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Abstract. In this paper, we introduce the cubature formula for stochastic Volterra integral equations. We
first derive the stochastic Taylor expansion in this setting, by utilizing a functional It6 formula, and
provide its tail estimates. We then introduce the cubature measure for such equations, and construct
it explicitly in some special cases, including a long memory stochastic volatility model. We shall
provide the error estimate rigorously. Our numerical examples show that the cubature method is
much more efficient than the Euler scheme, provided certain conditions are satisfied.
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1. Introduction. Consider a stock price in a Brownian setting under risk neutral
measure P:

(11) dSt:StO'tdBt.

In the Black—Scholes model, the volatility process oy = o¢ is a constant. There is a large
literature on stochastic volatility models where o is also a diffusion process; see, e.g., Fouque
et al. [19]. Strongly supported by empirical studies, the fractional stochastic volatility models
and rough volatility models have received very strong attention in recent years, where o
satisfies the following stochastic Volterra integral equation (SVIE):

(1.2) o1 = 0 +/()tK(t,r)%(ar)dr+/OtK(t,r)Vl(or)dBr.

Here B is another Brownian motion possibly correlated with B, V;’s are appropriate deter-
ministic functions, and the deterministic two time variable function K has a Hurst parameter
H >0, in the sense that K(t,r) ~ (t — r)Hfé and O K (t,r) ~ (t — r)Hfg when ¢t —r>0 is
small. Such a model was first proposed by Comte and Renault [10] for H >% to model the
long memory property of the volatility process. Another notable work is Gatheral, Jaisson,
and Rosenbaum [23], which finds market evidence that volatility’s high-frequency behavior
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could be modeled as a rough path with H < % We remark that one special case of (1.2) is the
fractional Brownian motion, where V5 =0 and Vj =1; see, e.g. Nualart [44].

Our goal in this paper is to understand and more importantly to numerically compute the
option price in this market: assuming zero interest rate for simplicity,

(1.3) E[G(S7)].

Note that the volatility process o in (1.2) is in general neither a Markov process nor a
semimartingale.! Consequently, S; is highly non-Markovian, in the sense that one cannot
Markovianize it by adding finitely many extra states, and correspondingly the option price is
characterized as a path dependent PDE (PPDE, for short); see Viens and Zhang [51]. This
imposes significant challenges, both theoretically and numerically. Indeed, compared to the
huge literature on numerical methods for PDEs, there are very few works on efficient nu-
merical methods for such PPDEs. Besides the standard Euler scheme (see Zhang [55]), we
refer the reader to Wen and Zhang [53] for an improved rectangular method; Jacquier and
Oumgari [31] and Ruan and Zhang [50] on numerical methods for high dimensional (nonlin-
ear) PPDEs driven by SVIEs; Richard, Tan, and Yang [48, 49] on discrete-time simulation
schemes, including the Euler and Milstein schemes, and the corresponding multilevel Monte
Carlo method; Ma, Yang, and Cui [41] by using Markov chain approximation; and Alfonsi and
Kebaier [1], Bayer and Breneis [3], and Harms [29] by using the Laplace transform for singular
kernel functions. In recent years, there has also been a growing interest on the convergence
analysis and error estimates for SVIEs; see, e.g., Bayer, Fukasawa, and Nakahara [4], Bayer,
Hall, and Tempone [5], Bonesini, Jacquier, and Pannier [8], Friz, Salkeld, and Wagenhofer
[20], Fukasawa and Ugai [21], Gassiat [22], Li, Huang, and Hu [35], and Nualart and Saikia
[45]. In this paper, we propose the cubature method for the above option price (1.3). This is
a deterministic method, and our numerical examples show that, under certain conditions, it
is much more efficient than the simulation methods such as the Euler scheme.

The cubature method was first introduced by the seminal works Lyons and Victoir [40]
and Litterer and Lyons [37] for diffusion processes; see also Gyurké and Lyons [26], Litterer
and Lyons [38], Ninomiya and Shinozaki [42], and Ninomiya and Victoir [43] for its extensive
numerical implementations. The method builds upon the stochastic Taylor expansion for
smooth G:

(1.4) G(St) = In + Ry;

see, e.g., Kloeden and Platen [34], where Iy is a linear combination of multiple integrals
against the Brownian motion B (typically in Stratonovich form), called the signatures of B,
and Ry is the remainder term. The main idea is to introduce a discrete measure @) to match
the expectations of the signatures: recalling that E =E is the expectation under P,

(1.5) E[In] =E®[Iy].

Then we will have an approximation E[G(S7)] ~EQ[G(Sr)]. Since Q is discrete and it is easy
to compute the exact value of E?[G(S7)] (without involving simulations), the algorithm is

"When H >1, X is actually a semimartingale; see, e.g., [51]. However, it is still highly non-Markovian, so
the numerical challenge remains in this case.
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very efficient, provided sufficient technical conditions to make the approximation error small
enough.

In this paper, we shall consider the general SVIE (see (2.1) below), and our goal is to
approximate E[G(X7)]. To introduce the cubature method for X, our first step is to derive
the stochastic Taylor expansion in this setting. Note that (1.4) relies heavily on the Ito
formula, but the solution X to the SVIE is not a semimartinagle, which prohibits us from
applying the It6 formula directly. To overcome this difficulty, we utilize an auxiliary two
time variable process ©; introduced by Wang [52] and Viens and Zhang [51]; see (2.6) below.
This process satisfies ©f = X; and enjoys the desired semimartingale property: for fixed s,
the process t € [0,s] — ©7 is a semimartingale. In particular, [51] established a functional
It6 formula, which enables us to derive the desired stochastic Taylor expansion with more
involved signatures for the SVIEs than the diffusion case. We then introduce a discrete
cubature measure @ for X, in the spirit of (1.4) and (1.5), and prove the following error
estimate: for some constant Cy which depends on the regularity of the coefficients,

N+1

(1.6) E[G(X7)] — E¢[G(X7)]| <CNT > .

The above result is desirable only when T is small. For general T', we follow the idea of [40,
Theorem 3.3] and utilize the flow property of the path dependent value function established
in [51]. To be precise, we consider a uniform partition of [0,7]: 0 = Tp<---<Tpy =T and
construct a cubature measure @, on each subinterval [T}, T;n+1]. Let @ be the independent
composition of {Qm to<m<nr; we then have the following estimate:

(17) B(G(X1)] - BG(Xr)]| < Cv s

2

where Cy is independent of M. The above estimate clearly converges to 0 as M — oo.

We remark that, while our stochastic Taylor expansion can be developed for any kernel K
with Hurst parameter H >0, the cubature formula becomes much more subtle when H < %
In this paper, we restrict ourselves to the case H > % and leave the case H <% to future
study. For applications, we refer the reader to Comte and Renault [10] for the long memory
model with %<H <1, Gulisashvili, Viens, and Zhang [24] for the integrated variance model
with 1< H<2, and El Omari [15] for the mixed fractional Brownian motion model with more
general H. We also refer the reader to Beran [0, section 4.2] for applications in hydrology,
Loussot et al. [39] for applications in image processing, Gupta, Singh, and Karlekar [25] for
applications in signal classification, Blu and Unser [7] for fractional spline estimators, and
Perrin et al. [47] for the theory of higher order fractional Brownian motions with general
H >1. However, we should point out that our result does not cover the rough volatility
models in Gatheral, Jaisson, and Rosenbaum [23] with 0 < H< % Moreover, the estimates
(1.6) and (1.7) require the coefficients to be sufficiently smooth, as we will specify in the
paper. In particular, the constant Cy will depend on such regularity.

The efficiency of our cubature method comes down to the construction of the cubature
measure @ in (1.7), which will involve (21W)™ deterministic paths for some constant 1. When
the dimension of X is large, or when N is large, the W will be large; and when T is large,
in light of (1.7) we will require M to be large. We refer the reader to section 7.5 for more
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precise comments on the efficiency issue. When all the conditions are satisfied so that (2W )M
is at a reasonable level, our numerical examples show that the cubature method is much more
efficient than the Euler scheme.

We should remark that the above efficiency issue was already present for the cubature
method in the standard Brownian setting. There have been great efforts in the literature
to overcome this difficulty and to apply the idea of the cubature method to more general
models; see, e.g., Crisan and Manolarakis [11, 12], Crisan and McMurray [13], de Raynal and
Trillos [14], Filipovi¢, Larsson, and Pulido [16], Foster, Lyons, and Oberhauser [17], Foster,
dos Reis, and Strange [18], and Hayakawa, Oberhauser, and Lyons [30]. It will be very
interesting to explore whether these ideas can help to improve the cubature method in the
Volterra framework. We would also like to mention the very interesting connection between
the signature, the kernel method, and machine learning; see Chevyrev and Oberhauser [9],
Kidger et al. [32], Kirdly and Oberhauser [33], Liao et al. [36], and the references therein.

Finally, we note that, while sharing many properties, the SVIE (1.2) is different from the
following SDE driven by a fractional Brownian motion B} := f(f K(t,r)dr+ fot K(t,r)dB,:

t ¢
(1.8) oy =09 +/ Vo(a;)dT—F/ Vi(ol)dBE.
0 0

We refer the reader to Baudoin and Coutin [2] and Passeggeri [46] for some works on signatures
for fractional Brownian motions and Harang and Tindel (see [27, 28]) on signatures defined
for “ Volterra path.” We shall remark that, unlike our signature, which is directly for the
solution oy to the SVIE (1.2) (instead of for the driving Brownian motion B), these signatures
are for the driving fractional Brownian motion B¥ or “Volterra path,” which has much simpler
structure. In particular, their signatures do not lead to the desired stochastic Taylor expansion
which is crucial for the cubature method.

The rest of the paper is organized as follows. In section 2, we derive the stochastic Taylor
expansions for the general SVIEs and prove the tail estimate. In section 3, we introduce the
cubature formula when T is small, and in section 4 we modify the cubature formula when
[0,7] is decomposed into M parts. We construct the cubature measure @ explicitly for a
one dimensional SVIE in section 5 and for the two dimensional fractional stochastic volatility
model in section 6. In section 7, we present various numerical examples and compare their
efficiency with the Euler scheme. Finally, we present some technical proofs in the appendix.

2. Stochastic Taylor expansions. Throughout this paper, let (Q,F,F,[P) be a filtered
probability space, let B := t, and letB = (B',..., B%) be a d-dimensional Brownian mo-
tion. Let T'>0 be a fixed terminal time. We consider dj-dimensional state process X =
(X1,...,X%) solving the following SVIE under Stratonovich integration o: given z =
(xl,...,xdl)E]Rdl,

d ot
(2.1) XZ::BZ‘—FZ/ Ki(t,r)‘/}i(Xr)odBﬁ, i=1,...,d,
=070

and we are interested in the efficient numerical computation of
(2.2) Yo :=E[G(X7)].

Throughout the paper, the following hypotheses will always be enforced: for some N >1
which will be specified in the context, the following hold:
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(HO) Each K : {(t,r): 0 <r <t <T} — [0,00) is infinitely smooth on {r <t}, and either K; =
1 or K; has Hurst parameter H, > 3, that is, K;(t,r) ~ (t—r)T=2 and O.K;(t,r) ~ (t—r)Ti~32
when ¢t —r >0 is small.

(HN) The functions Vji, G € CN(R%;R) with all the derivatives up to the order N bounded.
For later purposes, we will also need the following stronger version of (HO):

(HO-N) Each K; : {(¢t,r): 0<r <t <T} —[0,00) is infinitely smooth on {r<t}, and either
K; =1 or K; has Hurst parameter H; > N—i—%, in the sense that %Ki(t, )~ (t—r)Hi_o‘_B_E

when ¢t —r >0 is small for all integers «, 8 >0 such that o+ 5 < N.

Remark 2.1. (i) When K; has Hurst parameter H; > 3, X' is Holder-(H; A1—¢) continuous
in ¢ for any small € >0. This implies that V(X7) o dB} =V (X!)dB! for any smooth function
V, where V(X})dB] denotes the It integral, and they coincide with the Young’s pathwise
integral. On the other hand, when K; = 1, X' is clearly a semimartingale. So, letting I
denote the set of ¢ >0 such that K; =1, we may rewrite (2.1) in It6’s form, and in particular
they are well-posed under (HO) and (H2):

d t t
i i i1 i
(2.3) X, =z; + E /0 Ki(t,r)V}(X;)dB] + 3 g /0 Ki(t,r)oLV] (XT)ij(XT)dr.
j=0 kel

(ii) Consider a special case: 1 =0, K1 =1, Vil =1, le =0 for 7 > 2. Then we can easily
see that X} =t. So the system (2.1) actually covers the case that the coefficients Vji depend
on the time variable .

Remark 2.2. (i) In fractional stochastic volatility models, where X' is interpreted as the
volatility (or variance) process of a certain underlying asset price, the assumption %< H; <1
implies that the volatility has “long memory”; see Comte and Renault [10]. We also refer the
reader to [6, 7, 15, 24, 25, 39, 47] for applications and theory when H; > 1.

(ii) The case H; < %, supported by the empirical studies in Gatheral, Jaisson, and Rosen-
baum [23], has received very strong attention in the mathematical finance literature in recent
years. The singularity of K; in this case will make the theory much more involved; for ex-
ample, one may need to consider the weak solution to (2.1), and consequently the numerical
algorithms will be less efficient. We shall leave this important and challenging case to future
study.

2.1. The functional Ité6 formula. Note that X? is not a semimartingale when K; # 1,
which prohibits us from applying many stochastic analysis tools such as the Itd6 formula
directly. To get around this difficulty, in this subsection we introduce a functional It6 formula,
which is established in Viens and Zhang [51] but tailored for the purpose of this paper.

Denote X; := CO([t, T]; R“) N C((¢, T];R%) for each t € [0, T, equipped with the uniform
norm. For each t € [0,7] and ¢: X; — R, let dx¢ denote the Fréchet derivative of u. That is,
Ox®(x) : Xy — R is a linear mapping satisfying

(2.4) p(x+1) — o(x) = (0xp(x),m) +o(lln]) Vx,neX,.
Similarly, we may define the second order derivate Oxx¢(x) as a bilinear mapping on X; x X;:
(2.5) (Oxp(x+12),m) — (Oxd(x),m) = (OxxB(X), (11,m2)) + o([m2ll) V1,12 € Xy
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We may continue to define higher order derivatives 8}(<n)¢(x) in an obvious manner and let
C™(X;) denote the set of continuous functions ¢ : X; — R which has uniformly continuous
derivatives up to order n. Moreover, as in [51] (see also an earlier work [52]), we introduce a
two time variable process ©5 = (0%, ..., 09*) for 0 <t <s<T:

(2.6) @i’s:xHZ/o Ki(s,r)V}(X,) o dBj.
j=0

This process enjoys the following nice properties:
e For fixed s, the process t€0,s] =07 is an F-progressively measurable semimartingale.
e For fixed t, the process s€(t,T]— 07 is Fi-measurable, continuous on [t, 7], infinitely
smooth on (t,T], and with “initial” condition ©! = X;. In particular, ©; € X; a.s.
Then we have the following functional 1t6 formula, which is essentially the same as [51,
Theorem 3.10] but in Stratonovich form instead of 1t6 form.

Proposition 2.3. Let (HO) and (H2) hold, and let ¢ € C*(Xq) for some 0<T'<T. Then

(2.7) dp(e") ZZ o0 T K TYWiX,) 0dB], 0<t<T.
=1 j=0
Here G)[T 1 and KZ-[:‘:/’T] denote the paths O3, K;(s,t), s € [T',T], respectively.

We now turn to the problem (2.2). For any t € [0,7] and 6 € X;, introduce
d S
(28)  ult,0) =E[G(XL), Xi%i—g + Z/ Ki(s,r)Vi(X!0) 0 dBi, i=1,....dy.

Since 6 is differentiable, by Remark 2.1(i) it is clear that the above Volterra SDE is well-posed.
Moreover,

u(T, ) = G(&) Vi € Xy =R%; Yy =u(0,z), where z € X is a constant path,
and we have the following simple result, whose proof is postponed to the appendix.

Proposition 2.4. Under (HO) and (HN), we have u(t,-) € CN~Y(X;) for any t € [0,T).
Moreover, all the involved derivatives are bounded by C’NeCNT, where Cn depends only on the
parameters in (HO) and (HN).

2.2. The stochastic Taylor expansion. Fix M > 1, and set T;, := md, m =0,..., M,

where § :=dy7 := % In this subsection, we fix m and consider the stochastic Taylor expansion

of w(Tp+1,-) at Tp,. We first introduce some notation: for any n>1 and s € [Ty, Tn+1],

(2.9) T (s) = {t=(t1,...,tn) T <t <--- <ty <8}, t00:=Tpy1, TN =T, (t0).
Assume u(Ty,41,) is sufficiently smooth; by (2.7), we have

(210)  w(Tgr, 057 = u(tom, I

07T o:T 0 11 1 1
(tO ’ ] + Z Z/ tO ) [ ]) Kz[f ty }>ij1 (@;) Ongl’

21—1 ]1—0
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where we used the fact that X;, = @ii Now fix t1 € [T),, "], note that ty € [T, t1] — @2 is
a semimartingale, and note that 6 € Xyn +— (O, u(ty',0), K T])) is in C%(Xyp). Then

th

dvii(e]) = Z Za VIO K, (t1,t2)Vi?(Xy,) 0 dB,

i2=17j>=0 " Jl
<5leu(t0 79[ ), Kz[f"t; )

—ZZ i u(t, O80T, (5T K ) Vi (6f:) 0 aBl:.

22—1 j2—0
Applying It6’s formula and plugging these into (2.10), we obtain
(2.11)

e O ) e O T4 35 Y / u(ty, 078 ), KTV O, ) 0 dBY,

21_1 ]1_0

O7T T O7T 7;1 1 7:2 2
RS / Oyt O T, (KT i 16Ty Vi (001 )V (@)

t1,42=1j1,j2=0

(O, utg, O T, KT K (0, 42)0,, Vi (O0)V2(Of2)| 0 dB: o dB]..

Tig © j1

The formulae (2.10) and (2.11) are the first order and second order expansions of wu(tf"
@%’? ’T]). For higher order expansions, we introduce the following notation. For any n > 1,
denote I, := {1,...,d1}" with elements i=(i1,...,in) and Jy, := {0,...,d}" with elements
j=(j1,---,Jn), and introduce a set of mappings for the indices:

Sn::{/_{:(ﬁl,...,mn):filG{O,l,...,l—1},l:1,...,n}.
Given i € Iy, j € Jp, t € Ty, R € Sp, T = (21,...,20) € (R, 0 € Xim, @ : T]' — R, and
¥ :R% R, denote
No(R):={le{l,...,n} : k= a}, o= 0,...,n,
n
K(Z7E;£)::HKiz(tﬂzatl)a IC+ i Ht—} H H Klz tl‘imtl
=1

a=11eN,(R)
tO )
B Z K; f) = Kz[, t le./\/o(k’y
(2.12) O u(ty',0) == axill u(ty', 0), where {l1,...,l} = No(R),
Z’f’o‘z/z(a:) = 6%1 ...&%kw( ), where {l1,...,l;} =N, (R),
V().; L?f :: H a?avj% ($a)’C+(;, Evﬂ <a§u(t6n’0)7’€0(2 E§E>>7
a=1

Of:=(04,...,00), s<tn, ¢(f)odBl:=p()odB} o - 0dB].

Note that 160 and V here actually depend on m, but we omit this dependence for notational
simplicity. We then have the following expansion, whose proof is postponed to the appendix.
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Proposition 2.5. For any N > 1, under (HO) and (H(N + 3)), we have

N e
( ®[t0 7T]) — u(t'gz’ @'g‘i”T}) + Z Z - V(;, j, /‘_{, @ @[to 7T]) ng»
n=licr, je g, Res,”
-2 —' £ ty', j
(2-13) + Z /Tm V(Z’j’ﬁ; 7@tN+1’@7[5N+1})OdB§“
N+1

ZEIN+17;€JN+1,13€$N+1

2.3. The remainder estimate. In this subsection, we estimate the remainder term in
Taylor expansion, which will provide a guideline for our numerical algorithm later. For an
appropriate function ¢ : T)' x Q@ — R and T,,, < s <t{", denote

P
21) WOl = Oy g5=En|| [ o@ods]] |, where BnimEs

Moreover, for 56 Tn, t€T,, and 1 <1 <n, denote

—

(2.15) Gio= e odt)s To1:=Uirtr - osdn)y  toti= g1y stn).

We first have the following simple but crucial lemma, whose proof is postponed to the appen-
dix.

Lemma 2.6. Fizn>2, j € Jn, and let ¢ : T x Q@ — R be bounded, jointly measurable
in all variables, and, for each t € T™, @(t) is Fi,-measurable in w. There exists a universal
constant C >0 such that, for any T, <s <ty

(2.16)
S ird
/ Em|:/ ( gO(t]_7t_1)OdB§1:|dt17 j1:07
T e (t1) -
Em|:/ o ) t_> OdB]:| = 07 jl #Oaj%
m 1 S 5 4
2/ Em[/ @(tl,tl,t—ﬂodBtlz]dt17j1=j2>0,
Tm, m (tl) -2
(2.17)
C62 ess sup||p(s’, )| -, J1=0,
Tn<s'<s 8
lo()I2 <4 Coess supllols P i #0,ja
87] - 77L78 _—
Cé ess sup||p(s, ) L+ C6? ess sup ||o(s, )H2, =, J1=Jj2>0.
Th<s'<s s ] Tm<s'<s 557

Note that B® and {B’};>1 contribute differently in (2.16) and (2.17). Alternatively, we
note that B? = ¢ is Lipschitz continuous, but B/ is Hélder-(3 — €) continuous for j > 1. To
provide a more coherent error estimate, we shall modify (2.13) slightly. For any 1 <n < N
and p > 1, denote
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Tuni={fedu:lfI<N). where [fl:=n+3 10
(2.18) =1
A%} = sup sup sup ‘ Z V(i,j,/_{;t,f,ﬁ)‘.
nSNGET, jeTn|lfll=NfeTy FERM)" 0K | zeg

We then have the following tail estimate, whose proof is postponed to the appendix.

Theorem 2.7. Let (HO) and (H(N + 3)) hold, and let R} be determined by
(tO ,@[ 9 ’T]) Iy + RY, where

R1) el ey Y V(. #:0.0k, 0l M) o Bl
N - Tm
n=lier, jeT. n,RES, "

Then there exists a constant Cn>0, which depends only on N and d,d, such that

m % m N+1 m N+2 m N
(220)  [EnlRR < (EnllRRR)" < On | AR0™F + AR 00 5 + AR 507

+3}
Remark 2.8. Clearly, for fixed N, the error in (2.20) will be smaller when § is smaller,
when G and Vji are smoother (so that u is smoother), and when the dimensions d and d; are

smaller (so that C is smaller). This is consistent with our numerical results later. |

3. The cubature formula: The one period case. Note that (2.20) is effective when ¢ is
small. In this section, we consider the case that T is small. Then we may simply set M =1,
and thus § = T. We shall apply the results in section 2 with m = 0. In particular, in this
case, Eg = E. For notational simplicity, in this section we shall omit the superscript °, e.g.,
T, =T, Iy =13, and Ry = R

3.1. Simplification of the stochastic Taylor expansion. In this case, we have the follow-
ing: denoting to:=1T),

0L =0i=z, Xy :XT:]Rdl (T z)=G(z), € R%,

<8{ (07 )7160(;7/%;{»: f H K“ T tl
31 - = ZGNU(I‘C
( . ) V(i,j,/%;f;(l’,...,x),:l}):VO(Z’]’/{’J; Z,"{atjv
where  Vo(i, ], 7 @) Ha Vi (x G(x).

Thus, (2.19) becomes
(3.2)

G(X1) = Iy + Ry = G(a +z S W@ >/ K, 7:1) o dBI + Ry.
T

n

n=lieT, j€ T n,RES

Moreover, by abusing notation we may modify A(])V and define Ay as follows:

(3.3) Ay = sup sup sup Vo(i, j, R 2)K (T, 7 1.

n<NeT, jeT | 7|=N Ty z€ERN

RESN
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Remark 3.1. Motivated from the Taylor expansion (3.2), the step-N Volterra signature
should have the following form in the space @nNzo(Rd1+1)®”:

(3.4) i 3 </THIC(Z, 74 odB§> (e, ®---@e;,),

n=0%¢c7, je7,,ReS,

where {e;};=0,1,..4, denotes the canonical basis of RA+1 Below, we shall focus on the expec-
tation of the Volterra signature at any step.

To facilitate the cubature method in the next subsection, we shall rewrite (3.2) slightly

further. Note that, for fixed N, the mapping (Z, 7, &) € UpenIn X In.N X Sp — Vo(f, j.R -) (as

)
a function of ) is not one to one, so we may combine the terms with the same VO(Z, f, R;-).
That is, we may rewrite (3.2) as

G(X7)=G(z)+ Z qﬁ(x)l“ﬁ, + Ry, where
eV N

Vy=J {vou',j,ﬁ; )i (1, §,F) €Ty X TN X sn} C C(R™;R),

N
¢ ._ 2 j
=Y Y e [ KGR
n=17ecT, 7€ T, n,RES, "

Since it requires rather complicated notations to characterize ¢ € Vy precisely in the general
case, we leave it to the special cases that we will actually compute numerically.

3.2. The cubature formula. We now extend the cubature formula for Brownian motion
in [40] to the Volterra setting, especially for the Taylor expansion (3.5). From now on, we

set Q := C([0,T];R?) as the canonical space and B as the canonical process, and thus P
is the Wiener measure so that B is a P-Brownian motion. For some W > 1, L > 1, we
introduce a discrete probability measure ) on €2: for some constants a; = (a}C,l, ey ag’l) eRY,
k=1,...W,il=1,...,L,
2W 2W
Q.= Z Akl , Where d. denotes the Dirac measure, A; >0, Z)\k =1,
k=1 k=1
(3.6) AWtk = Ak, Wik = —Wk, k‘zl’---,W’l
ak,l
Wk,0 = 0, Wit = Wk, T 7[75 - 8171], te <3l7173l]7 sp:=-T,0=1,...,L.

JT L

Here the second line implies that @ is symmetric, since Brownian motion is symmetric. Also, it
is OK to consider nonuniform partition 0 = sg<---<sy, =T. Recall (2.12), for each piecewise

linear w = (w',...,w%) as in (3.6), j € Tn, and ¢:T, =R, and denote

(3.7) /cp(t_)dwij ::/ go(f)dwt':"-dwgll, where w) :=t.
T

n n

Then we have

e 2w = 2
(3.8) EQ [/ K(i, 71 o ng] = Z )\k/ K (i, R 1) d(wg ).
T, 1 T,
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Definition 3.2. Let N > 1, W > 1. We say that Q defined in (3.6) is an N-Volterra cubature
formula on [0,T] if, recalling E=EF,

(3.9) EQ[TY]=E[l%] forall ¢eVy,  and hence E@[Ix]=E[Iy].

Recall our goal (2.1)—(2.2). Our main idea is the following approximation:

2w

(3.10) Yo :=E[G(X1)| 2 Yy =Y MG(Xr(wi)), where
k=1
. d t
(3.11) Xg(w)::vi—i—Z/ Ki(t,r)V} (X, (w))dwl, i=1,...,d.
j=0"0

We now have the main result of this section, whose proof is postponed to the appendix.

Theorem 3.3. Under (HO) and (H(IN 4+ 3)), we have the following: recalling (3.3) and
(3.1),

+2 N+3
i

T Anga(1+ CY )T + Ay T

Yo — YO < Cy [AN+1(1 +cyhr
|a§€7l|.

12
(3.12) where Cg:=

max
1<k<W,1<j<d,1<I<L

In particular, if each K; is rescalable, in the sense that there exists an a; € [0,00) (not
necessarily the same as H; — %) such that

(3.13) Ki(ct,er)=c*K(t,r) for all0<r<t,

then all the ay; and hence Cq are independent of T'.

3.3. A simplification of the cubature formula. Due to the symmetric properties of
Brownian motion and @, we may simplify the requirement (3.9). Recalling (2.12) and abusing
notation, for j € J,, we denote

(3.14) No():={le{l,...,n}:ji=0a}, a=0,....d.
Lemma 3.4. Let (HO) hold, and let j € Ty, be such that ]Na(;)| s odd for somea=1,...,d;
in particular, if ||j|| is odd, then

(3.15) JE[/ K(zg;aong]:o:EQ[/ /C(Z,,z;aongf].
T, T,

Proof. One may easily derive the first equality from (2.16) by induction on n. The second
equality follows directly from the symmetric properties of Q. |

Note further that, when j: (0,...,0) € Ty, we have ng; = dwi; =dt, ---dt1. This, together
with Lemma 3.4, implies the following result immediately.
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Theorem 3.5. Let (HO) and (H(N + 3)) hold, and denote

-,

TN =17 € Tun\{(0,...,0)} : INo(7)|is even for all a=1,...,n},
V= | V(@57 (05.7) €Tu x Fun x Su} < Vi,
(3.16) n<N

N
mo 2 j
=Y Y lpgiee [ KERDod]

n=17eT, j€Jn n.RESn
Then @ satisfies (3.9) if and only if
(3.17) EQ[TS ] =E[[%] for allp € Vy.
When N is odd, note that 7, NN =0, so we will get the cubature formula for free at the

Nth order. Therefore, we shall always consider odd N.
Ezample 3.6. (i) In the case N =3, obviously we have

(3.18) Ji3=T3=0, Jos={(j):1<j<d}.
(ii) In the case N =5, we have

319y =T =0 Ds={(J):1<i<d},  Ja5=1{07.3,0).(5,0.9),(0.5.7)}
\74,5:{(],];]7])7(]7]7]7]);(],]7],]),(]7];],])]-S_]?éjéd}

4. The cubature formula: The multiple period case. In this case, we consider general
T, and we use the setting in section 2, in particular ¢ := %
4.1. The cubature formula on each subinterval [T;y,, Try41]- Recall (2.19). Note that
n (3.2), VO(ZJ', R;xz) and [} IC(Z, Rit) o ng are separated and the cubature measure @ is
determined only by an K(i,7;t) o dB%. In (2.19), however,
n
i g tor T K, o o N R tor, T - N
V(i 7,70k, 0FF T = [ o5V (0l K. (7, 7 ) (0Fu(ty, 05 1), Ko (i, 7 1))
a=1
and we are not able to move the term [[._; ?’O‘Vji:(@%m) outside of the stochastic integral,

which prohibits us from constructing a desirable @, to match the conditional expectations of
I BY» [I%] =K, [I%]. In light of (2.20), we shall instead content ourselves with

N41

(4.1) EQ [17] - EnlI7]| < 0575

We shall remark, though, that in general, conditional expectations are only defined in the a.s.
sense, which requires specifying the probability on F7. . However, here we will construct Qp,
only on the paths on [T}, T;+1]. For this purpose, we interpret the conditional expectations
in a pathwise sense, as we explain in the remark below, so that (4.1) could make sense.

Remark 4.1. Under our conditions, one can easily see that E,,[I3}] = vm((%%:“T]) for a
deterministic function v, € C(Xr, ). Similarly, for the @, we are going to construct, we
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will interpret it as a regular conditional probability distribution, and thus we also have the
structure E&» [I7] = 17m(@[T’" ’T}) for a deterministic function ¥, € C(Xr, ). Then by (4.1) we
actually mean a stronger result:

(4.2) | (0) — v (0)| < C5°2 forall 0eXp,.

We refer the reader to [54, Chapter 9] for more details of the pathwise stochastic analysis. In
this paper, since our main focus is the approximation, to avoid introducing further complicated
notations, we abuse notation slightly and write them as conditional expectations.

From now on, we shall assume K; is sufficiently smooth in (¢,7). Then, recalling (2.6), the
mapping s € [Tp,, T] — ©F, is smooth: for any a >0,

(4.3) asa Z/ Py K;(s,r)V}(X,)odB].

Then the mapping £ € T™ — V(#) := V(Z, j Rt et ,G[t T]) is also smooth. Our idea is to
introduce further the Taylor expansion of V() at Tm = (Tm, ooy Ty). Forany @ = (aq,...,ap)
with oy =0,1,..., denote ||@]| :=>";"; oy and @' :=[];";(ey!). Then by the standard Taylor
expansion formula we have, for any k> 0,

. 1ol ., 2 . ollell ollall
t)= ——V(Tn t; — Ti)™ + Ry (t), wh — = — —~
V(‘> Z &' 875‘1 V( )1:[( l ) + k(‘> where 8ta 8t11"'6tn"
(4.4) lall<k =1
5 8k+1 .
and |Ri(£)| <Chx sup sup ——V(s1,...,5,) 0",
|G| =k+18,€[Tm ti]l=1,....n | O

We now extend Theorem 2.7. Recall Lemma 3.4 and Theorem 3.5.

Theorem 4.2. Let N be odd, and let (HO-251), (H(N + 3)) hold. Let RY be determined
by

(4.5) IV =1Iy+ Ry, where
Fm o ,T] Tz T [o vy 7
B 05T £ S Y 3 / (.7, %700, 0l M) o ap]
n=17e1, reS, LieT, n\Tn.n
Lolol ) = = 7 gl - a j
+ > > mopYErmTeer.er ) | TIthi-TaedBy.
FETn N &:| ]| < M=l =1

Then there exists a constant C, which depends on N, H;, and the upper bounds of Vj’ and
their derivatives up to the order N + 2, such that

(4.6) B [|RR?) < e TgN+L,
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Proof. For each j € J,, v, noting that || is even and N is odd, set k := % Using
the notations in (4.4), one can see that %f) involves the derivatives of Vji and u(t{’,-) up to

the order n+k+1 and the derivatives of K; up to the order k+1. Note that 2 < [|j]| < N —1,
and then

N— =2 _ =2
il =1 N+l +1
2 2

N -7l -1 N -3 N -1
g” +1< 5 +1< .

Recall Proposition 2.4 for the bounds of the derivatives of u. Now, following the arguments
in Theorem 2.7, one can easily see that, for some appropriate constant C' depending on the
parameters specified in this theorem,

E[ / Ry(7) 0 dBL
T

This implies (4.6) immediately. [ |

n+k+1<|7]+ FI<N 41,

k+1=

2
] < CeCNT 2+ D) +ill — o eCRT gN+1.

We next introduce @y, as in (3.6) but on paths on [T}, Tnt1]:

2W 2W
Qmi=> Mlu, Me>0, Y Ne=1,
k=1 k=1

AWtk =Mk, Wk =—wg, 1<kESW,
ar.

V6

(4.7)

l
Wk,0 = Tm’ Wkt = wk751—1+ [t - 5l—1]7 le (Sl—lv 8l]7 S| = Tm + Z(Sa 0< l <L.

Recall Remark 4.1.

Definition 4.3. Let N > 1 be odd, and fix m. We say Qm, defined in (4.7) is a modified
N-Volterra cubature formula on [T, Tms1] if, for alln < N, j € Jn.n, and ||@|| < %)

n

(4.8) E@m { /T ’H

n =1

n
(t; — Tp)™ o ng;] =En [/T [It — 7)o dB2].
=1

Remark 4.4. (i) The equations in (4.8) corresponding to ||@|| =0 exactly characterize the
cubature measures for Brownian motions. That is, our modified N-Volterra cubature formula
is a cubature formula for the standard one but not vice versa in general. In the case N =3,
however, as we will see in Example 4.6(i) below, the two are equivalent.

(ii) The kernel T, (t; — T;,)* in (4.8) is rescalable in the sense of (3.13). Then, by the
same arguments as in Theorem 3.3, Cg, := maxi<p<w,1<j<d,1<I<L ]af@l\ is independent of § (or
M). Indeed, as in (8.9) below, @, is a modified N-Volterra cubature formula on [T}, T}, +1]
if and only if the following Q% is a modified N-Volterra cubature formula on [0, 1]:

2W 2W
Qv = b, M>0, D> Ae=1,
(49) k=1 k=1

AWk =g, Wwik =Wk, 1<ESW,
l
wk,O = 07 wk,t = wk,sl,l + akJ [t - Szk_l], te (37_1, Szk], Szk = E, 0 S l S L.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/31/23 to 144.174.212.58 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

VOLTERRA CUBATURE FORMULA 973

We emphasize that Q% is universal, in the sense that it depends only on N, the dimensions,
and our construction of the cubature measure, but it does not depend on 7', M, or even K. In
particular, C+ 1= maxi<p<w,1<j<d,1<I<L |a§f ;| is independent of T', M, or dand Cg,, = Cgs, .

Theorem 4.5. Let N be odd, let (HO-YF1), (H(N + 3)) hold, and let Qp, be as in Defi-
nition 4.3. Then, for the C}} as in Theorem 4.2 and Cgq+ in Remark 4.4, we have

N+1

‘E%[ m+17@[Tm“’ ])]_Em[ (Tm+1,9[7?"fll’T])] <C'N(1+CN DeCrRT 53

m+1
2 +A%+2(1+CN )57 + A +35N2+3}

(4.10)
+CN[ (14 CYHs™

This proof is also postponed to the appendix.

Ezample 4.6. (1) When N =3, recall (3.18) and note that HgH =0 for j = (j,j) € T3,
and we see that (4.8) is equivalent to the cubature formula for standard Brownian motions:

(4.11) EQ~ [/m odBY ’J)] Em[/m odBtW)] = g.

ii) In the case N =5, recall (3.19) and note that N=lJl=t — 1 for i=0,9) € Jo,5 and
\

2

N_Hz‘_ —0forje J35 U Ju5; then (4.8) is equivalent to the folllowing: for 1 < j £ 7 <d,
1=1,2,
EGr / odBSJ'J)] —E U odB(j’j)] _0
m - ¢ m ” t 2’
[ 6. G _ 9
EQ~ / (t — Tin) 0dBY? | =E,, / (t, — Tp) 0 dBY | = 2,
T t Ty t 4
[ 7] o - .. ..
B | [ canll =B [ wBl] =%, 72650049
(4.12) - I R
EQn / od B! ’OJ)} :Em[ / odBt(f’O’j)] =0,
T ] v 2 B
E3" / OdBJ =En / odBp| =2 = (3:4:4:0) (5.5 39)5
EQ~ / cdBl| =K, [ edBll =0, 7=(.3.0.3.6.3.3.9)
4.2. The cubature formula on the whole interval [0,T]. Recall that @, is defined on

C([Trns Ty 1]; R%). We shall now compose all the Q.

(4.13) Q=Q® - @Qrp_1.
Here ® refers to independent composition. Then @) is a probability measure on = C([0,T7; Rdl).

Similarly, let P, denote the Wiener measure on C([Tm,TmH};Rdl); then P=Py®---®@Pa_1.
The following result extends [40, Theorem 3.3] to our setting.
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Theorem 4.7. Let N be odd, let (HO—%), (H(N +4)) hold, and let Q be defined by
(4.13) with each Q. as in Definition 4.3. Then, for the C3 in Theorem 4.5 and Cgs in
Remark 4.4, we have

M-—1
(4.14) E[G(Xr)] - E[G(XT)]’ < mz::O [C}’&(l + YR

N+

+ ONARL 1 (1+ CHT + AR 65 (14 [Coi, VIV ™2) + AR50

N+43

2],

Moreover, for a possibly larger Cn which may depend on the bounds of the derivatives of VJZ
up to the order N +4 and the Cgs, , but not on M, we have’
N+1

N+1 T 2
(415) [E2G(Xr)] ~ E[G(Xr)]| < CxMeT5™ = Cne T —

=

which converges to 0 as M — cc.

Proof. Note that, recalling (2.8),

[EQIG(Xr)] ~ E[G(Xr)]| = [E%9 0 [G(Xp)] — ERSF [G(Xr)]|
M-1
< Z ‘EQ0®---®Qm®Pm+1®---®1P’M_1 [G(XT)] — FRo®Qm 1P ®:-®Py 1 [G(XT)]‘

m=0
M-1
Tin,T 0@ Qs 1 RPo, Tois,T
< ‘EQO@ ®Qm[u(Tm+17®[Tm:1 ])]_EQ@J Qm_1®P (T, Lﬂn; })]‘
m=0
M-—1
Tm 1,T Tm 17T
< 3 B @ [ fu( T, O] ~ iy fu( T, O D)
m=0

Recall Remark 4.1, and note that E-™ = E,,; then by (4.2) we see that (4.14) follows directly
from (4.10). Finally, by (2.12), (2.18), and Proposition 2.4 we obtain (4.15). [ |

Remark 4.8. (i) Compared to Theorem 3.3, the above Theorem 4.7 allows us to deal with
large T'. Moreover, compared with the @ in (3.17), it is easier to construct the cubature
measure @, in (4.8) and the @ in (4.13). The price to pay, however, is that (4.8) requires
higher regularity of K; in order to have the desired convergence rate.

(ii) Provided sufficient regularity (HO-%) on K; (and (H(N +4)) on VJZ and G ), we
have the convergence and its rate in (4.15) as M — oo, which is very desirable in theory.
However, by (4.7) and (4.13), we see that each @,, will involve 2IW paths, and thus the
independent composition @ will involve (2W)™ paths. Therefore, practically we still don’t
want to make M too large, which in turn means that T' cannot be too large. We note that the
same difficulty arises in the Brownian setting, and there have been various ideas on improving

2The constant e“¥" below is due to the estimate for the derivatives of w in Proposition 2.4. If one can

improve this estimate, under certain technical conditions, then one can replace e“~¥ T with the new bound for
the derivatives of u up to the order N + 3. This comment is valid for the estimates in (4.6), (4.10), (4.14) as
well.
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the efficiency, for example the recombination schemes in [30, 38]. It will be very interesting
to explore these ideas and see if they can be extended to the Volterra setting.

(iii) Note that the choice of @y, is not unique. In particular, (4.8) involves a certain number
of equations. To make it solvable, we need to allow for a sufficient number of parameters A,
agl, 1 <k<W,0<1<L—1. As mentioned in (ii), the complexity of our cubature algorithm
increases dramatically for large W but is much less sensitive to the value of L. So, whenever
possible, we would prefer a small W while allowing for a reasonably large L. We shall remark
that, when the dimension d; is large, typically we need a large W. This consideration is not
serious for the one period case, which, however, requires 7" to be small.

(iv) Clearly, we have a better rate for a larger N (again, provided sufficient regularity).
However, a larger N implies more equations in (4.8), which in turn requires larger values of
W and/or L. In the meantime, a larger N implies a larger Cy in (4.15). So the algorithm
may not be always more efficient for a larger V.

5. A one dimensional model. In this section, we focus on the following model with
d=d; =1:

(5.1) thﬂ?o-ir/otK(ta”’)V(Xr)OdBr, K(t,r)=(t—r)H3,

where the Brownian motion B is one dimensional and the Hurst parameter H > % We inves-
tigate a few cases in detail and compute the desired (). We shall illustrate the efficiency of
our algorithm in these cases by several numerical examples in section 7 below.

Note that in this case VO1 = 0; then there is no need to consider j = 0. So, for n < N,
by abusing notation we may view Z,, = {(1,...,1)}, Jp = Ty = {(1,...,1)}. We may omit
i=(1,...,1), j=(1,...,1) inside K and V in (2.12).

5.1. The multiple period case with order N = 3. We shall construct @,, as in (4.7)
for a fixed m. In the numerical examples in section 7, we may simply compose these Q)

independently as in (4.13).
In this case, (4.11) consists of only one equation:

mt1 t1
(5.2) EQm [/ / dB, odBtl} 2

To construct Qp,, we set W =1and L=1in (4.7):

1

57 idta te [TmaTm+1]'

(5.3) A= 7

det =

Then (5.2) becomes
) Trt1  fta m+1 Ll 25
o= / / dewr, dusy, = / / dtydty = 22
2 Jr., Jr, Kl 2

t—T,
\/gm, t € [T, Trnt1)-

(5.4) a=1, andhence wi;=
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We remark that the above computation does not involve H, in fact, as we saw in Exam-
ple 4.6(i), the cubature measure in this case coincides with that of standard Brownian motion.
However, in order to have the desired error estimate, by Theorem 4.5 we need H > %

5.2. The multiple period case with order N = 5. While we may apply (4.12) directly,
in this one dimensional case actually we may simplify the problem further. Note that the cor-
responding term which requires the further expansion (4.4) or (4.5) is the following: recalling
(2.11) and abusing the notation V(t),

> [ v@ier, e edst = [ vieas

RES, T3
where  V(f) := (cu(ty, 055 ), (K51 KTy viel yvek )
+ (Oxu(ty, O T K5 K (1, 12)0,V (0% YV (Of ).

For N = 5, we shall assume (HO-2), namely H>5; then K(Tp,Tn) = 0K (T, Trn) =
8, K (Tjn, Tr) = 0. Thus,

VB, 1.,y = Doty 5T, (0, K8 Ty KT V (X, )V (XT,)
+ (Ot O T, (kT KT V! (X, )WV (X7,)0,0%, |,
" m gL,T 0 ,T
VD, 1.,y = Oocu(ty’, OF ), (KT 0. KI8TV _y ) V(X )V (X7,
+«mwﬂ@%ﬂux%ﬂK“ﬂ» (X1, )V (X1,)0,0%, |,
Note that (Ozzu, (n1,72)) = (Ozzu, (2,m1)); then

atl V(E) |F:(Tm,Tm) = atz fj({) |F:(Tm,Tm) :

This leads to the following expansion:

~ (1,1) _ - (1,1)
/m V(t) o dB." =V(Tn, Try) /m dB;

+ 00V, 1, / [0 =T + (02 = T 0 dBEY 4 R(D),

2

where R(f} satisfies the desired estimate. Consequently, we may merge the two equations in
the second line of (4.12) into one equation, in the same spirit of (3.5), by considering only
their sum. Therefore, in this case, (4.12) reduces to three equations:

mA1 t1 5
E@m / / dBy, o dBtl} =5
2

0 Foir rt )
(5.5) E*m [(t1 — + (t2 = Tim)]dBy, 0 dBy, | = o

T t1 ta pls 52
EQn / / / By, 0By, o dB, o dBtl} =2

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/31/23 to 144.174.212.58 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

VOLTERRA CUBATURE FORMULA 977

To construct @, we set W =2 and L=1in (4.7):

Ok
Ve

Note that, in light of Remark 4.8, we would prefer a small W. However, if we set W =1 here,
the cubature measure @), does not exist for any value L. By straightforward calculation, we
see that (5.5) becomes

2 2 2
Z 9s 0 Z 25 02 Z ag o 0
k=1 k=1 k=1

1
(5.6) AL+ A2 = 5, dwy,t =

dt, k=1,2.
2 ’ ’

In particular, the first two equations coincide, and we obtain

/2o
1+ )\1], CL§:4

This requires A\; < % so that \/2)\—);1 < 1. Then, for any 0 < \; < %, we would obtain a solution
by (5.8). One particular solution is

(5.8) al =4

1 1
(5.9) )\1 = 6, )\2 = g, a] = \/g, [ 0.

We remark that, in this case, —ws = wy =0, so we actually have a total of three paths, instead
of four paths: by abusing the notation Ao,

1 3 2 d 1 3
(510) >\1 - 67 dWLt - \/;dt7 )\2 — §7 awlt — 07 )\3 - 67 dw3,t — _\/;dt

5.3. The one period case with order NV = 3. Recall (3.16) and (3.18), in particular we
shall only consider n =2. Then one can verify straightforwardly that

SQ:{(Ovo);(()’l)}? V?):{VO(E§‘):E€SQ}:{G//V2;G/VIV}a
T ty .
sy T = [ K((0,0):#)0dBM) = / / (T —t1)(T — t2)]"2dBy, 0 dBy,,
Ty 0 0

T tl 1
r{'v'v :/ K((0,1);£) 0 dBtg’l) :/ / (T —t1)(t1 — t2)]~2dBy, o dBy,.
Ty 0 0

By (2.16), one can easily compute that
camey T =GV
(5.12) E[LS") = 17 E[rg } =0.
To construct @, we set W=1and L=21in (3.6) :

a

1
(513) )\1 = 5, dCULt = |:\/1T1[O’§](t) + ﬁl(%’T] (t):| dt.
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For notational simplicity, we introduce

1 1

Then one may compute

Q GV Tt H T2H 1 a/Q 2
BV = [ — @ — e i, = S | (1= g )+ |

T rtq
EQ [F3G v V} :/ / [(T — tl)(tl — tg)]H_ detzdetl = T2H [cla% + coaqag + c;;a%],
0

t1
a1 _/ / (1 —t1)(ty —to)]H dtgdtl_/ HepHe gy
1\ 1+
(5.16) 2 _// (1—t1)(t1 — )] dtgdtl_/ t)H- [tH+<t2> ]dt,
t1 1 +
C3 1= / 1—t1 tl—tg)] dtzdtl—/ 1—t ( 2> dt.

1
2

(5.15)

where

Combining (5.12) and (5.15), we obtain from (3.9) that

H2 22
2H

First, by the second equation we obtain (we may use the other one as well)

(5.18) ag _ —CF \/c% —4cics

Cyq '
aj 203

2
(5.17) {(QH+ —1)as + ag} = c1a} + caaras + cza; =0.

Plugging this into the first equation in (5.17), we obtain one solution:
H 2H+ H 2H+
(5.19) a1 = - , ap= S
V2H[2H+ 4 ¢4 — 1] V2H 21+ 4 ¢y — 1]

Erample 5.1. Setting H = % as above, then one may compute straightforwardly that

) 10 1
cl=— Cy) = — c3 = — C4:—5—‘r2\/5,

384’ 384’ 384’
_V5+1 ~5-3V5
a; = \/g y a2= Ta
and we obtain @ through (5.13).
5.4. The one period case with order N = 5. Recall (3.16) and (3.19); in particular, we

shall only consider n =2 and n = 4. Clearly, V3 C V5 for the V3 in (5.11). Moreover, again

-

omitting i =(1,...,1), j=(1,...,1),
V5\V5 = {VO(F;’; 3 /%’684}.

Recall (5.14) and the Gamma function I'(« fo y*=14#=1dt, and denote by ¢¥) the
kth derivative of ¢. We then have the followmg result.
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Lemma 5.2. For the above model, we have V5\V3 = {¢4}1<a<7, where

— G(4) ‘/'47 ¢2 V V3 ¢3 _ G//V”VS, ¢4 G//( ) V2,

(5.20) o1
¢5=G’V<3>V3, 6 —G’V”V’V2, pr=G'(V')*V.

Moreover, denoting vJ* :=E[['%"], we have

p T4H & T4H
i A= _T(2H,H
=y _TH T(QH 2H7), 7f°=vf6—74 =0.
Proof. Note that S4—Ua 1S40
(5.22)
S41:={(0,0,0,0)}, Sa5:={(0,1,1,1)}, Sa7:={(0,1,2,3)},
S41.2:=1(0,0,0,1),(0,0,1,0),(0,1,0,0),(0,0,0,2), (0,0,2,0), (0,0,0,3) },
Sa3:=1{(0,0, 1,1),(0,1,0,1),(0,1,1,0),(0,0,2,2)},
Sy = {(0,0,1,2),(0,0,2,1),(0,0,1,3),(0,0,2,3),(0,1,0,2),(0,1,2,0),(0,1,0,3) },
Sig:=1{(0,1,1,2),(0,1,2,1),(0,1,2,2),(0,1,1,3)}.

By (3.1), one can check that Vy(K;-) =¢o for all K€ Sy o, a=1,...,7. Then, by (2.16),

t1
|: ’C H 2?) dB (1L1,L1) :| / / IC tl,tl,tg,tg))dtgdtl
/ / 1 — tl ,{2 — tl)(t,.gs — tg)(t,m — tg)] _dt3dt1.

Now the expectations in (5.21) follow from straightforward computation.

979

We next construct a desired ). Note that (3.17) consists of two equations for n =2 and
seven equations for n=4. To allow for sufficient flexibility, we set W =2 and L =4 in (3.6):

1
(5.23) Mt o=, dwkt—z (t)dt, k=1,2.

/* Sl 1,51

Similar to (5.15), the following result is obvious.

Lemma 5.3. For the above model (5.23), we have, for k=1,2,

2
[ R0t = | S st

1
Gay [ KO M@ =1 Y b baa,

T 1<1,<1, <4

. 1,1,1,1 1 LR
/1r ’C(ﬁsﬂd(wk)é = T2 Z (R, 1) g1, O 1, Ok 15 Ok 1, 5
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C(l,l) / / —tl tl—tg)] dtzdtl—/ —t (t—Sl 1) +dt

ey, ly) = / / (T = 1) (1 — to)] - dtadiy
(5.25) | o o
= (T — )T [(t — s3,_1) " = (t — sp,)F+]dt, 11>,

Sty -1

_’ Sll 812/\t1 813/\t2 814/\t3
c(R,1): / / / / (R;t)dtadtsdtadt,.
Sip—1 v Sigp—1 Sig—1 Siy—1

Combine (5.12), (5.21), and (5.24), we have the following result.

where

Theorem 5.4. Equation (3.9) is equivalent to the following equations:

1
Al—i_)\2:77

2
1< H H >
i M o sl =T

k
5.26 2
(5:26) S > ellyl2)agg ak, =0,

k:l 1<l,<1; <4

2
172 Z Z Z)\kc /ﬁ,l Ak 1, O, 1, Ok 15 Ok [, = ’yff”, a=1,...,7.
" Ie{1,.. Ay RES1a k=1

We remark that (5.26) consists of 10 equations with 10 unknowns: Ay, ar;, [ =1,2,3,4, k=
1,2. Since these equations are nonlinear, in particular they involve fourth order polynomials
of aj;, in general we are not able to derive explicit solutions as in (5.19). Indeed, even
the existence of solutions is not automatically guaranteed, and in that case we can actually
increase W and/or L in (5.23) to allow for more unknowns. Nevertheless, we can solve (5.26)
numerically, and our numerical examples in the next section show that the numerical solutions
of (5.26) serve for our purpose well.

6. A fractional stochastic volatility model. Consider a financial market where Sy denotes
the underlying asset price and Ut is the volatility process:

t
Sy =5Sp + b1 T‘ST,U)d’I“—F/ 0'1(7“ 5’7«,U)OdB1
(6.1)

U= U0+/Kth2(TU ds+/Ktr02(rU)odB2

Here B!, B? are correlated Brownian motions with constant correlation p € [-1,1], K(t,7) =
(t— ’I")H ~% with Hurst parameter H > % Assume for simplicity the interest rate is 0, and our
goal is to compute the option price E[G(ST)].

Note that (6.1) involves the time variable ¢, so we are in the situation with d = 2 and
d1 =3 in (2.1). Indeed, denoting X; = (X?, X}, X?) := (¢, S;,U;), then we have

x:(O,SO,U()), K0:K1:17K2:K7

(6.2) VO=(1,0,0), V'=(b1,01,0), VZ=(b2,0,00).
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Here, for notational simplicity, we use indices (0,1,2) instead of (1,2,3) for X. We shall
emphasize that, although B!, B? are correlated here, the Taylor expansions (2.13) and (2.19)
will remain the same, but the expectations in Lemma 2.6 need to be modified in an obvious
way. In particular, (3.15) will hold true only when ||| is odd. Therefore, in this section we
modify the J,, n in (3.16), still denoted as 7, n, by abusing notation:

(6.3) TN =47 € Tnn\{(0,...,0)}: ||7]is even}.

Then all the results in the previous sections remain true. Alternatively, we may express
B', B? as linear combinations of independent Brownian motions. However, this will make
V1, V2 more complicated and does not really simplify the analysis below.

6.1. The multiple period case with NV = 3. By (6.3), we see that
Ti3=T3=0, Jos={(1.42):J1,j2>0}.

Thus, the cubature measure Q,, should satisfy the following: for j € J2.35

Qm il _ 7
(6.4) EQ [/Tm ong] _Em[/w odBF}

This is the same as the Brownian motion case. More precisely,

EQm [/ ong’l)] =E9~ [/ odB£2’2)} = é,
Ty t - ¢ 2

2

@ / 0dBM? | = EQ~ / odB%Y :'0—6.

To construct @Q,,, we set W =2 and L =1 in (4.7): noting that w is two dimensional,

(6.5)

1 12 aj,  aj
(66) )\]_ = )\2 = Z’ dei = d(wki,wk‘.’t) = %, % dt, k = ].7 2
Plugging these into (6.5), we have
4] 0 b 0 )
(67) lad? +lad?) = Sla3P + 13P) = 2, Slalad +adad =2

One can easily solve the above equations:

al =v2sin(0y), ad=+v2cos(fy), a?=+2sin(ha), a2=+2cos(6s)

(6.8) for any 61,09 satisfying cos(6; — 03) = p.

6.2. The one period case with N = 3. We first note that, due to the multiple dimen-
sionality here, the system corresponding to (3.17) will be pretty large, especially when N =5
in the next subsection. However, since (X?, X}) = (t,S;) are not of Volterra type, the system
can be simplified significantly. Furthermore, we shall modify the cubature method slightly as
follows.

-

Remark 6.1. Recall that in (3.5) and (3.16) we group the terms with the same Vol(i,7,R;-).
Note that the mapping (7, j, &) — [ K(i,&; f)odB% is also not one to one, and since (X?, X}) =
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(t,S¢), many terms do not appear in the Taylor expansion (or, say, the correspondmg Vo(z j,
R;- ) 0). It turns out that it will be more convenient to group the terms based on fT (i,R;t)o

dBJ for this model, as we will do in this and the next subsections. To be precise, let v  denote
the terms [ K (i, R; f)odB] with (z 7, R) € Tx (Tun\{(0,...,0)}) xS, appearing in the Taylor

expansion, and letAVN =V N\VN 1- We emphasize that, unhke in (3.5), the elements here
are not Vy. We then modify Definition 3.2 by replacing (3.9) with

(6.9) EC [/ K(i,7;t) o ngf] = E[/ K(i, 7)o ngf} for all the terms in V.
Tn Tn

We remark that if [, K(7, &%) o dBij/ = [, K(@,Rt)o dBZj (as random variables), then
automatically we have [, K@, /1) dwi: = K(i, ;1) dwi; for all w in (3.6).

Recalling from (6.3) that Lemma 3.4 remains true when ||j| is odd, we shall only find A@g.
Instead of applying the Taylor expansion (3.2) directly on (6.1), we first expand E[G(S7)] as
n (3.2). Indeed, note that © = (¢, S;, ©5?), where

t t
(6.10) 0% = Uy + / K (s,7)b(r, Uy )ds + / K (s,)05(r,U) o dB2.
0 0
Then, applying the chain rule, we have the following: denoting by :=G'by and 51 := G’ o1,

T ~
G(S7) = G(So) + / 516} )dn +61(0}:) 0 B},
(6.11) %

:R¢2+/ b1 (© dt1+/ 2801 Doy (O2)Ki(t1,t2) 0 dBL, 0 dB}..

T =1
Here R, is a generic term whose order is not equal to n. Then, recalling Remark 6.1, by
(6.2) we can easily obtain

AV = (T8 T8 where T8 = [ Ki(ty,t2)dB o dBL,
(6.12) o O
[Fglﬂ)]:* Ki(tl,tl)d<Bl,Bl>t1 _{ S, .Z_— 17
T, , t=2.
To construct @, we set W =1and L=11n (3.6) : dwy ;= (T T)dt Then
~ 2 . T ~ aia - TH+
EQF(LY = [ /dt:a 20 BRI = M2 g (4 )i = —————aqas.
3] == N 5 a1l 3] == - 2(t1,t2) o, ™M™
By (6.12), we have
T T TH+
*’a1|2: 5, mleQZO, lmplylng ai :1, a =0.

We remark that this solution is independent of p. In fact, numerical results (which are
not reported in the paper) show that this does not provide a good approximation, even when
T is small. So we shall move to the order N =5 in the next subsection, although it becomes
much more involved to find the cubature measure.
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6.3. The one period case with N = 5. In this case, besides the A\?g in (6.12), we also
need A@g. For this purpose, we need the second order expansion of 51(93) and the third
order expansion of 61(@2). These derivations are straightforward but rather tedious. We
thus postpone them to the appendix and turn to numerical examples first.

7. Numerical examples.

7.1. The algorithm. Our numerical algorithm consists of the following five steps. We
are illustrating only the algorithm in section 5.4. The algorithms in the other subsections,
especially those in section 6, need to be modified slightly in the obvious manner.

Step 1. Compute E[an IC(Z, R;t) o dth for each n and (;, 7, K) by using (2.16), and then
compute E[f‘ﬁ,] in (3.17) for each ¢ € V. .

Step 2. Compute EX [fm K(i,7;1) o dBﬂ by (3.8), and then compute EQ[fﬁ,} in (3.17)
for each ¢ € Vy.

Step 3. Establish the equations (3.17) with unknowns \g,ax;, k=1,..., W, l=1,...,L,
from (3.6), and then solve these equations to obtain a desired (). We may in general use numer-
ical methods to solve these (polynomial) equations when explicit solutions are not available,
see Remark 7.1 below.

Step 4. For each wy, obtained in Step 3, solve the (deterministic) ODE (3.11) by discretizing

[0,T] equally into D pieces. That is, denoting h := % and w_p :=0,

. i wj —wj
(11 X' =i+ Y Y Killh,ah)V (X0 () = =0, D.
7=0 a=0

For convenience, we typically set D as a multiple of ML for the M, L in (3.9).

Step 5. We obtain the approximation by (3.10): YOQ A YQ D= Zz MeG(XER (wp)).

We note that, provided the conditions in Remark 2.8, our algorlthm is determlmstlc and
is much more efficient than the probabilistic methods, e.g., the Euler scheme in Zhang [55].

Remark 7.1. (i) In subsections 5.1, 5.2, 5.3, 6.1, and 6.2, we have obtained the cubature
paths; then we can move to Step 4 directly.

(ii) We remark that Steps 1-3 depend only on the model, more specifically only on K,
but not on the specific forms of VJZ or G. So, given the model, we may compute the desired
Q@ offline, and then for each V and GG we only need to complete Steps 4 and 5.

(iii) To illustrate the idea for Step 3, we consider the equations in (5.26). We shall use
the steepest decent method to minimize the following weighted sum:

112 2 2
inf 1AL+ Ao — = —I-QZ)\ Z c(ly,l9)ag, a
Ak >0,a5, €R k=1,2,1=1,2,3,4 [ﬁ 2 b k (1, la) a1, an 1,

k=1 1<l<l;<4
4

2 T2H 2

+ B3 H2 Z)\k Z - sagy| -

+ k=1 1= 1

2
+Zﬁa j, > Z)\kc R, D)k, 1, 1,00, — T3 ]7

le{1,... 4}4 R€S1,a k=1
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where 8;, 5o>0, i=1,2,3, and a=1,...,7, are some appropriate weights.

(iv) For (iii) above, we may replace it with any efficient solver for equations (5.26).

(v) While our algorithm is more sensitive to W than to L, as pointed out in Remark
4.8(iii), a large L will increase the difficulty to solve equations like (5.26). However, since this
can be done offline, the impact of L is less serious.

Remark 7.2. In this paper, we focus on the impacts of M and N, but do not analyze
rigorously the impact of D (or h) in Step 4, which can be chosen much larger than M L. We
shall only comment on it heuristically in this remark.

(i) First, by (7.1), and in particular due to the path dependence, it is clear that the running
time of the algorithm grows quadratically (rather than linearly) in D.

(ii) By standard arguments, under mild regularity conditions one can easily show that

Q _yQD| < lawl, — e JMT _ VMT
[EOIG(Xr)] = Y| < Csup =Hh = CCgi\| 7 35 = CCai

So there is a balance between the quadratic running cost and this error estimate. Theoretically,
given an error level ¢, we shall choose the parameters M, D, and ) which satisfy CCgps @ <
¢ and minimize the computational cost. Since the algorithm is much more sensitive to M, @
than to D, we content ourselves in this paper to choose a reasonably large D and we identify
YOQ’D with YOQ to emphasize the dependence on (). Indeed, our numerical results show that

the total error is not sensitive to D; see Example 7.7 below.

In the rest of this section, all the numerics are based on the use of Python 3.7.6 under
Quad-Core Intel Core i5 CPU (3.4 GHz). For the running time, we use s and ms to denote
second and millisecond, respectively.

7.2. An illustrative one dimensional linear model. In this subsection, we present a one
dimensional numerical example:

(7.2) Xt:a:0+/0t(t—r)H§dBr, Yy = E[G(X7)].

In this case, X7 ~ Normal(zo, %), so essentially we can compute the true value of Yj:

) Ytrue: - - S dr.
(7.3) o m/RG(xonL 2H:c>e x

We use YU, YOmUZ’M, and Y7 to denote the values computed by using the one period
cubature formula, the multiple period cubature formula with M periods, and the Euler scheme,
respectively. We shall compare our numerical results with this true value. In particular,
since the cubature method is deterministic, while YOE“l” is random, we shall explain how we
compare the numerical results of the cubature methods with YOE“leT.

Our first example shows that, when T is small, the one period method in (3.17) is more
efficient than the multiple period method in (4.8) with M = 1, especially when H is small. We
remark that, although M =1, (3.17) and (4.8) have different kernels and thus have different
cubature paths.
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Ezample 7.3. Consider (7.2) with G(z) = 2? and zg =0. Then, with order N =3,
byt L1yt H?  on
7.4 Yg - Y| = 0 <Yyt - ygree| = —— 1?1,
We see that the last error is small when T is small or H is large. However, it is still larger
than the error of Yo‘mb, which is 0 in this case.
Proof. First, by (7.3) it is clear that Y{J"¢ = TQZ:
For the one period cubature method with N =3, by (3.11) and (5.13) we have

Xr(w )—/Z(T—t)H—mdt+/T(T—t)H—(12dt
B N VT

H H H
al ]. H T + a9 ]. T + |: H ] T
- - |\pHy _( Z B el - ol 4 -
\/THJ <2> T\ 2 T =)o g
XT((,UQ) = —XT(wl).
Then, by (3.10) and (5.17),
2
1
b_ 2_ H 2
Yo =35 ; [ X7 (wi)|” = [a1(27F — 1) 4 a2
However, for the multiple period cubature method with M =1 and N =3, by (5.3) and
(5.4) we have the following: by abusing the notations wy,

T H 1 TH
X7 (w :/ Tt —dt=>—,

T2H _ H_%22H+ T2H _ T2H
H322H+ 2H H22?H+  2H

_ vtrue
= yjrue,

Xr(w2) =—Xr(w1),

mul,1 1 2 2 e
Y, =§[\XT(w1)! + [ X7 (w2)] } =gz
+
1 1 H?
D/Omul,l - Ya‘/rue| — e T2H = 7_2T2H "
H? 2H 2H H?

Our next example shows that, when T is large, the one period algorithm fails, but the
multiple period algorithm does converge when M becomes large, as we expect.

Ezample 7.4. Consider (7.2) with T' =3, H =5/2, G(z) = (x — 1/2)*, g = 0.56. We
compute the value Y% from the one period model with N =3 and Yom"l’M from the multiple
period model with N = 3 and M from 1 to 5. The cubature paths are constructed as in
Example 7.3, with D =300 in Step 4. Numerical results are reported in Table 1.

We remark that here the function G is not as smooth as required in Theorems 3.3 and 4.7.

Nevertheless, we see from the numerical results that the cubature method still works well.

Table 1
The numerical results for Example 7.4.

true cub mul,l mul,2 mul,3 mul,4 mul,b
vy vy Y, Y, Yy Y, Y,

2.8112 3.5157 2.6281 3.2450 3.1967 3.0340 2.8883
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We now present an example to compare the accuracy between N =3 and N =5.

Ezample 7.5. Consider (7.2) with T' = 0.3, H = 3/2, and try three different G with
corresponding initial value xg. We choose D = 30 in Step 4 and compute Y(]m“l’2 with N =3
and N =5, respectively. The numerical results are reported in Table 2.

We note that, although we have a better rate of convergence in Theorem 4.7 when N =5,
the numerical results in this example do not show such improvement. One explanation is
that the constant C in (4.15) becomes larger when we increase N; see Remark 4.8(iv). The
numerical results for the one period cubature method do not show significant improvement
either when we increase the order from N =3 to N =5. However, for the fractional stochastic
volatility model (6.1), as we saw in section 6.2, the one period cubature method with N =3
does not depend on p at all, and thus it is clearly not as good as the one period cubature
method with N =5.

Our next example compares the one period cubature method with the Euler scheme. More
examples concerning this comparison will be presented in the next two subsections.

Ezample 7.6. Consider (7.2) with H =3, T =0.2, G(z) = cos(z), and 29 = 1. We choose
D =12 in Step 4, and Yocub is computed with N = 5. The numerical results are shown in
Table 3.

We now explain the numerical results in Table 3. First, in this case, Y{"¢ = 0.53959.
Next, by solving (7.2) numerically, we report the approximate solution of (5.26) in Table 4;

Table 2
The numerical results for Example 7.5.

G(z)/ zo cos(z) /1 z? /1 (x—1/2)" /0.56
yrue 0.5378641 1.0090376 0.0751964
Yo (N = 3) 0.5380251 1.0084375 0.0740474
Yy b2 (N =5) 0.5380277 1.0084375 0.0751558
Table 3

The numerical results for Example 7.6.

Meuier 100 500 1000
e““® (cubature time) 0.00046 (1.86ms) 0.00046 (1.86ms) 0.00046 (1.86ms)
eZuler (Euler time) 0.00338 (14.2ms) 0.00156 (70ms) 0.00114 (141ms)
SDFuer (percentile) 0.0026 (19.4%) 0.00119 (24%) 0.00081 (27.5%)
Table 4

The approximate cubature paths in Example 7.6.

k 1 2

Ak 0.15332891 0.34667109
Qk,1 —3.04533315 1.57981296
ak,2 0.71729258 —2.08974376
ak,3 —0.60085202 2.33258457
Qk,4 0.12029985 —4.5060389
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Figure 1. The approzimate cubature paths in Example 7.6 (rescaling to T =1).

see also Figure 1 for the plot of the four approximate cubature paths (after rescaling to T'=1).
We then obtain Y = 0.54005. In Table 3, the cubature error e’ := | Y40 — Y{™¢| = 0.00046.
The reported running time is for Steps 4 and 5 only, since Steps 1-3 can be completed offline
once for all. .

For the Euler scheme, we also set time discretization step D = 12. Let Mgy denote
the sample size in the Euler scheme, namely the number of simulated paths of the Brownian
motion. Clearly, both the approximate value ) YE“leT and the running time depend on Mgyier;
in particular, the latter is proportional to M, Euler- Note that YE"leT is random. We repeat
the Euler scheme 1000 times, each with sample size M, Euler, and obtain YE“M ¢ and the corre-
sponding Euler scheme errors ef“¢" := \YE“M TYree|, 1< i < 1000. We shall use the sample
ﬁgiﬁgn of {eF“leT}lglglooo to measure the accuracy of the Euler scheme. We can then
compare e and eﬁ”éffi’;n, and to have a more precise comparison, we will actually compute

cub among the Euler scheme errors {ef“l”}lgigloooz o-

median e

the percentile of the cubature error e
percentile means that about 1000 x a% = 10« of {eF*"}1 <;<1900 are smaller than e“**. So 50%
roughly means e“*? = eZuer and the two methods have the same accuracy, while a%<50%
means that eC“b<eﬁgfﬁ;n and the cubature method has better accuracy: the smaller a% is,
the better the cubature method outperforms. Moreover, since {efulerhgigmoo are i.i.d., we
may use the normal approximation to compute the percentile. We will report their mean

eluler, _ 90 21000 Buler efngl%n and standard deviation SDFuer and then the percentile

a% ~ (W) where @ is the cdf of the standard normal.

For the above example, we test three cases, M, Buler = 100,500,1000, and the numerical
results are reported in Table 3. As we see, when M, Euler = D00, the Euler scheme takes
70 milliseconds (for each run, not for 1000 runs), which is about 38 times slower than the
1.86 milliseconds used for the cubature method, and the percentile of the cubature method
is 24%. So the cubature method outperforms the Euler scheme both in running time and in
accuracy. When we increase the sample size Mgy to 1000, the percentile increases to 27%,
so the cubature method still outperforms in accuracy. In this case, the running time of the
Euler scheme increases to 141 milliseconds, which is about 76 times slower than the cubature
method. On the other hand, if we decrease the sample size Mgy, to 100, the running time of
the Euler scheme drops to 14.2 milliseconds, which is still 7.6 times slower than the cubature
method, but the accuracy deteriorates further with a percentile 19.4%. So, in all three cases,

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/31/23 to 144.174.212.58 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

988 Q! FENG AND JIANFENG ZHANG

Table 5
The numerical results for Example 7.7.

D 12 60 120

ecub (cubature time) 0.00046 (1.86ms) 0.00046 (15.3ms)  0.00046 (54.7ms)
eBuler (time, M =100)  0.00338 (14.2ms)  0.0034 (314ms)  0.00336 (1.24s)
eBuler (time, M =500)  0.00156 (70ms)  0.00161 (1.54s)  0.00108 (5.9s)

eluler (time, M =1000)  0.00114 (141ms)  0.00113 (3.11s) 0.00107 (11.5s)

the cubature method outperforms the Euler scheme significantly both in running time and in
accuracy.
We conclude this subsection with an example concerning the impact of D.

Ezample 7.7. Consider the same setting as in Example 7.6, but try three different D’s.
The numerical results are shown in Table 5.°

As we can see, the cubature method is not sensitive to D. The Euler scheme does rely
on our choices of D and Mgy However, in all the above choices, the cubature method
outperforms both in running time and in accuracy.

7.3. A one dimensional nonlinear model. We now consider the following nonlinear model,
but still in the one dimensional setting:

(7.5) Xt::co+/0t(t—r)H

We shall use the one period cubature method with NV =5 when T is small, and we shall use the
multiple period cubature method with N =3 and appropriate M when T is large. Our main
purpose is to compare the efficiency of the cubature method with that of the Euler scheme.

We first note that, by Remark 7.1(ii), the cubature paths for (7.5) are the same as those for
(7.2). In particular, for the one period method with N =5, we may continue to use the paths
in Table 4. For comparison purposes, we will use the same D for the cubature method and the
Euler scheme. For the Mgy in the Euler scheme, there is an obvious tradeoff between the
running time and the accuracy. While one may try to find an “optimal” M Euler for a given
D, such an analysis relies on a precise idea on the constants involved in the error estimates,
as in Remark 7.2(ii). Since our main focus is the cubature method, and since our examples
show that the cubature method outperforms significantly (under our strong conditions), we
do not go through that analysis. Instead, unless stated otherwise, for simplicity in the rest of
this section we shall always set

|-

cos(Xs)dB,, Yo=E[G(X7)].

M Euler =500, and we repeat the Euler scheme 1000 times,

each time with Mpy., simulation paths. We use {Y()E“ler’i}lgiglooo and Y{™¢ to compute

ekuler and SDEYer . However, in this case we are not able to compute the exact value of Y™

3The running time for the Euler scheme grows quadratically in D, as expected. However, the running time
for the cubature method grows slower than quadratically, especially when D is not that large. This is possibly
because in our code, for the sake of readability, there is a relatively time consuming step whose cost grows
linearly in D. The efficiency of our cubature method could be improved slightly further, when D is small, if
we write the code in a more straightforward way.
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Table 6
The numerical results for Example 7.8.

G(z) / xo cos(z) / 1 22 /1 (x—0.5)" /0.56
Ygrue 0.5401 1.00073 0.0617
YUl 0.5402 1.00041 0.0601
e (time) 0.0001(1.75ms) 0.00032(1.66ms) 0.0016 (1.63ms)
ebuler (time) 0.0008(80.4ms) 0.00200(82ms ) 0.00147(75ms)
SDPFuer (percentile) 0.00064(18%) 0.00149(20.1%) 0.0011(54.3%)
Table 7

The numerical results for Example 7.9.

T 0.2 0.5 0.8
ygrue 1.00073 1.0109 1.045
Ygub 1.00041 1.0056 1.022
e (time) 0.00032(1.66ms) 0.0054(5.25ms) 0.0234(11ms)
eBuler (time) 0.00200 (82ms) 0.0332(445ms) 0.0152(1.16s)
SDPer (percentile) 0.00149(20.1%) 0.0098(57.4%) 0.0115(69.4%)

as in (7.3). Since the convergence of the Euler scheme approximations is well understood,
for comparison purposes we shall set the true value as the sample mean of the Euler scheme
approximations:

1000
(76) Ytrue _ 1 Euler,i'

O 71000 4
=1

In the first example, we show the impact of the regularity of G.

Ezample 7.8. Consider (7.5) with H = %, T = 0.2, and consider three different G’s with
corresponding xg. We choose D = 12 and compare the one period cubature method with
N =5 with the Euler scheme. The numerical results are reported in Table 6.

As we can see, the cubature method outperforms the Euler scheme in all three cases.
However, when GG becomes less smooth, the advantage of the cubature method fades away,
which is consistent with the theoretical observation in Remark 2.8.

The next example illustrates the impact of T'.

Ezample 7.9. Consider (7.5) with H = 3, G(z) = 2%, zy =1 and three different values of
T: 0.2, 0.5,0.8. We choose D =12, 30, 48, respectively, and compare the one period cubature
method with N =5 with the Euler scheme. The numerical results are reported in Table 7.

Again consistent with our theoretical result, the performance of the cubature method
decays when T gets large. In the above example, the cubature method obviously outperforms
the Euler scheme when T'=0.2, and still works better when T'=0.5, but in the case T'=0.8,
there is a tradeoff between the speed and the accuracy and it is hard to claim the cubature
method is more efficient. In the last case, we shall use the multiple period cubature method,
as we do in the next example, and we can easily see that the cubature method outperforms
the Euler scheme again.
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Table 8
The numerical results for Example 7.10.

Q! FENG AND JIANFENG ZHANG

G(z) / xo cos(z) / 1 22 /1 (x—0.5)" /0.56
Yy 0.5136 1.098 0.2275
ygruhe 0.5186 1.084 0.2297

e™uld (time) 0.005(300ms) 0.014(302ms) 0.0022(302ms)

Cmean (time)
SDEer (percentile)

0.0074(4.2s)
0.0056 (37.37%)

0.023 (4.365)
0.017 (35.1%)

0.011 (4.41s)
0.0089 (21%)

Table 9
The numerical results for Example 7.11.

G(z) / So cos(z) /1 22 /1 (x—0.5)" /0.56
yrue 0.4270 1.2947 0.1320
yeub 0.4257 1.2967 0.1283

e (time) 0.0013(8.53m.s) 0.0020(8.9ms) 0.0037(8.68m.s)

Emeéan (time)

SDEweT (percentile)

0.0063 (273ms)
0.0047 (21.3%)

0.0157(283ms)
0.0119 (19.2%)

0.0037(272ms)
0.0028 (50%)

Ezample 7.10. Consider (7.5) with H = %, T =1, and three different G’s with correspond-
ing xg. We choose D = 100, and compare the multiple period cubature method with M =5
and N =3 with the Euler scheme. The numerical results are reported in Table 8.

7.4. A fractional stochastic volatility model. In this section, we consider the following

special case of (6.1) with H =32 and p=1:

dSt = Stbl(Ut)dt + Stgl(Ut) @) dBtl,
t 1 1 t

Utzl—i—/ [t —s] [—Us}ds—k/ [t — s]oa(Us) 0 dB?.
0 2 3 0

Again we will use one period cubature method with N =5 when T is small, and the multiple
period cubature method with N = 3 and appropriate M when T is large, and we shall compare
the efficiency between the cubature method and the Euler scheme.

Ezample 7.11. Consider (7.7) with T'= 0.1, b1(U) = U, 01(U) = 02(U) = cos(U), and
consider three different G’s with corresponding Sy3. We choose D = 12 and compare the

one period cubature method with N =5 with the Euler scheme. The numerical results are
reported in Table 9.

(7.7)

For the cubature method, we first compute the cubature paths following the same idea as
in Remark 7.1. By section B.1 below, we choose W =5 and L =4. Then we obtain

A1 =0.0247245002, A2 =0.0561159547, A3 =0.417734596e,
Aq =0.00142494883, A5 =4.44061201e — 17

and the 10 paths are plotted in Figure 2 (after rescaling to T'=1).

Ezample 7.12. Consider the same setting as in Example (7.7), except that by (U) =01 (U) =
02(U) =+/U. The numerical results are reported in Table 10.
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NN

Figure 2. The cubature paths for the model (7.7) (rescaling to T =1).

Table 10
The numerical results for Example 7.12.

G(z) / So cos(z) /1 22 /1 (x—0.5)" / 0.56
Ygrue 0.37897 1.4932 0.17098
Yot 0.3698 1.4887 0.17797
e (time) 0.00917(8.06ms) 0.0045(8.39ms) 0.00699(8.07ms)
eluler (time) 0.0119(306ms) 0.0361(311ms) 0.007(304ms)
SDEUIeT (percentile) 0.0092(40.8%) 0.0270(19.1%) 0.0052(50%)
Table 11

The numerical results for Example 7.13.

H 1 3/2 5/2
Yotrue 1.36 1.33 1.2957
yyreb? 1.299 1.302 1.286
e™ b3 (time) 0.061(2.23s) 0.028(2.265) 0.0097(2.42s)
eluler (time) 0.033 (15.8s) 0.036(15.8s) 0.037(15.5s)
SDEweT (percentile) 0.024 (81.1%) 0.028 (41.7%) 0.0260 (21%)

We remark that Example 7.12 uses the same cubature paths as in Example 7.11.

Ezample 7.13. Consider (7.7) with T =1, by(U) = U, 01(U) = 02(U) = cos(U), G(z) =
(x —1/2)%, Sp=0.56, and consider three different H. We shall compare the efficiency of the
multiple period cubature method with M =3, N =3 and the Euler scheme. We set D = 100.
Recalling p = 1, for the cubature method we use §; = g and 02 = —% in (6.8). We repeat

the Euler scheme 100 times (instead of 1000 times). The numerical results are reported in
Table 11.

We see that the cubature method outperforms the Euler scheme when H = % and H = %,
especially in the latter case, but it does not seem to work well when H = 1. This is consistent
with our theoretical result.
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7.5. Some concluding remarks. We first note that our theoretical convergence analy-
sis for the cubature method, namely Theorems 3.3 and 4.7, is complete, provided sufficient
regularities on K and (V,G) (corresponding to N). In particular, it holds true for arbitrary
dimensions and arbitrarily large T' (for Theorem 4.7).

For the numerical efficiency, in its realm, the cubature method has clear advantages over
the Euler scheme. In light of Remark 4.8, the cubature method requires the following three
conditions, though: (i) sufficient regularity, so as to obtain the desired error estimate; (ii)
low dimension (and relatively small N), so that W can be relatively small; and (iii) not too
large T', so that M can be relatively small. We remark that the standard cubature method in
[40] for diffusions also requires these conditions. However, the constraints are more severe in
the Volterra setting here, for example, the constant Cy in (4.15) is larger here, and for given
dimensions and N, there are more equations required in (4.8), and hence we may need a larger
W. When the number of cubature paths (2W)™ is large (recalling again Remark 4.8(ii)), it
will be interesting to explore whether the approach in [11, 12] could help reduce the complexity,
which we shall leave for future research. The less smooth case, especially when H < %, requires
a novel idea to extend our approach.

We shall also remark that the parameters M, N in the cubature method cannot be too
big. For the Euler scheme, by increasing the sample size Mgy gradually one may im-
prove the accuracy “continuously” at the price of sacrificing the speed. For the cubature
method, we have only limited choices on M, N and thus lose the flexibility of improving
its accuracy “continuously.” Consequently, the cubature method is more appropriate in
situations where one has a strong requirement on the speed but is less stringent on the
accuracy.

8. Appendix. Proof of Proposition 2.4. Recall (2.8). Following rather standard arguments,
we see that Oxu(t,-) exists and has the following representation:

(Ou(t,0),m) = E[0,G(X5") -V, X2, 6.meX,,

d S
B1)  here Vo XE0 =nl 4> / Ki(s,m)0, V(X)W XE%T 0dBI, i=1,...,d,.
j=0""

We note that above we need for the second derivative of Vj to exist so that the Stratonovich
integration o makes sense. Then we see immediately that ||Oxu(t, )| < CeC¥(T=t) By similar
arguments, we can prove the results for higher order derivatives. In particular, we note that
the (N — 1)th derivative of u would involve the Nth derivative of ij [ ]

Proof of Proposition 2.5. We first note that, by Proposition 2.4, u(tJ',-) € CNT?(Xyn), so
the right-hand side of (2.13) makes sense.

When N = 1,2, one may verify easily that (2.13) reduces to (2.10), (2.11), respectively.
Assume (2.13) holds for N — 1. For i€y, je TN, ReSn, teTy, we have

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/31/23 to 144.174.212.58 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

VOLTERRA CUBATURE FORMULA 993

ANH(U Ri1) = V(07,710 0T — v, &t el el

N TtN
= H OF Vi (01K (1,7 1) (OFu(t, O 1), Ko (i 7:1)
N o ’
— [T &8V (kK. (0,78 (0Fulty, 0FF ™), Ko (i, 7 ).
a=1
Note that, for s € [T},,,tn], by It6’s formula and Proposition 2.3 we have

dorvie (Ol) ZZ@ (05 Vi) (O ) K (ta, 1)V (X,) 0 dB,

i=1 j=0
(8.2) <aﬁ (m ol 11y, /6 i, R’ 1))
_ZZ (O OFu(ty, O 1)), (Ko (7, 1), K6 Th) VI (X,) 0 dB].

11]0

Then, by Ito’s formula, we have, for given 56 IN, 56 In, te Ty,

Anir (0.5 R:F) = zz / =n (7). (G.3), 5 (1)) 0 dB],  where

i= 1] 0
En1((:1), (5,), & Z 11 ?’a‘/}if(@?‘)

a=1a€e{l,..,.N}\{a}

(8.3) O, [8?%1&](@2&)@(@2)/6@ Ry D) I (ta s) (0Fu(ty', 0T, Ko (4, ;1))
N
+ [ v« (0L VIODKG, 75 1) (D, OFu(ty, O T, (Ko (7, 7 ), KT 1),
a=1 ’

Thus, since (2.13) holds for N — 1 by induction assumption, we have
[t T] (6", T]
u(tgla @tg‘ ) - ’LL( 817 ®Tm )

N-1
=> X V(i.j,7 564 el ) odB!
n=17cT JETn,RES, T
+ Z V@i.j,7 56,0/ B!
i€Tn ,jGJN,ﬁESN T
N — ird
-5 ¥ V(i.j, 756k, of TodB!
- T

13eT,, jeT. RES,

) [ Exnl@D. G0 Es) o)
(10)€Tn+1,(7.]) ETn +1,RESN T
Then it suffices to show that

_|_

-~

N
(84)  Eval(@D.G.0).FE ) =S V@D G.7).(7.6):(E ), 00, 0F-T),
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Indeed, recalling (2.12), one can verify that

=va((@0),(.9). 7 (E)
= Z Il OG5V @)V (OK((T.0), (R,a): (. 5)

=1la=1

><<a§§j;;” (g, O 1), Ko((0,1), (7, 6); (1,5)))

N N+1 ' .
= 105 vie (0 )K((@0), (7.a): (E.s))
a=0 a=1
< (@ (e OLF 1), Ko((7.3), (R,a): (7.5)))
N ~ ~
=D VA1), (7.), (7, 6); (F5), 00, 01T
a=0
This proves (8.4), and hence (2.13) for N. [ |

Proof of Lemma 2.6. Recall that BY =t; the case j; = 0 is obvious. We now assume j; > 0.
Fix T, <s <t{', and denote

Y(tr,t2) = / p(t1,t2,t_2) 0 dBj;:;.

n— 2(t2)
Then, when js # j1, we have

S t1 . . S ty . .
/ o) odBZ_/ [ 1/J(t1,t2)odB§§} o dB]! :/ [ w(tl,tg)ongj]ng;,
Tm(s) Tm

T, LJT,. T
coinciding with the Ito integral, and when j; = jo,

- S t1 . . 1 s
/ o(t) OdBZ_/ [ Y(t1,t2) OngQ]dBil + / P(t1,t1)dt1.
T2 (s) ¢ 2 g,

T, LJT,
Then one may verify (2.16) and (2.17) straightforwardly. [ |
Proof of Theorem 2.7. First, similar to (2.11) and (2.13), one can verify that
N+1
m _ - -
RE=2>_ > Rygieveny + o5 j=vi=o)]
(8.5) n=lieT, jeT.
Z V R F [to :T] ;
i,],R;t,0; 0y )odB{.
T HES
Fix n, i € Iy, j € Jn, and denote o(t) = > res, V(f,j, E;ﬂ@fﬂ,@%ﬂj]) for t € T™. By (2.17)
and (2.18), we may prove by induction that, for s € [T),,t7"], { =1,...,n — 1, and for some

constant C),, which may depend on n,
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loOI2 < Cadll—ess sup (st .., s,1) 112

Tn<s,<--<5:<s o
. 2
+C8ll esssup  [l(sts e Siats - 1|
Tn<s141<<5:<s st

In particular, by setting [ =n — 1 we have

/m ¢(t) o dB).

Ap_q :=dlin1lless supE,, [
serr

2
(8.6) E,, [ } < Cu[An-1+Ay,], where

Sn—1 .
/ (5 .t,) 0 dBJ"

2 2
], Ay, =6l lless supEm{\cp(E')E].
T

germ

By (2.18), we have A, < ]Am |2(5”3” Moreover, fix §€ T),—1. When j, =0, we have

151l
[ s s

< SE,. [ / WY )zdtn]§52 ess sup By [[io(5, )] <074 2
T,

T <tn<sn_1

m

Then

Fucsll52( gm. (2 2 51171
An—y < 0010 A [° = AT POV,

When j, >0, recalling (2.12) and by (8.2) we have the following: denoting s, :=t,, we have

/"_ o5 tn) 0 dBJ"

T,

/ 3 Hafavzﬂ (052)KC+ (1, 7 (5. t)) (DFu(ty, OFF 1), Ko (7, R (3, 1)) 0 dBJ"

RESnCX 1
/ S T 05V (03 K. 7, (5,8 (0Fulty, 15 ™) Kol &: (5, 1)) B
RES,, a=1
/ 3 [ TT 05V (030, (G, s (5. 1) 0% u(tf?, O 1), Ko 7, : 5, 1)
RES, -a=la#a

d ~
%> 0,05V (039K (sa, ) Vi (X1,
i=1

-

TL oV (@50 7. (5.

a=1
d1 T
x 3 (O OFuty, 0fF ), (Ko(0, 7 (5.40)), K )V (Xy,) |dt
i=1
= / [T 05 Vi (07)K 4 (0. 7 (5,t) (0Fu(ty, 0,5 1), Ko (i, 7 (5, tn)))dB]:
Tm R a=1

€S,
1 dl Sn_1 n
> 7. SN o Sytnotn tr, T
+5> /T ST STV, G (Ro@): (5t ), 087 0 T,
i= m  ReS, a=0

i=1
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where, similarly to (8.3), the last equality can be verified straightforwardly. Then

Sn—1 . 2
E, / o(5,tn) 0 dB| | < ColA™ 4 Cs2Am. 2.
T, n [H GGl
Thus,
A,y < C§lin- 1II[5‘A” \|‘2+52‘AII o ”,2] cllar | 2517l + AT ‘25\\3\\+1].

So in all cases, by (8.6) we have

/m ¢(t) o dB).

Then, by (8.5), we obtain

2
I g gl
Em[ } Cu 17 POV + s PV,

N+1

m2 B B 17 2 5/15]1+1
RNPISCN D . Y [ggiensn T Lgij=n—o) [‘Au H‘ ST+ A PP
n=17c1, jeT.

This implies (2.20) immediately. [ ]

Proof of Theorem 3.3. Tt is clear that the functional It6 formula (2.7) holds true under @
as well; then (3.5) and (8.5) also hold true under Q. Thus, by (3.9),

Yo - Y5°| = [E[Ry] — E9[Ry]|.
Therefore, by Theorem 2.7, it suffices to show that
(8.7) EQ[Ry]| < On | Avi T3 (1 +CY ™) + AT (14 CY 2)}
Now, for each n and i €Z,,, j € J,, as in (8.5), note that

(W) =1, Hl:ji=0}=[jl-n, Kl:ji>0}=2n—|j,
where ' denotes the time derivative of w. Then

EQ[/ > V(.4 &Le) el )oqu]
T

RES,
2W
Co
<|Catiz > jAk(>
g
e~ VT

If ||7]| = N + 1, we have 2n > N + 1. Denote k:=2n — (N +1); then 0<k <N — 1, and

(8.8

<A ”Z)\k/ H\wkt dty - dty

2n—||j]l

n_ _ 2n—=3ll)17)
T"=Cnd;Co TV

” H‘CQ‘% 1717l _AN+1T CQ
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If |7 1]| = N, j1 =0, then 2n. > N + 2. Denote k :=2n — (N +2); then 0 <k < N — 2, and

2n— 7l — Ne2
A5 Co TN = Ay o777 G,

Plugging these into (8.8), we obtain (8.7) immediately, and hence (3.12) holds true.

Finally, when (3.13) holds true, by (3.9) one can easily see that @) in (3.6) is an N-Volterra
cubature formula on [0, 7] if and only if the following rescaled one Q is an N-Volterra cubature
formula on [0, 1]:

2W
~ N L N l
(8.9) Q:kg_l Ak, , dwys = apdt, t € (S1-1,51], §; = I [=0,...,L.
In particular, this implies that Cg = CQ is independent of T, [ |

Proof of Theorem 4.5. Note that

)E%’" [U(Tm"H’ @[T’”JrhT]] - Em [U(Tm-i-h @[T"L+17T}]

Tm+1 Tm+1

< [ES [15) — Bl 1| + G [REN| + [Em [ R

Then, following the same arguments as in Theorem 3.3, it suffices to provide the desired
estimate for ‘E%ﬂ [I¥] —En[IR]|. Similar to Lemma 3.4, by the desired symmetric properties,

for any j € Tn.N\Tn.n we have

m

Ef?nm[/ V(*,j,;z;ﬁ@gm,@[fﬁ"ﬂ)ong]:oz]Em[ V(i j 71, ek, ,@ggl’T])ong].
T T;

n n

Then, by (4.8), we have
[BQ (130) — B 1] = [EQ" [%] — Bl R3] < |[ES (RR)| + [Em 5]

The estimate for ‘Em [Rﬁ]‘ is implied by (4.6). Moreover, for each n < N and je Jn.N, again

N—||jl|-1
2

set k= as in the proof of Theorem 4.2. Then, by (4.4) and similar to (8.8),

N+1

2n—I17 m
SCRTICQTZ H‘]HeCNT(S 5

E%m [ /T ) R7(H) o ng;]

Thus, since 0 < 2n — ||7]| < N —1,

N
T on—||7]| CcmT ¢ N1 N_1\ OmT N+l
B (R <30 S0 ored VIR TS < op+ )R T
nZI,;ejn,N
Recalling Cq,, = Cgy , this is the desired estimate. |
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8.1. The one period cubature formula for (6.1) with N = 5. Denote

TH+1 T2H,
(810) Y1 = 7H+<H+ T 1) y Y2 = 8HH+ .
First, similar to (3.2) we have
‘4 2
bi(07)) = R +/0 [6051(@2) + ) 01 (O])bi(OF) Ki(t, t) | dts
i=1

t1 bt 2 _
(8.11) +/0 /0 Z[@z’bl(@i;)m(@ii)Kg‘(tl,t3)

2,j=1

+ 6161(92)8301<@§2)KJ (tz, t3):| Uj(@ig)KZ’(tl, tg) o ngs o dez.

We remark that 9;b1 = G”by + G'9;by; however, thanks to the new convention in Remark 6.1,
we do not need to consider G”b; and G'9;b; separately. Then we can easily see that the terms
. ~0 . = . . ..

in AV, derived from b; consist of the following stochastic integrals:

N {Ff“fk) (i, k) = (1,1,1),(1,2,1),(1,2,2), (2,1, 1), (2,2, 1), (2,2,2)},

(8.12) = (i.5,k) j i
where F4,b = Ki(tl, tg)Kj (tk, tg) o dBt3 o dBtzdtl.
Ts

Note that, for 7,5,k =1,2,

(8.13)
pfj, (i,4,k) = (1,1,1),
~(,5,k) 1 7 j 717 (i7j7k):<17271)7(27171)7
E[l = — | K(ty,t2)K;(ty, t2)d(B', B dt; ={ 2 0
Lap™ =35 ), Kl Kilte t)d(B Budt = 27 G5 (9791),
0, (4,4,k)=(1,2,2),(2,2,2)

Similarly, we may have the expansion of &1(0!) as in (8.11):

2 ty o )
510 ) =Rus+ Y / Bi,001(0}} )03, (02) Ki, (t1, 13) 0 dBi2dt
0 0

ip=1

2 t1 to
+ Z/O /0 {8i2i151(@§;)bi1(@§§)[(i2(tl’t3)

11,i2=1

(8.14) + 0115'1(@i;)812 bi, (Qiz)KM (tQ, L‘3)} Oy (@ii)Kzl (tl, t2) o ng dto

2 ty rta .
+ Z/ / {301'151(@2,)01'1(@%) +8;,51(07,)0004,(012) | Ky, (t1, 12)dt3 0 d By
0 0

'i1:1

2 t pta
+ > |:ai2i15—1(@2)bi2(@1€2)0—i1(@iz)Kiz (t1,t3)
0 0

7:1,7:2:1

+ 03, 651(012) 03,04, (O )biy (O ) Ky (ta, t3) | Ky, (t1, t2)dts 0 dBf! + ¢,
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where the terms presented above involve 0y, and £ contains the terms without 0;:

(8.15)

th pto t3
Z / / / Diginiy 01(071) 05, (07 )0, (08 ) K, (t1, t3) Ky (t1, L4)

’Ll,’LQ,’Lg_l

+ 8i2i1 01 (@E)a Ull (@Z )Ulz (92 )Klz (tl ? t3
+6i2i15'1(@2)0‘“(@€4) 2(62)1(12(

+ aish 6-1 (th )a 0-7«1 (@iz )0-7«2 (@t3 )Klz (

+ 04,01 (eii)azszO—Zl (eztrz Oiy (@t3 )G, (
+0;,61(0}1)05,04, (072) 04,04, (07 Ki, (t2, t3) Ki, (t37t4)}
X 04, (0)') K, (t1,t2) 0 dBy? 0 dB;? o dB}’.

. =0 . ~
Then we see that the terms in AV, derived from &, are

(8.16)

AWN’Z’U AVZUO U AV4 o1 Y AV402 U AV403, where, for [ =1, 2,
~0 ~ ~(2
a1, 12

AVZ,O’,I
and
AV,
(8.17)
where

,0,3 = 4,0,3 . (217127237’1"27/{3

{F(“’”M) (i1, o, k) = (1,1,1),(1,2,1),(1,2,2),(2,1,1),(2,2,1),(2,2,2)}

f\(il»i2»i3)ﬁ27"£3) .

(1,1,1,1,1),(1,1,2,1,1),
(171727172) (171727173) (172717171)7
1,2,2,1,3),(1,2,2,2,1),(1,2,2,2,2),

2,2,2,1,3),(2,2,2,2,

)

(2,2,2,2,2), 22223}

I ¢:/T Ki, (t1,t3) 0 dBp2dty 0 dBy,

4,0,1

4,0,2

4,0,3

f‘(ihizﬂw) — / K;, (t17t2)KZ2 (tﬂz,tg) o dBizdtZ © dBt )
]._‘(“7127,{2) / Kzl t17t2)K22< K2 )dt3 o del o dBt )
Ts

[t i2sta iz tia) f_/ K, (t1,12) K, (b, £3) Kiy (i, ta) B2 0 dBy? 0 dBy! 0 dB}. .

Ty

)=
(1,2,1,2,1),(1,2,2,1,1),(1,2,2,1,2),
( ). (1, ), ( ), (1,2,2,2,3),(2,1,1,1,1),(2,1,2,1,1),
(2.1,2,1,2),(2,1,2,1,3), (2,2, 1,1,1),(2,2,1,2,1), (2,2,2,1,1), (2,2, 2,1,2),
( ) ( 1), ( ) ( )

999

Note that, for i = (i1,42,13) and K = (K1, k2, k3) with k1 =1, ko = 1,2 and k3 =1, 2,3, we have,
recalling (8.10),
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B[P0 =EMT ™ =0,

Eﬁﬁ“—(ﬁ&mm)ommmwwm N,

T (12, k2) = (1,1,1),
= %7 (i1>i27’€2) = (17271)7
07 (Z-17Z'27"£2) (27171)7(27271)7(27272)7(17272)7
(8.18) E[r(“’””f‘”“m

tl . . .
/ i1 tl?tl 12 (tfﬁ?t3)Ki3(t/€37t3)‘t2:t1d<Blg7B12>t3d<Bll7B1>t1
9
Z

(1,1,1),
Pri=(1,2,1),0 ri=(1,1,2)and k3 = 1,2,
;, = (1,2,2), k3 =1,2,
0, 21—20r(23,/£3):( ,3).

We note that, by (6.12), (8.12), and (8.16)—(8.17),

‘Qwﬁuh

(819)  |AV5|=2 and |AV|=|AVy,|+|AV, | =6+2+6+6+24=44.

We now construct a desired @ as in (3.6). Recall w) = ¢ and wg; = (wi’t,w,it). We
remark that the correlation between B!, B? affects only the expectations E[I'] in (8.13) and
(8.18), but the expectations under @ in (3.8) remain the same. The integrals against dw
corresponding to the stochastic integrals in (6.12), (8.12), and (8.16)—(8.17) are the following:
for each k=1,...,W and for appropriate functions ¢,

. a}cl CLZ,IZ Sty S1,A\t
/ p(Bdwyy dwgy, = Y / / p(t)dtadty,
T ’ T Sty —1 Y Sig—1

1<l<l:<m
a a 812/\t2
kl kl
— / / / (B)dtdtsdts,
Sll 1 812 1 t2

a a Sletl ty
k.l kb/ / / (t)dtodtsdty,
Sip—1 Y8131 ts

/ go(f)dw,iz’t?‘dw,il’tzdtl:
Ts 1<l, <z <m

/ go(ﬂdw?tgdtgdw,i b=
Ty ’ ’

(8.20) 1<l, <l <m
) al, a s\t i
/ (B dtsdw’, dwt, = ’”1 s Ul / / / (t)dtsdtodty,
T3 1<, <z <m Si=1 /8151
al', a?, a'* d
1 ey Yedy Vb1, O
/T go(f)dw dw?tsdwl?hdwk’tlz Z L %2 3 fhts
4

sll 8[2/\t1 313/\t2 814/\t3
X / / / / @(f}dmdtgdtgdtl.
S11—1 7 Sig—1 Sig—1 Siy—1

For N =5, by (8.19), together with the constraint on A\, there will be in total 47 equations.
In our example (7.7), however, the coefficients are homogeneous, i.e., independent of ¢. Then
in (8.14) the terms 0;,061 = 0 and thus the two terms f‘yz)o € A\NIZUO, io =1,2,in (8.16) are
not needed (the terms f,ﬂ, i (t1,t2)dtz o alBZ1 odBj, are stilled needed, even though 0y, 61 =
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0po1 =01n (8.14), because they appear in the last line of (8.14) as well when i3 = 1). Therefore,
we have a total of 45 equations. We thus set W =5 and L = 4. Since each two dimensional
path involves 8 parameters, plus the parameters A, there will be 45 unknowns. For each
T e AV, U (AVN\AT, o), by (6.11), (8.11), (8.14), (8.15), one can easily derive from (8.20)
the right-hand side of (6.9) as second or fourth order polynomials of azyl. This, together with
(6.12), (8.13), (8.18), as well as A\ ++ -+ A5 = 3, leads to the required 45 equations in exactly
the same manner as in (5.26). Again, we are not able to solve these equations explicitly, so
we will solve them numerically.

Acknowledgment. The authors would like to thank the two anonymous referees for their
constructive comments which have helped to improve the paper greatly.
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