Discrete & Computational Geometry (2023) 70:323-354
https://doi.org/10.1007/s00454-022-00411-x

®

Check for
updates

Algorithms for Contractibility of Compressed Curves on
3-Manifold Boundaries

Erin Wolf Chambers’ - Francis Lazarus? - Arnaud de Mesmay?3 -
Salman Parsa’

Received: 3 June 2021/ Revised: 23 March 2022 / Accepted: 3 April 2022 /
Published online: 18 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

In this paper we prove that the problem of deciding contractibility of an arbitrary
closed curve on the boundary of a 3-manifold is in NP. We emphasize that the mani-
fold and the curve are both inputs to the problem. Moreover, our algorithm also works
if the curve is given as a compressed word. Previously, such an algorithm was known
for simple (non-compressed) curves, and, in very limited cases, for curves with self-
intersections. Furthermore, our algorithm is fixed-parameter tractable in the size of
the input 3-manifold. As part of our proof, we obtain new polynomial-time algorithms
for compressed curves on surfaces, which we believe are of independent interest. We
provide a polynomial-time algorithm which, given an orientable surface and a com-
pressed loop on the surface, computes a canonical form for the loop as a compressed
word. In particular, contractibility of compressed curves on surfaces can be decided in
polynomial time; prior published work considered only constant genus surfaces. More
generally, we solve the following normal subgroup membership problem in polyno-
mial time: given an arbitrary orientable surface, a compressed closed curve y, and a
collection of disjoint normal curves A, there is a polynomial-time algorithm to decide
if y lies in the normal subgroup generated by components of A in the fundamental
group of the surface after attaching the curves to a basepoint.

Editor in Charge: Kenneth Clarkson

Erin Wolf Chambers: This work was funded in part by the National Science Foundation through grants
CCF-1614562, CCF-1907612 and DBI-1759807.

Francis Lazarus: This author is partially supported by the French ANR projects GATO
(ANR-16-CE40-0009-01) and MINMAX (ANR-19-CE40-0014) and the LabEx PERSYVAL-Lab
(ANR-11-LABX-0025-01) funded by the French program Investissement d’avenir.

Arnaud de Mesmay: This author is partially supported by the French ANR projects ANR-17-CE40-0033
(SoS), ANR-16-CE40-0009-01 (GATO) and ANR-19-CE40-0014 (MINMAX).

Salman Parsa: This work was funded in part by the National Science Foundation through grant
CCF-1614562 as well as funding from the SLU Research Institute.

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-022-00411-x&domain=pdf

324 Discrete & Computational Geometry (2023) 70:323-354

Keywords 3-Manifolds - Surfaces - Computational topology - Contractibility -
Compressed curves

Mathematics Subject Classification 57M05 - 68R99

1 Introduction

In a topological space X, a closed curve c: S! — X is contractible if the map ¢
extends to a map of the standard disk, f: D — X, f|sp = c¢; such a curve can be
continuously deformed to a point. Dating back to Dehn [10] more than a century ago,
the problem of testing contractibility has been an important focus in the development
of efficient algorithms in computational topology and group theory. Such problems
are now well understood in two dimensions, with recent works of the second author
and Rivaud [30] and Erickson and Whittlesey [16], providing linear-time algorithms
to test contractibility and free homotopy of curves on surfaces; Despré and the second
author [11] also developed efficient algorithms for the closely related problem of
computing the geometric intersection number of curves. On the other hand, in higher
dimensions, homotopy problems quickly become undecidable: testing contractibility
of curves is already undecidable on 2-dimensional simplicial complexes and in 4-
manifolds (see Stillwell [42, Chap. 8]).

The aim of this paper is to further improve our understanding of the intermediate
3-dimensional case. In a 3-manifold, testing whether a curve is contractible is known
to be decidable, but the best known algorithms are intricate and rely on the proof of the
Geometrization Conjecture. We refer to the survey of Aschenbrenner et al. [2]. When
the input manifold is a knot complement, this problem contains as a special case the
famous UNKNOT RECOGNITION problem, which asks whether an input knot in R? is
trivial. Hass et al. [19] showed that this problem is in NP and Lackenby [29] proved that
the problem to be also in co-NP. Recently, Colin de Verdiere and the fourth author [8]
initiated the study of a problem in between those two, which is testing the contractibility
of a closed curve y which lies on the boundary of a triangulated 3-manifold M, and
they provided an algorithm to solve this problem in time 20(IM1+¥)*) Here, |M| and
|y | respectively refer to the number of tetrahedra in the triangulated 3-manifold M and
to the number of line segments that make up y. They asked whether the problem lies
in the complexity class NP and proved that it holds in two cases: when the number of
self-intersections of y is at most logarithmic, and when the boundary surface is a torus.
We remark that the existence of an algorithm to test contractibility of a closed curve
on the boundary actually follows from the earlier results of Waldhausen [43], and an
exponential-time algorithm can be derived from the standard 3-manifold literature, as
we will explain later in this paper (cf. Sects. 1.2 and 3). However, the algorithm of
[8, 9] is simpler in the sense that it relies only on the proof of the Loop Theorem.

Our main result is that the problem of contractibility when the curve is on the bound-
ary of the 3-manifold is in NP. Furthermore, the algorithm that we provide has two
additional features. First, it is fixed parameter tractable in the size of the input triangu-
lation: for a given triangulated 3-manifold M, after a preprocessing taking exponential

@ Springer

Discrete & Computational Geometry (2023) 70:323-354 325

time in |M |, we can solve any contractibility test for curves on the boundary in poly-
nomial time. Second, our algorithm also works if the input curve is compressed via
a straight-line program, in particular, it can be exponentially longer than its encoding
size (we defer to Sect. 2 for the precise definitions).

Theorem 1.1 Let a triangulated 3-manifold M and a curve y on the boundary of M be
given as the input. The problem of deciding whether y is contractible in M is in NP, and
there is a deterministic algorithm that solves the problem in time 20 3] poly(Jy D).
This is also the case if y is given as a compressed word, i.e., a straight-line program.

Our proof of Theorem 1.1 will reduce the problem to another problem involving
only curves on surfaces. However, there is an important subtlety. Many algorithms
in 3-dimensional topology involve an exponential blow-up in the size of the objects
under consideration. This is the case for example for UNKNOT RECOGNITION, where
the classical algorithm looks for a disk spanning the knot, but this disk might be
exponentially large, as shown by Hass et al. [20]. In order to get NP membership,
this exponential blow-up is controlled using a compressed' system of coordinates
called normal coordinates (see Sect. 2 for definitions). Our approach follows a similar
scheme and suffers from a similar blow-up, which forces us to deal with normal
curves. Precisely, we show that the problem of contractibility of an arbitrary curve on
the boundary of a 3-manifold reduces to the following problem.

Given a family A of disjoint normal closed curves on a triangulated surface S,
and a curve y on S, decide if y lies in the normal subgroup N of the fundamen-
tal group of S determined by the curves of A (appropriately connected to the
basepoint).

This is equivalent to deciding if the curve y is contractible in the space resulting from
S by gluing a disk to each component of A. We call this problem the disjoint normal
subgroup membership problem, and we provide an algorithm to solve it in polynomial
time, despite the highly compressed nature of A and y.

Theorem 1.2 Let an orientable triangulated surface S, a closed normal multi-curve A,
and a compressed curve y be given as the input. There is a polynomial-time algorithm
for deciding the disjoint normal subgroup membership problem for y and A on S.

To solve the disjoint normal subgroup membership problem, one of our technical
tools is a polynomial-time algorithm to test triviality of a compressed closed curve on
a surface, which might be of independent interest. In fact, we compute a canonical
form for such a curve, in the sense that there is a unique canonical representative in
each based homotopy class.

Theorem 1.3 Let an orientable triangulated surface S and a compressed loop y on S
described by a straight-line program be given. Then one can transform y, in polyno-
mial time, into a canonical form in its based homotopy class, given as a compressed
word. In particular, we can test in polynomial time whether y is contractible.

! There are two different forms of compression going on in this paper: normal coordinates and straight line
programs. We keep the name compressed for the latter, while a curve or a multicurve encoded with normal
coordinates will be simply called a normal (multi-)curve.

@ Springer

326 Discrete & Computational Geometry (2023) 70:323-354

We emphasize that in Theorem 1.3 the surface S is part of the input. The analogous
theorem, if we assume that surface S is not part of the input, has been known in a
much broader context, as we discuss in the next section.

1.1 Related Work
1.1.1 Algorithms in 3-Manifold Topology

There is now a large body of research on the computational complexity of problems in
3-manifold topology and knot theory. To paint a picture in broad strokes, topological
problems about 3-manifolds are typically decidable, using a combination of geometric,
algebraic and topological tools and the complexity of the best known algorithms range
from exponential [1, 19] to quite galactic, see for example [26] for the homeomorphism
problem.? In contrast, only very few complexity lower bounds are known [1, 4, 27, 35]
and for many problems, including ours, it is open whether a polynomial-time algorithm
exists. One particular tool that our work relies on is normal surface theory, which
provides a powerful framework to enumerate and analyze the topologically relevant
embedded surfaces in a 3-manifold. Actually, tools from normal surface theory [41]
provide an off-the-shelf algorithm proving that deciding contractibility of a simple
curve on the boundary of a 3-manifold is in NP, as explained in [8, Sect. 3]. However,
normal surface theory is ill-adapted to study surfaces that are not embedded [7], hence
the more technical path that we follow in this paper. We refer to [28] for a recent and
extensive survey on algorithms in 3-manifold topology.

1.1.2 Geometric and Combinatorial Group Theory

The problem of deciding the contractibility of a curve in a topological space, which
is given for example as a finite simplicial complex, can be equivalently rephrased as a
problem of testing the triviality of a word in a finitely presented group, the fundamental
group of the space. In the case of 2- and 3-manifolds, the geometry or topology of
the underlying manifold has a strong impact on the properties of the group, and there
is a vast amount of literature on this interaction, see for example [18]. We refer to
[2, 3] for the case of 3-manifold groups. Of particular interest for the word problem
is the notion of a Dehn function, which upper bounds the area of a disk certifying
the triviality of a word, and thus controls the complexity of a brute-force algorithm
to solve the word problem. For 3-manifold groups, this function can be exponential
[14, Thm. 8.1.3], making such an approach at least exponentially worse than ours.
When the Dehn function of a group presentation is polynomial (as is the case, for
instance, for the fundamental group of a compression body; being isomorphic to the
free product of a surface group with a free group, its Dehn function is indeed linear),
it can be used to prove that the word problem is in NP. However, the word problem is
defined for a fixed presentation. In our problem, the group presentation itself is part
of the input, and we cannot use the bound on the Dehn function directly.

2 We recall, however, that the homeomorphism problem is undecidable in dimensions four or higher.

@ Springer

Discrete & Computational Geometry (2023) 70:323-354 327

1.1.3 Algorithms for Compressed Curves and Surfaces

As we hinted at in the introduction, 3-dimensional algorithms naturally tend to involve
exponentially large objects, which are generally compressed using normal coordinates.
This incurs a need for efficient algorithms dealing with normal curves and surfaces,
even for the most basic tasks. For example, it is not easy to test whether a curve
described by normal coordinates is connected. By now, there are many known tech-
niques to handle topological problems on compressed curves, see for example works
of Agol et al. [1], Schaefer et al. [38, 39], Erickson and Nayyeri [15], Bell [5], or Dyn-
nikov [12] and Dynnikov and Wiest [13]. None of these techniques seem to directly
solve our disjoint normal subgroup membership problem, but we rely extensively on
the algorithm of Erickson and Nayyeri [15] as a subroutine (see Sect. 4). However,
normal coordinates do not describe curves with self-intersections, which are our main
object of interest in this paper. This is why we rely on a different compression model
in the form of straight-line programs. The use of such programs in topology or geo-
metric group theory is not new. As mentioned above, [38, 39] already used them for
dealing with normal curves on surfaces, while there is a sketch of an algorithm to test
triviality of compressed curves on a surface of genus 3 in an appendix of Schleimer
[40, App. A]. His approach seems to be readily generalizable to higher genus, but
the dependency on the genus is not made explicit. More recently, Holt et al. [23] pro-
vided a polynomial-time algorithm to test triviality of compressed words in hyperbolic
groups, of which (most) surface groups are a subclass. The difference with our The-
orem 1.3 is that in their result, the group presentation is not part of the input. While
both approaches could plausibly be used in our setting, we rely on different tools to
provide a complete proof of Theorem 1.3: our approach treats the surface as an input
and works for any genus, and seamlessly generalizes to the case of wedges of surfaces
that we also need.

1.2 Summary of Our Techniques

The standard methods of normal surface theory allow us to reduce our main con-
tractibility problem to the case where the input manifold belongs to a particular class
of manifolds called compression bodies, see the proof of Proposition 3.1. The funda-
mental group of a compression body is roughly a free product of surface groups, and
thus one can rely on known algorithms for surfaces [16, 30] to solve the contractibility
problem there. However, due to the exponential size of normal surfaces, this would
only yield an exponential time algorithm. In order to improve on this, we identify the
precise problem that we need to solve to be the disjoint normal subgroup membership
problem and set out on a quest to solve it efficiently. While an NP algorithm would
suffice for our main result, we will develop a polynomial-time algorithm.

The disjoint normal subgroup membership problem is made delicate by the com-
pressed nature of the curves in A. If they were given as disjoint curves, say, on the
1-skeleton of the surface, we could glue a disk on each of them, and observe that

@ Springer

328 Discrete & Computational Geometry (2023) 70:323-354

the resulting complex is homotopically equivalent to a wedge of surfaces,® allowing
us to reduce the problem to the triviality of a curve in a surface (see Sect. 5 for a
description of the homotopy equivalence). In order to do so despite the compression,
we compute in Sect. 4 a retriangulation of the surface, so that the curves in A are
only polynomially long in the new triangulation. This is done by tracing the normal
curve and building the street complex which was specifically designed by Erickson
and Nayyeri to handle normal curves on surfaces in polynomial time. We then track
how the street complex interacts with our input curve y. This operation comes at a
cost: even if the input curve y was not compressed, it may become exponentially long
after the retriangulation. Since it may be not simple, we rely on straight-line programs
instead of normal curves to encode it. At this stage, we note that it might as well have
been a compressed straight-line program from the start.

Finally, we want to test the triviality of a compressed curve in a wedge of surfaces.
The fundamental group of this wedge is a free product of fundamental groups of
surfaces, and thus the crux of the problem is to solve it in a single surface. While
there are known techniques to test the contractibility of a curve on a surface, based
on local simplification rules [16, 30], the compressed nature of our curves is once
again a stumbling block here, as we need to be careful to never apply an exponential
number of such simplification rules. The solution sketched in [40, App. A] to thatissue
is to introduce a family of well-tempered paths, which are carefully designed to not
necessitate such exponential simplifications. We use a different approach: we rely on
the standard tools developed for the non-compressed case, namely quad systems and
turn sequences, and detect exponential simplification and realize them all at once in
polynomial time. This relies on recent insights on the structure of these quad systems,
[11], [31, Sect. 4.3].

2 Background

We begin by recalling some key definitions and results, although we assume that the
reader is familiar with basic algebraic topology such as homotopy and fundamental
groups; we refer to [21] or [42] for more detailed definitions.

2.1 3-Dimensional Manifolds

A 3-manifold is a topological space that is locally homeomorphic to a 3-dimensional
ball or a 3-dimensional half-ball. The points of the latter type form the boundary
of the 3-manifold, which is always a surface. In this paper, 3-manifolds are always
assumed to be triangulated, and we use common and a less restrictive definition than
simplicial complexes: a triangulation of a 3-manifold M is a collection of n abstract
tetrahedra, along with a collection of gluing pairs which identify some of the 4n
boundary triangles in pairs. In particular, we allow two faces of the same tetrahedron

3A wedge of a family of topological spaces is the space obtained after attaching them all to a single common
point. Actually, there are also circle summands here—we do not mention them in this outline to keep the
discussion light.

@ Springer

Discrete & Computational Geometry (2023) 70:323-354 329

to be identified. If we add the further restriction that the neighborhood of each vertex
is a 3-ball or a half 3-ball and no edge gets glued to itself with the opposite orientation,
then the resulting quotient space is always a 3-manifold [37]. We use |M| to denote
the number of tetrahedra of a triangulated 3-manifold M.

We briefly recall normal surface theory, which will be used in Sect. 3, and refer
the reader to [19] and [6] for a more detailed overview and background of the topic.
A normal isotopy is an isotopy of a triangulated 3-manifold that leaves each cell of
the triangulation invariant. A normal surface in a triangulation is a properly embed-
ded surface transverse to the triangulation; such a surface decomposes into a disjoint
collection of normal disks, each embedded in a single tetrahedron. Each disk inside
a tetrahedra is either a triangle, which separates one vertex in a tetrahedron from the
others, or a quadrilateral which separates two vertices from the other two. In each tetra-
hedron, there are (up to normal isotopy) four types of such triangles, and three types of
quadrilaterals. The normal surface can be reconstructed using only the number of these
triangles and quadrilaterals in each tetrahedron, as long the collection of disks satisfies
a family of equations called matching equations and has at most one quadrilateral type
in each tetrahedron. These numbers are called the normal coordinates, and since n
bits encode numbers up to 2", these normal coordinates naturally have exponential
compression: normal coordinates of polynomial bit-size encode surfaces containing
possibly exponentially many normal disks. Nevertheless, one can compute the Euler
characteristic of a normal surface in polynomial time in the bit-size encoding, since it
is a linear form [19, formula (22)]. Finally, crushing a triangulation 7 along a normal
surface roughly consists, for each tetrahedron containing at least one quadrilateral,
in removing that quadrilateral and gluing its neighbours pairwise along the two pair
of edges not intersected by the quadrilateral, as in Fig. 1. Then one tears apart in
multiple components the triangulation at the places where it is not a 3-manifold. This
can be done in polynomial time, and surprisingly, this very destructive process has a
well-controlled topological meaning when the normal surface is a sphere [6, Cor. 5].

2.2 Curve and Surface Representations

All the surfaces in this article are closed, i.e., compact and without boundary. We
shall often represent a surface by a graph cellularly embedded in that surface. The
homeomorphism class of this embedding is encoded as a combinatorial surface thanks
to a rotation system over the edges of the graph [36]: intuitively, this encodes the
circular permutation of the edges around each vertex. Equivalently, one can define
a combinatorial surface as a gluing of polygons whose sides are pairwise identified.
When all the polygons are triangles, we speak of a triangulation, or a triangulated
surface. Note that we allow a triangle to have two sides identified after the gluing or
two triangles to share two vertices but no edge, etc.

The complexity of a surface is the number of cells (vertices, edges and faces) of
the complex induced by the graph embedding. A curve on such a surface can be
represented or encoded in a variety of ways. For instance, any curve is homotopic
to a curve defined by a walk on the 1-skeleton of the complex. The complexity of
the curve is the number of edges in the walk counted with repetition. One can also

@ Springer

330 Discrete & Computational Geometry (2023) 70:323-354

consider curves in general position avoiding the vertices of the graph and cutting its
edges transversely as in the next section, in which case we say the complexity of a
curve is its number of intersection points with the graph.

We next outline two different notions of compressed curve representations. To
repeat the footnote of warning in the introduction: normal coordinates and straight line
programs are two different methods for compressed representations, both of which we
use in this paper. We keep the name compressed for straight line programs, while a
curve or a multicurve encoded with normal coordinates will be simply called a normal
(multi-)curve.

2.2.1 Normal Curves

Let S be a triangulated surface. A multi-curve is a disjoint family of curves embedded
on S. A multi-curve c is normal if it is in general position with respect to the triangula-
tion of S and if every maximal arc of ¢ in a triangle has its endpoints on distinct sides.
Moreover, no component of a normal curve is contained in the interior of a single
triangle. A normal curve may have three types of arcs in a triangle, one for each pair
of sides. Counting the number of arcs of ¢ of each type in each of the ¢ triangles of
the triangulation, we get 3t numbers called the normal coordinates of c. As for trian-
gulated 3-manifolds, a normal isotopy of S is an isotopy that leaves each cell of the
triangulation invariant. Up to a normal isotopy, ¢ is completely determined by its nor-
mal coordinates. It is thus possible to encode a multi-curve with exponentially many
arcs by storing its normal coordinates, which then have polynomial bit-complexity. A
normal multi-curve is reduced if no two of its components are normally isotopic.

2.2.2 Straight-Line Programs

Another method of compressing curves is to think of a curve as a word over an alphabet.
In this encoding, a letter of the alphabet corresponds to a directed edge on the surface
so that a word corresponds to a juxtaposition of edges. Therefore, we can consider
curves as abstract words and represent them using compressed representations of
abstract words. The length of a word w, denoted by |w]|, is the number of letters in it.
We recall that the Kleene closure of an alphabet A is the set A* of finite words on A4,
including the empty word.

A straight-line program is a four-tuple A = (L, A, A,, P) where:

— L is a finite alphabet of terminal characters,

- A={Ay, Ay, ..., A} is a disjoint alphabet of non-terminal characters,

— A, € Ais the root, and

— P = {A; — W;}is acollection of production rules, one for every non-terminal,
where W; is a word in (£ U A)* such that every non-terminal A ; appearing in W;
has index j < i.

@ Springer

Discrete & Computational Geometry (2023) 70:323-354 331

2.2.3 Example

Consider a graph with two nodes a and b and two oriented edges e and f from a
to b. As an example let £ = {e, f, e, f } consist of four oriented edges, where the
bar denotes the edge with inverse orientation. Let A = {Ay, ..., A,} be the set of
non-terminal letters. Intuitively, these are variables that represent sub-words of a word,
and each one can be thought of as being a root of a sub-program. Let the rules of our
program be A; — A;_1A;_j fori > 2 and A; — fe. Then the root non-terminal
represents the word (or the oriented closed curve) (f é)zn_1 and the non-terminal A"~/
represents the sub-word (f é)2n7171 . Note that not all words over the alphabet of edges
correspond to a connected curve.

To compute the word represented by a non-terminal A; in a straight-line program,
we need only replace A; using the production rule A; — W;, and then recursively
replace the non-terminals in W; until there is no non-terminal. The recursion tree of
this procedure is called the production tree for the non-terminal.

A straight-line program is in Chomsky normal form if every production rule either
has two non-terminals or a single terminal on the right. Every straight-line program
can be put in polynomial time into Chomsky normal form by adding intermediate non-
terminals, and thus we will always assume that a straight-line program is in Chomsky
normal form. We denote by w(A) the word encoded by a non-terminal character A,
or sometimes simply by A when there is no confusion. Its length is denoted by |A|.
We will always use a terminal alphabet £ equipped with an involution a +— a. The
reversal of a word w is the word obtained by changing its letter a by its reverse a and
reversing the order of the letters.

Composition systems are straight-line programs of a more advanced type, where
productions of the form P — A[i: j] B[k :l] are allowed, and the meaning is that
Ali : j] represents the subword comprising the letters from index i up to j — 1 (both
included, starting the indexing at 0) of the word that A encodes. We take the convention
that negative indices count from the end of the word and that A[i :], A[i], and A[: j]
are shorthand respectively for A[i : |w|], A[i :i 4+ 1] and A[O: j], where w denotes
the word represented by A. We have for example A[—k:] = A[|lw| — k:|w]|] and
Al[:—k] = A[O0:|w| — k]. While composition systems might seem more powerful
than straight-line programs, a theorem of Hagenah [17, Chap. 8] (cf. [40, Sect. 7]) says
that given any composition system, one can compute in polynomial time an equivalent
straight-line program. Henceforth, we will slightly abuse language and freely use the
[-:-] construct in our straight-line programs. We also identify a straight-line program
with its root, writing for instance A[i] for A,[i].

The following theorem summarizes the algorithms on straight-line programs that
we will rely on, see [40, Sects. 2 and 3] or [33].

Lemma 2.1 Let A and X be two straight-line programs, i be an integer and e be a
letter in the terminal alphabet of A. Then one can, in polynomial-time,

— compute the length of A,
— output the letter Ali],
— find the greatest j so that A[j] = e,

@ Springer

332 Discrete & Computational Geometry (2023) 70:323-354

— compute a straight-line program A for the reversal word w(A),
— decide whether w(A) = w(X),
— find the biggest k such that A[: k] = X[:k].

Any closed curve in the 1-skeleton of a given complex K can be encoded by a
straight-line program whose terminal alphabet is the set of directed edges of K. A
trivial such encoding, not in Chomsky normal form, is given by a single production
rule mapping the root to the curve itself. We call such an encoding a compressed curve
or walk. Simple operations on K can seamlessly be done while updating a compressed
curve appropriately to obtain a homotopic compressed curve in the modified complex.
For example, contracting an edge e of K simply boils down to adding a production
rule e — ¢, where ¢ is the empty word. Likewise, deleting an edge e bounding a
face ep, where p is the complementary path in that face, amounts to replacing each
occurrence of e by a p via a new production rule e — p, turned into Chomsky normal
form. When no encoding is specified for a given closed (multi-)curve, then it is simply
encoded as a (multi-)walk on the one-skeleton of the underlying surface or complex.

3 From Contractibility to Normal Subgroup Membership

The following proposition reduces the contractibility problem for closed curves on the
boundary of an orientable 3-manifold M to the normal subgroup membership problem
for a boundary surface of M, where the multi-curve A is a reduced normal curve with
polynomial complexity. We note that this reduction is the only part that is NP in our
algorithm, the rest of our algorithms run in deterministic polynomial time.

Proposition 3.1 Let M be an orientable triangulated 3-manifold with boundary. There
exists a reduced normal multi-curve A on d M with normal coordinates of linear bit-
size (with respect to | M), so that for any curve y in a surface component S on oM, y
is contractible in M if and only if y is contained in the normal subgroup N of w1(S)
generated by the curves in AN S.

Further, given M, A, and a cubic-sized certificate (in |M|), there is a polynomial-
time algorithm to verify that A has the property that all curves in N are contractible
in M.

Proof A 3-manifold M is irreducible if every properly embedded 2-sphere in M
bounds a 3-ball. Our first step is to transform M so that it is irreducible. A reduc-
ing sphere is a properly embedded 2-sphere that does not bound a 3-ball. If there
exists a reducing sphere, there exists one that is normal, with normal coordinates of
linear bit-size [34, Prop. 3.3.24 and Thm. 4.1.12]. Using the techniques of Jaco and
Rubinstein [24] and Burton [6] one can crush [6, 24] along such a normal surface to
obtain a new triangulated manifold M’ with strictly less tetrahedra. Note that since our
3-manifold is orientable, there are no 2-sided projective planes, and thus the crushing
is well-defined.

We claim that M’ has boundary identical to that of M. Indeed, a normal sphere
(and, more generally, any closed normal surface) does not have quadrilateral faces in
the tetrahedra with at least one face on the boundary, and thus those are unharmed by

@ Springer

Discrete & Computational Geometry (2023) 70:323-354 333

u=v

Fig.1 Theboundary is shaded in gray. Tetrahedra with a triangle on the boundary do not contain quadrilateral
normal disks, but tetrahedra with one edge on the boundary might contain one type of those. Crushing along
this quadrilateral glues the adjacent tetrahedra together and thus preserves the boundary

the crushing procedure. Furthermore, the tetrahedra with one edge on the boundary
can only carry a single quadrilateral type, whose crushing along glues together the
adjacent tetrahedra with faces on the boundary, see Fig. 1. Since the boundary stays
the same, crushing along a reducing sphere only undoes connected sums and removes
connected summands without boundary [6, Cor. 5]. Since connected sums induce free
products of fundamental groups, a curve on dM’ is contractible in M’ if and only if
it is contractible in M. We iterate this procedure on M’ until we get a 3-manifold M’
that is irreducible.

A compression disk for the boundary of a 3-manifold M is a topological disk D that
is properly embedded and such that 9 D is an essential curve in d M. Classic theorems
of normal surfaces (see for example [25, Sect. 6]) show that there exists a complete
family D of linearly many, that is O (|M"|), disjoint compression disks for M’ which
are vertex normal surfaces. Moreover, we can assume the set of disks D is minimal in
the sense that no subset of it is a complete family of compression disks.

Without delving into the details of normal surface theory, we just summarize the
salient features of these vertex normal disks for our purpose: the elements of D are disks
of which the boundaries are normal curves on d M. Each of these boundaries might be
exponentially long, but their coordinates, considered as a single multi-curve A, fitin a
quadratic number of bits (see for example [19]). Furthermore, this family is complete,
i.e., if we denote by C the 3-manifold which is a regular neighborhood of dM U D
(C is an example of a compression body), then dC \ dM is incompressible in C as
well asin M \ C.

Let y be a closed curve on M = oM I and let S be the surface component of
dM that contains y. We denote by N the normal subgroup of m1(S) generated by
the curves of A in* § (after attaching all the curves at a common base point). We
claim that y is contractible in M, hence in M’, if and only if it belongs to N. If y
belongs to N, then it is clearly contractible, because all generators of N are so. Now
let us assume that y is contractible, but it does not belong to N. Then according to
the loop theorem [22, Thm. 4.2], there exists a properly embedded disk D in M’ so
that 9D belong to m1(S) \ N. We pick such a properly embedded disk D so that
the number of connected components of D N dC distinct from d D is minimal. This
number is non-zero as otherwise D is contained in C and thus d D is contractible in

4 Their normal coordinates are given by the restriction on S of those of A.

@ Springer

334 Discrete & Computational Geometry (2023) 70:323-354

C whose fundamental group is isomorphic to 71 (S)/N, thus belongs to N, which is
a contradiction. Therefore there is an innermost subdisk D’ € D so that 9D’ € 4C.
This disk D’ is either contained in C or in M \ C, in both cases this contradicts the
completeness of D; indeed d D’ cannot bound a disk in dC by the minimal choice
of D, hence D’ must be a compression disk.

For the verification part, the certificate consists of D, as well as all the reducing
normal spheres S/ and the intermediate manifolds M/ . Note that since each crushing
strictly reduces the size of the triangulation, there are linearly many of those. One can
verify in polynomial time that each S/ is a connected sphere (see [1, Sect. 6]), and
that crushing along it yields the next manifold: despite the sphere having potentially
exponentially many normal disks, the crushing procedure only looks at the existence
of quadrilaterals in tetrahedra, which is done in polynomial time. Finally, one checks
that each connected component of D is a disk. By the previous arguments, this ensures
the required property. This certificate has cubic size, since there are a linear number
of disks and spheres, each of quadratic bit-size (see the bounds on the coordinates of
vertex normal surfaces in [19, Sect. 6]).

We finally note that the multi-curve must be reduced. Otherwise, assume there are
two components that are isotopic on the boundary. The two normal disks bounding
the curves and the image of the isotopy define a 2-sphere which has to bound a ball,
thus contradicting the fact that A is minimal.

Note that we did not strive to optimize the size of the certificate in this proposition,
since it does not matter for our application, so further improvements may be possible.
In particular, using enumeration techniques for vertex surfaces [19, Sect. 6], we suspect
it can be shown to be quadratic rather than cubic.

Proposition 3.2 The problem of contractibility of a compressed curve on the bound-
ary of an arbitrary 3-manifold M reduces, in polynomial time, to the problem of
contractibility of a compressed curve on the boundary of an orientable 3-manifold.

Proof Let T denote the triangulation of M and let ¢ be any closed curve lying on
dM. We can construct a triangulation of the orientable double cover M of M from
T in linear time. For example one can take two copies of each tetrahedron, one for
each orientation, which induces orientations of their faces. Then one identifies pairs
of faces whenever they are identified by 7" and the induced orientations of the faces
are reversed. If ¢ lifts to a closed curve ¢, then c is contractible in M if and only if any
lift & is contractible in M. If ¢ does not lift to a closed curve then ¢ is not contractible
in M.

To finish the proof we need to present a polynomial-time algorithm that given a
compressed curve y, computes a compressed curve ' in the double covering such that
p(y") = y where p is the covering map. We can assume that the compressed word y
is given in Chomsky normal form. We lift the sub-paths of y in the two possible ways
starting from the leaf production rules. Therefore, when we have a rule of the form
A — A;A; we already have computed two preimages A; and A;, and, similarly, A j
and A’j. We compute a preimage of A by looking at the last vertex of A;, if this vertex

equals the first vertex of A j we set A= AA j- Otherwise the vertex has to be the

@ Springer

Discrete & Computational Geometry (2023) 70:323-354 335

same as the first vertex of A’j, we then set A = Ai/{/j. We define A’ analogously by

starting from A;. At the end, each of the terminals corresponding to the root terminal
defines a preimage of the curve y in the double cover. O

Relying on Proposition 3.2, for the rest of the paper we restrict our attention to
orientable surfaces and 3-manifolds.

Hardness of the general normal subgroup membership problem If the curves A in
the normal subgroup membership problem are not disjoint then this problem is much
harder, and possibly undecidable, even if they have few edges. We now elaborate on
the details. To this end, recall that the disjoint normal subgroup membership problem is
defined as follows. Given a family of disjoint normal closed curves A on a triangulated
surface S, and acurve y on S, decide if y lies in the normal subgroup of the fundamental
group of S determined by the curves of A (appropriately connected to the basepoint).

If we can divide A into two subsets, each of which contains only disjoint curves, then
itis not hard to see that the problem is equivalent to contractibility in 3-manifolds. Take
an arbitrary triangulated 3-manifold M and thicken its 1-skeleton inside M. Define S
to be the boundary of the thickening of the 1-skeleton and let A be the “meridians”
of the edges, and the intersections of the triangles with S. Given a closed curve y
whose contractibility is to be decided, isotope y in M so that it lies in S. Then by
gluing disks to A we obtain a space which has the same fundamental group as M.
Therefore, the contractibility of curves in the interior of a 3-manifold reduces to the
normal subgroup membership problem with non-disjoint curves. On the other hand, if
we can partition A into two subsets A and A;, each of which contains only disjoint
curves, then the normal subgroup membership problem reduces to contractibility of a
curve in the interior of a 3-manifold by gluing disks to A1 and A; on opposite sides
of S, and then thickening.

If the curves A are arbitrary then the problem is undecidable. We can perform the
same reduction as above but using a 4-dimensional manifold instead. It is known that
the contractibility problem for 4-manifolds is undecidable since they can have any
finitely presented group as fundamental group [42, Exer. 8.1.8.1].

4 Retriangulation

Throughout this section A denotes a reduced normal multi-curve on a triangulated
2-manifold. In what follows, we present a way to compute a new triangulation of
polynomial complexity, in which the curves of A lie in the 1-skeleton and are only
polynomially long. Techniques exist (see e.g., [5] or [15]) to retriangulate in this
way. However, we also must track our compressed word y in this new triangulation
without increasing its (compressed) complexity during the retriangulation process.
We remark, as mentioned in the introduction, that even if we start with a curve y
which has polynomially many edges, the image of y in the new triangulation may
have exponentially many edges. In fact, if some normal coordinate of A encodes an
exponential number in the size of the input triangulated 2-manifold, then y will cross

@ Springer

336 Discrete & Computational Geometry (2023) 70:323-354

the new triangulation exponentially many times as soon as y traverses one of the two
edges corresponding to this normal coordinate in the input triangulation.

Proposition 4.1 Let a simplicial complex K triangulating a surface S, a reduced nor-
mal multi-curve A and a compressed closed walk y on the 1-skeleton of K be given
as input. The size of the input is the summation of the complexities of the curves y, A
and complexity of K. There is an algorithm that in polynomial time computes a new
simplicial complex K' triangulating the same surface S, a multi-curve A', and a walk
y' on the 1-skeleton of K' given as a composition system, such that:

— there is a homeomorphism f: |K| — || K'|, such that the images of A under f
coincides with A',

— y' is homotopic to f(y),

— the multi-curve A’ is an embedded multi-curve on the 1-skeleton of K'.

Consequently, the homotopy class of y' belongs to the normal subgroup generated by
the components of A’ in ||K'| if and only if the homotopy class of y belongs to the
normal subgroup generated by the components of A in | K||.

Note that in this proposition, the complexities of the inputs y and A is the size of
their compressed and normal encodings.

Proof A re-triangulation satisfying the conditions on A and A’ and disregarding y can
be constructed by at least two explicit polynomial-time algorithms in the literature,
one by Erickson and Nayyeri [15] and the second by Bell [5]. We work with the former,
basing our re-triangulation on their street complex, and introduce additional structure
to track y.

We briefly recall the structure of street complex here. The overlay of A with K cuts
the triangles of K into smaller pieces. We abuse language and call quadrilaterals the
pieces bounded by exactly two sub-edges of K, though they can actually be degenerate
triangles. Merging the quadrilaterals whenever they share an edge segment of K results
in the street complex. The maximal sequences of merged quadrilaterals are called
streets, and the remaining faces are junctions. Quite surprisingly, the size of the street
complex is bounded by a linear function of the complexity of K [15, Lem. 2.3],
independent of A. Note that the curves in A appear in the 1-skeleton of this complex
at the street boundaries. The complex K’ in the proposition is essentially this street
complex, further triangulated, and A’ is the image of A in K'.

We model a street as a rectangle whose boundary is a simple cycle consisting of
some vertices and edges. A generic street has two edges on the boundary that are
segments of edges of K, these are denoted by the ¢; in Fig. 2(a). The boundary minus
€1 and €, is divided into two paths that we call the sides of the street. In general, our
model of a street is mapped to a street from [15] so that some pairs of the edges might
identify with each other. Any pair of identified edges has one edge in each side. We
draw these edges using a thick line. Fig. 2(b) depicts a street model that is mapped to
a spiral, shown in (c).

The input compressed curve y is a walk on the 1-skeleton of K. We may assume
that the straight-line program encoding y is in Chomsky normal form (cf. Sect. 2).
The production rules with a terminal at the right-hand side now are of the form A — ¢

@ Springer

Discrete & Computational Geometry (2023) 70:323-354 337

a; a, as ay ds

€] €2

by by by b, by by ay=b,
<
(@
ay dy az dy ds dg a7 dg Ay i
El] 162
by by by by bs bg b; by by by,
(b) (O]

Fig.2 a A model for a street without a spiral, b a model for the spiral, where two edges on the boundary
(shown in bold) are identified, ¢ the spiral redrawn as embedded on the surface

the fixed side
~ the shrunk street

the extended street <

Fig.3 A left turn in the street complex; the arrows depict segments of the edge e

where e is an oriented edge of the 1-skeleton of K. We trace the multi-curve A using
the algorithm of [15, Sect. 4.2], but at the same time define a composition system E
encoding the intersections of the edge e with the street complex for A. We update the
composition system [E after each step of the tracing algorithm, as described below.

The basic step of the tracing algorithm is to extend a street across a junction or a fork
(we extend across a fork when the curve we are tracing intersects an edge containing
an endpoint of the trace), and then across a street. The extension across a junction and
a street is depicted in Fig. 3. This figure depicts a left turn across a junction. When
a street is extended through a second street, the latter street is shrunk. When a street
is shrunk, one side of the street remains unaltered, we call this side the fixed side of
the street. The boundary of the street which is extended gains some new vertices and
edges of the street complex, while the boundary of the street which is shrunk becomes
simpler. The effect of this step on the streets is depicted in Fig. 4.

We next recall that a phase of the tracing algorithm of [15] consists of a maximal
sequence of left turns or of right turns. When we enter a street for the second time,
from the same boundary edge, during the same phase, we have discovered a spiral.
In [15] it is shown that the spirals can be processed at once in O (m) time, where m

@ Springer

338 Discrete & Computational Geometry (2023) 70:323-354

a « « (e
1 51 b1
B iﬁ ¢/3
a (87 v (6]
] c Yy y Yy
b 5} B ¢B

Fig.4 The effect of a right turn on the model streets, the arrows depict parts of the edge e. Top: before the
extension. Bottom: after the extension of the street s, along the street ¢

is the number of edges of K. The presence of these spirals in a street causes potential
identifications; we call the edge which is the result of an identification the long edge of
the spiral (Fig. 2). Observe that when another street extends over a street that contains
a spiral, the latter street turns into an ordinary street without identifications. Since
we are only interested in the case where A is reduced, the complexity of the street
complex is always bounded by a linear function of the complexity of K [15, Lem.
2.3].

The terminals of our composition system [are of three types: i) (s, a, x) or (s, x, a),
where s is a street, a is a vertex on s, and x is an edge of the street on the opposite side
from a, ii) (s, x, y) where x and y are edges on opposite sides on the model of street s,
and iii) (s, a, b) where a and b are vertices of the model street for s lying on opposite
sides. These three types of terminals represent sub-arcs of e that lie inside the street,
where the sub-arcs start at the second parameter and end at the third parameter. We also
define types for non-terminals, which represent longer parts of an edge analogously.
We use vertices and edges of the model street rather than those of the street itself. This
allows us to distinguish between two arcs in the street complex, which have different
directions, but connect the image of two edges or vertices that are identified in the
street complex.

When traversing an edge e = uv of y in the overlay of the street complex and the
original complex K, we see a sequence of these terminals which we call the overlay
sequence of e. Our first goal is to construct a composition system for the overlay
sequence.

The algorithm that traces the curves in A to build the street complex starts with
the triangulation K, where each edge is a (trivial) street and there is one fork where
we start the tracing. At the beginning, we introduce for the edge ¢ = uv of y a non-
terminal A(s., u, v), where s, is the degenerate street corresponding to the edge e.
We also introduce the rule £ — A(s,, u, v). This finishes the modifications for the
starting street complex.

We now explain the rules that are added to the system to account for an ordinary
street extension. Assume that we turn right at a junction. Referring to the arrows in
Fig. 4, there are four cases to consider. These cases correspond to different possibilities

@ Springer

Discrete & Computational Geometry (2023) 70:323-354 339

for the start and endpoint of a segment of e that crosses the street ¢ which is going to
be shrunk. This segment is represented by a non-terminal which will be the left-hand
side of the new rules.

Leta and b be endpoints of a side of the street ¢ that lies on an edge, and let s, be the
right active street, as in Fig. 4. Note that each street is a rectangle, so we can talk about
its sides. If the non-terminal A(q, a, b) exists, we introduce the rule A(q, a,b) —
A(q,a,c)A(sr, c,b) where c is a vertex as in the figure. If the street coordinates of
A in (new) ¢ and/or in s, is 0, we also introduce the rule A(g,a,c) — (¢q,a,c)
and/or A(s,, ¢, b) — (s, ¢, b) and the corresponding terminals. Similarly, if the non-
terminal A(q, b, a) exists we introduce the rule A(q, b, a) — A(sy, b, c)A(q,c,a).
We introduce also the suitable terminals in case any of the streets have coordinates
zero for A. Recall that during the tracing algorithm of [15], the number of arcs of A
inside each street is maintained as the street coordinates.

For any pair (o, 8) where o and 8 are a vertex or an edge of the street g, we
search if there exists already a non-terminal of the form A(g, «,). If the non-terminal
A(q, a, B) exists, and « lies on the fixed side of ¢, we introduce the rule A(q, «, 8) —
A(q,a,y)A(sy, y, B) where y is the edge of (new) street g as in the bottom of Fig. 4. If
the street coordinates of A ing and/orins; is 0, we also introduce therule A(q, «, y) —
(g, o, y) and/or A(sy, vy, B) = (sr, y, B) and the corresponding terminals. Similarly,
if the non-terminal A(q, «, B) exists where § is on the fixed side of the street g
we introduce the rule A(q, o, 8) — A(s,, @, y)A(q,y, B). We introduce also the
suitable terminals in case any of the streets have coordinates zero for A. This finishes
the processing of non-terminals.

The modifications necessary for extension across a fork are totally analogous to a
junction. In this case again a street is shrunk and another is extended, see [15, Fig. 7].
We do not repeat the case analysis.

We next consider a spiral. Let d be the depth of the spiral, / the length of the
spiral, and m be the number of distinct streets traversed by the spiral. See [15] for
more detailed description of these parameters and how to compute the spiral. Let A
be the long edge of the spiral, and A1, A be its preimages in the model. After we
enter a spiral and before we reach the “final turn", the new side of the shrunk street
is always A and the extended street has the edge A on both sides. See Fig. 5. Let, in
the system at the time we discover the spiral, A(s;, x, y) be the non-terminal where
s; is a street traversed by the spiral, and x and y be edges on its two sides such that
x lies on the fixed side of s;. After we trace the whole spiral, we need to add the
rule A(sj, x,y) — A(si, x, 2) A(Sa, 2, Ax) A(Sq, As, A*)d,!A(sa, Ax, y), Where s, is
the active extended street. In place of the star we place indices 1, 2 as is appropriate.
The number d’ is either d — 1 or d — 2 depending on where the street lies around
the spiral. For an example see Fig. 5. This figure depicts a clockwise spiral. In the
highlighted street of the figure we have d’ = d — 1, and d = 3. If any street coordinate
in the streets s5; becomes zero we introduce the rule A(s;, Ay, X) — (57, Ay, Xx). If the
active street has coordinates zero for A we add the rule A(s,, Ay, Ax) = (Sq, Ag, Ag). If
instead of x, y is on the fixed side of the street s; we do analogously. We perform these
modifications for every existing non-terminal of the form A(s;, x, y). This finishes
the modifications of the composition system for the non-terminals of type ii). Those
of other two types are handled similarly.

@ Springer

340 Discrete & Computational Geometry (2023) 70:323-354

Fig.5 Updating the intersections of e with a spiral, the orange curve is part of A

We have finished the construction of the composition system E. Throughout the
construction, we have added a number of non-terminals that is polynomial since the
number of streets, vertices and edges is polynomial at each moment, and the number
of steps in the tracing algorithms is also polynomial. Therefore the entire composition
system is polynomial and can be computed in polynomial time. Note that since the
curve A is reduced no street is an annulus. We replace each rule A — e of the walk
y by arule A — E where E is the root of the composition system E encoding its
overlay sequence with the street complex. To construct y” we do as follows. For each
edge of the the street complex, we choose one of the its endpoints. We then replace
the terminals of the system [E with a path on the boundary of a street between two
vertices. This transforms the composition system into a composition system for the
curve y’ which is freely homotopic to y, and y’ is a walk on the 1-skeleton of the
street complex.

To finish the proof, our final step is to turn the street complex into a triangula-
tion. We simply need to triangulate streets and junctions by adding diagonals. We
eventually apply at most two barycentric subdivisions to make sure that the result is a
simplicial complex. We also modify the composition system for 3’ to reflect the subdi-
vision. Assume K’ is the resulting simplicial complex. There exists a homeomorphism
FoIIK = K. o

5 Capping Off
In this section, we show that the complex obtained by gluing disks on a family of
disjoint curves on a surface is homotopy equivalent to a wedge of surfaces and circles.

We provide a polynomial-time algorithm to compute the resulting wedge, while also
tracking what happens to a compressed curve on the original surface.

@ Springer

Discrete & Computational Geometry (2023) 70:323-354 341

ED - B -

Fig. 6 Contraction of a component ¢ of A (shown on the left) results in a new complex K’ (shown in the
middle). For clarity, we have not drawn all the edges

Proposition 5.1 Let L be simplicial complex triangulating a surface S of genus > 1,
A be a family of disjoint embedded closed curves in the 1-skeleton of L and y be a
compressed closed walk on the 1-skeleton of L. The size of the input is the summation of
the complexities of L, y and the number of edges of A. We can compute in polynomial
time a simplicial complex K which is awedge of surfaces and circles, and a compressed
walk w on the 1-skeleton of K, so that:

— K is homotopy equivalent to the complex obtained from L by gluing disks on each
component of A,

— w is homotopic to a trivial walk in K if and only if y belongs to the normal
subgroup determined by the curves in A.

Proof Note that the second property will be satisfied if, in the complex K satisfying
the first property, we take for w the image of y under a homotopy equivalence of L
to K. We construct the simplicial complex K which is homotopy equivalent to the
space obtained from L by gluing a disk to each component of A. This is done one disk
at a time, and at each step we also maintain the image of the curve y as a compressed
word. Suppose A has m components. As a preprocessing step, we subdivide twice any
edge of L that connects vertices on A but does not lie on A and also subdivide the
incident triangles, and then update the compressed word.

Call a space X a pinched surface if there is a finite set of vertices P such that the
closure of X — P is a surface. We call P the set of pinch points and assume P is minimal,
in the sense that no open neighborhood of a pinch point in X is homeomorphic to R

We start by computing a straight-line program in Chomsky normal form for y.
During the procedure that processes components of A, we maintain a complex K’
and a compressed curve w’ with the following invariants: (i) the current space || K’||
is a pinched surface, (ii) the current space || K’|| is homotopy equivalent to || L|| union
caps (i.e., glued disks) over components of A that we have processed so far, (iii) the
current curve w’ is the image of the original curve y under a homotopy equivalence
and (iv) the (yet unprocessed) curves of A are sent by the homotopy equivalence to
a set of disjoint simple curves A’, at pairwise distance at least 2 on K’. By a slight
abuse of notation we will identify A" and A in the following description.

Let ¢ be a component of A and let K’ be the current complex. We add a disk with
boundary c; we then compress this disk into a single vertex x and add x to P. See
Fig. 6. The effect on the word w’ is as follows. A terminal ¢ = uv where uv is an
edge in c is replaced with the empty word. A terminal e = uv, where v is in ¢ but u
is not, is replaced with ¢’ = ux. If u is in ¢ and v is not, the oriented edge e = uv is
replaced with ¢’ = xwv. It easily seen that these modifications can be accomplished in

@ Springer

342 Discrete & Computational Geometry (2023) 70:323-354

polynomial time. We note that each remaining component of A is an embedded curve
in the 1-skeleton lying in a single component of |K’| — P. The invariants remain true,
and the word w’ is now a walk in the new complex K.

After contracting all the components of A we have a complex K’ which is a pinched
surface. Because of the subdivision in the preprocessing step, the star of each pinch
point x is the union of two disks D1 U D; glued at their common center x. We further
transform K’ into a homotopy equivalent complex by replacing each such D} U D,
with two disjoint disks connected through their centers by a path of two edges xjx’x;
as shown on Fig. 6. This homotopy equivalence simply expands x to xjx’'x,. We then
compute a tree in the 1-skeleton of the complex that spans the vertices x1, x» for
x € P. We require that the number of x” vertices is minimal in this tree. We then
contract every edge of the spanning tree. The result is a complex K which is a wedge
of circles and surfaces, which can be turned into a simplicial complex using a constant
number of subdivisions.

We explain the modifications needed to maintain the word w’. The first step is when
we introduce the paths x;x'x,. Define eg = x1x’, e; = x'x2, and let ¢; denote the
edges with the opposite orientation. Observe that the link of the vertex x consists of
two disjoint circles. We associate x| to one of these and x; to the other arbitrarily. If a
terminal is an edge e = ux, where u is in the circle associated to x», we replace e with
the path ¢’é1, where ¢/ = ux;. If u is in the circle associated to x|, we replace e with
the path ¢’ey where ¢ = ux;. We do analogously for the edges of the form e = xv.
These modifications define a curve which is the image of the homotopy equivalence
which introduces the paths. There remains to update w’ under contraction of a single
edge. The result is the required curve w. O

6 Triviality for Compressed Words in Free Products of Surface Groups

In this section, we prove the following theorem:

Theorem 6.1 Let K be a wedge of combinatorial surfaces and circles and w be a
compressed walk on the 1-skeleton of K. Then one can compute in polynomial time a
canonical form for the homotopy class of w. In particular, we can test in polynomial
time whether w is trivial.

We emphasize that in Theorem 6.1, we consider w as a walk with fixed endpoints,
and thus we are considering based homotopies (as opposed to free homotopies).

We can assume that there are no spheres in the wedge of surfaces: since these are
simply connected, removing them, and replacing their edges by empty letters in the
word w does not change the homotopy class, or contractibility of w. Furthermore, tori
require a slightly different treatment from the other surfaces. For the ease of exposition,
we first explain and justify our algorithm assuming that there are no tori in the wedge,
and at the end of the proof we will explain how to deal with them.

Our algorithm starts in a similar way as the known linear-time algorithms to test
contractibility or homotopy of curves on surfaces [16, 30]: we first turn each surface
in the wedge into a system of quads (Lemma 6.2), and then compute a canonical form
for our curve w (Lemma 6.7). This canonical form is unique, and therefore the walk

@ Springer

Discrete & Computational Geometry (2023) 70:323-354 343

w is homotopic to a trivial walk if and only if its reduced canonical form is the empty
walk. However, due to the compression of the input, our techniques to reduce the
curve w are more involved than those of the aforementioned references. Let A denote
the straight-line program encoding w. First, we fix once and for all an orientation for
all the surfaces in K, which gives precise meaning to the intuitive notions of turning
right, clockwise, etc.

Our first step is to turn our surfaces into a system of quads. First, for each surface
S we compute a spanning tree and contract it. Then, we remove edges until there is a
single face, we add a new vertex inside the single face, add all the radial edges between
this new vertex and the single vertex of S and remove all the previous edges. To make
things unified, in each circle summand, each loop is subdivided into two edges. The
resulting complex is called a quad system. We refer to [16, Sect. 3] for more details
about the construction of quad systems.

Lemma 6.2 Let K be a wedge of combinatorial surfaces and circles and let w be a
compressed walk on the 1-skeleton K. In polynomial time we can turn K into a quad
system K’ and compute a compressed walk w' on (the edges of) K’ that is homotopic
to w.

Proof The construction of the quad system follows directly from the definition. The
word w is modified as follows: each terminal character representing an edge e (which
got removed) is now a non-terminal character with a production rule e — eje; where
ejer is a two-edge path homotopic to e going through the new middle vertex. On
surfaces, there can be two such edge-paths, we choose arbitrarily. The other production
rules are unchanged. This operation can be done in polynomial time since there are
polynomially many non-terminals and yields a compressed curve homotopic to w. O

In the next step of our algorithm, we encode words using furn sequences. Recall that a
quad system consists of rectangles and has two vertices. The rectangles divide a small
disk centered at a vertex into slices that we call corners. For any two directed edges
e and ¢’ on the same surface S, the turn 7 (e, €’) is the number of corners, counted
with respect to our chosen orientation, between the end of e and the start of ¢’ on S.
That is, the number of corners we need to turn when we arrive at the vertex at the
end of e and want to continue on ¢’. For any two edges e and ¢’ forming a loop in a
circle summand, we define 7 (e, €’) to be a new symbol A, and for an edge e in a circle
summand, we define 7 (e, e~!) to be 0, which is in line with the case of surfaces. We
need our encoding to adapt to jumps between different wedge summands, and we do
it as follows: If e and ¢’ are on different surfaces or circle summands, we define the
turn 7 (e, €) to be the pair e¢’, with the intended meaning that in this case the turn is
a jump from e to ¢’ on the new surface. Turn sequences are to be understood modulo
the degree of the vertices, and following the literature, we use the notation x := —x.
The symbol A satisfies A = A. Henceforth, by a slight abuse of language, we count
circle summands among the surfaces since they will be treated the same way. The turn
sequence of our word is the concatenation of all the turn sequences of consecutive
edges. However, we lose information by encoding with turn sequences. First, a turn
sequence does not specify a starting edge. Second, even if we know the starting edge,
it is not immediately clear how to compute an arbitrary intermediate edge along the

@ Springer

344 Discrete & Computational Geometry (2023) 70:323-354

0 .
1 2 2 2 1
xty
x 8y T —
2 2 2

y+1

— NN

x +1

x+1

3
2
2
1

Fig. 7 The reductions to eliminate a spur (top left) and a bracket (top right), and the shifting moves to
remove a | (bottom row)

path efficiently since we encode exponential length paths. The following lemma shows
how to do that in polynomial time.

Lemma 6.3 Let T be a compressed turn sequence and k be an integer. Given a starting
edge einitial, we can compute in polynomial time the edge of K we are on just after
starting at einitial and following the turn sequence up to T[k] included.

Proof We first compute a straight-line program for T[: k 4+ 1], then use Lemma 2.1 to
compute the last letter of this word that corresponds to an edge, hence to a jump. We
denote it by ej,5, and if there is none we use ejniial instead. We denote by i the index
where it appears, which is 0 if there is no such edge. Then we look at the straight-line
program computing T[i : k 4+ 1], which thus stays on a single surface. We inductively
go up the production tree, computing, for each directed edge e of the surface and for
each production rule at which directed edge we arrive if we start at edge e. This is
straightforward at the leaves of the tree, and for a directed edge e and a production
rule of A of the form A; — A; Ay, we can look up where we arrive after starting at e
and following A ;, denote the resulting edge by ¢’, and then look up where we arrive
after starting at ¢’ and following A ;. Finally, we obtain our solution by looking up
where we are after starting at ejyjta) and following T[i : k + 1]. O

The point of turn sequences is that they make easier the local simplifications to
a contractible curve. Following Erickson and Whittlesey [16, Sect. 4], we use the
following simplification rules, see Fig. 7, which are homotopies.

— A spurin a turn sequence w is a 0 turn. Removing a spur is applying the rule
x0y — x + y.

— A bracket in a turn sequence w is a subword of the form 12...21 or 12...21.
Flattening a bracket is applying the rules

x12...2ly > (x = D2...2(y = 1) or x12...2ly > (x+1D2...2(y + 1).

@ Springer

Discrete & Computational Geometry (2023) 70:323-354 345

1 2 1
2
1 1 3 |
2 2 1
1
2 2
2
k/
k
2 4 2
2 2

Ay / A/'

Fig. 8 Some production rules A; — A Ay require an exponential number of bracket flattenings and/or
spur removals to be reduced, despite A ; and Ay being already reduced

We are only considering homotopies of paths in this paper, and thus do not need the
other special cases considered in [16]. Our goal is to modify the turn sequence so
that it is reduced, i.e., contains neither spurs nor brackets. However, unlike in the
aforementioned works, we cannot apply these rules directly, even inductively: in a
production rule A; — A; Ay, even when A; and Ay are reduced, there might be an
exponential number of bracket flattenings in A;, for example in the cases in Fig. 8.

There are known techniques to handle exponentially long spurs [32, 40], but for the
more intricate cases pictured in Fig. 8, especially the kind on the right side, we need to
develop our own tools. In order to do that, we rely on stronger inductive forms, similarly
to those used in the free homotopy test [16, 30]. A reduced path is leftmost (or rightmost,
respectively) if its turn sequence contains no 1, respectively no 1 (we emphasize that
we also use this definition in our general setting of wedges of surfaces). Note that
leftmost paths become rightmost paths under reversal, and vice-versa. This trivial
observation will fuel many of our arguments. One can transform a reduced path into
its rightmost (resp. leftmost) form by doing elementary right-shifts (resp. elementary
left-shifts) which are the three transformations 2’12 y = (x+1D125713207 1 (y+1),
22Ty = (x + D12°(y + 1) and x12'y — (x + 1)2'1(y + 1) or their mirrors, see
Fig. 7.

For each character in the straight-line program, we inductively compute both a
rightmost and leftmost turn sequence. Then, both are used to carry the induction step.
So the next step of our algorithm is the following reduction algorithm. It takes as
input the straight-line program A describing a walk on a system of quads, and at the
same time transforms it into two compressed turn sequences representing the reduced
leftmost and rightmost forms for the walk. In these representations, every character

@ Springer

346 Discrete & Computational Geometry (2023) 70:323-354

A; of A encoding a walk w; gives rise to two characters A lL and A iR representing the
turn sequences of the leftmost and rightmost form of w;. Since turn sequences only
encode the turns at the interior vertices of a path and forget where the path starts, we
store this information separately: for each character in the straight-line program, we
store in a dictionary its starting and ending edges (which might be empty).

REDUCTION ALGORITHM

Input: A compressed walk on a quad system described by a straight-line program A,
as output by Lemma 6.2.

Output: Two compressed turn sequences on the quad system which are the leftmost
and rightmost forms of the input, and their starting and ending edges.

— The leaves of the production tree are transformed to empty sequences since they
consist of a single edge. We store the edge as both the starting and the ending edge
in our dictionary.

— Let A; — AjA; be a production rule, and assume that we have inductively
computed rightmost and leftmost reduced turn sequences for A; and Ay, which
are denoted by Af , Af, A ,15, and AL, as well as their starting and ending edges.
We explain how to compute a rightmost reduced turn sequence AlR, the leftmost
case being symmetric. If the dictionary entries of AX and A ,’f are empty, A l.R is an
empty sequence, with empty starting and ending edges. If one of the dictionary
entries is empty, AlR is the other turn sequence, inheriting its starting and ending
edges. Otherwise:

1. We look up the last edge of Af and the first edge of A,’f in the dictionary

and compute the turn 7 between them.’ If it is different from 0 or 1, we go
to Step 3. Otherwise, we use Lemma 2.1 to compute the largest m so that

Af[—m :] = AE[—m] if they have the same ending edge (let us emphasize
that we use the leftmost form of Aj here). We use Lemma 6.3 to compute the
last edge of A_,f[: —m — 1]. If it arrives at the same vertex as A_,f[: —m — 1],
we go to Step 2 with Af = Af[: —m — 1] and AR := AR[m + 1:]. If not,
we go to Step 2 with Aj? = Af[: —m — 1]and AR := (vt — DAR[m +2:],
where 7 is the turn A,f[m + 1].

2. Using Lemma 6.3, we compute? the turn 7 between the last edge of Af and the
first edge of A ,f .If r = 1, we use Lemma 2.1 to compute a maximal subword
x2" 112"y in ARTAR ie., ARTAS = Sx2" 1127 yT, and we set AR 1o be
S(x — 1) and A,f to be T and go to Step 3. It t = 0, we use Lemma 2.1 to
compute the largest m so that Af[—m] = A_,f[—m :] and go to Step 3 with
AR = ARL—m —11and Af := Af[m +1:1.

3. If we came directly here, we look up the last edge of A;e and the first edge of
A ,f in the dictionary and compute the turn between them.” If we came from

5 At the start of Steps 1, 2, and 3, it might happen that the last letter of Af and the first letter of AR are both
edges, if half of a jumping turn got removed. In that case, we remove those edges since they are superfluous.

@ Springer

Discrete & Computational Geometry (2023) 70:323-354 347

Step 2, we compute® these edges using Lemma 6.3 and use them to compute
7. We concatenate the two words, adding t in between.

a. If T = 1, we use Lemma 2.1 to compute the maximal subword
x2%12"y, and apply an elementary shift which changes it into (x + 1)
125713207 (y 4+ 1), (x + 1)125(y + 1), or (x +1)2" 1 (y + 1), depending
on whether s or ¢ is zero (if x or y are edges, they are changed into the
turned edges). Since it is straightforward to encode efficiently 2* using
straight-line programs, this is done in polynomial time. We go to Step 3.b.

b. If t =1 ort = 2, we use Lemma 2.1 to compute a maximal subword of
the form x 12¥1y. There might be multiple such subwords, we pick one of
them arbitrarily. We change it into (x — D2K(y—1) (if x or y are edges, they
are changed into the turned edges). Since it is straightforward to encode
efficiently 2¥ using straight-line programs, this is done in polynomial time.
We loop this step while there are brackets. When there are none, we output
the result and store in our dictionary the first and last edge: these are the
first and last edge of respectively, Af and A,f, perhaps turned because
of one of the elementary operations, or perhaps made empty if the entire
word became empty.

c. In any other case, we do not change anything and output the concatenated
word, and store in our dictionary the first edge of Af and the last edge

R
of A}

Step 3 simply implements the bracket flattenings and the shifts, so the main mysteries
in this algorithm are Steps 1 and 2. These are tailored to deal with the bad cases
pictured in Fig. 8, which are the only possible bad cases; see the proof of Lemma 6.6.
Figure 9 illustrates how Step 1 reduces (a subset of) the right case of Fig. 8 to its left
case, and how Step 2 deals with that case. Note that in these pictures, A ; and A were
already rightmost.

We claim that after this procedure, the path that represents the word AlR (respec-
tively Al.L) is homotopic to the path represented by A;, and is rightmost (respectively
leftmost). This is straightforward for the leaves of the production tree, but the rest
requires some more involved analysis.

For this analysis, we employ the terminology developed by Despré and Lazarus in
their analysis of the combinatorics of quad systems [11, Sect. 4], to which we refer
the reader for definitions. We will rely on two important structural results [11, Thms.
8 and 10] (see also [16, 30]).

Theorem 6.4 For a path p on a combinatorial surface of negative Euler characteristic
described by a system of quads, there is a unique rightmost, respectively leftmost, path
homotopic to p.

Theorem 6.5 Let c and d be a rightmost and a leftmost path on a combinatorial surface
of negative Euler characteristic described by a system of quads. Then ¢ - d~' bounds
a disk diagram composed of an alternating sequence of paths and quad staircases
connected through their tips.

The two theorems extend directly to our setting of wedge of surfaces and circles,
since the fundamental group of a wedge of spaces is the free product of their fun-

@ Springer

348 Discrete & Computational Geometry (2023) 70:323-354

1 2
2 T
k' 1
!+ 1
k +12 1 ,
1 3 2
R
A% Sk 4] m¥2q S ARE-m-1]
Step 1
Step 2
_>
T —1
(T—l)Af[erZ:] A‘/R[:—m—l] S(x —1)

Fig.9 The leftmost form Alg forms a long spur with AR After reducing A 15 by the length of this spur, all
of the staircases get removed, except possibly the last one. It disappears in Step 2

damental groups. For the first theorem, the generalization to wedges then follows by
the uniqueness of the rightmost and leftmost paths in each surface they span. For the
second theorem, we obtain the generalization to wedges by gluing the disk diagrams
in each surface together.

The following lemma is the crux of the analysis. We state it for rightmost paths but
the symmetric version with leftmost paths holds with the same proof.

Lemma 6.6 At the end of Step 2, the paths represented by A f and A,f are rightmost.
Furthermore, denoting by t the turn between Af and A,f at the end of Step 2, the path

represented by Aj?tA,f is homotopic to the one before these two steps, contains no
spurs, contains at most two brackets, and these brackets contain both at least one 2.

Proof Since A f and A ,f are obtained from subpaths of rightmost curves, plus possibly
an additional turn, it is straightforward to verify that they are rightmost. Recall that A lR
is the rightmost path homotopic to A;. Since AiR is homotopic to AftA ,f, the three
paths represented by A f, A ,f, and A_l.R bound together a disk diagram. Since A l.R and
Af are rightmost, by uniqueness of rightmost representatives of paths, they share a

unique maximal subpath which is a common prefix, likewise for A l.R and A ,’f where it
is a common suffix. We consider the combinatorial triangle A obtained after removing
these subpaths, see Fig. 10. We denote its endpoints by a, b, and ¢, where a is the

@ Springer

Discrete & Computational Geometry (2023) 70:323-354 349

Fig. 10 The two non-degenerate cases for the combinatorial triangles in the proof of Lemma 6.6. Staircases
are colored. Step 2 will remove the spur or the ladder

vertex between A f and AR, b the vertex between AR and AR, and c the last one. Let
x denote the first vertex of degeneracy of A on the path from c to a, and y denote the
vertex at the end of the first common path of Af and Af between x and a. Then we
have a pinched disk diagram between y and a, the boundary of which is made of a
subpath y; of A f and a subpath y; of A,f. Theorem 6.5 tells us that this disk diagram
is an alternating sequence of staircases and paths, which are connected by their tips.
By definition, y is the tip of a staircase. We claim that y also lies on A,%. Otherwise,
denoting by A1 and A, the leftmost paths between a and y and between y and c, the
turn between A and A, at y would be 1, yielding a bracket with the other side of the
staircase, a contradiction.

Since y; and y; are both rightmost, they have the same length and A1, the leftmost
path homotopic to yy is exactly ¥;. Therefore, during Step 1, the whole subdisk between
yj and y, got removed.

We denote by A’ the disk diagram obtained after doing Step 1, with endpoints a’,
b, and ¢, and we distinguish cases depending on its orientation. If A" is degenerate,
i.e., has no quads in its interior, then after removing possibly one sequence of spurs in
Step 2, we have ARt AF = A and thus we have successfully computed a rightmost
form for A;.

If the boundary of A’, oriented ¢ — a’ — b — c, is oriented counter-clockwise,
then @’ is on the path between x and y, since A,f and Af can not coincide below x,
see Fig. 10, top. After removing the sequence of spurs between a’ and x in Step 2, the
(positive) turn between A f and A ,f is at least 2, since otherwise there would be a spur

- AR R
1nAj or A%

@ Springer

350 Discrete & Computational Geometry (2023) 70:323-354

If the boundary of A’, oriented ¢ — a’ — b — ¢, is oriented clockwise, we
observe that x also lies on A,f. Indeed, otherwise, since A,I; is at distance at most one
from A,f and A’ is not degenerate, there would be a common vertex z that would be
both on AR and A,f and such that the paths from z to a are different, since one contains
x and not the other. This would contradict uniqueness of canonical paths. Therefore,
the entire pinched disk between x and a has been removed in Step 1. Now we look at
the maximal (possibly empty) staircase having a’ as a tip and being bounded by pair
of subpaths «; and ag of A f and A ,f , except for one edge. If there is no such staircase,
nothing happens in Step 2, and we are done. If there is such a staircase, we claim that
most of it got already removed when we get to Step 2. If «; contains one or more 1s,
then the start of the leftmost form of «; coincides with the start of ozj_l, and thus this
subword containing this 1 has also been eliminated during Step 1, see Fig. 9. Note
that the slight offset of the indices in Step 1 is due to the difference in length between
o and oy, and that the new turn 7 that we introduce is the missing edge to close the
staircase. Therefore, o contains no 1, and the last turn of «; is a 1. Therefore the
entire staircase is a ladder, as pictured in the left of Fig. 8 and on the bottom right of
Fig. 10, which gets removed during Step 2.

Let t denote the turn between Af and A,’f after Steps 1 and 2. Then in the clock-

wise case, T is at least 2 and thus at most one bracket can exist in Af rAf . In the

counter-clockwise case, the only brackets that can exist in ARz A ,f must contain a 2,
as otherwise the staircase of the previous paragraph would not have been maximal.
There are at most two such brackets: one finishing at 7 and one starting at t, since
otherwise such a bracket would have been present in Af or A,If. As the reductions
correspond to flattening brackets and removing spurs on a disk diagram, they are homo-
topies. Finally, since the degenerate parts of the disk diagram have been removed, there
are no spurs. O

We now prove that the reduction algorithm does indeed compute rightmost and
leftmost forms.

Lemma 6.7 The REDUCTION ALGORITHM runs in polynomial time. The straight-line
program that it outputs has the property that every pair of characters AlR and Al.L
encode a pair of turn sequence corresponding respectively to the rightmost and leftmost
paths homotopic to A;. In particular, at the top level, AR and AL are the rightmost
and leftmost paths homotopic to the compressed input walk.

Proof By Lemma 6.6, when the algorithm reaches Step 3, the path A f A ,f may not be

reduced for two reasons: either the turn between AR and A ,f is a1, or there is one or
two brackets with at least one 2 between them. Note that the two cases are exclusive.
We argue that no spurs or brackets remain after the two reductions 3.a and 3.b. For the
first one (reduction a), note that x, y # 2 by definition and x and y are neither 0 nor
1 because AR is rightmost. We may have x = 1 or y = 1, which may create at most
two brackets, but note that these brackets are disjoint and contain each at least one 2.

When we reach Step 3.b, we therefore have at most two brackets, each containing
at least one 2. We conclude by proving that no new brackets nor spurs are created
during an application of this Step 3.b. Note that x and y cannot be 1 because the

@ Springer

Discrete & Computational Geometry (2023) 70:323-354 351

curves are rightmost, cannot be 0 because they contain no spurs, and cannot be 1
because otherwise there would be a bracket without a 2. They could be 3, but the 2
blocks the resulting 2 from participating in a bracket since 2 # 2 as there is no torus
surface among the wedge summands. Therefore, the only way forx — 1 or y — 1 to
be involved in a bracket is when one of them is 1, in which case it bounds a second
bracket that already existed before the reduction. After reducing that one, there are no
more possible spurs nor brackets. In particular, Step 3.b only loops a constant number
of times, and thus the whole inductive step is polynomial. In turn, computing the full
straight-line programs for both reduced words A’ and AX is also polynomial. O

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1 Using Lemma 6.2, we first turn our walk w into a walk on a
quad system. Then, using Lemma 6.7, we compute a compressed rightmost reduced
loop w’ homotopic to w in this quad system. By Theorem 6.4, there is a unique such
rightmost loop. Combined with the data of the first and last edge, this is our canonical
form. If w is homotopic to a trivial walk, it is homotopic to the empty loop, which is
rightmost. Therefore, to test contractibility, it suffices to test whether w’ is the empty
word. O

Finally, let us comment on how to adapt this algorithm in the case where there
are tori in the wedge. In tori summands, we dispense from using turn sequences and
simply reduce to a one-vertex one-face graph, which therefore has two edges a and b.
Homotopy in tori is a simple matter since the fundamental group is Z?, correspond-
ing exactly to how many times the oriented edges a and b are taken. Therefore, we
directly use for our encoding a pair (k, £) representing this, with the convention that
(k,) = (—k, —¢). The reduction algorithm has an additional rule stipulating that
(k1, €1)(ka, £2) should be reduced to (k; + k2, €1 + £2). Any reduction to (0, 0) trig-
gers a search for a deeper sequences of spurs and staircases as in Steps 1 to 3.

Proofs of the Main Theorems

We now have all the tools to prove our main theorems. Theorem 1.3 is a subcase of
Theorem 6.1 when the the wedge of surfaces consists of a single surface.

Proof of Theorem 1.2 We can make A reduced in polynomial time [15]. By Proposi-
tion 4.1, one can compute in polynomial time a new triangulation of the surface S so
that the multi-curve A has polynomial complexity and the curve y is encoded as a
straight-line program. By Proposition 5.1, we can compute a wedge of surfaces and
circles K and a walk w on K so that w is contractible in K if and only if y belongs
to the normal subgroup generated by the curves A in S. The simplicial complex K
can be transformed to a wedge of combinatorial surfaces and circles easily. Then the
theorem follows from Theorem 6.1. O

Proof of Theorem 1.1 By Proposition 3.2, we can reduce our problem to the case of
orientable manifolds. Note that the size of the manifold at most doubles in this process.

@ Springer

352 Discrete & Computational Geometry (2023) 70:323-354

Then, Proposition 3.1 reduces the problem to the disjoint normal subgroup membership
problem. The NP certificate consists of the certificate in that proposition, and the
corresponding algorithm is to guess this certificate. The disjoint normal subgroup
membership problem is then solved using Theorem 1.2. O

Acknowledgements The authors would like to thank Mark Bell, Ben Burton, and Jeff Erickson for helpful
discussions. We also thank an anonymous referee of [9] (which is a heavily modified version of [8]) for
suggesting the use of a maximal compression body as a simple exponential-time algorithm for deciding
contractibility of arbitrary (non-compressed) curves on the boundary of a 3-manifold. We are also grateful
to the anonymous reviewers for their careful reading of the manuscript which greatly improved the paper.

References

1. Agol, I, Hass, J., Thurston, W.: The computational complexity of knot genus and spanning area. Trans.
Am. Math. Soc. 358(9), 3821-3850 (2006)

2. Aschenbrenner, M., Friedl, S., Wilton, H.: Decision problems for 3-manifolds and their fundamental
groups. In: Interactions Between Low-Dimensional Topology and Mapping Class Groups (Bonn 2013).
Geometry & Topology Monographs, vol. 19, pp. 201-236. Geom. Topol. Publ., Coventry (2015)

3. Aschenbrenner, M., Friedl, S., Wilton, H.: 3-Manifold Groups. EMS Series of Lectures in Mathematics.
European Mathematical Society, Ziirich (2015)

4. Bachman, D., Derby-Talbot, R., Sedgwick, E.: Computing Heegaard genus is NP-hard. In: A Journey
Through Discrete Mathematics, pp. 59-87. Springer, Cham (2017)

5. Bell, M.C.: Simplifying triangulations. Discrete Comput. Geom. 66(1), 1-11 (2021)

6. Burton, B.A.: A new approach to crushing 3-manifold triangulations. Discrete Comput. Geom. 52(1),
116-139 (2014)

7. Burton, B.A., Colin de Verdi¢re, E., de Mesmay, A.: On the complexity of immersed normal surfaces.
Geom. Topol. 20(2), 1061-1083 (2016)

8. Colin de Verdiere, E., Parsa, S.: Deciding contractibility of a non-simple curve on the boundary of a
3-manifold. In: 28th Annual ACM-SIAM Symposium on Discrete Algorithms (Barcelona 2017), pp.
2691-2704. SIAM, Philadelphia (2017)

9. Colin de Verdiere, E., Parsa, S.: Deciding contractibility of a non-simple curve on the boundary of a
3-manifold: a computational Loop Theorem (2020). arXiv:2001.04747

10. Dehn, M.: Transformation der Kurven auf zweiseitigen Flichen. Math. Ann. 72(3), 413-421 (1912)

11. Despré, V., Lazarus, F.: Computing the geometric intersection number of curves. J. ACM 66(6), #45
(2019)

12. Dynnikov, I.: Counting intersections of normal curves. J. Algebra 607(B), 181-231 (2021)

13. Dynnikov, I., Wiest, B.: On the complexity of braids. J. Eur. Math. Soc. 9(4), 801-840 (2007)

14. Epstein, D.B.A., Cannon, J.W., Holt, D.E,, Levy, S.V.E, Paterson, M.S., Thurston, W.P.: Word Pro-
cessing in Groups. Jones and Bartlett, Boston (1992)

15. Erickson, J., Nayyeri, A.: Tracing compressed curves in triangulated surfaces. Discrete Comput. Geom.
49(4), 823-863 (2013)

16. Erickson, J., Whittlesey, K.: Transforming curves on surfaces redux. In: 24th Annual ACM-SIAM
Symposium on Discrete Algorithms (New Orleans 2013), pp. 1646—1655. SIAM, Philadelphia (2013)

17. Hagenah, Ch.: Gleichungen mit reguldren Randbedingungen iiber freien Gruppen. PhD thesis, Uni-
verstit Stuttgart (2000). https://elib.uni-stuttgart.de/handle/11682/2469

18. de la Harpe, P.: Topics in Geometric Group Theory. Chicago Lectures in Mathematics, University of
Chicago Press, Chicago (2000)

19. Hass, J., Lagarias, J.C., Pippenger, N.: The computational complexity of knot and link problems.
J. ACM 46(2), 185-211 (1999)

20. Hass, J., Snoeyink, J., Thurston, W.P.: The size of spanning disks for polygonal curves. Discrete
Comput. Geom. 29(1), 1-17 (2003)

21. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

22. Hempel, J.: 3-Manifolds. AMS Chelsea Publishing, vol. 349. American Mathematical Society, Provi-
dence (2004)

@ Springer

http://arxiv.org/abs/2001.04747
https://elib.uni-stuttgart.de/handle/11682/2469

Discrete & Computational Geometry (2023) 70:323-354 353

23.

24.
25.
26.
27.

28.
29.

30.

31.
32.
33.
34.

35.

36.

38.

39.

40.
. Schubert, H.: Bestimmung der Primfaktorzerlegung von Verkettungen. Math. Z. 76, 116-148 (1961)
42.

43.

Holt, D., Lohrey, M., Schleimer, S.: Compressed decision problems in hyperbolic groups. In: 36th Inter-
national Symposium on Theoretical Aspects of Computer Science (Berlin 2019). Leibniz International
Proceedings in Informatics, vol. 126, # 37. Leibniz-Zent. Inform., Wadern (2019)

Jaco, W., Rubinstein, J.H.: O-efficient triangulations of 3-manifolds. J. Differ. Geom. 65(1), 61-168
(2003)

Jaco, W., Tollefson, J.L.: Algorithms for the complete decomposition of a closed 3-manifold. II1. J.
Math. 39(3), 358-406 (1995)

Kuperberg, G.: Algorithmic homeomorphism of 3-manifolds as a corollary of geometrization. Pacific
J. Math. 301(1), 189-241 (2019)

Lackenby, M.: Some conditionally hard problems on links and 3-manifolds. Discrete Comput. Geom.
58(3), 580-595 (2017)

Lackenby, M.: Algorithms in 3-manifold theory (2020). arXiv:2002.02179

Lackenby, M.: The efficient certification of knottedness and Thurston norm. Adv. Math. 387, #107796
(2021)

Lazarus, F., Rivaud, J.: On the homotopy test on surfaces. In: 53rd Annual IEEE Symposium on
Foundations of Computer Science (New Brunswick 2012), pp. 440-449. IEEE Computer Society, Los
Alamitos (2012)

Loffler, M., Lubiw, A., Schleimer, S., Wolf Chambers, E.M. (eds.): Computation in low-dimensional
geometry and topology (Dagstuhl Seminar 19352). Dagstuhl Reports 9(8), 84-112 (2019)

Lohrey, M.: Word problems and membership problems on compressed words. SIAM J. Comput. 35(5),
1210-1240 (2006)

Lohrey, M.: The Compressed Word Problem for Groups. SpringerBriefs in Mathematics. Springer,
New York (2014)

Matveev, S.: Algorithmic Topology and Classification of 3-Manifolds. Algorithms and Computation
in Mathematics. vol. 9. Springer, Berlin (2007)

de Mesmay, A., Rieck, Y., Sedgwick, E., Tancer, M.: The unbearable hardness of unknotting. In:
35th International Symposium on Computational Geometry (Portland 2019). Leibniz International
Proceedings in Informatics, vol. 129, # 49. Leibniz-Zent. Inform., Wadern (2019)

Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins Studies in the Mathematical Sciences,
Johns Hopkins University Press, Baltimore (2001)

. Moise, E.E.: Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung. Ann.

Math. 56, 96-114 (1952)

Schaefer, M., Sedgwick, E., §tefank0vic’, D.: Algorithms for normal curves and surfaces. In: Computing
and Combinatorics (Singapore 2002). Lecture Notes in Computer Science, vol. 2387, pp. 370-380.
Springer, Berlin (2002)

Schaefer, M., Sedgwick, E., gtefankovic’, D.: Computing Dehn twists and geometric intersection num-
bers in polynomial time. In: 20th Canadian Conference on Computational Geometry (Montreal 2008),
pp. 111-114 (2008)

Schleimer, S.: Polynomial-time word problems. Comment. Math. Helv. 83(4), 741-765 (2008)

Stillwell, J.: Classical Topology and Combinatorial Group Theory. Graduate Texts in Mathematics,
vol. 72. Springer, New York (1993)

Waldhausen, F.: The word problem in fundamental groups of sufficiently large irreducible 3-manifolds.
Ann. Math. 88, 272-280 (1968)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

http://arxiv.org/abs/2002.02179

354 Discrete & Computational Geometry (2023) 70:323-354

Authors and Affiliations

Erin Wolf Chambers’ - Francis Lazarus? - Arnaud de Mesmay? -
Salman Parsa’

Erin Wolf Chambers
erin.chambers @slu.edu

Francis Lazarus
francis.lazarus @ grenoble-inp.fr

Arnaud de Mesmay
arnaud.de-mesmay @univ-eiffel.fr

Salman Parsa
salman.parsa@slu.edu
1" Saint Louis University, Saint Louis, MO, USA
2 G-SCOP, CNRS, UGA, Grenoble, France
3 LIGM, CNRS, Univ. Gustave Eiffel, ESIEE Paris, 77454 Marne-la-Vallée, France

@ Springer

	Algorithms for Contractibility of Compressed Curves on 3-Manifold Boundaries
	Abstract
	1 Introduction
	1.1 Related Work
	1.1.1 Algorithms in 3-Manifold Topology
	1.1.2 Geometric and Combinatorial Group Theory
	1.1.3 Algorithms for Compressed Curves and Surfaces

	1.2 Summary of Our Techniques

	2 Background
	2.1 3-Dimensional Manifolds
	2.2 Curve and Surface Representations
	2.2.1 Normal Curves
	2.2.2 Straight-Line Programs
	2.2.3 Example

	3 From Contractibility to Normal Subgroup Membership
	4 Retriangulation
	5 Capping Off
	6 Triviality for Compressed Words in Free Products of Surface Groups
	Proofs of the Main Theorems
	Acknowledgements
	References

