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Cubature Method for Stochastic Volterra Integral Equations\ast 

Qi Feng\dagger and Jianfeng Zhang\ddagger 

Abstract. In this paper, we introduce the cubature formula for stochastic Volterra integral equations. We
first derive the stochastic Taylor expansion in this setting, by utilizing a functional It\^o formula, and
provide its tail estimates. We then introduce the cubature measure for such equations, and construct
it explicitly in some special cases, including a long memory stochastic volatility model. We shall
provide the error estimate rigorously. Our numerical examples show that the cubature method is
much more efficient than the Euler scheme, provided certain conditions are satisfied.
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1. Introduction. Consider a stock price in a Brownian setting under risk neutral
measure P:

dSt = St\sigma tdBt.(1.1)

In the Black--Scholes model, the volatility process \sigma t \equiv \sigma 0 is a constant. There is a large
literature on stochastic volatility models where \sigma is also a diffusion process; see, e.g., Fouque
et al. [19]. Strongly supported by empirical studies, the fractional stochastic volatility models
and rough volatility models have received very strong attention in recent years, where \sigma 
satisfies the following stochastic Volterra integral equation (SVIE):

\sigma t = \sigma 0 +

\int t

0
K(t, r)V0(\sigma r)dr+

\int t

0
K(t, r)V1(\sigma r)d \~Br.(1.2)

Here \~B is another Brownian motion possibly correlated with B, Vi's are appropriate deter-
ministic functions, and the deterministic two time variable function K has a Hurst parameter
H>0, in the sense that K(t, r) \sim (t  - r)H - 1

2 and \partial tK(t, r) \sim (t  - r)H - 3

2 when t  - r>0 is
small. Such a model was first proposed by Comte and Renault [10] for H> 1

2 to model the
long memory property of the volatility process. Another notable work is Gatheral, Jaisson,
and Rosenbaum [23], which finds market evidence that volatility's high-frequency behavior
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960 QI FENG AND JIANFENG ZHANG

could be modeled as a rough path with H< 1
2 . We remark that one special case of (1.2) is the

fractional Brownian motion, where V0 \equiv 0 and V1 \equiv 1; see, e.g. Nualart [44].
Our goal in this paper is to understand and more importantly to numerically compute the

option price in this market: assuming zero interest rate for simplicity,

E[G(ST )].(1.3)

Note that the volatility process \sigma in (1.2) is in general neither a Markov process nor a
semimartingale.1 Consequently, St is highly non-Markovian, in the sense that one cannot
Markovianize it by adding finitely many extra states, and correspondingly the option price is
characterized as a path dependent PDE (PPDE, for short); see Viens and Zhang [51]. This
imposes significant challenges, both theoretically and numerically. Indeed, compared to the
huge literature on numerical methods for PDEs, there are very few works on efficient nu-
merical methods for such PPDEs. Besides the standard Euler scheme (see Zhang [55]), we
refer the reader to Wen and Zhang [53] for an improved rectangular method; Jacquier and
Oumgari [31] and Ruan and Zhang [50] on numerical methods for high dimensional (nonlin-
ear) PPDEs driven by SVIEs; Richard, Tan, and Yang [48, 49] on discrete-time simulation
schemes, including the Euler and Milstein schemes, and the corresponding multilevel Monte
Carlo method; Ma, Yang, and Cui [41] by using Markov chain approximation; and Alfonsi and
Kebaier [1], Bayer and Breneis [3], and Harms [29] by using the Laplace transform for singular
kernel functions. In recent years, there has also been a growing interest on the convergence
analysis and error estimates for SVIEs; see, e.g., Bayer, Fukasawa, and Nakahara [4], Bayer,
Hall, and Tempone [5], Bonesini, Jacquier, and Pannier [8], Friz, Salkeld, and Wagenhofer
[20], Fukasawa and Ugai [21], Gassiat [22], Li, Huang, and Hu [35], and Nualart and Saikia
[45]. In this paper, we propose the cubature method for the above option price (1.3). This is
a deterministic method, and our numerical examples show that, under certain conditions, it
is much more efficient than the simulation methods such as the Euler scheme.

The cubature method was first introduced by the seminal works Lyons and Victoir [40]
and Litterer and Lyons [37] for diffusion processes; see also Gyurk\'o and Lyons [26], Litterer
and Lyons [38], Ninomiya and Shinozaki [42], and Ninomiya and Victoir [43] for its extensive
numerical implementations. The method builds upon the stochastic Taylor expansion for
smooth G:

G(ST ) = IN +RN ;(1.4)

see, e.g., Kloeden and Platen [34], where IN is a linear combination of multiple integrals
against the Brownian motion B (typically in Stratonovich form), called the signatures of B,
and RN is the remainder term. The main idea is to introduce a discrete measure Q to match
the expectations of the signatures: recalling that E=EP is the expectation under P,

E[IN ] =EQ[IN ].(1.5)

Then we will have an approximation E[G(ST )]\approx EQ[G(ST )]. Since Q is discrete and it is easy
to compute the exact value of EQ[G(ST )] (without involving simulations), the algorithm is

1When H>1, X is actually a semimartingale; see, e.g., [51]. However, it is still highly non-Markovian, so
the numerical challenge remains in this case.
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VOLTERRA CUBATURE FORMULA 961

very efficient, provided sufficient technical conditions to make the approximation error small
enough.

In this paper, we shall consider the general SVIE (see (2.1) below), and our goal is to
approximate E[G(XT )]. To introduce the cubature method for X, our first step is to derive
the stochastic Taylor expansion in this setting. Note that (1.4) relies heavily on the It\^o
formula, but the solution X to the SVIE is not a semimartinagle, which prohibits us from
applying the It\^o formula directly. To overcome this difficulty, we utilize an auxiliary two
time variable process \Theta s

t introduced by Wang [52] and Viens and Zhang [51]; see (2.6) below.
This process satisfies \Theta t

t = Xt and enjoys the desired semimartingale property: for fixed s,
the process t \in [0, s] \mapsto \rightarrow \Theta s

t is a semimartingale. In particular, [51] established a functional
It\^o formula, which enables us to derive the desired stochastic Taylor expansion with more
involved signatures for the SVIEs than the diffusion case. We then introduce a discrete
cubature measure Q for X, in the spirit of (1.4) and (1.5), and prove the following error
estimate: for some constant CN which depends on the regularity of the coefficients,\bigm| \bigm| \bigm| E[G(XT )] - EQ[G(XT )]

\bigm| \bigm| \bigm| \leq CNT
N+1

2 .(1.6)

The above result is desirable only when T is small. For general T , we follow the idea of [40,
Theorem 3.3] and utilize the flow property of the path dependent value function established
in [51]. To be precise, we consider a uniform partition of [0, T ]: 0 = T0< \cdot \cdot \cdot <TM = T and
construct a cubature measure Qm on each subinterval [Tm, Tm+1]. Let Q be the independent
composition of \{ Qm\} 0\leq m<M ; we then have the following estimate:\bigm| \bigm| \bigm| E[G(XT )] - EQ[G(XT )]

\bigm| \bigm| \bigm| \leq CN
T

N+1

2

M
N - 1

2

,(1.7)

where CN is independent of M . The above estimate clearly converges to 0 as M \rightarrow \infty .
We remark that, while our stochastic Taylor expansion can be developed for any kernel K

with Hurst parameter H>0, the cubature formula becomes much more subtle when H< 1
2 .

In this paper, we restrict ourselves to the case H \geq 1
2 and leave the case H< 1

2 to future
study. For applications, we refer the reader to Comte and Renault [10] for the long memory
model with 1

2 <H<1, Gulisashvili, Viens, and Zhang [24] for the integrated variance model
with 1<H<2, and El Omari [15] for the mixed fractional Brownian motion model with more
general H. We also refer the reader to Beran [6, section 4.2] for applications in hydrology,
Loussot et al. [39] for applications in image processing, Gupta, Singh, and Karlekar [25] for
applications in signal classification, Blu and Unser [7] for fractional spline estimators, and
Perrin et al. [47] for the theory of higher order fractional Brownian motions with general
H>1. However, we should point out that our result does not cover the rough volatility
models in Gatheral, Jaisson, and Rosenbaum [23] with 0<H< 1

2 . Moreover, the estimates
(1.6) and (1.7) require the coefficients to be sufficiently smooth, as we will specify in the
paper. In particular, the constant CN will depend on such regularity.

The efficiency of our cubature method comes down to the construction of the cubature
measure Q in (1.7), which will involve (2W )M deterministic paths for some constantW . When
the dimension of X is large, or when N is large, the W will be large; and when T is large,
in light of (1.7) we will require M to be large. We refer the reader to section 7.5 for more
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962 QI FENG AND JIANFENG ZHANG

precise comments on the efficiency issue. When all the conditions are satisfied so that (2W )M

is at a reasonable level, our numerical examples show that the cubature method is much more
efficient than the Euler scheme.

We should remark that the above efficiency issue was already present for the cubature
method in the standard Brownian setting. There have been great efforts in the literature
to overcome this difficulty and to apply the idea of the cubature method to more general
models; see, e.g., Crisan and Manolarakis [11, 12], Crisan and McMurray [13], de Raynal and
Trillos [14], Filipovi\'c, Larsson, and Pulido [16], Foster, Lyons, and Oberhauser [17], Foster,
dos Reis, and Strange [18], and Hayakawa, Oberhauser, and Lyons [30]. It will be very
interesting to explore whether these ideas can help to improve the cubature method in the
Volterra framework. We would also like to mention the very interesting connection between
the signature, the kernel method, and machine learning; see Chevyrev and Oberhauser [9],
Kidger et al. [32], Kir\'aly and Oberhauser [33], Liao et al. [36], and the references therein.

Finally, we note that, while sharing many properties, the SVIE (1.2) is different from the
following SDE driven by a fractional Brownian motion BH

t :=
\int t
0 K(t, r)dr+

\int t
0 K(t, r)d \~Br:

\sigma \prime t = \sigma 0 +

\int t

0
V0(\sigma 

\prime 
r)dr+

\int t

0
V1(\sigma 

\prime 
r)dB

H
r .(1.8)

We refer the reader to Baudoin and Coutin [2] and Passeggeri [46] for some works on signatures
for fractional Brownian motions and Harang and Tindel (see [27, 28]) on signatures defined
for `` Volterra path."" We shall remark that, unlike our signature, which is directly for the
solution \sigma t to the SVIE (1.2) (instead of for the driving Brownian motion \~B), these signatures
are for the driving fractional Brownian motion BH or ``Volterra path,"" which has much simpler
structure. In particular, their signatures do not lead to the desired stochastic Taylor expansion
which is crucial for the cubature method.

The rest of the paper is organized as follows. In section 2, we derive the stochastic Taylor
expansions for the general SVIEs and prove the tail estimate. In section 3, we introduce the
cubature formula when T is small, and in section 4 we modify the cubature formula when
[0, T ] is decomposed into M parts. We construct the cubature measure Q explicitly for a
one dimensional SVIE in section 5 and for the two dimensional fractional stochastic volatility
model in section 6. In section 7, we present various numerical examples and compare their
efficiency with the Euler scheme. Finally, we present some technical proofs in the appendix.

2. Stochastic Taylor expansions. Throughout this paper, let (\Omega ,\scrF ,F,P) be a filtered
probability space, let B0

t := t, and letB = (B1, . . . ,Bd) be a d-dimensional Brownian mo-
tion. Let T >0 be a fixed terminal time. We consider d1-dimensional state process X =
(X1, . . . ,Xd1) solving the following SVIE under Stratonovich integration \circ : given x =
(x1, . . . , xd1

)\in Rd1 ,

Xi
t = xi +

d\sum 
j=0

\int t

0
Ki(t, r)V

i
j (Xr) \circ dBj

r , i= 1, . . . , d1,(2.1)

and we are interested in the efficient numerical computation of

Y0 :=E[G(XT )].(2.2)

Throughout the paper, the following hypotheses will always be enforced: for some N \geq 1
which will be specified in the context, the following hold:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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VOLTERRA CUBATURE FORMULA 963

(H0) Each Ki : \{ (t, r) : 0\leq r\leq t\leq T\} \rightarrow [0,\infty ) is infinitely smooth on \{ r<t\} , and either Ki \equiv 
1 or Ki has Hurst parameter Hi>

1
2 , that is, Ki(t, r)\sim (t - r)Hi - 1

2 and \partial tKi(t, r)\sim (t - r)Hi - 3

2

when t - r>0 is small.

(HN) The functions V i
j ,G\in CN (Rd1 ;R) with all the derivatives up to the order N bounded.

For later purposes, we will also need the following stronger version of (H0):

(H0-N) Each Ki : \{ (t, r) : 0 \leq r \leq t\leq T\} \rightarrow [0,\infty ) is infinitely smooth on \{ r<t\} , and either
Ki \equiv 1 orKi has Hurst parameterHi>N+ 1

2 , in the sense that \partial \alpha +\beta 

\partial t\alpha \partial r\beta Ki(t, r)\sim (t - r)Hi - \alpha  - \beta  - 1

2

when t - r>0 is small for all integers \alpha ,\beta \geq 0 such that \alpha + \beta \leq N .

Remark 2.1. (i) When Ki has Hurst parameter Hi>
1
2 , X

i is H\"older-(Hi\wedge 1 - \varepsilon ) continuous
in t for any small \varepsilon >0. This implies that V (X i

t) \circ dB
j
t = V (X i

t)dB
j
t for any smooth function

V , where V (X i
t)dB

j
t denotes the It\^o integral, and they coincide with the Young's pathwise

integral. On the other hand, when Ki \equiv 1, Xi is clearly a semimartingale. So, letting I0
denote the set of i>0 such that Ki \equiv 1, we may rewrite (2.1) in It\^o's form, and in particular
they are well-posed under (H0) and (H2):

Xi
t = xi +

d\sum 
j=0

\int t

0
Ki(t, r)V

i
j (Xr)dB

j
r +

1

2

\sum 
k\in I0

\int t

0
Ki(t, r)\partial kV

i
j (Xr)V

k
j (Xr)dr.(2.3)

(ii) Consider a special case: x1 = 0, K1 \equiv 1, V 1
0 \equiv 1, V 1

j \equiv 0 for j \geq 2. Then we can easily

see that X1
t = t. So the system (2.1) actually covers the case that the coefficients V i

j depend
on the time variable t.

Remark 2.2. (i) In fractional stochastic volatility models, where Xi is interpreted as the
volatility (or variance) process of a certain underlying asset price, the assumption 1

2 <Hi<1
implies that the volatility has ``long memory""; see Comte and Renault [10]. We also refer the
reader to [6, 7, 15, 24, 25, 39, 47] for applications and theory when Hi>1.

(ii) The case Hi<
1
2 , supported by the empirical studies in Gatheral, Jaisson, and Rosen-

baum [23], has received very strong attention in the mathematical finance literature in recent
years. The singularity of Ki in this case will make the theory much more involved; for ex-
ample, one may need to consider the weak solution to (2.1), and consequently the numerical
algorithms will be less efficient. We shall leave this important and challenging case to future
study.

2.1. The functional It\^o formula. Note that Xi is not a semimartingale when Ki \not = 1,
which prohibits us from applying many stochastic analysis tools such as the It\^o formula
directly. To get around this difficulty, in this subsection we introduce a functional It\^o formula,
which is established in Viens and Zhang [51] but tailored for the purpose of this paper.

Denote Xt :=C0([t, T ];Rd1)\cap C1((t, T ];Rd1) for each t\in [0, T ], equipped with the uniform
norm. For each t \in [0, T ] and \phi :Xt \rightarrow R, let \partial \bfx \phi denote the Fr\'echet derivative of u. That is,
\partial \bfx \phi (x) :Xt \rightarrow R is a linear mapping satisfying

\phi (x+ \eta ) - \phi (x) = \langle \partial \bfx \phi (x), \eta \rangle + o(\| \eta \| ) \forall x, \eta \in Xt.(2.4)

Similarly, we may define the second order derivate \partial \bfx \bfx \phi (x) as a bilinear mapping on Xt\times Xt:

\langle \partial \bfx \phi (x+ \eta 2), \eta 1\rangle  - \langle \partial \bfx \phi (x), \eta 1\rangle = \langle \partial \bfx \bfx \phi (x), (\eta 1, \eta 2)\rangle + o(\| \eta 2\| ) \forall \eta 1, \eta 2 \in Xt.(2.5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/3

1/
23

 to
 1

44
.1

74
.2

12
.5

8 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



964 QI FENG AND JIANFENG ZHANG

We may continue to define higher order derivatives \partial 
(n)
\bfx \phi (x) in an obvious manner and let

Cn(Xt) denote the set of continuous functions \phi : Xt \rightarrow R which has uniformly continuous
derivatives up to order n. Moreover, as in [51] (see also an earlier work [52]), we introduce a
two time variable process \Theta s

t = (\Theta 1,s
t , . . . ,\Theta d1,s

t ) for 0\leq t\leq s\leq T :

\Theta i,s
t = xi +

d\sum 
j=0

\int t

0
Ki(s, r)V

i
j (Xr) \circ dBj

r .(2.6)

This process enjoys the following nice properties:
\bullet For fixed s, the process t\in [0, s]\rightarrow \Theta s

t is an F-progressively measurable semimartingale.
\bullet For fixed t, the process s\in [t, T ]\rightarrow \Theta s

t is \scrF t-measurable, continuous on [t, T ], infinitely
smooth on (t, T ], and with ``initial"" condition \Theta t

t =Xt. In particular, \Theta t \in Xt a.s.
Then we have the following functional It\^o formula, which is essentially the same as [51,

Theorem 3.10] but in Stratonovich form instead of It\^o form.

Proposition 2.3. Let (H0) and (H2) hold, and let \phi \in C2(XT \prime ) for some 0<T \prime <T . Then

d\phi (\Theta 
[T \prime ,T ]
t ) =

d1\sum 
i=1

d\sum 
j=0

\langle \partial \bfx i
\phi (\Theta 

[T \prime ,T ]
t ),K

[T \prime ,T ]
i,t )\rangle V i

j (Xt) \circ dBj
t , 0\leq t\leq T \prime .(2.7)

Here \Theta 
[T \prime ,T ]
t and K

[T \prime ,T ]
i,t denote the paths \Theta s

t ,Ki(s, t), s\in [T \prime , T ], respectively.

We now turn to the problem (2.2). For any t\in [0, T ] and \theta \in Xt, introduce

u(t, \theta ) =E[G(Xt,\theta 
T )], Xt,\theta ,i

s = \theta is +

d\sum 
j=0

\int s

t
Ki(s, r)V

i
j (X

t,\theta 
r ) \circ dBj

r , i= 1, . . . , d1.(2.8)

Since \theta is differentiable, by Remark 2.1(i) it is clear that the above Volterra SDE is well-posed.
Moreover,

u(T, \~x) =G(\~x) \forall \~x\in XT =Rd1 ; Y0 = u(0, x), where x\in X0 is a constant path,

and we have the following simple result, whose proof is postponed to the appendix.

Proposition 2.4. Under (H0) and (HN), we have u(t, \cdot ) \in CN - 1(Xt) for any t \in [0, T ].
Moreover, all the involved derivatives are bounded by CNe

CNT , where CN depends only on the
parameters in (H0) and (HN).

2.2. The stochastic Taylor expansion. Fix M \geq 1, and set Tm := m\delta , m = 0, . . . ,M ,
where \delta := \delta M := T

M . In this subsection, we fix m and consider the stochastic Taylor expansion
of u(Tm+1, \cdot ) at Tm. We first introduce some notation: for any n\geq 1 and s\in [Tm, Tm+1],

Tm
n (s) := \{ \vec{}t= (t1, . . . , tn) : Tm \leq tn \leq \cdot \cdot \cdot \leq t1 \leq s\} , tm0 := Tm+1, Tm

n :=Tn(t
m
0 ).(2.9)

Assume u(Tm+1, \cdot ) is sufficiently smooth; by (2.7), we have

u(Tm+1,\Theta 
[Tm+1,T ]
Tm+1

) = u(tm0 ,\Theta 
[tm0 ,T ]
tm0

)(2.10)

= u(tm0 ,\Theta 
[tm0 ,T ]
Tm

) +

d1\sum 
i1=1

d\sum 
j1=0

\int tm0

Tm

\langle \partial \bfx i1
u(tm0 ,\Theta 

[tm0 ,T ]
t1 ),K

[tm0 ,T ]
i1,t1

\rangle V i1
j1
(\Theta t1

t1) \circ dB
j1
t1 ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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VOLTERRA CUBATURE FORMULA 965

where we used the fact that Xt1 =\Theta t1
t1 . Now fix t1 \in [Tm, t

m
0 ], note that t2 \in [Tm, t1] \mapsto \rightarrow \Theta t1

t2 is

a semimartingale, and note that \theta \in Xtm0 \mapsto \rightarrow \langle \partial \bfx i1
u(tm0 , \theta ),K

[tm0 ,T ]
i1,t1

)\rangle is in C2(Xtm0 ). Then

dV i1
j1
(\Theta t1

t2) =

d1\sum 
i2=1

d\sum 
j2=0

\partial xi2
V i1
j1
(\Theta t1

t2)Ki2(t1, t2)V
i2
j2
(Xt2) \circ dB

j2
t2 ,

d\langle \partial \bfx i1
u(tm0 ,\Theta 

[tm0 ,T ]
t2 ),K

[tm0 ,T ]
i1,t1

\rangle 

=

d1\sum 
i2=1

d\sum 
j2=0

\langle \partial \bfx i1
\bfx i2
u(tm0 ,\Theta 

[tm0 ,T ]
t2 ), (K

[tm0 ,T ]
i1,t1

,K
[tm0 ,T ]
i2,t2

)\rangle V i2
j2
(\Theta t2

t2) \circ dB
j2
t2 .

Applying It\^o's formula and plugging these into (2.10), we obtain

u(tm0 ,\Theta 
[tm0 ,T ]
tm0

) = u(tm0 ,\Theta 
[tm0 ,T ]
Tm

) +

d1\sum 
i1=1

d\sum 
j1=0

\int tm0

Tm

\langle \partial \bfx i1
u(tm0 ,\Theta 

[tm0 ,T ]
Tm

),K
[tm0 ,T ]
i1,t1

\rangle V i1
j1
(\Theta t1

Tm
) \circ dBj1

t1

(2.11)

+

d1\sum 
i1,i2=1

d\sum 
j1,j2=0

\int 
Tm

2

\Bigl[ 
\langle \partial \bfx i1

\bfx i2
u(tm0 ,\Theta 

[tm0 ,T ]
t2 ), (K

[tm0 ,T ]
i1,t1

,K
[tm0 ,T ]
i2,t2

)\rangle V i1
j1
(\Theta t1

t2)V
i2
j2
(\Theta t2

t2)

+ \langle \partial \bfx i1
u(tm0 ,\Theta 

[tm0 ,T ]
t2 ),K

[tm0 ,T ]
i1,t1

\rangle Ki2(t1, t2)\partial xi2
V i1
j1
(\Theta t1

t2)V
i2
j2
(\Theta t2

t2)
\Bigr] 
\circ dBj2

t2 \circ dB
j1
t1 .

The formulae (2.10) and (2.11) are the first order and second order expansions of u(tm0 ,

\Theta 
[tm0 ,T ]
tm0

). For higher order expansions, we introduce the following notation. For any n \geq 1,

denote \scrI n := \{ 1, . . . , d1\} n with elements \vec{}i = (i1, . . . , in) and \scrJ n := \{ 0, . . . , d\} n with elements
\vec{}j = (j1, . . . , jn), and introduce a set of mappings for the indices:

\scrS n :=
\Bigl\{ 
\vec{}\kappa = (\kappa 1, . . . , \kappa n) : \kappa l \in \{ 0,1, . . . , l - 1\} , l= 1, . . . , n

\Bigr\} 
.

Given \vec{}i \in \scrI n, \vec{}j \in \scrJ n, \vec{}t \in Tn, \vec{}\kappa \in \scrS n, \vec{}x = (x1, . . . , xn) \in (Rd1)n, \theta \in Xtm0 , \varphi : Tm
n \rightarrow R, and

\psi :Rd1 \rightarrow R, denote

\scrN \alpha (\vec{}\kappa ) := \{ l \in \{ 1, . . . , n\} : \kappa l = \alpha \} , \alpha = 0, . . . , n,

\scrK (\vec{}i,\vec{}\kappa ;\vec{}t) :=

n\prod 
l=1

Kil(t\kappa l
, tl), \scrK +(\vec{}i,\vec{}\kappa ;\vec{}t) :=

n\prod 
\alpha =1

\prod 
l\in \scrN \alpha (\vec{}\kappa )

Kil(t\kappa l
, tl),

\vec{}\scrK 0(\vec{}i,\vec{}\kappa ;\vec{}t) := (K
[tm0 ,T ]
il,tl

)l\in \scrN 0(\vec{}\kappa )
,

\partial \vec{}\kappa \vec{}i u(t
m
0 , \theta ) := \partial \bfx il1

\cdot \cdot \cdot \partial \bfx ilk
u(tm0 , \theta ), where \{ l1, . . . , lk\} =\scrN 0(\vec{}\kappa ),

\partial \vec{}\kappa ,\alpha \vec{}i
\psi (x) := \partial xil1

. . . \partial xilk
\psi (x), where \{ l1, . . . , lk\} =\scrN \alpha (\vec{}\kappa ),

\scrV (\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t,\vec{}x, \theta ) :=
n\prod 

\alpha =1

\partial \vec{}\kappa ,\alpha \vec{}i
V i\alpha 
j\alpha 
(x\alpha )\scrK +(\vec{}i,\vec{}\kappa ;\vec{}t) \langle \partial \vec{}\kappa \vec{}i u(t

m
0 , \theta ),

\vec{}\scrK 0(\vec{}i,\vec{}\kappa ;\vec{}t)\rangle ,

\Theta 
\vec{}t
s := (\Theta t1

s , . . . ,\Theta 
tn
s ), s\leq tn, \varphi (\vec{}t) \circ dB\vec{}j

\vec{}t
:=\varphi (\vec{}t) \circ dBjn

tn \circ \cdot \cdot \cdot \circ dBj1
t1 .

(2.12)

Note that \vec{}\scrK 0 and \scrV here actually depend on m, but we omit this dependence for notational
simplicity. We then have the following expansion, whose proof is postponed to the appendix.
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966 QI FENG AND JIANFENG ZHANG

Proposition 2.5. For any N \geq 1, under (H0) and (H(N+3)), we have

u(tm0 ,\Theta 
[tm0 ,T ]
tm0

) = u(tm0 ,\Theta 
[tm0 ,T ]
Tm

) +

N\sum 
n=1

\sum 
\vec{}i\in \scrI n,\vec{}j\in \scrJ n,\vec{}\kappa \in \scrS n

\int 
Tm

n

\scrV (\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t,\Theta \vec{}t
Tm
,\Theta 

[tm0 ,T ]
Tm

) \circ dB\vec{}j
\vec{}t

+
\sum 

\vec{}i\in \scrI N+1,\vec{}j\in \scrJ N+1,\vec{}\kappa \in \scrS N+1

\int 
Tm

N+1

\scrV (\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t,\Theta \vec{}t
tN+1

,\Theta 
[tm0 ,T ]
tN+1

) \circ dB\vec{}j
\vec{}t
.(2.13)

2.3. The remainder estimate. In this subsection, we estimate the remainder term in
Taylor expansion, which will provide a guideline for our numerical algorithm later. For an
appropriate function \varphi :Tm

n \times \Omega \rightarrow R and Tm \leq s\leq tm0 , denote

\| \varphi (\cdot )\| 2
s,\vec{}j

:= \| \varphi (\cdot )\| 2
[Tm,s],\vec{}j

:=Em

\biggl[ \bigm| \bigm| \bigm| \bigm| \int 
Tm

n (s)
\varphi (\vec{}t) \circ dB\vec{}j

\vec{}t

\bigm| \bigm| \bigm| \bigm| 2\biggr] , where Em :=E\scrF Tm
.(2.14)

Moreover, for \vec{}j \in \scrJ n, \vec{}t\in Tn, and 1\leq l\leq n, denote

\vec{}jl := (j1, . . . , jl), \vec{}j - l := (jl+1, . . . , jn), \vec{}t - l := (tl+1, . . . , tn).(2.15)

We first have the following simple but crucial lemma, whose proof is postponed to the appen-
dix.

Lemma 2.6. Fix n \geq 2, \vec{}j \in \scrJ n, and let \varphi : Tm
n \times \Omega \rightarrow R be bounded, jointly measurable

in all variables, and, for each \vec{}t \in Tm
n , \varphi (\vec{}t) is \scrF tn-measurable in \omega . There exists a universal

constant C>0 such that, for any Tm \leq s\leq tm0 ,

Em

\biggl[ \int 
Tm

n (s)
\varphi (\vec{}t) \circ dB\vec{}j

\vec{}t

\biggr] 
=

\left\{             

\int s

Tm

Em

\biggl[ \int 
Tm

n - 1(t1)
\varphi (t1,\vec{}t - 1) \circ dB

\vec{}j - 1

\vec{}t - 1

\biggr] 
dt1, j1 = 0,

0, j1 \not = 0, j2,
1

2

\int s

Tm

Em

\biggl[ \int 
Tm

n - 2(t1)
\varphi (t1, t1,\vec{}t - 2) \circ dB

\vec{}j - 2

\vec{}t - 2

\biggr] 
dt1, j1 = j2>0,

(2.16)

\| \varphi (\cdot )\| 2
s,\vec{}j

\leq 

\left\{           
C\delta 2 ess sup

Tm\leq s\prime \leq s
\| \varphi (s\prime , \cdot )\| 2

s\prime ,\vec{}j - 1
, j1 = 0,

C\delta ess sup
Tm\leq s\prime \leq s

\| \varphi (s\prime , \cdot )\| 2
s\prime ,\vec{}j - 1

, j1 \not = 0, j2,

C\delta ess sup
Tm\leq s\prime \leq s

\| \varphi (s\prime , \cdot )\| 2
s\prime ,\vec{}j - 1

+C\delta 2 ess sup
Tm\leq s\prime \leq s

\| \varphi (s\prime , s\prime , \cdot )\| 2
s\prime ,\vec{}j - 2

, j1 = j2>0.

(2.17)

Note that B0 and \{ Bj\} j\geq 1 contribute differently in (2.16) and (2.17). Alternatively, we

note that B0
t = t is Lipschitz continuous, but Bj

t is H\"older-(12  - \varepsilon ) continuous for j \geq 1. To
provide a more coherent error estimate, we shall modify (2.13) slightly. For any 1 \leq n \leq N
and p\geq 1, denote

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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VOLTERRA CUBATURE FORMULA 967

\scrJ n,N :=
\Bigl\{ 
\vec{}j \in \scrJ n : \| \vec{}j\| \leq N

\Bigr\} 
, where \| \vec{}j\| := n+

n\sum 
l=1

1\{ jl=0\} ,

Am
N := sup

n\leq N
sup

\vec{}i\in \scrI n,\vec{}j\in \scrJ n,\| \vec{}j\| =N,\vec{}t\in Tm
n

sup
\vec{}x\in (Rd1 )n,\theta \in Xtm

0

\bigm| \bigm| \bigm| \sum 
\vec{}\kappa \in \scrS N

\scrV (\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t,\vec{}x, \theta )
\bigm| \bigm| \bigm| .(2.18)

We then have the following tail estimate, whose proof is postponed to the appendix.

Theorem 2.7. Let (H0) and (H(N+3)) hold, and let Rm
N be determined by

u(tm0 ,\Theta 
[tm0 ,T ]
tm0

) = ImN +Rm
N , where

ImN := u(tm0 ,\Theta 
[tm0 ,T ]
Tm

) +

N\sum 
n=1

\sum 
\vec{}i\in \scrI n,\vec{}j\in \scrJ n,N ,\vec{}\kappa \in \scrS n

\int 
Tm

n

\scrV (\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t,\Theta \vec{}t
Tm
,\Theta 

[tm0 ,T ]
Tm

) \circ dB\vec{}j
\vec{}t
.

(2.19)

Then there exists a constant CN>0, which depends only on N and d, d1, such that

| Em[Rm
N ]| \leq 

\Bigl( 
Em[| Rm

N | 2]
\Bigr) 1

2 \leq CN

\Bigl[ 
Am

N+1\delta 
N+1

2 +Am
N+2\delta 

N+2

2 +Am
N+3\delta 

N+3

2

\Bigr] 
.(2.20)

Remark 2.8. Clearly, for fixed N , the error in (2.20) will be smaller when \delta is smaller,
when G and V i

j are smoother (so that u is smoother), and when the dimensions d and d1 are
smaller (so that CN is smaller). This is consistent with our numerical results later.

3. The cubature formula: The one period case. Note that (2.20) is effective when \delta is
small. In this section, we consider the case that T is small. Then we may simply set M = 1,
and thus \delta = T . We shall apply the results in section 2 with m = 0. In particular, in this
case, E0 = E. For notational simplicity, in this section we shall omit the superscript 0, e.g.,
Tn =T0

n, IN = I0N , and RN =R0
N .

3.1. Simplification of the stochastic Taylor expansion. In this case, we have the follow-
ing: denoting t0 := T ,

\Theta t
Tm

=\Theta t
0 = x, Xtm0 =XT =Rd1 , u(T,x) =G(x), x\in Rd1 ,

\langle \partial \vec{}\kappa \vec{}i u(t
m
0 , x),

\vec{}\scrK 0(\vec{}i,\vec{}\kappa ;\vec{}t)\rangle = \partial \vec{}\kappa ,0\vec{}i
G(x)

\prod 
l\in \scrN 0(\vec{}\kappa )

Kil(T, tl),

\scrV (\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t, (x, . . . , x), x) = \scrV 0(\vec{}i,\vec{}j,\vec{}\kappa ;x)\scrK (\vec{}i,\vec{}\kappa ;\vec{}t),

where \scrV 0(\vec{}i,\vec{}j,\vec{}\kappa ;x) :=

n\prod 
\alpha =1

\partial \vec{}\kappa ,\alpha \vec{}i
V i\alpha 
j\alpha 
(x)\partial \vec{}\kappa ,0\vec{}i

G(x).

(3.1)

Thus, (2.19) becomes

G(XT ) = IN +RN =G(x) +

N\sum 
n=1

\sum 
\vec{}i\in \scrI n,\vec{}j\in \scrJ n,N ,\vec{}\kappa \in \scrS n

\scrV 0(\vec{}i,\vec{}j,\vec{}\kappa ;x)

\int 
Tn

\scrK (\vec{}i,\vec{}\kappa ;\vec{}t) \circ dB\vec{}j
\vec{}t
+RN .

(3.2)

Moreover, by abusing notation we may modify A0
N and define AN as follows:

AN := sup
n\leq N

sup
\vec{}i\in \scrI n,\vec{}j\in \scrJ n,\| \vec{}j\| =N,\vec{}t\in Tm

n

sup
x\in Rd1

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
\vec{}\kappa \in \scrS N

\scrV 0(\vec{}i,\vec{}j,\vec{}\kappa ;x)\scrK (\vec{}i,\vec{}\kappa ;\vec{}t)

\bigm| \bigm| \bigm| \bigm| \bigm| .(3.3)
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968 QI FENG AND JIANFENG ZHANG

Remark 3.1. Motivated from the Taylor expansion (3.2), the step-N Volterra signature
should have the following form in the space

\bigoplus N
n=0(R

d1+1)\otimes n:

N\sum 
n=0

\sum 
\vec{}i\in \scrI n,\vec{}j\in \scrJ n,\vec{}\kappa \in \scrS n

\biggl( \int 
Tn

\scrK (\vec{}i,\vec{}\kappa ;\vec{}t) \circ dB\vec{}j
\vec{}t

\biggr) 
(ej1 \otimes \cdot \cdot \cdot \otimes ejn),(3.4)

where \{ ej\} j=0,1,...,d1
denotes the canonical basis of Rd1+1. Below, we shall focus on the expec-

tation of the Volterra signature at any step.

To facilitate the cubature method in the next subsection, we shall rewrite (3.2) slightly
further. Note that, for fixed N , the mapping (\vec{}i,\vec{}j,\vec{}\kappa )\in 

\bigcup 
n\leq N\scrI n\times \scrJ n,N \times \scrS n \rightarrow \scrV 0(\vec{}i,\vec{}j,\vec{}\kappa ; \cdot ) (as

a function of x) is not one to one, so we may combine the terms with the same \scrV 0(\vec{}i,\vec{}j,\vec{}\kappa ; \cdot ).
That is, we may rewrite (3.2) as

G(XT ) =G(x) +
\sum 
\phi \in VN

\phi (x)\Gamma \phi 
N +RN , where

VN :=
\bigcup 
n\leq N

\Bigl\{ 
\scrV 0(\vec{}i,\vec{}j,\vec{}\kappa ; \cdot ) : (\vec{}i,\vec{}j,\vec{}\kappa )\in \scrI n \times \scrJ n,N \times \scrS n

\Bigr\} 
\subset C(Rd1 ;R),

\Gamma \phi 
N :=

N\sum 
n=1

\sum 
\vec{}i\in \scrI n,\vec{}j\in \scrJ n,N ,\vec{}\kappa \in \scrS n

1\{ \scrV 0(\vec{}i,\vec{}j,\vec{}\kappa ;\cdot )=\phi \} 

\int 
Tn

\scrK (\vec{}i,\vec{}\kappa ;\vec{}t) \circ dB\vec{}j
\vec{}t
.

(3.5)

Since it requires rather complicated notations to characterize \phi \in VN precisely in the general
case, we leave it to the special cases that we will actually compute numerically.

3.2. The cubature formula. We now extend the cubature formula for Brownian motion
in [40] to the Volterra setting, especially for the Taylor expansion (3.5). From now on, we
set \Omega := C([0, T ];Rd) as the canonical space and B as the canonical process, and thus P
is the Wiener measure so that B is a P-Brownian motion. For some W \geq 1, L \geq 1, we
introduce a discrete probability measure Q on \Omega : for some constants ak,l = (a1k,l, . . . , a

d
k,l)\in Rd,

k= 1, . . . ,W , l= 1, . . . ,L,

Q :=

2W\sum 
k=1

\lambda k\delta \omega k
, where \delta \cdot denotes the Dirac measure, \lambda k>0,

2W\sum 
k=1

\lambda k = 1,

\lambda W+k = \lambda k, \omega W+k = - \omega k, k= 1, . . . ,W,

\omega k,0 = 0, \omega k,t = \omega k,sl - 1
+
ak,l\surd 
T
[t - sl - 1], t\in (sl - 1, sl], sl :=

l

L
T, 0 = 1, . . . ,L.

(3.6)

Here the second line implies that Q is symmetric, since Brownian motion is symmetric. Also, it
is OK to consider nonuniform partition 0 = s0< \cdot \cdot \cdot <sL = T . Recall (2.12), for each piecewise
linear \omega = (\omega 1, . . . , \omega d1) as in (3.6), \vec{}j \in \scrJ n, and \varphi :Tn \rightarrow R, and denote\int 

Tn

\varphi (\vec{}t)d\omega 
\vec{}j
\vec{}t
:=

\int 
Tn

\varphi (\vec{}t)d\omega jn
tn \cdot \cdot \cdot d\omega j1

t1 , where \omega 0
t := t.(3.7)

Then we have

EQ

\biggl[ \int 
Tn

\scrK (\vec{}i,\vec{}\kappa ;\vec{}t) \circ dB\vec{}j
\vec{}t

\biggr] 
=

2W\sum 
k=1

\lambda k

\int 
Tn

\scrK (\vec{}i,\vec{}\kappa ;\vec{}t)d(\omega k)
\vec{}j
\vec{}t
.(3.8)
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VOLTERRA CUBATURE FORMULA 969

Definition 3.2. Let N \geq 1, W \geq 1. We say that Q defined in (3.6) is an N-Volterra cubature
formula on [0, T ] if, recalling E=EP,

EQ[\Gamma \phi 
N ] =E[\Gamma \phi 

N ] for all \phi \in VN , and hence EQ[IN ] =E[IN ].(3.9)

Recall our goal (2.1)--(2.2). Our main idea is the following approximation:

Y0 :=E[G(XT )]\approx Y Q
0 :=

2W\sum 
k=1

\lambda kG(XT (\omega k)), where(3.10)

Xi
t(\omega ) = xi +

d\sum 
j=0

\int t

0
Ki(t, r)V

i
j (Xr(\omega ))d\omega 

j
r , i= 1, . . . , d1.(3.11)

We now have the main result of this section, whose proof is postponed to the appendix.

Theorem 3.3. Under (H0) and (H(N+3)), we have the following: recalling (3.3) and
(3.1),

| Y0  - Y Q
0 | \leq CN

\Bigl[ 
AN+1(1 +CN - 1

Q )T
N+1

2 +AN+2(1 +CN - 2
Q )T

N+2

2 +AN+3T
N+3

2

\Bigr] 
,

where CQ := max
1\leq k\leq W,1\leq j\leq d,1\leq l\leq L

| ajk,l| .
(3.12)

In particular, if each Ki is rescalable, in the sense that there exists an \alpha i \in [0,\infty ) (not
necessarily the same as Hi  - 1

2) such that

Ki(ct, cr) = c\alpha iK(t, r) for all 0\leq r<t,(3.13)

then all the ak,l and hence CQ are independent of T .

3.3. A simplification of the cubature formula. Due to the symmetric properties of
Brownian motion and Q, we may simplify the requirement (3.9). Recalling (2.12) and abusing
notation, for \vec{}j \in \scrJ n we denote

\scrN \alpha (\vec{}j) := \{ l \in \{ 1, . . . , n\} : jl = \alpha \} , \alpha = 0, . . . , d.(3.14)

Lemma 3.4. Let (H0) hold, and let \vec{}j \in \scrJ n be such that | \scrN \alpha (\vec{}j)| is odd for some \alpha = 1, . . . , d;
in particular, if \| \vec{}j\| is odd, then

E
\biggl[ \int 

Tn

\scrK (\vec{}i,\vec{}\kappa ;\vec{}t) \circ dB\vec{}j
\vec{}t

\biggr] 
= 0=EQ

\biggl[ \int 
Tn

\scrK (\vec{}i,\vec{}\kappa ;\vec{}t) \circ dB\vec{}j
\vec{}t

\biggr] 
.(3.15)

Proof. One may easily derive the first equality from (2.16) by induction on n. The second
equality follows directly from the symmetric properties of Q.

Note further that, when \vec{}j = (0, . . . ,0)\in \scrJ n, we have dB
\vec{}j
\vec{}t
= d\omega 

\vec{}j
\vec{}t
= dtn \cdot \cdot \cdot dt1. This, together

with Lemma 3.4, implies the following result immediately.
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970 QI FENG AND JIANFENG ZHANG

Theorem 3.5. Let (H0) and (H(N+3)) hold, and denote

\=\scrJ n,N := \{ \vec{}j \in \scrJ n,N\setminus \{ (0, . . . ,0)\} : | \scrN \alpha (\vec{}j)| is even for all \alpha = 1, . . . , n\} ,
\=VN :=

\bigcup 
n\leq N

\Bigl\{ 
\scrV 0(\vec{}i,\vec{}j,\vec{}\kappa ; \cdot ) : (\vec{}i,\vec{}j,\vec{}\kappa )\in \scrI n \times \=\scrJ n,N \times \scrS n

\Bigr\} 
\subset VN ,

\=\Gamma \phi 
N :=

N\sum 
n=1

\sum 
\vec{}i\in \scrI n,\vec{}j\in \=\scrJ n,N ,\vec{}\kappa \in \scrS n

1\{ \scrV 0(\vec{}i,\vec{}j,\vec{}\kappa ;\cdot )=\phi \} 

\int 
Tn

\scrK (\vec{}i,\vec{}\kappa ;\vec{}t) \circ dB\vec{}j
\vec{}t
.

(3.16)

Then Q satisfies (3.9) if and only if

EQ[\=\Gamma \phi 
N ] =E[\=\Gamma \phi 

N ] for all\phi \in \=VN .(3.17)

When N is odd, note that \=\scrJ N,N = \emptyset , so we will get the cubature formula for free at the
Nth order. Therefore, we shall always consider odd N .

Example 3.6. (i) In the case N = 3, obviously we have

\=\scrJ 1,3 = \=\scrJ 3,3 = \emptyset , \=\scrJ 2,3 = \{ (j, j) : 1\leq j \leq d\} .(3.18)

(ii) In the case N = 5, we have

\=\scrJ 1,5 = \=\scrJ 5,5 = \emptyset , \=\scrJ 2,5 = \{ (j, j) : 1\leq j \leq d\} , \=\scrJ 3,5 = \{ (j, j,0), (j,0, j), (0, j, j)\} ,
\=\scrJ 4,5 = \{ (j, j, j, j), (j, j,\~j,\~j), (j,\~j, j,\~j), (j,\~j,\~j, j) : 1\leq j \not =\~j \leq d\} .(3.19)

4. The cubature formula: The multiple period case. In this case, we consider general
T , and we use the setting in section 2, in particular \delta := T

M .

4.1. The cubature formula on each subinterval [\bfitT \bfitm , \bfitT \bfitm +\bfone ]. Recall (2.19). Note that

in (3.2), \scrV 0(\vec{}i,\vec{}j,\vec{}\kappa ;x) and
\int 
Tn

\scrK (\vec{}i,\vec{}\kappa ;\vec{}t) \circ dB\vec{}j
\vec{}t
are separated and the cubature measure Q is

determined only by
\int 
Tn

\scrK (\vec{}i,\vec{}\kappa ;\vec{}t) \circ dB\vec{}j
\vec{}t
. In (2.19), however,

\scrV (\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t,\Theta \vec{}t
Tm
,\Theta 

[tm0 ,T ]
Tm

) =

n\prod 
\alpha =1

\partial \vec{}\kappa ,\alpha \vec{}i
V i\alpha 
j\alpha 
(\Theta t\alpha 

Tm
)\scrK +(\vec{}i,\vec{}\kappa ;\vec{}t) \langle \partial \vec{}\kappa \vec{}i u(t

m
0 ,\Theta 

[tm0 ,T ]
Tm

), \vec{}\scrK 0(\vec{}i,\vec{}\kappa ;\vec{}t)\rangle 

and we are not able to move the term
\prod n

\alpha =1 \partial 
\vec{}\kappa ,\alpha 
\vec{}i

V i\alpha 
j\alpha 
(\Theta t\alpha 

Tm
) outside of the stochastic integral,

which prohibits us from constructing a desirable Qm to match the conditional expectations of
ImN : EQm

m [ImN ] =Em[ImN ]. In light of (2.20), we shall instead content ourselves with\bigm| \bigm| \bigm| EQm
m [ImN ] - Em[ImN ]

\bigm| \bigm| \bigm| \leq C\delta 
N+1

2 .(4.1)

We shall remark, though, that in general, conditional expectations are only defined in the a.s.
sense, which requires specifying the probability on \scrF Tm

. However, here we will construct Qm

only on the paths on [Tm, Tm+1]. For this purpose, we interpret the conditional expectations
in a pathwise sense, as we explain in the remark below, so that (4.1) could make sense.

Remark 4.1. Under our conditions, one can easily see that Em[ImN ] = vm(\Theta 
[Tm,T ]
Tm

) for a
deterministic function vm \in C(XTm

). Similarly, for the Qm we are going to construct, we
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VOLTERRA CUBATURE FORMULA 971

will interpret it as a regular conditional probability distribution, and thus we also have the

structure EQm
m [ImN ] = \~vm(\Theta 

[Tm,T ]
Tm

) for a deterministic function \~vm \in C(XTm
). Then by (4.1) we

actually mean a stronger result:

| \~vm(\theta ) - vm(\theta )| \leq C\delta 
N+1

2 for all \theta \in XTm
.(4.2)

We refer the reader to [54, Chapter 9] for more details of the pathwise stochastic analysis. In
this paper, since our main focus is the approximation, to avoid introducing further complicated
notations, we abuse notation slightly and write them as conditional expectations.

From now on, we shall assume Ki is sufficiently smooth in (t, r). Then, recalling (2.6), the
mapping s\in [Tm, T ]\rightarrow \Theta s

Tm
is smooth: for any \alpha \geq 0,

\partial \alpha 

\partial s\alpha 
\Theta i,s

Tm
=

d\sum 
j=0

\int Tm

0

\partial \alpha 

\partial s\alpha 
Ki(s, r)V

i
j (Xr) \circ dBj

r .(4.3)

Then the mapping \vec{}t \in Tm
n \rightarrow \v \scrV (\vec{}t) := \scrV (\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t,\Theta \vec{}t

Tm
,\Theta 

[tm0 ,T ]
Tm

) is also smooth. Our idea is to

introduce further the Taylor expansion of \v \scrV (\vec{}t) at \vec{}Tm := (Tm, . . . , Tm). For any \vec{}\alpha = (\alpha 1, . . . , \alpha n)
with \alpha l = 0,1, . . . , denote \| \vec{}\alpha \| :=

\sum n
l=1\alpha l and \vec{}\alpha ! :=

\prod n
l=1(\alpha l!). Then by the standard Taylor

expansion formula we have, for any k\geq 0,

\v \scrV (\vec{}t) =
\sum 

\| \vec{}\alpha \| \leq k

1

\vec{}\alpha !

\partial \| \vec{}\alpha \| 

\partial \vec{}t\vec{}\alpha 
\v \scrV (\vec{}Tm)

n\prod 
l=1

(tl  - Tm)\alpha l + \v Rk(\vec{}t), where
\partial \| \vec{}\alpha \| 

\partial \vec{}t\vec{}\alpha 
:=

\partial \| \vec{}\alpha \| 

\partial t\alpha 1

1 \cdot \cdot \cdot \partial t\alpha n
n

and | \v Rk(\vec{}t)| \leq Cn,k sup
\| \vec{}\alpha \| =k+1

sup
sl\in [Tm,tl],l=1,...,n

\bigm| \bigm| \bigm| \bigm| \bigm| \partial k+1

\partial \vec{}t\vec{}\alpha 
\v \scrV (s1, . . . , sn)

\bigm| \bigm| \bigm| \bigm| \bigm| \delta k+1.

(4.4)

We now extend Theorem 2.7. Recall Lemma 3.4 and Theorem 3.5.

Theorem 4.2. Let N be odd, and let (H0-N - 1
2 ), (H(N+3)) hold. Let \v Rm

N be determined
by

ImN = \v ImN + \v Rm
N , where(4.5)

\v ImN := u(tm0 ,\Theta 
[tm0 ,T ]
Tm

) +

N\sum 
n=1

\sum 
\vec{}i\in \scrI n,\vec{}\kappa \in \scrS n

\Biggl[ \sum 
\vec{}j\in \scrJ n,N\setminus \=\scrJ n,N

\int 
Tm

n

\scrV (\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t,\Theta \vec{}t
Tm
,\Theta 

[tm0 ,T ]
Tm

) \circ dB\vec{}j
\vec{}t

+
\sum 

\vec{}j\in \=\scrJ n,N

\sum 
\vec{}\alpha :\| \vec{}\alpha \| \leq N - \| \vec{}j\| 

2

1

\vec{}\alpha !

\partial \| \vec{}\alpha \| 

\partial \vec{}t\vec{}\alpha 
\scrV (\vec{}i,\vec{}j,\vec{}\kappa ; \vec{}Tm,\Theta 

\vec{}Tm

Tm
,\Theta 

[tm0 ,T ]
Tm

)

\int 
Tm

n

n\prod 
l=1

(tl  - Tm)\alpha l \circ dB\vec{}j
\vec{}t

\Biggr] 
.

Then there exists a constant Cm
N , which depends on N , Hi, and the upper bounds of V i

j and
their derivatives up to the order N + 2, such that

Em[| \v Rm
N | 2]\leq Cm

N e
Cm

N T \delta N+1.(4.6)
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972 QI FENG AND JIANFENG ZHANG

Proof. For each \vec{}j \in \=\scrJ n,N , noting that \| \vec{}j\| is even and N is odd, set k := N - \| \vec{}j\|  - 1
2 . Using

the notations in (4.4), one can see that \partial k+1

\partial \vec{}t\vec{}\alpha 
\v \scrV involves the derivatives of V i

j and u(tm0 , \cdot ) up to

the order n+k+1 and the derivatives of Ki up to the order k+1. Note that 2\leq \| \vec{}j\| \leq N  - 1,
and then

n+ k+ 1\leq \| \vec{}j\| + N  - \| \vec{}j\|  - 1

2
+ 1=

N + \| \vec{}j\| + 1

2
+ 1\leq N + 1,

k+ 1=
N  - \| \vec{}j\|  - 1

2
+ 1\leq N  - 3

2
+ 1\leq N  - 1

2
.

Recall Proposition 2.4 for the bounds of the derivatives of u. Now, following the arguments
in Theorem 2.7, one can easily see that, for some appropriate constant C depending on the
parameters specified in this theorem,

E
\biggl[ \bigm| \bigm| \bigm| \bigm| \int 

Tm
n

\v Rk(\vec{}t) \circ dB
\vec{}j
\vec{}t

\bigm| \bigm| \bigm| \bigm| 2\biggr] \leq CeC
m
N T \delta 2(k+1)+\| \vec{}j\| =CeC

m
N T \delta N+1.

This implies (4.6) immediately.

We next introduce Qm as in (3.6) but on paths on [Tm, Tm+1]:

Qm :=

2W\sum 
k=1

\lambda k\delta \omega k
, \lambda k>0,

2W\sum 
k=1

\lambda k = 1,

\lambda W+k = \lambda k, \omega W+k = - \omega k, 1\leq k\leq W,

\omega k,0 = Tm, \omega k,t = \omega k,sl - 1
+
ak,l\surd 
\delta 
[t - sl - 1], t\in (sl - 1, sl], sl := Tm +

l

L
\delta , 0\leq l\leq L.

(4.7)

Recall Remark 4.1.

Definition 4.3. Let N \geq 1 be odd, and fix m. We say Qm defined in (4.7) is a modified

N -Volterra cubature formula on [Tm, Tm+1] if, for all n\leq N , \vec{}j \in \=\scrJ n,N , and \| \vec{}\alpha \| \leq N - \| \vec{}j\|  - 1
2 ,

EQm
m

\biggl[ \int 
Tm

n

n\prod 
l=1

(tl  - Tm)\alpha l \circ dB\vec{}j
\vec{}t

\biggr] 
=Em

\biggl[ \int 
Tm

n

n\prod 
l=1

(tl  - Tm)\alpha l \circ dB\vec{}j
\vec{}t

\biggr] 
.(4.8)

Remark 4.4. (i) The equations in (4.8) corresponding to \| \vec{}\alpha \| = 0 exactly characterize the
cubature measures for Brownian motions. That is, our modified N -Volterra cubature formula
is a cubature formula for the standard one but not vice versa in general. In the case N = 3,
however, as we will see in Example 4.6(i) below, the two are equivalent.

(ii) The kernel
\prod n

l=1(tl  - Tm)\alpha l in (4.8) is rescalable in the sense of (3.13). Then, by the

same arguments as in Theorem 3.3, CQm
:=max1\leq k\leq W,1\leq j\leq d,1\leq l\leq L | ajk,l| is independent of \delta (or

M). Indeed, as in (8.9) below, Qm is a modified N -Volterra cubature formula on [Tm, Tm+1]
if and only if the following Q\ast 

N is a modified N -Volterra cubature formula on [0,1]:

Q\ast 
N :=

2W\sum 
k=1

\lambda k\delta \omega k
, \lambda k>0,

2W\sum 
k=1

\lambda k = 1,

\lambda W+k = \lambda k, \omega W+k = - \omega k, 1\leq k\leq W,

\omega k,0 = 0, \omega k,t = \omega k,sl - 1
+ ak,l[t - s\ast l - 1], t\in (s\ast l - 1, s

\ast 
l ], s

\ast 
l :=

l

L
, 0\leq l\leq L.

(4.9)
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VOLTERRA CUBATURE FORMULA 973

We emphasize that Q\ast 
N is universal, in the sense that it depends only on N , the dimensions,

and our construction of the cubature measure, but it does not depend on T,M , or even K. In
particular, CQ\ast 

N
:=max1\leq k\leq W,1\leq j\leq d,1\leq l\leq L | ajk,l| is independent of T , M , or \delta and CQm

=CQ\ast 
N
.

Theorem 4.5. Let N be odd, let (H0-N - 1
2 ), (H(N+3)) hold, and let Qm be as in Defi-

nition 4.3. Then, for the Cm
N as in Theorem 4.2 and CQ\ast 

N
in Remark 4.4, we have\bigm| \bigm| \bigm| EQm

m [u(Tm+1,\Theta 
[Tm+1,T ]
Tm+1

)] - Em[u(Tm+1,\Theta 
[Tm+1,T ]
Tm+1

)]
\bigm| \bigm| \bigm| \leq Cm

N (1 +CN - 1
Q\ast 

N
)eC

m
N T \delta 

N+1

2

+CN

\Bigl[ 
Am

N+1(1 +CN - 1
Q\ast 

N
)\delta 

N+1

2 +Am
N+2(1 +CN - 2

Q\ast 
N

)\delta 
N+2

2 +Am
N+3\delta 

N+3

2

\Bigr] 
.

(4.10)

This proof is also postponed to the appendix.

Example 4.6. (i) When N = 3, recall (3.18) and note that N - \| \vec{}j\|  - 1
2 = 0 for \vec{}j = (j, j)\in \=\scrJ 2,3,

and we see that (4.8) is equivalent to the cubature formula for standard Brownian motions:

EQm
m

\biggl[ \int 
Tm

2

\circ dB(j,j)
\vec{}t

\biggr] 
=Em

\biggl[ \int 
Tm

2

\circ dB(j,j)
\vec{}t

\biggr] 
=
\delta 

2
.(4.11)

(ii) In the case N = 5, recall (3.19) and note that N - \| \vec{}j\|  - 1
2 = 1 for \vec{}j = (j, j) \in \=\scrJ 2,5 and

N - \| \vec{}j\|  - 1
2 = 0 for \vec{}j \in \=\scrJ 3,5 \cup \=\scrJ 4,5; then (4.8) is equivalent to the folllowing: for 1 \leq j \not = \~j \leq d,

l= 1,2,

EQm
m

\biggl[ \int 
Tm

2

\circ dB(j,j)
\vec{}t

\biggr] 
=Em

\biggl[ \int 
Tm

2

\circ dB(j,j)
\vec{}t

\biggr] 
=
\delta 

2
,

EQm
m

\biggl[ \int 
Tm

2

(tl  - Tm) \circ dB(j,j)
\vec{}t

\biggr] 
=Em

\biggl[ \int 
Tm

2

(tl  - Tm) \circ dB(j,j)
\vec{}t

\biggr] 
=
\delta 2

4
,

EQm
m

\biggl[ \int 
Tm

3

\circ dB\vec{}j
\vec{}t

\biggr] 
=Em

\biggl[ \int 
Tm

3

\circ dB\vec{}j
\vec{}t

\biggr] 
=
\delta 2

4
, \vec{}j = (j, j,0), (0, j, j),

EQm
m

\biggl[ \int 
Tm

3

\circ dB(j,0,j)
\vec{}t

\biggr] 
=Em

\biggl[ \int 
Tm

3

\circ dB(j,0,j)
\vec{}t

\biggr] 
= 0,

EQm
m

\biggl[ \int 
Tm

4

\circ dB\vec{}j
\vec{}t

\biggr] 
=Em

\biggl[ \int 
Tm

4

\circ dB\vec{}j
\vec{}t

\biggr] 
=
\delta 2

8
, \vec{}j = (j, j, j, j), (j, j,\~j,\~j),

EQm
m

\biggl[ \int 
Tm

4

\circ dB\vec{}j
\vec{}t

\biggr] 
=Em

\biggl[ \int 
Tm

4

\circ dB\vec{}j
\vec{}t

\biggr] 
= 0, \vec{}j = (j,\~j, j,\~j), (j,\~j,\~j, j).

(4.12)

4.2. The cubature formula on the whole interval [0, \bfitT ]. Recall that Qm is defined on
C([Tm, Tm+1];Rd1). We shall now compose all the Qm:

Q :=Q0 \otimes \cdot \cdot \cdot \otimes QM - 1.(4.13)

Here\otimes refers to independent composition. Then Q is a probability measure on \Omega =C([0, T ];Rd1).
Similarly, let Pm denote the Wiener measure on C([Tm, Tm+1];Rd1); then P= P0\otimes \cdot \cdot \cdot \otimes PM - 1.
The following result extends [40, Theorem 3.3] to our setting.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/3

1/
23

 to
 1

44
.1

74
.2

12
.5

8 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



974 QI FENG AND JIANFENG ZHANG

Theorem 4.7. Let N be odd, let (H0-N - 1
2 ), (H(N+4)) hold, and let Q be defined by

(4.13) with each Qm as in Definition 4.3. Then, for the Cm
N in Theorem 4.5 and CQ\ast 

N
in

Remark 4.4, we have

\bigm| \bigm| \bigm| EQ[G(XT )] - E[G(XT )]
\bigm| \bigm| \bigm| \leq M - 1\sum 

m=0

\Bigl[ 
Cm
N (1 +CN - 1

Q\ast 
N

)eC
m
N T \delta 

N+1

2

+CN [Am
N+1(1 +CN - 1

Q\ast 
N

)\delta 
N+1

2 +Am
N+2\delta 

N+2

2 (1 + [CQ\ast 
N

\surd 
\delta ]N - 2) +Am

N+3\delta 
N+3

2 ]
\Bigr] 
.

(4.14)

Moreover, for a possibly larger CN which may depend on the bounds of the derivatives of V i
j

up to the order N + 4 and the CQ\ast 
N
, but not on M , we have2\bigm| \bigm| \bigm| EQ[G(XT )] - E[G(XT )]

\bigm| \bigm| \bigm| \leq CNMeCNT \delta 
N+1

2 =CNe
CNT T

N+1

2

M
N - 1

2

,(4.15)

which converges to 0 as M \rightarrow \infty .

Proof. Note that, recalling (2.8),\bigm| \bigm| \bigm| EQ[G(XT )] - E[G(XT )]
\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| EQ0\otimes \cdot \cdot \cdot \otimes QM - 1 [G(XT )] - EP0\otimes \cdot \cdot \cdot \otimes PM - 1 [G(XT )]

\bigm| \bigm| \bigm| 
\leq 

M - 1\sum 
m=0

\bigm| \bigm| \bigm| EQ0\otimes \cdot \cdot \cdot \otimes Qm\otimes Pm+1\otimes \cdot \cdot \cdot \otimes PM - 1 [G(XT )] - EQ0\otimes \cdot \cdot \cdot Qm - 1\otimes Pm\otimes \cdot \cdot \cdot \otimes PM - 1 [G(XT )]
\bigm| \bigm| \bigm| 

\leq 
M - 1\sum 
m=0

\bigm| \bigm| \bigm| EQ0\otimes \cdot \cdot \cdot \otimes Qm [u(Tm+1,\Theta 
[Tm+1,T ]
Tm+1

)] - EQ0\otimes \cdot \cdot \cdot Qm - 1\otimes Pm [u(Tm+1,\Theta 
[Tm+1,T ]
Tm+1

)]
\bigm| \bigm| \bigm| 

\leq 
M - 1\sum 
m=0

EQ0\otimes \cdot \cdot \cdot \otimes Qm - 1

\Bigl[ \bigm| \bigm| \bigm| EQm
m [u(Tm+1,\Theta 

[Tm+1,T ]
Tm+1

)] - EPm
m [u(Tm+1,\Theta 

[Tm+1,T ]
Tm+1

)]
\bigm| \bigm| \bigm| \Bigr] .

Recall Remark 4.1, and note that EPm
m =Em; then by (4.2) we see that (4.14) follows directly

from (4.10). Finally, by (2.12), (2.18), and Proposition 2.4 we obtain (4.15).

Remark 4.8. (i) Compared to Theorem 3.3, the above Theorem 4.7 allows us to deal with
large T . Moreover, compared with the Q in (3.17), it is easier to construct the cubature
measure Qm in (4.8) and the Q in (4.13). The price to pay, however, is that (4.8) requires
higher regularity of Ki in order to have the desired convergence rate.

(ii) Provided sufficient regularity (H0-N - 1
2 ) on Ki (and (H(N+4)) on V i

j and G ), we
have the convergence and its rate in (4.15) as M \rightarrow \infty , which is very desirable in theory.
However, by (4.7) and (4.13), we see that each Qm will involve 2W paths, and thus the
independent composition Q will involve (2W )M paths. Therefore, practically we still don't
want to make M too large, which in turn means that T cannot be too large. We note that the
same difficulty arises in the Brownian setting, and there have been various ideas on improving

2The constant eCNT below is due to the estimate for the derivatives of u in Proposition 2.4. If one can
improve this estimate, under certain technical conditions, then one can replace eCN T with the new bound for
the derivatives of u up to the order N + 3. This comment is valid for the estimates in (4.6), (4.10), (4.14) as
well.
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VOLTERRA CUBATURE FORMULA 975

the efficiency, for example the recombination schemes in [30, 38]. It will be very interesting
to explore these ideas and see if they can be extended to the Volterra setting.

(iii) Note that the choice of Qm is not unique. In particular, (4.8) involves a certain number
of equations. To make it solvable, we need to allow for a sufficient number of parameters \lambda k,
ak,l, 1\leq k\leq W , 0\leq l\leq L - 1. As mentioned in (ii), the complexity of our cubature algorithm
increases dramatically for large W but is much less sensitive to the value of L. So, whenever
possible, we would prefer a small W while allowing for a reasonably large L. We shall remark
that, when the dimension d1 is large, typically we need a large W . This consideration is not
serious for the one period case, which, however, requires T to be small.

(iv) Clearly, we have a better rate for a larger N (again, provided sufficient regularity).
However, a larger N implies more equations in (4.8), which in turn requires larger values of
W and/or L. In the meantime, a larger N implies a larger CN in (4.15). So the algorithm
may not be always more efficient for a larger N .

5. A one dimensional model. In this section, we focus on the following model with
d= d1 = 1:

Xt = x0 +

\int t

0
K(t, r)V (Xr) \circ dBr, K(t, r) = (t - r)H - 1

2 ,(5.1)

where the Brownian motion B is one dimensional and the Hurst parameter H> 1
2 . We inves-

tigate a few cases in detail and compute the desired Q. We shall illustrate the efficiency of
our algorithm in these cases by several numerical examples in section 7 below.

Note that in this case V 1
0 \equiv 0; then there is no need to consider j = 0. So, for n \leq N ,

by abusing notation we may view \scrI n = \{ (1, . . . ,1)\} , \scrJ n = \scrJ n,N = \{ (1, . . . ,1)\} . We may omit
\vec{}i= (1, . . . ,1), \vec{}j = (1, . . . ,1) inside \scrK and \scrV in (2.12).

5.1. The multiple period case with order \bfitN = 3. We shall construct Qm as in (4.7)
for a fixed m. In the numerical examples in section 7, we may simply compose these Qm

independently as in (4.13).
In this case, (4.11) consists of only one equation:

EQm

\biggl[ \int Tm+1

Tm

\int t1

Tm

dBt2 \circ dBt1

\biggr] 
=
\delta 

2
.(5.2)

To construct Qm, we set W = 1 and L= 1 in (4.7):

\lambda 1 =
1

2
, d\omega 1,t =

a\surd 
\delta 
dt, t\in [Tm, Tm+1].(5.3)

Then (5.2) becomes

\delta 

2
=

\int Tm+1

Tm

\int t1

Tm

d\omega t2d\omega t1 =
a2

\delta 

\int Tm+1

Tm

\int t1

Tm

dt2dt1 =
a2\delta 

2
.

Thus,

a= 1, and hence \omega 1,t =
t - Tm\surd 

\delta 
, t\in [Tm, Tm+1].(5.4)
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976 QI FENG AND JIANFENG ZHANG

We remark that the above computation does not involve H, in fact, as we saw in Exam-
ple 4.6(i), the cubature measure in this case coincides with that of standard Brownian motion.
However, in order to have the desired error estimate, by Theorem 4.5 we need H> 3

2 .

5.2. The multiple period case with order \bfitN = 5. While we may apply (4.12) directly,
in this one dimensional case actually we may simplify the problem further. Note that the cor-
responding term which requires the further expansion (4.4) or (4.5) is the following: recalling
(2.11) and abusing the notation \v \scrV (\vec{}t),\sum 

\vec{}\kappa \in \scrS 2

\int 
Tm

2

\scrV (\vec{}\kappa ;\vec{}t,\Theta \vec{}t
Tm
,\Theta 

[tm0 ,T ]
Tm

) \circ dB(1,1)
\vec{}t

=

\int 
Tm

2

\v \scrV (\vec{}t) \circ dB(1,1)
\vec{}t

,

where \v \scrV (\vec{}t) := \langle \partial \bfx \bfx u(tm0 ,\Theta 
[tm0 ,T ]
Tm

), (K
[tm0 ,T ]
t1 ,K

[tm0 ,T ]
t2 )\rangle V (\Theta t1

Tm
)V (\Theta t2

Tm
)

+ \langle \partial \bfx u(tm0 ,\Theta 
[tm0 ,T ]
Tm

),K
[tm0 ,T ]
t1 \rangle K(t1, t2)\partial xV (\Theta t1

Tm
)V (\Theta t2

Tm
).

For N = 5, we shall assume (H0-2), namely H> 5
2 ; then K(Tm, Tm) = \partial tK(Tm, Tm) =

\partial rK(Tm, Tm) = 0. Thus,

\partial t1 \v \scrV (\vec{}t)| \vec{}t=(Tm,Tm) = \langle \partial \bfx \bfx u(tm0 ,\Theta 
[tm0 ,T ]
Tm

), (\partial rK
[tm0 ,T ]
r | r=Tm

,K
[tm0 ,T ]
Tm

)\rangle V (XTm
)V (XTm

)

+ \langle \partial \bfx \bfx u(tm0 ,\Theta 
[tm0 ,T ]
Tm

), (K
[tm0 ,T ]
Tm

,K
[tm0 ,T ]
Tm

)\rangle V \prime (XTm
)V (XTm

)\partial s\Theta 
s
Tm

| s=Tm
,

\partial t2 \v \scrV (\vec{}t)| \vec{}t=(Tm,Tm) = \langle \partial \bfx \bfx u(tm0 ,\Theta 
[tm0 ,T ]
Tm

), (K
[tm0 ,T ]
Tm

, \partial rK
[tm0 ,T ]
r | r=Tm

)\rangle V (XTm
)V (XTm

)

+ \langle \partial \bfx \bfx u(tm0 ,\Theta 
[tm0 ,T ]
Tm

), (K
[tm0 ,T ]
Tm

,K
[tm0 ,T ]
Tm

)\rangle V \prime (XTm
)V (XTm

)\partial s\Theta 
s
Tm

| s=Tm
.

Note that \langle \partial xxu, (\eta 1, \eta 2)\rangle = \langle \partial xxu, (\eta 2, \eta 1)\rangle ; then

\partial t1 \v \scrV (\vec{}t)| \vec{}t=(Tm,Tm) = \partial t2 \v \scrV (\vec{}t)| \vec{}t=(Tm,Tm).

This leads to the following expansion:\int 
Tm

2

\v \scrV (\vec{}t) \circ dB(1,1)
\vec{}t

= \v \scrV (Tm, Tm)

\int 
Tm

2

dB
(1,1)
\vec{}t

+ \partial t1 \v \scrV (\vec{}t)| \vec{}t=(Tm,Tm)

\int 
Tm

2

[(t1  - Tm) + (t2  - Tm)] \circ dB(1,1)
\vec{}t

+ \v R(\vec{}t),

where \v R(\vec{}t) satisfies the desired estimate. Consequently, we may merge the two equations in
the second line of (4.12) into one equation, in the same spirit of (3.5), by considering only
their sum. Therefore, in this case, (4.12) reduces to three equations:

EQm

\biggl[ \int Tm+1

Tm

\int t1

Tm

dBt2 \circ dBt1

\biggr] 
=
\delta 

2
,

EQm

\biggl[ \int Tm+1

Tm

\int t1

Tm

[(t1  - Tm) + (t2  - Tm)]dBt2 \circ dBt1

\biggr] 
=
\delta 2

2
,

EQm

\biggl[ \int Tm+1

Tm

\int t1

Tm

\int t2

Tm

\int t3

Tm

dBt4 \circ dBt3 \circ dBt2 \circ dBt1

\biggr] 
=
\delta 2

8
.

(5.5)
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VOLTERRA CUBATURE FORMULA 977

To construct Qm, we set W = 2 and L= 1 in (4.7):

\lambda 1 + \lambda 2 =
1

2
, d\omega k,t =

ak\surd 
\delta 
dt, k= 1,2.(5.6)

Note that, in light of Remark 4.8, we would prefer a small W . However, if we set W = 1 here,
the cubature measure Qm does not exist for any value L. By straightforward calculation, we
see that (5.5) becomes

2\sum 
k=1

\lambda ka
2
k\delta =

\delta 

2
;

2\sum 
k=1

\lambda ka
2
k\delta 

2 =
\delta 2

2
;

2\sum 
k=1

\lambda k
a4k
12
\delta 2 =

\delta 2

8
.(5.7)

In particular, the first two equations coincide, and we obtain

a21 = 4

\Biggl[ 
1 +

\sqrt{} 
2\lambda 2
\lambda 1

\Biggr] 
, a22 = 4

\Biggl[ 
1 - 

\sqrt{} 
2\lambda 1
\lambda 2

\Biggr] 
.(5.8)

This requires \lambda 1 \leq 1
6 so that

\sqrt{} 
2\lambda 1

\lambda 2
\leq 1. Then, for any 0\leq \lambda 1 \leq 1

6 , we would obtain a solution

by (5.8). One particular solution is

\lambda 1 :=
1

6
, \lambda 2 :=

1

3
, a1 =

\surd 
3, a2 := 0.(5.9)

We remark that, in this case,  - \omega 2 = \omega 2 = 0, so we actually have a total of three paths, instead
of four paths: by abusing the notation \lambda 2,

\lambda 1 =
1

6
, d\omega 1,t =

\sqrt{} 
3

\delta 
dt, \lambda 2 =

2

3
,

d

dt
\omega 2,t = 0, \lambda 3 =

1

6
, d\omega 3,t = - 

\sqrt{} 
3

\delta 
dt.(5.10)

5.3. The one period case with order \bfitN = 3. Recall (3.16) and (3.18), in particular we
shall only consider n= 2. Then one can verify straightforwardly that

\scrS 2 = \{ (0,0); (0,1)\} , \=V3 =
\Bigl\{ 
\scrV 0(\vec{}\kappa ; \cdot ) : \vec{}\kappa \in \scrS 2

\Bigr\} 
= \{ G\prime \prime V 2, G\prime V \prime V \} ,

\=\Gamma G\prime \prime V 2

3 =

\int 
T2

\scrK ((0,0);\vec{}t) \circ dB(1,1)
\vec{}t

=

\int T

0

\int t1

0
[(T  - t1)(T  - t2)]

H - 1

2dBt2 \circ dBt1 ,

\=\Gamma G\prime V \prime V
3 =

\int 
T2

\scrK ((0,1);\vec{}t) \circ dB(1,1)
\vec{}t

=

\int T

0

\int t1

0
[(T  - t1)(t1  - t2)]

H - 1

2dBt2 \circ dBt1 .

(5.11)

By (2.16), one can easily compute that

E[\=\Gamma G\prime \prime V 2

3 ] =
T 2H

4H
, E

\Bigl[ 
\=\Gamma G\prime V \prime V
3

\Bigr] 
= 0.(5.12)

To construct Q, we set W = 1 and L= 2 in (3.6) :

\lambda 1 =
1

2
, d\omega 1,t =

\biggl[ 
a1\surd 
T
1[0,T

2
](t) +

a2\surd 
T
1(T

2
,T ](t)

\biggr] 
dt.(5.13)
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978 QI FENG AND JIANFENG ZHANG

For notational simplicity, we introduce

H - :=H  - 1

2
>0, H+ :=H +

1

2
>1.(5.14)

Then one may compute

EQ[\=\Gamma G\prime \prime V 2

3 ] =

\int T

0

\int t1

0
[(T  - t1)(T  - t2)]

H - d\omega 1,t2d\omega 1,t1 =
T 2H

2H2
+

\biggl[ \biggl( 
1 - 1

2H+

\biggr) 
a1 +

a2
2H+

\biggr] 2
,

EQ[\=\Gamma G\prime V \prime V
3 ] =

\int T

0

\int t1

0
[(T  - t1)(t1  - t2)]

H - d\omega 1,t2d\omega 1,t1 = T 2H [c1a
2
1 + c2a1a2 + c3a

2
2],

(5.15)

where

c1 :=

\int 1

2

0

\int t1

0
[(1 - t1)(t1  - t2)]

H - dt2dt1 =
1

H+

\int 1

2

0
(1 - t)H - tH+dt,

c2 :=

\int 1

1

2

\int 1

2

0
[(1 - t1)(t1  - t2)]

H - dt2dt1 =
1

H+

\int 1

1

2

(1 - t)H - 

\biggl[ 
tH+  - 

\biggl( 
t - 1

2

\biggr) H+
\biggr] 
dt,

c3 :=

\int 1

1

2

\int t1

1

2

[(1 - t1)(t1  - t2)]
H - dt2dt1 =

1

H+

\int 1

1

2

(1 - t)H - 

\biggl( 
t - 1

2

\biggr) H+

dt.

(5.16)

Combining (5.12) and (5.15), we obtain from (3.9) that\Bigl[ 
(2H+  - 1)a1 + a2

\Bigr] 2
=
H2

+2
2H+

2H
, c1a

2
1 + c2a1a2 + c3a

2
2 = 0.(5.17)

First, by the second equation we obtain (we may use the other one as well)

a2
a1

= c4 :=
 - c2 +

\sqrt{} 
c22  - 4c1c3
2c3

.(5.18)

Plugging this into the first equation in (5.17), we obtain one solution:

a1 =
H+2

H+

\surd 
2H[2H+ + c4  - 1]

, a2 =
H+2

H+c4\surd 
2H[2H+ + c4  - 1]

.(5.19)

Example 5.1. Setting H = 3
2 as above, then one may compute straightforwardly that

c1 =
5

384
, c2 =

10

384
, c3 =

1

384
, c4 = - 5 + 2

\surd 
5,

a1 =

\surd 
5 + 1\surd 
3

, a2 =
5 - 3

\surd 
5\surd 

3
,

and we obtain Q through (5.13).

5.4. The one period case with order \bfitN = 5. Recall (3.16) and (3.19); in particular, we
shall only consider n = 2 and n = 4. Clearly, \=V3 \subset \=V5 for the \=V3 in (5.11). Moreover, again
omitting \vec{}i= (1, . . . ,1), \vec{}j = (1, . . . ,1),

\=V5\setminus \=V3 =
\Bigl\{ 
\scrV 0(\vec{}\kappa ; \cdot ) : \vec{}\kappa \in \scrS 4

\Bigr\} 
.

Recall (5.14) and the Gamma function \Gamma (\alpha ,\beta ) :=
\int 1
0 (1 - t)\alpha  - 1t\beta  - 1dt, and denote by \varphi (k) the

kth derivative of \varphi . We then have the following result.
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VOLTERRA CUBATURE FORMULA 979

Lemma 5.2. For the above model, we have \=V5\setminus \=V3 = \{ \phi \alpha \} 1\leq \alpha \leq 7, where

\phi 1 =G(4)V 4, \phi 2 =G(3)V \prime V 3, \phi 3 =G\prime \prime V \prime \prime V 3, \phi 4 =G\prime \prime (V \prime )2V 2,

\phi 5 =G\prime V (3)V 3, \phi 6 =G\prime V \prime \prime V \prime V 2, \phi 7 =G\prime (V \prime )3V.
(5.20)

Moreover, denoting \gamma \phi \alpha 

4 :=E[\=\Gamma \phi \alpha 

4 ], we have

\gamma \phi 1 =
T 4H

32H2
, \gamma \phi 2

4 =
T 4H

4H
\Gamma (2H,H+),

\gamma \phi 3

4 = \gamma \phi 4

4 =
T 4H

4H
\Gamma (2H,2H+), \gamma \phi 5

4 = \gamma \phi 6

4 = \gamma \phi 7

4 = 0.

(5.21)

Proof. Note that \scrS 4 =
\bigcup 7

\alpha =1 \scrS 4,\alpha :

(5.22)

\scrS 4,1 := \{ (0,0,0,0)\} , \scrS 4,5 := \{ (0,1,1,1)\} , \scrS 4,7 := \{ (0,1,2,3)\} ,
\scrS 4,2 := \{ (0,0,0,1), (0,0,1,0), (0,1,0,0), (0,0,0,2), (0,0,2,0), (0,0,0,3)\} ,
\scrS 4,3 := \{ (0,0,1,1), (0,1,0,1), (0,1,1,0), (0,0,2,2)\} ,
\scrS 4,4 := \{ (0,0,1,2), (0,0,2,1), (0,0,1,3), (0,0,2,3), (0,1,0,2), (0,1,2,0), (0,1,0,3)\} ,
\scrS 4,6 := \{ (0,1,1,2), (0,1,2,1), (0,1,2,2), (0,1,1,3)\} .

By (3.1), one can check that \scrV 0(\vec{}\kappa ; \cdot ) = \phi \alpha for all \vec{}\kappa \in \scrS 4,\alpha , \alpha = 1, . . . ,7. Then, by (2.16),

E
\biggl[ \int 

T4

\scrK (\vec{}\kappa ;\vec{}t) \circ dB(1,1,1,1)
\vec{}t

\biggr] 
=

1

4

\int T

0

\int t1

0
\scrK (\vec{}\kappa ; (t1, t1, t3, t3))dt3dt1

=
T 4H

4

\int 1

0

\int t1

0
[(1 - t1)(t\kappa 2

 - t1)(t\kappa 3
 - t3)(t\kappa 4

 - t3)]
H - dt3dt1.

Now the expectations in (5.21) follow from straightforward computation.

We next construct a desired Q. Note that (3.17) consists of two equations for n= 2 and
seven equations for n= 4. To allow for sufficient flexibility, we set W = 2 and L= 4 in (3.6):

\lambda 1 + \lambda 2 =
1

2
, d\omega k,t =

4\sum 
l=1

ak,l\surd 
T
1[sl - 1,sl)(t)dt, k= 1,2.(5.23)

Similar to (5.15), the following result is obvious.

Lemma 5.3. For the above model (5.23), we have, for k= 1,2,\int 
T2

\scrK ((0,0); (t1, t2))d(\omega k)
(1,1)
\vec{}t

=
1

2H2
+T

\biggl[ 4\sum 
l=1

[s
H+

l  - s
H+

l - 1]ak,l

\biggr] 2
,\int 

T2

\scrK ((0,1); (t1, t2))d(\omega k)
(1,1)
\vec{}t

=
1

T

\sum 
1\leq l2\leq l1\leq 4

c(l1, l2)ak,l1ak,l2 ,\int 
T4

\scrK (\vec{}\kappa ;\vec{}t)d(\omega k)
(1,1,1,1)
\vec{}t

=
1

T 2

\sum 
1\leq l4\leq l3\leq l2\leq l1\leq 4

c(\vec{}\kappa ,\vec{}l)ak,l1ak,l2ak,l3ak,l4 ,

(5.24)
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980 QI FENG AND JIANFENG ZHANG

where

c(l, l) :=

\int sl

sl - 1

\int t1

sl - 1

[(T  - t1)(t1  - t2)]
H - dt2dt1 =

1

H+

\int sl

sl - 1

(T  - t)H - (t - sl - 1)
H+dt,

c(l1, l2) :=

\int sl1

sl1 - 1

\int sl2

sl2 - 1

[(T  - t1)(t1  - t2)]
H - dt2dt1

=
1

H+

\int sl1

sl1 - 1

(T  - t)H - [(t - sl2 - 1)
H+  - (t - sl2)

H+ ]dt, l1>l2,

c(\vec{}\kappa ,\vec{}l) :=

\int sl1

sl1 - 1

\int sl2\wedge t1

sl2 - 1

\int sl3\wedge t2

sl3 - 1

\int sl4\wedge t3

sl4 - 1

\scrK (\vec{}\kappa ;\vec{}t)dt4dt3dt2dt1.

(5.25)

Combine (5.12), (5.21), and (5.24), we have the following result.

Theorem 5.4. Equation (3.9) is equivalent to the following equations:

\lambda 1 + \lambda 2 =
1

2
,

1

H2
+T

2\sum 
k=1

\lambda k

\biggl[ 4\sum 
l=1

[s
H+

l  - s
H+

l - 1]ak,l

\biggr] 2
=
T 2H

4H
,

2\sum 
k=1

\lambda k
\sum 

1\leq l2\leq l1\leq 4

c(l1, l2)ak,l1ak,l2 = 0,

2

4!T 2

\sum 
\vec{}l\in \{ 1,...,4\} 4

\sum 
\vec{}\kappa \in \scrS 4,\alpha 

2\sum 
k=1

\lambda kc(\vec{}\kappa ,\vec{}l)ak,l1ak,l2ak,l3ak,l4 = \gamma \phi \alpha 

4 , \alpha = 1, . . . ,7.

(5.26)

We remark that (5.26) consists of 10 equations with 10 unknowns: \lambda k, ak,l, l= 1,2,3,4, k=
1,2. Since these equations are nonlinear, in particular they involve fourth order polynomials
of ak,l, in general we are not able to derive explicit solutions as in (5.19). Indeed, even
the existence of solutions is not automatically guaranteed, and in that case we can actually
increase W and/or L in (5.23) to allow for more unknowns. Nevertheless, we can solve (5.26)
numerically, and our numerical examples in the next section show that the numerical solutions
of (5.26) serve for our purpose well.

6. A fractional stochastic volatility model. Consider a financial market where St denotes
the underlying asset price and Ut is the volatility process:

St = S0 +

\int t

0
b1(r,Sr,Ur)dr+

\int t

0
\sigma 1(r,Sr,Ur) \circ dB1

r ,

Ut =U0 +

\int t

0
K(t, r)b2(r,Ur)ds+

\int t

0
K(t, r)\sigma 2(r,Ur) \circ dB2

r .

(6.1)

Here B1,B2 are correlated Brownian motions with constant correlation \rho \in [ - 1,1], K(t, r) =
(t - r)H - 1

2 with Hurst parameter H> 1
2 . Assume for simplicity the interest rate is 0, and our

goal is to compute the option price E[G(ST )].
Note that (6.1) involves the time variable t, so we are in the situation with d = 2 and

d1 = 3 in (2.1). Indeed, denoting Xt = (X0
t ,X

1
t ,X

2
t ) := (t,St,Ut), then we have

x= (0, S0,U0), K0 =K1 = 1, K2 =K,

V 0 = (1,0,0), V 1 = (b1, \sigma 1,0), V 2 = (b2,0, \sigma 2).
(6.2)
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VOLTERRA CUBATURE FORMULA 981

Here, for notational simplicity, we use indices (0,1,2) instead of (1,2,3) for X. We shall
emphasize that, although B1,B2 are correlated here, the Taylor expansions (2.13) and (2.19)
will remain the same, but the expectations in Lemma 2.6 need to be modified in an obvious
way. In particular, (3.15) will hold true only when \| \vec{}j\| is odd. Therefore, in this section we
modify the \=\scrJ n,N in (3.16), still denoted as \=\scrJ n,N , by abusing notation:

\=\scrJ n,N := \{ \vec{}j \in \scrJ n,N\setminus \{ (0, . . . ,0)\} : \| \vec{}j\| is even\} .(6.3)

Then all the results in the previous sections remain true. Alternatively, we may express
B1,B2 as linear combinations of independent Brownian motions. However, this will make
V 1, V 2 more complicated and does not really simplify the analysis below.

6.1. The multiple period case with \bfitN = 3. By (6.3), we see that

\=\scrJ 1,3 = \=\scrJ 3,3 = \emptyset , \=\scrJ 2,3 = \{ (j1, j2) : j1, j2>0\} .

Thus, the cubature measure Qm should satisfy the following: for \vec{}j \in \=\scrJ 2,3,

EQm
m

\biggl[ \int 
Tm

n

\circ dB\vec{}j
\vec{}t

\biggr] 
=Em

\biggl[ \int 
Tm

n

\circ dB\vec{}j
\vec{}t

\biggr] 
.(6.4)

This is the same as the Brownian motion case. More precisely,

EQm
m

\biggl[ \int 
Tm

2

\circ dB(1,1)
\vec{}t

\biggr] 
=EQm

m

\biggl[ \int 
Tm

2

\circ dB(2,2)
\vec{}t

\biggr] 
=
\delta 

2
,

EQm
m

\biggl[ \int 
Tm

2

\circ dB(1,2)
\vec{}t

\biggr] 
=EQm

m

\biggl[ \int 
Tm

2

\circ dB(2,1)
\vec{}t

\biggr] 
=
\rho \delta 

2
.

(6.5)

To construct Qm, we set W = 2 and L= 1 in (4.7): noting that \omega is two dimensional,

\lambda 1 = \lambda 2 =
1

4
, d\omega k,t = d(\omega 1

k,t, \omega 
2
k,t) =

\biggl( 
a1k\surd 
\delta 
,
a2k\surd 
\delta 

\biggr) 
dt, k= 1,2.(6.6)

Plugging these into (6.5), we have

\delta 

4
[| a11| 2 + | a12| 2] =

\delta 

4
[| a21| 2 + | a22| 2] =

\delta 

2
,

\delta 

4
[a11a

2
1 + a12a

2
2] =

\rho \delta 

2
.(6.7)

One can easily solve the above equations:

a11 =
\surd 
2 sin(\theta 1), a12 =

\surd 
2cos(\theta 1), a21 =

\surd 
2 sin(\theta 2), a22 =

\surd 
2cos(\theta 2)

for any \theta 1, \theta 2 satisfying cos(\theta 1  - \theta 2) = \rho .
(6.8)

6.2. The one period case with \bfitN = 3. We first note that, due to the multiple dimen-
sionality here, the system corresponding to (3.17) will be pretty large, especially when N = 5
in the next subsection. However, since (X0

t ,X
1
t ) = (t,St) are not of Volterra type, the system

can be simplified significantly. Furthermore, we shall modify the cubature method slightly as
follows.

Remark 6.1. Recall that in (3.5) and (3.16) we group the terms with the same \scrV 0(\vec{}i,\vec{}j,\vec{}\kappa ; \cdot ).
Note that the mapping (\vec{}i,\vec{}j,\vec{}\kappa )\rightarrow 

\int 
Tn

\scrK (\vec{}i,\vec{}\kappa ;\vec{}t)\circ dB\vec{}j
\vec{}t
is also not one to one, and since (X0

t ,X
1
t ) =
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982 QI FENG AND JIANFENG ZHANG

(t,St), many terms do not appear in the Taylor expansion (or, say, the corresponding \scrV 0(\vec{}i,\vec{}j,
\vec{}\kappa ; \cdot ) = 0). It turns out that it will be more convenient to group the terms based on

\int 
Tn

\scrK (\vec{}i,\vec{}\kappa ;\vec{}t)\circ 
dB

\vec{}j
\vec{}t
for this model, as we will do in this and the next subsections. To be precise, let \~V0

N denote

the terms
\int 
Tn

\scrK (\vec{}i,\vec{}\kappa ;\vec{}t)\circ dB\vec{}j
\vec{}t
with (\vec{}i,\vec{}j,\vec{}\kappa )\in \scrI n\times (\scrJ n,N\setminus \{ (0, . . . ,0)\} )\times \scrS n appearing in the Taylor

expansion, and let\Delta \~V0
N := \~V0

N\setminus \~V0
N - 1. We emphasize that, unlike in (3.5), the elements here

are not \scrV 0. We then modify Definition 3.2 by replacing (3.9) with

EQ

\biggl[ \int 
Tn

\scrK (\vec{}i,\vec{}\kappa ;\vec{}t) \circ dB\vec{}j
\vec{}t

\biggr] 
=E

\biggl[ \int 
Tn

\scrK (\vec{}i,\vec{}\kappa ;\vec{}t) \circ dB\vec{}j
\vec{}t

\biggr] 
for all the terms in \~V0

N .(6.9)

We remark that if
\int 
Tn

\scrK (\vec{}i\prime ,\vec{}\kappa \prime ;\vec{}t) \circ dB\vec{}j\prime 

\vec{}t
=

\int 
Tn

\scrK (\vec{}i,\vec{}\kappa ;\vec{}t) \circ dB\vec{}j
\vec{}t
(as random variables), then

automatically we have
\int 
Tn

\scrK (\vec{}i\prime ,\vec{}\kappa \prime ;\vec{}t)d\omega 
\vec{}j\prime 

\vec{}t
=
\int 
Tn

\scrK (\vec{}i,\vec{}\kappa ;\vec{}t)d\omega 
\vec{}j
\vec{}t
for all \omega in (3.6).

Recalling from (6.3) that Lemma 3.4 remains true when \| \vec{}j\| is odd, we shall only find \Delta \~V0
2.

Instead of applying the Taylor expansion (3.2) directly on (6.1), we first expand E[G(ST )] as
in (3.2). Indeed, note that \Theta s

t = (t,St,\Theta 
s,2
t ), where

\Theta s,2
t =U0 +

\int t

0
K(s, r)b2(r,Ur)ds+

\int t

0
K(s, r)\sigma 2(r,Ur) \circ dB2

r .(6.10)

Then, applying the chain rule, we have the following: denoting \~b1 :=G\prime b1 and \~\sigma 1 :=G\prime \sigma 1,

G(ST ) =G(S0) +

\int T

0

\Bigl[ 
\~b1(\Theta 

t1
t1)dt1 + \~\sigma 1(\Theta 

t1
t1) \circ dB

1
t1

\Bigr] 
=R \not =2 +

\int 
T1

\~b1(\Theta 
t1
t1)dt1 +

\int 
T2

2\sum 
i=1

\partial i\~\sigma 1(\Theta 
t1
t2)\sigma i(\Theta 

t2
t2)Ki(t1, t2) \circ dBi

t2 \circ dB
1
t1 .

(6.11)

Here R \not =n is a generic term whose order is not equal to n. Then, recalling Remark 6.1, by
(6.2) we can easily obtain

\Delta \~V0
2 := \{ \~\Gamma (1,1)

2 , \~\Gamma 
(1,2)
2 \} , where \~\Gamma 

(1,i)
2 :=

\int 
T2

Ki(t1, t2)dB
i
t2 \circ dB

1
t1 ,

E[\~\Gamma (1,i)
2 ] =

1

2

\int 
T1

Ki(t1, t1)d\langle Bi,B1\rangle t1 =
\biggl\{ 

T
2 , i= 1,
0, i= 2.

(6.12)

To construct Q, we set W = 1 and L= 1 in (3.6) : d\omega 1,t = ( a1\surd 
T
, a2\surd 

T
)dt. Then

EQ[\~\Gamma 
(1,1)
2 ] =

| a1| 2

T

\int 
T2

d\vec{}t=
T

2
| a1| 2, EQ[\~\Gamma 

(1,2)
2 ] =

a1a2
T

\int 
T2

K2(t1, t2)d\vec{}t=
TH+

H+(H+ + 1)
a1a2.

By (6.12), we have

T

2
| a1| 2 =

T

2
,

TH+

H+(H+ + 1)
a1a2 = 0, implying a1 = 1, a2 = 0.

We remark that this solution is independent of \rho . In fact, numerical results (which are
not reported in the paper) show that this does not provide a good approximation, even when
T is small. So we shall move to the order N = 5 in the next subsection, although it becomes
much more involved to find the cubature measure.
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VOLTERRA CUBATURE FORMULA 983

6.3. The one period case with \bfitN = 5. In this case, besides the \Delta \~V0
2 in (6.12), we also

need \Delta \~V0
4. For this purpose, we need the second order expansion of \~b1(\Theta 

t1
t1) and the third

order expansion of \~\sigma 1(\Theta 
t1
t1). These derivations are straightforward but rather tedious. We

thus postpone them to the appendix and turn to numerical examples first.

7. Numerical examples.

7.1. The algorithm. Our numerical algorithm consists of the following five steps. We
are illustrating only the algorithm in section 5.4. The algorithms in the other subsections,
especially those in section 6, need to be modified slightly in the obvious manner.

Step 1. Compute E
\Bigl[ \int 

Tn
\scrK (\vec{}i,\vec{}\kappa ;\vec{}t) \circ dB\vec{}j

\vec{}t

\Bigr] 
for each n and (\vec{}i,\vec{}j,\vec{}\kappa ) by using (2.16), and then

compute E[\=\Gamma \phi 
N ] in (3.17) for each \phi \in \=VN .

Step 2. Compute EQ
\Bigl[ \int 

Tn
\scrK (\vec{}i,\vec{}\kappa ;\vec{}t) \circ dB\vec{}j

\vec{}t

\Bigr] 
by (3.8), and then compute EQ[\=\Gamma \phi 

N ] in (3.17)

for each \phi \in \=VN .
Step 3. Establish the equations (3.17) with unknowns \lambda k, ak,l, k = 1, . . . ,W , l = 1, . . . ,L,

from (3.6), and then solve these equations to obtain a desired Q. We may in general use numer-
ical methods to solve these (polynomial) equations when explicit solutions are not available,
see Remark 7.1 below.

Step 4. For each \omega k obtained in Step 3, solve the (deterministic) ODE (3.11) by discretizing
[0, T ] equally into D pieces. That is, denoting h := T

D and \omega  - h := 0,

XD,i
lh (\omega ) = xi +

d\sum 
j=0

l - 1\sum 
\alpha =0

Ki(lh,\alpha h)V
i
j (X

D
\alpha h(\omega ))

\omega j
(\alpha +1)h  - \omega j

(\alpha  - 1)h

2
, l= 0, . . . ,D.(7.1)

For convenience, we typically set D as a multiple of ML for the M,L in (3.9).
Step 5. We obtain the approximation by (3.10): Y Q

0 \approx Y Q,D
0 :=

\sum 2W
k=1 \lambda kG(X

D
T (\omega k)).

We note that, provided the conditions in Remark 2.8, our algorithm is deterministic and
is much more efficient than the probabilistic methods, e.g., the Euler scheme in Zhang [55].

Remark 7.1. (i) In subsections 5.1, 5.2, 5.3, 6.1, and 6.2, we have obtained the cubature
paths; then we can move to Step 4 directly.

(ii) We remark that Steps 1--3 depend only on the model, more specifically only on Ki,
but not on the specific forms of V i

j or G. So, given the model, we may compute the desired
Q offline, and then for each V and G we only need to complete Steps 4 and 5.

(iii) To illustrate the idea for Step 3, we consider the equations in (5.26). We shall use
the steepest decent method to minimize the following weighted sum:

inf
\lambda k\geq 0,ak,l\in R,k=1,2,l=1,2,3,4

\biggl[ 
\beta 1

\bigm| \bigm| \bigm| \bigm| \lambda 1 + \lambda 2  - 
1

2

\bigm| \bigm| \bigm| \bigm| 2 + \beta 2

\bigm| \bigm| \bigm| \bigm| 2\sum 
k=1

\lambda k
\sum 

1\leq l2\leq l1\leq 4

c(l1, l2)ak,l1ak,l2

\bigm| \bigm| \bigm| \bigm| 2

+ \beta 3

\bigm| \bigm| \bigm| \bigm| 1

H2
+

2\sum 
k=1

\lambda k

\biggl[ 4\sum 
l=1

[s
H+

l  - s
H+

l - 1]ak,l

\biggr] 2
 - T 2H

4H

\bigm| \bigm| \bigm| \bigm| 2
+

7\sum 
\alpha =1

\=\beta \alpha 

\bigm| \bigm| \bigm| \bigm| 24! \sum 
\vec{}l\in \{ 1,...,4\} 4

\sum 
\vec{}\kappa \in S4,\alpha 

2\sum 
k=1

\lambda kc(\vec{}\kappa ,\vec{}l)ak,l1ak,l2ak,l3ak,l4  - \Gamma \phi \alpha 

4

\bigm| \bigm| \bigm| \bigm| 2\biggr] ,
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984 QI FENG AND JIANFENG ZHANG

where \beta i, \=\beta \alpha >0, i= 1,2,3, and \alpha = 1, . . . ,7, are some appropriate weights.
(iv) For (iii) above, we may replace it with any efficient solver for equations (5.26).
(v) While our algorithm is more sensitive to W than to L, as pointed out in Remark

4.8(iii), a large L will increase the difficulty to solve equations like (5.26). However, since this
can be done offline, the impact of L is less serious.

Remark 7.2. In this paper, we focus on the impacts of M and N , but do not analyze
rigorously the impact of D (or h) in Step 4, which can be chosen much larger than ML. We
shall only comment on it heuristically in this remark.

(i) First, by (7.1), and in particular due to the path dependence, it is clear that the running
time of the algorithm grows quadratically (rather than linearly) in D.

(ii) By standard arguments, under mild regularity conditions one can easily show that

| EQ[G(XT )] - Y Q,D
0 | \leq C sup

k,l

| ak,l| \surd 
\delta 
h=CCQ\ast 

N

\sqrt{} 
M

T

T

D
=CCQ\ast 

N

\surd 
MT

D
.

So there is a balance between the quadratic running cost and this error estimate. Theoretically,

given an error level \varepsilon , we shall choose the parametersM,D, and Q which satisfy CCQ\ast 
N

\surd 
MT
D \leq 

\varepsilon and minimize the computational cost. Since the algorithm is much more sensitive to M,Q
than to D, we content ourselves in this paper to choose a reasonably large D and we identify
Y Q,D
0 with Y Q

0 to emphasize the dependence on Q. Indeed, our numerical results show that
the total error is not sensitive to D; see Example 7.7 below.

In the rest of this section, all the numerics are based on the use of Python 3.7.6 under
Quad-Core Intel Core i5 CPU (3.4GHz). For the running time, we use s and ms to denote
second and millisecond, respectively.

7.2. An illustrative one dimensional linear model. In this subsection, we present a one
dimensional numerical example:

Xt = x0 +

\int t

0
(t - r)H - 1

2dBr, Y0 =E[G(XT )].(7.2)

In this case, XT \sim Normal(x0,
T 2H

2H ), so essentially we can compute the true value of Y0:

Y true
0 =

1\surd 
2\pi 

\int 
R
G

\biggl( 
x0 +

\sqrt{} 
T 2H

2H
x

\biggr) 
e - 

x2

2 dx.(7.3)

We use Y cub
0 , Y mul,M

0 , and Y Euler
0 to denote the values computed by using the one period

cubature formula, the multiple period cubature formula withM periods, and the Euler scheme,
respectively. We shall compare our numerical results with this true value. In particular,
since the cubature method is deterministic, while Y Euler

0 is random, we shall explain how we
compare the numerical results of the cubature methods with Y Euler

0 .
Our first example shows that, when T is small, the one period method in (3.17) is more

efficient than the multiple period method in (4.8) with M = 1, especially when H is small. We
remark that, although M = 1, (3.17) and (4.8) have different kernels and thus have different
cubature paths.
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VOLTERRA CUBATURE FORMULA 985

Example 7.3. Consider (7.2) with G(x) = x2 and x0 = 0. Then, with order N = 3,

| Y cub
0  - Y true

0 | = 0< | Y mul,1
0  - Y true

0 | =
H2

 - 
2HH2

+

T 2H .(7.4)

We see that the last error is small when T is small or H is large. However, it is still larger
than the error of Y cub

0 , which is 0 in this case.

Proof. First, by (7.3) it is clear that Y true
0 = T 2H

2H .
For the one period cubature method with N = 3, by (3.11) and (5.13) we have

XT (\omega 1) =

\int T

2

0
(T  - t)H - 

a1\surd 
T
dt+

\int T

T

2

(T  - t)H - 
a2\surd 
T
dt

=
a1\surd 
T

1

H+

\biggl[ 
TH+  - 

\biggl( 
T

2

\biggr) H+
\biggr] 
+

a2\surd 
T

1

H+

\biggl( 
T

2

\biggr) H+

=
\Bigl[ 
a1(2

H+  - 1) + a2

\Bigr] TH

H+2H+
,

XT (\omega 2) = - XT (\omega 1).

Then, by (3.10) and (5.17),

Y cub
0 =

1

2

2\sum 
k=1

| XT (\omega k)| 2 = [a1(2
H+  - 1) + a2]

2 T 2H

H2
+2

2H+
=
H2

+2
2H+

2H

T 2H

H2
+2

2H+
=
T 2H

2H
= Y true

0 .

However, for the multiple period cubature method with M = 1 and N = 3, by (5.3) and
(5.4) we have the following: by abusing the notations \omega k,

XT (\omega 1) =

\int T

0
(T  - t)H - 

1\surd 
T
dt=

TH

H+
, XT (\omega 2) = - XT (\omega 1),

Y mul,1
0 =

1

2

\Bigl[ 
| XT (\omega 1)| 2 + | XT (\omega 2)| 2

\Bigr] 
=
T 2H

H2
+

,

| Y mul,1
0  - Y true

0 | =
\bigm| \bigm| \bigm| \bigm| 1

H2
+

 - 1

2H

\bigm| \bigm| \bigm| \bigm| T 2H =
H2

 - 
2HH2

+

T 2H .

Our next example shows that, when T is large, the one period algorithm fails, but the
multiple period algorithm does converge when M becomes large, as we expect.

Example 7.4. Consider (7.2) with T = 3, H = 5/2, G(x) = (x  - 1/2)+, x0 = 0.56. We
compute the value Y cub

0 from the one period model with N = 3 and Y mul,M
0 from the multiple

period model with N = 3 and M from 1 to 5. The cubature paths are constructed as in
Example 7.3, with D= 300 in Step 4. Numerical results are reported in Table 1.

We remark that here the function G is not as smooth as required in Theorems 3.3 and 4.7.
Nevertheless, we see from the numerical results that the cubature method still works well.

Table 1
The numerical results for Example 7.4.

Y true
0 Y cub

0 Y mul,1
0 Y mul,2

0 Y mul,3
0 Y mul,4

0 Y mul,5
0

2.8112 3.5157 2.6281 3.2450 3.1967 3.0340 2.8883
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986 QI FENG AND JIANFENG ZHANG

We now present an example to compare the accuracy between N = 3 and N = 5.

Example 7.5. Consider (7.2) with T = 0.3, H = 3/2, and try three different G with
corresponding initial value x0. We choose D = 30 in Step 4 and compute Y mul,2

0 with N = 3
and N = 5, respectively. The numerical results are reported in Table 2.

We note that, although we have a better rate of convergence in Theorem 4.7 when N = 5,
the numerical results in this example do not show such improvement. One explanation is
that the constant CN in (4.15) becomes larger when we increase N ; see Remark 4.8(iv). The
numerical results for the one period cubature method do not show significant improvement
either when we increase the order from N = 3 to N = 5. However, for the fractional stochastic
volatility model (6.1), as we saw in section 6.2, the one period cubature method with N = 3
does not depend on \rho at all, and thus it is clearly not as good as the one period cubature
method with N = 5.

Our next example compares the one period cubature method with the Euler scheme. More
examples concerning this comparison will be presented in the next two subsections.

Example 7.6. Consider (7.2) with H = 3
2 , T = 0.2, G(x) = cos(x), and x0 = 1. We choose

D = 12 in Step 4, and Y cub
0 is computed with N = 5. The numerical results are shown in

Table 3.

We now explain the numerical results in Table 3. First, in this case, Y true
0 = 0.53959.

Next, by solving (7.2) numerically, we report the approximate solution of (5.26) in Table 4;

Table 2
The numerical results for Example 7.5.

G(x)/x0 cos(x)/1 x2 /1 (x - 1/2)+ /0.56

Y true
0 0.5378641 1.0090376 0.0751964

Y mul,2
0 (N = 3) 0.5380251 1.0084375 0.0740474

Y mul,2
0 (N = 5) 0.5380277 1.0084375 0.0751558

Table 3
The numerical results for Example 7.6.

\widetilde MEuler 100 500 1000

ecub (cubature time) 0.00046 (1.86ms) 0.00046 (1.86ms) 0.00046 (1.86ms)

eEuler
mean (Euler time) 0.00338 (14.2ms) 0.00156 (70ms) 0.00114 (141ms)

SDEuler (percentile) 0.0026 (19.4\%) 0.00119 (24\%) 0.00081 (27.5\%)

Table 4
The approximate cubature paths in Example 7.6.

k 1 2

\lambda k 0.15332891 0.34667109
ak,1  - 3.04533315 1.57981296
ak,2 0.71729258  - 2.08974376
ak,3  - 0.60085202 2.33258457
ak,4 0.12029985  - 4.5060389
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VOLTERRA CUBATURE FORMULA 987

Figure 1. The approximate cubature paths in Example 7.6 (rescaling to T = 1).

see also Figure 1 for the plot of the four approximate cubature paths (after rescaling to T = 1).
We then obtain Y cub

0 = 0.54005. In Table 3, the cubature error ecub := | Y cub
0  - Y true

0 | = 0.00046.
The reported running time is for Steps 4 and 5 only, since Steps 1--3 can be completed offline
once for all.

For the Euler scheme, we also set time discretization step D = 12. Let \widetilde MEuler denote
the sample size in the Euler scheme, namely the number of simulated paths of the Brownian
motion. Clearly, both the approximate value Y Euler

0 and the running time depend on \widetilde MEuler;

in particular, the latter is proportional to \widetilde MEuler. Note that Y Euler
0 is random. We repeat

the Euler scheme 1000 times, each with sample size \widetilde MEuler, and obtain Y Euler,i
0 and the corre-

sponding Euler scheme errors eEuler
i := | Y Euler,i

0  - Y true
0 | , 1\leq i\leq 1000. We shall use the sample

median eEuler
median of \{ eEuler

i \} 1\leq i\leq 1000 to measure the accuracy of the Euler scheme. We can then
compare ecub and eEuler

median, and to have a more precise comparison, we will actually compute
the percentile of the cubature error ecub among the Euler scheme errors \{ eEuler

i \} 1\leq i\leq 1000: \alpha -
percentile means that about 1000\times \alpha \%=10\alpha of \{ eEuler

i \} 1\leq i\leq 1000 are smaller than ecub. So 50\%
roughly means ecub = eEuler

median and the two methods have the same accuracy, while \alpha \%<50\%
means that ecub<eEuler

median and the cubature method has better accuracy: the smaller \alpha \% is,
the better the cubature method outperforms. Moreover, since \{ eEuler

i \} 1\leq i\leq 1000 are i.i.d., we
may use the normal approximation to compute the percentile. We will report their mean
eEuler
mean := 1

1000

\sum 1000
i=1 e

Euler
i \approx eEuler

median and standard deviation SDEuler, and then the percentile

\alpha \%\approx \Phi ( e
cub - eEuler

mean

SDEuler ), where \Phi is the cdf of the standard normal.

For the above example, we test three cases, \widetilde MEuler = 100,500,1000, and the numerical
results are reported in Table 3. As we see, when \widetilde MEuler = 500, the Euler scheme takes
70 milliseconds (for each run, not for 1000 runs), which is about 38 times slower than the
1.86 milliseconds used for the cubature method, and the percentile of the cubature method
is 24\%. So the cubature method outperforms the Euler scheme both in running time and in
accuracy. When we increase the sample size \widetilde MEuler to 1000, the percentile increases to 27\%,
so the cubature method still outperforms in accuracy. In this case, the running time of the
Euler scheme increases to 141 milliseconds, which is about 76 times slower than the cubature
method. On the other hand, if we decrease the sample size \widetilde MEuler to 100, the running time of
the Euler scheme drops to 14.2 milliseconds, which is still 7.6 times slower than the cubature
method, but the accuracy deteriorates further with a percentile 19.4\%. So, in all three cases,
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988 QI FENG AND JIANFENG ZHANG

Table 5
The numerical results for Example 7.7.

D 12 60 120

ecub (cubature time) 0.00046 (1.86ms) 0.00046 (15.3ms) 0.00046 (54.7ms)

eEuler
mean (time, \~M = 100) 0.00338 (14.2ms) 0.0034 (314ms) 0.00336 (1.24s)

eEuler
mean (time, \~M = 500) 0.00156 (70ms) 0.00161 (1.54s) 0.00108 (5.9s)

eEuler
mean (time, \~M = 1000) 0.00114 (141ms) 0.00113 (3.11s) 0.00107 (11.5s)

the cubature method outperforms the Euler scheme significantly both in running time and in
accuracy.

We conclude this subsection with an example concerning the impact of D.

Example 7.7. Consider the same setting as in Example 7.6, but try three different D's.
The numerical results are shown in Table 5.3

As we can see, the cubature method is not sensitive to D. The Euler scheme does rely
on our choices of D and \~MEuler. However, in all the above choices, the cubature method
outperforms both in running time and in accuracy.

7.3. A one dimensional nonlinear model. We now consider the following nonlinear model,
but still in the one dimensional setting:

Xt = x0 +

\int t

0
(t - r)H - 1

2 cos(Xs)dBr, Y0 =E[G(XT )].(7.5)

We shall use the one period cubature method with N = 5 when T is small, and we shall use the
multiple period cubature method with N = 3 and appropriate M when T is large. Our main
purpose is to compare the efficiency of the cubature method with that of the Euler scheme.

We first note that, by Remark 7.1(ii), the cubature paths for (7.5) are the same as those for
(7.2). In particular, for the one period method with N = 5, we may continue to use the paths
in Table 4. For comparison purposes, we will use the same D for the cubature method and the
Euler scheme. For the \widetilde MEuler in the Euler scheme, there is an obvious tradeoff between the
running time and the accuracy. While one may try to find an ``optimal"" \~MEuler for a given
D, such an analysis relies on a precise idea on the constants involved in the error estimates,
as in Remark 7.2(ii). Since our main focus is the cubature method, and since our examples
show that the cubature method outperforms significantly (under our strong conditions), we
do not go through that analysis. Instead, unless stated otherwise, for simplicity in the rest of
this section we shall always set\widetilde MEuler = 500, and we repeat the Euler scheme 1000 times,

each time with \widetilde MEuler simulation paths. We use \{ Y Euler,i
0 \} 1\leq i\leq 1000 and Y true

0 to compute
eEuler
mean and SDEuler. However, in this case we are not able to compute the exact value of Y true

0

3The running time for the Euler scheme grows quadratically in D, as expected. However, the running time
for the cubature method grows slower than quadratically, especially when D is not that large. This is possibly
because in our code, for the sake of readability, there is a relatively time consuming step whose cost grows
linearly in D. The efficiency of our cubature method could be improved slightly further, when D is small, if
we write the code in a more straightforward way.
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VOLTERRA CUBATURE FORMULA 989

Table 6
The numerical results for Example 7.8.

G(x) / x0 cos(x) / 1 x2 / 1 (x - 0.5)+ / 0.56

Y true
0 0.5401 1.00073 0.0617

Y cub
0 0.5402 1.00041 0.0601

ecub (time) 0.0001(1.75ms) 0.00032(1.66ms) 0.0016 (1.63ms)

eEuler
mean (time) 0.0008(80.4ms) 0.00200(82ms ) 0.00147(75ms)

SDEuler(percentile) 0.00064(18\%) 0.00149(20.1\%) 0.0011(54.3\%)

Table 7
The numerical results for Example 7.9.

T 0.2 0.5 0.8

Y true
0 1.00073 1.0109 1.045

Y cub
0 1.00041 1.0056 1.022

ecub (time) 0.00032(1.66ms) 0.0054(5.25ms) 0.0234(11ms)

eEuler
mean (time) 0.00200 (82ms) 0.0332(445ms) 0.0152(1.16s)

SDEuler(percentile) 0.00149(20.1\%) 0.0098(57.4\%) 0.0115(69.4\%)

as in (7.3). Since the convergence of the Euler scheme approximations is well understood,
for comparison purposes we shall set the true value as the sample mean of the Euler scheme
approximations:

Y true
0 =

1

1000

1000\sum 
i=1

Y Euler,i
0 .(7.6)

In the first example, we show the impact of the regularity of G.

Example 7.8. Consider (7.5) with H = 3
2 , T = 0.2, and consider three different G's with

corresponding x0. We choose D = 12 and compare the one period cubature method with
N = 5 with the Euler scheme. The numerical results are reported in Table 6.

As we can see, the cubature method outperforms the Euler scheme in all three cases.
However, when G becomes less smooth, the advantage of the cubature method fades away,
which is consistent with the theoretical observation in Remark 2.8.

The next example illustrates the impact of T .

Example 7.9. Consider (7.5) with H = 3
2 , G(x) = x2, x0 = 1 and three different values of

T : 0.2, 0.5, 0.8. We choose D= 12, 30, 48, respectively, and compare the one period cubature
method with N = 5 with the Euler scheme. The numerical results are reported in Table 7.

Again consistent with our theoretical result, the performance of the cubature method
decays when T gets large. In the above example, the cubature method obviously outperforms
the Euler scheme when T = 0.2, and still works better when T = 0.5, but in the case T = 0.8,
there is a tradeoff between the speed and the accuracy and it is hard to claim the cubature
method is more efficient. In the last case, we shall use the multiple period cubature method,
as we do in the next example, and we can easily see that the cubature method outperforms
the Euler scheme again.
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990 QI FENG AND JIANFENG ZHANG

Table 8
The numerical results for Example 7.10.

G(x) / x0 cos(x) / 1 x2 / 1 (x - 0.5)+ / 0.56

Y true
0 0.5136 1.098 0.2275

Y mul,5
0 0.5186 1.084 0.2297

emul,5 (time) 0.005(300ms) 0.014(302ms) 0.0022(302ms)

eEuler
mean (time) 0.0074(4.2s) 0.023 (4.36s) 0.011 (4.41s)

SDEuler(percentile) 0.0056 (37.37\%) 0.017 (35.1\%) 0.0089 (21\%)

Table 9
The numerical results for Example 7.11.

G(x) / S0 cos(x) / 1 x2 / 1 (x - 0.5)+ / 0.56

Y true
0 0.4270 1.2947 0.1320

Y cub
0 0.4257 1.2967 0.1283

ecub (time) 0.0013(8.53ms) 0.0020(8.9ms) 0.0037(8.68ms)

eEuler
mean (time) 0.0063 (273ms) 0.0157(283ms) 0.0037(272ms)

SDEuler(percentile) 0.0047 (21.3\%) 0.0119 (19.2\%) 0.0028 (50\%)

Example 7.10. Consider (7.5) with H = 3
2 , T = 1, and three different G's with correspond-

ing x0. We choose D = 100, and compare the multiple period cubature method with M = 5
and N = 3 with the Euler scheme. The numerical results are reported in Table 8.

7.4. A fractional stochastic volatility model. In this section, we consider the following
special case of (6.1) with H = 3

2 and \rho = 1
2 :

dSt = Stb1(Ut)dt+ St\sigma 1(Ut) \circ dB1
t ,

Ut = 1+

\int t

0
[t - s]

\biggl[ 
1

2
 - 1

3
Us

\biggr] 
ds+

\int t

0
[t - s]\sigma 2(Us) \circ dB2

t .
(7.7)

Again we will use one period cubature method with N = 5 when T is small, and the multiple
period cubature method with N = 3 and appropriateM when T is large, and we shall compare
the efficiency between the cubature method and the Euler scheme.

Example 7.11. Consider (7.7) with T = 0.1, b1(U) = U , \sigma 1(U) = \sigma 2(U) = cos(U), and
consider three different G's with corresponding S0. We choose D = 12 and compare the
one period cubature method with N = 5 with the Euler scheme. The numerical results are
reported in Table 9.

For the cubature method, we first compute the cubature paths following the same idea as
in Remark 7.1. By section B.1 below, we choose W = 5 and L= 4. Then we obtain

\lambda 1 = 0.0247245002, \lambda 2 = 0.0561159547, \lambda 3 = 0.417734596e,

\lambda 4 = 0.00142494883, \lambda 5 = 4.44061201e - 17

and the 10 paths are plotted in Figure 2 (after rescaling to T = 1).

Example 7.12. Consider the same setting as in Example (7.7), except that b1(U) = \sigma 1(U) =
\sigma 2(U) =

\surd 
U . The numerical results are reported in Table 10.
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VOLTERRA CUBATURE FORMULA 991

Figure 2. The cubature paths for the model (7.7) (rescaling to T = 1).

Table 10
The numerical results for Example 7.12.

G(x) / S0 cos(x) / 1 x2 / 1 (x - 0.5)+ / 0.56

Y true
0 0.37897 1.4932 0.17098

Y cub
0 0.3698 1.4887 0.17797

ecub (time) 0.00917(8.06ms) 0.0045(8.39ms) 0.00699(8.07ms)

eEuler
mean (time) 0.0119(306ms) 0.0361(311ms) 0.007(304ms)

SDEuler(percentile) 0.0092(40.8\%) 0.0270(19.1\%) 0.0052(50\%)

Table 11
The numerical results for Example 7.13.

H 1 3/2 5/2

Y true
0 1.36 1.33 1.2957

Y mul,3
0 1.299 1.302 1.286

emul,3(time) 0.061(2.23s) 0.028(2.26s) 0.0097(2.42s)

eEuler
mean (time) 0.033 (15.8s) 0.036(15.8s) 0.037(15.5s)

SDEuler(percentile) 0.024 (81.1\%) 0.028 (41.7\%) 0.0260 (21\%)

We remark that Example 7.12 uses the same cubature paths as in Example 7.11.

Example 7.13. Consider (7.7) with T = 1, b1(U) = U , \sigma 1(U) = \sigma 2(U) = cos(U), G(x) =
(x - 1/2)+, S0 = 0.56, and consider three different H. We shall compare the efficiency of the
multiple period cubature method with M = 3, N = 3 and the Euler scheme. We set D= 100.
Recalling \rho = 1

2 , for the cubature method we use \theta 1 = \pi 
6 and \theta 2 =  - \pi 

6 in (6.8). We repeat
the Euler scheme 100 times (instead of 1000 times). The numerical results are reported in
Table 11.

We see that the cubature method outperforms the Euler scheme when H = 3
2 and H = 5

2 ,
especially in the latter case, but it does not seem to work well when H = 1. This is consistent
with our theoretical result.
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992 QI FENG AND JIANFENG ZHANG

7.5. Some concluding remarks. We first note that our theoretical convergence analy-
sis for the cubature method, namely Theorems 3.3 and 4.7, is complete, provided sufficient
regularities on K and (V,G) (corresponding to N). In particular, it holds true for arbitrary
dimensions and arbitrarily large T (for Theorem 4.7).

For the numerical efficiency, in its realm, the cubature method has clear advantages over
the Euler scheme. In light of Remark 4.8, the cubature method requires the following three
conditions, though: (i) sufficient regularity, so as to obtain the desired error estimate; (ii)
low dimension (and relatively small N), so that W can be relatively small; and (iii) not too
large T , so that M can be relatively small. We remark that the standard cubature method in
[40] for diffusions also requires these conditions. However, the constraints are more severe in
the Volterra setting here, for example, the constant CN in (4.15) is larger here, and for given
dimensions and N , there are more equations required in (4.8), and hence we may need a larger
W . When the number of cubature paths (2W )M is large (recalling again Remark 4.8(ii)), it
will be interesting to explore whether the approach in [11, 12] could help reduce the complexity,
which we shall leave for future research. The less smooth case, especially when H< 1

2 , requires
a novel idea to extend our approach.

We shall also remark that the parameters M,N in the cubature method cannot be too
big. For the Euler scheme, by increasing the sample size \widetilde MEuler gradually one may im-
prove the accuracy ``continuously"" at the price of sacrificing the speed. For the cubature
method, we have only limited choices on M,N and thus lose the flexibility of improving
its accuracy ``continuously."" Consequently, the cubature method is more appropriate in
situations where one has a strong requirement on the speed but is less stringent on the
accuracy.

8. Appendix. Proof of Proposition 2.4. Recall (2.8). Following rather standard arguments,
we see that \partial \bfx u(t, \cdot ) exists and has the following representation:

\langle \partial \bfx u(t, \theta ), \eta \rangle =E[\partial xG(Xt,\theta 
T ) \cdot \nabla \eta X

t,\theta 
T ], \theta , \eta \in Xt,

where \nabla \eta X
t,\theta ,i
s = \eta is +

d\sum 
j=0

\int s

t
Ki(s, r)\partial xV

i
j (X

t,\theta 
r )\nabla \eta X

t,\theta ,j
r \circ dBj

r , i= 1, . . . , d1.
(8.1)

We note that above we need for the second derivative of V i
j to exist so that the Stratonovich

integration \circ makes sense. Then we see immediately that \| \partial \bfx u(t, \theta )\| \leq CeC
m
N (T - t). By similar

arguments, we can prove the results for higher order derivatives. In particular, we note that
the (N  - 1)th derivative of u would involve the Nth derivative of V i

j .

Proof of Proposition 2.5. We first note that, by Proposition 2.4, u(tm0 , \cdot )\in CN+2(Xtm0 ), so
the right-hand side of (2.13) makes sense.

When N = 1,2, one may verify easily that (2.13) reduces to (2.10), (2.11), respectively.
Assume (2.13) holds for N  - 1. For \vec{}i\in \scrI N , \vec{}j \in \scrJ N , \vec{}\kappa \in \scrS N , \vec{}t\in TN , we have
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VOLTERRA CUBATURE FORMULA 993

\Delta N+1(\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t) := \scrV (\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t,\Theta \vec{}t
tN ,\Theta 

[tm0 ,T ]
tN ) - \scrV (\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t,\Theta \vec{}t

Tm
,\Theta 

[tm0 ,T ]
Tm

)

=

N\prod 
\alpha =1

\partial \vec{}\kappa ,\alpha \vec{}i
V i\alpha 
j\alpha 
(\Theta t\alpha 

tN )\scrK +(\vec{}i,\vec{}\kappa ;\vec{}t) \langle \partial \vec{}\kappa \vec{}i u(t
m
0 ,\Theta 

[tm0 ,T ]
tN ), \vec{}\scrK 0(\vec{}i,\vec{}\kappa ;\vec{}t)\rangle 

 - 
N\prod 

\alpha =1

\partial \vec{}\kappa ,\alpha \vec{}i
V i\alpha 
j\alpha 
(\Theta t\alpha 

Tm
)\scrK +(\vec{}i,\vec{}\kappa ;\vec{}t) \langle \partial \vec{}\kappa \vec{}i u(t

m
0 ,\Theta 

[tm0 ,T ]
Tm

), \vec{}\scrK 0(\vec{}i,\vec{}\kappa ;\vec{}t)\rangle .

Note that, for s\in [Tm, tN ], by It\^o's formula and Proposition 2.3 we have

d\partial \vec{}\kappa ,\alpha \vec{}i
V i\alpha 
j\alpha 
(\Theta t\alpha 

s ) =

d1\sum 
\~i=1

d\sum 
\~j=0

\partial x\~i
[\partial \vec{}\kappa ,\alpha \vec{}i

V i\alpha 
j\alpha 
](\Theta t\alpha 

s )K\~i(t\alpha , \~t)V
\~i
\~j
(Xs) \circ dB

\~j
s ,

d\langle \partial \vec{}\kappa \vec{}i u(t
m
0 ,\Theta 

[tm0 ,T ]
s ), \vec{}\scrK 0(\vec{}i,\vec{}\kappa ;\vec{}t)\rangle 

=

d1\sum 
\~i=1

d\sum 
\~j=0

\langle \partial \bfx \~i
\partial \vec{}\kappa \vec{}i u(t

m
0 ,\Theta 

[tm0 ,T ]
s ), (\vec{}\scrK 0(\vec{}i,\vec{}\kappa ;\vec{}t),K

[tm0 ,T ]
\~i,s

)\rangle V \~i
\~j
(Xs) \circ dB

\~j
s .

(8.2)

Then, by It\^o's formula, we have, for given \vec{}i\in \scrI N , \vec{}j \in \scrJ N , \vec{}t\in TN ,

\Delta N+1(\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t) =

d1\sum 
\~i=1

d\sum 
\~j=0

\int tN

Tm

\Xi N+1((\vec{}i,\~i), (\vec{}j,\~j),\vec{}\kappa ; (\vec{}t, s)) \circ dB
\~j
s , where

\Xi N+1((\vec{}i,\~i), (\vec{}j,\~j),\vec{}\kappa ; (\vec{}t, s)) :=

N\sum 
\~\alpha =1

\prod 
\alpha \in \{ 1,...,N\} \setminus \{ \~\alpha \} 

\partial \vec{}\kappa ,\alpha \vec{}i
V i\alpha 
j\alpha 
(\Theta t\alpha 

s )

\times \partial x\~i
[\partial \vec{}\kappa ,\~\alpha \vec{}i

V i\~\alpha 
j\~\alpha 
](\Theta t\~\alpha 

s )V
\~i
\~j
(\Theta s

s)\scrK (\vec{}i,\vec{}\kappa ;\vec{}t)K\~i(t\~\alpha , s) \langle \partial 
\vec{}\kappa 
\vec{}i
u(tm0 ,\Theta 

[tm0 ,T ]
s ), \vec{}\scrK 0(\vec{}i,\vec{}\kappa ;\vec{}t)\rangle (8.3)

+

N\prod 
\alpha =1

\partial \vec{}\kappa ,\alpha \vec{}i
V i\alpha 
j\alpha 
(\Theta t\alpha 

s )V
\~i
\~j
(\Theta s

s)\scrK (\vec{}i,\vec{}\kappa ;\vec{}t) \langle \partial \bfx \~i
\partial \vec{}\kappa \vec{}i u(t

m
0 ,\Theta 

[tm0 ,T ]
s ), (\vec{}\scrK 0(\vec{}i,\vec{}\kappa ;\vec{}t),K

[tm0 ,T ]
\~i,s

)\rangle .

Thus, since (2.13) holds for N  - 1 by induction assumption, we have

u(tm0 ,\Theta 
[tm0 ,T ]
tm0

) - u(tm0 ,\Theta 
[tm0 ,T ]
Tm

)

=

N - 1\sum 
n=1

\sum 
\vec{}i\in \scrI n,\vec{}j\in \scrJ n,\vec{}\kappa \in \scrS n

\int 
Tm

n

\scrV (\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t,\Theta \vec{}t
Tm
,\Theta 

[tm0 ,T ]
Tm

) \circ dB\vec{}j
\vec{}t

+
\sum 

\vec{}i\in \scrI N ,\vec{}j\in \scrJ N ,\vec{}\kappa \in \scrS N

\int 
Tm

N

\scrV (\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t,\Theta \vec{}t
tN ,\Theta 

[tm0 ,T ]
tN ) \circ dB\vec{}j

\vec{}t

=

N\sum 
n=1

\sum 
\vec{}i\in \scrI n,\vec{}j\in \scrJ n,\vec{}\kappa \in \scrS n

\int 
Tm

n

\scrV (\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t,\Theta \vec{}t
Tm
,\Theta 

[tm0 ,T ]
Tm

) \circ dB\vec{}j
\vec{}t

+
\sum 

(\vec{}i,\~i)\in \scrI N+1,(\vec{}j,\~j)\in \scrJ N+1,\vec{}\kappa \in \scrS N

\int 
Tm

N+1

\Xi N+1((\vec{}i,\~i), (\vec{}j,\~j),\vec{}\kappa ; (\vec{}t, s)) \circ dB(\vec{}j,\~j)

(\vec{}t,s)
.

Then it suffices to show that

\Xi N+1((\vec{}i,\~i), (\vec{}j,\~j),\vec{}\kappa ; (\vec{}t, s)) =

N\sum 
\~\alpha =0

\scrV ((\vec{}i,\~i), (\vec{}j,\~j), (\vec{}\kappa , \~\alpha ); (\vec{}t, s),\Theta (\vec{}t,s)
s ,\Theta [tm0 ,T ]

s ).(8.4)
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994 QI FENG AND JIANFENG ZHANG

Indeed, recalling (2.12), one can verify that

\Xi N+1((\vec{}i,\~i), (\vec{}j,\~j),\vec{}\kappa ; (\vec{}t, s))

=

N\sum 
\~\alpha =1

N\prod 
\alpha =1

\partial 
(\vec{}\kappa ,\~\alpha ),\alpha 

(\vec{}i,\~i)
V i\alpha 
j\alpha 
(\Theta t\alpha 

s )V
\~i
\~j
(\Theta s

s)\scrK ((\vec{}i,\~i), (\vec{}\kappa , \~\alpha ); (\vec{}t, s))

\times \langle \partial (\vec{}\kappa ,\~\alpha )
(\vec{}i,\~i)

u(tm0 ,\Theta 
[tm0 ,T ]
s ), \vec{}\scrK 0((\vec{}i,\~i), (\vec{}\kappa , \~\alpha ); (\vec{}t, s))\rangle 

+

N\prod 
\alpha =1

\partial 
(\vec{}\kappa ,0),\alpha 

(\vec{}i,\~i)
V i\alpha 
j\alpha 
(\Theta t\alpha 

s )V
\~i
\~j
(\Theta s

s)\scrK ((\vec{}i,\~i), (\vec{}\kappa ,0); (\vec{}t, s))

\times \langle \partial (\vec{}\kappa ,0)
(\vec{}i,\~i)

u(tm0 ,\Theta 
[tm0 ,T ]
s ), (\vec{}\scrK 0((\vec{}i,\~i), (\vec{}\kappa ,0); (\vec{}t, s))\rangle 

=

N\sum 
\~\alpha =0

N+1\prod 
\alpha =1

\partial 
(\vec{}\kappa ,\~\alpha ),\alpha 

(\vec{}i,\~i)
V i\alpha 
j\alpha 
(\Theta t\alpha 

s )\scrK ((\vec{}i,\~i), (\vec{}\kappa , \~\alpha ); (\vec{}t, s))

\times \langle \partial (\vec{}\kappa ,\~\alpha )
(\vec{}i,\~i)

u(tm0 ,\Theta 
[tm0 ,T ]
s ), \vec{}\scrK 0((\vec{}i,\~i), (\vec{}\kappa , \~\alpha ); (\vec{}t, s))\rangle 

=

N\sum 
\~\alpha =0

\scrV ((\vec{}i,\~i), (\vec{}j,\~j), (\vec{}\kappa , \~\alpha ); (\vec{}t, s),\Theta (\vec{}t,s)
s ,\Theta [tm0 ,T ]

s ).

This proves (8.4), and hence (2.13) for N .

Proof of Lemma 2.6. Recall that B0
t = t; the case j1 = 0 is obvious. We now assume j1>0.

Fix Tm \leq s\leq tm0 , and denote

\psi (t1, t2) :=

\int 
Tm

n - 2(t2)
\varphi (t1, t2,\vec{}t - 2) \circ dB

\vec{}j - 2

\vec{}t - 2
.

Then, when j2 \not = j1, we have\int 
Tm

n (s)
\varphi (\vec{}t) \circ dB\vec{}j

\vec{}t
=

\int s

Tm

\biggl[ \int t1

Tm

\psi (t1, t2) \circ dBj2
t2

\biggr] 
\circ dBj1

t1 =

\int s

Tm

\biggl[ \int t1

Tm

\psi (t1, t2) \circ dBj2
t2

\biggr] 
dBj1

t1 ,

coinciding with the It\^o integral, and when j1 = j2,\int 
Tm

n (s)
\varphi (\vec{}t) \circ dB\vec{}j

\vec{}t
=

\int s

Tm

\biggl[ \int t1

Tm

\psi (t1, t2) \circ dBj2
t2

\biggr] 
dBj1

t1 +
1

2

\int s

Tm

\psi (t1, t1)dt1.

Then one may verify (2.16) and (2.17) straightforwardly.

Proof of Theorem 2.7. First, similar to (2.11) and (2.13), one can verify that

Rm
N =

N+1\sum 
n=1

\sum 
\vec{}i\in \scrI n,\vec{}j\in \scrJ n

[1\{ \| \vec{}j\| =N+1\} + 1\{ \| \vec{}j - 1\| =N,j1=0\} ]

\times 
\int 
Tm

n

\sum 
\vec{}\kappa \in \scrS n

\scrV (\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t,\Theta \vec{}t
tn ,\Theta 

[tm0 ,T ]
tn ) \circ dB\vec{}j

\vec{}t
.

(8.5)

Fix n, \vec{}i \in \scrI n, \vec{}j \in \scrJ n, and denote \varphi (\vec{}t) :=
\sum 

\vec{}\kappa \in \scrS n
\scrV (\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t,\Theta \vec{}t

tn ,\Theta 
[tm0 ,T ]
tn ) for \vec{}t \in Tm

n . By (2.17)
and (2.18), we may prove by induction that, for s \in [Tm, t

m
0 ], l = 1, . . . , n  - 1, and for some

constant Cn which may depend on n,
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VOLTERRA CUBATURE FORMULA 995

\| \varphi (\cdot )\| 2
s,\vec{}j

\leq Cn\delta 
\| \vec{}jl\| ess sup

Tm\leq sl\leq \cdot \cdot \cdot \leq s1\leq s
\| \varphi (s1, . . . , sl, \cdot )\| 2\vec{}j - l,sl

+Cn\delta 
\| \vec{}jl+1\| ess sup

Tm\leq sl+1\leq \cdot \cdot \cdot \leq s1\leq s
\| \varphi (s1, . . . , sl+1, \cdot )\| 2\vec{}j - l - 1,sl+1

.

In particular, by setting l= n - 1 we have

Em

\biggl[ \bigm| \bigm| \bigm| \bigm| \int 
Tm

n

\varphi (\vec{}t) \circ dB\vec{}j
\vec{}t

\bigm| \bigm| \bigm| \bigm| 2\biggr] \leq Cn[\Lambda n - 1 +\Lambda n], where(8.6)

\Lambda n - 1 := \delta \| 
\vec{}jn - 1\| ess sup

\vec{}s\in Tm
n - 1

Em

\biggl[ \bigm| \bigm| \bigm| \bigm| \int sn - 1

Tm

\varphi (\vec{}s, tn) \circ dBjn
tn

\bigm| \bigm| \bigm| \bigm| 2\biggr] , \Lambda n := \delta \| 
\vec{}j\| ess sup

\vec{}s\in Tm
n

Em

\Bigl[ 
| \varphi (\vec{}s)| 2

\Bigr] 
.

By (2.18), we have \Lambda n \leq | Am
\| \vec{}j\| | 

2\delta \| 
\vec{}j\| . Moreover, fix \vec{}s\in Tn - 1. When jn = 0, we have

Em

\biggl[ \bigm| \bigm| \bigm| \bigm| \int sn - 1

Tm

\varphi (\vec{}s, tn) \circ dBjn
tn

\bigm| \bigm| \bigm| \bigm| 2\biggr] =Em

\biggl[ \bigm| \bigm| \bigm| \bigm| \int sn - 1

Tm

\varphi (\vec{}s, tn)dtn

\bigm| \bigm| \bigm| \bigm| 2\biggr] 
\leq \delta Em

\biggl[ \int sn - 1

Tm

| \varphi (\vec{}s, tn)| 2dtn
\biggr] 
\leq \delta 2 ess sup

Tm\leq tn\leq sn - 1

Em

\Bigl[ 
| \varphi (\vec{}s, tn)| 2

\Bigr] 
\leq \delta 2| Am

\| \vec{}j\| | 
2.

Then

\Lambda n - 1 \leq \delta \| 
\vec{}jn - 1\| \delta 2| Am

\| \vec{}j\| | 
2 = | Am

\| \vec{}j\| | 
2\delta \| 

\vec{}j\| .

When jn>0, recalling (2.12) and by (8.2) we have the following: denoting sn := tn, we have\int sn - 1

Tm

\varphi (\vec{}s, tn) \circ dBjn
tn

=

\int sn - 1

Tm

\sum 
\vec{}\kappa \in \scrS n

n\prod 
\alpha =1

\partial \vec{}\kappa ,\alpha \vec{}i
V i\alpha 
j\alpha 
(\Theta s\alpha 

tn )\scrK +(\vec{}i,\vec{}\kappa ; (\vec{}s, tn)) \langle \partial \vec{}\kappa \vec{}i u(t
m
0 ,\Theta 

[tm0 ,T ]
tn ), \vec{}\scrK 0(\vec{}i,\vec{}\kappa ; (\vec{}s, tn))\rangle \circ dBjn

tn

=

\int sn - 1

Tm

\sum 
\vec{}\kappa \in \scrS n

n\prod 
\alpha =1

\partial \vec{}\kappa ,\alpha \vec{}i
V i\alpha 
j\alpha 
(\Theta s\alpha 

tn )\scrK +(\vec{}i,\vec{}\kappa ; (\vec{}s, tn)) \langle \partial \vec{}\kappa \vec{}i u(t
m
0 ,\Theta 

[tm0 ,T ]
tn ), \vec{}\scrK 0(\vec{}i,\vec{}\kappa ; (\vec{}s, tn))\rangle dBjn

tn

+
1

2

\int sn - 1

Tm

\sum 
\vec{}\kappa \in \scrS n

\biggl[ n\sum 
\~\alpha =1

\prod 
\alpha \not =\~\alpha 

\partial \vec{}\kappa ,\alpha \vec{}i
V i\alpha 
j\alpha 
(\Theta s\alpha 

tn )\scrK +(\vec{}i,\vec{}\kappa ; (\vec{}s, tn)) \langle \partial \vec{}\kappa \vec{}i u(t
m
0 ,\Theta 

[tm0 ,T ]
tn ), \vec{}\scrK 0(\vec{}i,\vec{}\kappa ; (\vec{}s, tn))\rangle 

\times 
d1\sum 
\~i=1

[\partial x\~i
\partial \vec{}\kappa ,\~\alpha \vec{}i

V i\~\alpha 
j\~\alpha 
(\Theta s\~\alpha 

tn )K\~i(s\~\alpha , tn)V
\~i
jn(Xtn)]

+

n\prod 
\alpha =1

\partial \vec{}\kappa ,\alpha \vec{}i
V i\alpha 
j\alpha 
(\Theta s\alpha 

tn )\scrK +(\vec{}i,\vec{}\kappa ; (\vec{}s, tn))

\times 
d1\sum 
\~i=1

\langle \partial \bfx \~i
\partial \vec{}\kappa \vec{}i u(t

m
0 ,\Theta 

[tm0 ,T ]
tn ), (\vec{}\scrK 0(\vec{}i,\vec{}\kappa ; (\vec{}s, tn)),K

[tm0 ,T ]
\~i,tn

)\rangle V \~i
jn(Xtn)

\biggr] 
dtn

=

\int sn - 1

Tm

\sum 
\vec{}\kappa \in \scrS n

n\prod 
\alpha =1

\partial \vec{}\kappa ,\alpha \vec{}i
V i\alpha 
j\alpha 
(\Theta s\alpha 

tn )\scrK +(\vec{}i,\vec{}\kappa ; (\vec{}s, tn)) \langle \partial \vec{}\kappa \vec{}i u(t
m
0 ,\Theta 

[tm0 ,T ]
tn ), \vec{}\scrK 0(\vec{}i,\vec{}\kappa ; (\vec{}s, tn))\rangle dBjn

tn

+
1

2

d1\sum 
\~i=1

\int sn - 1

Tm

\sum 
\vec{}\kappa \in \scrS n

n\sum 
\~\alpha =0

\scrV ((\vec{}i,\~i), (\vec{}j, jn), (\vec{}\kappa , \~\alpha ); (\vec{}s, tn, tn),\Theta (\vec{}s,tn,tn)
tn ,\Theta 

[tm0 ,T ]
tn )dtn,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/3

1/
23

 to
 1

44
.1

74
.2

12
.5

8 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



996 QI FENG AND JIANFENG ZHANG

where, similarly to (8.3), the last equality can be verified straightforwardly. Then

Em

\biggl[ \bigm| \bigm| \bigm| \bigm| \int sn - 1

Tm

\varphi (\vec{}s, tn) \circ dBjn
tn

\bigm| \bigm| \bigm| \bigm| 2\biggr] \leq C\delta | Am
\| \vec{}j\| | 

2 +C\delta 2| Am
\| (\vec{}j,jn)\| 

| 2.

Thus,

\Lambda n - 1 \leq C\delta \| 
\vec{}jn - 1\| [\delta | Am

\| \vec{}j\| | 
2 + \delta 2| Am

\| (\vec{}j,jn)\| 
| 2] =C[| Am

\| \vec{}j\| | 
2\delta \| 

\vec{}j\| + | Am
\| \vec{}j\| +1

| 2\delta \| \vec{}j\| +1].

So in all cases, by (8.6) we have

Em

\biggl[ \bigm| \bigm| \bigm| \bigm| \int 
Tm

n

\varphi (\vec{}t) \circ dB\vec{}j
\vec{}t

\bigm| \bigm| \bigm| \bigm| 2\biggr] \leq Cn

\Bigl[ 
| Am

\| \vec{}j\| | 
2\delta \| 

\vec{}j\| + | Am
\| \vec{}j\| +1

| 2\delta \| \vec{}j\| +1
\Bigr] 
.

Then, by (8.5), we obtain

Em[| Rm
N | 2]\leq CN

N+1\sum 
n=1

\sum 
\vec{}i\in \scrI n,\vec{}j\in \scrJ n

[1\{ \| \vec{}j\| =N+1\} + 1\{ \| \vec{}j - 1\| =N,j1=0\} ]
\Bigl[ 
| Am

\| \vec{}j\| | 
2\delta \| 

\vec{}j\| + | Am
\| \vec{}j\| +1

| 2\delta \| \vec{}j\| +1
\Bigr] 
.

This implies (2.20) immediately.

Proof of Theorem 3.3. It is clear that the functional It\^o formula (2.7) holds true under Q
as well; then (3.5) and (8.5) also hold true under Q. Thus, by (3.9),

| Y0  - Y Q
0 | =

\bigm| \bigm| \bigm| E[RN ] - EQ[RN ]
\bigm| \bigm| \bigm| .

Therefore, by Theorem 2.7, it suffices to show that

| EQ[RN ]| \leq CN

\Bigl[ 
AN+1T

N+1

2 (1 +CN - 1
Q ) +AN+2T

N+2

2 (1 +CN - 2
Q )

\Bigr] 
.(8.7)

Now, for each n and \vec{}i\in \scrI n, \vec{}j \in \scrJ n as in (8.5), note that

(\omega 0
k,t)

\prime = 1, | \{ l : jl = 0\} | = \| \vec{}j\|  - n, | \{ l : jl>0\} | = 2n - \| \vec{}j\| ,

where \omega \prime denotes the time derivative of \omega . Then\bigm| \bigm| \bigm| \bigm| \bigm| EQ

\biggl[ \int 
Tn

\sum 
\vec{}\kappa \in \scrS n

\scrV (\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t,\Theta \vec{}t
tn ,\Theta 

T
tn) \circ dB

\vec{}j
\vec{}t

\biggr] \bigm| \bigm| \bigm| \bigm| \bigm| \leq A\| \vec{}j\| 

2W\sum 
k=1

\lambda k

\int 
Tn

n\prod 
l=1

| (\omega jl
k,tl

)\prime | dtn \cdot \cdot \cdot dt1(8.8)

\leq 

\bigm| \bigm| \bigm| \bigm| \bigm| CnA\| \vec{}j\| 

2W\sum 
k=1

\lambda k

\biggl( 
CQ\surd 
T

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
2n - \| \vec{}j\| 

Tn =CnA\| \vec{}j\| C
2n - \| \vec{}j\| 
Q T \| \vec{}j\| .

If \| \vec{}j\| =N + 1, we have 2n\geq N + 1. Denote k := 2n - (N + 1); then 0\leq k\leq N  - 1, and

A\| \vec{}j\| | CQ| 2n - \| \vec{}j\| T \| \vec{}j\| =AN+1T
N+1

2 Ck
Q.
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VOLTERRA CUBATURE FORMULA 997

If \| \vec{}j - 1\| =N , j1 = 0, then 2n\geq N + 2. Denote k := 2n - (N + 2); then 0\leq k\leq N  - 2, and

A\| \vec{}j\| C
2n - \| \vec{}j\| 
Q T \| \vec{}j\| =AN+2T

N+2

2 Ck
Q.

Plugging these into (8.8), we obtain (8.7) immediately, and hence (3.12) holds true.
Finally, when (3.13) holds true, by (3.9) one can easily see that Q in (3.6) is an N -Volterra

cubature formula on [0, T ] if and only if the following rescaled one \~Q is an N -Volterra cubature
formula on [0,1]:

\~Q=

2W\sum 
k=1

\lambda k\delta \~\omega t
, d\~\omega k,t = ak,ldt, t\in (\~sl - 1, \~sl], \~sl :=

l

L
, l= 0, . . . ,L.(8.9)

In particular, this implies that CQ =C \~Q is independent of T ,

Proof of Theorem 4.5. Note that\bigm| \bigm| \bigm| EQm
m [u(Tm+1,\Theta 

[Tm+1,T ]
Tm+1

] - Em[u(Tm+1,\Theta 
[Tm+1,T ]
Tm+1

]
\bigm| \bigm| \bigm| 

\leq 
\bigm| \bigm| \bigm| EQm

m [ImN ] - Em[ImN ]
\bigm| \bigm| \bigm| + | EQm

m [Rm
N ]| + | Em[Rm

N ]| .

Then, following the same arguments as in Theorem 3.3, it suffices to provide the desired

estimate for
\bigm| \bigm| \bigm| EQm

m [ImN ] - Em[ImN ]
\bigm| \bigm| \bigm| . Similar to Lemma 3.4, by the desired symmetric properties,

for any \vec{}j \in \scrJ n,N\setminus \=\scrJ n,N we have

EQm
m

\biggl[ \int 
Tm

n

\scrV (\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t,\Theta \vec{}t
Tm
,\Theta 

[tm0 ,T ]
Tm

) \circ dB\vec{}j
\vec{}t

\biggr] 
= 0=Em

\biggl[ \int 
Tm

n

\scrV (\vec{}i,\vec{}j,\vec{}\kappa ;\vec{}t,\Theta \vec{}t
Tm
,\Theta 

[tm0 ,T ]
Tm

) \circ dB\vec{}j
\vec{}t

\biggr] 
.

Then, by (4.8), we have\bigm| \bigm| \bigm| EQm
m [ImN ] - Em[ImN ]

\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| EQm
m [ \v Rm

N ] - Em[ \v Rm
N ]

\bigm| \bigm| \bigm| \leq \bigm| \bigm| \bigm| EQm
m [ \v Rm

N ]
\bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| Em[ \v Rm

N ]
\bigm| \bigm| \bigm| .

The estimate for
\bigm| \bigm| \bigm| Em[ \v Rm

N ]
\bigm| \bigm| \bigm| is implied by (4.6). Moreover, for each n\leq N and \vec{}j \in \=\scrJ n,N , again

set k := N - \| \vec{}j\|  - 1
2 as in the proof of Theorem 4.2. Then, by (4.4) and similar to (8.8),\bigm| \bigm| \bigm| \bigm| \bigm| EQm

m

\biggl[ \int 
Tm

n

\v Rm
N (\vec{}t) \circ dB\vec{}j

\vec{}t

\biggr] \bigm| \bigm| \bigm| \bigm| \bigm| \leq Cm
NC

2n - \| \vec{}j\| 
Qm

eC
m
N T \delta 

N+1

2 .

Thus, since 0\leq 2n - \| \vec{}j\| \leq N  - 1,

\bigm| \bigm| \bigm| EQm
m [ \v Rm

N ]
\bigm| \bigm| \bigm| \leq N\sum 

n=1

\sum 
\vec{}j\in \=\scrJ n,N

Cm
NC

2n - \| \vec{}j\| 
Qm

eC
m
N T \delta 

N+1

2 \leq Cm
N (1 +CN - 1

Qm
)eC

m
N T \delta 

N+1

2 .

Recalling CQm
=CQ\ast 

N
, this is the desired estimate.
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998 QI FENG AND JIANFENG ZHANG

8.1. The one period cubature formula for (6.1) with \bfitN = 5. Denote

\gamma 1 :=
TH++1

H+(H+ + 1)
, \gamma 2 :=

T 2H+

8HH+
.(8.10)

First, similar to (3.2) we have

\~b1(\Theta 
t1
t1) = R \not =2 +

\int t1

0

\biggl[ 
\partial 0\~b1(\Theta 

t1
t2) +

2\sum 
i=1

\partial i\~b1(\Theta 
t1
t2)bi(\Theta 

t2
t2)Ki(t1, t2)

\biggr] 
dt2

+

\int t1

0

\int t2

0

2\sum 
i,j=1

\biggl[ 
\partial ji\~b1(\Theta 

t1
t3)\sigma i(\Theta 

t2
t3)Kj(t1, t3)(8.11)

+ \partial i\~b1(\Theta 
t1
t3)\partial j\sigma i(\Theta 

t2
t3)Kj(t2, t3)

\biggr] 
\sigma j(\Theta 

t3
t3)Ki(t1, t2) \circ dBj

t3 \circ dB
i
t2 .

We remark that \partial i\~b1 =G\prime \prime b1 +G\prime \partial ib1; however, thanks to the new convention in Remark 6.1,
we do not need to consider G\prime \prime b1 and G\prime \partial ib1 separately. Then we can easily see that the terms

in \Delta \~V0
4 derived from \~b1 consist of the following stochastic integrals:

\Delta \~V0
4,b :=

\Bigl\{ 
\~\Gamma 
(i,j,k)
4,b : (i, j, k) = (1,1,1), (1,2,1), (1,2,2), (2,1,1), (2,2,1), (2,2,2)

\Bigr\} 
,

where \~\Gamma 
(i,j,k)
4,b :=

\int 
T3

Ki(t1, t2)Kj(tk, t3) \circ dBj
t3 \circ dB

i
t2dt1.

(8.12)

Note that, for i, j, k= 1,2,

E[\~\Gamma (i,j,k)
4,b ] =

1

2

\int 
T2

Ki(t1, t2)Kj(tk, t2)d\langle Bi,Bj\rangle t2dt1 =

\left\{       
T 2

4 , (i, j, k) = (1,1,1),
\rho \gamma 1

2 , (i, j, k) = (1,2,1), (2,1,1),
\gamma 2, (i, j, k) = (2,2,1),
0, (i, j, k) = (1,2,2), (2,2,2).

(8.13)

Similarly, we may have the expansion of \~\sigma 1(\Theta 
t1
t1) as in (8.11):

\~\sigma 1(\Theta 
t1
t1) =R \not =3 +

2\sum 
i2=1

\int t1

0

\int t2

0
\partial i20\~\sigma 1(\Theta 

t1
t3)\sigma i2(\Theta 

t3
t3)Ki2(t1, t3) \circ dBi2

t3dt2

+

2\sum 
i1,i2=1

\int t1

0

\int t2

0

\Bigl[ 
\partial i2i1\~\sigma 1(\Theta 

t1
t3)bi1(\Theta 

t2
t3)Ki2(t1, t3)

+ \partial i1\~\sigma 1(\Theta 
t1
t3)\partial i2bi1(\Theta 

t2
t3)Ki2(t2, t3)

\Bigr] 
\sigma i2(\Theta 

t3
t3)Ki1(t1, t2) \circ dBi2

t3dt2(8.14)

+

2\sum 
i1=1

\int t1

0

\int t2

0

\Bigl[ 
\partial 0i1\~\sigma 1(\Theta 

t1
t3)\sigma i1(\Theta 

t2
t3) + \partial i1\~\sigma 1(\Theta 

t1
t3)\partial 0\sigma i1(\Theta 

t2
t3)

\Bigr] 
Ki1(t1, t2)dt3 \circ dBi1

t2

+

2\sum 
i1,i2=1

\int t1

0

\int t2

0

\Bigl[ 
\partial i2i1\~\sigma 1(\Theta 

t1
t3)bi2(\Theta 

t3
t3)\sigma i1(\Theta 

t2
t3)Ki2(t1, t3)

+ \partial i1\~\sigma 1(\Theta 
t1
t3)\partial i2\sigma i1(\Theta 

t2
t3)bi2(\Theta 

t3
t3)Ki2(t2, t3)

\Bigr] 
Ki1(t1, t2)dt3 \circ dBi1

t2 + \xi ,
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VOLTERRA CUBATURE FORMULA 999

where the terms presented above involve \partial t, and \xi contains the terms without \partial t:

\xi :=

2\sum 
i1,i2,i3=1

\int t1

0

\int t2

0

\int t3

0

\Bigl[ 
\partial i3i2i1\~\sigma 1(\Theta 

t1
t4)\sigma i1(\Theta 

t2
t4)\sigma i2(\Theta 

t3
t4)Ki2(t1, t3)Ki3(t1, t4)

+ \partial i2i1\~\sigma 1(\Theta 
t1
t4)\partial i3\sigma i1(\Theta 

t2
t4)\sigma i2(\Theta 

t3
t4)Ki2(t1, t3)Ki3(t2, t4)

+ \partial i2i1\~\sigma 1(\Theta 
t1
t4)\sigma i1(\Theta 

t2
t4)\partial i3\sigma i2(\Theta 

t3
t4)Ki2(t1, t3)Ki3(t3, t4)

+ \partial i3i1\~\sigma 1(\Theta 
t1
t4)\partial i2\sigma i1(\Theta 

t2
t4)\sigma i2(\Theta 

t3
t4)Ki2(t2, t3)Ki3(t1, t4)(8.15)

+ \partial i1\~\sigma 1(\Theta 
t1
t4)\partial i3i2\sigma i1(\Theta 

t2
t4)\sigma i2(\Theta 

t3
t4)Ki2(t2, t3)Ki3(t2, t4)

+ \partial i1\~\sigma 1(\Theta 
t1
t4)\partial i2\sigma i1(\Theta 

t2
t4)\partial i3\sigma i2(\Theta 

t3
t4)Ki2(t2, t3)Ki3(t3, t4)

\Bigr] 
\times \sigma i3(\Theta 

t4
t4)Ki1(t1, t2) \circ dBi3

t4 \circ dB
i2
t3 \circ dB

i1
t2 .

Then we see that the terms in \Delta \~V0
4 derived from \~\sigma 1 are

(8.16)

\Delta \~V0
4,\sigma =\Delta \~V0

4,\sigma ,0 \cup \Delta \~V0
4,\sigma ,1 \cup \Delta \~V0

4,\sigma ,2 \cup \Delta \~V0
4,\sigma ,3, where, for l= 1,2,

\Delta \~V0
4,\sigma ,0 :=

\Bigl\{ 
\~\Gamma 
(1)
4,\sigma ,0,

\~\Gamma 
(2)
4,\sigma ,0

\Bigr\} 
,

\Delta \~V0
4,\sigma ,l :=

\Bigl\{ 
\~\Gamma 
(i1,i2,\kappa 2)
4,\sigma ,l : (i1, i2, \kappa 2) = (1,1,1), (1,2,1), (1,2,2), (2,1,1), (2,2,1), (2,2,2)

\Bigr\} 
and

\Delta \~V0
4,\sigma ,3 :=

\Bigl\{ 
\~\Gamma 
(i1,i2,i3,\kappa 2,\kappa 3)
4,\sigma ,3 : (i1, i2, i3, \kappa 2, \kappa 3) = (1,1,1,1,1), (1,1,2,1,1),

(1,1,2,1,2), (1,1,2,1,3), (1,2,1,1,1), (1,2,1,2,1), (1,2,2,1,1), (1,2,2,1,2),
(1,2,2,1,3), (1,2,2,2,1), (1,2,2,2,2), (1,2,2,2,3), (2,1,1,1,1), (2,1,2,1,1),
(2,1,2,1,2), (2,1,2,1,3), (2,2,1,1,1), (2,2,1,2,1), (2,2,2,1,1), (2,2,2,1,2),

(2,2,2,1,3), (2,2,2,2,1), (2,2,2,2,2), (2,2,2,2,3)
\Bigr\} 
,

(8.17)

where

\~\Gamma 
(i2)
4,\sigma ,0 :=

\int 
T3

Ki2(t1, t3) \circ dBi2
t3dt2 \circ dB

1
t1 ,

\~\Gamma 
(i1,i2,\kappa 2)
4,\sigma ,1 :=

\int 
T3

Ki1(t1, t2)Ki2(t\kappa 2
, t3) \circ dBi2

t3dt2 \circ dB
1
t1 ,

\~\Gamma 
(i1,i2,\kappa 2)
4,\sigma ,2 :=

\int 
T3

Ki1(t1, t2)Ki2(t\kappa 2
, t3)dt3 \circ dBi1

t2 \circ dB
1
t1 ,

\~\Gamma 
(i1,i2,i3,\kappa 2,\kappa 3)
4,\sigma ,3 :=

\int 
T4

Ki1(t1, t2)Ki2(t\kappa 2
, t3)Ki3(t\kappa 3

, t4)dB
i3
t4 \circ dB

i2
t3 \circ dB

i1
t2 \circ dB

1
t1 .

Note that, for\vec{}i= (i1, i2, i3) and \vec{}\kappa = (\kappa 1, \kappa 2, \kappa 3) with \kappa 1 = 1, \kappa 2 = 1,2 and \kappa 3 = 1,2,3, we have,
recalling (8.10),
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1000 QI FENG AND JIANFENG ZHANG

E[\~\Gamma (i2)
4,\sigma ,0] =E[\~\Gamma (i1,i2,\kappa 2)

4,\sigma ,1 ] = 0,

E[\~\Gamma (i1,i2,\kappa 2)
4,\sigma ,2 ] =

1

2

\int 
T1

Ki1(t1, t1)

\int t1

0
Ki2(t1, t3)dt3d\langle Bi1 ,B1\rangle t1

=

\left\{   
T 2

4 , (i1, i2, \kappa 2) = (1,1,1),
\rho \gamma 1

2 , (i1, i2, \kappa 2) = (1,2,1),
0, (i1, i2, \kappa 2) = (2,1,1), (2,2,1), (2,2,2), (1,2,2),

E[\~\Gamma (i1,i2,i3,\kappa 2,\kappa 3)
4,\sigma ,3 ]

=
1

4

\int T

0

\int t1

0
Ki1(t1, t1)Ki2(t\kappa 2

, t3)Ki3(t\kappa 3
, t3)| t2=t1

d\langle Bi3 ,Bi2\rangle t3d\langle Bi1 ,B1\rangle t1

=

\left\{       
T 2

8 ,
\vec{}i= (1,1,1),

\rho \gamma 1

4 ,
\vec{}i= (1,2,1), or\vec{}i= (1,1,2)and\kappa 3 = 1,2,

\gamma 2

2 ,
\vec{}i= (1,2,2), \kappa 3 = 1,2,

0, i1 = 2or (i3, \kappa 3) = (2,3).

(8.18)

We note that, by (6.12), (8.12), and (8.16)--(8.17),

| \Delta \~V0
2| = 2 and | \Delta \~V0

4| = | \Delta \~V0
4,b| + | \Delta \~V0

4,\sigma | = 6+ 2+ 6+ 6+ 24= 44.(8.19)

We now construct a desired Q as in (3.6). Recall \omega 0
t = t and \omega k,t = (\omega 1

k,t, \omega 
2
k,t). We

remark that the correlation between B1,B2 affects only the expectations E[\~\Gamma ] in (8.13) and
(8.18), but the expectations under Q in (3.8) remain the same. The integrals against d\omega 
corresponding to the stochastic integrals in (6.12), (8.12), and (8.16)--(8.17) are the following:
for each k= 1, . . . ,W and for appropriate functions \varphi ,\int 

T2

\varphi (\vec{}t)d\omega i1
k,t2

d\omega 1
k,t1 =

\sum 
1\leq l2\leq l1\leq m

a1k,l1a
i1
k,l2

T

\int sl1

sl1 - 1

\int sl2\wedge t1

sl2 - 1

\varphi (\vec{}t)dt2dt1,\int 
T3

\varphi (\vec{}t)d\omega i2
k,t3

d\omega i1
k,t2

dt1 =
\sum 

1\leq l2\leq l1\leq m

ai1k,l1a
i2
k,l2

T

\int sl1

sl1 - 1

\int sl2\wedge t2

sl2 - 1

\int T

t2

\varphi (\vec{}t)dt1dt3dt2,\int 
T3

\varphi (\vec{}t)d\omega i2
k,t3

dt2d\omega 
1
k,t1 =

\sum 
1\leq l2\leq l1\leq m

a1k,l1a
i2
k,l2

T

\int sl1

sl1 - 1

\int sl2\wedge t1

sl2 - 1

\int t1

t3

\varphi (\vec{}t)dt2dt3dt1,\int 
T3

\varphi (\vec{}t)dt3d\omega 
i1
k,t2

d\omega 1
k,t1 =

\sum 
1\leq l2\leq l1\leq m

a1k,l1a
i1
k,l2

T

\int sl1

sl1 - 1

\int sl2\wedge t1

sl2 - 1

\int t2

0
\varphi (\vec{}t)dt3dt2dt1,\int 

T4

\varphi (\vec{}t)d\omega i3
k,t4

d\omega i2
k,t3

d\omega i1
k,t2

d\omega 1
k,t1 =

\sum 
1\leq l4\leq l3\leq l2\leq l1\leq 4

ai1k,l1a
i2
k,l2
ai3k,l3a

i4
k,l3

T 2

\times 
\int sl1

sl1 - 1

\int sl2\wedge t1

sl2 - 1

\int sl3\wedge t2

sl3 - 1

\int sl4\wedge t3

sl4 - 1

\varphi (\vec{}t)dt4dt3dt2dt1.

(8.20)

For N = 5, by (8.19), together with the constraint on \lambda k, there will be in total 47 equations.
In our example (7.7), however, the coefficients are homogeneous, i.e., independent of t. Then

in (8.14) the terms \partial i20\~\sigma 1 = 0 and thus the two terms \~\Gamma 
(i2)
4,\sigma ,0 \in \Delta \~V0

4,\sigma ,0, i2 = 1,2, in (8.16) are

not needed (the terms
\int 
T3
Ki1(t1, t2)dt3 \circ dBi1

t2 \circ dB
1
t1 are stilled needed, even though \partial 0i1\~\sigma 1 =
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VOLTERRA CUBATURE FORMULA 1001

\partial 0\~\sigma 1 = 0 in (8.14), because they appear in the last line of (8.14) as well when i2 = 1). Therefore,
we have a total of 45 equations. We thus set W = 5 and L = 4. Since each two dimensional
path involves 8 parameters, plus the parameters \lambda k, there will be 45 unknowns. For each
\~\Gamma \in \Delta \~V0

2 \cup (\Delta \~V0
4\setminus \Delta \~V0

4,\sigma ,0), by (6.11), (8.11), (8.14), (8.15), one can easily derive from (8.20)
the right-hand side of (6.9) as second or fourth order polynomials of aik,l. This, together with

(6.12), (8.13), (8.18), as well as \lambda 1+ \cdot \cdot \cdot +\lambda 5 = 1
2 , leads to the required 45 equations in exactly

the same manner as in (5.26). Again, we are not able to solve these equations explicitly, so
we will solve them numerically.

Acknowledgment. The authors would like to thank the two anonymous referees for their
constructive comments which have helped to improve the paper greatly.
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