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A cornucopia of diversity—Ranunculales as a model lineage
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Abstract

The Ranunculales are a hyperdiverse lineage in many aspects of their phenotype, including growth habit, floral and leaf
morphology, reproductive mode, and specialized metabolism. Many Ranunculales species, such as opium poppy and
goldenseal, have a high medicinal value. In addition, the order includes a large number of commercially important orna-
mental plants, such as columbines and larkspurs. The phylogenetic position of the order with respect to monocots and
core eudicots and the diversity within this lineage make the Ranunculales an excellent group for studying evolutionary
processes by comparative studies. Lately, the phylogeny of Ranunculales was revised, and genetic and genomic re-
sources were developed for many species, allowing comparative analyses at the molecular scale. Here, we review the
literature on the resources for genetic manipulation and genome sequencing, the recent phylogeny reconstruction of this
order, and its fossil record. Further, we explain their habitat range and delve into the diversity in their floral morphology,
focusing on perianth organ identity, floral symmetry, occurrences of spurs and nectaries, sexual and pollination systems,
and fruit and dehiscence types. The Ranunculales order offers a wealth of opportunities for scientific exploration across
various disciplines and scales, to gain novel insights into plant biology for researchers and plant enthusiasts alike.

Keywords: Ancestral states, carpels, distribution, fossils, fruits, genomic resources, nectaries, phyllotaxy, phylogeny, sexual
systems, spurs, symmetry.
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Introduction

Ranunculales are the sister order to all other eudicots and
have diverged before the core eudicots, which include ap-
proximately three-quarters of all angiosperms species (The
Angiosperm Phylogeny Group, 2016). Studying Ranunculales
can thus provide clues to the core eudicot’s ancestral states in
terms of morphology and genetics. The order Ranunculales
encompasses >4500 species and is composed of seven fami-
lies: Ranunculaceae, Berberidaceae, Menispermaceae, Lardizabalaceae,
Circeasteraceae, Papaveraceae, and Eupteleaceae (Fig. 1; The
Angiosperm Phylogeny Group, 2016). They are remarkably di-
verse in terms of floral and fruit form, life history traits, leaf
shape, growth shape, and their secondary metabolite composi-
tion. The flowers of Ranunculales are not only unusually diverse
in their morphology, they are also unique in concentrating a
variety of evolutionary transitions, such as changes in merism
(number of floral organs), in phyllotaxy (whorled versus spiral)
potentially leading to the emergence of organ fusion (in repro-
ductive organs and perianth), and in the origin of novel organs.

The Ranunculales
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These transitions are only rarely observed in monocot or core
eudicot model lineages. Further, Ranunculales exhibit a suite of
homoplasious characters (shared character states that did not
arise from a direct common ancestor, but independently via
convergent evolution) such as transitions between sexual sys-
tems and pollination modes in closely related taxa, petal loss,
spur formation, or transition to zygomorphy (Endress, 1995;
Soza et al., 2012; Damerval and Becker, 2017; Becker et al.,
2023). Homoplasies and the emergence of novel organs pro-
vide premier opportunities to study the molecular and genetic
mechanisms involved in the origin of these special traits using
species within Ranunculales as case studies.

Aside from their morphological diversity, Ranunculales pro-
duce a multitude of secondary metabolites, many of them of
pharmaceutical importance. Consequently, Ranunculales spe-
cies have been used in traditional medicine since at least the
early civilizations. Some species, such as Nigella sativa, were al-
ready mentioned in writing by, for example, Ayurveda, Siddha,

I Aquilegia coerulea
Aquilegia oxysepala
Thalictrum thalictroides

Nigella damascena
Staphisagria picta

Coptis chinensis

Hydrastis canadensis

Epimedium grandiflorum
| Epimedium pubescens

Kingdonia uniflora

Corydalis tomentella
Capnoides sempervirens

Pteridophyllum racemosum

Eschscholzia californica
Macleaya cordata
Papaver rhoeas
Papaver setigerum
Papaver somniferum

Fig 1. Simplified phylogeny of Ranunculales based on Wang et al. (2009), Ortiz et al. (2016), and Peng et al. (2023). Species for which major genomic
resources are or will become available in the near future are next to their respective branches. Representative photos of Ranunculales flowers:

(A) Aquilegia coerulea, (B) Thalictrum thalictroides, (C) Nigella damascena, (D) Staphisagria picta (Ranunculaceae), (E) Epimedium grandiflorum
(Berberidaceae), (F) Pteridophyllum racemosum, (G) Capnoides sempervirens, (H) Eschscholzia californica, (I) Macleaya cordata, (J) Papaver somniferum
(Papaveraceae). (Photo credit: A, D-G, H, J, Becker lab; B, Di Stilio lab; C, F, Jabbour; I, N, Pabén Mora.)

¥20Z AeN 01 uo 1senb Aq $9///1//0081/./G./811e/qx]/woo dno-olwepeoe//:sdiy woly pspeojumoq



1802 | Becker et al.

Unani, Greek—R oman, Malay, Tibb-e-Nabwi, and Jewish civi-
lizations (Heiss and Oeggl, 2005; Dabeer et al., 2022). The use
of opium poppy (Papaver somniferum) as a narcotic drug dates
even back to the Neolithic (Guerra-Doce, 2015; Yang et al.,
2021). New World indigenous cultures used Ranunculales; for
example, Navajos used Thalictrum fendleri tea during ceremo-
nial war dance rites (Elmore, 1943) and Pomo women used
Eschscholzia californica during infant weaning (Barrett, 1952).
Ranunculales are a rich source of economically important phy-
tochemicals, such as alkaloids, diterpenes, triterpenes, isoquin-
oline alkaloids, and cardiac as well as cyanogenic glycosides
(Hao et al., 2015). These compounds contribute to a vast array
of medicinal uses for different Ranunculales species, for example
in ulcer treatment, and as antimicrobe and anti-inflammatory
agents (Hao et al.,2015). Papaveraceae are notoriously known for
their secondary metabolite diversity, and many of their com-
pounds are essential pharmaceuticals of high economic value,
including morphine, codeine, protopine, isocorydine, or ber-
berine. Benzisoquinoline alkaloids (BIAs) in particular are well
known for their analgesic, antitussive, antimicrobial, anticancer,
and anti-inflammatory effect (Li ef al., 2020; Avci et al., 2021,
Becker et al., 2023). Of special pharmaceutical importance are
morphine and codeine used as analgesics, the anticancer drug
noscapine, and antibacterial compounds such as sanguinarine
(Hagel and Facchini, 2013). Members of the other Ranunculales
families synthesize unique and overlapping subsets of secondary
metabolites (Hao et al., 2015). Consequently, a wide array of
species is used as herbal extracts, even nowadays, for example in
Chinese traditional medicine (Hao ef al., 2015, 2017).

An informative phylogenetic position, combined with phar-
macological relevance and stunning floral morphological di-
versity, has led to a strong research interest in the Ranunculales,
resulting in the development of an array of genetic tools to aid
in the investigation of gene function and regulation (Di Stilio,
2011; Becker et al., 2023). The powerful combination of ge-
netic studies, comparative morphology, and secondary metabo-
lite profiling will further enable the reconstruction of ancestral
traits before the major core eudicot radiation.

In this review, we present an update on the phylogeny, fossil
records, and ecology of Ranunculales, before adressing recent
findings concerning the genetic origin, diversity, and evolution
of floral and fruit traits. We also recapitulate the available omics
resources and functional tools, and introduce the RanOmics
project, aiming at selecting phylogenetically informative spe-
cies to unravel the evolution of ecologically and economically
important traits.

Genetic resources and functional tools for
Ranunculales

In the ‘omics’ era, several genetic resources have been estab-
lished for Ranunculales, mostly for mining genes related to sec-
ondary metabolite biosynthesis and regulation. The number

of high-quality Ranunculales genomes, starting with the first
sequenced genome from Macleaya cordata (Liu et al.,2017), has
increased enormously in the past few years, allowing for com-
parative genome analysis (Fig. 1;Table 1). However, the suita-
bility criteria for high quality reference genomes are unclear,
hence we define them here as follows: the rate of Benchmarking
Universal Single-Copy Orthologs (BUSCO; Manni et al.,
2021) matches should be >95%.Table 1 shows that only two
Ranunculales genomes match this criterion, these are P som-
niferum (opium poppy) and Corydalis tomentella (Guo et al.,
2018; Xu et al., 2022). Genomes with lower BUSCO values are
available for Thalictrum thalictroides, Coptis chinensis, Aquilegia coe-
rulea, and Aquilegia oxysepala (Ranunculaceae), Kingdonia uniflora
(Circeasteraceae), Akebia trifoliata (Lardizabalaceae), Epimedium
pubescens (Berberidaceae), Eschscholzia californica, Corydalis tomen-
tella, Papaver somniferum, Papaver thoeas, Papaver setigerum, and
Macleaya chordata (Papaveraceae) (Liu et al., 2017, 2021; Filiault
et al., 2018; Hori et al., 2018; Sun et al., 2020; Xie et al., 2020;
Arias et al., 2021; Chen et al., 2021; Huang et al., 2021; Yang
et al., 2021; Shen et al., 2022).

The available genomes already provide sufficient data for the
inference of whole-genome duplications (WGDs) within the
Ranunculales. When the genomes of P somniferum, M. cordata,
A. coerulea, and C. chinensis were analyzed in combination, one
WGD was found to have probably occurred in the lineage
leading to C. chinensis and A. coerulea, and another one in the
lineage leading to P sommniferum and M. cordata (Liu et al.,2021).
An additional WGD was identified in the lineage leading to
P sommniferum and P, setigerum, which is not shared by P rhoeas and
M. cordata. Moreover, the P setigerum genome shows an addi-
tional WGD (Yang et al., 2021), most probably contributing to
its large genome size, which is almost double that of the closely
related P sommniferum. These recent comparative genome studies
suggest that the genome duplication history of Ranunculales is
most likely to be as complex as those of the core eudicots, con-
sidering that the number of sequenced Ranunculales genomes
is still relatively small.

Recently, the molecular evolution of morphine biosynthesis
in the Papaveraceae was unraveled by comparative genomics: the
final morphine biosynthesis steps, which require the STORR
gene modules, was found to be <18 million years old (Li et al.,
2020).The STORR gene, coding for the key enzyme convert-
ing morphinans to morphine, originated from a translational
fusion of a cytochrome P450 and an oxidoreductase enzyme
that occurred after the split of P setigerum and P somniferum
from P rhoeas and was then duplicated in the P setigerum-
specific WGD (Li ef al., 2020;Yang et al., 2021).

The 1KP project (One Thousand Plant Transcriptomes
Initiative, 2019) has provided transcriptomic data for a single or
a few tissues of these Ranunculales species: the Lardizabalaceae A.
trifoliata; the Menispermaceae Cocculus laurifolius; the Eupteleaceae
Euptelea pleiosperma; the Berberidaceae Nandina domestica and
Podophyllum  peltatum; the Ranunculaceae Anemone hupehensis,
Anemone pulsatilla, Cimicifuga racemosa, Hydrastis canadensis, and
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among the infraordinal taxa within Ranunculales. As cur-
rently circumscribed by molecular data, the order consists
of seven monophyletic families: Berberidaceae, Circaeasteraceae,
Eupteleaceae, Lardizabalaceae, Menispermaceae, Papaveraceae, and
Ranunculaceae (Wang et al., 2009; The Angiosperm Phylogeny
Group, 2016).

Three major clades are recovered: Eupteleaceae, Papaveraceae,
and the core Ranunculales (Kim et al., 2004; Wang et al., 2009).
The relationships among these three clades are not well re-
solved, but the majority of phylogenetic analyses recognize
the monogeneric Eupteleaceae as the earliest diverging lin-
eage with weak to moderate support (e.g. Kim et al., 2004;
Worberg et al., 2007; Wang et al., 2009; Sun et al., 2017; Peng
et al., 2023). Within the core Ranunculales, Circaeasteraceae and
Lardizabalaceae form a clade, and Menispermaceae, Berberidaceae,
and Ranunculaceae form another clade, with Berberidaceae as
sister to Ranunculaceae (Kim et al., 2004; Wang et al., 2009; Sun
et al.,2017; Peng et al.,2023).

The Eupteleaceae include a single genus with two species
only, Euptelea pleiosperma and Euptelea polyandra (Cao et al.,
2016). Genome sequence or other resources are not available
for this genus.

Papaveraceae sensu latu contain four subfamilies: Fumarioideae,
Hypecoideae, Papaveroideae (including Chelidonieae, Eschscholzieae,
and Papavereae), and Pteridophylloideae (Hoot et al., 2015). The
position of Pteridophylloideae has been controversial (reviewed
by Peng et al., 2023) Recently, a complete genus-level phy-
logeny was built for Papaveraceae, in which Papaveroideae form a
clade, whereas Preridophylloideae, Hypecoideae, and Fumarioideae
form another clade, with Hypecoideae as sister to Fumarioideae;
the relationships among 91% of all currently recognized genera
in the family are well resolved (Peng ef al., 2023).

Circaeasteraceae consists of two monotypic genera, Circaeaster
and Kingdonia, and it is the sister group to Lardizabalaceae
(Wang et al., 2009; Sun et al., 2017). Within Lardizabalaceae
(the sister family of Circaeasteraceae), Sargentodoxa, Decaisnea,
and Sinofranchetia are successive sister taxa to the other genera
(Wang et al., 2009, 2020).

Within Menispermaceae, two subfamilies are recognized:
Chasmantheroideae and Menispermoideae (Ortiz et al., 2016).
Chasmantheroideae  comprises ~ Coscinieae  and  Burasaieae,
and  Menispermoideae ~ comprises  eight tribes, among
which Menispermeae is the earliest diverging, followed by
Anomospermeae, then Limacieae. Cebatheae, Cissampelideae,
Pachygoneae, Spirospermeae, and Tiliacoreae form a clade with
strong support, but the relationships among these five tribes are
not resolved because they might have diversified rapidly over a
period of <6 million years (Wang et al.,2017; Lian et al., 2020).

Berberidaceae  contain three subfamilies, Podophylloideae,
Berberidoideae, and Nandinoideae, corresponding to the chromo-
some base numbers x=6, 7 and 8, or 10, respectively (Wang
et al.,2007,2009; Sun et al.,2018). Recently, Hsich et al. (2021)
further updated the classification system for this family at the
tribal and generic levels.
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Ranunculaceae (Tamura, 1965, 1993) consists of five subfami-
lies: Coptidoideae, Glaucidioideae, Hydrastidoideae, Ranunculoideae,
and Thalictroideae (Wang et al., 2009). Most studies support
Glaucidioideae as sister to the remaining taxa of the family, fol-
lowed by Hpydrastidoideae, then Coptidoideae (e.g. Kim ef al.,
2004; Wang et al., 2009, 2016; Cossard et al., 2016; Zhai et al.,
2019), whereas other studies place Glaucidioideae as sister to
Hydrastidoideae (Hoot et al., 1999; Soltis, 2000). Thalictroideae
and Ranunculoideae are characterized by the T- and R-type
chromosomes, respectively (with R-type being metacentric
and T-type telocentric, with only one arm; Wang ef al., 2009),
but the monophyly of Ranunculoideae remains controver-
sial. Based on eight DNA loci from three genomes, Cossard
et al. (2016) placed Thalictroideae in Ranunculoideae, as sister to
Adonideae. That was confirmed by a plastid phylogenomic anal-
ysis (Zhai et al., 2019), whereas a phylotranscriptomic analysis
strongly supports the monophyletic Ranunculoideae (He et al.,
2022). He et al. (2022) suggest that the different positions of
Adonideae in the nuclear and plastid trees could result from
ancient hybridization and/or subsequent introgression events.
The currently recognized Ranunculoideae contains 10 tribes,
which together with Thalictroideae appear to have diversified
rapidly over a period of <14 million years, and perhaps in as
little as 1-2 million years (Wang et al., 2016).

Fossil record

The fossil record of the Ranunculales includes nearly 800
occurrences (Xing et al., 2016), but most of them should be
considered with caution. In particular, few reliable fossils have
been described from the Cretaceous period (Friis ef al.,2011).
Three northern hemisphere fossils could illustrate the early di-
versification of Ranunculales during this period. The flower of
Teixeiraea lusitanica from the Cretaceous [~113 million years ago
(Ma)] of Portugal is considered to be part of the stem or crown
of the Ranunculales without family assignment von Balthazar
et al., 2005). Also, from Portugal and with similar age, the
flower Kajanthus lusitanicus is the first Cretaceous occurrence
of Ranunculales assigned to the family Lardizabalaceae (Mendes
et al.,2014). However, a new study considers this lower as more
confidently assigned to the crown group of Ranunculales, making
it undefined at the family level (Schonenberger et al., 2020).
The anatomy of the stem of the liana Atli mornii Smith, Little,
Cooper, Burnham, and Stockey from the Late Cretaceous (77—
74 Ma) of Canada allows for the identification of Ranunculales
without family affinity, and reinforces the early presence of
Ranunculales in Laurasia (Smith et al., 2013). However, the
recent description of Santaniella lobata based on fruits and
stems from the Cretaceous (Barremian/Aptian, ~125 Ma)
of Brazil related to Ranunculales (Gobo et al.,2022) along with
the leaf with unknown affinity but close to Ranunculales in
shape, named Baderadea pinnatissecta described from the same
region (Pessoa et al., 2021), could indicate a Lower Cretaceous
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origin of the Ranunculales in Gondwana rather than Laurasia.
Nevertheless, additional data from S. lobata indicate that this
fossil belongs to angiosperms without certainty about the
order (Pessoa et al., 2023).

With the exclusion of the monotypic family Circaeasteraceae,
the other families are represented in the fossil record (Xing
et al., 2016). Although the families of Ranunculales appear to
have diverged early on, no Cretaceous fossil can be confidently
assigned to any extant family. The unequivocal fossils assigned
to a particular family are mostly fruits, seeds, leaves, wood, and
pollen from the Paleogene (Friis et al., 2011).

The family Berberidaceae is represented by ~100 fossils from
the Oligocene to the Pliocene, mainly from North America
and Europe, but also from Asia (Friis ef al., 2011; Xing et al.,
2016; Chen et al., 2020). Fossils of Berberidaceae are represented
by only two genera, Mahonia and Berberis, based on leaves and
seeds (Xing et al., 2016). Fossils of the Eupteleaceae family are
scarce; however, Friis ef al. (2011) indicate the presence of a
few fossils from this family in the Northern Hemisphere from
the Paleocene to the Miocene.

The fossil record of Lardizabalaceae was recently reviewed
(Wang et al., 2020). During the Cenozoic, fossils attributed
to this family come from the Eocene to Miocene of Europe
and the USA, as well as from the Miocene of Japan and the
Cenozoic of South America. Most of the fossils belong to the
genus Sargentodoxa, with the exception of Decaisnea seeds from
the Oligocene of Germany and a liana attributed to the family
level (Wang et al., 2020).

The very diverse woody family Menispermaceae has a very
abundant fossil record compared with other Ranunculales
families, with many fossil fruits, leaves, and wood having been
described (Jacques, 2009; Xing et al., 2016). Several Cretaceous
fossils may be credible, such as the morphological genus
Menispermites, but need revision (Jacques, 2009). Characteristic
endocarps named ‘moonseed’ are traditionally found in North
America and Europe (Jacques, 2009), and were also recently
found in South America (Herrera ef al., 2011; Jud et al., 2018)
and Asia (Han et al., 2018, 2020) as early as the Paleocene.
Within this family, a total of 44 genera have been found in the
fossil record, of which 17 are extant and 27 are extinct (Jacques,
2009). This fossil record attests to a rapid and universal diver-
sification of Menispermaceae during the Paleogene as well as a
complex migration of flora during this period.

Reliable fossil record of Papaveraceae is meager and is repre-
sented, to our knowledge, only by a Corydalis from the Pliocene
of Italy (Mai, 1995).The fossil record of the Ranunculaceae family,
mostly based on fruits, was revised by Pigg and Devore (2005).
Most of these fossils are distributed in Europe and North America,
from the Paleocene to the Pliocene, and some seeds were recently
found in the Pliocene of China (Huang et al., 2021).

It is noteworthy that the fossil record of Ranunculales is rel-
atively sparse in comparison with the present diversity of the
order and knowing its ancient evolutionary history. A large part
of the extant diversity is represented by plants with herbaceous

or climbing habitus, which have low fossilization potential
(Friis et al., 2011). Moreover, the potential Ranunculales fossils
from the Cretaceous are also difficult to distinguish from indi-
rectly related early-diverging eudicot lineages (e.g. Sun ef al.,
2011; Pessoa et al., 2021). The Ranunculales fossil record also
illustrates a well-known bias in collecting and studies in pa-
leobotany, namely the historical focus on Europe and North
America (Xing et al., 2016). Recent discoveries, particularly
from South America and Asia, may strengthen the fossil record
of the order in the future.

Distribution and ecological niches

The order Ranunculales comprises ~4500 species, primarily
occupying temperate areas of the world, with few members
cosmopolitan or reaching into the tropics. Namely, the two spe-
cies of Euptelea (Eupteleaceae) occur in Japan between 400 m and
1500 m (E. polyandra) and from India to China between 900 m
and 3600 m (E.3 pleiosperma; Endress, 1993). In contrast, the
Papaveraceae with ~430 species in 42 genera are primarily dis-
tributed in the northern hemisphere with few exceptions, in-
cluding Papaver aculeatum in South Africa, and the genus Bocconia
that reaches central and South America (Kadereit, 1993). The
Fumarioideae are concentrated in the Sino-Himalayan and
Mediterranean regions, with occurrences in South Africa and
North America (Lidén, 1993a). Both Papavereae and Chelidonieae
(Papaveroideae) contain Old and New World genera. Most
Papavereae in the New World inhabit western North America,
while the Old World genera are concentrated in southwest and
central Asia, and the Mediterranean.The genus Papaver is broadly
distributed in the Old and the New World. The Eschscholzieae
(Papaveroideae) are found in the New World and almost exclu-
sively in Pacific North America. Hunnemania is present in the
east of Mexico. Most Papavereae and Eschscholzieae are found in
open vegetation arid and warm climates, with a few exceptions
that have colonized arctic areas. Conversely, the Chelidonieae
of the New World occupy regions in Northeast America with
the exceptions of Bocconia (Central and South America) and
Glaucium and Dicranostigma (West and Central Asia). They can
inhabit dry open areas (Glaucium, Dicranostigma, and Macleaya)
or deciduous forests (Hylomecon, Sanguinaria, and Stylophorum).
The only species of Pteridophyllum, Pteridophyllum racemosum, is a
Japanese endemic (Lidén, 1993b).

Species of Papaveraceae selected as part of the RanOmics
project include: Corydalis tomentella, Capnoides sempervirens,
Eschscholzia californica, Macleaya cordata, Papaver rhoeas, Papaver
setigerum, Papaver sommniferum, and Pteridophyllum  racemosum.
Corydalis tomentella is a perennial, native to China, that grows
in rock crevices, between 700 m and 1000 m.The plant itself
reaches 15-20 cm, it has characteristic golden yellow flowers
in dense inflorescences, and it can tolerate freezing tempera-
tures  (http://www.efloras.org/flora_page.aspx?flora_id=2).
Capnoides sempervirens (pale corydalis or rock harlequin) is a
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biennial plant from the mid-latitudes of North America where
it grows on exposed ridges and rocky outcrops (Sprengelmeyer
and Rebertus, 2015), and it produces monosymmetric flowers,
which are exceptional in that they are in a terminal position
(Hidalgo and Gleissberg, 2010). Eschscholzia californica is a small
herb able to grow as annual or perennial with native ranges
from Northern California to Southwestern Mexico, with cy-
mose inflorescences and flowers with deciduous sepals and
characteristic yellow petals (Becker et al.,2023). Macleaya cordata
is a herbaceous, perennial native to China, Japan, and Taiwan,
unusual in that it can reach sizes of up to 3 m, it spreads by rhi-
zomes, and it has massive inflorescences of showy but apetalous
flowers (Kadereit, 1993; Arango-Ocampo et al.,2016). Macleaya
cordata is the source of alkaloids with broad uses as detoxifiers,
antimicrobials, and insecticidals (Liu et al., 2017). All Papaver
species are herbs with cymes carrying large showy flowers.
Papaver somniferum is the source of opium, and its center of do-
mestication was the Mediterranean basin (Salavert et al., 2020;
Hong ef al., 2022). Numerous biochemical accounts with em-
phasis on the production of BIAs are available for different
landraces (Pei ef al.,2021), and two features have been linked to
domestication, namely changes in capsule dehiscence and seed
size (Zohary et al., 2012). Interestingly, morphine, codeine, and
thebaine are lacking in capsules of the closely related and geo-
graphically overlapping P setigerum (LaValva et al., 1985). Albeit
the two species were thought to be part of the same taxonomic
unit, P somniferum is 30—150 cm high, self-pollinated, and dip-
loid, while P setigerum is 60 cm high, a field weed occurring in
disturbed grounds that can be diploid or tetraploid (Hammer
1977; Jesus et al., 2021). Papaver rhoeas, the red poppy, is a re-
markable species with exceptional beauty that has reproduced
and expanded its native range across the Mediterranean as an
agricultural weed (Colledge et al., 2004). Papaver rhoeas is a
selt-incompatible herb, currently pollinated by bees, flies, and
beetles (McNaughton and Harper, 1960; Foote, 1994). Finally,
the rare P racemosum is a herb with leaves of astonishing shape
convergent to those of ferns, is only found in Japan, and it
grows between 1000 m and 2000 m in coniferous forests. It
shares with the rest of Papaveraceae the caducous sepals and the
dimerous floral organization, despite the unusual leat pheno-
types (Lidén, 1993a, b).

The Lardizabalaceae (35 species in eight genera) are prima-
rily present in Japan, the Sino Himalayan mountains, Central
and East China, and Vietnam. All genera are woody vines in
subtropical evergreen forests or warm temperate green forests.
Only Lardizabala and Boquila are endemic to temperate forests
of Central and South Chile (Cheng-Yih and Kubitzki, 1993).
Their most prominent member is Akebia trifoliata, a deciduous
to evergreen twining vine, reaching up to 10 m in height with
functionally unisexual flowers. Its berries are a rich source of
vitamin C and pectin, and the seeds contain a high percentage
of unsaturated fatty acids; the species is widely advertised as
a new fruit crop. Akebia trifoliata consists of three subspecies,
all with different but overlapping distributions ranging from
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subtropical to temperate regions from 20 m up to 2800 m in
elevation in China and Taiwan (Zhang et al., 2021; Zou et al.,
2022). Only A. trifoliata is a member of the RanOmics project.

Conversely, the Circaeasteraceae (two species) are herbs. Two
genera are recognized: Circaeaster is present in India, Nepal, and
China, and grows in moist coniferous forests between 1200 m
and 5000 m. Kingdonia uniflora, on the other hand, is endemic
to China (provinces of Shaanxi, Sichuan, Gansu, and Yunnan)
between 2800 m and 3200 m (Cheng-Yih and Kubitzki, 1993)
and is selected as the representative species of Circaeasteraceae
for the RanOmics project.

The Menispermaceae consist of ~450 species in 71 genera,
including many woody climbers, and rarely trees, shrubs, or
herbs. They are of cosmopolitan distribution, mostly confined
to the tropical lowlands in the Old and the New World. They
are extremely diverse in their habitats and found in Africa
and Southeast Asia (Stephania), extra tropical North America
(Cocculus and  Menispermum), the Mediterranean (Cocculus),
Japan (Cocculus and Stephania), and South America (Abuta and
Chondrodendron) (Kessler, 1993; Ortiz et al., 2007).

Species of Berberidaceae selected as part of the RanOmics
project include Epimedium grandiflorum and Epimedium pubes-
cens. The Berberidaceae include ~650 species organized in 14-17
genera. They are herbs or woody shrubs, often a component
of mesophytic forests in East Asia, Northeast America (Achlys,
Diphylleia, Jeffersonia, Podophyllum, and Sinopodophyllum), Andean
South America (Berberis); even desert xerophytes are found in
Southwest Asia. Members of Berberis are also found in South
America, from Colombia to Chile, Juan Fernandez Islands, and
Argentina (Loconte, 1993). In addition, a few species of Berberis
have become invasive in North America and South Africa (Keet
et al., 2016). The pharmaceutically and horticulturally relevant
Epimedium genus includes only herbaceous species growing
mainly in woodlands. Its center of diversity is East Asia, with
most species native to China. However, some species grow in
the Alps, the Balkan region, Algeria, Caucasia, Japan, east Russia,
and Kashmir (Zhang et al., 2022). Epimedium pubescens is native
to the Chinese provinces Anhui, Jiangxi, and Sichuan (Stearn
et al., 2002). Epimedium grandiflorum, a species with large flowers
comprising curved nectar spurs, grows in Japan, North Korea,
and South China, and varies greatly in flower color between
white, light yellow, and purple-pink (Stearn et al., 2002).

The Ranunculaceae is a cosmopolitan family with ~2500
speciess in 59 genera. With large preferences for temperate or
cool climates, they are a rare element in the tropics (Chartier
et al.,2016). The most broadly distributed elements in northern
and southern hemispheres include Anemone, Caltha, Clematis,
Myosurus, Ranunculus, and Thalictrum. A total of 44 genera are
present in East Asia, 24 in Europe, with few genera in tem-
perate North America and in Highlands in South America
(Tamura, 1993). Species of Ranunculaceae selected as part of the
RanOmics project include Coptis chinensis, Aquilegia coerulea,
Agquilegia oxysepala, Thalictrum thalictroides, Nigella damascena,
Staphisagria picta, and Hydrastis canadensis.
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In many phylogenies, H. canadensis or goldenseal is the sister
species to all remaining Ranunculaceae. It is native to the eastern
deciduous forests of North America. It grows in dense patches
resulting from clonal growth via rhizome and lateral root for-
mations (Sanders and McGraw, 2005). The rhizomes of this
species are highly prized as a food supplement and as a tradi-
tional remedy for diverse conditions, including wound healing,
digestive disorders, and cancer, with berberine as the pharma-
cologically most active ingredient (Mandal et al., 2020). Several
H. canadensis populations are under serious threat caused by
commercial and private harvesting of natural populations
(Albrecht and McCarthy, 2006).

Sister to the Thalictroideae and Ranunculoideae are the
Coptidoideae, with Coptis chinensis as a RanOmics species rep-
resentative. The species has an at least 2000 year long history as
traditional Chinese medicine, with berberine also as the dom-
inant alkaloid. The rhizomes of C. chinensis are harvested, and
it is cultivated in several Chinese provinces in shady, moist,
and cool mountainous regions between 1200 m and 1800 m
(Chen et al., 2021). Coptis chinensis is endangered in the wild
and its remaining populations are found in the woodlands of
central China at altitudes of 500-2000 m. This species, like H.
canadensis, suffers from harvesting of the rhizomes (He ef al.,
2007).

Nigella damascena (commonly known as love-in-the-mist)
is an annual herbaceous weedy species growing throughout
the Mediterranean. As a popular ornamental plant, it was most
probably distributed by seeds along ancient trade routes (Heiss
and Oeggl, 2005). Interestingly, a mutant that lost petal identity
and has numerous petaloid tepals was described as early as in
1601 (Clusius, 1601).
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Staphisagria picta is a species endemic to Corsica, Sardinia, and
Majorca, growing between 150 m and 600 m in open grass-
lands (Orellana et al., 2009). Aquilegia oxysepala is broadly found
throughout Southeastern China and grows in open patches,
along roadsides and forest margins at low altitudes (Li et al., 2014).
Agquilegia coerulea (also described as Agquilegia caerulea) also has a
large area of distribution, stretching across the Southern and cen-
tral Rocky Mountains of western North America from 2100 m
to 3700 m altitude (Miller, 1981). For genetic studies, mainly
the commercially available, fast cycling cultivar ‘Origami’ is used
(Sharma and Kramer, 2013). Thalictrum thalictroides (Ranunculaceae,
also known as Anemonella thalictroides, commonly called rue
anemone) is a spring ephemeral growing on streams and open
woods in the Eastern USA (Lubbers and Christensen, 1986).

Taken together, the Ranunculales species for which genomic
resources of various kinds are available occupy diverse habitats
that range from dry Mediterranean islands (S. picta) over high
altitudes (A. coerulea), to damp temperate forests (P racemosum).
Some species are abundant (N. damascena) or even invasive
(E. californica), but several Ranunculales are rare and threatened
in the wild (H. canadensis, C. chinensis, S. picta, and P, racemosum).

Floral diversity in Ranunculales
Floral structure and perianth in families of Ranunculales

Like floral phyllotaxis and symmetry, perianth organ iden-
tity, development, and function(s) are extremely diverse in
Ranunculales, and range from absent to undifferentiated tepals,
or more or less differentiated and petaloid sepals and modi-
fied and nectariferous petals (Fig. 2). For instance, flowers of
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Fig. 2. Simplified phylogeny of Ranunculales showing ancestral floral traits of the Ranunculales families.
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the monotypic Eupteleaceae are perianthless (Ren et al., 2007),
whereas those in both monotypic genera of Circaeasteraceae
typically have tepals, which in Kingdonia co-occur with mod-
ified nectariferous petals interpreted as staminodial in or-
igin (Ren ef al., 2004; Tian et al., 2005). In contrast, flowers
in Menispermaceae and Lardizabalaceae typically have persistent
and more or less petaloid sepals and, when present, nectarif-
erous petals (Endress, 1995). Papaveraceae have caduceus (easily
detached) sepals and nectarless petals in the Papaveroideae,
and more or less persistent petaloid sepals and spurred and
nectar-collecting petals in Fumarioideae (Sauquet et al., 2015).
In Berberidaceae and Ranunculaceae, lowers can also be perianth-
less or have a perianth differentiated into more or less caducous
or petaloid and persistent sepals, and more or less modified and
nectariferous petals traditionally referred to as ‘Nektarblitter’
(Hiepko, 1965; Terabayashi, 1985; Endress, 1995).

As sister to all other eudicots, Ranunculales are thus pivotal to
understanding the evolution of perianth and petaloidy in the
largest clade of flowering plants. Previous comparative studies
have shown that Ranunculales petals can 2be more similar to
sepals in position, development, structure, and function(s) (e.g.
petaloidy), and thus referred to as petaloid sepals of bracteopet-
alous origin, or more similar to stamens called Nektarblatter
or nectariferous staminodia of andropetalous origin (Hiepko,
1965; Terabayashi, 1985; Endress, 1995). As in other eudicot
lineages, the line between bracteo- and andropetals is usually
defined by a set of developmental, structural, and functional
traits which are thought to have evolved independently several
times, including in the Ranunculales (Ronse De Craene and
Brockington, 2013). However, a comparative study of gene ex-
pression patterns and floral organ identity challenged this view
by suggesting that petals are deeply homologous and correlate
with duplications and subfunctionalizations of B-class MADS
box genes (Rasmussen ef al., 2009, and see below).

Ancestral floral characters

Based on current ancestral character reconstructions of
floral traits, the most recent common ancestor (MRCA) of
Ranunculales had a differentiated perianth with at least three
series (or whorls) of organs, assumed to be petaloid (Fig. 2;
Carrive et al.,2020).The question of how different these whorls
were remains unanswered, as does the question of which of the
two outer whorls was lost in the families with only two whorls
of perianth organs. Reconstructions of other perianth charac-
ters are consistent with the eudicot ancestor of Sauquet et al.
(2017); that is, the androecium would have been composed of
more than two whorls of stamens, and the gynoecium would
have consisted of a few free carpels.

Unfortunately, such ancestral character reconstructions
are sometimes hampered by the confusion surrounding the
identity of perianth organs, and the definition of petaloidy.
In Ranunculales, for instance, highly modified nectariferous
petals described in previous literature as staminodia may be
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misinterpreted as belonging to the androecium, and as a re-
sult nectaries would be coded as present on the androecium,
whereas these organs are more likely to be homologous to
the other, less modified petals of andropetalous origin in other
taxa. In addition, the distinction in the perianth between out-
ermost sepals that may be caducous or become gradually
petaloid, and the innermost ones persisting as bracteopetals
that are regularly associated with modified and nectariferous
andropetals, as in Berberidaceae or Ranunculaceae, has received
little attention (e.g. Terabayashi, 1985). Such a re-evaluation of
older literature would show that in Berberidaceae, for instance,
nectaries always differentiate on more or less modified pet-
aloid organs of androecial origin that were likely to have not
only been present in their MR CA, but also associated with a
distinct series of persistent petaloid organs of bracteal origin
and an outermost one more or less caducous and/or petaloid.
This interpretation is supported by the similarities observed in
the recent reconstruction of the Berberidaceae and Ranunculales
MR CA floral Bauplan. It suggests that the occurrence of petals
of both bracteal and androecial origin in flowers of the MR CA
of Berberidaceae, surrounded by an outermost series of more or
less caducous and/or petaloid sepals, may be ancestral for the
order as a whole.

Floral organ identity and petaloidy

The ABC homeotic genes define a strict model of organ
identity in angiosperms (Coen and Meyerowitz, 1991). The
identity of perianth organs is determined based on the ex-
pression of the A- and B-class genes, with the B-class giving
the petaloid character of the organs. Class A genes are spe-
cific to angiosperms, characterized by the presence of sterile
organs forming the perianth, surrounding the reproductive
organs. Positive self-regulatory loops and antagonistic relation-
ships among members of the ABC-class genes can modulate
the timing of accumulation of the products of the different
homeotic genes (Schwarz-Sommer et al., 1992; Halfter et al.,
1994; Jack et al., 1994; Causier et al., 2010; Conde E Silva et al.,
2023). The expression and functional evaluation of the ABC
model of flower development genes has provided valuable in-
sight into the evolution of flower patterning in Ranunculaceae
Aguilegia (Kramer et al., 2003, 2004), Thalictrum (Di Stilio et al.,
2005; Galimba et al., 2012, 2018; Larue ef al., 2013; Galimba
and Di Stilio, 2015; Soza et al., 2016; Martinez-Goémez et al.,
2021), N. damascena (Wang et al., 2015), and Delphinium ajacis
(Zhao et al.,2023), and in the Papaveraceae P somniferum (Drea
et al., 2007; Pabén-Mora et al., 2012) and E. californica (Yellina
et al.,2010; Lange et al.,2013).

In core eudicots, an antagonistic relationship between classes
A and C restricts their mutual expression (Causier et al., 2010).
However, in Ranunculales, duplication events and subfunction-
alization of members of the different gene classes suggest that
the well-characterized Arabidopsis core eudicot model does
not strictly apply. For instance, the role of A-class homologs
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(FUL-like genes) in sepal identity has only been demonstrated
in E. clifornica and P somniferum (Pabén-Mora et al., 2012).
Knockdown of FUL function in E. californica or P somniferum
by VIGS reveals slight defects in petal shape and color, but petal
identity is not lost. In Aquilegia coerulea, A-class genes have been
recruited primarily in the proper patterning of leaves and have
no function in perianth identity (Pabén-Mora et al., 2013).
In N. damascena, FUL homologs have no role in floral organ
identity, and an AGAMOUS-Like gene (AGL6) promotes sepal
identity (Wang et al., 2016). All these results support the idea
that FUL homologs do not have a strict A function in basal
eudicots as they do in core eudicot models (Litt, 2007).

B-class genes, particularly AP3 homologs, have duplicated
locally in Ranunculales, allowing for subfunctionalization and
independent loss of petal identity genes (AP3-3) without af-
fecting stamen identity factors (AP3-1 and AP3-2), and result-
ing in apetalous flowers independently (Zhang et al., 2013;
Arango-Ocampo et al., 2016).

In Thalictrum, one such genus with apetalous flowers, certain
B-class genes are expressed in the sepals only when they are
petaloid, as in T thalictroides (Galimba et al., 2018). In this spe-
cies, E-class genes are also involved in the petaloidy of sepals,
and have been suggested to keep the boundaries between either
sepal and stamen zones or stamen and carpel zones by inter-
acting with B- and C-class genes (Soza et al., 2016). Perianth
organ identity in I thalictroides would therefore be controlled
by a sliding boundary model, with a shift towards sepals in the
expression of B-class genes (Larue et al., 2013).

Members of the B-class genes are positive regulators of
the expression of the C-class genes in E. californica, A. coerulea,
and N. damascena, which in turn restrain the expression of the
B-class genes (Yellina et al., 2010; Lange et al., 2013; Sharma
and Kramer, 2013). The balance between the expression of the
different paralogs of each gene class in the transition zones be-
tween floral organs is essential to maintain full organ identity
and the proper number of each organ type. Flexibility in per-
ianth organ identity may therefore result from the extension
or restriction of B- or C-class genes, by modulating the inter-
actions between ABC genes during species evolution. These
mechanisms vary among species and individuals, depending on
environmental conditions, particularly in flowers with spiral
phyllotaxis.

Given the widespread occurrence of petaloidy in sepals or
tepals in Ranunculales, and the potential that the ancestral flower
had a perianth with whorled phyllotaxy (Sauquet ef al., 2017,
Sokoloff ef al., 2018), perianth organ identity in the MR CA of’
Ranunculales may have been controlled by a sliding boundary
model of floral organ identity. Either one, two, or even the three
whortls (in the perianthless Eupteleaceae) would have been lost,
and shifts in petaloidy could have occurred in the remaining
whorls, depending on taxa, resulting in a strict ABC model of
perianth identity evolving independently in some Papaveraceae
(such as Eschscholzia, Chanderbali et al., 2010) and Berberidaceae,
similar to the ABC model at play in core eudicots.

The petaloid appearance of sepals in different members
of the Ranunculaceae (Fig. 2) has a different genetic basis. In
Thalictrum, petaloid sepals express B- and E-class genes, and
their targeted silencing or mutation leads to green leafy sepals
(Soza et al.,2016; Galimba et al., 2018; Martinez-Gémez et al.,
2021), whereas in Agquilegia the B gene AP3-1 controls the
novel identity of the staminodium, and contributes to color
but not papillate cell types in the sepals (Kramer et al., 2007;
Sharma and Kramer, 2017). A ‘B’ gene paralog product of a
Ranunculales-specific  duplication, APETALA3-3, has be-
come subfunctionalized to petal identity in Aquilegia (Sharma
et al., 2011). This B gene is expressed in petals across other
Ranunculales (Kramer et al., 2003) and has been secondarily
lost in apetalous taxa such as Thalictrum (Di Stilio et al., 2005;
Zhang et al., 2013).

Loss-of-function mutations in Thalictrum B-class genes, as
found in natural and horticultural mutants (Martinez-Gémez
et al., 2021) or by VIGS, result in female (carpellate) flowers,
suggesting a recapitulation of one step in unisexual flower evo-
lution (Larue ef al., 2013).This hypothesis has played out in re-
cent findings that B-class MADS box genes are involved in sex
determination in other taxa, such as cycads and the rubber tree
(Guo et al., 2022; Liu et al., 2022). Ovule identity is induced
by the ‘D’ gene lineage (STK-like genes), based on studies in
Petunia (Angenent ef al., 1995). D-class and C-class genes orig-
inated from a gene duplication preceding the diversification
of angiosperms (Kramer ef al., 2004). Studies in T thalictroides
led to the finding that of the two AG paralogs, one performed
the typical C function (in stamen and carpel identity, and floral
determinacy) while the other subfunctionalized, taking on a
D function role in ovule identity (Di Stilio et al., 2005; Zahn
et al., 2006; Galimba et al., 2012; Galimba and Di Stilio, 2015).
In Ranunculaceae no D-class genes were found, but a family-
wide C lineage duplication was recorded (RanAG1/2, Kramer
et al., 2004). In the Papaveraceae E. californica, a D lineage gene
is found and an independent duplication occurred in the C
lineage, resulting in two AG paralogs (Zahn et al., 2006; Yellina
et al., 2010).

Ranunculales in the evolution of sexual and pollination
systems

Most Ranunculales species are insect pollinated, some are hum-
mingbird pollinated (Aquilegia), and the fly pollination syn-
drome (small, dull-colored, open flowers with nectariferous
petals) is present in at least one genus in each family, whereas
wind pollination syndrome (apetalous flowers with droop-
ing stamens and filiform stigmas) is present in Eupteleaceae,
Papaveraceae, and Ranunculaceae  (Endress, 2010). Among
American Aquilegia species, there is directionality in the evo-
lution of pollination mode: substantially showier flowers with
spurred petals and petaloid sepals are ancestrally pollinated by
bees, with spurs getting longer with multiple transitions to
hummingbird pollination and then to moth pollination (wind
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pollination is not known in this genus) (Whittall and Hodges,
2007).

Petals have been secondarily lost independently in Thalictrum
and Enemion, the latter with flowers that resemble Thalictrum
thalictroides and that are visited by small pollen-collecting bees.
Thalictrum flowers are pollinated by small generalist insects,
wind pollinated, or both (Kaplan and Mulcahy, 1971; Pellmyr,
1995).Very few systems lend themselves to the study of transi-
tions between insect and wind pollination among closely re-
lated taxa at the genus level, and Thalictrum is one of them
(Timerman and Barrett, 2019). From insect-pollinated, diploid,
and hermaphrodite ancestors, Thalictrum species have transi-
tioned at least eight times to wind pollination (Wang et al.,
2019) in association with polyploidy and unisexual flowers (di-
oecy, cryptic dioecy, andromonoecy, and gynomonoecy, Soza
et al., 2012, 2013). The search for pollination syndromes in
Thalictrum by multivariate analysis of flower morphology iden-
tified four distinct flower morphotypes: ‘petaloid sepal’, ‘showy
stamens’, and ‘small unisexual’, associated with insect polli-
nation in the first two and wind pollination in the third. An
‘intermediate’ type that included a known mixed-pollinated
(ambophilous) species was also identified, and the pattern held
after considering phylogeny (Martinez-Gémez et al., 2023).
These data broadly support the existence of detectable flower
morphotypes from convergent evolution underlying the pol-
lination mode in Thalictrum, presumably via different paths
(petaloid sepals or showy stamens) from an ancestral mixed
pollination state. Thus, pollination mode in Thalictrum is best
described as a continuum between insect (the ancestral state)
and wind pollination. An interesting research avenue would
be to apply a comparable analysis of flower morphotypes to
the direct outgroups and to other sister genera and families
of Ranunculales. This approach would enable a deeper under-
standing of the evolutionary trajectory of flower morphologies
in relation to pollinators and the sexual system at a broader
phylogenetic scale.

Floral phyllotaxis and symmetry

Floral phyllotaxis (the arrangement of organs on the floral re-
ceptacle) may be whorled, spiral, and/or irregular (Endress,
2011). In spiral phyllotaxis, there is a delay (plastochron) be-
tween the initiation of two subsequent organs, whereas in
whorled phyllotaxis, there is a marked plastochron only be-
tween whorls of organs belonging to different categories. The
ancestral flower of Ranunculales was reconstructed as having a
whorled phyllotaxis at anthesis, a condition that is observed
today in most families of the order except Circaeasteraceae and
some Ranunculaceae (Carrive et al., 2020). Although many
members of this latter family have flowers with an apparently
whorled perianth at anthesis, the initiation of perianth organs
may follow a spiral pattern (Ren et al.,2011; Zhao et al.,2012).
Reproductive organs are usually spirally arranged (Jabbour
et al.,2009; Zhao et al., 2012), except in Aquilegia (Tucker and
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Hodges, 2005). However, together with their regular increase
in numbers, especially in Ranunculaceae, their phyllotaxis may
become more or less irregular with the insertion of incomplete
parastichies on the onset of the androecium (Zhao et al.,2012).

With the exception of the perianthless monotypic family
Eupteleaceae, almost all Ranunculales have flowers with at least
one series of perianth organs (tepals, sepals, and/or petals),
and the vast majority of these species have actinomorphic
(i.e. polysymmetric) flowers. Reconstructing the ancestral
state for the perianth is somewhat problematic in this order
because Eupteleaceae are sister to the remaining six fami-
lies of the order. However, it is very likely that the ancestral
flower of all Ranunculales had a perianth that was actino-
morphic (Damerval and Nadot, 2007; Carrive et al., 2020),
as well as the ancestral flower of Berberidaceae, Ranunculaceae,
Menispermaceae, Circaeasteraceae, and Lardizabalaceae. The flowers
of Papaveraceae, and those of the genus Epimedium (Berberidaceae)
were ancestrally dimerous and therefore dissymmetric, even if
the corolla of Pteridophyllum (strongly supported as sister to
Hypecoideae+ Fumarioideae, Peng et al., 2023) and Papaveroideae,
but also Epimedium, is visually actinomorphic (Sauquet ef al.,
2015; Carrive et al., 2020; Guo et al., 2022). Zygomorphy
(i.e. monosymmetry) evolved once within Ranunculaceae, in
the ancestral flower of the speciose tribe Delphinieae, once in
Menispermaceae, in the ancestor of Antizoma, Cissampelos, and
Cyclea (Ortiz et al., 2016), and probably twice within the sub-
family Fumarioideae (Papaveraceae) (Hoot et al., 2015; Sauquet
et al., 2015). Interestingly, zygomorphy evolved from dissym-
metry in Papaveraceae, in which the dimerous ancestral state it-
self evolved from an actinomorphic state, a highly uncommon
situation in angiosperms. Zygomorphy in Fumarioideae is cre-
ated by the morphological differentiation of the two symmetry
planes (e.g. in Lamprocapnos and Dicentra) followed by the for-
mation of a single spur in the transverse plane during floral
development (Damerval ef al., 2013). Before anthesis, there is
a 90° rotation of the pedicel (resupination) leading to a sec-
ondary vertical orientation of the symmetry plane (Endress,
1999; Hidalgo and Gleissberg, 2010). In Ranunculaceae and
Menispermaceae, zygomorphy evolved from actinomorphy as in
the vast majority of angiosperms (Reyes ef al., 2016).

While zygomorphy has evolved independently in
Papaveraceae and Ranunculaceae, their genetic bases could rely
on CYCLOIDEA-Like (CYL) genes, as in several other angio-
sperm groups (for a review, see Hileman, 2014). The CYL lin-
eage has probably undergone a duplication in the Ranunculales
after the divergence of the Eupteleaceae (Damerval et al., 2022).
In Fumarioideae, an asymmetric expression has been observed
at late developmental stages in the zygomorphic flower of
C. sempervirens (Damerval et al.,2013). CYL silencing by VIGS
in the zygomorphic flower of Cysticapnos vesicaria reveals a
role in sepal and petal identity and a possible involvement in
zygomorphy (Zhao et al., 2018). In Ranunculaceae, additional
duplications took place in both CYL lineages in the common
ancestor of the zygomorphic tribe Delphinieae (Jabbour et al.,
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2014). Asymmetric expression of some paralogs was observed
in the perianth (sepals and/or petals) of several species (Jabbour
et al., 2014; Zhao et al., 2023). Silencing of CYL2 paralogs in
Delphinium ajacis reveals a role for these genes in the sepal and
primordia number, and in the dorsal identity for CYL2b or
latero-ventral identity for CYL2a. It has been suggested that
these identity roles were achieved through regulatory inter-
actions with APETALA3-3 for CYL2b, and AGAMOUS-
Like6-1a and DIVARICATAT for CYL2a (Zhao et al., 2023).

3D morphogenesis of petals

Petal shape refers to the 3D structure of the organs from the
inner whortl of the perianth (the andropetals). As in most an-
giosperm flowers, the petals of Ranunculales were ancestrally
leaf” shaped, with a flat blade and clawed at the base. This
shape, combined with bright or colorful cues, is commonly
referred to as ‘petaloid’ (Carrive et al., 2020). Among the
six families of Ranunculales that have flowers bearing a per-
ianth (Eupteleaceae are perianthless), such petaloid petals are
observed in Menispermaceae, Circaeasteraceae, and in the sub-
family Papaveroideae (Papaveraceae). In the other three families,
the regular development of nectaries on the petals changes the
shape, which becomes three dimensional due to the develop-
ment of more or less pronounced nectar-storing invaginations
‘Nektarblatter’ (Hiepko, 1965); they are considered as having
an elaborate form compared with flat petals and have evolved
several times in Ranunculales. The ancestor of Lardizabalaceae
already had strongly reduced and nectariferous petals (Zhang
and Ren, 2011). In the subfamily Fumarioideae ot Papaveraceae,
petals are highly elaborate, and fused at the top.

In Ranunculaceae, some species have flat and regular pet-
als with only a scale at the base protecting the nectary (e.g.
Ranunculus), while other species have petals of various and
elaborate shapes (tube shaped in Eranthis and Helleborus, spatula
shaped in Actaea, including long stalks in Aconitum). The de-
velopment of nectaries on these elaborate petals has been
reviewed by Zhao ef al. (2018) and will be discussed in the
next section.

Ancestral state reconstruction of petal shape in Ranunculaceae
showed that petals were ancestrally flat with a clawed base
(Delpeuch et al., 2022). Elaborate, 3D shapes evolved inde-
pendently from this ancestral petal by differential elongation of
organ regions, depending on species. Recently, petal 3D mor-
phogenesis was studied in the genus Staphisagria, which belongs
to the only zygomorphic clade of Ranunculaceae (Zalko et al.,
2021). Here, the complex petal shape seems to be the result of
synorganization in the whole flower.

Flowers in the Berberidaceae family also have nectary-bearing
petals ranging from flat to fan or funnel shaped. This mor-
phological diversity results from developmental heteroch-
rony and differential thickening (Su et al., 2021). Interestingly,
these elaborate petals were probably ancestral in the family. In
Epimedium (Berberidaceae), the co-occurrence of a spur with

nectary development is responsible for the complex petal shape
(Xie et al.,2022). Morphogenesis of simple and elaborate pet-
als in angiosperms in general has been recently reviewed else-
where (Fu et al., 2022).

Spurs

Spurs are tridimensional structures borne on the perianth, most
often on petals, and occur frequently in Ranunculales. They are
present in Ranunculaceae, where they have three independent
origins [in Delphinieae, Myosurus and Aquilegia (Carrive et al.,
2020), in Berberidaceae with a single origin in the common an-
cestor of Vancouveria and Epimedium (Sun et al.,2018; Guo et al.,
2022), and in Papaveraceae with a single origin in the ancestor
of all Fumarioideae]. In contrast to the rest of the angiosperms,
where spurred flowers are most often zygomorphic (Jabbour
et al., 2008; Citerne et al., 2010), in Ranunculales spurs are
observed in flowers with various types of symmetry (Damerval
and Nadot, 2007; Damerval and Becker, 2017; Carrive et al.,
2020). In actinomorphic flowers, spurs are borne on each of the
petals (Aquilegia—Ranunculaceae, Vancouveria—Berberidaceae). In
dissymmetric flowers, the spurs are also borne on petals but
their number varies depending on the degree of differentiation
among the two whorls of petals. In Epimedium (Berberidaceae),
spurs are borne on each of the four petals, whereas in dissym-
metric flowers of Fumarioideae (Papaveraceae), only the outer-
most petals (two in number) are spurred (Endress, 1999). In
zygomorphic flowers of Fumarioideae, a spur is borne on the
outermost petal that is secondarily dorsal after resupination of
the floral pedicel (Endress, 1999).The situation is more complex
in Delphinieae (Ranunculaceae) where the number of spurs varies
among genera and also among organ categories. All Delphinieae
flowers have a spur (or hood in Aconitum, Gymnaconitum, and
in some representatives of Delphinium subg. Consolida) that
develops on the dorsalmost sepal, with a single exception (D.
turcicun with peloric flowers devoid of corolla; Espinosa et al.,
2017). Depending on the lineage, one (in the species included
in Delphinium subg. Consolida) or two (in Staphisagria, the re-
maining species of Delphinium, Aconitum, and Gymnaconitum)
spurred and nectariferous petals are nested within the dorsal
sepal (Jabbour and Renner, 2012; Zalko et al., 2021).

The genetic origin of spurs was investigated in Agquilegia.
Several transcription factors have been identified in the for-
mation and elongation of the cup of the spur, some of which
involved auxin signaling (Yant et al., 2015; Ballerini et al.,
2020; Zhang et al., 2020). Whether the same or different ge-
netic mechanisms have been recruited in the several inde-
pendent evolutionary occurrences of spurs in Ranunculales is
still unknown.

Nectary development

The production and secretion of nectar is a key innovation in
flowering plants that attracts pollinators and facilitates sexual
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reproduction. In many taxa of angiosperms, various floral
organs develop such as secreting tissues to offer sugary rewards
to pollinators in exchange for their service in pollen transfer.
These floral nectaries are believed to have evolved many times
independently in angiosperms and may be located on various
organs of the flower (Erbar, 2014). They may be located on the
adaxial side of inner perianth organs or on members of the
androecium (stamens or staminodes), as in some basal angio-
sperms, monocots (Liliales), and eudicots (e.g. Oxalidales and
Caprifoliaceae). The monocot orders Asparagales and Zingiberales
are characterized by septal nectaries. Receptacular nectaries
often develop between the androecium and gynoecium, in as-
sociation with the filament bases (Bernardello, 2007); the nec-
taries may be located on the receptacle (as in many rosids) or
on the gynoecium (as in many asterids). The floral nectaries
in Ranunculales exhibit a great diversity (Fig. 3). All families of
Ranunculales, except for Eupteleaceae, have species that develop
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floral nectaries. A recent study focusing on the ancestral traits
of Ranunculales lowers indicated that these nectaries are likely
to have evolved many times independently (Carrive et al.,
2020), reflecting the various floral organs that bear the nectar-
ies in different families.

Most Ranunculaceae species develop floral nectaries on their
petals, associated with nectar-storing invaginations of various
shapes, such as spurs (e.g. Aquilegia and Aconitum), funnels (e.g.
Helleborus and Eranthis), urns (e.g. Nigella), or cups (e.g. Coptis).
However, nectaries can also be found on other floral organs in
this family, including stamens and carpels. In Clematis alpina,
which re-evolved petals after the petal loss in the common
ancestor of Clematis, the nectary is not present on petals but
on carpels instead (Erbar, 2014). In several apetalous genera,
including Caltha and Anemone, the nectary probably re-evolved
and is also present on carpels (Peterson et al., 1979; Erbar and
Leins, 2013). It is worth noting that in the wind-pollinated

Fig. 3. SEM images of mature nectaries from four Ranunculales species: (A) Aquilegia coerulea (Ranunculaceae), (B) Epimedium grandiflorum
(Berberidaceag), (C) Corydalis aurea (Papaveraceae), (D) Lamprocapnos spectabilis (Papaveraceae). Enlarged views of the nectary cells for Aquilegia and
Epimedium are shown in insets. N, nectary; S, spur; St, stamen. Asterisks indicate swelling epidermal cells, and red arrowheads indicate active secreting

cells. Scale bars: 100 um (insets 10 um).
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genera Thalictrum, floral nectaries and petals were lost, possibly
due to the relaxation of selection pressure to maintain these
costly structures for pollinator attraction.

The close association between nectariesand elaborate petaloid
organs in Ranunculaceae has been hypothesized to facilitate the
diversification of pollinator interaction for Ranunculaceae spe-
cies. In Aquilegia, a recently established model for nectary devel-
opment, nectaries develop inside the tips of the spurs (Fig. 3A),
and secrete sucrose- and hexose-abundant nectar to be stored
in spurs. The amount of secreted nectar and the length/curva-
ture of the spurs are highly diverse in different Aquilegia species
(Puzey et al., 2012; Edwards et al., 2021). Together, these traits
limit nectar access to a specific type of pollinator and can func-
tion as reproductive barriers among Aquilegia species.

In the closely related family Berberidaceae, nectaries are also
commonly found on the perianth (Su et al., 2021). Many
of these nectariferous organs are historically considered sta-
minodes due to their locations and developmental origins.
However, gene expression profiling and phylogenetic analysis
showed that these nectariferous organs from several genera,
including Berberis and Epimedium, express the petal identify
B-class gene AP3-3 (Kramer et al., 2003; Rasmussen et al.,
2009). In Berberis, the inner two perianth whorls bear elliptical,
markedly protruding nectaries that embrace the fertile stamens
(Erbar, 2014). In Epimedium, each petal develops a 3D spur,
similar to Aquilegia, and bears a nectary at each tip (Xie et al.,
2022) (Fig. 3B).

In the Papaveroideae subfamily of the Papaveraceae, floral nec-
taries are absent, while they are usually present in the mem-
bers of the Fumarioideae clade (Wang et al., 2023), for example
Dicentra, Corydalis, Capnoides, and Fumaria, and these nectaries
are likely to be homologous (Carrive et al., 2020). Interestingly,
the perianths from these genera also develop spurs that hold
nectar, but the sites of nectar production and secretion are
shifted to the bases of the stamens. In the bisymmetric flower
of Dicentra (Lamprocapnos), six stamens are organized as two
triplets, and the filaments of each triplet are basally fused. At
the abaxial base of the central filament of each stamen triplet,
a ball-shaped nectary develops and is completely enclosed by
the petal spur (Zhang and Zhao, 2018) (Fig. 3C). In the zy-
gomorphic flower of Corydalis, one out of four petals forms a
nectar spur. A ‘stalklet’ develops from the base of stamen bun-
dles, is inserted into the spur, and bears a nectary at the free end
(Erbar, 2014) (Fig. 3D).

In recent years, many comparative studies have surveyed the
organization and gene expression profiles of floral nectaries in
Ranunculales and reported distinct cellular and molecular mech-
anisms of nectary development and nectar secretion (Vesprini
et al.,1999; Damerval et al.,2013; Erbar and Leins, 2013; Erbar,
2014; Antofi and Kamifiska, 2015; Zhang and Zhao, 2018;
Min et al., 2019; Xie et al., 2022). While most nectaries in core
eudicots employ nectary stomata or secretory trichomes to re-
lease nectar, such structures are typically absent in Ranunculales

nectaries, with a potentially notable exception in Fumarioideae
(i.e. A. asiatiaca) (Fig. 3A—D;Wang et al., 2023). Instead, nectar
secretion by ruptured epidermis or cuticle micro-channels
was proposed. At the molecular level, the YABBY family tran-
scription factor gene CRABS CLAW (CRC) was required
for nectary development in several asterid and rosid lineages
(Bowman and Smyth, 1999; Lee et al., 2005). However, CRC
expression was not detected in Ranunculaceae nectaries, and
nectary development in Agquilegia is instead directed by the
STYLISH (STY) family of transcription factor genes (Min
et al.,2019). Expression of STY genes has also been reported in
the nectariferous petals of Delphinium exaltatum and Epimedium
(Min et al., 2019). In contrast, expression of CRC orthologs
was observed at the nectariferous base of the stamen filaments
in the Papaveraceae C. sempervirens and Lamprocapnos spectabilis
(Damerval ef al., 2013), potentially reflecting the independent
evolution of nectaries in Ranunculaceae and Papaveaceae. Future
functional studies are required to fully elucidate the cellular
and developmental mechanisms of nectar production and nec-
tary formation in Ranunculales.

Fruit morphology and dehiscence types

Gynoecium and fruit type vary greatly in Ranunculales (Fig. 4).
The ancestral condition was identified for the entire order after
careful character optimization and found to be a multicarpel-
late, apocarpous gynoecium. However, different morphologies
have become fixed in different families. Whereas Papaveraceae
sensu lato (including former Fumariaceae) have a syncarpous gy-
noecium, the apocarpous condition is common in Eupteleaceae
and is a synapomorphy for Lardizabalacaeae |Menispermaceae
[Berberidaceae+ Ranunculaceae]]. Members of the Ranunculaceae
have predominantly an apocarpous gynoecium, but the carpels
are frequently described as being connate to different degrees
in some genera (such as Nigella and Glaucidium for instance).
Berberidaceae are unique in that all members regularly possess a
unicarpellate gynoecium, which, as in some Ranunculaceae, is
probably derived from an ancestral multicarpellate and apocar-
pous condition, that is also distinctly entirely ascidiate (versus
more or less plicate in all other Ranunculales, e.g. Endress, 1995)
(Fig. 4)

In terms of fruit type, the ancestral condition is the pres-
ence of dry dehiscent fruits. Within that category, indehiscent
samaras (a winged achene with the wing developing from the
ovary wall) are predominant in Eupteleaceae. In contrast, lon-
gitudinally dehiscent fruits, whether derived from a syncar-
pous gynoecium (capsules) or from an apocarpous gynoecium
(follicles), are plesiomorphic for the rest of the families in the
order. Capsules are typical in Papaveraceae and Ranunculaceae
(Fig. 4). Fleshy fruits have been independently acquired
in Lardizabalaceae (in the genus Sinofranchetia) and many
Berberidaceae, as well as in Hydrastis (Ranunculaceae). Drupaceous
fruits, also indehiscent, are characteristic of the Menispermaceae
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Fig. 4. Ancestral state reconstruction of gynoecium (left) and fruit (right) characters based on a phylogeny using rbcL as the marker gene. Trait
descriptions are from Cheng-Yih and Kubitzki (1993), Endress (1993), Kadereit (1993), Lidén (1993a, b), Loconte (1993), and Tamura (1993).

(Fig. 4). Achenes, dry indehiscent fruits, were independently
acquired in Circaeasteraceae and some Ranunculaceae.
Regarding the genetic bases for fruit development, there are
a number of genes whose function seems to be maintained in
both Papaveraceae and Arabidopsis. They include FRUITFULL
(FUL) genes largely expressed in the fruit wall in E. califor-
nica and P somniferum. When FUL genes are down-regulated,
fruit defects include premature rupture of the fruit wall and
numerous cell proliferation defects, especially in the endocarp
(Pabén-Mora et al.,2012). APETALAZ2 (AP2) genes are, on the
other hand, very different. The two copies show overlapping

expression only in the commissural tissue, and one of the
homologs is also expressed in the fruit wall. Very important is
the fact that both copies are absent from the dehiscence zone
(DZ). These expression patterns suggest a role for AP2 genes
in fruit wall development, most probably acting as repressors of
DZ-specific genes (Zumajo-Cardona ef al., 2021). Further, the
E. californica homolog of CRC (EcCRC) is required for adaxial
gynoecium tissue development, and down-regulation leads to
a complete abolishment of the DZ (Orashakova et al., 2009).
Genes probably controlling the formation of the DZ in
Papaveraceae are SPATULA/ALCATRAZ homologs specifically
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restricted to those layers (Zumajo-Cardona ef al., 2017), acting
together with REPLUMLESS genes, which were observed in
the DZ not only in Bocconia, but also in Papaver, suggesting that
this is a common putative role for many Papaveraceae (Zumajo-
Cardona et al., 2018). In A. thaliana, INDEHISCENT and
SHATTERPROOFT and 2 are essential for the formation of
the DZ. However, as their orthologs do not exist in Ranunculales
(Zahn et al., 2006; Pabon-Mora et al., 2014), the dry dehiscent
fruits predominant in the Ranunculales require a gene regulatory
network very different from that of A. thaliana.

Conclusions

This review has highlighted the Ranunculales as an emerging
model lineage for comparative analysis of morphological and
metabolic traits in angiosperms, pointing out recent develop-
ments in the field of genomics and genetic manipulation of sev-
eral members from diverse families. The amazing morphological
diversity of Ranunculales raises the question of the underlying
genetic bases (particularly concerning convergent traits), still
largely unexplored, but also the question of floral integration
(whether traits evolve independently from each other or in a
correlated manner). Addressing these questions in Ranunculales,
an order with a key phylogenetic position, may contribute to a
better understanding of the drivers of morphological evolution
in angiosperms as a whole. Combining a solid phylogeny and
fossils for its calibration, molecular tools and genetic resources,
together with high morphological diversity, convergent evolu-
tion of characters, frequent switching between reproductive sys-
tems, and developmental trajectories and functions of perianth
organs, the Ranunculales order offers new avenues for investiga-
tions into plant evolution and adaptation.
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