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Abstract 

Children’s early accuracy on place value (PV) tasks longitudinally predicts their later 

multidigit calculation skills. However, another window into children’s emerging base-ten 

concepts is the pattern of errors—‘smart errors’—they exhibit on these measures. Past research 

has speculated that these smart errors—similar to invented spelling—might reflect children’s 

initial PV understanding that might be important for later learning of multidigit numbers and 

calculation. The current study examines the development of smart errors on Base-Ten Counting 

(invented counting errors) and Transcoding (expanded errors) in 279 U.S. kindergartners 

(Mage=5.76 years) and investigated whether the presence of smart errors is associated with 1) 

higher concurrent levels of PV task accuracy, 2) greater growth in PV understanding over one 

year, 3) higher levels of multidigit calculation in second grade. Results indicate that the two 

errors emerged in an overlapping waves pattern, with expanded errors appearing first and waning 

earlier than invented counting errors. Kindergartners who made invented counting errors but not 

expanded errors demonstrated the highest overall concurrent PV understanding. Second, 

kindergartners who made Transcoding expanded errors showed the greatest growth in PV 

understanding compared to those who exhibited only invented-counting errors. Third, 

kindergartners who made invented counting errors alone showed stronger multidigit calculation 

skills in second grade compared to those who made neither error. Thus, these smart errors reflect 

partial structural knowledge of place value that is a potentially important developmental 

contributor to learning multidigit number meanings. 

 

Keywords: place-value understanding, place-value errors, multidigit numbers, mathematical 

learning  
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Smart Errors in Learning Multidigit Number Meanings 

Multidigit numerals represent quantities using base-ten units that are arranged in 

multiples of ten from right to left, with the digits in each spatial position, or “place,” indicating 

the count of each unit. For example, “253” stands for two sets of 100, five sets of 10, three sets 

of 1, or [2 ´ 100] + [5 ´ 10] + [3 ´ 1]. Base-ten units and their counts are also represented in 

verbal number names for these quantities (e.g., “two hundred fifty-three”). Children—

specifically first graders—who understand these symbolic representations go on to better 

mathematics performance throughout elementary and middle school (Chan et al., 2014; 

Gervasoni et al., 2007; Hiebert & Wearne, 1996; Moeller et al., 2011). However, base-ten 

symbols—i.e., written digits and corresponding number names—are notoriously difficult for 

children to grasp (Carpenter et al., 1996; Fuson, 1990; Kamii, 1986), likely because their shared 

relational structures are not transparent or easily aligned (Mix et al., 2019). 

Despite these obstacles, children actively construct multidigit number meanings years 

earlier than researchers and educators previously thought (Authors, 2022b; Byrge et al., 2014; 

Mix et al., 2014; Yuan et al., 2019). Children’s earliest successes have been documented on 

measures that allow approximate responses, such as matching multidigit number names to 

written digits, or correctly judging that number names like “two hundred fifty-three” map onto 

the written numeral “253” and not “532.” Preschool children can also judge relative magnitudes 

given the written digits (e.g., knowing that “253” is more than “165”). Such measures are 

considered approximate because they do not require a precise interpretation of base-ten units and 

counts. Instead, children may correctly solve these approximate measures using various 

heuristics (e.g., knowing that numerals with more digits represent larger quantities) (Authors, 

2022b; Mix et al., 2014). A precise interpretation requires an understanding of the syntax that 
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combines places and the units counted. Eventually, children demonstrate competence on 

measures that directly query syntactic responses, such as counting sets of base-ten blocks or 

answering direct questions such as, “Which number has six tens?” (Authors, 2022b; Chan et al., 

2014), usually after they have received formal instruction on multidigit numbers in school. 

Ultimately, this syntactic understanding of place value is recruited to carry out advanced 

arithmetic operations, including multidigit calculation (Authors, under review). 

The emphasis in these prior studies has been children’s correct responses on measures 

that vary in their task demands. However, another source of information about children’s 

emerging base-ten concepts is the pattern of errors they exhibit on these measures. On measures 

that directly query syntactic understanding, for example, there is evidence that children generate 

responses that, while incorrect, reflect partial “not-quite-right” understandings of base-ten 

structure—what we will call smart errors. For example, Byrge et al. (2014) reported that when 

4- to 6-year-olds are asked to write multidigit numbers, they sometimes add zeroes in a way that 

reflects the magnitudes of various base-ten units (e.g., 600405 for 645). There is little research 

examining the concurrent performance and longitudinal outcomes for children who exhibit smart 

errors compared to equally low-performing peers who do not. Further, it is currently unknown if 

smart errors emerge simultaneously across different base-ten tasks or emerge sequentially 

depending on specific task demands. In the present study, we take advantage of an existing 

longitudinal dataset to investigate the prevalence and developmental timing of these errors, and 

ask whether they are predictive of later mathematics outcomes. 

Smart Errors in Place Value Learning 

 We focus on smart errors generated on two well-known measures of place value 

understanding—Transcoding and Base-Ten Counting. Correct performance on either measure 
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strongly predicts later mathematics achievement (Authors, 2022a; Authors, under review; Chan 

et al., 2014; Moeller et al., 2011), and both measures are central organizers in children’s 

emerging conceptual structures for place value understanding, compared to other place value 

measures, such as expanded notation (Authors, 2022b). Importantly for our purposes, both 

measures are open-ended, allowing children to reveal their thinking in a way that can be 

obscured in forced-choice measures. We also know from previous work that children exhibit 

characteristic errors on both Transcoding and Base-Ten Counting—errors that seem indicative of 

structural awareness even before children have completely worked out the multiplicative 

structure of place value symbols and acquired the necessary vocabulary to achieve correct 

performance  (Byrge et al., 2014; Chan et al., 2017; Fuson et al., 1997; Power & Dal Martello, 

1990; Vasilyeva et al., 2022). Below we describe each place value measure in detail, along with 

the smart errors that have been documented for them. 

Transcoding  

The Transcoding task measures the mapping of number names to written forms through 

reading and writing (Byrge et al., 2014; Deloche & Seron, 1982; Moeller et al., 2011; Power & 

Dal Martello, 1990; Zuber et al., 2009). Although prior research has documented both syntactic 

and lexical errors in reading multidigit numbers (Vasilyeva et al., 2022), we focus here on 

writing of multidigit numbers. For the writing task, children are given a verbal number name and 

asked to write the corresponding multidigit numeral (e.g., “How do you write six hundred 

twenty-five?”). As noted above, children sometimes make expanded errors on this task by 

adding zeros to indicate base-ten value rather than relying solely on the spatial position of the 

digits (e.g., 600405) (Byrge et al., 2014; Power & Dal Martello, 1990). Though incorrect, these 

errors clearly reflect base-ten structure and arguably improve the alignment between verbal 
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number names and their written counterparts by explicitly writing digits that map onto the words 

for units, rather than implying these units by spatial position. Just as children sometimes 

introduce more predictable structure to natural language by, for example, overregularizing past 

tense verb forms (e.g., saying “runned” instead “ran”) (Hudson Kam & Newport, 2009; 

Rumelhart & McClelland, 1987)—linguistic forms they have not observed in use but rather, have 

invented themselves—the presence of expanded errors may reflect children’s attempts to make 

the conventional system for place value representation more predictable and transparent. 

When Byrge et al. (2014) tracked the emergence of expanded errors, they found that 

children first exhibited such errors at 4 years of age, though most responses at this age were 

random digit strings or other marks. However, for 5- and 6-year-olds, expanded errors were the 

most frequent response (greater than the correct conventional form and all other errors), with the 

proportion of correct responses increasing over this age range. In the present study, we track the 

emergence of these errors in a larger, longitudinal dataset and ask whether children who exhibit 

expanded errors in kindergarten go on to have stronger mathematics outcomes in first and second 

grade. 

Base-Ten Counting   

In the Base-Ten Counting task (Chan et al., 2014, 2017; Authors, 2022a; Authors, 

2022b), children are asked to count line drawings of base-ten blocks representing various 

quantities (see Figure 1). The task is designed to elicit counting by base-ten units (e.g., counting 

143 “small squares” as “100-110-120-130-140-141-142-143”), but children typically approach 

the task using various strategies, including counting by ones, counting within each base-ten unit 

separately, or counting by base-ten units as in the above example (Chan et al., 2014; Fuson et al., 

1997). Children’s accuracy at Base-Ten Counting in kindergarten and first grade is a reliable 
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predictor of later mathematics achievement, regardless of which strategy they use (Authors, 

2022a; Chan et al., 2014). However, focusing only on accurate responses might miss an earlier 

stage of development during which children grasp the essential idea that when you shift from one 

base-ten unit to another (e.g., from hundreds to tens) you are counting something different, even 

if you lack the vocabulary to accurately count by these base-ten units. During testing, we 

informally observed that children sometimes exhibited this awareness by shifting the words they 

used while counting at each of these unit boundaries but using either incorrect or invented 

vocabulary to signify these shifts. For example, at the 100-to-10 unit shift in the number 230, 

children may correctly count the two 100-units by 100s but then incorrectly change their 

counting vocabulary when they start counting the three 10s but not to tens (e.g., two-hundred 

ten..) but to ones (e.g., “one hundred, two hundred, two hundred one, two hundred two”). 

Previous research has examined the distribution of specific error patterns in children’s 

Base-Ten Counting (Chan et al., 2017), but it has focused on the misconceptions. Rather than 

further investigating these error types, we focus instead on a more basic question—do young 

children make errors that reflect an awareness of shifts from one base-ten unit to another, 

regardless of what vocabulary they use to signify the shift? Although past research has not 

documented such invented counts, it has demonstrated that younger children use less effective 

strategies than older children and also make more errors overall (Chan et al., 2014, 2017). As 

tested in the Base-Ten Counting task, lower achieving children also make more errors than 

higher achieving children—particularly more random errors (Chan et al., 2017). These 

performance differences are consequential. In one study, children’s accuracy on Base-Ten 

Counting was the strongest predictor of later mathematics outcomes even after controlling for 

age, nonverbal intelligence, and several other multidigit numeracy skills, including Transcoding 
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(Chan et al., 2014). The present study investigates whether partial understanding of unit 

boundaries, though incorrect, may also prove to be a useful predictor. 

[INSERT FIGURE 1 HERE] 

The Developmental Contribution of Approximate Place Value Understanding 

As noted above, children begin learning place value concepts with approximate or 

intuitive understandings (Authors, 2022a; Authors, 2022b; Byrge et al., 2014; Mix et al., 2014; 

Yuan et al., 2019). Previous work has demonstrated that kindergartners’ performance on 

approximate tasks (i.e., transcoding (reading and writing number names); magnitude comparison 

(Which is larger? 119 or 191?); and number line estimation (marking where 43 goes on a 1-100 

number line) is separable from their performance on tasks that require a more precise response 

(i.e.,  digit-place correspondence (e.g., Which number has two tens? 230, 120, or 542); base-ten 

counting (counting base-ten blocks), and expanded notation (Which of these add up to 83? 800 + 

3 or 80 + 3) using both confirmatory factor analysis and community detection in a network 

analysis (Authors, 2022a; Authors, 2022b). Importantly, only accuracy on approximate tasks in 

kindergarten significantly predicted children’s syntactic understanding of place value in first 

grade (Authors, 2022a) as well as predicting their multidigit calculation scores in second grade 

(Authors, under review). Kindergarten accuracy on syntactic skills did not predict either of these 

outcomes, suggesting that implicit, partial knowledge of multidigit number meanings provides a 

foundation for later explicit understanding of base-ten principles. Perhaps partial understandings 

revealed through smart errors steer children's attention and facilitate their discovery of the 

fundamental syntax, as exemplified in the broader context of learning (Gentner, 2010). 

However, it is possible that partial knowledge of base-ten syntax, reflected in smart 

errors, would significantly predict both later precise syntactic skill and eventually, children’s 
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multidigit calculation skill. Indeed, there may be heterogeneity among children who succeed on 

approximate measures that is masked by an approach that relies exclusively on the analysis of 

correct performance. Specifically, some children may be correct on approximate measures based 

on rough estimates of relative quantity and very limited heuristics that signal associations with 

these estimates (e.g., 478 > 3 because lots is more than a little), whereas other children (or 

perhaps the same children in other contexts) are correct on approximate measures because they 

have enough sense of base-ten structure to make strong guesses (e.g., 478 > 3 because there’s a 

one-one correspondence between the digits in the ones place for these two numerals, but nothing 

else to align in the other places). Correct performance on approximate measures does not tell us 

which reasoning children are using. We know from their failure to perform syntactic measures 

that they are not generating correct responses by fully unpacking base-ten structure (e.g., 478 > 3 

because [(4 x 100) + (7 x 10) + (8 x 1)] > (3 x 1)). However, some children may be developing 

some ideas about these structural properties of multi-digit numbers. We hypothesize that smart 

errors, such as invented counts and expanded errors, may be more sensitive to the earliest 

emergence of these structural ideas than accuracy on either approximate or syntactic place value 

measures, and thus may reveal longitudinal relations between syntactic understanding and later 

place value and multidigit calculation skill that were missed by examining correct performance 

alone. Importantly, we think these smart errors may uniquely predict later place value and 

multidigit calculation learning above-and-beyond general cognitive ability. Thus, in our current 

analyses we control for children’s performance on a matrix reasoning task. 

Current Study 

This study examined the development of two smart errors observed in place value 

learning—expanded errors on the Transcoding task and invented counts on the Base-Ten 
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Counting task—through secondary analysis of a longitudinal dataset that includes measures of 

children’s place value understanding and multidigit calculation skill from kindergarten to second 

grade (Authors, 2022a; Authors, under review). The study addressed three specific questions: 

1. Do both types of smart errors (expanded errors and invented counts) emerge 

concurrently? They might if both reflect the same emerging but partial understanding 

of base-ten structure. However, each error might emerge on its own time course if 

dependent on knowledge of different aspects of base-ten structure.  

2. Is the presence of one or both smart errors in kindergarten associated with higher 

levels of place value understanding on other place value measures? In past research, 

young children exhibited earlier correct performance on approximate measures  

(Authors, 2022a) based on partial understanding. This same partial understanding 

may be evident in certain kinds of incorrect performance (i.e., smart errors) that can 

be observed on two open-ended measures, Transcoding and Base-Ten counting. 

3. Do kindergarteners who exhibit smart errors go on to experience greater place value 

growth between kindergarten and first grade than those who do not? This pattern may 

be obtained if these partial understandings indicate a foundation for learning about 

place value in school.   

4. Is evidence of either or both smart errors associated with higher levels of multidigit 

calculation skill in second grade? Previous research has already established that 

accuracy on place value measures in kindergarten and first grade is associated with 

better multidigit calculation skill in second grade (Authors, under review; Chan et al., 

2014; Moeller et al., 2011). Here, we ask whether inaccurate responses that reflect 

awareness of base-ten structure are also strong predictors. 
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Method 

Participants 

Children were tested at three timepoints: spring of kindergarten, first grade, and second 

grade. At kindergarten testing, the sample consisted of 279 children (135 females; 144 males) 

with a mean age of 5.76 years (SD = 0.55). At first grade testing, the sample consisted of 231 

children (117 females; 114 males) with a mean age of 7.15 years (SD = 0.37). At second-grade 

testing, the sample consisted of 197 children (97 females; 100 males) with a mean age of 8.14 

years (SD = 0.36). Attrition from one grade level to the next occurred because children had 

moved and could not be located. A sensitivity analysis conducted in G*Power (Faul et al., 2009) 

indicated that a sample size of 197 would be adequate to detect a medium effect using a multiple 

regression model (i.e., Cohen’s f2 = .12, Cohen, 1988).  

Children were recruited from four cities in the Midwestern and Mid-Atlantic regions of 

the United States: 40 children were from [state blinded for review], 186 children from [state 

blinded for review], and 53 children from [state blinded for review]. Families of 213 children 

provided written consent for their children’s participation. For the remaining 66 children, school 

administrators requested an IRB-approved opt-out consenting process in which families were 

notified but only returned their consent forms to indicate exclusion from the study. None of the 

families opted for exclusion. Most families (54%) either did not return demographic information 

when given the demographic questionnaire or were not given a demographic questionnaire to 

complete because of the opt-out consent process. To estimate the missing demographic data for 

these families, we used school-wide information for 31% and 2017 neighborhood census data for 

the rest. Weighted sample descriptive statistics indicated that the sample was racially diverse 
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(41% Black, 38% White, 12% Latino, 8% Asian), and primarily middle socioeconomic status 

(average median family income range = $75,000 to $99,999).  

Procedure and Materials 

 Testing sessions took place in a quiet area outside of the classroom and lasted 

approximately 60 minutes per child. All measures were administered individually in one of two 

random orders, counterbalanced across children. Reliabilities were calculated using Cronbach’s 

alpha unless otherwise noted. Two measures had reliabilities below .70 (Which N Has? and 

Expanded Notation), which might suggest multidimensionality and weaken the strength and 

generalizability of the results in the current study. However, others have argued that such 

measures may be retained if they provide important content coverage (Schmitt, 1996). We thus 

kept both measures in our analysis because they provide specific content coverage needed for the 

goals of this manuscript; however, we cautiously interpret any results for them with these 

reliabilities in mind. 

Place Value Skills 

Six place value skills were assessed in kindergarten and first grade: three approximate 

place value tasks (Transcoding, Number Line Estimation, Magnitude Comparison) and three 

syntactic place value tasks (Base-Ten Counting, Which N has __?, Expanded Notation).  

Transcoding (e.g., Byrge et al., 2014). Transcoding is the abilty to read and write 

numerals. For the reading assessment, children saw a stimulus number (e.g., “23”) and said its 

name aloud while the experimenter recorded their response (e.g., “twenty-three”). For the writing 

assessment, children listened to the experimenter say a multidigit number name and were told to 

write down the numeral they heard. Both the reading and writing assessments were comprised of 

one 2-digit number; one 3-digit number; and one 4-digit number, for a total of twelve test trials 
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across the two assessments. Trials were coded as either correct or incorrect (maximum possible 

score = 12). Partially correct responses were not counted as correct (e.g., reading the numeral 

239 as two hundred three-nine); however, full credit was given for written responses that 

involved numeral reversals (e.g., writing 3 backwards) (a = .87). These total scores were 

included in the factor scores that were used as developmental outcomes in some analyses; 

however, it was only possible to observe expanded errors on the six written trials. 

Coding for Expanded Errors. Following Byrge et al. (2014), children received a score of 

“0” for each written response where there was no expanded error and a score of “1” for each 

written response where an expanded error was made (maximum number of expanded errors = 6). 

Expanded errors were coded on responses that contained all the correct digits in order, but 

included additional numerals between them (i.e., either extra 0’s or 1’s). For example, writing 

the numeral “two thousand seven hundred forty-three” as “200743” would be considered an 

expanded error, as would “2000700403,” “200070043,” “2700403,” and so on. All participant 

responses for the six items were first coded by the primary coder, and then agreement with a 

second coder was assessed on 20% of the items. Intercoder reliability was high with 97% 

agreement for kindergarten and 98% agreement for first grade. We then created a variable that 

divided the number of expanded errors by the number of incorrect trials to obtain a proportion 

score of the number of expanded errors produced on incorrect trials. 

Base-Ten Counting (Chan et al., 2014). In this task, children counted various quantities 

represented with line drawings of base-ten blocks (see Figure 1A). Prior to the test trials, 

children were first provided with a short five-minute introduction to base-ten blocks. The 

experimenter displayed a 10s-block and demonstrated how ten of the “small squares” were 

combined to make a 10s-block, counting the individual squares by ones. Next, the experimenter 
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introduced the 100’s-block, first showing how 100 small squares came together to make the 

larger 100-block. Initially, the experimenter counted the small squares by ones, but then stopped, 

noting that “counting all those small squares would take a really long time,” showing instead 

how ten 10’s-blocks could make the larger 100-block, counting them by tens to illustrate. After 

this short introduction, children were shown a line drawing of a physical representation of a 

quantity (e.g., 13 represented with base-ten blocks) and told it was a picture of the same blocks. 

Children were then asked to tell the experimenter how many small squares were in the picture. 

There were 10 total trials: five trials with representations of two-digit quantities and five trials 

with representations of three-digit quantities. Children were permitted to count by ones on the 

first trial, but if they attempted to do so on the second trial (for which the target number was 42), 

they were allowed to finish, and then reminded that these blocks could also be counted by tens. 

Children were then allowed to count again, and the better of the two trials was scored. A similar 

prompt was given if children attempted to count the first trial with 100-blocks by ones. Notes on 

children’s counts were recorded but their scores were the total correct in terms of identifying the 

number of small squares in each drawing (maximum possible score was 10) (a = .85). 

Coding for Invented Counting Errors. Across the ten items, each base-ten unit shift 

(e.g., tens-bars shifting to ones-squares) was coded on incorrect trials to reflect whether or not 

children changed their counting strategy when the base-ten unit changed even when children 

produced incorrect counts. Clearly accurate counts change when base-ten units shift, but our aim 

was to determine whether children’s inaccurate counts also reflected a shift at the base-ten unit 

boundaries. For example, if an item contained three tens-bars and four ones-squares (“34”), a 

child who lacked the vocabulary to count correctly might “count” the tens-bars with an invented 
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system (e.g., 101, 102, 103) and then switch to counting the ones-squares by ones (e.g., 1, 2, 3, 

4). 

We also excluded two items that had the ones-squares not grouped together, but instead 

were mixed among the tens-bars because these items did not lend themselves as easily to 

counting by base-ten units (see Figure 1B for an example of an excluded item). Of the eight 

remaining items, four items consisted of only one shift in base-ten units (100-to-10 or 10-to-1) 

and four items consisted of two shifts in base-ten units (100-to-10 and 10-to-1). Thus, there were 

12 shifts in representational units across the eight items. Each of the 12 shifts was coded for 

invented counts on incorrect trials by two independent coders for all participants. Intercoder 

reliability was high (Kappa = .91; McHugh, 2012); however, when there was a discrepancy, the 

first author discussed it with the two coders and all agreed upon the code. Because not all 

children attempted every item (e.g., some of the later, more difficult items were skipped), 

children’s total number of invented counts was divided by the total number of shifts in 

representational units they attempted, which produced a proportion score of boundaries 

distinguished at changes in representational units. 

 “Which N has __ ?” This task was a multiple-choice adaptation of the digit 

correspondence task that has been used in previous research (Hanich et al., 2001; Kamii, 1989). 

Children were presented with three written numerals arranged in a horizontal line (e.g., 2, 20, 

and 10). The experimenter then asked the child to select the number that answered a place value 

question such as, “Which number has two tens?” After two practice trials, the six test trials 

included two trials each probing tens, hundreds, and thousands. The position of the correct 

response was counterbalanced across trials. Test trials were coded as either correct or incorrect 

(maximum possible score = 6, chance = 2) (a = .53). 



SMART ERRORS IN LEARNING MULTIDIGIT NUMBERS 16 

 Expanded notation. This commonly used multiple choice task asked children to match 

written numerals to their expanded notation forms (e.g., Mix et al., 2016). Children were shown 

a written numeral (e.g., 73) and asked to select the correct expanded version from among three 

options (e.g., 70+3, 700+3, or 7+3). The choices were arranged vertically on the right side of the 

page, and the target number was presented in a larger font on the left side. Before the test trials, 

the experimenter explained that the plus sign means combining two numbers. Then children were 

asked, “Which of these (pointing to the equations) adds up to be this number (pointing to the 

target)?” There were two practice trials with corrective feedback, followed by six test trials—two 

trials each probing two-digit, three-digit, and four-digit numbers. Test trials were coded as either 

correct or incorrect, for a maximum possible score of 6 (chance = 2) (a = .57). 

Number line estimation (Siegler & Opfer, 2003). Children were given a blank 0-100 

number line and told to indicate where a number (e.g., 3) should be located using a vertical mark. 

The target number was printed at the top of the page in the center. There was one practice trial 

and 15 test trials. The test trials were coded for percentage of absolute error (PAE) by measuring 

the distance from the hatch mark to the correct location and dividing by the scale (in this case, 

100). The total score was the PAE averaged across the 15 test trials (range = 0 – 90% PAE, even-

odd reliability: r = .76) 

Magnitude comparison. The aim of this task was to indicate which of two written 

numerals represented the larger quantity (e.g., 461 vs. 614). The choice numerals were printed on 

opposite sides of an 8 x 11 inch sheet of paper and presented one by one by flipping pages in a 

binder. There were 25 trials comprised of one to four-digit numerals (trials adapted from Mix et 

al., 2014). Correct responses received one point, for a total possible of 25 (chance = 12) (a = 

.72). 
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Multidigit Calculation Skill 

Calculation skill was assessed in second grade using the addition and subtraction subtests 

of the Comprehensive Mathematical Abilities Test (CMAT; Hresko et al., 2003). Test items were 

arranged in order of difficulty moving from whole number calculation to problems with 

decimals, fractions, and mixed numbers. Of the 48 items, 30 items used whole numbers, and of 

these, 24 items used multidigit numerals and 6 were a mix of single-digit only items and mixed 

multi-single digit items. Testing stopped when children answered three items in a row 

incorrectly. The CMAT outcome variable used in analyses was the combined age-based 

standardized score that was determined from each child’s addition and subtraction raw scores. 

Reliability from the norming sample was high for both subtests (a = .86). 

Matrix Reasoning  

We used children’s scores on the Matrix Reasoning subtest from the Wechsler 

Intelligence Scale for Children – 5th edition (WISC-V; Wechsler, 2014) to estimate general 

cognitive ability. Matrix Reasoning was assessed at the second test session when children were 

in first grade. The subtest consisted of two practice items and 32 test items in which children 

choose a figure that completes a repeating pattern or visual analogy. Based on the WISC-V 

testing procedures, children completed items that increased in difficulty until they gave three 

consecutive incorrect responses. The age-based standardized score was used as a covariate in the 

current analyses. Reliability from the norming sample was high (a > .80). 

Analysis Plan 

We first provide descriptive statistics (means, standard deviations, counts) to characterize 

the frequencies of expanded errors and invented counts in kindergarten and first grade. Recall 

that in Byrge et al.’s (2014) cross-sectional transcoding study, the frequency of expanded errors 
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was greater at 5 years of age than 4 years of age and remained the most frequent response at ages 

5 years and 6 years. To assess whether the same patterns were evident in a longitudinal study, we 

used t-tests to compare the frequencies of expanded errors at each age point (kindergarten and 

first grade), as well as providing a qualitative comparison of error rates with means reported by 

Byrge and colleagues.  

We addressed our first main question of whether the two smart errors emerge at the same 

timepoint by dividing kindergartners into four groups based on whether they made no smart 

errors, only expanded errors, only invented counting errors, or both smart error types. Chi-square 

goodness of fit tests were conducted for each grade level to see if the distribution of children 

across the four groups differed significantly from chance. We also computed bivariate 

correlations to examine the associations between the two smart errors at each grade level. 

Our second main question was whether the children who exhibited smart errors in 

kindergarten also had greater concurrent accuracy on approximate measures, syntactic measures, 

or both compared to children who did not exhibit smart errors. To evaluate this question, we 

conducted two analyses. First, for each of the three place value outcomes (general, syntactic, and 

approximate), a path analysis was conducted using the smart error continuous variables (i.e., 

proportion of smart errors produced on incorrect trials) as predictor variables of each of the three 

concurrent composite z-scored variables while controlling for performance on the Matrix 

Reasoning subtest. Second, because producing even one smart error (of either type) may be an 

indicator of children’s partial, underlying place value understanding, we took a categorical 

approach. Specifically, the error grouping described above was used as the independent variable 

in an analysis of covariance (ANCOVA) that compared the mean performance of the four groups 

on approximate place value measures, syntactic place value measures, and multidigit calculation 
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measures while controlling for Matrix Reasoning scores. For each of the three outcomes, we 

computed z-scores for each of the tasks, collapsed across time, and then computed kindergarten 

(and first grade) composite variables. Bonferroni-adjusted pairwise comparisons were used to 

examine specific subgroup differences for all ANCOVA analyses, unless otherwise noted. 

To address our third main question of whether kindergarteners who made smart errors 

showed more growth in place value understanding by first grade than those who did not, we 

repeated the path analyses and ANCOVAs described for the concurrent analyses but used 

difference scores derived by subtracting children’s kindergarten composite scores (approximate, 

syntactic, multidigit calculation) from their first-grade composite scores.  

 Our fourth main question was whether children who exhibited smart errors in 

kindergarten went on to have better multidigit calculation in second grade. To address this 

question, we used the same analytic approach as the previous analyses (i.e., path analysis and 

ANCOVA) using a z-scored composite variable of children’s performance on multidigit addition 

and subtraction items in second grade.  

 Lastly, we would like to emphasize that our current approach of computing the 

proportion of smart errors produced on incorrect trials is an attempt to reduce the confound of 

task accuracies in the production of these smart errors. However, there may be children who 

were mostly correct on the tasks and produced only a few smart errors, so their proportion of 

errors on incorrect trials could be artificially high. Thus, the relations between the production of 

these smart errors and overall task performance may be misleading. Although using proportion 

of smart errors produced on incorrect trials allows us to assess the role of smart errors more 

stringently in the growth of children’s place value understanding above-and-beyond task 

accuracy, we took a supplemental approach to address the previously-discussed potential issue. 
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In this secondary analysis, we removed 19 children from our sample who had above 80% 

accuracy on the Base-Ten Counting and conducted all analyses again. All results were the same 

as when we used all children in our sample. As such, the results reported here are with the entire 

sample. 

Results 

Descriptive Statistics 

Expanded Errors (Transcoding) 

As shown in Table 1a, expanded errors on the Transcoding measure were frequent, but 

correct answers were the most frequent response (Mproportion correct = .53, SD = .29). This finding 

contrasts with the findings reported by Byrge et al. (2014), in that children in their sample were 

incorrect on more trials. However, as in Byrge et al. (2014), the overall frequency of expanded 

errors on incorrect trials peaked in kindergarten (M = .27, SD = .23) and stayed relatively similar 

in first grade (M = .25, SD = .26), t(130) = 0.80, p =.424. Because children in the current study 

were slightly older by grade-level compared to Byrge et al. (i.e., kindergarteners in the current 

study were 6 years of age whereas kindergartners in Byrge et al. were mostly 4- and 5-year-olds), 

we also compared the frequencies based on age in years instead of grade. The percentage of 6-

year-olds who produced at least one expanded error (65.6% on incorrect trials; 60% across all 

trials) was nearly identical to the percentage reported by Byrge et al. for the same age group 

(61%), thus replicating this previously reported finding. 

In addition to children’s overall error rate, we analyzed children’s performance based on 

the magnitude of the numbers being requested (2-digit, 3-digit, 4-digit), to see whether expanded 

errors peaked and decreased at different ages depending on the size of the numbers that were 

queried. In kindergarten, there was a marginally significant difference between 2- and 3-digit 
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trials in that children made slightly more expanded errors on 3-digit trials compared to 2-digit 

trials, t(42) = 1.95, p = .054, Cohen’s d = .30. Additionally, children made significantly more 

expanded errors on 3-digit trials compared to 4-digit trials, t(167) = 3.68, p < .001, Cohen’s d = 

.28. In first grade, children also made significantly more errors on 3-digit trials than 4-digit trials, 

t(65) = 2.20, p < .031, Cohen’s d = .27. There was no significant difference in the frequency of 

errors on 2- versus 3-digit trials, p = .477. 

[INSERT TABLE 1A HERE] 

Invented Counting (Base-Ten Counting) 

As shown in Table 1b, the number of invented counts increased from kindergarten to first 

grade, regardless of base-ten magnitude (see Table 1b for t-test statistics). Indeed, most children 

in first grade (60%) exhibited a high proportion of invented counts (> 80%). In terms of base-ten 

magnitude, both kindergartners and first graders exhibited more invented counts moving from 

hundreds-to-tens than from tens-to-ones [Kindergarten: t(178)=3.40, p < .001, Cohen’s d = .25; 

First Grade: t(194)=2.22, p = .028, Cohen’s d = .25]. 

[INSERT TABLE 1B HERE] 

Developmental Relations of the Two Smart Error Types 

The first question we addressed was whether children who made expanded errors also 

exhibited invented counts at the same time. As noted above, we divided children into four 

groups: (1) those who made neither error (n = 34; 14%); (2) those who made at least one 

expanded error only (n = 91; 38%); (3) those who produced at least one invented count error 

only (n = 49; 21%); and (4) those who produced both error types at least once (n = 63; 27%). The 

distribution was significantly skewed toward children exhibiting only expanded errors at this 

age, χ2 (3) = 29.79, p < .001. Collapsing the two expanded error groups (i.e., expanded errors 
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only plus both smart errors), further revealed that most children (n = 154; 65%) made at least one 

expanded error. Alternatively, few children made neither error (14%), casting doubt on the 

notion that kindergarteners successfully performed approximate measures without at least a 

partial understanding of base-ten structure. Rather, it appears that the vast majority of children 

displayed at least partial, not-quite-right understanding and this partial knowledge likely 

supported their performance on approximate measures, despite weaker performance on syntactic 

measures. In first grade, only 125 children made at least one error, with their group membership 

distributed as follows: (1) neither error (n = 6; 5%); (2) at least one expanded error only (n = 17; 

14%); (3) at least one invented count error only (n = 42; 33%); and (4) both error types (n = 60; 

48%). Unlike the distribution observed in kindergarten that was skewed toward expanded errors, 

the first-grade distribution was significantly skewed toward children exhibiting both smart error 

types, χ2 (3) = 57.05, p < .001. It is also noteworthy that most children who answered incorrectly 

on at least one trial produced at least one invented count (81%), whereas in kindergarten, the 

majority of children produced at least one expanded error.  

The age-related shifts in error distributions described above suggest that expanded errors 

on the Transcoding measure might peak earlier than invented counts in the Base-Ten Counting 

measure, in an overlapping waves pattern (Siegler, 1996). To evaluate this hypothesis, we tested 

the associations between the two error types at each age point using bivariate correlations. In 

kindergarten, the association was not significant (r = -.11, p = .103), but in first grade, a negative 

correlation approached significance (r = -.16, p = .071) suggesting that children who made more 

invented counting errors produced fewer expanded errors. 

There also was a significant positive association between kindergartners’ Transcoding 

accuracy and the frequency of invented counts in the Base-Ten Counting task, r = .38, p < .001, 
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indicating that as children began to generate correct Transcoding responses, they also generated 

more smart errors on Base-Ten Counting. This evidence suggests that expanded errors peak in 

kindergarten, and were gradually replaced with correct performance in first grade (as Byrge et al. 

2014 reported), whereas invented counting errors on Base-Ten Counting may lag behind, 

peaking in first grade based on the current dataset, and likely recapitulating the same pattern of 

decreasing errors as accuracy on Base-Ten Counting increases later in development. 

Predicting Concurrent Place Value Knowledge 

We next assessed whether the production of either (or both) smart errors differentially 

predicted children’s concurrent understanding of place value above-and-beyond task accuracies. 

We were particularly interested in whether either the two smart error types differed in their 

prediction of approximate place value understanding as such a difference might signal 

heterogeneity in the way children approached these less precise measures—heterogeneity that 

yielded similar predictability of performance on approximate measures but different 

predictability of performance on syntactic measures (or on the longitudinal relations we evaluate 

in later sections). 

General Place Value Understanding 

To find out, we first conducted a path analysis with kindergartners’ performance on the 

six place value measures and the two smart error frequencies as predictors of a composite 

variable for the concurrent six tasks’ z-scores as described in the Analysis Plan section (while 

controlling for matrix reasoning ability). Results suggest that only invented counting errors on 

the Base-Ten Counting task was a significant predictor of general place value understanding, b = 

.07, p < .001, above-and-beyond task accuracies. In other words, kindergartners who produced 

invented counting errors—not expanded errors—on incorrect trials had better overall concurrent 
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place value understanding than children who did not produce invented counting errors on 

incorrect trials. 

Although the above path analysis treated the frequency of these two error types as 

continuous variables (i.e., how many errors are produced), the presence of even a single error 

token may indicate partial place value understanding. Thus, taking a categorical approach, we 

conducted an analysis of covariance (ANCOVA) comparing the overall place value performance 

of kindergarteners in all four groups based on the error patterns they exhibited. Using the same 

composite variable derived from performance on the six place value tasks (converted to z-

scores), the ANCOVA revealed a significant group difference, F(3,191) = 5.88, p < .001, hp2  = 

.08. Bonferroni pairwise comparisons indicated this main effect was due to significantly higher 

place value scores for children in the invented counting error-only group compared to children in 

any of the other three groups, p’s < .0331. 

Syntactic Place Value Understanding 

We next repeated the analyses described above to see whether the presence of smart 

errors predicted performance on syntactic measures alone, using a composite of the children’s 

scores on Expanded Notation, Base-Ten Counting, and Which N Has ___? with Matrix 

Reasoning controlled. The same pattern was obtained in that only the frequency of invented 

counting errors on the Base-Ten Counting task was a significant predictor of syntactic place 

value understanding, b = .12, p < .001, above-and-beyond task accuracies. In the ANCOVA 

based on children’s smart error grouping with their syntactic composite variable as the outcome, 

a significant group difference was obtained, F(3,191) = 4.06, p = .008, hp2  = .06, such that 

children in the invented counting error-only group had higher syntactic scores than children in 

 
1 The pairwise comparison results are the same when using Tukey's Honestly Significant Difference test. 
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the expanded errors-only group, p = .005. Thus, results from both the path analysis and 

ANCOVA suggest that making at least one invented counting error is an indicator of children’s 

syntactic place value understanding given that children who produced at least one of these errors 

had higher syntactic place value scores than those who made expanded-errors only. Moreover, 

the more invented counting errors children produced on incorrect trials, the higher their syntactic 

scores. 

Approximate Place Value Understanding 

We next repeated the path analysis using a composite of the children’s scores on 

Magnitude Comparison, Number Line Estimation, and Transcoding, controlling for Matrix 

Reasoning scores; however, the model did not converge due to possible overfitting, or 

multicollinearity with the covariate of matrix reasoning. In the ANCOVA using the approximate 

composite variable as the outcome, a significant group difference was obtained, F(3,191) = 4.79, 

p = .003, hp2  = .07, such that children in the invented counting error-only group had higher 

approximate place value scores than either children in the expanded errors-only group, p = .008, 

or those who produced both errors, p = .004. Thus, these results suggest that making at least one 

invented counting error is an indicator of children’s approximate place value understanding 

given that children who produced at least one of these errors had higher approximate place value 

scores than those who made both types of errors or expanded-errors only.  

Taken together, the results indicate that children who exhibited invented counting errors 

on the Base-Ten Counting task—not Transcoding expanded errors—associated with overall 

concurrent place value understanding, and specifically more precise syntactic understanding. In 

terms of error type groupings, the invented counting-errors group tended to outperform other 

groups in general, syntactic, and approximate place value understanding. 
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Predicting Growth in Place Value Knowledge 

We next asked whether the presence of smart errors differentially predicted growth in 

children’s general place value understanding, syntactic place value understanding, or 

approximate place value understanding, above-and-beyond task accuracies. A path analysis using 

kindergartners’ z-scored composite place-value performance and the two smart error frequency 

variables as predictors of children’s later first grade z-scored composite place-value 

performance, while controlling for Matrix Reasoning ability, indicated that neither type of smart 

error committed in kindergarten predicted growth in place value understanding (p’s > .078). The 

same was true when a composite of children’s syntactic place value performance was used as the 

outcome measure (p’s > .119), but when a composite of children’s approximate place value 

performance was the outcome measure, Transcoding expanded errors rate was a significant 

predictor of growth, b = .12, p = .037. 

When we conducted one-way ANCOVAs using children’s kindergarten error type 

grouping as a between-subjects variable and their difference scores derived from the z-scored 

place value composite variables described previously as dependent variables, several significant 

differences emerged. Specifically, there was a significant effect of group on children’s overall 

place value growth, F(3,191) = 3.25, p = .023, hp2 = .05. Bonferroni-adjusted pairwise 

comparisons, initially suggested there were no significant group differences; however, Fisher’s 

Least Significant Difference (LSD) test indicated greater growth for children who produced 

expanded errors-only, p = .016, and both types of errors, p = .017, in comparison to those who 

produced invented counting errors-only. There also was a significant effect of group, F(3,191) = 

3.16, p = .026, hp2 = .05 when only the approximate place value tasks were considered as 

outcome measures, with Bonferroni-adjusted pairwise comparisons again indicating no 
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significant group differences, but Fisher’s LSD test, indicating greater growth for children who 

produced expanded errors-only, p = .011, and both types of errors, p = .023, in comparison to 

children who produced invented counting errors-only. Only the ANCOVA with performance on 

syntactic tasks yielded no significant group effects (p = .134). Thus, the presence of Transcoding 

expanded errors—but not invented counting errors—predicted residualized growth in general 

and approximate place value understanding. 

Smart Errors as Predictors of Multidigit Calculation Skill 

Our final research question was whether the presence of smart errors in kindergarten 

predicted a more distal outcome measure—multidigit calculation skill in second grade. We 

conducted a path analysis similar to the previous path analyses and the results suggest that 

neither Transcoding expanded errors nor invented counts significantly predicted later multidigit 

calculation, p’s > .132. When we conducted a one-way ANCOVA using the error type grouping 

as a between-subjects variable and mean multidigit calculation performance as the outcome, 

there was a significant effect of group, F(3,162) = 4.01, p = .009, hp2 = .07. Bonferroni-adjusted 

pairwise comparisons suggest that invented counting errors-only group had higher multidigit 

calculation performance compared to those who made neither error, p =. 007. See Figure 2 for a 

bar graph. 

Overall, these results suggest that kindergartners who noticed the shift in base-ten units as 

they are counting objects in base-ten groupings—even if they do not use the correct vocabulary 

to label these shifts—have achieved an important insight into base-ten structure, which paves the 

way for superior multidigit calculation skill in second grade. This error alone is highly 

predictive, perhaps because producing only this type of smart error represents relatively 
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advanced place value concept development in the overlapping waves pattern that was revealed 

above. 

[INSERT FIGURE 2 HERE] 

Discussion 

This longitudinal study examined the development of place value concepts in 

kindergarteners and first graders in the United States. We specifically investigated the emergence 

of two smart errors—invented counting in the Base-Ten Counting task and expanded errors in 

the Transcoding task. Both responses were incorrect, but reflected more understanding of base-

ten structure than random guesses. We found that the two errors emerged in an overlapping 

waves pattern, with expanded errors appearing first and peaking during kindergarten, before 

beginning to wane as invented counting errors increased. We also found that kindergarteners 

who made invented counting errors, but not expanded errors, exhibited stronger overall 

concurrent place value understanding—whether assessed by approximate measures, syntactic 

measures, or both—than children in the other three groups (expanded errors alone, invented 

counting + expanded errors, and neither error). Moreover, kindergarten children who produced 

both types of errors as well as expanded errors alone increased their general, specifically 

approximate, place value understanding in first grade more than children who produced invented 

counting errors alone. However, kindergarten children who made only invented counting errors 

had stronger multidigit calculation skill the following year in second grade. Thus, these smart 

errors appear to signal early partial knowledge that supports subsequent growth in place value 

understanding and eventual multidigit calculation skills.  

The emergence of smart errors. Both smart errors were evident in kindergarten and first 

grade. Indeed, only 5% of children at the first-grade time point exhibited neither of these errors. 
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Both errors were based on approximations of the correct symbolic forms for base-ten 

representations in English. Invented counting errors were approximations of the shift in count 

words that must happen at the boundaries of base-ten units, but used the wrong words to signify 

this shift. Expanded errors were approximations of the way individual digits are used to represent 

base-ten units in writing, but used extra zeroes or ones to indicate these unit shifts rather than 

relying on spatial position alone. Thus, both errors might be said to tap into an awareness of 

base-ten units and best guesses as to how to represent these units symbolically. 

However, there are also important differences between the two error types that might 

explain the overlapping waves pattern we observed. Invented counting errors arise during 

attempts to map verbal counting onto physical object groupings, whereas expanded errors arise 

during attempts to map verbal counting onto written numerals. Children encounter written 

multidigit numerals in school and in daily life. Indeed, they begin noticing patterns in written 

multidigit numerals in early childhood (Mix et al., 2014). Children also have likely practiced 

writing numerals in school by this age, though probably not for the magnitudes we queried, or in 

the same way (i.e., writing from dictation). In contrast, the Base-Ten Counting task is a novel 

activity used in experiments which children almost surely do not encounter at home, and which 

teachers are also unlikely to introduce in school. Perhaps these differences explain why expanded 

errors appeared earlier and peaked earlier than invented counting errors. 

Another possible explanation for the observed overlapping waves pattern is that the 

mapping from words to written symbols may be inherently easier to perform than the mapping 

from words to physical quantities. This assertion makes sense because children learn to name the 

individual numerals (0-9) in early childhood, around the same time they are learning to count 

(Geary & vanMarle, 2016; Mix, 2009; Purpura et al., 2013), so it may be a smaller leap to 
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incorporate base-ten units into these number names and symbols (e.g., three-hundred-two as 302 

vs. three-zero-two), than it is to map the same count words and units onto base-ten blocks—

objects that are introduced in school and therefore, have not been associated with count words 

for several years prior to school entry. 

A third possibility is that children benefit from their earlier foothold with Transcoding 

(reading or writing multidigit numerals) in a causal way that supports better performance on 

Base-Ten Counting. Perhaps the mapping between words and written symbols highlights a 

common structure that prepares children to seek this structure in the world (e.g., physical 

instantiations). Armed with this first mapping, they may be more likely to seek these referents 

and to be more successful in performing word-to-object mappings when they do. Relatedly, 

correlational evidence suggests performance on Base-Ten Counting and Transcoding tasks are 

more strongly associated with each other than they are to other measures of place value 

knowledge, such as symbolic magnitude comparison (Authors, 2022b). Further research that uses 

training on Transcoding to assess its influence on Base-Ten Counting would be helpful to test 

this hypothesis directly. 

Smart errors relate to conceptual growth.  Children who made only invented counting 

errors in kindergarten had better place value understanding when measured concurrently 

compared to children who also (or either) produced transcoding expanded errors or no errors at 

all. This was true for both their approximate and syntactic place value understanding. When 

examining growth in place value skill from kindergarten to first grade, children who made 

transcoding expanded errors—either alone or in conjunction with invented counting errors—had 

significantly greater growth compared to children who made neither error and children who 

made only invented counting errors. When directly comparing how children with invented 
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counting strategies alone compared to all the other children in their place value growth (i.e., 

collapsed into one group), the results were opposite to what we hypothesized: Children with 

invented counting strategies alone had less growth compared to all other children. However, as 

previously mentioned, this is most likely due to having less room for growth because these same 

children also had stronger place value skill at kindergarten.  

When considering multidigit calculation skill two years later, kindergartens who 

exhibited invented counting errors alone had significantly better multidigit calculation skill in 

second grade compared to other children. In contrast, children who did not exhibit these errors 

were less prepared to learn about place value and had worse future outcomes. At a minimum, this 

finding means that these invented counting errors are useful indicators of children’s 

developmental status when it comes to place value understanding, and their preparation to 

benefit from further mathematics instruction moving forward. Rather than simply being another 

way to be incorrect, these errors reflect partial knowledge that is strongly associated with 

eventual mathematics outcomes. 

An intriguing question is whether these error patterns are a necessary stage of 

development that, in addition to signaling emerging competence, also contributes to place value 

growth in meaningful ways. In prior research with the same dataset, we found that the skills 

measured by both the Transcoding and Base-Ten Counting tasks were potent organizers of 

children’s emerging place value understanding in kindergarten and first grade and acted as 

central hubs within larger networks of place value skill at both age levels (Authors, 2022b). 

These skills seem to anchor children’s place value skills in a way that other skills do not. It is 

interesting to ask, then, whether this anchoring happens as a result of mastering the two skills, or 
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rather, because of the nature of the mappings themselves and thus, may begin earlier, as children 

gain partial understanding of them. 

Another way that these smart errors may serve as an important developmental stepping 

stone is that the solutions children reach, though incorrect, may reduce the degrees of freedom 

enough to help them gain traction in reasoning about other aspects of the place value system. 

These errors reflect a correct understanding of the underlying structure, but an incorrect 

understanding of how to express it using conventional notation and count words. It is likely that 

the discovery of this underlying structure is as powerful, if not more powerful, a driver of 

subsequent place value understanding than full mastery of these tasks. Future research that 

separates children’s smart errors from random errors in a network analysis might help to 

distinguish between these accounts. 

Although the present effects involving expanded errors were not as strong as those 

involving invented counting, this may be due to the age groups we tested.  The two error types 

did not emerge simultaneously but rather, emerged in an overlapping waves pattern with 

invented counting errors appearing after expanded errors. If we had measured initial place value 

understanding in preschool rather than kindergarten, it is likely that only expanded errors would 

have been apparent, and perhaps, the presence of these errors at that age would also have been 

significant indicators of later place value understanding and multidigit calculation. Further 

longitudinal research starting with younger children is needed to directly test this hypothesis. 

Educational implications. The present findings reveal emergent understandings that 

teachers could leverage instructionally in several ways. First, by recognizing that these smart 

errors signal an awareness of base-ten structure, teachers could build on them by highlighting the 

errors themselves as ways to represent base-ten structure (e.g., “Some children write the number, 
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two hundred thirty-six like this: 200306. How is this right? How is it wrong?”). By pointing out 

that these errors reflect the right structure (albeit in an unconventional way), teachers can both 

help the children who are making the error translate their ideas into conventional notation, while 

also helping children who are not yet making the errors profit through exposure to these more 

transparent representations of structure than the conventional symbols offer. 

A second educational application is to use these errors as part of the diagnostic screening 

process to identify children in need of additional instruction. The present results point out clearly 

that errors on place value measures do not all signify the same level of understanding. Rather, the 

presence of smart errors indicates a more advanced level of understanding that might require a 

different instructional approach and lower dosage than other error types. For example, 

remediating children who exhibit smart errors might simply require an explicit conversation 

acknowledging how they are correct about the base-ten structure but also pointing out how we 

represent this structure in English. In contrast, children who do not yet exhibit these errors may 

need to build up to discovering the underlying structure itself, through more exposure to the 

symbols and various pairwise mappings (e.g., words to objects, words to numerals, etc.). Such 

children should be encouraged if they begin making either invented counting or expanded errors 

as these errors reflect advanced understanding and perhaps, conceptual stepping stones as well. 

Conclusion 

 In sum, the smart errors we targeted in this study proved to be common in the early 

grades, and reflective of advanced place value understanding compared to other error types. 

Indeed, children who exhibited smart errors in kindergarten also exhibited better concurrent 

place value performance, and stronger multidigit calculation skill two years later in second 

grade. As such, these errors may serve as helpful markers when screening young children for 
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later mathematics difficulties, and determining the best instructional approach. Although our 

findings are consistent with a causal link between this early, partial understanding and later 

multidigit number competence, further research is needed to demonstrate this causality, identify 

its mechanisms, and determine how best to leverage these mechanisms instructionally. For 

example, given the overlapping waves pattern revealed in the current study, future research 

might examine if instruction based on reading and writing numbers (Transcoding) leads to better 

place value understanding than instruction based on physical representations (Base-Ten 

Counting). However, the present results provide strong evidence that these errors reflect 

structural knowledge of place value that is, while flawed, a potentially important developmental 

contributor. 
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Table 1a. 
 
Descriptives of Proportion of Transcoding Expanded Errors Made Overall and by Grade and Trial Type 

 Kindergarten  First Grade  
Trial 
Type 

Mean 
(SD)  Distribution 

 Mean 
(SD) Distribution t-Test Results 

Overall .25 
(.25) 

  

 .25 
(.26) 

  

t(130) = 0.80,  
p = .424,  

Cohen’s d = .07 

2-digit 
.31 

(.45) 

 

 
.40 

(.55) 

  

t(2) = 0.38,  
p = .742,  

Cohen’s d = .22 

3-digit 
.61a 

(.44) 

  

 
.76a 
(.39) 

  

t(62) = 1.40,  
p = .168,  

Cohen’s d = .18 

4-digit 
.43b 
(.44) 

  

 
.43b 
(.43) 

  

t(100) = 1.26,  
p = .213,  

Cohen’s d = .13 

Note: a,b Within grade comparisons: Kindergartners and first graders made significantly fewer expanded errors on 4-digit trials 
compared to 3-digit trials, p’s < .031. However, children were at ceiling on performance on 2-digit trials (84% mean accuracy in 
kindergarten and 98% mean accuracy in first grade) so there was little to no opportunity to make expanded errors on these trials.  
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Table 1b. 
 
Descriptives of Proportion of Unit Boundary Shifts Made Overall and by Grade and Boundary Type 
 

 Kindergarten  First Grade  
Trial 
Type 

Mean 
(SD)  Distribution 

 Mean 
(SD) Distribution t-Test Results 

Overall 
.33 

(.39) 

 

 

 
.59 

(.39) 

 

  

t(180) = 7.76,  
p < .001, 

Cohen’s d = .58 

10-to-1 
shifts 

.40a 
(.42) 

 

 

 
.68a 
(.38) 

 

  

t(179) = 7.99,  
p < .001,  

Cohen’s d = .60 

100-to-
10 

shifts 

.63b 
(.44) 

 

 

 
.74b 
(.35) 

 

  

t(121) = 3.81,  
p < .001,  

Cohen’s d = .35 

Note: a,b Children made significantly more 100-to-10 shifts than 10-to-1 shifts in both kindergarten, p < .001, and first grade, p = .028. 
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Figure 1. A. Example item from the Base-Ten Counting Task (Chan et al., 2014). B. An 
excluded trial from the coding of invented counts on the Base-Ten Counting Task. 
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Figure 2. Mean multidigit calculation z-score (controlling for matrix reasoning scores) by kindergartners’ invented counting and 
transcoding expanded errors groups. Error bars represent 1 standard error. *p < .05 
 


