remark 2.12, we can also consider the Fano case, where Y has isolated
k-liminal weighted homogeneous hypersurface singularities and w;l is ample. In this case, the con-
struction produces an obstruction to a strong first-order smoothing; namely, Y .., cx1Xd(&,) €
H1(Y; Q;i‘k (logE)(-E)® ﬂ*u){,l). By Serre duality, H**!(Y; Q;’{k (logE)(-E)® n*w;l) is dual to
H'" K1Y Q8 (log E) ® 7' wy).

In many reasonable cases, however, H" -1 (?; Qg (log E) ® m*wy) = 0. For example, if there exists

a smooth Cartier divisor H on Y, thus not passing through the singular points, such that wy = Oy (-H),
and in addition H"%2(H; Q’;_I) = 0, then the argument of Remark 2.12 shows that

Hn—k—l(?; Qlli/(log E)® t*wy) = Hn—k—l(f; Qlli/(log E)®Op(-H)) =0

where we identify the divisor H on Y with its preimage 7*H on Y. For example, these hypotheses are
satisfied if Y is a hypersurface in P"™*! of degree d < n + 1. However, as soon as n = 2k + 1 is odd
and n > 5, there exist such hypersurfaces with only nodes as singularities (the k-liminal case with
k= %(n — 1)) such that the map ’]FII, — HO(Y;T;) = @xeyﬁng 0(T}l’x)/m,CHO(TI},x) is not surjective
(cf. for example, [FL.22a, Remark 4.11(iv)]). Thus, the obstructions to the surjectivity of the map
T}, — H°(Y;T}) are not detected by the nonlinear obstruction 3, ., cxA%d (). Of course, a nodal
hypersurface in P"*! is smoothable, but the above examples show that, even in the Fano case, the nodes

cannot always be smoothed independently.

4.2. Geometry of a smoothing
‘We make the following assumption throughout this subsection (except for Remark 4.14 at the end):
Assumption 4.9. Y denotes a projective variety, not necessarily satisfying w)‘,l ample or wy = Oy,

with only isolated Ici singular points (not necessarily weighted homogeneous). Denote by Z the singular

https://doi.org/10.1017/fms.2024.44 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.44

Forum of Mathematics, Sigma 23

locus of Y. Let f: ) — A be a projective smoothing of ¥ (i.e., Yo = Y = f~!(0) and the remaining
fibers Y; = f ‘1(t), t # 0, are smooth). For x € Z, let L, denote the link at x, and let M, denote the
Milnor fiber at x. Finally, let M = |J,cz My and L = | J, ¢z Ly.

We have the Mayer—Vietoris sequence of mixed Hodge structures (where H' (Y;) is given the limiting
mixed Hodge structure):

<o > H™Y M) - H(Y,Z) > H'\(Y;) > H (M) > --- . 4.1)

In particular, just under the assumption that Y has isolated Ici singularities, H' (Y, Z) — H'(Y;) is an
isomorphism except for the cases i = n,n + 1. There is a more precise result if we assume that the
singularities are k-Du Bois:

Lemma 4.10. Suppose that all singular points of Y are isolated Ici k-Du Bois singularities. Then

(i) Grl H"(My) =0 for p < k and Gy " H"(My) =0 for p < k — 1.
(ii) For all i, if p < k, then Gr. H'(Y;) = Gri H'(Y), and if p < k — 1, then Grf, P H'(Y;) =
Gry. P H'(Y).

Proof. The first statement follows from [FL.24, §6] and the second from (i), (4.1), and strictness. m]

Remark 4.11. Under the assumption of isolated Ici k-Du Bois singularities as above (or more generally
isolated Ici (k — 1)-rational singularities), the above implies that Grg’l_a H"(Y;) =0foralla < 2k -1,

and hence that for all a < 2k — 1, Gr!Y’ H"(Y;) = 0 as well. Thus, if T is the monodromy operator acting
on H"(Y;) and N = log T"™ for a sufficiently divisible power of T, then N"~2k*! = 0,

Under the assumption of k-liminal singularities, the proof of Lemma 4.10 and [FL.24, Corollary 6.14]
gives the following:

Lemma 4.12. In the above notation, if all singular points of Y are isolated k-liminal hypersurface
singularities, then

G " H"(M,) = G  H" (L) = C - &,

for some nonzero € € Gr',f:k H"(L,). Moreover, there is an exact sequence
0 — Gry " H"(Y) — G * H'(v,) — @C - Ex LR Gr* H™\(Y) — G H™(v,) — 0.
xeZ

We also have the natural map ¢: Gr'x™* H"(L) = P
commutative diagram

vez Cr&x — GrEK H™1(Y), and there is a

Gk H (M) —— Gk H'(L)

o l¢

Gk ™ (Y) —— Gk H™(Y).

By Lemma 2.3, Gr}*k H™(Y) - Gr}*k H"! (17 ) is injective. Thus, the dimensions of the kernel and
image of themapy: P ., C-ex — Gr’;‘k H™!(Y) are the same as the dimensions of the kernel and

image of the map ¢: P
[Fri91, Lemma 8.1(2)]:

ez Crex — Grik gt (Y). Then we have the following generalization of

Corollary 4.13. Still assuming that all singular points of Y are isolated k-liminal hypersurface sin-
gularities, in the above notation, let s’ = dimKer{¢p: @xEZ C-&x — Gr’{k H™N(Y)}, and let
s"” =#(Z) — s’ = dimIm ¢. Then
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(i) h"kk(Y,) = Wk (Y,) = dim Gk H™(Y,) = dim Gre* H*(Y) + 5.
(ii) dimGrk H"(Y) = dim G * H™(Y) + 5.
(i) A"%**1(Y,) = dim Gr* H™(Y;) = dim Gr- X H™(Y) — 57",

Proof. (i) and (iii) follow from the exact sequence in Lemma 4.12. As for (ii), by Lemma 4.10(ii),
dim Grk. H"(Y) = dim Grk. H"(Y,) = dim Gr™* H"(Y,) = dim Gr ™% H"(Y) + 5,
using (i). O

Remark 4.14. Let Y be a compact analytic threefold with all singular points 1-liminal, hence ordinary
double points. Assume in addition that 4! (Oy) = h*(Oy) = 0. For a canonical Calabi—Yau threefold,
since wy = Oy, thisis a natural assumption to make: If h! (Oy) # 0, 7Y is smooth by aresult of Kawamata
[Kaw85, Theorem 8.3], and 1'(Oy) =0 < h*(Oy) = h*(wy) = 0 by Serre duality. Let Y’ be a
small resolution of ¥, and let [Cy] € H*(Y’; Q%,,) = H*(Y’) be the fundamental class of the exceptional
curve over the point x € Z. Setting yy: CZ — H*(Y’; Q%,,) to be the natural map (ax) — > ez ax[Cx],
let s” = dim Kery and s” = dim Im . Then arguments similar to those above show that

by(Y) = bs(Y') = b2 (Y') = ba(Y) +5".
Moreover, if Y is smoothable and Y; denotes a general smoothing, then

ba(Yy) = ba(Y) = ba(Y') — 57
b3(YI) = b3(Y’) +2s’.

In particular, if Y is a 1-liminal canonical Calabi—Yau threefold and ¢ = 0, or equivalently s” = 0 in the
above notation (i.e., Y is Q-factorial), then Y is smoothable by Theorem 1.2 and the Kawamata—Ran—
Tian theorem, and the above formulas hold for Y;.
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