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Abstract. Data acquisition for ML-driven malware detection is chal-
lenging. While large commercial datasets exist, they are prohibitively
expensive. On the other hand, an entity (e.g., a bank or government),
may be targeted with unique malware, but the data samples available
will never be sufficient to train a bespoke ML-based detector. While data
augmentation has been a key component in improving deep learning mod-
els by providing requisite diversity for generalization, it has proven far
more challenging for malware detection. The main challenges are that (1)
determining the augmentations to make is not straightforward, (2) oper-
ations are on binaries rather than source code (which is not available),
complicating correctness and understanding, and (3) labeling new files
mandates expensive binary reverse engineering. We present Marvolo for
creating realistic, semantics preserving transformations that mimic the
code alterations made by malware authors in practice, allowing us to gen-
erate augmented data on raw binary files. This also enables Marvolo to
safely propagate labels to newly-generated data. Across several malware
datasets and recent ML-based detectors, Marvolo improves accuracy
and AUC by up to 5% and 10% respectively, while boosting efficiency by
79x by avoiding redundant computation.

1 Introduction

Malware detection is a problem with real-world ramifications, and machine
learning has been used in building malware detectors for decades which can be
trained with large commercial datasets [12, 20] of malicious and benign binaries.
Unfortunately, detection in the wild continues to fall short of expectations, with
attacks regularly occurring [4]. The core issue is cost: large and comprehensive
datasets generally require licensing costs that can reach $400k/year. Thus, it
is often impractical to obtain sufficiently general and representative training
datasets, and yet, these datasets govern the efficacy of these models. As a result,
a victim may only be able to discover 1 – 50 samples of a malware family [25].
Worse, targeted malware, such as banking and nation-state malware, which are



2 M. Wong et al.

designed for a specific target for which data samples are limited makes detection
even more difficult due to the lack of available training samples.

Data augmentation techniques have been proposed to mitigate these issues [24,
30], but they face several challenges that limit their utility. The main issue
is that augmentation strategies are typically decoupled from the behavior of
malware authors in the wild, and instead focus on random alterations to boost
dataset heterogeneity. Further, they directly modify feature representations of raw
binaries (since source code is unavailable), which further convolute the semantic
understanding of the effects of those perturbations. This, in turn, also precludes
correctness-preserving labeling of the newly created samples. Lastly, despite the
focus on coarse alterations, the programmatic processing of binaries is costly,
both resource- and time-wise.

Analysis of malware over the years has revealed that malware authors typically
use semantics preserving transformations [2, 48] to sidestep malware detectors and
deter reverse engineering efforts. Our key insight is that the same observation can
be used to enhance the efficacy of malware datasets through data augmentation.
We introduce Marvolo, a data augmentation engine for malware datasets.
The key insight underlying Marvolo is the use of semantics-preserving code
transformations inspired by a study of real-world datasets we conducted in Section
3 that highlight the nature with which malware authors use code transformations.
Building on this, Marvolo embeds several key ideas. First, we use a ’lifter’ to
convert the files into a higher level representation, allowing us to perform code
transformations on binaries and check for correctness. Second, we embed two
complementary optimizations to collectively maximize the utility (i.e., number
of realistic and diverse data samples) of the transformations within a time
budget. Third, Marvolo automatically labels newly-generated samples without
mandating expensive binary reverse engineering.

We test Marvolo using the state of the art MalConv2 [34] malware detector
and multiple commercially-available large/small-scale datasets, i.e., the large-
scale Ember [12] dataset, as well as a small-scale Brazilian dataset [16]. Overall,
Marvolo boosts detection accuracy by up to 5% and AUC by up to 10%,
with most wins coming from detecting previously unseen novel families, which
are intuitively more difficult to catch. Marvolo also yields 2.35 – 3.8% higher
accuracy and 8.4 – 9% higher AUC over prior augmentation approaches, which
modify feature representations. Our optimizations provide a 79× speedup in
contrast to the naive binary rewriting approach, making our approach tenable for
generating large amounts of data samples. Further, we show that Marvolo also
yields accuracy and AUC improvements with non-deep baselines for detection.

We have open sourced Marvolo at https://github.com/michaeldwong/marvolo.

2 Background and Related Work

Though prior attempts have been made in data augmentation for malware
detection, they do not yet perform meaningful data augmentation. In [24, 30],
programs are represented as sequences of opcodes and augmentation is performed
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(a) Accuracy results. (b) AUC results.

Fig. 1: Performance of MalConv2 [34] when training on different subsets of the
Ember dataset [12]. All accuracy results were attained using a fixed threshold.

by replacing one opcode with another without necessarily preserving semantics.
Further, [31] augments “images” generated from malware, which are known to be
flawed representation [32]. These unrealistic augmentations exacerbate a common
problem in malware research that labels are not always accurate [13]. In contrast
to these efforts, Marvolo’s contributions lie in (1) a deep-dive analysis of large-
scale malware datasets to uncover the usage patterns of semantics-preserving
code transformations in malware, and (2) a system that leverages those insights
to efficiently grow small datasets into larger ones with improved heterogeneity
and realism that aid ML-based malware detection.

There exists a wide array of malware detection approaches with varying
tradeoffs, ranging in amount of pre-processing done at prediction time from none
(fast, less accurate) [9, 32] to full dynamic analysis (slow, more accurate) [23].
In this work we are focusing on small and incomprehensive datasets, where
there is a need to triage files proactively especially when there is targeted
malware. For this reason, signature-based methods are separate tools that capture
what is known [38], where we still want a method to triage potential risk that
are not known. In these situations it is common to use the probability of a
classifier as a ranking for triage [29], meaning we often care about Area Under
the Curve (AUC) as it corresponds to the quality of the detector at ranking
correctly [33]. Put differently, the probability score from the classifier to rank
is important for characterizing and ranking the files by maliciousness so that
the most malicious files are identified and quarantined sooner rather than later.
The goal of our modeling is thus to be good enough to triage for more expensive
analysis (automated or human), as building an accurate detector standalone is
not realistic given limited data.

We note that high quality labeled data is extraordinarily difficult to obtain
for research purposes. The seminal EMBER [12] and SOREL-20M [20] require a
VirusTotal license to obtain the original files, which can cost up to $400k/year.
Consequently, groups must resort to far smaller datasets [42]. To show the
importance of large datasets, we show the accuracy and AUC degradation of
using progressively smaller Ember datasets in 1. To contextualize these results, we
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Zenpak

inc eax
inc ecx
inc edx
inc ebx
inc esp
inc ebp
inc esi
inc edi

dec eax
dec ecx
dec edx
dec ebx
dec esp
dec ebp
dec esi
dec edi

Sivis

nop
nop
nop
xor eax, eax
inc ebx
dec ebx
inc ecx
dec ecx

inc eax
push edx
xor edx, edx
pop edx
inc eax
dec eax
cmp 0x17b8ef93, eax
jne 0x407033

Fig. 2: Code snippets from two malware families in the Ember dataset that exhibit
semantics-preserving code transformations.

note that the implications of detecting even a single additional malicious binary
in the wild can be substantial, and that single-digit accuracy improvements are
celebrated by malware analysts. For this reason our work uses only a subset of
Ember with only several malware families as well as a Brazilian dataset [16],
which will let us test the effectiveness of Marvolo. This maintains relevance to
our target use case as defenders can run honeypots to collect malware targeted at
themselves [14]. Further background and related work is provided in Appendix A.

3 Approach

Our results from Section 2 highlight the inadequacies of small malware datasets
relative to the large (commercial) datasets that have supported high accuracies
for ML-driven malware detectors in practical settings. However, given the superior
attainability of small datasets, our main goal is to determine whether they can
be altered to more closely mimic the properties of their larger counterparts
and deliver similar efficacy when used to train malware detectors. To do so, we
programmatically analyzed the binaries in the large Ember dataset to identify
their defining characteristics. We start with several representative case studies
that illustrate our findings, before describing more general takeaways.

Case study I. Figure 2 shows code snippets from the Zenpak and Sivis malware
families.4 The Zenpak binary uses a code obfuscation technique called junk code
insertion [48]. As its name suggests, junk code is comprised of instructions that
are executed but do not affect the externalized output(s) of the program. Here,
junk code manifests as a series of inc instructions (line 1-8) that each increment
a register’s value, immediately followed by a series of dec instructions (lines 9-16)
that decrement them.

The Sivis binary also uses multiple forms of junk code insertion: (1) the nop

instructions (lines 1-3) which do not trigger any computation or data movement,
(2) the interleaved inc and dec that sequentially alter the same registers (lines
5-8, 13-14), and (3) lines 10-12 which push the value of edx onto the stack, set
the value of edx to 0 using xor, and then pop the old value of edx from the
stack and store it back into edx (rendering the xor operation useless). The Sivis

4 x86 assembly code samples are written in Intel syntax.
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Binary 1

push ebx
push esi
mov esi,DWORD PTR [ebp+0x8]
push edi
mov eax,ds:0x470208
push 0x7
pop ecx
lea edi,DWORD PTR [ebp-0x2c]

Binary 2

mov eax,ds:0x423e88
push ebx
push esi
mov esi,DWORD PTR [ebp+0x8]
push edi
push 0x7
pop ecx
lea edi,DWORD PTR [ebp-0x28]

Fig. 3: Snippets from two binaries in the same “InstallMonster” family that exhibit
minor differences due to code obfuscations.
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Fig. 4: Percentages of code blocks in Ember’s binaries that are affected by different
code transformations.

binary embeds another code obfuscation technique called opaque predicates [48],
which are (typically) known a priori by a programmer to always evaluate to true
or false. This manifests in relation to eax. At the start of the snippet, eax is
definitively set to 0 after the xor instruction (line 4). However, at the point of
the cmp instruction in line 15, the value stored in eax is definitively 1 due to the
series of inc and dec operations in the preceding statements. In line 15, since
eax 6= 0x17b8ef93, the jump in the following jne instruction is always taken.

Case study II. Figure 3 depicts snippets from two sample binaries from the Ember
dataset that belong to the same family. Unsurprisingly, the two code snippets
are similar at first glance. However, there exist minor differences due to two code
obfuscation techniques that they embed. First, each binary uses a mov instruction
to write data from the data segment into eax. However, the data is located in
different memory locations across the two version; the two binaries retrieve the
value from ds:0x470208 and ds:0x324e88, respectively. This pattern is also
seen in the lea instructions where the two binaries use different offsets from the
stack base pointer, ebp, to retrieve their values. In addition, the two binaries use
instruction swapping to reorder instructions (in this case, the mov instruction) in
a manner that preserves overall semantics.

Takeaways. Our case studies highlight two main points (which we repeatedly
observed across the Ember dataset):

(1) Semantics-preserving code transformations. Malware authors routinely al-
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Fig. 5: Pairwise byte diffs between binaries in five representative malware families.

ter prior versions of malicious programs using code obfuscation techniques that
preserve program behavior. The reason is intuitive: generating malware involves
a lot of manual labor and sophisticated code alteration. As malware detectors
discern already-deployed malware by recognizing patterns in their code composi-
tion or execution regimes (§2), a far less challenging way for malware authors to
continue deploying their malicious code is to perform semantics-preserving code
transformations. These transformations alter that code minimally, to preserve its
malicious behavior while deviating from the patterns used to detect its prede-
cessor. Unsurprisingly, we did not observe any remnants of semantics-preserving
code transformations in the benign samples that we analyzed.

(2) Combinations of transformations. To ensure sufficient differences from

detected malware versions, malware authors often resort to performing semantics-
preserving transformations, e.g., as in case study II above. This approach is fruitful
as such transformations are often (logically) complementary, and the effect of
each transformation depends on subtle interactions between the transformation
logic and binary code (ranges shown in Figure 4). Additionally, we find that, to
further boost diversity with multiple transformations, each obfuscation is not
necessarily applied to all possible blocks in a binary, i.e., some binaries exhibited
the effects of an obfuscation in all code blocks that it applied to, while others
demonstrated the effects in only a fraction of those blocks.

Taking a step back, these observations lead to two implications about the
large datasets that have been successfully used for ML-driven malware detection.
First, there exist far fewer families of malicious binaries than malicious binaries
themselves; the Ember dataset includes 300K malicious binary samples spread
across only 332 families. There exist many binary versions per family: there are
287 and 13,951 binaries in the median and 99th percentile families, respectively.
Second, the binaries within each family can differ quite substantially depending
on the specific transformations that are applied across versions. Figure 5 high-
lights this property, showing that for subsets of five representative families, the
constituent binaries exhibit median pairwise percent differences of 38-99% (which
equates to raw differences of 0.8–5.4 MB).

Our approach. The results above motivate a new approach to bolstering the
efficacy of the small datasets: data augmentation via semantics-preserving trans-
formations. That is, we aim to grow small datasets by performing different
combinations of semantics-preserving code transformations on varying numbers
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of blocks in the binaries. Doing so would mimic the techniques that malware
authors use to sidestep malware detectors over time [7], and yield data simi-
lar to that in (proven) large datasets. We employ further code transformations
done by optimizing compilers to generate new benign binaries. More importantly,
semantics-preserving transformations provide a direct path to accurately labeling
newly generated data without manual effort since pre- and post-transformation bi-
naries will exhibit the same behavior (and thus can safely share labels). In §4, we
describe our system, Marvolo, that realizes this approach in a practical manner.

4 Marvolo

4.1 Binary Rewriting Overview

Malicious 
binary

New 
malicious 

binary

Ddisasm Uasm

Marvolo

Identify 
basic blocks

Analyze 
instructions

Swap in 
new blocks

GTIRB file
Modified 
asm file

Disassemble 
blocks

More transformations?

Yes No

Fig. 6: Marvolo workflow for mutating a ma-
licious binary.

Figure 6 illustrates Marvolo’s
binary mutation process for
performing semantics-preserving
transformations on a single (ma-
licious) binary. To begin muta-
tion, Marvolo decompiles exist-
ing PE32 binaries using Ddisasm
[19] and internally represents the
binary as a series of basic instruc-
tion (or code) blocks.

To operate on (i.e., mutate)
instruction blocks, Marvolo

first disassembles each block.
The resulting blocks are then
passed into the Marvolo code
transformation engine, which (1) selects a set of semantics-preserving code trans-
formations to apply to the binary during a given iteration, (2) analyzes all blocks
to determine which blocks each considered transformation is applicable to, (3)
selects the fraction of potential blocks to apply each transformation to, and (4)
sequentially carries out the transformations on the selected blocks; §4.2 details
this process. After code transformations are complete for a given iteration, Mar-

volo then directly swaps out the corresponding (unmodified) blocks with their
transformed counterparts and invokes an assembler to get the output binary.
This binary is then added to the original dataset and tagged with the same label
(i.e., malicious or benign) as the one used during its generation. This end-to-end
process repeats multiple times for each binary in the dataset in accordance with
a user-specified time or resource budget.

4.2 Code Transformations

Marvolo currently supports a wide range of different semantics-preserving code
transformations that cover the set of mutations we observed in our analysis
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of the popular Ember dataset (§3). To ensure that a modified code block is
semantically equivalent to the original block, static analysis is performed after
the code transformation is applied. This analysis tracks program reads and writes
and determines whether the reads from the registers and memory locations in that
basic block would still return the same values after the modification. If a violation
occurs from the code transformation, it is reverted and a new transformation is
attempted. Appendix B provides an overview of the transformations supported.

Marvolo’s goal is to generate new versions of input binaries that differ
in diverse ways from their originals while adhering to a user-specified time
and/or resource budget (which dictates potential parallelism across mutation
iterations). The main challenge is that it is difficult to determine, a priori, how a
given transformation will alter a given binary. It depends on subtle interactions
between the transformation logic and the binary instructions, which collectively
dictate how many blocks are applicable for a transformation, and how many
instructions will be modified, added, or deleted. Thus, during each mutation
iteration, Marvolo instead opts to randomly select multiple transformations
for each mutation iteration and stochastically order them. This follows from our
finding that malware authors typically employ multiple transformations together,
and that binaries in the same family can differ by (largely) varying amounts (§3).

To further bolster variance across the transformed binaries, Marvolo varies
two parameters across the mutation iterations for each input binary. m specifies
the number of transformation iterations to perform on each binary, and c governs
the fraction of blocks to mutate in each iteration. Marvolo maintains a running
list of parameter values used for a given binary and selects subsequent values
to maximize diversity, i.e., maximizing the distance from all previously used
values. Note that the overarching time budget takes precedence over per-binary
parameter values; to enforce this, Marvolo round robins through the input
binaries, performing one mutation iteration on each one, and circling back to
fulfill the selected m per binary only if time permits. In practice, we find that 1 –
6 mutation iterations for each binary suffices in providing diversity in the amount
of code that is perturbed while still being computationally feasible (keeping
mutation times within several minutes).

4.3 Optimizations for Practicality

Sources of inefficiency. Binary mutation of a single executable with Marvolo can
be broken down into 3 stages: (1) invoking Ddisasm on the binary (decompilation),
(2) carrying out semantics-preserving code transformations (mutation), and (3)
generating the output binary (reasssembly). We profiled the runtime of each stage
by passing 3K random binaries from Ember through Marvolo. As shown in
Figure 7, all three stages consume substantial time: median values for the three
stages across binary sizes are 0.6–33, 0.1–585, and 0.1–34 seconds, respectively.
We additionally observed that per-stage delays grow as binary sizes grow and
span upwards of 460, 961, and 44 seconds. Accordingly, aiming to even perform a
single mutation iteration on each binary in existing small datasets (which would



Marvolo: Programmatic Data Augmentation for Deep Malware Detection 9

Algorithm 1 Marvolo data augmentation

Input: dataset S, number of new binaries k, set of supported transformations T

Output: augmented dataset S∗

S∗ ← {}
for i = 1 to k do

x̂← SampleBinary(S)
for j = 1 to m do

t← SelectNextTransformation(T )
x̂← t(x̂)

end for

S∗ ← S∗ ∪ {x̂}
end for

return S∗

not fully bridge the size gap with large datasets) could take up to several thousand
hours! The associated resource costs would forego the savings that practitioners
reap by not purchasing existing large datasets. Instead, Marvolo embeds the
following two optimizations to boost Marvolo’s utility for a given time budget;
we evaluate their effectiveness §5, and provide more details in Appendix C.

Fig. 7: Breakdown of time spent on each stage
in Marvolo’s pipeline (Figure 6) for (a sin-
gle run on) binaries in different size groups.
Bars list medians, with error bars for 25-75th
percentiles.

(1) Code similarity clustering.

A clustering strategy to group
binaries based on their composi-
tions. We make the key observa-
tion that many binaries within a
malware family have equivalent
code sections (i.e., the instruc-
tions are the same) and differ
in other sections of the binary
and leverage this insight to clus-
ter binaries together with the
same code section. Only a sin-
gle binary per cluster is operated
on, and the resulting code blocks
are rapidly (but safely, from a
semantics perspective) dropped
into the other binaries in the same cluster. This approach circumvents costly
operations for all-but-one binary per cluster, while preserving diverse interactions
between code alterations and other sections in each binary.

(2) Intermediate binary generation. A technique to increase the number of di-

verse binaries output from each pass through the pipeline. The main difficulty is
that it is difficult to (efficiently) determine, a priori, the effects that a transforma-
tion will have on a given binary’s code blocks. Thus, Marvolo opts for a dynamic
approach, whereby a lightweight runtime check determines the efficacy of out-
putting a binary – based on code discrepancies from the original and previously
output versions – after each transformation that is performed in a pipeline pass.
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5 Evaluation

5.1 Methodology

We focus on byte-based detectors that require no feature engineering and ex-
traction to deploy. First, such methods are the fastest to run (naturally, they
require no feature extractor to run) making them realistic for triage use. Second,
manual human effort to understand a file can take days or weeks of work [44] and
the needed features will change over time [7]. Byte-based models allow immedi-
ate adaption to new content. Thus, we use the state-of-the-art MalConv2 deep
malware detector as our primary model [34]. We also include two non-deep ap-
proaches based on compression algorithms that are commonly used for malware
detection, the Lempel Ziv Jaccard Distance (LZJD) [35] and Burrows Wheeler
Markov Distance (BWMD) [37].

Our experiments consider two main datasets: (1) the commercial Ember
dataset with 1.1M samples, and (2) the smaller-scale Brazilian malware dataset [16]
with 50K samples. Given the realism of Ember observed by researchers and prac-
titioners, we use its test set, which consists of 200K benign and malicious samples,
to reflect malware detection scenarios in the wild. For training, we consider a sub-
set of the 600K-sample Ember training dataset, as well as the Brazilian dataset;
we train a separate MalConv2 model for each case. In contrast to the Ember
subsets in Figure 1, we purposely constrain the number of families to realistically
mimic the dataset compositions commonly used in smaller datasets [11, 42].

5.2 Overall Accuracy Improvements

Approach Accuracy AUC

Random Insertion 1.09 0.53
Dropout 0.27 0.69
Random Replacement 1.72 -0.10
Synonym Replacement 0.99 -3.90
Marvolo 4.07 9.06

Table 1: Accuracy and AUC percentage im-
provements for opcode sequence augmentation
and Marvolo augmentation

For each dataset, we train Mal-
Conv2 to convergence. Train-
ing involves first collecting (con-
verged) “pre-trained” weights on
the original training dataset,
and then running an additional
training round (5 epochs) with
the augmented dataset that
Marvolo generates. For all
baselines, we use the default hy-
perparameters provided. Accu-
racy is reported as the percentage of correct labels (i.e., benign or malicious)
output by MalConv2. We also measure AUC, which is an especially important
metric for malware analysts because of the need to characterize and rank binaries
to determine which ones should be analyzed, identified, and quarantined sooner
rather than later [11, 32]. Thus, A high AUC is crucial since it corresponds to
a successful ranking of most malicious files above benign files. A discussion on
using Marvolo following our experiments can be found in Appendix D.

We first compare how Marvolo performs in contrast to prior malware aug-
mentation approaches. We first compared Marvolo using all code transfor-
mations across both benign and malicious files against prior approaches that
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modify the opcode sequence representations of programs [24, 30]. We mimic the
experimental setup used in [30] by using the Continuous Bag of Words (CBOW)
word2vec algorithm [28] trained on opcode sequences from the binaries in our
dataset to construct an embedding matrix with information that represents the
semantic similarity (e.g., add and adc) between opcodes. Opcodes with similar
embedding vectors tend to be semantically similar. Each opcode in the sequence
is then replaced with its corresponding word2vec embedding vector and converted
to a binary file to be ingested by MalConv2. We implement four core strategies
featured in opcode sequence augmentation: (1) random insertion, (2) random
deletion, (3) random replacement, and (4) synonym replacement. For each ex-
periment, we generated 6K mutated binaries. Table 1 contains the results, with
Marvolo yielding 2.35 – 3.8% higher accuracy and 8.4% – 9% higher AUC over
the opcode sequence augmentation strategies. Since Marvolo performs mean-

ingful data augmentation by mimicking the code alterations made in practice, we
generate more realistic data samples. We also applied image-based augmentation
[31] to our dataset by converting our binaries to RGB images and augmenting
them with Gaussian, Poisson, and Laplace noise. Across multiple experiments,
performance improvements did not exceed 1%, and thus significantly trails the
wins delivered by Marvolo and even led to occasional accuracy degradations.

Model Accuracy AUC

LZJD + Logistic Regression 0.87 1.01
LZJD + XGBoost 1.14 1.14
BWMD + Logistic Regression 1.18 1.61
BWMD + XGBoost 1.01 -0.23

Table 2: Accuracy and AUC percentage im-
provements for non-deep baselines yielded by
Marvolo augmentation

We also evaluated Marvolo

using the subset of the Brazilian
malware dataset which yielded
accuracy gains of 1 – 2%. Unlike
the Ember dataset, the Brazil-
ian dataset does not contain fam-
ily labels for its malware so we
could not constrain the training
set to several families of inter-
est. Thus, the original training
dataset exhibited more heterogeneity so adding additional augmented samples
had a weaker effect. Table 2 shows our results for evaluating BWMD [37] and
LZJD [35]. For each of these algorithms, we use both logistic regression and XG-
Boost [17] for malware classification. Overall, Marvolo achieves up to a 1.18%
improvement in accuracy and 1.61% improvement in AUC. Some of the effects
of the mutations are lost after compression so the difference between the new
embeddings and the embeddings from the unmodified binaries is less pronounced
than the difference between the binaries without compression. Nonetheless, we
note that even a 1% increase in accuracy is significant because of the sheer
size and heterogeneity of our test dataset as well as the potential catastrophic
consequences of misclassifying just a single file.

5.3 Analyzing Marvolo

Figure 8 shows the accuracy improvements that Marvolo brings to MalConv2
when augmenting the Ember training dataset with different numbers of mutated
samples (ranging from 3-12K). We run each experiment four times and report
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Fig. 8: Accuracy improvements (y-axis) when training MalConv2 on the Ember
dataset augmented with different numbers of mutated samples (from Marvolo).
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Fig. 9: Marvolo’s accuracy improvements (y-axis) when testing on only unseen
(in the training data) malware families in the Ember test dataset. 8.

on the distributions. Accuracy improvements range from 1–5% atop the baseline
accuracy of 61.3% and AUC improvements range from 5–10% atop the baseline
AUC of 65.2% achieved when considering the unmodified Ember dataset alone.
These results highlight that accuracy improvements typically come quickly, while
operating on only a small number of binaries, e.g., adding only 3K and 6K mutated
samples to the dataset delivers 3.5% and 5% of accuracy boosts, respectively. The
reason is that Marvolo’s efficiency-centric optimizations promote rapid diversity
amongst the generated samples, which in turn enable MalConv2 to quickly strike
a desirable balance between (1) learning to detect obfuscation patterns, while
(2) not overfitting to mutated samples. Results on the smaller Brazilian malware
dataset [16] were comparable: adding 2K mutated files delivered median accuracy
improvements of 2% (atop the 61% without Marvolo).

Further analysis reveals that a key driver of the overall accuracy wins delivered
by Marvolo are improvements on test samples from previously unseen malware
families, i.e., families that did not appear in the training dataset. Recall from
§2 that such samples are the ones which static analysis and small-scale ML
approaches typically struggle to generalize to. Figure 9 illustrates this, showing
that Marvolo’s accuracy boosts on only the subset of test binaries that were
not seen during training are on par with the wins on the complete test set (1–
5%). The underlying reason for these improvements is that code transformations
provide a discernible pattern for MalConv2 to link across diverse binaries in
different families.
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Fig. 10: Time spent on various stages of the mutation pipeline for two versions
of Marvolo: one with both optimizations, and one without. Mutation and
reassembly are combined into a single bar for ease of disposition. Results are
aggregate times when generating 3K mutated samples.

Importance of number of binaries mutated. Figures 8 and 9 show Marvolo’s
performance as the number of added mutated binaries changes. As discussed,
the benefits from Marvolo’s mutations come early as most accuracy wins
can be realized by using only a small fraction of the overall dataset as input.

Code transformation Type Accuracy

Junk code Malware 2.62
Swapping Malware 1.41
Obfuscating sub. Malware 3.18
Register reassignment Malware 1.80
Code transposition Malware 2.47
Opaque predicates Malware 1.00
Optimizing sub. Benign 2.83
Function outlining Benign 1.23
Function inlining Benign 2.60
Function reordering Benign 0.04

Table 3: Marvolo’s accuracy improvements
when using a version of Marvolo that only
performs a single type of semantics-preserving
code transformation during mutation.

More generally, however, Mar-

volo’s performance with re-
gards to input size is collectively
governed by two factors – (1)
the overall dataset size, and (2)
the number of input samples –
that influence the relationship
between the utility of malware
detection insights from newly
added (mutated) samples and
the risk of overfitting. Intuitively,
larger datasets require larger
numbers of mutated samples to
reap benefits because they al-
ready exhibit a sufficient amount
of heterogeneity (as shown in
Figure 1), and they are also far
less susceptible to overfitting (as the weight of each added sample is relatively
smaller).

Importance of different transformations. Table 3 shows the effect that each trans-
formation has on accuracy improvement. In summary, we find that we generally
reap more accuracy improvements when mutating malicious files over benign files.
Intuitively, many datasets only consist of malicious files from several families
that do not employ a diverse set of obfuscations. Delving further, we find that
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obfuscating instruction substitution (replacing an instruction with an abstruse
sequence of different instructions) yields the highest accuracy wins followed by
junk code insertion and code transposition (reordering code blocks). These are
commonly obfuscations that significantly change the file’s appearance. Further,
we attain significant improvements for mutations on benign files with optimizing
instruction substitution and function inlining being the most prominent. These
transformations improve the model by mimicking common types of optimizations
that compilers employ in practice (which are not as widely used by malware
authors, who opt to use their own toolchains and have fewer incentives to deploy
optimized code). Function reordering, which changes the positions of functions in
the file, shows that simply making arbitrary modifications that do not represent
the transformations made in practice provide little benefit.

Importance of Marvolo’s optimizations. Recall from §4 that Marvolo embeds
two optimizations to tackle the overheads in the mutation process. To uncover
the effects of these optimizations, we profiled two runs of Marvolo’s mutation
pipeline, one with the two optimizations enabled, and one without them. Each
pipeline was used to generate 3K mutated samples, and we note that the MalConv2
models trained on these mutated samples (atop the Ember dataset) delivered
accuracy within 1% of one another.

Figure 10 shows the aggregate time spent in each pipeline stage across these
two variants. The optimized version runs 79× faster to generate mutated samples
of similar efficacy (given the near-identical MalConv2 performance across the two
cases noted above). Speedups are primarily from the lower decompilation and
mutation/reassembly costs, which in turn are due to running only a single binary
per cluster through the pipeline (85% fewer binaries), with each run yielding
a larger number of mutated samples. These drops dwarf the drop-in overheads
used to mix (altered) code and data blocks, and the slight (blocking) overhead
of performing clustering prior to mutation; note that clustering overheads are
paid once, and will thus steadily decrease in relative importance as the number
of mutated samples grows.

6 Conclusion

Marvolo is a data augmentation engine that boosts the efficacy of the malware
datasets that practitioners commonly are restricted to by performing semantics-
preserving code transformations on the constituent binaries. To the best of our
knowledge, we are the first to leverage insights from a deep-dive analysis of
existing malware datasets to apply meaningful data augmentation to the domain
of malware detection. Key to Marvolo’s practicality are its ability to (safely)
propagate labels across input and output binary samples, and its optimizations
to boost the number of fruitful (i.e., diverse and representative) data samples
generated within a fixed time budget. Experiments using commercial malware
datasets and a recent ML-driven malware detector show that Marvolo boosts
accuracies by up to 5%, while operating on only 15% of the available binaries
(mutation speedups of 79×).
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A Further Background and Related Work

Primer on PE format. Most approaches in malware detection analyze raw executa-
bles (or binaries) [3, 9, 23, 32]. Due to the widespread usage of Windows systems
and the large amounts of malware targeting these systems, these malware detec-
tors focus primarily on analyzing PE32 executables. As a brief primer, a PE file
consists of a data structure that provides the OS with the necessary information
to load the program into memory. It contains a series of headers and sections
with different data. Most notably, the .text section contains the instructions to
be executed, the .data section contains global variables, and the .rsrc section
contains resources used by the program such as icons. We refer the interested
reader to the PE specification for further details [10].

Programmatic malware detection. Early work in malware detection involved both
static and dynamic analysis techniques [36]. Static analysis approaches primarily
involved using a tool such as Yara [9] to generate specific rules or patterns for
identifying malicious code; pattern searches may target only code sections [8],
or general byte signatures across all sections of a binary [38]. However, static
signatures fail to keep pace with the rapidly evolving space of deployed malware
variants [7]. Further, generating such rules is time-consuming and requires sub-
stantial manual effort from malware analysts to uncover patterns that appear in
malware. Automatic signature generation tools do exist [8, 38], but have witnessed
limited adoption as the resulting signatures are often restricted to exact matches
on byte sequences and strings observed in previously-seen malware samples.

Malware detectors rooted in dynamic analysis [39] typically execute a binary
in a sandbox to observe its behavior while isolating (or at least, restricting)
any potential damage. Although dynamic approaches step past the limitations
of static analyses that are restricted to pre-determined signature searches, the
required analysis can be computationally expensive because each file often must
be executed multiple times to elicit harmful behavior. Worse, some malicious
binaries embed checks to detect whether they are running a virtual (sandbox)
environment based on VM properties such as the amount of available DRAM, the
number of cores, the list of installed applications/tools, and even the temperature
of the CPU [36]. If a sandbox is detected, these malicious programs dynamically
alter their behavior to hide malintent (thereby evading detection).

Data-driven malware detection. To address the above limitations and deliver de-
tection accuracy (and generalization), data-driven techniques using deep learning
models have seen significant traction in recent years. These models typically con-
sist of neural networks that determine whether or not a given binary is malicious
or benign based on various, defining features of that binary. For instance, certain
models run inference over PE header values, assembly code, network traffic, and
even the names of binaries [29, 36]. Others follow a dynamic approach and per-
form manual feature engineering of API calls [21]. Most recently, the MalConv
CNN [32] performs malware detection by operating directly over the raw bytes
in a binary, thereby eschewing labor-intensive feature engineering and the need
for domain expertise.
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The Problem: Limited (Realistic) Data. As expected, the effectiveness of data-driven
malware detectors heavily depends on the data used to train the corresponding
neural networks. Unfortunately, to date, it is practically difficult for practitioners
to obtain access to training datasets that are sufficiently representative of malware
in the wild.

Commercial datasets that contain massive amounts of labeled data samples
for malware detection do exist and have been used to train models that deliver
excellent malware detection accuracy in the wild [12]. For instance, the popular
Ember dataset contains 1.1 million samples and close to 3,000 distinct malware
families. However, obtaining the raw executables in the Ember dataset mandates
having a VirusTotal license, which can cost upwards of $400,000 per year!5

Consequently, many cost-constrained practitioners and research groups must
resort to far smaller datasets that are publicly available, e.g., the Brazilian
malware dataset contains 50K files [16], while the Microsoft malware dataset
contains 20K files with only 9 malware families [40].

On the other hand, practitioners can opt to generate homegrown datasets
using honeypots that attract malware binaries [14]. However, such approaches
face three challenges. First, the type of malware that is gathered is dependent on
the collection methodology set by the user, leading to biased datasets [36]. Second,
collecting a sufficient number of benign data samples is difficult as benignware does
not seek to replicate across machines (like malware does), and software is often
closed-source and copyright-protected. Along these lines, many seminal works in
malware detection have struggled to obtain benign executables, often collecting
them from clean installations [1, 27], but this fails to obtain more than a few
thousand samples. More recent works often rely on partnerships with anti-virus
companies in order to obtain sufficient benign samples [15, 18, 35, 43, 46, 47]. This
naturally results in unsharable data, causing reproducibility challenges [36], slows
research by non-connected groups, and neglects the needs of niche and targeted
malware[16, 38]. Finally, even if practitioners were to obtain a large number of
samples, labeling them is not straightforward. Software reverse-engineering tools
exist [3], but can consume many hours to reverse engineer a single executable,
even for expert analysts [11, 36, 44].

Takeaway 1: small malware datasets lack heterogeneity, fail to generalize. Across the
considered free, small datasets that are sized between 20-75k samples, MalConv’s
accuracy spanned only 60-71% relative to a training on the full Ember training
dataset (600k).

Takeaway 2: large (proven) malware datasets have important diversity that detectors

capitalize on. Figure 1 shows the diminishing accuracy and AUC of MalConv when
trained on progressively fewer data samples from the Ember dataset. Starting
with the full 600K Ember training dataset, accuracy is at 91%. However, accuracy

5 Ember’s free offering omits executables, and only presents a limited number of features
per binary, e.g., size, library functions. These features are insufficient for most existing
data-driven malware detectors, and cannot support long term development: analysts
must avoid having adversaries learn about the used features, and cannot test new
features without access to the binaries.
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dips below 80% when trained on subsets sized similarly to existing free datasets,
e.g., 75k samples and less. These results indicate the data-hungry nature of ML-
based malware detectors, and highlight the heterogeneity in data samples in large
datasets; we dig deeper into these aspects in the following section.

B Marvolo’s Code Transformations

Junk code insertion. Insert instructions into the binary that don’t alter the output
of the program upon being executed. These instructions may change the state of
the program (e.g., register values and memory) but reverse the changes before
progressing to subsequent instructions. The simplest form of this transformation
that we implement is the insertion of nop instructions. We also generate semantic
nops which consist of pushing values onto the stack, performing arithmetic and
logical operations, and then popping the values off once they’re completed. We
augment this with additional instructions that also read and write to memory.
In the following semantic nop

push eax

inc eax

or eax, 0x1c

add eax, dword ptr [esp - 0x34]

not eax

pop eax

the eax register is first pushed to the stack. Then arithmetic and bitwise opera-
tions are performed on eax. Lastly, the old value of eax is popped from the stack
and written back into eax; since the value of eax is not written elsewhere prior
to pop eax, the computations are effectively useless.
Register reassignment. Changes the names of the variables or registers. Identify a

live register, rX, within a basic block and replace it with a new register, rY, that
is unused within the block. The value of rY is first pushed onto the stack and is
then written with the value stored in rX. After computations are performed on rY,
it is written to rX and the original value of rY is popped and written back to rY.
Function inlining. Identify functions and every time they are invoked, replace the

call instructions with the bodies of the identified functions. In our implemen-
tation, we solely focus on functions with straight-line code. Function inlining
is a common compiler optimization used to reduce the overhead of invoking a
function and to make basic blocks more amenable to subsequent optimizations.
Function outlining. Identify straight-line instructions within the current basic

block and generate a new function with those instructions. Replace the original
instructions with a call instruction to the newly-generated function. This is a
compiler optimization for reducing code size.
Obfuscating Instruction substitution. Replace an instruction with a semantically

equivalent sequence of new instructions. We currently support over 30 substi-
tutions. We add simple substitutions such as changing add rX, 1 to sub rX,

-1. We adopt further instruction substitutions, including many implemented in
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LLVM Obfuscator [26]. These substitutions are mostly comprised of more com-
plex bitwise and arithmetic instructions. For instance, Marvolo would replace
the instruction or eax,0x4711 with

push esi

push edi

mov esi, eax

mov edi, 0x4711

and eax, edi

xor esi, edi

or eax, esi

pop edi

pop esi

The transformation is effectively replacing a = b|c with a = (b & c)|(b⊕ c).
Optimizing instruction substitution. Replace an instruction with an equivalent

instruction that optimizing compilers often emit [2]. While these instructions are
often times not as intuitive as their more straightforward counterparts, they are
faster to execute. For instance, mov rX, 0 is often times changed to xor rX, rX.
Another instance is substituting arithmetic instructions, such as add, with lea

instructions. Applying this transformation more broadly captures the range of
programs that can be produced by different compiler toolchains and options.
Code transposition. This transformation reorders a sequence of instructions that

changes the appearance of the code without altering the behavior [48]. Marvolo

implements code transformation by dividing a basic block into smaller slices.
Then these slices are rearranged in a different order and are each appended with
an unconditional jmp instruction to ensure that the original execution order of
the initial basic block is preserved.
Instruction swapping. As another form of code transposition, we take 2 instructions

and swap their positions. While this transformation does not significantly affect
the readability of the code, it is used by malware authors to evade anti-virus
scanners. To ensure that the transformation preserves semantics, analysis is
performed to check that the swap doesn’t violate any computational dependencies.
We check that each of the destination registers for the instructions aren’t used as
a source register for other instructions. We also check that any source registers
used by the two instructions aren’t written to. Below we demonstrate an example;
the left side shows the original program and the right side shows the modified
program after the add and sub instructions had been swapped.

Original

add eax, ebx

sub ecx, 0x7c21

ret

Mutated

sub ecx, 0x7c21

add eax, ebx

ret

On the other hand, the program

mov eax, 0x1af3

add ecx, eax
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is not amenable to swapping since the add instruction would not use the updated
value in eax after the mov instruction.
Opaque predicate insertion. Opaque predicates are predicates that always evaluate

to true or false and are known a priory the programmer. While opaque predi-
cates evaluate to the same value under all inputs, they are still evaluated during
runtime. To represent the instances where code and data are interleaved within
a binary [45], we generate a sequence of randomly-generated bytes following the
opaque predicate. An unconditional jmp instruction is inserted so that these gen-
erated bytes are not executed and the next instructions within the program are
run. Opaque predicates are commonly inserted by code obfuscators. [26].
Function reordering. Functions are moved to different positions throughout the

binary. This transformation drastically changes the appearance of the binary
without adding new instructions or removing existing ones.

C Marvolo Optimizations

Code similarity clustering. To reduce the number of binaries passed through the
mutation pipeline, Marvolo employs a clustering strategy to group binaries
together based on their compositions (and thus, their interactions with the
pipeline). Efficiency wins come from passing only a single binary per cluster
through the pipeline. Intuitively, the goal for clustering is thus to maximize
cluster sizes without masking differences between the binaries in the dataset.

Unfortunately, the straightforward clustering strategy of grouping binaries
based on byte similarity (i.e., cluster binaries whose byte-level differences are
smaller than a pre-determined threshold) are ill-suited for our task. The reason is
that, even malicious binaries within the same family that exhibit identical .text
and .data sections, which contain program instructions and global variables
respectively, may have vast byte-level differences (upwards of tens of thousands
of bytes). Though massive, these differences do not alter the overall behavior of
the binary, and thus should not map binaries to different clusters. Yet unearthing
such insights requires passing the binary through costly decompilation, foregoing
many savings.

Instead, Marvolo leverages our finding that, within a malware family, it is
not uncommon for multiple binaries to have equivalent .text sections (i.e., the
binaries’ instructions are the same); note that these binaries commonly differ
in their .data and .rsrc sections – we discuss this below. Since Marvolo

only performs code transformations, these are the only portions of the binary
that Marvolo modifies; it is thus redundant to send binaries with identical
.text sections through Marvolo’s pipeline. Consequently, Marvolo operates
on only a single binary per observed code section. For each generated mutated
version of the binary, Marvolo performs drop-in replacement (i.e., avoiding
costly decompilation and reassembly) of the transformed code section with other
binaries in the same cluster; memory location offsets are quickly updated in each
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affected binary. In effect, this rapidly simulates the process of passing all binaries
in a cluster through the end-to-end pipeline.

Note that modifying .data and .rsrc sections in a binary may not deliver
semantic equivalence. In contrast to semantics-preserving code transformations
that guarantee equivalent behavior across program inputs, data-level modifications
can alter the taken control flows in a program, resulting in different externalized
values. In light of this, Marvolo only performs drop-in replacement for binaries
in the same cluster, i.e., that have identical code sections to the one which
passed through the mutation pipeline. This ensures that code-data relationships
are unchanged since the same control flows would be traversed during binary
execution, which in turn ensures safety in propagating labels to newly generated
binaries.

Intermediate binary generation. The goal of Marvolo’s second optimization is
to maximize the useful binaries output during each pass through the mutation
pipeline. Recall that, for each input binary, Marvolo’s pipeline (as described thus
far) selects and performs a series of transformations to generate a single mutated
binary. Thus, a simple approach to increase pipeline outputs for a given run would
be to output a mutated binary after each successive transformation is performed.
The issue is that the generated binaries will only differ by a single transformation
pass and thus will likely fail to deliver the heterogeneity seen in large datasets;
recall from §3 that malware authors commonly use multiple transformations to
ensure substantial differences from the original malware binaries. Instead, we
must ensure that the generated binaries diverge substantially from one another.

The challenge is that it is difficult to know a priori how many bytes a trans-
formation will change in a given binary (§4.2). To handle this, Marvolo employs
a lightweight runtime check after each transformation is applied to determine
whether the code changes performed up until that point are comprehensive
enough to warrant a new binary generation (and thus assembly). Logically, the
runtime checks compare byte-level diffs between the current binary version, the
original, and those output after prior transformations; if all values exceed a pre-
set threshold, Marvolo deems the current binary worthy of costly assembly (and
thus, a new sample in the dataset).6 To ensure that discrepancies only pertain to
behavior-affecting portions of the binary without requiring costly assembly and
binary-wise diffs (which we find can consume tens of seconds), Marvolo approxi-
mates this behavior by tracking the number of code blocks affected after each step
(scaled based on the inherent intrusion level of the applied transformation [22]).

D Using Marvolo

Indeed Marvolo is intended to complement existing ML-driven malware de-
tectors and we do not propose changing hyperparameters but we recommend

6 While most binaries within a family have significant differences, some exhibit only
minor differences between one another. Thus, Marvolo occasionally (10% of the time,
by default) outputs binary versions even if the diff threshold has not been exceeded.
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keeping the hyperparameter-tuning methodology the same after data augmenta-
tion. Beyond these hyperparameters, we note two additional considerations:

1. Input seclection. Marvolo performs best when presented with inputs com-
prising a diverse set of binaries that differ (as the dataset allows) in family
and composition, e.g., binaries with large fractions of differing code portions.
Doing so aids malware detectors in identifying the underlying transforma-
tions (injected by Marvolo) across wider-ranging contexts. Further, as
noted above, Marvolo must balance generating sufficient mutated samples
to boost heterogeneity in training datasets, while avoiding overfitting to those
samples. Our current implementation leverages that accuracy boosts come
early (i.e., with few samples) and overfitting occurs soon after, motivating
an iterative process starting with only a small number of samples.

2. Transformation selection. Our results in Section 3 highlight that malware
authors not only use many different kinds of code transformations, but also
diverse combinations of them. Thus, Marvolo opts for a general randomized
selection of transformations and combinations during mutation. However,
to make the most use of (limited) compute resources, a practitioner could
identify which code transformations are present in the samples that they
already have, and focus the augmentation process on under-represented ones.

Extending Marvolo with new transformations. Marvolo currently supports the
10 binary transformations mentioned in B. Due to the modular design of Marvolo

and the availability of binary rewriting tools, a malware analyst can extend
Marvolo with newer transformations as they are encountered. Marvolo uses
the GTIRB rewriting framework [6], which not allows for x86 code modifications,
but also supports numerous binary formats. Hence, Marvolo can also augment
datasets consisting of different binary types (e.g., PE64, ELF).

Using binaries that cannot be executed. Fundamentally, our binary rewriting ap-
proach should result in properly labeled, working binaries because we only employ
semantics-preserving transformations. We observed that the Ddisasm rewriting
framework [5, 6, 19, 41] has several bugs that resulted in binaries that did not
execute, however we note that because many ML-based malware detectors use
static approaches to learn the binaries, these binaries never need to be executed.
Further, because the errors in the binaries are very insignificant, the models are
invariant to them and as shown in Section 5, they still yield significant perfor-
mance improvements.


