3D SPECTRAL NETWORKS AND CLASSICAL CHERN-SIMONS THEORY
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To Chern, who taught us all

ABSTRACT. We define the notion of spectral network on manifolds of dimension < 3. For a manifold
X equipped with a spectral network, we construct equivalences between Chern-Simons invariants
of flat SLoC-bundles over X and Chern-Simons invariants of flat C*-bundles over ramified dou-
ble covers X. Applications include a new viewpoint on dilogarithmic formulas for Chern-Simons
invariants of flat SL2C-bundles over triangulated 3-manifolds, and an explicit description of Chern-
Simons lines of flat SLoC-bundles over triangulated surfaces. Our constructions heavily exploit the
locality of Chern-Simons invariants, expressed in the language of extended (invertible) topological
field theory.
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1. Introduction

A classical formula of Lobachevsky-Milnor-Thurston [T2, Chapter 7] expresses the volume of
a tetrahedron, i.e., 3-simplex, in hyperbolic space in terms of a dilogarithm function. It follows
that the volume of a triangulated hyperbolic 3-manifold is a sum of real parts of dilogarithms.
Thurston observed that the Chern-Simons invariant of the associated flat PSLoC-connection has
real part equal to the volume, and Meyerhoff [Me] extended this to hyperbolic 3-manifolds with
cusps. These ideas have been refined and extended since their introduction in the late 1970’s and
early 1980’s, as we briefly review in Section [2| After much work, in particular by Neumann [Neul,
by the early 2000’s the Chern-Simons invariant of a flat PSLyC-connection on a closed oriented
3-manifold was expressed as a sum of complex dilogarithms. In a closely related development over
the past 20 years, Fock and Goncharov [FGI] studied special cluster coordinate systems on the
moduli space of flat bundles on a compact oriented 2-manifold with punctures. The moduli space
is symplectic, and the overlap functions—cluster transformations—between different coordinate
systems are generated by essentially the same complex dilogarithms. These dilogarithms also serve
as transition functions defining a canonical prequantum line bundle over the moduli space [FG2].
In this paper we introduce new perspectives and techniques into this circle of ideas. Our work is
inspired by two distinct sources: spectral networks and invertible field theories. Both originated in
physics and both have well-developed mathematical underpinnings.

Spectral networks on 2-manifolds were introduced by Gaiotto-Moore-Neitzke as part of
their study of four-dimensional supersymmetric gauge theories. For our purposes the key point is
that, given a spectral network on a surface Y, one can define the notion of stratified abelianization
[GMNTIl, HNJ: this is a linkage between a flat GLyC-connection on Y and a C*-connection on a
ramified covering Y — Y. This notion has been useful in various contexts, e.g. in exact WKB
analysis and hyperkéhler geometry of moduli of Higgs bundles; it also gives a reinterpretation of
the cluster coordinates of Fock-Goncharov. In Section [4] we extend the notion of a spectral network
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and stratified abelianization from 2 dimensions to all dimensions < 3. In particular, in §4.2| we
express the data of a spectral network on a smooth manifold as a certain type of stratification
together with a double cover over a dense subset and a section of the double cover over a certain
codimension one subset. We use it to set up stratified abelianization for the rank one complex Lie
groups GLsC, SLoC, and PSLoC. In particular, we construct canonical spectral networks associated
to triangulations and ideal triangulations of 2- and 3—manifoldsE|

FIGURE 1. Left: the canonical 2d spectral network in a triangle. Right: the canoni-
cal 3d spectral network in a tetrahedron. Its restriction to each face is the canonical
2d network in a triangle.

The Chern-Simons invariant was introduced in 1971 [CS1] [CS2], and it was fairly quickly ex-
pressed by Cheeger-Simons [ChS| in terms of their novel differential characters, an amalgam of
integral cohomology and differential forms. For flat connections, which are our main focus here,
the differential characters are induced from a cohomology class on a classifying space [Chl Dl [DS].
With the advent of quantum Chern-Simons invariants [W], it became clear that the classical Chern-
Simons invariants share the locality properties of the quantum invariants [F1, [F6, 2, RSW].
Furthermore, this locality of the classical invariants is similar to the locality of the integral of a
differential form on a smooth manifold M: if M is expressed as a union M = |J, M; of mani-
folds with corners glued along positive codimension submanifolds with corners, then the integral
over M is the sum of the integrals over the M;. The fullest expression of this locality is in terms
of invertible field theories. They are constructed using the theory of generalized differential co-
cycles [HS, BNV] [ADH], and that theory in turn is a fully local version of the Cheeger-Simons
differential characters. We give brief introductions to these ideas in Appendices [A] and

These two lines of development lead to the motivating idea behind our theorems: a strati-
fied abelianization of classical SLoC Chern-Simons theory for flat connections. For a manifold X
equipped with stratified abelianization data (defined in , this amounts to an equivalence between
the Chern-Simons invariant of an SLoC-bundle over X and that of a C*-bundle over a ramified
double cover X. We develop two main applications: (1) a formula for the Chern-Simons line of a
flat SLoC-connection on a closedﬂ oriented 2-manifold Y, derived from the simpler and more ex-
plicit C* Chern-Simons theory applied to a branched double covering manifold Y (Theorem ;
and (2) a derivation of the formula for the Chern-Simons invariant of a flat SLoC-connection on a
closedﬂ 3-manifold M as a sum of complex dilogarithms (Theorem [8.8)).

IWe allow the intermediate case of semi-ideal triangulations in which both ideal and interior vertices are allowed;
see Definitions and

2More generally, we treat flat SLoC-connections on a compact oriented 2-manifold with boundary whose holonomies
around boundary components are unipotent.

3with extensions as in footnote
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Here is the rough strategy for (1), which we develop in Section [7| Let Y be a closed 2-manifold
equipped with a flat principal SLoC-bundle P — Y. First, choose a triangulation and, over each
vertex, a line in the fiber of the complex 2-plane bundle associated to P — Y'; require that this
data satisfy a genericity condition (Assumption . The stratified abelianization derived from
the spectral network associated to the triangulation yields an isomorphism of the Chern-Simons
line J; (Y3 P) with the Chern-Simons line .#¢x (Y; A), where A — Y is a flat C*-bundle over a
branched double cover Y of Y. We give a concrete description of . (}7, A) in terms of various
auxiliary data: orientations of the edges of the triangulation, a nonzero vector in the line at each
vertex, etc. Each set of choices trivializes .7 (17, A), and we deploy C* Chern-Simons theory in
its local form to compute explicit formulee for the ratio of trivializations under changes of auxiliary
data. Out of this we construct a groupoid whose points are sets of auxiliary data and whose
morphisms are changes of the data. In this form our description of the Chern-Simons lines makes
contact with dilogarithmic constructions of line bundles over cluster varieties in the literature; see
the discussion in

For our result (2), which is the subject of Section 8] we proceed as in (1) to choose a triangulation
and lines over the VGI’tiCGSE' We excise an open ball from the center of each tetrahedron in the
triangulation of the 3-manifold M. The boundary 2-sphere of each ball is ramified double covered
by a 2-torus in the standard way: there are 4 branch points. The C* Chern-Simons invariant on
the branched double cover localizes with a contribution from each tetrahedron that we identify as
a complex dilogarithm. This led us to a new construction of the dilogarithm function in terms of
(classical) C* Chern-Simons theory, which we worked out in [FN] and which we apply here.

Spin structures are used in our stratified abelianization for a simple reason. The generating level
of SLyC Chern-Simons theory, when restricted to the maximal torus C* C SLoC, is halff’| the usual
generating level of C* Chern-Simons theory; see equation . The division by 2 is effected by
passing to spin manifolds. Just as on oriented manifolds Chern-Simons is a secondary invariant
of characteristic classes in integer cohomology, on spin manifolds there are secondary invariants of
characteristic classes in KO-theory. Here we use a simple 2-stage Postnikov truncation of KO-
theory that we describe in The SLoC Chern-Simons theory does not require a spin structure,
so necessarily the results of our computations are independent of the choice of spin structure on the
base, but the intermediate formulse on the ramified double cover require us to keep careful track of
spin structures there.

The stratified abelianization—the production of a flat C*-connection from a flat SLoC-connection—
gives new geometric meaning to some aspects of standard constructions. For example, the shape
parameters in Thurston’s theory [T2, §4.1] are now holonomies of the flat C*-connection around
certain loops in the total space of the branched double cover. Furthermore, Thurston’s gluing
equations [T2, §4.2] are a simple relation in the first homology group of that manifold; see Re-
mark Neumann’s “combinatorial flattenings” [Neul, §3] correspond to global sections of the
principal C*-bundle over the branched double cover M (with balls excised).

4For ideal vertices we choose a flat section of the associated CP*-bundle over the corresponding boundary compo-
nent of M.
5There is a minus sign at stake here: see Convention and Convention for our choices.
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In the course of our work we produced computer programs to implement our formulas for the
Chern-Simons invariants of 3-manifolds. We have made those programs and computations available
as ancillary files in the arXiv version of this paper.

We conclude this introduction with a brief roadmap to the parts of the paper not yet discussed.
Section [3is a brief recollection of the Chern-Simons invariant in 3 dimensions, including its status as
the partition function of an invertible field theory. As a theory of a single flat connection, this field
theory is topological; as such it has a formulation in homotopy theory. However, it is not topological
as a theory of families of flat connections, and for that reason it requires the setting indicated in
Appendix [B] Section [§] begins with cohomological computations relating levels of Chern-Simons
theory for different subgroups of SLoC, both in the oriented and spin cases. Then we review the
role of differential cochains and prove an important result (Theorem which essentially says
that the Chern-Simons theory is unchanged as connections move in unipotent directions in SLyC.
We also prove some theorems about the spin C* Chern-Simons theory that are important for
our computations. Section [5] concludes with a global—as opposed to stratified—abelianization
theorem. Section [6] introduces the auxiliary data we impose on a triangulated manifold. Then we
prove important technical results which underpin the abelianization of the Chern-Simons line. As
stated earlier, our main theorems are in Sections[7]and[§] We conclude in Section [J] with suggestions
for ambitious readers who would like to extend our work in new directions. Finally, Appendix [C]
takes up additional Z/2Z-gradings in spin Chern-Simons theory which we suppress in the main
text; there we prove a spin-statistics result which justifies that suppression.

Marché’s approach in [M] is a close cousin to our derivation of the formula for the Chern-Simons
invariant in §8 Our stratified abelianization is a classical version of a quantum abelianization
proposed by Cecotti-Cérdova-Vafa [CCV] §7].

Over the long period in which this work was carried out we benefited from the comments and
insights of many colleagues, including Clay Cérdova, Tudor Dimofte, Stavros Garoufalidis, Matthias
Goerner, Alexander Goncharov, Pavel Safronov, Joerg Teschner, Christian Zickert. We warmly
thank them all, named and unnamed.

2. Hyperbolic volumes and Chern-Simons invariants

As a warmup suppose Y2 is a complete hyperbolic 2-manifold with finite area and finitely gener-
ated fundamental group. Then the Gauss-Bonnet theorem states that Area(Y) = —27 Euler(Y') is
a topological invariant [Ro]. Furthermore, Y is the interior of a compact surface. The classification
of surfaces shows that the possible areas form a discrete subset of R.

Now suppose X? is a complete oriented hyperbolic 3-manifold with finite volume and finitely
generated fundamental group. Then X is the interior of a compact 3-manifold whose boundary
is a union of tori [T2, Proposition 5.11.1]. Mostow rigidity [Mol [Pr] asserts that Vol(X) is again
a topological invariant. Jorgenssen-Thurston proved basic properties of this invariant [T1]. For
example, the set of hyperbolic volumes is a well-ordered subset of R, and there is a finite set of
hyperbolic 3-manifolds of a given volume. The volume is an important invariant which orders
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hyperbolic 3-manifolds by complexity. The “simplest” is the Weeks manifold of volume 0.9427.. .,
the minimal volume closed orientable hyperbolic 3-manifold [GMM]. Further analytic properties
of the set of hyperbolic volumes were explored early on in [NZ, [Y].

There is a classical formula for the volume of an ideal tetrahedron A C H? in hyperbolic 3-space;
it can be used to compute the volume of an ideally triangulated hyperbolic 3-manifold. Suppose
the vertices of A are distinct points Zo, Z1, Zo, Z3 € CP! = OH3. Introduce the Bloch- Wigner
dilogarithm function [Z, §3]

D:CP'\ {0,1,00} — R

2.1
@1) z +— Im Lia(Z) + log|z|arg(l — z2),

where Lig is the classical dilogarithm, defined for |z| < 1 by the power series

o0 n

(2.2) Lis(2) = Y %

and analytically continued to C\ [1,00). Let

(Zo — Z2)(Z1 — Z3)
(Zo — Z3)(Z1 — Zo)

(2.3) z =

be the cross-ratio of the vertices of A.
Theorem 2.4 (Lobachevsky, Milnor-Thurston [T2, Chapter 7]).  Vol(A) = |D(z)|.

In his PhD thesis Meyerhoff [Me] initiated the detailed study of the Chern-Simons invariant
CS(X) € R/Z(1) of of the Levi-Civita connection © ¢ of a closed oriented hyperbolic 3-manifold.
Here and throughout we deploy the notation

(2.5) Z(1) = 2nV/—=1Z,  Z(n) =Z(1)®" = 2nv/—-1)"Z,  neZ>
This real Chern-Simons invariant is the real part of the complex Chern-Simons invariant of the
associated flat PSLyC-connection ©. Recall that the SOs-bundle Bgo(X) — X of frames carries

not only the Levi-Civita connection ©7¢c but also the R3-valued “soldering form” #; the complex
combination ® = Or¢c + +/—146 is a flat connection on the associated principal PSLyC-bundle:

Bso(X)— P
% ALQC
X
The exponentiated complex Chern-Simons invariant, which we review in satisfies

(2.6) Fosr,c(X;0) = exp (Vol(X) + vV-1CS(X)) € C*.
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Our focus in this paper is the complex Chern-Simons invariant of arbitrary flat connections, mainly
for structure group SLoC. (In the intrinsic case of connections on the frame bundle, the passage
from PSLyC to SLoC is the introduction of a spin structure.)

Just as the real volume is related to a real dilogarithm , so too the complex Chern-Simons
invariant is related to a complex dilogarithm, the enhanced Rogers dilogarithm. Let

(2.7) M = {(z1, 22) € C* x C* 121+ 22 =1}
and
(2.8) M= {(u1,u2) € Cx C:e" +€“2 =1},

Then M ~ CP! \ {0,1,00} and M — M is a universal abelian covering map with Galois group
isomorphic to Z x Z. The dilogarithm in question [ZGl §4], |Zl, §11.1.B], is the unique function

(2.9) L: M — C/Z(2),
which satisfies the differential equation
(2.10) dL = (uy duz — uz duy)/2

and lim L(uj,u2) = 0 as u; — oo and ug — 0. (We encounter variants in §§ ) The imaginary

part of L is the Bloch-Wigner function plus Im(@y uz)/2. See [EN] for a construction of the
enhanced Rogers dilogarithm using Chern-Simons invariants for C*-connections.

Let BSL,C? denote the classifying space of flat SLg(C—bundlesﬁ The universal Chern-Simons
class for flat bundles

(2.11) ¢y € H*(BSLyC?; C/7(1))

was constructed by Cheeger-Simons [ChS| and is known as the Cheeger-Chern-Simons class. It has
an expression in terms of the dilogarithm , going back to work of Dupont and collaborators
in the 1980’s; see [D] IDS|]. The most precise relationship can be found in [DZ, §4], which is based
on [Neul; see both papers for exact statements, history, and extensive references.

In the early 2000’s, the formula for the Chern-Simons invariant of a flat connection on a 3-
manifold as a sum of dilogarithms was taken up again in such works as [Neul [DZ] Zi, (GTZ, DGG].
The formula for flat PSLoC-connections on closed 3-manifolds is in [Neul; the formula for flat
SLoC-connections on closed 3-manifolds is in [DZ]. The formula for boundary-unipotent flat SL  C-
connections appears in [GTZ]; for boundary-unipotent flat PSLyC-connections it is in the earlier
paper [Zi].

Remark 2.12. These previous works rely on global ordering data/conditions on the vertices of a
triangulation or ideal triangulation of the 3-manifold. By contrast, in our work we only use edge
orientations with no constraints. As a consequence, our formula in Theorem is a bit more
complicated: it involves four variants of the dilogarithm, and also some cube roots of unity enter

from a Jt,-symmetry not present in earlier approaches.

6We use standard terminology: ‘flat’ is a structure—a flat connection—on a principal bundle.
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3. Chern-Simons as a topological field theory

The integral of a differential form over a smooth manifold M is local: if M = |JM; is a finite
union of submanifolds, possibly with boundaries and corners, and if M; N M; has measure zero
for all ¢ # j, then the integral over M is the sum of the integrals over M;. The exponentiated
Chern-Simons invariant of a connection on a principal bundle P — M is not the integral of a
differential form on M, yet it still satisfies strong locality properties: it is the partition function of
an invertible field theory. We review this aspect of Chern-Simons invariants. See [FN| §2] for an
exposition of the theory with gauge group C*.

Let G be a Lie group with finitely many components, called the gauge group, and let g be its
Lie algebra. In this section we make the simplifying assumption that G is simply connected. Let
m: P — M be a principal G-bundle with connectionlj O € QL(g). Suppose

(3.1) (—,—):gxg—C
is a G-invariant symmetric bilinear form on the Lie algebra g. Chern-Simons |[CS2] define a scalar
3-form on the total space P,

(3.2) 1(0) = (OAQ) — ~(OA[OAB]) €03,

1

6
where Q = dO + [0 A O] € Q%(g) is the curvature of ©. If dim M < 3, then 7(0) is closed. Also,
in that case the simple connectivity of G ensures the existence of sections s: M — Pof m: P — M.
If M = X is a closed oriented 3-manifold, then

(3-3) /XS*U(G) eC

is unchanged under a homotopy of s, since 1n(©) is closed. The space of sections is generally not
connected, so to ensure that is independent of s we make two modifications: (i) we impose
an integrality hypothesis on (—, —), and (ii) we reduce the integral to C/Z(1). The integrality
condition lies in topology if G is compact or G is complex, which we now assume. Namely, the
vector space of forms (—, —) is canonically isomorphi(ﬂ to H*(BG;C), where BG is the classifying
space of G. The image of H*(BG;Z) — H*(BG;C) is a lattice of integral formsﬂ Then if (—, —) is
an integral form,

(3.4) 27r\/—1/ s*n(©) mod Z(1)
X
is independent of s. Define the exponentiated Chern-Simons invariand™

(3.5) Z,(X:0) = exp (zwﬁ /X S*?](@)) e C.

"We use ‘G-connection’ as a shorthand for ‘principal G-bundle with connection’.

8The isomorphism maps a form (—, —) to the de Rham cohomology class of (Q, ), where Q is the curvature of a
universal principal G-connection over BG.

9There is also a distinguished cone of forms whose restriction to a maximal compact Lie subalgebra is positive
definite. For G connected, the map H*(BG;Z) — H*(BG;C) is injective: H*(BG;Z) is torsionfree.

10T he notation is deficient, as it does not include the form (—, —), but the choice should be clear from the context.
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Remark 3.6. The exponentiated Chern-Simons invariant is defined without the simple connectivity
assumption on G. In that case the form (—, —) is replaced by a class in H*(BG;Z), called the level.
See [F4, Appendix]| for the general construction.

Example 3.7 (G = SLyC). The special linear group G = SLsC is a matrix group with Lie algebra
g = slC the space of 2 x 2 traceless complex matrices. There is an isomorphism H*(BSLoC;Z) = Z
with generator

1
(3.8) (A,B) = 5.2 trace(AB), A, B € s1,C,

the complex image of —co € H*(BSLoC;Z). On the trivial bundle over X, an SLyC-connection is
a traceless matrix of 1-forms A € Q% (sl,C) and the Chern-Simons invariant (3.4) is

(3.9)

47T\1/jl Xtrace <A/\ dA + %A/\ A /\A) mod Z(1).

We remark that our choice of —co is motivated by ; if we chose ¢y instead, we would have
an extra minus sign in that equation.

Now suppose X’ is a compact 3-manifold with boundary, and let ©' be a G-connection on X' for
G a simply connected Lie group. We define .7, (X’; ©') so that if X = X Uy X7 is a decomposition of
a closed oriented 3-manifold X along an embedded closed codimension one oriented submanifold N,
then

(3.10) giG(X; @) = yG(Xl; @1) . yG(XQ; @2),

where ©;, = © ’ «.- £ OX' # () then (3.4)) is not independent of s; it depends on s ‘ ax- That depen-

dence satisfies a cocycle relation which leads to the construction of a complex line .%,(0X’;00")

which only depends on 90" = ©’ The exponentiated Chern-Simons invariant %, (X’;©') is

o
an element of .Z,(0X’;00’), and is satisfied if the dot on the right hand side is interpreted
as the pairing of this line with its dual; see [F1, §2].

We summarize the situation in the language of field theory. Let Bord s 3 (GLTRxGY) be the bor-
dism category where objects are closed oriented 2-manifolds Y equipped with a G-connection Oy.
(The notation indicates the structure group of the manifold, and the superscript V evokes the
connection on the principal G-bundle.) A morphism (Yp, ©9) — (Y1,01) in Bord s 3 (GLIR x GV)
is then a compact orlented 3-manifold X equipped with a G- Connectlon Ox, together with a diffeo-
morphism —Yy 1Y = 0X, and an isomorphism Oy 1104 =, 90 x- (These diffeomorphisms need
to be on collar neighborhoods—or germs of collar neighborhoods—of the boundary.) As usual in
bordism categories, composition of morphisms is defined by gluing bordisms, and there is a sym-
metric monoidal structure given by disjoint union. Let Lines denote the groupoid whose objects
are 1-dimensional complex vector spaces, and whose morphisms are invertible linear maps. It is a
Picard groupoid under tensor product of lines.
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Theorem 3.11. The exponentiated Chern-Simons invariant is a symmetric monoidal functor
(3.12) F,: Bordp 3 (GLFR x GV) — Line. . O

So F, is an invertible field theory, called classical Chern-Simons theory; see [HS, [F2].
Our interest in this paper is the restriction to flat G-connections

(3.13) F: Bord (g3 (GLIR x G°) — Line. .

This restricted theory is topological in a restricted sense—at least on single manifolds (see Re-
mark below). Namely, the domain bordism category has no continuously varying parametersﬂ
There is a well-developed mathematical theory of topological field theories. In this topological case
it is technically easier to implement strong locality in the form of an extended field theory. For
invertible topological theories, homotopy-theoretic methods can be brought to bear [FHT, [FHI]:
an invertible topological field theory can be realized as a map of spectra. The domain is a bordism
spectrum and the codomain a spectrum of “higher lines”. In that context, for G = SLoC the
extended version of is realized as the composition

(3.14) MSO ABGS. 2205 1190 A(HT/Z(1)3)5 —— SPHT/Z(1).

Here M SO is the Thom spectrum of oriented manifolds, HC/Z(1) is the Eilenberg-MacLane spec-
trum associated to the abelian group C/Z(1), the cohomology class ¢ is introduced in , and
(HC/Z(1)3)+ denotes the 3-space of the spectrum HC/Z(1)3. The first map is the Cheeger-Simons
class , and the second is integration; see [HS|, §4.10]. The induced map on 73 is a bordism
invariant of closed oriented 3-manifolds equipped with a flat connection. The map extends
this bordism invariant to an invertible topological field theory, thereby exhibiting its full locality.

Remark 3.15. Our analysis in this paper involves parametrized families of flat connections, that is,
connections on the total space of a fiber bundle 7: M — S that are flat along the fibers of 7. Such
connections need not be flat on M, and for that reason we need more than the homotopy theoretic
map , since the latter only incorporates families of flat connection in which the connection is
flat on the total space M. It is in this broader sense that the invertible field theory is not
topological. We explain this further in Appendix

Remark 3.16. In codimension 1—on closed surfaces—we wrote in (3.13)) that the theory .%. has
values complex lines. Similarly, in codimension 2—on closed 1-manifolds—we take the values of the
theory to be V-lines, i.e., invertible modules over the tensor category V of complex vector spaces.

There is a spin variant of Chern-Simons theory, which we discuss in in a special case.

"More precisely, for any t € A' the restriction map Bungs (A' x M) — Bungs ({t} x M) on flat connections is an
equivalence of stacks.
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4. Stratified abelianization and spectral networks

We begin in §4.1]with an elementary concrete example of stratified abelianization which motivates
all that follows. Here one explicitly sees the monodromy around branch points (Lemma and
the unipotent automorphism when crossing a wall (Equation ) We abstract this into a general
definition in The data of a spectral network is the specification of a particular type of stratified
manifold. This is all for rank one Lie groups. In we construct a spectral network and stratified
abelianization for a triangulated surface, and in we do the same for a triangulated 3-manifold.
An important example is a 2-sphere triangulated by the boundary of a tetrahedron—this is the
boundary of a 3-simplex, which we encounter at the center of each 3-dimensional tetrahedron in the
triangulation of a 3-manifold—and we prove an important relation in the stratified abelianization in
Proposition Our setup here makes contact with cross ratios (Remark and the Thurston

gluing equations (Remark |4.56)).

4.1. 2-dimensional spectral networks: motivation

To motivate stratified abelianization, begin with an invertible 2 x 2 complex matrix A € GL5C.
For a geometric take, let £ — S' be a rank 2 flat complex vector bundle with holonomy A. Then
A is diagonalizable if and only if there exist

(4.1) L—s'ust
(4.2) mL —> F,

where 7: ST 11 St — St is the producﬂ double cover, is a (flat) line bundle, and is
an isomorphism. If so, and if A is not a scalar matrix, then the projectivization PE — S' has
two distinguished horizontal sections; the line bundle L — S' II S! is isomorphic to the restriction
of the tautological line bundle £ — PFE to the union of the images of those sections. If A is not
diagonalizable, then the existence of an eigenvector of A implies that PE — S' has a unique flat
section.

— —

FIGURE 2. A flat bundle over the one-holed torus.

Now consider two invertible matrices A1, Ay € GLoC. If A; Ay = Ay A4, then there is a flat rank 2
complex vector bundle E — S x S! with holonomies A1, Ay about chosen based loops generat-
ing 71 (S x S!). Then—assuming each of A1, Ay is diagonalizable—there is a global abelianization
based on the product double cover of S* x S'. Our story begins when A; Ay # Ay A;. In this situ-
ation the matrices Ay, A determine a flat rank 2 complex vector bundle £ — Y over the compact

12Note the sheets are not ordered.
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surface Y = S' x S\ D?, as depicted in Figure 2l Let z € 9Y be a basepoint. There is no hope
of a global abelianization. Instead, consider the ideal triangulation of Y depicted in Figure 3] If
we collapse the boundary dY, there are 2 triangles, glued along 3 edges; each vertex is the point
at “infinity” in Y/0Y. We interpret Figure |3| as a stratification

(4.3) Y =YY 1Y_o.

The codimension 2 stratum Y_o consists of two points, one interior to each face. The codimension 1
stratum Y_; is the union of six line segments, joining the codimension 2 stratum to the vertices.
The generic stratum Yj is the complement of the lower dimensional strata.

F1GURE 3. The stratification Y = Yy IIY_1 IIY_5. The orange points make up Y_o;
the black segments (walls) make up Y_1; the rest (including the gray edges of the
triangles and the blue boundary arcs) is Yp.

The first step in stratified abelianization is the choice of a parallel section of the associated
projective bundle over JY, equivalently an eigenline X C E, of the commutator AlAzAflAg L
The generic stratum Yy = RMW 11 R@ 11 R®) has three contractible components, and for each
i € {1,2,3} the intersection R® N @Y has two contractible components; see Figure [4. By parallel
transport from dC we obtain for each ¢ € {1,2,3} two parallel sections of PE ‘ RO R@. In the
second drawing of Figure [4] the two sections in each component R of Yy are labeled by the two
vertices in the closure of R.

Assumption 4.4 (genericity). For each i € {1,2,3}, these sections are distinct.

Then, as in the 1-dimensional case, construct a global abelianization over the generic stratum:

(4.5) 7 Yy — Yo double cover
(4.6) L — Y, flat line bundle
(4.7) L — E ‘Yo isomorphism of flat bundles

The map = is the restriction of PE — Y over the image of the two sections, and the line bundle
is the restriction of the tautological line bundle £ — PFE to }70 C PE. The genericity assumption
allows us to construct from the embedding £ — PE x F.

As a preliminary, suppose {1, fs, {3 are three distinct lines in a 2-dimensional vector space F.
Define

(4.8) projy, : lo — {3
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1
R|R’
o
2 3

F1GURE 4. Computing the unipotent gluing and holonomy.

as the composition o —— F b, {3, where the second map is projection with kernel /; the
composition is an isomorphism.

Our task is to extend the abelianization to a structure over the lower strata. Fix a component [
of Y_1 and let R, R’ be the components of Yy on either side of I. The intersection point I N 9Y
picks out contiguous components of RN JY and R' N JY. Glue the corresponding sheets of the
double cover along I; there is a distinguished sheet along I from the contiguous components.
In this manner extend to a double cover

(49) T }72,1 — Y2,1
together with a section s of m over Y_;. Next, extend (4.6]) to a flat line bundle
(4.10) L—Ys_,

as follows. (We refer to Figure ) In passing from R to R, on the sheet obtained by parallel
transport from vertex 1 glue L — Y via the identity. Cover the identification of the sheet 2 in R
and the sheet 3 in R’ with the isomorphism (4.8]) of the line bundle L — Y[ across the segment
in Y_l.

We compare the isomorphisms (4.7]) on each side of Y_;. By construction, the unipotent auto-
morphism passing from region R to region R’ is
b dly — DL
1+ &2 — & + projy, (§2)

Lemma 4.12. Let X be the link of Y_o CY and Ao C A a component of \.
(i) The restriction of the double cover (4.9) to Ao is nontrivial.
(ii) The holonomy of (#.10) about m—1(Ng) is —id.

(4.11)

Proof. The proof of (i) is straightforward; we leave it to the reader. For (ii), the holonomy
about 771(\g) is the composition

id proj 12 ; id proj 2 i id proj L3

121 3 > L3 2 Lo 1-

(4.13) 0

Fix & € 01, and let & € fo, &3 € £3 be the unique vectors such that & = & + &3. Then under (4.13))

(4.14) S r— G — G r— L — =& — =1 O
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fg g&

Figure 5. Computing holonomy by composing projections.

4.2. Stratifications, spectral networks, and abelianization

The double cover together with the section over Y_1 is called a spectral network (subordinate
to the stratification (4.3)). Components of Y_; are the walls and Y_5 is the branch locus. Notice
that Lemma (1) implies that 572_1 — Y>_1 extends to a branched double cover Y — Y with
branch locus Y_5. The stratified abelianization of £ — Y is the data:

e the flat line bundle L — 172,1
e the isomorphism (4.7) on Yy
e the unipotent gluing (4.11) on Y_;

In this subsection we give formal definitions of this structure which apply in some generality.

Two-dimensional spectral networks were introduced by Gaiotto-Moore-Neitzke [GMNI] in their
study of supersymmetric 4-dimensional gauge theories. They have motivated many mathematical
constructions and conjectures since, related to hyperkahler geometry, enumerative invariants, and
asymptotic analysis of complex ODE, among others.

4.2.1. Stratifications. We use the definition [L, 4.3.2]. In that approach a type X of stratified
manifold of dimension n is defined from the top down. Namely, begin with a geometric structurﬂ
for the generic stratum in codimension 0. Then for each 1 < k < n specify the geometric structure
and link of a codimension k stratum; the link is an X-stratified (k — 1)-dimensional manifold. An
X-stratified manifold of dimension < n is built from the bottom up: first the highest codimension
strata are specified, then higher strata with the proper link are glued in successively. This heuristic
depiction is fleshed out precisely in Ll 4.3.2], and the heuristic specifications of the following
definition can easily be formulated in that precise framework.

Definition 4.15. An SN-stratification on a manifold-with-corners of dimension < 3 has the fol-
lowing specifications.

(i) codimension 0: a codimension 0 smooth manifold;
(ii) codimension 1: a codimension 1 submanifold—the link is a 0-sphere;
(iii) codimension 2: a Typeﬁ a codimension 2 stratum has link a circle with an arbitrary
codimension 1 submanifold consisting of a finite set of points; a Type b codimension 2
stratum has link a circle with a codimension 1 submanifold consisting of 3 points;

BThat is, a topological space X equipped with a continuous map X — BO,,. An n-manifold M with an X-structure
is equipped with a lift M — X of the classifying map of its tangent bundle.
4\ nemonic: Type a is “anodyne”, Type b is “branch.”
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(iv) codimension 3: a Type a codimension 3 stratum has link a 2-sphere with an SN-stratification
consisting of a codimension 1 trivalent graph whose vertices are of Type a; a Type b codi-
mension 3 stratum has link a 2-sphere with the standard SN-stratification of the boundary
of a tetrahedron (Construction below).

We use the term SN-stratified manifold for a manifold equipped with an SN-stratification.

NG

Typea Typeb

FIGURE 6. Links of codimension 2 strata. For Type a the link can contain an
arbitrary number of points of M_1, while for Type b it must contain exactly three.

Remark 4.16. There is a generalization of Definition to manifolds with boundary and corners.
The key point is that the SN-strata intersect boundaries and corners transversely.

In §§4.3] we define canonical SN-stratifications associated to semi-ideal triangulations of
2- and 3-manifolds.

Remark 4.17. An SN-stratified manifold M is decomposed as a disjoint union
(4.18) M=MyII M_1 10 Mo, I M_3, I Mo, IT M_g,

where M _o, is the union of codimension 2 strata of Type a, M_g, is the union of codimension 2
strata of Type b, and likewise M_3,, M_3}, are the unions of codimension 3 strata. This unusual
notation is convenient for subsequent definitions: the Type a strata of codimension 2,3 behave as
singular parts of the codimension 1 strata. Hence define

M>_30 =My M 1 I M 2, T M_3,,

(4.19)
Ms_gp = Mo 1T M_q 1T M_p, 1T M_g, 1T M_oy,.

4.2.2. Rank one Lie groups. Spectral networks and abelianization data are conveniently formalized
in terms of a triple of complex Lie groups G D H D T in which T is a (complex) maximal torus of G
and H its normalizer. In this paper we restrict to the groups GL2C, SLyC, and very occasionally
PSL>C. For G = GLyC we choose T' = C* x C* the subgroup of diagonal matrices; then its
normalizer is

) n={(3 No{(0 )} cone

a 2-component Lie group with identity component T'. Choose the diagonal matrices to be the
maximal torus of SLoC and its image in PSLoC to be the maximal torus in the projective linear
group; in each case the normalizer H of T has two components. Let U C GL2C be the subgroup

(4.21) U:{<(1) i):ze@}

of upper triangular unipotent matrices. Then U C SLoC as well, and U projects to a unipotent
subgroup of PSL»C.
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Remark 4.22. Each of the three groups G acts on the projective line P(C?) = CP!. In each case
H is the stabilizer subgroup of the 2-point subset A C CP! of the axes in C?, and T is the subgroup
of elements of H that act as the identity on A. The stabilizer of the first axis £ C C? is a Borel
subgroup B C G, and there is a diffeomorphism G/B ~ CP!. Then for G = GLyC or SL»yC, the
Borel B acts linearly on ¢ and C?//, and U C B is the subgroup of elements that act trivially on
both ¢ and C?/¢.

4.2.3. Definition of spectral networks and stratified abelianization data. Assume G O H D T is
one of the three triples defined in We refer to it as the pair (G, T), since H is determined
as the normalizer of T' C G. Some notation: If Q — M is a principal H-bundle, then we denote
by ¢(Q) = Q xg G — M its “inflation” to a principal G-bundle. Also, if w C M_1 is a wall (a
component), and R — w is a principal T-bundle, then there is an associated fiber bundle of groups

(4.23) Uy =R x; U — w,

where T acts on U by conjugation.

The following definition applies to rank one groups, as does Definition [4.15} there are stratifica-
tions, spectral networks, and stratified abelianization data in higher rank as well [GMNI, (GMN2,
LPL IM].

Definition 4.24. Let M be a compact manifold of dimension < 3 with boundary. Suppose M is
equipped with an SN-stratification M \ OM = Mo II M_1 II M_9y IT M_3, IT M_oy, 1T M _3y,.
(i) A spectral network N = (m, s) subordinate to the stratification of M is:
e a double cover m: Mz,ga — M>_3, which restricts nontrivially to the link of each
point in M_oy
e a section s of mover M_1 II M_o, I1 M_3,
(ii) Stratified abelianization data A= (P,Q,u,0) of type (G,T) over (M,N) is the data:
e a principal G-bundle P — M with flat connection
e a principal H-bundle @ — M>_3, with flat connection
e an isomorphism of double covers u: Mz_ga — Q/T over M>_3,
e a flat isomorphism 6: ((Q) — P over M,
We require that the discontinuity of 8 lie in U,, — w as we cross a point of the wall w C M_1.

Observe that the section s reduces the restriction of Q — M>_3, over M_1 I1 M_9, I1 M_3, to a
principal T-bundle; on a wall w C M_; the fiber bundle of groups U, — w is defined in (4.23).
Stratified abelianization data over a given (M,N) form a category; we leave to the reader the
definition of the morphisms. Our usage of the term ‘spectral network’ often includes the underlying
SN-stratification.

Remark 4.25. Definition [£.24] is adequate for our purposes but does not capture the most general
rank one spectral networks which can occur in nature, e.g. from trajectory structures of meromor-
phic or holomorphic quadratic differentials on Riemann surfaces; see [GMN2, [HN|, [Fe], for example.

4.3. 2-dimensional spectral networks from triangulations

Let A% denote the standard affine plane. Denote the convex hull of a subset T' C A% as Conv(T).
An affine triangle A is the convex hull Conv(pg, p1,p2) of three non-collinear points pg, p1, p2. Fix
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some € € (0, %), say € = %. The truncated triangle A C A is the convex hull of the six points

1—¢e)p; +ep; for i = j, as shown in Figure [7, We will sometimes refer to “edges” or “vertices” of
D Dj J g g

~

F1GURE 7. The truncated affine triangle A contained in the affine triangle A.

A, meaning the corresponding edges or vertices of A.

Let S° be the quotient of a finite union of disjoint truncated affine triangles {A; };c; whose edges
are identified in pairs via affine isomorphisms. Then S° can be given the structure of a smooth
compact 2-manifold with boundary The gluing of edges induces an equivalence relation on the
3N vertices of the N triangles A;; each equivalence class of vertices corresponds to a boundary
component of S°, with the topology of a circle. We sometimes call such an equivalence class a
“glued vertex” or simply a “vertex”. Partition the glued vertices into two subsets of interior and
ideal vertices. Let S be a space obtained by gluing a copy of the standard disc to each boundary
component of S° corresponding to an interior vertex. S is a smooth compact 2-manifold with
boundary; m(9S) is canonically identified with the set of ideal vertices.

Definition 4.26. Let Y be a compact 2-manifold with boundary. A semi-ideal triangulation of Y is
a diffeomorphism S — Y, where S is a space of the sort just described. The semi-ideal triangulation
is called ideal if all vertices are ideal, and just a triangulation if all vertices are interior.

A=A TTAITA 5,

F1GURE 8. The SN-stratification of a truncated affine triangle.

Construction 4.27 (SN-stratification of a truncated triangle). A truncated affine triangle A
carries a canonical SN-stratification A = Ay II A_; IT A_gy, as follows. Let ¢ = (po + p1 + p2)/3 be
the barycenter of A. Set A_g, = {c}; the stratum A_; is the union of the three line segments
(Conv(ps,c) NA)\A_,,,i=0,1,2; and Ag is the complement of A<_;. This SN-stratification is
depicted in Figure

Construction 4.28 (SN-stratification of the standard disc). Let D be the standard closed disc.
For any finite subset W C 9D we obtain an SN-stratification D = Dy LI D_1 II D_s, as follows.
Let ¢ be the center of D. Then D_g9, = {c}; D_; is the union of line segments connecting ¢ to each
point of W; and Dy is the complement of D<_;. See Figure @

I3Indeed, since edges are identified in pairs, a neighborhood of any point on a glued edge is a disc; moreover the
link of a vertex is easily seen to be a circle.
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@ D=Dy1ID_111D_o,

F1GURE 9. An SN-stratification of the disc, determined by a finite subset of the
boundary circle.

Construction 4.29 (SN-stratification of a triangulated surface). Let Y be a compact 2-manifold
with boundary equipped with a semi-ideal triangulation T. The transport of the SN-stratifications
on the truncated triangles and the discs around interior vertices defines an SN-stratification of Y.
Figure [3|is an example where there are no interior vertices. See Figure [L0| for an example with an
interior vertex.

F1GURE 10. A portion of the SN-stratification of a semi-ideally triangulated closed
2-manifold with an interior vertex (center).

Construction 4.30 (spectral network on a triangulated surface). Let A = Ag ITA_; IT A_o, be
the canonical SN-stratification of a truncated affine triangle (Figure . The boundary of each
component of Ay contains precisely one edge of A; its boundary consists of two distinguished
vertices. Let m: Ag — Ag be the (trivializable) double cover whose fiber consists of those two
distinguished vertices. Each component of A_; is in the closure of two components of Ay, with one
vertex in common. Glue the corresponding sheets of the double cover to define 7: KZ—l — As>_4
together with a section s over A_1q, i.e., a spectral network on A. This construction glues across
edges and extends to discs around interior vertices, and thus transports to give a spectral network
N7 over a semi-ideally triangulated surface (Y, 7).

Construction 4.31 (stratified abelianization data on a semi-ideally triangulated surface). Con-
sider first G = GL2C or G = SLyC. Assume that the compact 2-manifold Y has no closed compo-
nents and is equipped with a semi-ideal triangulation 7. Let P — Y be a flat principal G-bundle.
On each component of dY, choose a flat section of the associated CP'-bundle P/B ‘ gy — 0Y, as
in see Remark [4.22] for the definition of the Borel subgroup B C G. Also choose an element
of the fiber of P/B over each interior vertex. Use parallel transport—as in to obtain two flat
sections s, s’ of P/B }Y0—> Yy. The following is a generalization of Genericity Assumption

Assumption 4.32 (genericity). The sections s, s are nowhere equal.

Identify P — Y as a bundle of bases of a rank 2 complex vector bundle £ — Y. The submanifold
of bases contained in the lines defined by the sections s, s’ determines a reduction of the principal
G-bundle P — Yj to a principal H-bundle Q — Yy. For ¢ € Y_q, the limits of s, s’ from the two
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sides of Y_1 C Y>_; give three points ¢, 6,05 € (P/B). in the projective line PE, over c¢. One
of the sections has the same limit #; on both sides; the other has two possibly distinct limits. Let
By, C Aut P, be the subgroup of elements which fix ¢;. Then (P/B), is the projectivization PE,
of the 2-dimensional vector space E., the group By, acts linearly on E., and we define ¢. to be
the unipotent element . Glue using . at each ¢ € Y_1 to construct a flat principal H-bundle
@ — Y>_1. This gives most of the stratified abelianization data Definition [£.24ii). We leave the
rest to the reader, as do we the slight modifications for G = PSL»yC.

Remark 4.33. The projection @ — 172_2&, defined via the isomorphism g of double covers, is a
principal T-bundle. If G = SLoC or PSLyC, then T = C*. If G = GLsC, there is an associated
principal C*-bundle from the character <)‘1 /\2) — A of T. Let L — )72,251 be the associated flat

line bundle. Lemma holds in this more general situation.

We conclude with a theorem about stratified abelianizations over a single triangle A equipped
with the standard spectral network A depicted in Figure 8] Specialize to G = SLyC and the
corresponding subgroups T, H, B, U. In this case there is a unique stratified abelianization, whose
automorphism group is Iy in the following sense.

Proposition 4.34. Let A = (P,Q,p,0) and A" = (P',Q', 1/, 0") be stratified abelianization data
over (A, N'). Then there is an isomorphism A — A', unique up to composition with the simulta-
neous action of —1 on P and Q.

Proof. First we construct a map of flat bundles g : @ — @’. The monodromy of @ around 0A
lies in H\ T, since Q/T ~ A is the nontrivial double cover, and likewise for Q'. But now recall that
all elements of H \ T are conjugate in H. It follows that there exists an isomorphism ¢¢g : Q@ — Q'
of flat H-bundles, unique up to composition with an automorphism of () — A.

The automorphism group of Q — A is the commutant of the monodromy, which is a cyclic group
of order 4; either generator acts nontrivially on @/T, and the order 2 element acts by —1 € H.
Thus, by composing with an automorphism of @ — A if necessary, we may arrange that popg = 1/,
and the remaining freedom in g is composition with the action of —1 € H.

Next we construct a map of flat bundles ¢p : P — P’. Along each wall w we have a section
sw of Q/T. On either side of the wall, 6(s,) then gives a section of P/T — w; the condition
on the discontinuity of 6 ensures that their projections to P/B agree, thus giving a section o,
of P/B — w. Because G/{%1} = PSLyC acts simply transitively on triples of distinct points of
G/B ~ CP!, there exists pp : P — P’ which maps o, to o/, for all three walls w, and such a ¢p is
unique up to a sign.

Finally we need to check that on Ay we have (possibly after composing ¢p with the action of

-1€@G)
(4.35) op=0o0pgoft.

For this we consider the difference £ = (p]_Jl 0§ opgo 6~! which is a covariantly constant section
of Aut(P)|a,, with two properties:

e In a component of Ag bounded by two walls w, w’, the difference £ belongs to the subgroup

Tww == T preserving o, and o,,. Thus ¢ acts by a constant scalar Ay, on 0y, with A\ = A L.
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e The discontinuity of £ across w belongs to the subgroup U,, >~ U. It follows that A, is the
same on both sides of w.

Labeling the three walls as w; (with ¢ mod 3), the above properties say Ay, ., = )\;3, which gives
Awiy = )\;Z,l, SO Ay = Ayl = Aw;,, and thus § = +1. This completes the proof. U

4.4. 3-dimensional spectral networks from triangulations

We begin with a 3-dimensional analog of Definition [4.26] A tetrahedion A in A? is the convex

hull Conv(pg, p1, p2, p3) of four points in general position. The truncated tetrahedron A C A is

the convex hull of the 12 points (1 — €)p; 4+ ep; with j # i. (Recall € € (0,1), say ¢ = %) See
Figure [T1] We will sometimes refer to “faces”, “edges” or “vertices” of A, meaning those of "A.

Let S° be the quotient of a finite union of disjoint affine truncated tetrahedra {A;};c; whose
faces are identified in pairs via affine isomorphisms. Then S° can be given the structure of a smooth
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FIGURE 11. A truncated tetrahedron.

compact 3-manifold with boundary. The gluing of faces induces an equivalence relation on the 4N
vertices of the N tetrahedra A;; each equivalence class of vertices corresponds to a boundary
component of S°, which is a compact connected surface. We sometimes call such an equivalence
class a “glued vertex” or simply a “vertex”. Partition the glued vertices into two subsets of interior
and ideal vertices, subject to the condition that the boundary component corresponding to an
interior vertex must be diffeomorphic to S?. Let S be a space obtained by gluing a copy of the
standard 3-disc to each boundary component of S° corresponding to an interior vertex. S is a
smooth compact 3-manifold with boundary; mo(9S) is canonically identified with the set of ideal
vertices.

Definition 4.36. Let Y be a compact 3-manifold with boundary. A semi-ideal triangulation of Y is
a diffeomorphism S — Y, where S is a space of the sort just described. The semi-ideal triangulation
is called ideal if all vertices are ideal, and just a triangulation if all vertices are interior.

FIGURE 12. The canonical SN-stratification on a truncated affine tetrahedron.

Construction 4.37 (Spectral network on a tetrahedron). Let" A = Conv(pg, p1, p2, p3) be a tetra-

hedron in A3. Let ¢; = (pi+1+ pis2+pir3)/3 be the barycenter of the face opposite p;, i = 0,1,2,3;
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set ¢ = (po + p1 + p2 + p3)/4 the barycenter of A. (We use pj1q4 = p;, ¢ = 0,1,2,3.) Figure
depicts a canonical SN-stratification of A,

Afgb = {C}
4
A _g, = U Conv(gi,c) \ A_sp

=0
A_3, =10
4
4.38
(4.38) A _g, = U Conv(pi,c) N A\ A_g,
=0
4 3
A_= U U COnV(piJrjv(JiaC) na \ AZ*ga
i=0 j=1

Ay =A \ As_y

The link Y, of A _3p is a 2-sphere triangulated as the boundary of a tetrahedron. By Construc-
tion it has a canonical SN-stratification—the restriction of to Y.—and subordinate
spectral network; see Figure The same construction extends the SN-stratification to a 3-
dimensional spectral network subordinate to . Namely, each component U of A contains
one edge with two vertices, and each component of A _1 in U corresponds to one of those vertices.
Let ﬁZE — Ay be the (trivializable) double cover whose fiber over U is the aforementioned set
of two vertices, and glue along A _o, IT A _; by identifying the common vertex on each wall. This
produces a double cover 77:2;_33 — A>_3, with a section s over A _o, [T A_;, i.e., a spectral
network. There is an extension to a branched double cover WI/A/Z_Qb — A>_o, with branch
locus A _gy,.

0

FiGure 13. The spectral network on Y =Y.

Remark 4.39. Tt will be convenient to excise an open ball about ¢ as well as its inverse image on
the branched double cover.

We investigate stratified abelianization on the link Y = Y, of the barycenter of A. The stra-
tum Y_gp, of Y consists of 4 points, and the double cover m: Y>_o, — Y>_o, extends to a branched
double cover : Y — Y in which Y is diffeomorphic to a 2-torus. The double cover 7 is depicted
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1/

2:1
Vil

FIGURE 14. The branched double cover of the tetrahedrally triangulated 2-sphere
Y. by a 2-torus Y., and a distinguished triple of cycles on Y.

in Figure[I4] The boundary of the tetrahedron has been unfolded, as in Figure [I3] as has been the
covering 2-torus. Assume Y is oriented, and use 7 to induce an orientation on Y. To each edge
in A associate an element I'p € H; (172_23) as follows. Let A\p C Y>_1 be a loop which crosses £
twice transversely and encircles the branch points in the faces of A which abut E. Orient A\g as the
boundary of the region which contains these two branch points. The desired lift Ag is distinguished
from the other lift of Ag as follows: the lifts to Ag of the two intersection points Ag N E lie on the
sheet of the double cover labeled by the closest endpoint of E. Then I'g is the homology class of Ag
in Hl(?z_ga), the homology of the torus with the 4 branch points excised. Let vz € Hy(Y) be its
image in the homology of the torus. We invite the reader to deduce the following, using Figure

Proposition 4.40.
(1) The image of T'g € H1<172_23) under the deck transformation is —T'g.

(2) Opposite edges of A, such as 13 and 02 in the figure, induce the same homology class
mn Hq (Yz_ga).

(3) The three pairs of opposite edges lead to three homology classes ~yo,v1,v2 € H1(Y) which
sum to zero.

Cyclically order the three pairs of opposite edges so that the intersection product (v;,7vi+1) = +1
for i € Z/37Z. Denote the corresponding loops in 172,23 as Ag, Ap s A,

Let }N’,gb C Y be the set of 4 branch points 771(Y_gp,). Since Y is simply connected, any flat
G-bundle P — Y is trivializable. Fix ¢; in the fiber of the associated CP'-bundle P/B — Y
at each vertex p; € A. Let & ~ CP! be the space of horizontal sections of P/B — Y, and
let ¢; € € be the extension of the previous ¢; to a horizontal section. Assume that £y,...,03 € & are
distinct; this implies the Genericity Assumption [4.32] Use Construction to produce a stratified
abelianization. By Remark there is a flat line bundle

(4.41) L—Ys_ g,

with holonomy —1 around each of the 4 (branch) points in Y_sp. The isomorphism class of the flat
bundle (4.41)) is determined by its holonomy, a homomorphism

(4.42) hol, : Hy(Ys_9,) — C*.
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Set z; = holy (Ap,) for i € Z/3Z.

Proposition 4.43. The holonomies of L satisfy

1
(4‘44) Zi+1 = 1——.

2

Proof. We compute as in the proof of Lemma [4.12] using Figure as a guide. The holonomy
of L — Y around \ g, 18 the composition

Proje, projg,

(4.45) l 0 0

and the holonomy of L — Y around A o is the composition

projg, projg,

(4.46) 12 o ty

(Recall the projections in (4.8).) Choose ; € ffo, j =1 and then j = 3,0,2, such that

§1=8+&

(4.47)
= &2 + 20
for some z € C\ {0,1}. Then proj,, (&) = &1 and proj,, (§2) = (1 — 2)&o, etc. Hence the image

of & under (£45) is 2y, and the image of & under (£.46)) is (1 — )&. Therefore,

1 1 1
4.48 Zi+1 = hol; (A L. -1--=1-—=1—-—. O
(4.48) = holy g, ) = 1= S =L =1

Remark 4.49.

(1) One interpretation of z = hol; (A ) is as follows. Recall that 4 distinct points in a projective

line PF' are characterized up to isomorphism by their cross-ratio. If fy,¢1, /2,3 are the
corresponding lines in the 2-dimensional vector space F', then the cross-ratio is

(S0 N &€3) (&1 A &2)

4.50 e C\ {0,1}, & € £; nonzero,

(450 (&0 A €2)(E1 A €3) Vo1
where the numerator and denominator are nonzero elements in (Det F')®?; the ratio is
independent of the choice of & € Efo. Permuting the lines we obtain numbers z, 1/z, 1—z,
1/(1-=%), z/(#—1), (2 —1)/z for some z € C* \ {1}. In the case at hand, with the chosen
vectors £1,&2,83,&4 in (4.47), we compute

(4.51) (S0 N E3) (61 N &2) :Z:hOIL()‘Ei)'

(S0 N &2)(E1 N &3)
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(2) Asa corollary of Proposition [4.43|the product of the holonomies around the loops A Eo» AB AR,
defined after Proposition [4.40|is

(4.52) z(l—i) (1—1;):—1.

This leads to a sharpening of Proposition M(S) Let S C ?Z_Qa be a link of the 4 points
Y op C Ys_94, 5085 = |_|i:1 Sy is a union of 4 disjoint circles S, one surrounding each

branch point. Form the commutative diagram

Hy(S) — Hy(Ys_9,) — H(Y) —=0

49 N

H{(Y)——=0

in which the homomorphism x maps a generator of H;(Sg) to —1 € I, The bottom row
of (4.53) is a central group extension. The refinement of Proposition [4.40|(3) is that the

product of the images of [Ag ] in H1(Y) is —1 € p,.

(3) The space M = C \ {0,1} ~ CP'\ {0,1,00} is the domain of the real dilogarithm func-
tion , and the total space of an abelian cover M — M is the domain of the enhanced
Rogers dilogarithm . In our current setup M is a space of flat C*-connections on a
punctured torus. In we introduce an extra twist to get rid of the punctures, and so
identify M as a space of flat C*-connections on a torus. See [FN] for a development of the
dilogarithm function with this starting point.

Construction 4.54 (SN-stratification on a 3-disc). Let D be the standard closed 3-disc. Given
an SN-stratification of the boundary 0D = S2, of the form 9D = (0D)o 11 (0D)_1 11 (D) _2,, we
obtain an SN-stratification of D as follows. Let ¢ be the center of D. Then D_3, = (), D_3, = {c},
and each other stratum D, is the cone over (0D), with ¢ removed.

Construction 4.55 (Stratified abelianization data on a 3-manifold). Let X be a compact 3-
manifold with boundary, and suppose 7 is a semi-ideal triangulation. The SN-stratification (4.38))
and subordinate spectral network on each truncated tetrahedron transport to X, and extend over
the 3-discs around interior vertices. In particular, there is a branched double cover 7: X=X >_9h
with branch locus X_o,.

Suppose P — X is a flat principal G-bundle. Assume there existﬁa flat section of the restriction
of the associated CP*-bundle P/B — X to dX, and furthermore that we can and do choose a section
such that Genericity Assumption hold. Excise from X open balls about the barycenters of the
tetrahedra. Let X C X be the total space of the double cover m with the inverse images of the balls
excised. Then X is a compact manifold with boundary 0X 11 0X 11 §1 m---109, ~, where each 5’1
is a 2-torus. The preceding gives an SN-stratification of X with strata of codimension 0, 1, and 2,
and a flat line bundle L — X>_3,. The holonomy around a circle linking X_g, is —1.
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7

FIGURE 15. The two faces of the j' tetrahedron which abut the edge E.

Remark 4.56 (Thurston gluing equations). Each tetrahedron AY) in Constructionm has a shape
parameter z\) € C\ {0, 1} which is one of the holonomies defined before Proposition (There
are three possibilities labeled by the three pairs of opposite edges of A(j).) Let E be an edge in the
triangulation T, and let Sg C {1,..., N} be the set of j such that E is an edge of AU For j € Sg,
let ; be the loop in the torus §j which is called “yg’ in the text following Remark M Then

(4.57) > =0 in Hy(X).
JESE

To prove this relation consider Figure Depicted are the two faces of AU, j € Sg, which abut F
and the image 7, of the corresponding loop v;. Now each of the triangular faces occurs in exactly
one additional tetrahedron A(j/), j' € Sg\{j}, and it does so with the opposite orientation. Hence
the halves of 7, and 7,/ contained in that face cancel, as do the halves of their lifts v; and ~;. This
leads to (4.57)). (The cancellation is in homology; the actual half curves are not strictly opposite.)
The relation in homology immediately implies the Thurston gluing equation [T2, §4.2]

(4.58) IT 2% =1,

JESE

where we choose the edge E to define the shape parameter in each AU, j € Sp.

5. Levels and Chern-Simons invariants

We begin in by proving relations among the Chern-Simons levels of GLyC, SLoC, and their
various subgroups. This is the topological basis for abelianization. These topological computations
imply relations among secondary differential geometric invariants via differential cohomology. We
provide a brief introduction to differential cohomology in Appendix[A] In §5.2] we introduce the spin
refinement of Chern-Simons theory and prove appropriate relations among the “spin levels”. We
fully embrace differential cohomology in where we prove a key result: Theorem It states,
heuristically, that moving in the unipotent direction does not change Chern-Simons invariants. We
also prove results about C* Chern-Simons theory (Theorem Corollary Corollary

I6Existence condition: on each component of X the holonomies around loops at a basepoint have a common
eigenline.
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that are important in our later work. We conclude with a global statement, Theorem of
abelianization. Our main focus, stratified abelianization, is the subject of the subsequent §§6/{8]
In this section we change notation slightly. Set G = GL,C and let H ) T be the subgroups defined
in Also, set G = SLoC and let H,T be the associated subgroups; the unipotent subgroup U
is a subgroup of G, hence too of G.
We remind of a choice made in Example

Convention 5.1. 3-dimensional Chern-Simons theory .Z; - is based on the level —c; € H 4(BSLyC; 7).

In that section the level is encoded in a symmetric bilinear form on the Lie algebra, and
(3.8) is the form that corresponds to —cy. In the next section we compute the restriction of —cq
to the subgroup H C G, and then we will define Chern-Simons theory on H—or, rather, a spin
refinement—in terms of that restricted level.

5.1. Levels and abelianization

5.1.1. Levels in GLoC. Our goal is to relate Chern-Simons invariants of principal G-bundles to
Chern-Simons invariants of H- f— and U-bundles, and to do the same for G-bundles. These derive
from relationships among appropriate degree four 1ntegral cohomology classes on the classifying
spaces, which we prove in this section. The inclusions T c HcG and surjective homomorphism
H — Ity lead to a diagram

B/,u2

in which p is a double cover and the vertical maps p,q form a fibration sequence. The section s
of ¢ is the classifying map of the inclusion p, = {3, (9Hr <= H. Let ¢; € H¥(BG;Z),
i = 1,2, be the universal Chern classes, and p; = c% — 2c, the universal first Pontrjagin class. Let
,d" € H%(BT;Z) be the first Chern class of the homomorphisms 7' — C* indicated by the matrix
(Z, 0) € T. Let a € H2(BW2;Z) be the generator; note 2a = 0.

0 Z”

Proposition 5.3. In diagram (5.2) we have the following equality in H4(B1€[; Z):

(5.4) p(d)? =r*p1 + ¢"a’.
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Proof of Proposition[5.3. From the Leray-Serre spectral sequence of the vertical fibration in (5.2)),
we deduce the split short exact sequencﬂ

q A~ * A
(5.5) 0 — H*(Bp,;Z) =——= H*(BH;Z) 2 HYBT;Z) ——=0

S

Hence a class in H 4(Bf—] ;Z) is determined by its pullbacks under p* and s*.
For o: BT — BT the deck transformation, we have p*p, = 1 + ¢*. Hence

(5.6) () = () + ()2 = (e — 260) = T (1),

because ¢/, ¢’ are the Chern roots of the universal G-bundle. Since s induces an isomorphism on 7y,
the fiber product of s and p is contractible, from which s*p, = 0. Also, s*r*(c? — 2¢,) = (s*1*¢;)?,
since H 4(B/,u2; Z) is torsion of order two. The composition r o s classifies the sum of the complex
sign and trivial representations of Z/2Z, so its first Chern class is the generator a € H? (B, Z).
Combining the preceding with s*¢* = id we deduce . O

Remark 5.7. For G = GLoC a level mc? + nc,y is parametrized by integers m,n € Z. By a similar
argument to the preceding proof, p.c’ = r*c; + ¢*a, from which

(5.8) (poc)? = 1% + ¢*a?.

Thus we can realize any level with n even by a linear combination of p.(c’)? and (p.c')?, up to g*a?.

5.1.2. Levels in SLoC. By restriction we deduce a formula for the “special” subgroups which
appear in the diagram

B#LQ

Lemma 5.10. In the diagram (5.9) we have ¢*a® = 0.

Proof. Let = € HI(B/MZ; Z/2Z) be the generator. Then a = [(x), where §: HI(—;Z/2Z) —
H9t1(—;Z) is the integral Bockstein, and also a? = #(z?). It suffices to prove ¢*z3 = 0. Passing to
maximal compact subgroups we replace T' — H — I, by Spiny, — Pin, — Ihsy- In the Leray-Serre
spectral sequence for the fibration sequence B//L2 — BPin, — BO2, the differential da: Eg N Eg 0

17t helps to observe that the action of I, ON HQ(B’_T"; Z) = 7 & Z exchanges the two summands, so the resulting
local system on B/,u2 is the pushforward of the trivial local system on its contractible double cover. Hence the

cohomology vanishes in positive degrees.
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sends the generator y € Hl(B/MQ; 7./27) to w? + wy € H*(BO2;7Z/2Z). (See [KT] for a review of
pin groups.) Then da(w1y) = w$ +wiws. Also, since y transgresses so too do its Steenrod squares,
and in particular d3(y?) = d3(Sq'y) = Sq¢*(dyy) = Sq' (w? + wa) = wyws. Hence w3 is killed when
pulled back to BPin, . Conclude by observing that

—_—
Ping

(5.11) \ /Zet

commutes. So the pullback of x equals the pullback of w;. O

The classifying map of the inclusion i: T < T satisfies (Bi)*¢ = —(Bi)*¢" = ¢ for ¢ €
H? (BT; Z) a generator. Also, i*r*cy = 0. The following is a corollary of Proposition and
Lemma [5.10]

Corollary 5.12. In diagram (5.9) we have the following equality in H* (BH;Z) :
(5.13) pec’ = —2r*co. O

Remark 5.14. Note the minus sign in (5.13)! We must be mindful of it when we define a C*
Chern-Simons theory which is compatible with our Convention for SLoC Chern-Simons theory.

5.1.3. Abelianization of connections. Let us now focus on G = SLoC. If X is a 3-manifold with a
flat H-connection, then global abelianization of the associated flat SLyC-connection is encoded in
the commutative diagram

X ——> B(CX)°
(515) wl lp
X — BH? = B(SL,C)?

where we write C* for the group of diagonal matrices T' C SLoC. The pullback square defines the
(unramified) double cover m. Stratified abelianization is encoded in the diagram

Xs_5, —> B(C*)?

i g

(5.16) X>_sa BHY "~ B(SL,C)?

in which the bottom triangle commutes on Xg. In both the global and stratified cases our goal is to

compute the Chern-Simons invariant of the flat SLoC-connection on X in terms of a Chern-Simons
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invariant of the flat C*-connection on X. The SLoC Chern-Simons invariant is the secondary
invariant of —cy € H*(BSLyC;Z); the C* Chern-Simons invariant is the secondary invariant of
¢? € HY(BC*;Z). There is a mismatch for abelianization: the factor of —2 in (5.13). To rectify
we must divide the C*-level by 2 (and include the minus sign). This can be done—a secondary
invariant for “c?/2” exists—but at the cost of introducing a new cohomology theory and a spin
structure on X , as we explain in

Remark 5.17. Levels have a refinement in differential cohomology, and the Chern-Simons invariants
are nicely located in the differential theory; see [ChS, [HS| [F'2) [FH2|. We give a précis of differential

cochains in Appendix [A] and use this point of view on Chern-Simons invariants in §5.3} see also

[ENL Appendix A]. This framework makes clear that cohomology identities immediately imply
corresponding relations among secondary invariants.

We conclude our discussion of levels in ordinary cohomology by examining the restriction to the
unipotent subgroup U in (4.21). Recall (Definition ii)) that the failure of the bottom triangle
in to commute on all of X>_3, is due to the unipotent gluing along the walls (components
of X_1) of the spectral network. Since U = C is contractible, so is BU, and the following is
immediate.

Proposition 5.18. The restriction of any level of GLyC or SLoC to U wvanishes. U

In principle, then, the unipotent gluing does not change the Chern-Simons invariant and essentially
allows us to proceed as if the bottom triangle in ((5.16|) commutes on X>_3,, though this heuristic
requires a bit of work to make precise; see Theorem [5.61}

5.2. Levels for spin Chern-Simons theory

5.2.1. E-cohomology and spin C* Chern-Simons theory. To divide ¢> € H*(BC*;Z) by 2, we pass
to a cohomology theory simply denoted E, the nontrivial extension

(5.19) HZ - E L5 ©2H7/27
of Eilenberg-MacLane spectra; the k-invariant X2HZ/27Z — Y HZ is 3 o Sq?, the composition of
the integral Bockstein and the Steenrod square. For any topological space S, the extension (/5.19)

leads to a long exact sequence of cohomology groups

(5.20) s HY(S: Z) = BU(S) < 7972(8;7,/27) L5 getl(s,7) —s -

Multiplication by 2 on E4(S) factors through i:

HY(S;Z) ——~ E1(5S)
(5.21) Z\L B : lz
HY(S:Z) -~ E9(S)
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For S = BC*, a slice of the long exact sequence (5.20)) is the nontrivial abelian group extension
(5.22) 0 — HY(BC*;Z) - E*(BC*) — HX(BC*,Z./2Z) —> 0,

i.e., E*(BC*) is infinite cyclic and i(c?) is twice a generator A € E*(BC*). The class A plays the
role of “c?/2”. Passing to maximal compact subgroups there is a generalization from T 22 SO,
to SOy for any N > 2. Namely, there is a characteristic class A\ € E*(BSOy) whose image
under k @ j is (p1,wq) € HY(BSOy;Z) ® H*(BSOy;Z/27Z). Furthermore, X is additive: for real
vector bundles V', V" — X over a space X we have

(5.23) AV e V") = AV e ANV").

The pullback of A to E*(BSpiny) is the image under i of a class A € H*(BSpin; Z) whose double
is p1. Also, A = wy (mod 2) if N > 4. We refer to [F3] §1] for background about this cohomology
theory E and proofﬂ of these assertions.

The characteristic class A € E4(BC*) has a lift Xe E’é(BVCX) to the differential E-cohomology
of the classifying object for principal C*-connections. (See [EN, Appendix A].) Here ByC* is a
simplicial sheaf on smooth manifolds, in the sense of [FH2|, for example. There is also a simplicial
sheaf B;C* which classifies flat C*-connections, as well as a map i: B;C* — By C*. The pullback
i*X is a flat differential class. Define the spectrum EC/Z(1) as the cofiber of the composition

k T —1

(5.24) E-Y HZ HC.

Its nonzero homotopy groups are mg = C/Z(1) and 7_1 = Z/27Z. The topological space B(C*)? is
a geometric realization of the simplicial sheaf B;C*. Then i*\ determines a characteristic class

(5.25) X € E*(B(C*)%;C/z(1))

in the cohomology theory EC/Z(1).

An oriented real vector bundle has a Thom class in integer cohomology, but a Thom class in
E-cohomology requires a spin structure [F3l Proposition 4.4]. In particular, E-cohomology classes
can be integrated on compact spin manifolds. This leads immediately to a fully extended unitary
3-dimensional topological field theory .#¢x on spin manifolds equipped with a flat C*-connection,
analogous to the usual Chern-Simons theory on oriented manifolds. It has a fully local
version defined as a map of spectra analogous to :

(5.26) MSpin AB(C*)’, —4%, MSpin A(EC/Z(1)3)5 —— SPEC/Z(1).
The field theory assigns a Z/2Z-graded line to a closed spin 2-manifold with flat C*-
connection. As noted in Remark we need the theory for parametrized families of flat con-

nections, so for nonflat connections.

18F ven if the precise statement does not appear in [F3], the same techniques apply. The standard fact that A #0
(mod 2) follows since H*(BSpiny;Z) = Z and ) is a generator, if N > 4.
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Remark 5.27. In fact, the grading of the spin Chern-Simons line of a C*-connection on a surface is
determined by the parity of the degree of the underlying principal C*-bundle. For a flat connection
that degree is zero, hence the line is even. Also, to a C*-connection over a spin 1-manifold, the spin
Chern-Simons theory assigns an invertible module over super vector spaces. See Appendix [C] for
more details as well as a justification for ignoring these Z/2Z-gradings in the body of this paper.

As a companion to Convention we signpost our choice of sign for the level, which is motivated
by Corollary below.

Convention 5.28. 3-dimensional spin Chern-Simons theory .7« is based on the level A € E4(BC>).

This spin Chern-Simons theory is developed in some detail in [FN]. For future use we recall
one particular result: [FN, Theorem 3.9(vii)]. Let Y be a closed 2-manifold endowed with a spin
structure o, and fix a principal C*-bundle 7: @ — Y with connection © € Q!(Q;C). A section ¢
of m produces

(529) Tt eyCX(Y;G;O-),

a nonzero element in the spin Chern-Simons line computed from the C*-connection © and the spin
structure . Let h: Y — C* be a smooth function. Then ¢’ = ¢ - h is another section of 7, and the
ratio of nonzero elements in ¢« (Y;0;0) is

(5.30) e, exp < | ron )
Ty 47'('\/
where

Here q,: HY(Y;Z/27Z) — 7Z/2Z is the quadratic refinement of the intersection pairing given by the
spin structure o, and [h] € HY(Y;Z/2Z) is the reduction modulo two of the homotopy class of h.

5.2.2. Levels in E- cohomology We revisit Proposition and Corollary in E-cohomology,
so effectively divide and - 5.13)) by 2

Lemma 5.32.
(1) The map

(5.33) H*(BSL,yC; Z) - E*(BSLyC)

s an isomorphism.
(2) The group extension

(5.34) 0 — HY(Bp,: Z) — E*(Bp,) L+ H*(Bp,; 2/2Z) — 0

s nontrivial: E4(B/,u2) is cyclic of order 4.
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(3) The pullback map E4(B/,u2) — E*(BZ) is zero.
Proof. Statement (1) follows from H?(BSL2C;Z/27Z) = 0. For (2), we claim

(5.35) a:=\L@&L)e E'(Bp,)

has order 4, where L — BAUQ is the real Hopf line bundle. For this observe L%? — B//A2 is
orientable, jA(L%?) = wq(L¥?) = 22, and 2o = 2A\(L%?) = A\(L%) # 0 since wy(LP?) = 0 and
wy (L) = % # 0, so A(L®*) # 0. (We use the Whitney sum formula (5.23).) Finally, (3) follows
immediately from E*(BZ) = 0. O

Observe that 2a = i(a?), where a € HQ(B/,uQ; Z/27) is the generator.

Remark 5.36. Let p: Z — Iy be the homomorphism n — (—1)". Observe that the pullback
(Bp)*a € E*(BZ) vanishes, since BZ ~ S' and E*(S') = 0. The Jt, Chern-Simons theory based
on « defines invariants of compact oriented manifolds equipped with a double cover. A lift of a
double cover to a principal Z-bundle trivializeﬂ the I, Chern-Simons invariant.

Let A, € E4(B@) be the pullback of the generator A € E4(BC*) under det: G — C*, where G =
GL,C; then 2, = i(c2). Let N € E4(BT) be the unique class such that k(X) = ¢% (See (5.21)
for the definition of k.) Identify ¢y € H*(BSLyC;Z) with its image under i in E*(BSLyC).

Proposition 5.37. In diagram (5.2) we have the following equality in E4(Bﬁ):
(5.38) PN = r*()\é —¢y) + ¢

Proof. In the diagram

H*(Bp,; ) —— E*(Bp,) —— H?(By,; 7,/21)

o Nq - Nq - Nq

(5.39) HYBH;7) ——~ EY(BH) —’—~ H2(BH;7./27)

| | l’

HYBT:Z) —~ EYBT) —~ H?(BT:;Z/22)

the rows are exact, and the first and third columns are exact; see . It follows that the second
column is also exact. In other words, a class in E4(BITI ) is determined by its pullbacks under p*
and s*. Also, observe that twice is , which implies that the two sides of differ
by an element of order dividing 2. Since E4(BJA1) is torsionfree, as can be deduced from ,
it follows that the pullback under p* of the two sides of agree. For the pullback under s*
we argue as in the proof of Proposition the )\a—class of the complexr sign representation is «;

see ((5.35)). O

9The Chern-Simons theory is defined using a geometric representative of a, say a map B//x2 — FE4, where Ey is

the 4-space in the spectrum E, sometimes denoted Q°°**E. The trivialization is based on a choice of null homotopy
of the composition BZ — Bju, — Ea.
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Corollary 5.40. In diagram (5.9) we have the following equality in E*(B(H)):
(5.41) PxA = —17co + ¢Fa. O

Note from Lemma that 2¢*a = ¢*a® = 0. Corollary follows immediately from Proposi-
tion The minus sign in ((5.41)) is the spin echo of the minus sign in (5.13)); see Remark

5.3. Chern-Simons theory and differential cochains

Shortly after the introduction of secondary invariants of connections by Chern-Simons [CS2],
Cheeger-Simons [ChS| recast them in terms of new objects in differential geometry: differential
characters. Differential cohomology, which we discuss briefly in Appendix [A] introduces cochains
into the theory of differential characters; it is the natural home in which to express the full locality
of Chern-Simons invariants. In [EN|, Appendix A] we prove some properties of spin C* Chern-
Simons theory using generalized differential cohomology, and in we take this up to prove a
lemma we need later. Otherwise, in this section we restrict to ordinary differential cohomology
with complex coefficients and Chern-Simons theory for G = SLoC. Our main goal is to prove
Theorem [5.61| about the behavior of Chern-Simons invariants under unipotent modifications. We

begin with some preliminaries in §§5.3.1] A global abelianization theorem appears in §5.3.6]

5.3.1. The universal SLoC-connection. Let G be a Lie group with finitely many components.
There is a groupoid-valued sheaf By G on the category of smooth manifolds whose value on a
test manifold M is the groupoid of G-connections; see [FH2| for an introduction and details. The
sheaf By G classifies G-connections: there is a universal principal G-bundle

with connection ©®"™V, and if P — M is a principal G-bundle with connection © over a smooth
manifold M, then there is a unique G-equivariant map ¢: P — EgG which satisfies preuwlY = @,
Moreover, the universal connection on (5.42)) is a weak equivalence

(5.43) owv: EoG — Q' g,

where Q! @ g is the set-valued sheaf which assigns to a test manifold M the set Q1,(g) of g-
valued 1-forms on M. The total space EgG of assigns to M the discrete groupoid of
principal G-bundles Q — M with connection © € Q!(Q;g) and section s: M — Q; the universal
connection maps the triple (@, ©, s) to the g-valued 1-form s*O.

The universal Chern-Simons-Weil invariant is a differential cohomology class on ByG. The
variant H ;; of differential cohomology we need uses complex differential forms. The construction
of H (.C as a homotopy fiber product [HS, BNV [ADH]| leads to the exact sequence

(5.44) 0 — He(BoG) — HYBG:Z) x Q4 (BgG;C) — HY(BG;C)
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in which Q‘Cll(BvG; C) denotes the vector space of closed complex differential forms. The main
theorem of [FH2] computes Q2 (BgG;C) as the vector space of real linear G-invariant symmetric

bilinear forms g x g — C. For G = SLoC we choose —c¢o € H4(BSL2(C; Z) and the bilinear form

1
(5.45) (A,B) = 5.2 trace(AB), A, B € slhC,

~ 4
as in Example see also Convention By (5.44) there is a unique lift —¢; € H(BySL2C),
the desired universal Chern-Simons-Weil class. This gives, for each principal G bundle with con-

~4
nection © over a smooth manifold M, a differential characteristic class —¢2(©) € Hp(M). We
This
depends on a contractible choice; see [F2] §3.1] or [HS), §3.3] for detailed constructions. We use the

need a refinement to a differential cocycle representative of this class in ZC(M ); see §

same symbol ¢ for the differential cocycle representative, and we make clear whether it denotes
the cocycle or cohomology class.

Suppose P - M -2 S is an iterated fiber bundle in which 7 is a principal SLyC-bundle
and the fibers of p are manifolds with boundary of dimension n < 3. Assume given an orientation
on p, i.e., on the relative tangent bundle T'(M/S) — M. Let © € Q!(P;sl,C) be a connection.
We obtain a differential cocycle —¢3(©) € Eé(M ). The Chern-Simons invariant of this family of
SLsC-connections is

(5.46) Fr,c(M — 5;0) =2mv/—1 (—2(9)),
M/S

a differential cochain in ééﬁn(S ); see for the integral. For n = 3 and assuming the fibers of
M 25 S are closed, is a function S — C/Z(1), as in ([3.4). For n = 2 and closed fibers
is a complex line bundle with covariant derivative over M, the Chern-Simons line bundle.
For n = 3 and a fiber bundle of manifold with boundary, (5.46) is a section of the Chern-Simons
line bundle computed from the boundaries; see Theorem

Consider the pullback —7*¢, € H é (EgSLyC) to the total space of the universal bundle (5.42).
Let €5 C Q denote the presheaf of closed differential forms with integral periods. The exact

sequence

03(EgSLyC; C)
03 (Ey,SLyC; C)

(5.47) 0— s H(BySLaC) —s HA(EgSL,C;C)

from [HS| (3.3)] reduces to an isomorphism (the middle map), since H*(EgSL2C;C) = 0. Hence
—7*¢y reduces to a 3-form modulo closed 3-forms with integral periods. There is a canonical choice
of 3—form the Chern-Simons form 7 € Q3(EgSL2C; C); see (3.2). To a triple (Q — M, ©, s) which
represents a map M — EgSL2C, the pullback of n to M is

1 2
(5.48) —S?trace(a/\da—i—ga/\a/\a) € Q3(M;C),

20Use (A.10) to deduce the existence of this 3-form.
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where a = s*@ € Q'(M; s,C). The Chern-Simons invariant of an oriented family P — M £+
with connection and trivialization s: M — P can be computed by integrating the 3-form (}5.48))
over the fibers of p. For example, if the fibers of p are closed of dimension 2, then the resulting
1-form on S is the connection form of a trivialized complex line bundle over S.

5.3.2. Restriction to the unipotent subgroup. Recall the unipotent subgroup U C SLsC defined
in (Z21).
Definition 5.49. Let M be a smooth manifold with boundary.

(1) A flat principal SLoC-bundle P — M is boundary-unipotent if its restriction 0P — OM to
the boundary admits a reduction to a flat principal U-bundle.

(2) Such a P — M is boundary-reduced if a reduction is chosen.

(3) Stratified abelianization data (P, Q, u1,6) over (M, N') is boundary-reduced if P is boundary-
reduced and 0(Q)|sns, lies in the U-bundle given by the reduction.

Note that a flat SLoC-bundle is boundary-unipotent iff on each boundary component the holonomies
around loops at a basepoint have a common eigenline. Moreover, if (P, @, u1, #) is boundary-reduced,
then Q|aas is a trivializable flat bundle, since H N U = {1}.

Let By U be the groupoid-valued sheaf of U-connections. Then there is a map ByU — By SL2C.

~ 4
Lemma 5.50. The restriction of the universal second differential Chern class ¢; € H¢(BgSL2C)
to BgU vanishes.

Proof. Since U is contractible, the restriction of co € H*(B SLyC;Z) to H*(BU;Z) vanishes; also,
the restriction of the bilinear form (5.45)) to the Lie algebra of U vanishes. 0

Recall that we choose a differential cocycle representative of ¢a; see the text following (5.45]).
Now choose a trivialization of its restriction to BgU.

Remark 5.51. With these choices, the Chern-Simons invariant of a boundary-reduced flat SLoC-
bundle is trivialized on the boundary. For example, on a compact 2-manifold with boundary, the
invariant is a complex line.

5.3.3. A lemma in differential cohomology. Let M be an oriented n-manifold with corners, equipped
with the extra structure of a bordism outlined in §A.4} let S be a smooth manifold, which plays
the role of parameter space; and suppos w E ég: (S x [0,1] x M) is a differential cocycle of
some degree ¢q. Let w € QF (S x [0,1] x M;C) be the “curvature” of &, i.e., the differential form
underlying the differential cocycle &. Let /0t denote the standard vector field on [0, 1], lifted to
S x[0,1] x M, and let ¢, Jor denote its action via contraction on differential forms. Theorem A.24

implies the following for M closed.

2IN = [0,1] x M has the structure of a bordism [FTT, §A.2]: set
No = (0,1) x Mo
N% = {0} x My
Ny = {1} x My
N =M

—js

(5.52)

j>1, 6e{0,1}.
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Lemma 5.53. If M is closed, then the integral

(5.54) / 5 / 5 —s / 5
[0,1]x M {0} xM {1}xM

is a nonflat isomorphism of the differential cocycles on S computed in the domain and codomain.
Its covariant derivative is

(5.55) / w € QI1(S; ).
[0,1]xM
In particular, if Lo = 0, then (5.54) is a flat isomorphism. O

If M is a manifold with corners—a bordism of positive depth—then the integrals of & over {0} x M
and {1} x M are higher morphisms in a groupoid of differential cochains on S: see For example,
if M has depth < 2, then the integrals are 2-morphisms in G¢,_,12)(S), as depicted in (A.27).
Lemma 5.56.

(1) If M has corners of depth < 2 and Lojor = 0, then f[o 1]><ML\L/} is an isomorphism of 2-

morphisms in §(q_n+2) (S):

f{o}xMil f{1}le1
/_\ /_\
(5.57) f{O}XMEQ ”f{o}x]\/lo f{O}XMiQ —i——) f{l}XMEQ ”f{()}xMo f{l}xMiQ
f{o}ngl f{1}xMQl

« _ xa-1 . . o . . . .
(2) Suppose T € ! (S x [0,1] x M) is a nonflat trivialization of & with covariant derivative
7€ QIS x[0,1] x M), and assume LosorT = 0. Then the isomorphism ([5.57)) preserves
the nonflat trivializations and nonflat isomorphisms in Theorem [A.29 O

We omit the integrand ‘@’ in (5.57)) for readability.

Example 5.58. If n = ¢ — 2, then f{i}xMovJ, i = 0,1, is a complex line bundle L; — S with
connection, and ([5.54)) is an isomorphism Lo — Lj of the underlying line bundles; its usual covariant
derivative is the 1-form ([5.55)).

Example 5.59. If ¢ = 2 and M = S*, then (5.55) reduces to a well-known formula for the ratio
of holonomies of a line bundle with connection around the ends of a cylinder.

Remark 5.60. If & is equipped with a nonflat trivialization, then so too are its integrals over M,
and then ([5.54) becomes an equation in differential forms which follows from the usual Stokes’
theorem. The assertion in Lemma W(Z) is a variation for manifolds with corners.
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5.3.4. Mowing along unipotents. Theorembelow is based on the fact that the bilinear form
vanishes if A is diagonal and B is upper triangular.

Let M be an oriented manifold with corners of depth < 2 and dimension < 3. Suppose M =
Mo M _1IIM_9, 11 M_3, is equipped with an SN-stratification which satisfies M_o, = M_3b = 0.
In other words, M = M>_3,. Suppose (7, s) is a subordinate spectral network. Thus 7: M — M
is a double cover and s: M_1 IO M_o, T M_3, — M_1 1M QaHM_ga is a section of m over M_; 11
M_9, I M_3,. Let T C SLyC denote the diagonal subgroup, and ¢: H < SL,C its normalizer.
Suppose A = (P, Q, i1, 0) is stratified abelianization data of type (SLyC,T). Thus

(1) P — M is a principal SLyC-bundle with flat connection O p,

(2) @ = M is a principal H-bundle with flat connection ©¢,

(3) w: M —Q /T is an isomorphism of double covers, and

(4) 0: (Q) — P is an isomorphism of flat principal SLyC-bundles over M.
Furthermore, let U C SLyC be the subgroup of unipotent matrices. Then we require that
the discontinuity of 8 along M_; lie in U, relative to the reduction of ) — M_; to a principal
T-bundle given by the section s.

Our task is to compute the Chern-Simons invariants of the flat SLoC-bundles ¢(Q) — M

and P — M. To state the theorem we posit a family of this data over a smooth manifold S. Thus
we work over S x M; the connections ©p,O¢ over S x M are only assumed flat along M.

Theorem 5.61. There is a natural flat isomorphism
(5.62) Farac(Sx M = 8,1(0q)) — Fyr (S x M — S,0p).

Intuitively, moving a connection in unipotent directions does not affect the SLoC Chern-Simons
invariant. In the proof we construct a flat isomorphism which depends on a set of choices, and then
we check that the isomorphism is independent of the choices.

FiGUurE 16. The tubular neighborhood U.

Proof. Fix a smooth function ¢: R*0 — R70 which is odd and satisfies

0, < —1;
5.63 = 2 2=
(5:63) R PR

Pl\?\)—‘
— O
AN
IS
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Furthermore, require that ¢ be monotonic nonincreasing on R<° and R>?. Choose a tubular
neighborhood of M_1 C M: an open subset i/ C M>_; which contains M_, a surjective submersion
p: U — M_1, and an isomorphism of p with the normal bundle v — M_; to M_y C M>_;. (See
Figure ) Fix an inner product on v — M_y. Let R — M_; be the reduction of Q@ — M_; to a
principal T-bundle; it is defined via the section s and isomorphism pu. Locally, for each orientation
of v — M_; the discontinuity in 6 along M_; is a section u of the bundle S x R xp U — S x M_4
of unipotent groups. Under reversal of orientation, v maps to u~!. Globally, write u = e* for X a
section of the bundle of Lie algebras

(5.64) S X Rxpu—SxM_y

twisted by the orientation bundle of v — M_;. Extend X to U using parallel transport along the
fibers of p: Y — M_q. The inner product on the normal bundle identifies each fiber of p with R
after choosing an orientation of the normal bundle. Hence the product ¢.X is a well-defined section
of the pullback of over S x (U N Mp). It extend{™| by zero to S x M.

We now construct a connection = on the principal SLyC-bundle

(5.65) Q=101 xS %x(Q) = [0,1] xS x M

whose restriction to {0} x S x M is isomorphic to ¢(©¢g) and whose restriction to {1} x § x M
is isomorphic to ©p. First, set = ‘{0}><S><M: t(©@). Then over {1} x S x My let ¢ be the
gauge transformation of the restriction of which equals e=®X on {1} x S x (U N My) C
[0,1] x S x (U N Mp) and is the identity map on {1} x S x (Mp \ U). Construct an isomorphism

£2

(5.66) P Q

Sx{1}xM

which equals fo ¢ on {1} x S x My; it extends over {1} x S x (M_1 1T M_o, 1T M_3,) using the fact
that 6 jumps by uwon {1} x S x M_;. Set = |{1}XSXM: ¥*(©p). Finally, define Z on [0, 1]; x S x M
by affine interpolation between the specified connections =g, Z1:

(567) = = L(@Q) + ta, a==] — 2.
Then « is a 1-form on S x M with values in the adjoint bundle of Lie algebras isomorphic to sl,C; it

has support on S xU. We claim that « takes values in the subbundle (5.64)) of nilpotent subalgebras,
extended over S x U by parallel transport along the fibers of p. Namely, on S x (U N My) we have

(5.68) a = [Ad.-ox (1(0q)) — t(Oq)] + d,o,)(X).

22Since the codomain of ¢X does not so extend, this is not strictly correct. What we mean simply is that in
formulas below replace ¢X by ‘0’ on S x (Mo \ U).
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The second term clearly lies in the nilpotent subalgebra. For the first, observe

(5:69 GDE D6 D6 )6 %)

is nilpotent.
Let & = ¢2(E) be the Chern-Simons-Weil differential cocycle. As in ((5.57)),

(5.70) 2myv/—1 ’ 1]><M(,\c/12 Tt (S X M = 5,1(0q)) — Fyp (S x M — S,0p)

is an isomorphism. We claim that it is a flat isomorphism. By Lemma [5.56]it suffices to show that
Lyjor = 0, where

(5.71) w = (Q(E), AE))

is the Chern-Weil 4-form of =. The only nonzero contribution to ¢, Jor 1 potentially on [0, 1] x
suppa C [0,1] x S x Y. From ([5.67) we compute the curvature

2

t
(5.72) QE) = 1(AOQ)) + dt Ao+ tdyo ) + 5[(1/\04].

The last term vanishes since the Lie algebra u of the unipotent group is abelian. The first term
in (b.72)) takes values in the diagonal subalgebra t C sloC and the other terms take values in the
nilpotent subalgebra u C slyC. It follows that

(5.73) Lo = 2(a A L(Q0q))) + 2t{a A dyeg)®) = 0.

It remains to prove that is independent of the choices of ¢,U, p and the isomorphism of p
with the normal bundle. Any two sets of choices can be joined by a path, so we extend the previous
setup by taking the Cartesian product with [0, 1],,, where 7 is the parameter along the path. If @ is
the resulting Chern-Weil 4-form, then ¢, / gy@ = 0 by a similar argument. O

5.3.5. A theorem in T = C* Chern-Simons theory. Recall from §5.2.1 and [FN, Appendix A] the

T w4
characteristic class A € E4(BC*) and its differential refinement A\ € Ex(BgC*), the universal
differential class. The class A is the image of the generator under a quadratic function

(5.74) q: H*(BC*;Z) — E*(BC*)
which for ¢,¢ € H*(BC*;Z) satisfy

(5.75) 2¢(c) =c—c=¢?
(5.76) jalc) =¢
(5.77) qlc+ ) =q(c) +q(d) +i(c— ),
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where j: E*(BC*) — H*(BC;Z/2Z) and i: H*(BC*;Z) — E*(BC*) are the maps in (5.19)), and
we denote ¢ = ¢ (mod 2). The differential refinement

(5.78) 7: Ha(BgC*) — Ep(BgCX)

satisfies analogous properties. We implicitly use refinements of ¢, ¢ to cochains. Recall that in-
tegrationﬁ of E-cocycles over a manifold M requires a spin structure ¢ on M. Furthermore, if
§ € HY(M;7Z/2Z) is the class of a double cover over M, and we write the shifted spin structure
af o — o + 4, then

(5.79) /MM a(c) = /m oe) + 5 /M 5.

where %: 7)27 — C/Z; see [E3l, Proposition 4.4] and [FN, Theorem 3.9 (ii)]. For dimM = 3
and M closed, (5.79) is an equation in C/Z; for manifolds with boundary and manifolds of lower
dimension it is a canonical isomorphism of cochains in F-cohomology theory. We use the differential

refinement of (5.79).

Not only do double covers shift spin structures, but they also shift C*-bundles via the homo-
morphism Z/27 < C*. The corresponding shift of Chern classes is via the integer Bockstein

(5.80) B: HY(M;7,/2Z) — H*(M;Z).

The differential refinement shifts C*-connections by a flat C*-connection of order two.
The following is a restatement of part of Lemma [5.32
4 -
Lemma 5.81. E¢(Bp,) = Z/4AZ with generator q(B(8)) ford € Hl(B/uQ; 7./27) the nonzero class.
~ ~4
Also, 22}(6(5)) is the image of §° under the map ¢: H3(B/;L2;Z/ZZ) — E(C(B/;LQ).

Proof. The main theorem in [FH2| implies Eé(BAuQ) — E4(B/u2) is an isomorphism. Now apply
Lemma [5.32((2). For the last assertion apply (5.75)). O

Our main result in this section expresses the change of spin C* Chern-Simons invariants under
the simultaneous shift of spin structure and C*-connection by a double cover. We express our result
as a relation among 3-dimensional invertible field theories whose background fields are independent
choices of: a spin structure o, a double cover 4, and a C*-connection ¢. The partition functions
which define the theories are:

a1(0,8,¢) = spin C* Chern-Simons invariant of ¢ in spin structure o

(5.82) as(c,0,¢) = spin C* Chern-Simons invariant of ¢+ B((S) in spin structure o + ¢
as(o,0,¢) = integral of 36(5(5)) in spin structure o

The theory a3 is topological (of order 4). The Chern-Simons invariants in ai, ag are based on A,

and so are computed by integrating ¢, the quadratic function (|5.74]).
The proofs in the rest of this section draw on the material in Appendix [B]
23In (5.79) we also use the integral symbol for the pairing of a mod 2 cohomology class with the fundamental class.

240ur notation conflates a double cover and its equivalence class, an overload we also deploy in this section for
spin structures and C*-connections.
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Theorem 5.83. There is an isomorphism a1 ® as = ag of invertible field theories.

Proof. By (B.12) the curvatures of a; and as are equal. Therefore o] ' ® o, ®ay ' is a flat invertible
field theory, so it is topological in the strong sense. To verify that it is trivializable, it suffices to
check the partition function on a closed 3-manifold X. The quadratic property ([5.77)) implies

~ ~

(5.84) G(Z+B0) = 3@ +3(B6)) + (2 — B(5)),

and (5.79) implies that its integral in spin structure o + ¢ is the integral of
~ ~ (% .~ 3 1 _ 2
(5.85) q(@) +q(B(8)) +i(¢— B(S)) + ¢ 3@ —e+ 05—

in spin structure o. Here ¢: H3(X;Z/2Z) — Eé(X ) is the inclusion of flat elements of order two.
(The first two terms of lie in Eé(X ) and their integral uses the spin structure; the last
two terms lie in H3(X;C/Z) and no spin structure is used to integrate.) The difference of §(¢)
and computes the partition function in the theory afl ® oy

(5.86)

where we use Lemma Since the integral of this last quantity is by definition the partition
function in the theory s, we see that the partition function in the theory al_l ® ay @ g Lis
trivial. O

Example 5.87. Let X = RP? equipped with either spin structure o and the nontrivial double
cover 0. The spin Chern-Simons partition function of the product C*-connection ¢ is 1; the partition
function of the C*-connection ¢+ § in either spin structure is a primitive 4** root of unity.

A principal Z-bundle 6* has a mod 2 reduction § which is a double cover. The invertible field the-
ories a1, avg, vz in (5.82)) lift to invertible field theories a§°, a5°, a§® with background fields (o, 0%, ¢).

Theorem 5.88. a3° is isomorphic to the trivial theory.
Proof. The integer Bockstein of the mod 2 reduction is trivial. O
Corollary 5.89. There exist isomorphisms ¢: af° =, s°.

For our work in §6 we need an isomorphism which satisfies a particular property that we specify
below in (5.102)). We proceed to construct it. To begin, fix a ﬂaﬁ isomorphism

5.90 Ca® = 0.
1 2

25Isomorphisms of invertible field theories may be flat or nonflat; compare
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Pull back the theories a$°, a5° to invertible theories "o, *a$® with background fields (o, %, ¢, t)
in which ¢ is a nonflat trivialization of the C*-connection ¢, i.e., t is a section of the underlying
principal C*-bundle. Then ¢ induces a nonflat trivialization of the theories ®a$°,*a3°: they are
topologically trivial. In the formalism of Appendix [B]we omit the spin structure, and the remaining
fields are sections of the sheaﬂ ByZ x Eg;C* on Man. It is convenient to replace ByZ with the
representable sheaf S'. This amounts to specifying a classifying map for each principal Z-bundle.

Then the topologically trivialized theories *a$°, i = 1,2, give rise to differential forms (see )
(5.91) ni: ST x BgC* — Q3.

Let w € Q, be the rotation-invariant closed 1-form which integrates to 1, and let a € Qf(EgC*)

be g times the universal connection 1-form; the latter gives the equivalence EgC* — Q}C. Then

from (j5.75|) we deduce

1
m=ga Ada
(5.92) 1 1 1 1
=_—(a+ -w)ANd(a+ sw) =m + ~d(a Aw).
’=ole Ty 2 4

The topologically trivialized theories defined by 7y, 72 are isomorphic as invertible theories (forget-
ting the topological trivialization)—as they must be by Corollary since the 3-forms differ by
an exact 3-form.

Our constructions yield two isomorphisms ®a$° — ®a$°. First, the flat isomorphism ¢: a5 —
as® lifts to a flat isomorphism

(5.93) e Hage =5 Page.
Second, the topological trivializations induce a nonflat isomorphism
(5.94) A: Hafe =, Fage.

From (5.92) we compute that the curvature of A is 1d(a A w). The ratio *C/X is a 2-dimensional
invertible theory on spin manifolds with a background field in S* x EgC*, and its curvature is the
3-form —%d(a A w). Let B be the 2-dimensional invertible field theory defined by the 2-form

1
(5.95) 74 A w,

and define the flat 2-dimensional theory v by

(5.96) ¢ = By

26 A principal Z-bundle has a unique connection, so the ‘V’ in ‘ByZ’ is redundant; the latter is better denoted ‘B,Z’
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Lemma 5.97. The abelian group of topological invertible 2-dimensional theories with background
fields (0,0, ¢, t) is isomorphic to the Klein group Iy X iy Furthermore, each theory depends only
on the spin structure o and the double cover § induced by the principal Z-bundle §°°.

The partition functions of these four theories on a closed 2-manifold ¥ are

(598) 1, (_1)Arf(a)’ (_I)Arf(a+6)7 (_1)Arf(o+5)—Arf(a)

i

where Arf is the Arf invariant of the spin structure.

Proof. Since EgC* = chc is contractible, the group of invertible theories is isomorphi to the
group of characters of

(5.99) To(MSpin AS}) & mo(MSpin) @ 71 (MSpin) = Z/2Z & Z/27Z.
One can see that the theories listed in (5.98)) exhaust the possibilities, or can check that
(5.100) MSpin AS} — MSpin ARP®

induces an isomorphism on 5. O

It follows that the theory v in (5.96|) depends only on (o,d). Therefore, replace (5.90) by the

isomorphism

(5.101) C=7"1C a0 — o
For this choice of isomorphism we have
(5.102) ¢ = B,

where recall that § is defined by the 2-form (5.95)).
We summarize with this refinement of Corollary

Corollary 5.103. There exists an isomorphism

(5.104) Cra® =5 af°

such that the induced isomorphism *¢: ®a$® — "o of theories which include a nonflat trivializa-

tion of the C*-connection satisfies

K
A

where X is the isomorphism (5.94) and B is defined by the differential form (5.95)).

This is the isomorphism we use in §6]

(5.105) B,

27Both unitary and nonunitary theories are discussed in [FHI]. Here we do not assume unitarity, but the back-
ground fields are for 3-manifolds, even for the 2-dimensional theory which is the ratio of isomorphisms of 3-dimensional
theories, hence the domain should at first glance have %3 M T'Sping in place of M Spin. However, the obstruction theory
argument in the proof of [FHI, Theorem 7.22] allow us to replace > MTSpin, with MSpin in .
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5.3.6. Global abelianization. Diagram illustrates global abelianization of an SLoC-connection.
We apply Corollary to deduce an isomorphism of Chern-Simons invariants, expressed as an
isomorphism among three invertible 3-dimensional field theorie €SL,C ECxo and €, Each is de-
fined on the bordism multicategory of dimension < 3 manifolds with corners equipped with a spin
structure o and a flat H-connection ©. The first theory €q;  uses only the underlying orientation
of o, and it evaluates the Chern-Simons theory %LQC at level —i(cy) on the flat SLyC-connection
r(0). The second theory €c» maps a spin manifold with flat H-connection to the total space of the
associated /,u,2—bundle with its induced spin structure and flat C*-connection, and then evaluates
this data using spin Chern-Simons theory .#¢x at level A\. The third theory €u, evaluates the spin
Chern-Simons theory 5”/“2 at level « on the associated MQ—connectioﬂ q(©).

Theorem 5.106. There is an isomorphism €gp ¢ = €cx @ €p,-

Proof. As in the proof of Theorem [5.83] it suffices to check equality of partition functions on a
closed oriented 3-manifold X equipped with a flat H-connection. For this, apply the secondary
invariant version of (5.41)) to the following slight enlargement of the diagram ([5.15)):

X ——= B(CX)°
(5.107) X —— B(H)® -~ B(SLyC)°

B/Mz O

€cx s €y, b0 the bordism multicategory of dimen-
2

sion < 3 manifolds with corners equipped with a spin structure, a flat H-connection, and a lift of

Let €57, ¢y €Cx s 6/202 denote the pullbacks of €SL,C

the associated p,-bundle to a principal Z-bundle. Then Lemma W(?)) immediately implies

Theorem 5.108. €7 is isomorphic to the trivial theory.
2

Corollary 5.109. A trivialization of i, determines an isomorphism v : €g], c — €Cx -

In Appendix [C] we constrain the trivialization, based on considerations in

6. Abelianization of Chern-Simons lines

Throughout this section we take G = SLyC.
So far we have discussed generalities about the Chern-Simons theories Zg, cx, and their
relation to one another via stratified abelianization. Now we begin discussing applications.

28A5 in Theorem [5.83| we restrict to flat connections, so to topological invertible field theories.
290f course, this is simply a double cover, but we have endeavored to use consistent and transparent notation.
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Suppose Y is a compact 2-manifold, equipped with a boundary-reduced flat G-bundle P — Y.
In this section and the next we give a new description of the line .Z¢(Y; P). The idea is to identify
Fa(Y; P) with Sex (Y Qi 06,) @ LY, €), where QS is a flat C*-bundle over a branched double
cover Y — Y, and L(Y, €) is a universal line which does not depend on P. In the rest of this section
we give a sketch of the construction.

The bundle Qf,, will be constructed as follows. First, we fix a semi-ideal triangulation T of Y,
and let Y — Y be the associated branched double cover, and A7 the associated spectral network
(Construction. Next, we fix a section of P/B over each vertex of Y (as usual, for ideal vertices
this means a flat section over the corresponding boundary component), obeying the genericity
Assumption [4.32] From these data, by Construction [4.31] we obtain stratified abelianization data
(P,Q,p,0).

Now, suppose we ignore the branch locus Y_g;, for a moment, i.e. we work just over Y>_o,.
Then, according to Theorem m FG(Y>_2a; P) is naturally isomorphic to .Z g (Y>_2.; @Q); and by
Corollary |5.109, if we choose a spin structure o on Y, and a lift of 372—2;1 — Y>_9, to a Z-bundle
YO — Vs 9., Fu(Y>_2s; Q) is naturally isomorphic to .#¢x (}72_2&; Q;m*0). Composing these
two we would get an isomorphism

(6.1) F(Ys_9a; P) = Sox (172,2&; Q;7r0o) .

This is the kind of statement we are after, but to extend the right side over the full Y it needs to
be modified. The complication is that Q@ — ?Z_Qa has holonomy —1 around these points, as noted
in Lemma [4.12] and 7*¢ does not extend over them either. One could think of this holonomy as
a kind of singularity, and try to define a modified version of the theory .#rx which works directly
with these singular objects. Here we take an alternative path: we twist both QQ — }72,23 and 70
by a /u2—bundle yed 172_2&, which cancels the unwanted holonomy. Fortunately, Corollary
ensures that this twisting does not change the Chern-Simons theory away from the branch locus,
i.e., we get an isomorphism

(6.2) T (Yo 20 P) = Lox (Vo3 Qi 06y -

Now both sides extend over the branch locus. The isomorphism however does not: there is a
mismatch between the two Chern-Simons theories over the branch locus. We measure this mismatch
by a P-independent line we call £(Y,¢). Thus ultimately what we get is an isomorphism

(6.3) Fa(V; P) = Sox (Vi Qi 05) @ L(Yy€) .

In the above we needed to make various choices: a semi-ideal triangulation T of Y, a Z-bundle
Yo Y, and a /u2—bundle yed }72_23. It turns out that both Y™ — Y and Y4 — }72_26\ can
be conveniently built from the data of edge-orientations on T; this is the data we call e.

In we discuss the necessary twisting and the properties of the difference line £(Y,¢€); in
particular, we compute the action of rotations of a triangle on this line. Note also Appendix [C]in
which we fix a choice in the construction so that the super line £(Y,€) is even. (Recall the discussion
in Remark ) In we develop the stratified abelianization map , as Construction
In the remaining sections we discuss some aspects of the dependence of stratified
abelianization on the edge-orientations e, which will be used in the explicit calculations to follow.
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6.1. Edge-orientations on a triangle

Let (A,T) be a triangle. Choose an orientation ep for each E € edges(T), and let ¢ =

(EE)E'Gedges(‘T) . Let

(6.4)

(0,0) +1 if the edge E with vertices v, v is oriented from v to v/,
egp(v,v') = )
E —1 otherwise.

Construction 6.5. e determines a lift of the /uz—bundle ﬁz_ga — A>_9, to a Z-bundle A&®
AZ_Qa.

Proof. Ay has three connected components AOE , each containing one edge E. Fix E with vertices
v, v'. Over AOE we define the fiber of A“*° as the Z-torsor

(6.6) ({v,v'} x Z2)/] ~, (v,n) ~ (V',n+ ep(v,v)).

Each wall in A_; lies in the boundary of two domains AgJ , Ag/, where the edges E, E’ have
one vertex w in common. We glue A% across such a wall by identifying [(w, n)] on one side with
[(w,n)] on the other side.

The p,-bundle A4 /27, is isomorphic to As_s,, via the map which takes [(v,n)] — v when

n € 27. Thus A5 is indeed a lift of &Z,ga to a Z-bundle as claimed. O

Note that the clockwise monodromy of A% around 9A is ny —n_ € {3,1,—1, —3} where nt
(n_) is the number of edges oriented clockwise (counterclockwise). Reducing mod 2, we recover the

fact that the monodromy of the double cover Ezfza — A>_9, around OA is the nontrivial element

of Iby-

6.2. Edge-orientations on a triangulated surface

In the last subsection we considered a single triangle. More generally, suppose we have a semi-
ideally triangulated surface (Y, T) and edge-orientations € = (€r) peedges(7)- All of our constructions
glue canonically across edges, and thus we obtain a Z-bundle

(6.7) YOO 5 Vs g,

The action of 2Z on Y5> commutes with the projection yeoo 172_2&, 0 Y6 is also a 2Z-bundle

over }72_2&. Let
(6.8) Yot = Yo /47,

This is a /MQ—bundle over 172_2&, since 27 /47 = by We can describe its holonomies around cycles
explicitly, as follows.
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0

1 E 3

2

F1GURE 17. The quadrilateral Qp, with vertices labeled and the class vg shown.

Definition 6.9. For any E € edges(7), let Qp be the quadrilateral formed by the two triangles
containing E. The e-sign of E is (—1)", where n is the number of edges of Qp which are oriented
clockwise by €. (Replacing “clockwise” by “counterclockwise” here would give the same definition.)

We recall the class yg € Hl(f/) defined before Proposition m This class depends on an
orientation of Y, and reversing the orientation sends yg +— —vyg; the assertions in the rest of this
section hold independent of the choice of orientation.

Proposition 6.10. The holonomy holg. ,(vE) is the e-sign of E as defined in Definition .

Proof. Over each domain Y, the fiber over the sheet labeled by vertex w of F is {[(w, n)] : n € 2Z}.
Thus Y4 is the trivial 2Z-bundle on each connected component of }70. The gluing across preimages
of walls is as follows. Each wall runs into a vertex v. On the sheet labeled by the vertex v, [(v,n)]
is glued to [(v,n)]. The other sheet is labeled by a vertex v’ on one side and v” on the other. There
the gluing takes [(v/,n)] to [(v",n + k)], where

(6.11) k=e(,v) +e(v,v") € {-2,0,2}.

In traversing g, referring to Figure we see that we cross two walls where the gluing is
nontrivial (the horizontal walls in the figure). Summing their contributions, holg. . (v£) is a shift
by €(0,1) +€(1,2) +€(2,3) +€(3,0), which agrees mod 4 with 2n, where n was defined in Definition
Reducing mod 4 gives the desired statement. ]

Construction 6.12. Consider two edge-orientations €, ¢ which differ by reversing the orientation
on a single edge E. The difference /uz—bundle

(6.13) }76’4 ®/M2 ?GIA — ?Z_Qa
admits a lift to a Z-bundle (canonical up to isomorphism)
(6.14) @ = Ys_oa

which extends over Y.

For any class p € Hi(Y)

(6.15) hole () = (e, 1) -
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Proof. We first describe the difference bundle , as we did in the proof of Proposition It
is the trivial Mz—bundle on each connected component of 170. The gluing across preimages of walls
is as follows. Consider a wall ending on a vertex v. On the sheet labeled by v, the gluing is given
by the identity element in Iy On the other sheet, the gluing is given by the nontrivial element in

I, if v is a vertex of F/, and otherwise by the identity.

E. it is the trivial Z-bundle on each connected component of 370,

Now we can define the lift @
with gluing across preimages of walls as follows. Consider a wall ending on a vertex v. On the
sheet labeled by v, the gluing is given by 0 € Z. On the other sheet, if v is a vertex of F, then the
gluing in the direction away from E is given by +1 € Z; if v is not a vertex of E, then the gluing
is given by 0 € Z.

The holonomy of w? around a loop in 172_23 encircling a branch point comes to —1+1 = 0, so @w®
extends across the branch points, and thus over Y as desired. Finally, the formula hol _z 1 = (i, vg)

is obtained directly by evaluating both sides on arcs p crossing the quadrilateral Qp. O

6.3. Twistings over a triangulated surface

Now let (Y€, 0, .A) be a triangulated surface, with edge-orientations, spin structure, and stratified
abelianization data A = (P, @, ,0). Then define the C*-bundle

(616) QEW =Q ®W2 }76’4 — }72_23.

Q% has trivial monodromy around each point of }7_2}), and thus extends to }7, unlike Q). We use
the name @5, also for the extension.

The spin structure 7*o on 172_23 is non-bounding on a circle around a branch point and thus
does not extend from }72_23 to Y, but its twist

(6.17) Oty =T 0O O, ye!

w

does extend to a spin structure over Y.

It will be useful below to have some concrete information about this spin structure. We recall a
convenient bit of notation first. Given a spin structure ¢ on a surface, and a simple closed curve
A, we define

(6.18)

) 1 if o]y extends to a spin structure on the disc,
o =
—1  otherwise.

We also recall the class vg € H; (17) defined before Proposition m
Proposition 6.19. o, (vg) is the e-sign of E as defined in Definition .

Proof. Since m,vg can be represented by the boundary of a disc in EN/, m*o(yg) = +1. Thus of, (vE

is the monodromy of the /,u2—bundle M* Y around vE, which we computed in Proposition [6.10
O
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6.4. Stratified abelianization

Fix a manifold X of dimension < 3 with corners, with X_o, = (0. Suppose X is equipped with
a spin structure o, a spectral network N, and stratified abelianization data A = (P, Q, u,6) over
(X,N). Also suppose given a Z-bundle X whose mod 2 reduction is the double cover X. Then
let X denote the mod 4 reduction of X*®°. X4 — X is a Auz—bundle.

Theorem 6.20. There is a canonical isomorphism

(6.21) X(X; A0, X)) : Fa(X; P) — y@x(X;Q(X)/IuQ X4 o ®/,U2 X4,

We remark that the isomorphism (6.23]) is based on a choice of trivialization in Corollary |5.109
We constrain that choice in Appendix [C]

Proof. We combine ingredients as follows. First, Theorem m (triviality of Chern-Simons in
unipotent directions) gives

(6.22) p(X;A): Fa(X;P) — Fu(X;Q).

Second, Corollary |5.109| (identity between Chern-Simons for H-bundles over X and C*-bundles
over X) gives

(6.23) V(X:Q; X®) : Fu(X;Q) — Fex (X;Q;7%0) .

Finally, Corollary |5.103| (invariance of spin C* Chern-Simons under /,uz—twists) gives

(6.24) C()Z;Q;ﬂ'*a;)?oo) : y@x()z;Q;ﬂ'*a) — LVCX()Z;Q ® X4 rto ® )?4) .
2 2

The composition of these three is the desired isomorphism. O

The concrete nature of the isomorphism y(X) in Theorem depends on the nature of X. In
general, y(X) is an isomorphism between objects in appropriate diagram categories. For instance,
if X is a closed 2-manifold, x(X) is an isomorphism of lines; if X is a 3-manifold with boundary,
x(X) is an isomorphism of lines together with an isomorphism of objects in those lines; if X is a
closed 3-manifold, x(X) is just an equation.

In what follows we will need to know that x has good gluing properties. These properties
are most succinctly summarized as follows: they are just as if xy came from an isomorphism of
3-dimensional topological field theories, defined on a bordism category of oriented manifolds X
equipped with a spectral network, stratified abelianization data, and a lift of the double cover X to
a Z-bundle. We will apply this below to various individual manifolds X carrying this data. Of the
three ingredients above, two of them were formulated as isomorphisms of topological field theories;
the third, Theorem [5.61], was not formulated in this language, but it was constructed in a fully
local and canonical way. This is sufficient to imply the desired gluing properties.
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FIGURE 18. A triangle A with edge-orientations e and the canonical SN-stratification.

6.5. The difference line for a triangle

Let (A,e,0,A) be an oriented triangle with edge-orientations, spin structure, and stratified
abelianization data A = (P, Q, i, 0)
Using G Chern-Simons theory on A gives an object in the V-line associated to the boundary A,

(6.25) Fa(A; P) € Zq(0A;0P).
Using C* Chern-Simons theory on A likewise gives an object in the V-line associated to 88,
(626) y(CX (87 ng; O'EW) S y(CX (887 8Q§W; UEW) :

Because A_gy, # ), we cannot use Theorem to identify these two objects. However, A_o}, does
not intersect A, so Theorem [6.20] gives an equivalence of V-lines,

(6.27) X(OA; 0A; 03 A“®) : Fq(OA; OP) — Fox (OA;0Q5, 5 0%, -

Now we can compare the two objects: we define a line

(6.28) L(A €0, 4) = X(08: 0.4 0; A°%)(FG(A: P) @ (Sox (B Qfyi o))"

We explain in Appendix [C| how to make a choice of isomorphism y in so that the super

line L(A,€,0,A) is even; without further argument it could be odd.
The line L(A, ¢, 0,.A) depends only on (A, €), in the following sense.

Proposition 6.29. Suppose (A, ¢,0,A) and (A’,€',0", A") are triangles with edge-orientations, spin
structure, and stratified abelianization data. An orientation-preserving affine-linear isomorphism
f: A — A’ which carries € to € induces a canonical map

(6.30) fe i L(Ae,0,A) = L(A €0, A).

An orientation-reversing affine-linear isomorphism f : A — A’ which carries € to € induces a
canonical map

(6.31) fe i LA e,0,A) = L(A €, 0", A)*.
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Proof. By uniqueness of spin structures on A, we can lift f to an isomorphism ¢ — f*o’. By
Proposition we can lift f to an isomorphism A — f*A’. Finally, since f*¢’ = ¢ we can lift f to
an isomorphism AS® — A" All of our constructions are canonical and depend only on these
data, so we obtain a map f, as desired. It only remains to check that this map is independent of
the choices we made in lifting f. To see this, we need to show that the nontrivial automorphism
of the spin structure—the spin flip—and the automorphism of A induced by the action of —1 € G
and —1 € C* both act trivially on L£(A, €, 0,.A).

The argument that the spin flip acts trivially is the subject of Appendix [C]

To show that the automorphism —1 of A acts trivially we argue as follows. Our definition of
L(A,e,0,A) can equally well be made using G = GLg C rather than SLy C. In this case the whole
center Z(GLg C) >~ C* acts on A and thus on L(A, €, 0, A). Now, to compute the action of the
element A € C* on L(A, €, 0, A) we consider the mapping torus A x S', with abelianization data
Ay = (P, Qx, x, 0)) obtained by gluing A to itself with the action of A\. The action of A € C* is
given by the ratio

X(OA x S 040 x St AS® x S1)(Za(A x St Py))
Fox (A X Sl;Qf\tw;UEW x S1)

(6.32)

Now we consider the dependence on A. Since Py is a flat G-connection for each A, and the curvature
of % vanishes when evaluated on a 1-parameter family of flat connections, it follows that Z (A x
S1; Py) gives a covariantly constant section of the bundle over C* with fiber .Zg(0A x S1;0Py).
Likewise .%cx (A x S QS ' Tt X S 1) is covariantly constant. Finally, the isomorphism x(OA x
SL:9A;0 x St AS>® x § 1) is flat, i.e. it is an isomorphism of line bundles with connection. Thus
the ratio is locally constant as a function of A. But at A = 1 it gives the action of 1, which
is trivial; thus it must be 1 for all A, as desired. O

Corollary 6.33. The line L(A, ¢, 0, A) depends only on (A, €) up to canonical isomorphism.

Proof. Given (A, €) and two different data (o,.A) and (¢’,.A") we apply Proposition taking
f+ A — A to be the identity map. This gives the desired isomorphism f, : L(A,0,A,¢) —
L(A o, A €). O

With this corollary in mind we just write the line as £(A, €). The most important feature of this
line for concrete computations is that it transforms nontrivially under the Iy rotational symmetry
of A, as measured by the following proposition.

Proposition 6.34. Suppose € induces a consistent orientation of 0A, and f is a positively oriented

rotation by %’r with respect to the orientation of A. Then f, acts on L(A,€) as multiplication by

exp(2my/—1/3).

Proof. Fix stratified abelianization data A = (P, @, i, 6) and a spin structure o over A. Lift the
action of f to A and o, in such a way that f3 = 1. (This is possible, since each of A and o is
unique up to isomorphism and has only a single nontrivial automorphism p; an arbitrary lift of f
will have either f2 =1 or f3 = p, and in the latter case we replace the lift by f o p.) Also lift f to
the /,uQ—bundle Aet K, again in such a way that f3 = 1. Combining this lift with the actions of
f on @ and o gives actions of f on Qf,, and of,.
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We consider the V-lines associated to the boundary, .Zg(0A;OP) and Sox (0A; Q% ;05,). f

gives actions of Jry On both V-lines, the equivalence x(0A;dA;0; A9®) is /u3—equivariant, and
Za(A; P) and Sox (A; Q5,5 0%,) are Jy-invariant objects. The line

(6.35) L(A, €) = Hom(Fex (A; Qi 05y ), X(0A; 04; 0 A5®) (F(A; P)))

is thus acted on by Iy and we want to compute this action.

We will use an explicit picture of the /,u,g—equivariant equivalence x(90A;0A;0; ﬁe"’o), obtained
by chopping A into three segments, ending at the midpoints of the three edges. First, we fix an
f-invariant trivialization of the restriction of A to the midpoints. (There is a T-torsor worth of
freedom in this choice, which we will fix below.) Given this trivialization, we may factorize each
of our V-lines as a tensor product of three V-lines associated to the three segments, and factorize
the equivalence x(0A;0A;0; KE’OO) into a tensor product of three equivalences: for each segment
S, we have

(6.36) X(S;0A| 5503 A%|s) : Fa(S; Pls) = Fex (17 H(S): Qi ln-1(5); T -

Now comes the crucial technical step: for the purposes of our computation we may replace
the equivalences x(S; 8A]S;a;£5’°°|5) by any other equivalences g between the same V-lines,
compatible with the f-action. Indeed, any two equivalences differ by tensorization with a line Lg,
and the f-equivariance identifies the three lines Lg with a single line L, so the effect of changing
from x(S;0A|s;0; ﬁe’o"\s) to & would be to replace L£(A,€) by L(A,€) ® L3; the Jt-action on
L? induced by cyclic permutation of the factors is trivial, so the /,ug—action we want to compute is
insensitive to this replacement.

We construct a convenient {g as follows. We extend the trivializations of P and Qf,, from the
midpoints to sections sp and sq of Plga and Qf|,x respectively, in an f-invariant way. On
each segment S this gives trivializations of our two V-lines, and we choose {g to intertwine these
trivializations. Tensoring the &g we get

(6.37) €: Fa(0A;0P) — Fex (0A;0Q5,,: 0%, -

We may choose the trivialization of A at the midpoints in such a way that the parallel transport
of Qf, along any of the 6 preimages of segments is given by 1 € C*. (Indeed, for an arbitrary
f-invariant trivialization, the parallel transport of ) along each segment is given by some fixed
element h € H \ T'; changing the trivialization by ¢t € T at each vertex conjugates this transport by
t, and by so doing we can set the off-diagonal entries to +1 as needed.) From now on we fix such
a choice. Having done so, we can choose sg to be covariantly constant.

However, we cannot choose sp to be covariantly constant. Indeed, the parallel transport of P
along an edge is given, relative to the trivializations at the midpoints, by an element g = hb € G,
where h € H\ T and b € B; in particular, g # 1. The f-invariance implies that g is independent of
the choice of edge. Moreover, g2 = 1, since the holonomy of P around JA is trivial. We choose sp
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as follows. Let ¢ be a covariantly constant section of 9P — OA (necessarily not f-invariant). Then
choose sp = ¢t, where ¢ : JA — G obeys

(6.38) o(f(y) =go(y).

Now, to compute the action of f on L£(A,€) we consider the mapping torus of f,

(6.39) Ap=(AxR)/[(y,z) ~ (f(y),z+1)],

and the mapping torus A ¢ of the lift of f to A. The f-equivariant flat bundles P — A and Qf,, — A
induce flat bundles Py — A and QEW’ o A 1 respectively. Moreover, the f-equivariant equivalence
¢ of V-lines induces an isomorphism of lines, {¢ : F¢(0Af;0Pf) — S (aﬁf; anw,f; ofw). The
J,-action on L(A, €) is multiplication by

§f({ZG(Af; Pr)) _
Fex (Ap; Q13 0tw)

(6.40)

To compute this, first note that, being f-invariant, sp and s induce sections sp, and sq, of
0Py — 0Ay and 0Q), F oA ¢ respectively. The resulting trivializations of the boundary lines
have, essentially by definition of &,

(6.41) §i(Tsp,) = Tsg, -

Our task now is to compute the numerator and denominator relative to these trivializations.

To compute Sx (& IS Q§W7 I3 ofw) we note that sg ; 1s covariantly constant on OA f, and it can
be extended to a covariantly constant section over the full A r; thus the C* Chern-Simons form
vanishes, and .« (ﬁf; Qfw 1 0tw) = Tsq,-

To compute F(Ay; Py) is more interesting. We choose an arbitrary extension s of sp, to the
solid torus Ay. Let A denote the connection form in Py relative to the section s; then using

(6.42) Fc(Ay; Pr) = Tsp, CXP [ trace <A NdA+ % ANAN A>

1
4/ —1 Ag

To compute explicitly, we pull back to a triple cover p: A x ST — A I

(6.43) Ax St = (AxR)/[(y.x) ~ (g2 +3)], p(((y,2)]) = [(y.2)].

The covariantly constant section ¢ of 9P — 0A induces a covariantly constant section of 9(p*P) —
0A x S 1 which we can further extend to a covariantly constant section ¢ of p*P — A x S'. Then
p*s = ¢t for some ¢ : A x S' — G, and the invariance of p*s under the Iy deck group gives

(6.44) o(f(y),z+1) =goly,x).

30Since t is not f-invariant, it would not induce a section of Py — OAy; this is the reason why we had to pull back
to the triple cover.
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The connection form in p*P relative to p*s is A = ¢~ 'd¢, and this form is pulled back from Ay;
thus the integral over Ay in (6.42)) can be rewritten as one-third of a more explicit integral over
A x ST,

11
312/ —1 Jaxst

Moreover, s|gaxgt is covariantly constant along translation in the z-direction holding y € 0A fixed,

(6.45) Fa(Ag; Pr) = Tsp, €XD [ trace(¢ tde)?3| .

while t is covariantly constant in every direction. Thus ¢|gax g1 is constant in the z-direction.
Attaching a solid torus S' x D? to A x S! along this direction we obtain a closed 3-manifold
M ~ S3. The map ¢ naturally extends to the added S* x D?, by choosing it to be constant along
the D? factor. Then (¢~'d¢)? = 0 there, and thus we can replace the domain of integration in
by M. This integral gives exp(%k‘), where k is the degree of the map ¢ : M — G (by
which we mean the degree of the retraction of ¢ from G to SU(2), when we equip SU(2) with the
orientation for which — trace(h~1dh)? is a positive 3-form.) To compute this degree, we will use
only the fact that ¢ commutes with certain /,u3—actions on M and SL(2,C), as follows.

First, we can identify M with {|a|? +|3|> = 1} = S3 C C? as follows. On the torus OA x S, we
fix coordinates o = %eme, where 6 parameterizes OA (positively with respect to the boundary

orientation), and = %ezﬂ‘/jlx/g. These coordinates naturally extend to the two solid tori A x S*
and S' x D%, identifying them respectively as the loci || < 3 and |8 < 3 in S3. The orientation of
M matches the standard orientation of S®. The y-action (y,z) — (f(y),z+1) on Ax S* becomes
in these coordinates (v, 8) — (e%E/ 3, 2V =1/ 38) (and thus extends to a fixed-point-free action
on the whole S3).

Next, parameterize SU(2) by h = <—a5 _ﬂa) This gives SU(2) ~ S% ¢ C2. Comput-
ing — trace(h~*dh)? in this parameterization we see that it is positive for the standard orien-
tation on S3. By composing ¢ with an inner automorphism of SL(2,C) we may assume g =
diag(e2™V=1/3 ¢=2mV=1/3) The Jy-action h— gh then acts by (a, 8) — (213 o2mV=1/3)

We have shown how to identify both M and SU(2) with S3, in such a way that the J,-actions
and orientations agree with the standard ones for S3. Using , ¢ intertwines the Mg—action on
M with the Ju,-action on SU(2). Then using Lemma below completes the proof. O

Lemma 6.46. Any continuous map ¢ : S° — 83 commuting with the standard /ug—action has
degree equal to 1 mod 3.

Proof. Such a ¢ descends to a map ¢ : S3//M3 — 53//,u3 which lifts to the pi,-bundle 83 — S3/W3;
this bundle has a nonzero characteristic class lying in H3(S3/ Iy /u3) >~y (because the inclusion
53//u3 — B/u3 = S"o//,u3 induces an isomorphism on H3(; /“3))’ and thus ¢ must act trivially on
HS(S’S/Wg; /,ug), i.e. the degree of ¢ is 1 mod 3. Since the degree of ¢ agrees with that of ¢, this
finishes the proof. O

To finish this section we remark on a diagrammatic perspective on £(A, €) which will be useful in
some of the arguments to follow. Here we suppress most of the background fields to reduce clutter.
We regard A as a morphism in the bordism category

(6.47) 02 9A.
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Applying #5 and S« to this diagram, and including the map x(9A,€), we get

Fc(0A)
Fa(d)
(6.48) Line NCIND)
<7Cm
y(cx (OA, 6)

Here, and in various diagrammatic arguments to follow, we freely identify morphisms Line — C
with objects of C. Then the composition

(6.49) L(A,€) = Fex (A, )T o Y (0A, €) 0 Fa(A).

6.6. Abelianization of Chern-Simons over triangulated surfaces

Now suppose given an oriented surface ¥ with a semi-ideal triangulation T, edge-orientations e,
and a spin structure o. Also fix boundary-reduced stratified abelianization data A = (P, Q, u,0)
over (Y, N7). As we have discussed in because P is boundary-reduced, the V-line . (9Y; 0P)
is canonically trivial, and thus .Z¢(Y; P) is a line. The V-line .o« (9Y; Q. ; 0%,,) is also canoni-
cally trivial, since Q)f,, has trivial holonomy around the boundary components; thus .7 (17, Qi 0tw)
is also a line.

Define the difference line

(6.50) LV, e)= (X L(Aela).
Acfaces(7)

Construction 6.51. There is a canonical isomorphism of lines
(6.52) Xy Za(YiP) = Fox (V; QG 06,) @ L(Y€).

Proof. First for simplicity suppose that there are no ideal vertices, so Y is a closed triangulated
surface.

For each A € faces(T) we consider the dilation p : A — A which rescales distance from the
barycenter by % Then we have a decomposition Y = Yyt U Yin, where Yj, is the union of the
rescaled triangles pu(A).

Let R = dYiy. To condense the notation we will just write the manifolds, suppressing all the
extra background fields, including the dependence on € (since € is held fixed throughout this proof).
Then we have a diagram in the bordism category,

(6.53) 0 Yy g Yo g
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FIGURE 19. A portion of the triangulated surface Y with its SN-stratification, and
the decomposition Y = Yy U Yin.

Applying #¢ and S¢x to this diagram, and inserting the maps x(R) and x(Yout) provided by
Theorem [6.20] we get the diagram below:

Za(

R)
jV “ Wut)
(6.54) 4
cm

Line

| X(Yout)
N4 /ﬁYout)

Fex (R)

Line x(R)

o

Here the dashed arrow indicates the composition ./rx (Yout) © X(R). Now whiskering x(Yout) by
Zc(Yin) we get a 2-morphism

(6.55) Line

Fex Yout)ox(R)oFc(Yin)
Finally, defining
(6.56) L= Scx(Yin) P ox(R) o Fa(Yin),

we have x(R) o Z¢(Yin) = Scx (Yin) 0 L(Y, €), so we can rewrite the diagram as

(6.57) Line

Composition of maps Line — Line is tensor product, so this is a map of lines
(6.58) FalYV) = Sex(Y)® L

as desired; what remains is to identify £ with the L(Y, €) we defined in (6.50]). This follows directly
from (6.49)) and the decomposition of Y, into the disjoint union of triangles.
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So far we discussed only the case where there are no ideal vertices. In the general case one has
to draw slightly more complicated diagrams:

(6.59) p Y g Yo, gy

o jG(Yout) o

Fa(R) ——2 F(0Y)

yG(}/in) ‘\\ /
(6.60) Line X(R) \\\ /X(Yout) x(8Y)
y(CX (Ym) \\\\\\ ssss
Fex(R) ————2 S0 (9Y)
y(cx (Yout)

However, because A is assumed boundary-reduced, we have trivializations of .%;(0Y") and .7 (9Y),

which are intertwined by x(9Y); using these trivializations the diagram reduces to (6.57)),
and then we can proceed just as above. This completes the proof. O

We may also consider a family of boundary-reduced stratified abelianization data A = (Ps, Qs, fts, 0s)
over a fixed (Y, ), varying with a parameter s € S. All of our constructions can be applied to such
a family: then we obtain two invariants .Zg(Y; P;) and .Zex (Y Qfw.s; Otw) both of which vary over
S, and an isomorphism relating them. In particular, if Y is a semi-ideally triangulated surface as
above, then both Z¢(Y; Ps) and /¢ (37, Qfyw 53 Oty) are line bundles over S with connection, and
Xy : Za(Y; Py) = o (Y; Qfy .55 0tw) ® L(Y, €) is an isomorphism of line bundles with connection.

6.7. Reversing an edge orientation on a triangle

Now suppose (A, e€,0,A) is an oriented triangle with edge-orientations, spin structure, and
boundary-reduced stratified abelianization data. We first consider the restriction of all the data to
a single oriented edge E. Let € be the given orientation of E and €' the opposite orientation. Then
in the bordism category we have the diagram

(6.61) 0L oF

Once again we suppress some background fields in the notation: we just keep the manifolds and
(where necessary) the edge-orientations. We will also use freely the fact that the Z-bundles Ao
and A are canonically trivial over OF.

Then we have a diagram in the 2-V-line ./« (0F):

y(CX (Ea 6)
x(E.€)

X(@E) (¢} gg(E) C(B,wP )

X(E,€)
y@x (E, 6/)
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We define

(6.62)

(1]

(E) = X(Ea 6/)_1 o C(E7wE7 E) o X(Ea 6)

which is an automorphism of the object x(0F) o Z#¢(E) € Scx (OF), or equivalently a line.
Now suppose (A, ¢, 0,.A) is an oriented triangle with edge-orientations, spin structure, and strat-
ified abelianization data. Also suppose F is an edge such that e agrees with the boundary orien-

tation, and ¢ is obtained from e by reversing the orientation on E. Let £l = —(9A \ E), so now we
have
Py
(6.63) 0" s oE
~_ Vo~
E

Then ((-,@”, €) provides an isomorphism of 2-morphisms

Fox (E) Fox (E)
T — T
(664) VLine y(cx (A,E) y(cx (OE) —_— VLine Y@x (A75/) ,ch (8E)
\_/ \_/r
Tex (Ee) Fox (B,e)

while x(-, €) gives a similar isomorphism of diagrams, but without the inner arrow,

Fc(B) Sox (B)
T T
(6.65) VLine Fa(0F) — VLine Zcx (0F)
\/{ \_/r
Fa(E) Fex (Bye)

and x(-,€) gives the same isomorphism of diagrams with e replaced by €. Combining these, we
can whisker the isomorphism ((6.64) into an isomorphism between the lines we previously defined

in (6.49), (6.62),
(6.66) P (A) LA E) = L(A€) @ E(E) L.

This map describes the effect of reversing the orientation on one edge of A.
Now we want to consider reversing orientation on two edges of A. We introduce a bit of notation
that will be convenient below:

Definition 6.67. If F; and F5 are edges of an oriented triangle A,
+1 if E; is ahead of E5 in the boundary orientation,

(6.68) (Eq, E2) = ¢ —1 if E; is behind E» in the boundary orientation,
0 if Bh = Es.
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By

Es

FIGURE 20. An oriented triangle with two marked edges, with (E;, Fs) = 1, and
edge orientations agreeing with the boundary orientation. The third edge orientation
is arbitrary.

Suppose €g, , €g, both agree with the boundary orientation, let €, be obtained from € by reversing
e, and let €], be obtained from e by reversing both ep, and e, .
We want to compare the two 2-morphisms appearing in the diagram:

C(Ev,@wpy )onl(E2,wr, )onid

Sox 8A,€
¢ ( ) C(AwmE,)o¢(AwE,)

y(CX (8A7 6/1/2)

C(A’wEQ )OQ(A,WEl )

Fex (Ase) Fex (Aely)

Line

Lemma 6.69. In this situation,

(6.70)

C(A; Q2 02 ) 0 C(A; QS s 0% i)

”_ €. €. N.()E . € .
CA; Qi Oy TE,) © C(A; Qfy 06 @Ey) = exp <_2W(<E1,Ez>> '

Proof. We use . For this purpose we choose a section s of ¢, and maps pi,ps : A= St
representing wg,, wg,, Wlth p; constant on oA except for E Then we have another section

sy =ce TV=1pte2) g of Qtw , and in terms of these sections
(6.71)

N e/. e/, ~ 1
C(A;Qt;,;at;v;ij)og(A;ng;agw;wEi)Ts = exp <—4 /E (s o+ TV — dpz) Ndpj + s*a A dpz> T,
so that the desired ratio is

(6.72)

< 2my/—1 2my/—1
exp | — 1 1

_dp1 A dp2> = exp (— (E1, E2>> .
A

Proposition 6.73. In this situation,

2my/—1
4

(6.74) P52 (A) 0 g (A) = exp (‘ (By, E2>) P (A) 0 g (A).
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Proof. Since p is constructed by whiskering ( we get

(6.75) peia(B) 0 po(A) _ (A Quei 0w W) © (A Qb 0t @)

pE(A) 0 P (A) (A QR o e,) 0 C(A: Qi ofui )

Then use Lemma [6.69] O

Similarly we can consider reversing the orientation on an edge E where the initial orientation eg
is opposite to the boundary orientation. Then the same constructions as above give an isomorphism

/

(6.76) P (A) LA ) = LA ) ®E(E) .

6.8. Reversing an edge orientation on a triangulated surface

Now suppose (Y,7T) is a semi-ideally triangulated surface, with boundary-reduced stratified
abelianization data (P,Q, u,0). Suppose €, € are edge-orientations on T, differing by reversing
the orientation on one edge E. We would like to compare the maps xj- and X§; from Construc-
tion [6.51} Their ratio is an isomorphism

(6.77) Xy o (65) 7! s Fox (V3 Qs 06y) © LY, €) = Fox (V3 Qi 06y) @ L(Y, €) .
We already have an isomorphism
(6.78) (Y Qs Ot @) 1 T (V3 Qi 05) = Tox (V5 Qi 0

given by Corollary Thus we can write

(6.79) X5 o () ™ = C(Y3 Q5 ) @ (A (Y)) 7!
for some
(6.80) A (Y) : L(Y,€) — LY, €).

This map is determined in terms of the edge-reversal maps for the two triangles Ay, Ay abutting
E, as follows.

Proposition 6.81. A\ (Y) = p¢ (A1) ® p~ (As).

Proof. We decompose Y as indicated in the figure:
(6.82) Y=Y, UYTUYsUYg

Now we want to describe ¢(V;Qf; @) o x§ o (x§) ™! relative to this decomposition. We will
content ourselves with a heuristic description, leaving the full diagrammatics to the reader. On
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F1GURE 21. The decomposition of a triangulated surface Y associated to an edge F.

Yout all the background fields associated to € and € are canonically isomorphic, and the back-
ground field wpg is canonically trivial, so likewise ((Y; QE;V; wf) ™ o xco (x) ! is trivial. On Yj,
C(Y;Q0,; w™) L oxo(x) ! is described by the map (po¢ (A;)) ™' : L(As, €)@E(E)* — L(Aj,€)
where E; is the edge of A; corresponding to E. Finally, on Y, ((Y; Q% :w®) T ox o (x¢ )~ gives
the isomorphism =Z(FE;) — E(F3) induced by identifying these two edges. Combining these gives
the desired result. O

Proposition 6.83. The composition
(6.84) AY) 0 X (V) LY, €) = L(Y,€)

acts by multiplication by the e-sign of the edge E, as defined in Definition [6.9.

Proof. First note that from (6.79) it follows directly that A*¢(Y )oAS<' (Y) acts by ¢(V; Q. : 06 ; wg)o
C(YV;Qfy; 0fw; wr). Using (5.105) and (5.30) we see that this is multiplication by of, ([wE]) =
ot (7E); by Proposition this is the e-sign of E. O

7. Gluing description of the Chern-Simons line

We continue with the setup of the last section. There we used abelianization to produce an
isomorphism

(7.1) Up : (Y3 P) = Sox (Vi Qi ohy) @ L(Y,€)

depending on various choices encapsulated in D. In this section we process this further to turn it into
an explicit description of .Z¢(Y; P). The final result is Theorem which asserts the existence of
nonzero elements 77 € F¢(Y; P)* depending on choices D (including an ideal triangulation, edge-
orientations, and certain choices of logarithms), and gives the cocycle expressing how 7; changes
when the data D are changed.

7.1. Abelianization of Chern-Simons over interpolating 3-manifolds

Suppose M is a spin 3-manifold with boundary, equipped with a spectral network N such that
M_3 = (), the restriction of N to Y = OM is the spectral network N7 for a triangulation T of Y,
and M_op, has no closed components.



SPECTRAL NETWORKS AND CHERN-SIMONS INVARIANTS 63

Each component B of M_g;, is a closed interval, whose two ends lie on Y_op, in two triangles
Ag, Ay € faces(T), with edge-orientations ea,, ea,. Moreover, a tubular neighborhood of B can
be identified with A x [0, 1], for a triangle A with its standard spectral network. This in particular
gives an orientation-reversing identification f : Ag — Aj.

Now suppose given edge-orientations e over Y, and a Z-bundle M> — Mz,ga, which restricts to
yeoo 172_33 over the boundary, and also restricts to A5 x [0, 1] over the tubular neighborhood
of each component B C M_o;,, for some edge-orientations eg on A. In particular ep restricts to
match e at the two ends, and so fi(€|a,) = €|a,. Thus using Propositionwe get an isomorphism
L(A en) — L(A ear)*, i.e. an element S € L(A,en) @ L(A',ear). Tensoring over all components
B C M_g, gives a canonical element Sy € L£(Y,€). This element should be thought of as just
implementing the matching-up of triangles provided by M_oy,.

Finally, suppose we have stratified abelianization data A = (P, Q, u,0) over (M, N).

Proposition 7.2. In this situation,

(7.3) X5 (Za(M; P)) = Sox (M; Q5 0%y) ® B € Fox (Y50Q5:105,) @ L(Y€).

Proof. Decompose M = Mgy U Mi,, where M, is a small tubular neighborhood of M_o,. M, is a
3-manifold with 1-dimensional corners R; R is a union of circles, which divides 0Mj, into a union
of cylinders B and a union of discs Yi, C Y. Likewise 0M,y; is divided by R into —B and Yout C Y.

Now we need to apply #g and .= to the various parts of this decomposition. To lighten the
notation a bit we write the V-lines (dimension 1)

(7.4) Cc = Zc(R; Plr), Cox = Sox (R Qiyl 5106
with objects (dimension 2)
(7.5) Ocin = Fo(Yini Plv,),  Ocx i = Fox (YVins Qiyly 5 06)

Thus Og in € Ca, Ocx in € Cox, and likewise we have Og out € Cf, Ocx out € Cix, and Og g € Ca,
Ocx p € Cox. Finally, we have the elements (dimension 3)

(7.6) VG,in = Fa(Min; Pla,) € Ocin ® O g,

(7.7) VG out = Fa(Mout; PlMow) € Ocout ® OB,

(7.8) Yex in = Lox (Min; Q| M 06w) € Ocx in @ Ogx .5
(7.9) Vex out = Lox (Mout; Qtw| Mows; Ttw) € Ocx out @ Ocx -

We can use Theorem to construct various canonical abelianization maps: an equivalence of
V-lines (associated to dimension 1),

(7.10) X5 : Ca — Cox,
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homs (associated to dimension 2),

(7-11) Xg/out : Xf?*B(OG,out) — OCX,out )
(7.12) XY, X68(0c,in) = Ocx in ® L(Y, €),
(7.13) XB: X65(Oa,B) = Ocx

and an equation (associated to dimension 3),

(7.14) ((XVoue @ XB) © Qvyu.08,8) (Y6 out) = Ve out
where
(7.15) Qy,u,08,8 * Oc.out @ OB = X55(06 0ut) ® X55(0c,B)

is the canonical map. Now, we define an element dy; € L(Y, €) by

(7.16) (X%, @ XB) © Mvip,08,8)(VG,in) = Yo in @ O -

This is a measurement of the difference between the G and C* theories on the cylinders My,
analogous to our definition of £(Y,¢€), but one dimension up, so it gives an element rather than a

line. Tensoring (7.14) and (7.16) gives
(7.17) Xy (¥a) = tox ® ou

so what remains to prove is to show that 63y = Bps. Each component of M, is a cylinder,
with ends on two discs carrying the standard spectral network for a triangle; call these discs A,
A’. By a diffeomorphism we can identify this cylinder with the mapping cylinder I; of a map
f: A — A’. Moreover, f lifts to the spectral networks, spin structures and stratified abelianization
data. Thus we can transport the computation of d;; to the union of mapping cylinders; on each
mapping cylinder Iy this gives the action of f, : L(A,e) — L(A',€’), and then tensoring over the
cylinders gives SBjs as desired. O

In Proposition we only considered the case of a 3-manifold M with boundary a closed trian-
gulated surface Y. In applications we sometimes want to use Y with boundary and a semi-ideal or
ideal triangulation. In this case M will have to have extra boundary components extending Y,
and corners around the ideal vertices. As long as we always work with boundary-reduced stratified
abelianization data over Y, these extra boundary components and corners do not introduce addi-
tional complications in the formal structure: the statement and its proof are unchanged except for
a bit more notation, which we omit here.
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7.2. The dilogarithm in abelianization on one tetrahedron

Suppose Y = S?, identified as the boundary of a tetrahedron A, with the induced triangulation
T. Let o denote a spin structure on Y, and A = (P,Q, u,0) stratified abelianization data over
(Y,N7). Then P extends to P A (uniquely up to isomorphism) and applying % gives an

element

(7.18) Fa(A; P) e Za(Y; P).

Fix edge-orientations € on A. The goal of this section is to describe the image x5 (#¢(A; P)) in
terms of a relative of the dilogarithm function.
Choose a pair of opposite edges in T; as discussed above Proposition this determines classes

Y1,72,73 € Hi(Y). Also choose a section ¢ of the C*-bundle Qf, and let

(7.19) U :?{ t*a
i

where a denotes the connection form in the C*-bundle Q — Y. Thus u; is a logarithm of holge (7:)-
Changing the choice of section ¢ shifts each u; by an integer multiple of 27y/—1. Also let

(7.20) m = gy (i) € {£1}.

Equivalently, n; is the e-sign of the edge E;. Thus (71,72) measure the isomorphism class of the
spin structure of, on the torus Y, and are determined by (but have less information than) the six
edge-orientations e.

Proposition 7.21. We have the relation
(722) me_"l + 7’]26“2 =1.

Proof. Theorem shows that the holonomies z; = holg(7;) obey 2] 'y 2p=1, and (6.16]) gives
e“ = holge (i) = mi2zi; combining these gives (7.22)). O

Now let n= (7717772)7

(7.23) ST = {(uy,ug) : me” " + e = 1} C C?,
and let
(7.24) 08" — C/An*7

be any function obeying
1
(7.25) den = §(u2 duy — uy dug).

Each ¢7 is a variant of the dilogarithm function; see ([7.69)-(7.72|) for concrete examples.
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Proposition 7.26.

A Fa(BP) T

Tt 27T\/—1

(7.27) OMuy,u2) |,

for some ¢ € L(Y,€) independent of uy, us.

Proof. We first note that (P, @, i, 0) fits into a family of stratified abelianization data (Py, vy, Qui ug» 1 6)
over (Y, N7), parameterized by (u1,us) € S”, with the property e% = n; holg, .., (7). To construct
this family we can use Construction choosing the trivial flat bundle P, ., — 5?2, and taking
the 4 elements s; € CP! at the 4 vertices to have cross-ratio 7ye!; then the calculation in Remark
4.49| shows that the holonomies of @y, , Will be as desired. To show that our given (P, @, u1, ) is
indeed isomorphic to a member of this family, we use the fact that stratified abelianization data is
determined up to isomorphism by the holonomies of @) (for this calculation see e.g. [HN]).

Because Py, u, — S 2 is trivial and its extension pul,w — A is unique, the elements g (A ; Pul’uz)
sweep out a covariantly constant section of the line bundle with fibers .#¢(Y'; Py, 4,) over S™. Using
the compatibility of x§ with the connection in this bundle, it follows that x5 (Zg(A; Puy uy)) is
a covariantly constant section of the line bundle with fibers Scx (Y Qfy 4, uyi Otw) @ L(Y €) over
S". Moreover the section ¢ of the given Qf, deforms to a section ty, u, of Qfy 4, 4,, Unique up to
homotopy. The computations in Section 4 of [FN] then show that the function

X;’(fG(A;PuLW))

(7.28) flur,ug) =
Tt“‘l’“Q
on S" obeyﬂ
1
(7.29) dlog f = (ugduy — urdug) .

4/ —1
This proves ([7.27]). O

7.3. Flipping an edge

Suppose given a boundary-reduced flat G-bundle P — Y. Suppose Ty, T1 are two semi-ideal
triangulations of Y, which differ by flipping an edge F € edges(7y) to an edge E' € edges(T7).
Also suppose given a choice of sections of G/ P over the interior vertices of T, such that the genericity
Assumption [£:32]holds for both Ty and T3. Then by Construction [£.31] we obtain boundary-reduced
stratified abelianization data (P, Qo,...) and (P,Q1,...) over (Y, N7°) and (Y, N71) respectively.

Let €9, €1 be systems of edge-orientations on Ty and J7, which agree on all common edges, i.e.

€0 T1,€1

all edges except for £ and E’. We would like to compare X;I/O’ and xy- . Their ratio is an

isomorphism

(7.30) Xy o (X0 Fox (Y3 Qi 010) @ L(Y, €0) = Fox (Vi3 Q5 s 018) @ LY, €1).

31In [FN] we discussed only the case n = (41, +1), but this computation is independent of 7. Also, beware that
w1 in this paper is —u; in [EN], which leads to a sign flip in comparing.
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To describe this map we consider the 3-manifold
(7.31) M=Y x[0,1].

Let p: M — Y denote the projection, and let P = p*P. On M we construct a SN-stratification,
spectral network and stratified abelianization, as follows.

Let Yiest be the union of all the triangles in Y except for the two abutting E. Then we have a
decomposition Y = Yiest U Qp. The stratified abelianizations (P, Qo, - .. )|vie and (P, Q1, ... )|view
are canonically isomorphic, and thus extend to boundary-reduced stratified abelianization data over
(Yiest X [0, 1], Mest X [0,1]). Over Yiest X [0, 1] we also have a Z-bundle p*?G’OO\Yrest-

Next we consider Qg x [0,1]. Collapsing the vertical intervals in 0Qg x [0, 1] gives a surjective
map J¢ : I(Qp x [0,1]) = JA, where A is a tetrahedron, and this map extends to

(7.32) ¢:Q0px[0,1] = A

which is a homeomorphism on the interior. On A we have a standard SN-stratification and spectral
network as described in Construction [4.37 pulling this back by ¢ gives a SN-stratification and
spectral network on Qg x [0,1], which glue to the ones we already have on Yies x [0,1]. Using
Construction we obtain stratified abelianization data over A >_g},, which likewise pulls back
to Qp x [0,1] and glues to the stratified abelianization data we already have on Y;es X [0, 1].

Thus altogether we have:

e A SN-stratification and spectral network A" over M, with isomorphisms Ny o} =~ N7,
Nlyxqy ~ N1,
e Stratified abelianization data (P,Q”&,@) over (M, N'), which restricts to (P, Qo, o, 6o),
(P,Q1, p1,01) over Yy, Y] respectively.
e A Z-bundle M>® — M>_3,, which restricts to 1760700, Y€1 gyer Yy, V1.
We need to extend our AuQ—tWisted objects from Yy and Y7 to M: define M* = M /AZ, and twist
Q— M>_3, to Qtw =Q ®/,u2 M* and T*p*o to ow = TFpFo ®/,u2 M*,

The stratum M_s;, consists of a single point p, the barycenter of the tetrahedron A. Let B,
be a small ball around p. By radial projection centered at p, the sphere H = 0B, acquires a
triangulation Tz, whose four faces correspond naturally to the two faces of Qp and two of Qpr.
Ty comes with edge-orientations eg, induced by €y and €1 (using the fact that ¢y and e; agree on
the common edges). Moreover, the restriction M|y is the spectral network N7H | and He#>® is the
restriction of M* to H.

Now we can describe the effect of a flip on the abelianization maps X}T,’e:

Proposition 7.33. The map

T1,e To,60\— v € € v € €
(7.34) Xy o (G ) T T (Vs Qi 1) © LY, €0) = Fox (V3 Qi 01h) @ L(Y, 1)
18 the product

(7.35) Fox (M Bp; Quul s\, o) © X5 (Fa(Bys Plp,)) ® B, -
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Proof. We apply Proposition to the 3-manifold M \ B,, noting that what was called Y there is
here the disconnected boundary d(M\ By,) = YoU—Y,U—H, which carries a semi-ideal triangulation
ToUJ1 U Ty and edge-orientations ey U €1 U €x.

Y1 =Y x {1}

Yo =Y x {0}

FIGURE 22. The 3-manifold M = Y x [0,1] which we use to study a flip of the
semi-ideal triangulation on Y. The branch locus M_oy is shown in orange. In this
example each triangulation has five triangles, and thus there are five points of M_o}
on each of Yy and Y;.

This gives the formula
(7.36) X%Biﬁ%ﬂ%uqum (Za(M\ By; Plang,)) = Lex (M \ By Quelan i o) © Bans, -
Tensoring with x% (Zc(Bp; p|Bp)) then gives
(737) KU (F (M, P)) = o (M By; Qo lansy: o) @ Bans, @ x4 (Fo(Byi Pls,)).

But since M =Y x [0,1] and P = p*P, Z¢(M; P) is the identity map on .Z¢(Y; P); the desired
result follows by rearranging factors. O
Using the identification between the 4 triangles in Qp, Qg and the 4 triangles in H, we get

from Proposition an element 3 : L(Qg,€)) @ L(H,ey) — L(Qp,€1). Contracting that with
the normalization constant ¢ € L£(H,ep) defined in Proposition we obtain an isomorphism

(738) HEEO’Q = B(CEH) : ﬁ(QE,E()) — ﬁ(QE/761) .

7.4. Gluing the Chern-Simons line

Let Y be a compact oriented surface with boundary. Suppose P — Y is a flat boundary-reduced
G-bundle. In this section we use abelianization to give a description of the line .Z#¢(Y’; P).

Construction 7.39. We consider tuples D = (T, ¢, s, x), where:
e T is a semi-ideal triangulation of Y,
® ¢ = (€r)Eeedges() 18 a system of edge-orientations for T,
® 5 = (Sy)yevertices(T) 18 a flat section of P/U = P xg (C%\ {0}) over each v, such that if v
is an ideal vertex then the projection of s, to P/B agrees with the boundary reduction,
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® 7 = (TE)pecedges(7) 18 @ collection of complex numbers, where
(7.40) exp(zg) = eg(v,v")sy A 8y

if E is an edge with vertices v,v’. Here s, means the continuation of s from v by parallel
transport along the edge F, similarly s,/, and the wedge product is evaluated at any point
along F; here and below, we use the fact that P is an SLsC-bundle and thus there is a
canonical volume form in P/U.

For each such tuple there is a canonical isomorphism
(7.41) Yp : Fa(Y; P) = L(Y,€).

Proof. Fix P — Y and D as above. Construction [4.31] extends P to stratified abelianization data
(P,Q, 11,0) over (Y,N7). Then Construction gives an isomorphism

(7.42) XV Zo(Y; P) = Fox (Y3 Q4w 06y) © L(Y €).

Using the data (s,z) we determine a section s, of the line bundle Qf, — Y (up to homotopy),
as follows. Recall that each v € vertices(T) has two preimages (v,v) and (v,7) in V. Each s,
determines an element s(v,v) of the fiber of Qf,. We also determine an element s(v,v) by the
condition (5(v,v)) A 0(5(v,v)) = 1. Now suppose E € edges(T) with vertices v, v'. The parallel
transport of ()f,, along preimages of E takes

(7.43) 5(v,v) = exp(zg)s(v, '), 5(v,v) = exp(—zg)s(v,v').

The choice of a logarithm zp thus determines (up to homotopy) an extension s, of 5 over the
preimages of E. Finally, by construction s, has zero winding around the preimage of the boundary
of each triangle, because the summands xg and —z g cancel over each of the three edges; thus s,
can be extended to a section s, of Qf,, — }7, uniquely up to homotopy. The section s, determines
a trivialization 75, € .Sox (V; Q% ; 05, ) Then we define

T,e
_ Xy
T5,

(7.44) YD

O

We remark that the existence of the data xg above requires s, A s, # 0, i.e. that the genericity
Assumption is satisfied.

Proposition 7.45. We have relations among the maps associated to data D = (T,e,s,z) and
D' = (T,€,s,2") as follows:
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FiGURE 23. The quadrilateral Q.

(1) Suppose D and D' differ only by a change involving a single vertex v: s, = s,exp(t) and
Ty =xp+t for all edges E incident on v. Then

(7.46) Ypr =Y.

(2) Suppose D and D' differ only by a change involving a single edge E: €y = —eg and
&'y = xp +mv/—1. With labeling as in Figure let

(747) U = TE3g — TEy + LEy — TE3 -
Then
]. ! !
(7.48) Ypr = exp Llu] (P (A1) ® po° (A2)) ¢p.

(8) Suppose D and D' differ only in that T’ is obtained from T by flipping edge E to obtain a
new edge E', with some orientation €y, and a choice of logarithm x g . Labeling the vertices

3 3
0@1 0‘1
2 2

FIGURE 24. The quadrilaterals Qg in T and Qg in T, related by a flip.

as in Figure[2], let

(7'49) Ul = TEyy — TEgy T TEy — TEy3, U2 = TE3y — TEy + TE)g — TEy3 s
(7.50) m= (_1)%(6(3,0)+e(0,2)+e(2,1)+5(1,3)) - (_1)%(5(3,2)+6(2,1)+e(1,0)+6(0,3)) '
Then
1

(7.51) Vo = exp | s, uz) | £ 0.
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Proof. We treat the three relations in turn:

(1) In this case the sections 5, and 5, are homotopic (the homotopy obtained by continuously
varying from 0 to ¢) and thus they induce the same trivialization of .7¢x (Qfy; Otw)-

(2) By and we have Yp/ - 7y, = A (V) ® C(IN/; Qi @) op - 75,. We use
Proposition to expand the A factor. For the ¢ factor, we use , which gives

(7.52) (Y5 Qs @)(75,) = exp [—1 /~ Sra A wE} Ta
s #

where « denotes the connection form on Qf,. By (6.15) the multiplicative factor here is

(7.53) exp [—1 7{7 ) 'é;a}

and comparing (7.47)) to the definition of vz, we have f,YE sta = —u, so the factor becomes

(7.54) exp [iu}

as desired.
3) We use the setup and notation of §7.3] involving the 3-manifold M =Y x [0,1]. Proposi-
( p g , p
tion gives Xg/’ﬁ o (X;I,’e)_l as a tensor product of three ingredients:

(a) First we have .Zox (M \ Bp; Quw; 0tw). The data of D and D’ in particular determine
sections 5, and &, of QEW on the boundaries Y; and Y, as discussed in Construction
7.39L There is a section of QEW — M \ B, which extends s, and §/,; let sy be its
restriction to H. The C* Chern-Simons form vanishes for a flat bundle; it follows that

(7.55) Fex (M\ By; Quys oow) = 75, @ 757, @ 75, .

(b) Next we have the factor x“# (Fg(Bp; P\Bp)). Note that u; and uy defined in ((7.49)
agree with the u; and us defined in in if we take the section t = sp. Likewise 7
and 7y defined in ([7.50]) agree with the 7; and 7, used there. Then by (7.27)),

1
2/ —1

X (ZFc(By; Plp,)) = ¢ exp O, us) | 75, -

(c) Finally we have the isomorphism Syn p, -
Tensoring these ingredients together, and using the definition ((7.44) of ¢»p and the definition

(7.38)) of fizf/, we get the desired ((7.51)).
O
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7.5. Explicit formulas

In the last section we gave a description of the line .#¢(Y'; P) which is canonical but somewhat
inexplicit: the transition maps described by Proposition involve the maps pE’E/(A) and HSE’EI, for
which we have not yet written down concrete formulas. Roughly speaking, we have fully described
the P-dependence in .Z¢(Y; P), but left some constant phases undetermined. In this section we
rectify this omission, getting concrete formulas in terms of actual numbers, at the cost of making
some arbitrary choices.

7.5.1. Trivializing the difference lines. Let A; denote the standard triangle with its standard
orientation, and vertices labeled 012 in cyclic order given by the orientation. We choose a nonzero

2

0 1
F1GURE 25. The standard triangle.
element
(7.56) Te € L(Ag, €)

for each of the eight possible e. We may choose 7. so that if f : A; — Ay is a rotation which acts
on the vertices by 012 — 120@

21/ —1)
Tfees

(757) f*(Te) = exp ( 3

and also if r : Ay — Ay is the reflection which acts on the vertices by 012 — 102,

(7.58) r(Te) = 7 L.

Tx€

From now on we assume that we make such a choice.
Now suppose (Y, T,¢) is a general triangulated manifold with edge-orientations. We want to
trivialize the line £(Y¢€); for this we need one more datum:
e A marked edge ea on each A € faces(7).
The edge ea determines an orientation-preserving identification ¢, : Ay — A, by the condition
that ¢, takes the edge (0,1) to ea. Then, given the extended data D= (T,€,8,x,e) we obtain a
trivialization

Yp

(7.59) o
P ®AEfaces(‘J’) (¢€A )*Te

€ Zo(Y;P)*.

What remains is to describe the relations between the elements 7; € Fg(Y; P)* associated to
different D.

32The factor appearing in (7.57)) is dictated by Proposition m
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Q

7.5.2. Computing pe’e/(As). Recall the edge-reversal map p from zm Fix arbitrarily a nonzero
element ¢ in the line Z(F) considered there, and then define constants b(e, ') € C* by

€,€

(7.60) P (Ag)(1e) = ble, €) 1o @ EFL

Our aim now is to compute these constants. We write each € as a 3-tuple (¢(0,1),¢(1,2),€(2,0)).

Proposition 7.61. We have
(7.62) b(fve, fx€') = b(e, €),

and for some p,q € C* we have

(a1,a2) | b((ar,a2,+1),(a1,a2,—1)) | b((a1, a2, —1), (a1, a2, +1))
(-1,-1) p —p !
(—1,41) wlq wq™!
(+1,—1) wq w—lq—l
(+1,41) —p p!

where w = eXp(%‘é—T).

Proof. Applying f. to both sides of ([7.60) and using (7.57)) gives ([7.62)).
Proposition [6.73] gives

(7.63) b((+1,+1,4+1), (+1,+1,-1))b((+1,+1,—-1), (+1, -1,

( 2my/—1
oxp ( ——

-1) =

> b((+1,+1,+1), (+1,—1,+1))b((+1,—-1,+1), (+1,—-1,-1)).

Applying (7.62) and canceling a common factor b((+1,+1,41), (+1,+1,—1)) gives

2/ —1

(7.64) 4_1

b((—1,4+1,+1),(=1,41,—1)) = exp (— > b((+1,—-1,+1),(+1,-1,-1)).

Next, using Proposition [6.83] we have

(7.65) b((a1,a2,+1),(a1,a2,—1)) x b((as, ayq, —1), (as,aq, +1))x

b((ay, az, —1), (a1, az, +1)) x b((a3, az, +1), (a3, az, —1)) = (~1)3(@r+az+as+as)
Finally, using the reflection condition ([7.58]) gives

(7.66) be, €)b(ree,mee’) =1,

which implies in particular

(7.67) b((+1, —1,41), (+1, =1, 1)) b((+1, =1, =1), (+1, —1,+1)) = 1
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and
(7.68) b((+1,4+1,+1),(+1,4+1,-1))b((—-1,—-1,-1),(—-1,-1,+1)) = 1.

The constraints (7.64)), (7.65)), (7.67)), (7.68|) determine the b(e,€’) up to two undetermined con-
stants as indicated in the table. ]

Proposition determines all of the b(e, €) in terms of the undetermined constants p, g. Fixing
p, q is equivalent to fixing the remaining freedom in the trivializations 7., up to an overall scale

which remains unfixed.

7.5.3. Fizing the £7. In we determined the functions L" up to an overall constant. We now
make a definite choice as follows. Let Lis denote the principal branch of the dilogarithm function,
which has a branch cut along (1,00). Then let

1 I 1
(7.69) £ (ug, up) = Lig(e™™) — Juaup — 2mv/~1 {_ I;luz + QJ ut,
T

(7.70) 614D (4 up) = Lig(—e ™) — %ulug A {— IH; 42 ;J (w1 + mv/—1),
m

1 I
(7.71) €D (ug,up) = Lig(e™™) — Juruz = m/—lug — 2mv/—1 L_ ISU2J ut,
T

1 I
(7.72) L5 0y, ug) = Lig(—e ™) — QuLU2 = m —1lu; — 2mv/—1 {— ISUQJ (up +mv—-1).
T
It is routine to check that these formulas indeed define holomorphic functions ¢ : S7 — C/4r%Z:
the discontinuity of Lis across its branch cut gets compensated by the discontinuity of the floor
function, up to an integer multiple of 472. Using the differential equation obeyed by Lis, it is also
straightforward to check that they obey ([7.25)) as needed.

7.5.4. Computing the &EE/. Now that we have fixed our choices of ¢7 and also fixed trivializations
of the L£(A, €) we are in position to express the normalization constants from (7.38]),

(7.73) Ko L(Qpy€) — L(Qpr, €),
as concrete numbers: we write
(7.74) kg ((0B)«Te, ® ($B):Te,) = kg ((05/)4Te @ (957)+Te,)

for some k‘fE’e/ e C*.

To compute the k?/, it will be useful to recall their origin in Chern-Simons theory on an oriented
sphere H with tetrahedral triangulation 7, obtained by gluing —Qp to Qg along the common
boundary. We label the edges of Qp and Qg as shown in Figure 24] thus identifying H with a
standard model. We use ey to represent the full collection of six edge-orientations on 7 induced
by (€,€'), and use the condensed notation k°# for ka’E,.

The next lemma concerns just H, not the original surface Y.
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Lemma 7.75. Suppose € and €' are two systems of edge-orientations on T, which differ by reversing
the orientation on some E € edges(T). Fiz stratified abelianization data (P,Q, u,0) on (H,N7),
and extend (T,€) to data D = (T,€,s,x) as in Construction . Also define D' = (T,€,s,2)
where 'y = xg + \/—17, and 2’5 = xp for all other edges. Let (ui,u2) and (n1,m2) be given by
and ([7.50), likewise (u},ub) and (n;,n5). Let A1, Ay denote the two triangles abutting E.
Then
(7.76)
o

k 1 / 1
yrle [27”/?1 (fﬂ(ul,uz) —m (u’l,ué)) + m(ulué - UQU/I):| blea,, €n,)b(€ays €n,)

with b determined in Proposition [7.61].

Proof. We consider the element o = .Z¢(A; P), which has

1
2w/ —1

(7.77) Yp(o) = c“exp [ (g, uz)} € L(H,e).

Part (2) of Proposition gives the relation between 1p(0) and ¥ pr(0). The quantity u appearing
there is not necessarily the u; here, because E is not necessarily Epi; one can show however (e.g.
by checking the six cases for E) that the correct relation is

(7.78) V—1ru = ujub — usu .
Thus we get
(7.79)

1

(uwruh — ugul) | (0 (A1) @p" (A2))(c).

esxp )| & = exp [ 5= 0

1 1
+ -
2my/—1 2w/ —1 47/ —1

Now for each A € faces(7T) let the marked edge ea be either Ep; or Eag, whichever lies on A.
Dividing both sides by @A (¢en )« (Ten) gives the desired result. O

Lemma [7.75] determines the constants k¢ up to a single overall multiplicative constant. The
remaining constant can be fixed as follows. We consider a triangulated surface (Y, T) with stratified
abelianization data (P,Q,u,0). Suppose T contains three triangles which make up a pentagon.
Then we consider two possible sequences of flips, involving various triangulations J; as indicated
in Figure and choose data D; (logarithms, edge-orientations and marked edges) extending the
triangulations T;.

Since both sequences begin at D and end at b/, we can follow either sequence to compute the
ratio 7y /Tp; but one sequence contains 3 flips and the other contains 2, so requiring that they are
equal is enough to determine the overall multiplicative constant in k€. Carrying this computation
out we obtain the following (the detailed computation can be found in the file dilog-compute.nb
included with the arXiv version of this paper.)

Lemma 7.80. If we set p=q =1, then k¢ = exp (%n(e)), with n(e) given below. We specify

€ by the tuple (€(0,2),€(2,1),€(1,3),€(3,0),€e(1,0),€e(2,3)).
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O-2.

~

A

FIGURE 26. Two sequences of flips in a triangulated pentagon.

(1, +1,+1,+1,+1,+1) = 7

(+1,4+1,4+1,+1,+1, 1) = =5
(+1,4+1,+1,+1,-1,4+1) —» -5
(+1,+1,+1,+1,-1,-1) > 7

(+1,4+1,+1, —1,4+1,+1) —
(+1,4+1,+1, -1, +1, 1) — -2
(+1,4+1,+1, -1, -1, 4+1) — -8
(+1,4+1,+1,-1,-1,-1) —
(+1,4+1,—1,+1,+1,4+1) — 1

(+1,4+1,—1,+1,+1,—1) — 10
(4+1,+1,—1,+1,—1,+1) — 10
(+1,4+1,-1,41,-1,-1) = 7

(+1,+1,—-1,—1,+1,41) — -8
(+1,4+1,-1,—1,+1,—1) — 10
(+1,41, -1, -1, -1,41) — -8
(4+1,+1,—-1,—-1,—1,—1) — 10

(+1, =1, 41, +1,+1,4+1) — —11
(+1,—1, 41, +1,+1,—1) — —8
(+1, =1, 41,41, -1, 4+1) — —2
(+1,—1,41,+1, -1, —-1) - —11
(+1,—1,41,—1,+1,4+1) > 1
(+1 —1,41,-1,+41,-1) = 1
(+ 1,+1,71 —1,41) > 1
(+1,—1,41,-1,—-1,—-1) = 1
(+ 1 —1,—1,+1 +1,41) — —8
(+1,—1,—1,+1,+1,—1) — —8
(+1,—1,—1,+1,—1,+1) — 10
(+1,-1,-1,41,—-1,—-1) = 10
(+1,—1,—1,—1,+1,+1) = 1
(+1,-1,-1,—1,+41,—-1) — 10
(+1,-1,-1,—1,—-1,+1) — 10
(+1,-1,-1,-1,—-1,—-1) > 7

r\/\/\/\/\/—\/\/\/\r\r\/\/\/\r\/\

1,+1, 41,41, +1) = 7
1,41, 41,41, -1) — 10
1,+1,+1,—1,+1) — 10
1,+1,41,-1,-1) = 1
1,+1,—1,41,+1) — 10
1,+1, —1 +1,-1) = 10
1,+1,-1,—1,+1) — —8
1,41, 71 -1,-1) — 78
1,—1,41,+1,+1) —
1,—1,41, +1, —1)—>1
1,-1,41,-1,41) = 1
1,-1,41,-1,-1) = 1
1,—1,—1,4+1,+1) — —11
1,-1,-1,4+1,—-1) = —2
1,-1,-1,—1,+1) = —8
1,-1,-1,-1,-1) = —11

l—".)dl—‘u)—‘:—‘“i—‘“)dl—'l—‘l—‘“i—‘ldl—ll—‘:—‘“b—l
++++++++++++++++

(=1, —=1,41,4+1,+1,4+1) — 10
(=1, -1,41,+1,+1,-1) = -8
(=1,-1,41,4+1,—1,+1) = 10
(=1,—-1,41,4+1,-1,-1) — —8
(=1,—-1,41, =1, +1,4+1) = 7

(=1,—-1,41,-1,+1,—1) = 10
(=1,-1,41,—-1,—-1,+1) — 10
(=1,-1,41,-1,-1,-1) = 1

(=1, -1, =1, 41, +1,4+1) — —11
(=1,-1,-1,+1,41,-1) = =8
(=1, -1, -1,41,-1,+41) = =2
(-1,-1,-1,41,—-1,—-1) — —11
(=1,—-1,—1,—-1,+1,4+1) = 7

(=1,-1,-1,—-1,4+1,-1) = =5
(=1,-1,-1,-1,-1,41) = =5
(-1,-1,-1,-1,-1,-1) = 7

7.5.5. The final result. We summarize our description of the Chern-Simons line, in its most con-

crete form:

Theorem 7.81.
tuples D=

e T is a semi-ideal triangulation of Y,

® ¢ = (€r)Eeedges(T) 18 a system of edge-orientations for T,

o s = (Sv)uevertices(ﬂ')

projected to P/ B agrees with the boundary reduction,

® = = (TE)Ecedges(T) 5 @ collection of complex numbers, where exp(rg)

E is an edge with vertices v,v’,

Fiz a surface Y and a boundary-reduced flat G-bundle P — Y. We consider
(T,€,8,2,€), where:

is a flat section of P/U = P x¢ (C?\ {0}) over each v, which when

= ep(v,V)sy A sy if

® ¢ = (eA)Acfaces(T) 5 @ system of marked edges, where en is an edge of A.

For each such tuple there is a canonical nonzero element

(7.82)

T € Fa(Y; P)*

They obey relations as follows.

(1) Suppose D and D' differ only by a change involving a single vertex v: s, = s,exp(t) and

Ty =xp+t for all edges E incident on v. Then

(7.83)
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(2) Suppose D and D' differ only by changing the marking ea to €\ for a single triangle A.

Then
27y —1
(7.84) Th = €Xp [ 3 <€A,€/A>:| T -
(3) Suppose D and D' differ only by a change involving a single edge E: €y, = —ep and

x'y = xp + m/—1. Labeling the edges of Qp as in Fz'gure define u by (7.47)). Then

1
(785) Tp! = €XP |:4U:| b(€A1 ) ElAl)b(6A27 E/Ag) Tf) ’

where b(e, €') is given by Proposition withp =q=1.

(4) Suppose D and D' differ only in that T’ is obtained from T by flipping edge E to obtain
a new edge E', with some orientation €y, and a choice of logarithm xg:. Suppose that the
triangles A abutting E in T both have en = E, and the triangles abutting E' in T’ both
have enr = E'. Labeling the edges of Qp and Q' as in Figure define w1, us, N1, M2 by

(7.49), (7.50). Then
1
2/ —1

where 0 is given in (7.69)-(7.72) and k¢ is given by Lemma .
Proof. The object 77 has been defined in (7.59). The relations it obeys are obtained from Propo-
sition by contracting with @A ¢gaces(T) (Pea )+ Te- O

Theorem closely resembles known patching constructions of a prequantum line bundle L

(7.86) Ty = €Xp M(uy, ug) k‘E’EIT[) .

D

over a symplectic leaf of the SLoC-character variety of a punctured surface. In particular, in [FG2]
such a line bundle is constructed in the more general setting of an X-cluster variety, using the
dilogarithm as a gluing map. Related constructions appear in the subsequent works [N} [APPL [BK|
CLTHﬂ In all these cases, the characteristic property of L. is that it carries a natural connection
given concretely in terms of the cluster coordinates on the character variety. From our point of
view, this connection is the one provided by the TFT %#¢ applied to families of flat G-bundles
P — Y, the cluster coordinates are (up to sign) the holonomies of the corresponding flat C*-
bundles Qf,, — Y, and the fact that the connection has a simple expression in cluster coordinates
is obtained by using x§- to pass from g to Sx.

8. Computing CS invariants for flat SLoC-bundles over 3-manifolds

Let M be an oriented 3-manifold with boundary. Suppose P — M is a boundary-reduced flat
G-bundle. In this section we explain how to use our results to obtain a dilogarithmic formula for

33In all of these works the basic dilogarithmic formula for transition functions appears, but the detailed treatment
of the constant factors is somewhat different in each case.
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the Chern-Simons invariant % (M; P), Theorem below, assuming that P satisfies a genericity
condition. This formula closely resembles the previously known formulas we recalled in but
its precise structure is slightly different, involving several variants of the dilogarithm function and

some extra cube roots of unity, and not requiring any orderability constraints on the triangulation
of M.

8.1. Abelianization of the CS invariant

We fix data:

e T a semi-ideal triangulation of M, such that the genericity Assumption [4.32]is satisfied.
® ¢ = (€r)Eeedges(T) @ System of edge-orientations for T.

According to Construction T determines a spectral network N7 on M, and P — M extends
to boundary-reduced stratified abelianization data A = (P, Q, i, 0) over (M,N7).

The edge-orientations € determine a lift of the double cover Mz_ga — M>_3, to a Z-bundle over
each face of T by Construction We can then extend by radial projection to get a Z-bundle
Me>® — M>_3,. As before, we use this to twist @ to Qf,, and 70 to of, both of which extend
over M>_oy,.

For each tetrahedron A € tets(T) we introduce a small ball B, around the barycenter, and
define Hy, = 0B, . As we discussed in 3 H, is naturally triangulated and has edge-orientations
induced from those of A. Then we have

(8.1) XHi (ﬁG(BA?P’BA» < yCX(HNQtV?A‘HA?Um%)®£(HA7€A)-

Moreover, each A € faces(7) is pierced by a component of the branch locus M_sp, which connects
a triangle Ay in H,  to another triangle Ay in Hy ,, and thus gives an element

(8.2) Ba € L(A1,€) @ L(Ag,€).
Tensoring over all faces A gives an element

(8.3) B: Q) L(Ae)—C.

A ctets(T)

Proposition 8.4. The Chern-Simons invariant Fg(M; P) is
(8.5)

FoM;P) =8| & x2 (chG(BA?Ph;A)) ® S <M\UABA;QEWIM\UABA;UEW) :
A ctets(7) A

Proof. Apply Proposition to the 3-manifold M \ U, B, . This gives

(86) XingA(gc(M’P)) = BM\UABA ® lsﬂ(CX (M \ UABA;Q§W|M\UABA;U§W> :

Then gluing in a factor X:IA (ﬁg(B N BA)) for each A gives the desired formula. O
A
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8.2. Explicit formulas

To make the formula in Proposition more concrete, we fix more data:
® 5 = (Su)yevertices(7) @ flat section of P/U = P xq (C?\ {0}) over each v, lying in the line
given by the boundary reduction if v is an ideal vertex,
® & = (TE)pcedges(r) @ collection of complex numbers, where exp(zg) = €p(v,v') sur A sy if
E is an edge with vertices v, v’
o ¢ = (ey )actets(y) @ Pair of opposite edges on each tetrahedron.

Note that e, induces a marked edge e(A, A) for each face A of A. Each face A has two
abutting tetrahedra A1, Ao, and the marked edges coming from these two tetrahedra need not
agree. Suppose we equip A with the boundary orientation induced by A 1; then we can consider the
pairing (e(A, A1), e(A, Ag)) which measures the mismatch. Note that this quantity is independent
of which tetrahedron we called A1, since that choice enters both in the orientation of A and in the
ordering of the antisymmetric pairing.

Fix a A € tets(7), and let E1 denote one of the marked edges e, ; then let Ey, E3 be defined
by following F; around a face, with (E;, F;11) = 1. Then define

(8.7) we= Y (B, E)ap
E’cedges(T)

and let (1, ); be the e-sign of the edge E;. Then we have the following concrete formula for the
Chern-Simons invariant:

Theorem 8.8. The Chern-Simons invariant Fq(M; P) is

Fa(M;P) = H k% exp [

AN (um, 'LLQA):| X
A ctets(7)

1
2myv/—1

I RS |

3
Aefaces(T)

where L1 is given in (7.69)-(7.72) and k¢ is given by Lemma .

Proof. As in Construction the choice of logarithms x g determines a section of Qf, over each
face; using radial projection in each tetrahedron, this extends to a section ¢ of Qf, — M>_ay.
Then, using the fact that the C* Chern-Simons form vanishes for a flat bundle, we have

(89) y@x <M \ UA BA ; QEW‘M\UA BA ; UEW) = ® T;I

A ctets(T) a

We plug this into the formula of Proposition [8.4] which gives

X2 (Fa(By; Ply )
(8.10) FeM;P)=8| & = ( - w)
A ctets(7) tlHA
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On each A, we have
€
X, <9G(BA;P\BA))

(8.11) = = k% exp [27“1/_—15% (u1a, UQA)] ® ((be(A,A))*(TEA)

Ty Acf A
In cfaces(A)

Applying 8 to this tensor product pairs up the factors corresponding to the same face on different
tetrahedra. For a face where the marked edges e(A, A1) and e(A, Aq) agree, this pairing just gives
1, using ((7.58)). More generally, using (7.57)), we see that the pairing is exp [%TM@(A, Aq),e(A, Ag))|.
Plugging this into (8.10|) gives the desired result. d

8.3. An example

Let M be the ideally triangulated manifold obtained by gluing two copies A1, As of the standard
oriented tetrahedron across the four triangles A1, ..., Ay, with each gluing specified by giving the
mapping between three vertices of A; and three vertices of A: ﬁ

Ar: (A 012) < (A, 130)
As: (A7 013) < (A, 012)
As: (A7 023) < (A, 231)
Ag: (A 123) © (A, 023)

The induced orientations on each face are such that the vertex orderings shown above are positively
oriented on A1, negatively oriented on As. This gluing induces identifications on vertices and
edges; after the gluing there is 1 vertex and 2 edges. Choose edge-orientations so that ep, points
from 0 = 1 in A; and eg, points from 0 — 3 in A ;. See Figure

Suppose given a flat G-bundle P — M, with a section s chosen at the vertex. Write Xg = s, A sy
if £ is an edge from v to v' and eg(v,v’) = 1. The Xg corresponding to the edges of a single
tetrahedron are constrained by the “Ptolemy relation”ﬂ if we have four elements sgp,...,s3 in a
2-dimensional vector space then

(8.12) (80 A 81)(82 VAN 33) + (80 A 82)(83 A 81) + (S() VAN 83)(81 A 32) =0.
Applying this to A1 we get the relation

(8.13) X} - X1 Xy + X3 =0.

34This manifold is known as the “figure-eight sister,” or m003 in the SnapPea census. To avoid confusion we
note that it is not the figure-eight knot complement; the latter is also obtained by gluing two tetrahedra, but it
does not admit a boundary-unipotent SL(2, C)-connection — although it does have boundary-unipotent PSL(2, C)-
connections, e.g. the one induced by the hyperbolic structure. See [C] for a general discussion of the obstruction to
lifting a boundary-unipotent PSL(2, C)-connection to a boundary-unipotent SL(2, C)-connection.

35These relations are exploited systematically in IGGZ1l, [GGZ2] to parameterize flat bundles over triangulated
3-manifolds.
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3 3

0 0

F1GURE 27. The gluing pattern defining the ideally triangulated 3-manifold M. The
boundaries of the two tetrahedra are shown, with their boundary orientations. Edges
with single arrows form the equivalence class Fq after gluing; edges with double
arrows form the class Fs. The direction of the arrows gives the edge-orientations
ep, and €g,.

As it happens, in Ay we get the same relationm Assuming that X5 = 0, we may choose the scale
of s so that X9 = 1, and then using (8.13)

(8.14) X = %(—1 +v5), Xp=1.

For either choice of the sign in , we can build a flat boundary-reduced G-bundle P — M, by
taking the trivial bundle in each tetrahedron and then gluing across each triangle, requiring that
the gluing match up the sections s, at the three vertices of the triangle. In this way we obtain
two inequivalent flat boundary-reduced G-bundles P — M. Moreover, since all Xg # 0 these
G-bundles obey the genericity Assumption [4.32}

In either case, we would like to compute Z#g(M; P) using Theorem For this we have to
make a choice of a pair of marked edges on each tetrahedron. We choose the edges labeled 01,23.
We also have to choose logarithms x; of X;. Then for either A, or Ay we have

(8.15) Uy = —x1 +x2, U =2x1 —2x2, N = (+1, —I—l)

To be completely explicit let us choose P — M corresponding to the — sign in (8.14]) above.
Then, using (7.69) and (8:14), it turns out thaf’|
(8.16)

92 1 Iy —1
(+1,41) _ 7 2 = (1,41 — _Ity -
l (uy,ug) = 50 (mod 47°7Z), exp <27r\/—71€ (ul,u2)) exp< 50 ) .

36Had we used the figure-eight knot complement instead, we would have gotten a sign flipped here, with the result
that the only common solution of the two equations would be X; = X2 = 0.

we have the closed

3"The fact that we get a closed form expression here comes from the fact that, for z = — 1+2\/§7
form expression Lia(z) = —7{—; —log(—2)%. Also, in this example £"(u1,uz) is actually independent (mod4n?Z) of
the choice of logarithms 1, 2. Both of these are exceptional properties, which do not hold in most examples; more
typically, the final result for .Z¢(M; P) involves a sum of Lis(z;) for algebraic numbers z;, and changing the choice

of logarithms changes the contributions from individual tetrahedra while leaving the final result unchanged.



82 D. S. FREED AND A. NEITZKE

Next we look up from Lemma that for either tetrahedron we have

(8.17) k% = exp (hﬁ) :

12

Finally, we have to include the cube roots of unity from face gluings. For instance, on face A;
we see from the face gluings above that the edge e(A1, A1) (numbered 01 on A;) and the edge
e(A1, Ag) (numbered 01 on Ag) have (e(A1, Aq),e(A1, Ag)) = 1. Computing similarly for the
other three faces, we get the overall factor

(8.18)

exp <2mﬁ

3_1 _%ﬁ) '

(1+0+1+0)):exp< 3

Combining the factors (8.16) (for each tetrahedron), (8.17) (for each tetrahedron), and (8.18]) we
get

(8.19) F(M; P) = exp (wﬁ <9 L1 2>) = exp <2Wﬁ) .

10 6 3 5

If we take P — M corresponding to the + sign in (8.14]), then (8.16) is replaced by

9 _
(820) €(+1’+1)(U1,UQ) _ % (mod 47_‘_22)’ exp <27r\1/j1£(+1,+1) (Ula ’LLQ)) = exp <_ﬂ\2/(7> ;

which when combined with the other factors gives

(8.21) F(M; P) = exp <wﬁ (—1 I 2)) = exp (2”m> .

10 6 3 )

8.4. Another example

Now let M be the manifold called m071 in the SnapPea census. M admits an ideal triangulation
T with 5 tetrahedra, 10 triangles, 5 edges and 1 vertex. Applying Theorem [8.8|in this example we
obtain the Chern-Simons invariants .#¢(M; P) for 7 inequivalent boundary-reduced flat G-bundles
P — M: numerically they are approximately

0.697849 + 0.716244y/—1  —0.99614 4 0.0877733v/—1 —0.26787 + 0.963455+/—1
—0.948968 — 0.315372y/—1  0.982867 + 0.184319y/—1  1.51835 + 0.0629475+/—1
0.65748 + 0.0272577y/—1

Details of this computation (along with a few others) are given in the Mathematica notebook
dilog-compute.nb, available as an ancillary file included with the arXiv preprint version of this
paper. In making these computations we made use of the software SnapPy [CDGW] and Regina
[BBP].
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9. Future directions

We conclude with a brief description of possible avenues for further exploration.

Although some basic setup in §4] and §5| applies to all rank one complex Lie groups, our main
results are proved here only for flat SLoC-connections. One should be able to extend them to
the groups GLsC and PSL»C.

More ambitious is an extension to higher rank complex Lie groups. Spectral networks in
2 dimensions for higher rank groups are discussed in [GMNI], [GMN2] [LP, IM]. Some clues for
spectral networks in 3 dimensions can be found in [GTZ, DGG].

The flat SLoC-connections to which we apply stratified abelianization are assumed to be
boundary-unipotent, this for both 2- and 3-dimensional compact manifolds with boundary.
The expectation is that the boundary-unipotent assumption could be dropped at the cost of
having additional lines or V-lines associated to boundary components.

The 3-dimensional spectral networks in this paper are either induced from a triangulation or
for the Cartesian product of a triangulated 2-manifold and a closed interval (§7.3). Accord-
ing to [GMN3] one obtains a 3-dimensional spectral network from a l-parameter family of
holomorphic quadratic differentials on a Riemann surface. This recovers the spectral network
of but one can also get another transition of triangulations called a “juggle”. It would be
interesting to study this kind of 3-dimensional spectral network.

One can strive to develop spectral networks (rank one or higher rank) as a topological structure
on a smooth manifold, much like an orientation or spin structure. If so, then one could define
bordism categories and bordism spectra as domains of field theories on manifolds equipped with
a spectral network and stratified abelianization. This should lead to more powerful theorems.
Perhaps, then, our main results could be stated and proved as parts of an isomorphism of field
theories.

One of the most important aspects of 2-dimensional spectral networks is the relationship to
the WKB analysis of ordinary differential equations; see e.g. [KaTal [GMN3] and references
therein. One can inquire whether 3-dimensional spectral networks have a similar relationship
to differential equations.

We give a construction of the Chern-Simons line of a flat bundle on a 2-manifold via stratified
abelianization. In a parametrized family of flat bundles, this gives a construction of the Chern-
Simons line bundle with its covariant derivative. This is the same construction that appears
in [FG2l [APP] N, [CLT], and therefore the line bundle constructed in those papers must be the
Chern-Simons line bundle. One can imagine that this identification of the line bundle will lead
to new insights and results.

2d spectral networks on a Riemann surface can be constructed in terms of BPS particles in
a corresponding supersymmetric quantum field theory |[GMNI]. It would be very interesting
to know whether one can understand 3d spectral networks in a similar way; candidates for
the corresponding quantum field theory are known in the physics literature, beginning with
IDGGul.

2d spectral networks can be used to construct the quantum trace map (or g-nonabelianization
map, or quantum UV-IR map) of [BW], as a homomorphism from the gl(2) skein algebra of
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a surface Y to the gl(1) skein algebra of a double cover Y [ INY]. It would be interesting
to use the 3d spectral networks defined in this paper to construct a 3-manifold version of the
quantum trace, mapping the gl(2) skein module of a 3-manifold M to an gl(1) skein module of
a branched double cover M. According to the recent proposal of [AGLR], such a 3-manifold
quantum trace is one of the necessary ingredients in the formulation of a “length conjecture”

for link invariants.

Appendix A. Ordinary differential cochains

Differential cohomology descends on the one hand from the differential characters of Cheeger-
Simons [ChS|] and on the other from Deligne cohomology [De] in algebraic geometry. The ideas
for an explicit model are suggested in [DE| §6.3]. Hopkins and Singer [HS|, §3] develop the model
that we recall in this appendix. The theory of generalized differential cohomology (and differential
cocycles) has been further developed in many works, for example [SS, BNV, [ADH]|. In this brief
appendix we also include a few complements needed for Chern-Simons theory.

A.1. Cochain model

Let M be a smooth manifold, A an abelian group, and C?(M; A) the group of singular p-cochains
with values in the abelian group A. For each ¢ € ZZ° define a cochain complex C(q)® by

CP(M;Z) x CP~L(M;R) x QP(M), p> g

(A1) Clq)P (M) = {CP(M; Z) x CP~1(M;R), p<4q,

with differential acting on (¢, h,w) € (vl'(q)p(M), p>gq,oron (c,h)e é’(q)p(M), p < q, given by
d(C,h,W): ((5C,W-C-(5h,d¢d>, PZCL

A2 e 1.
( ) d(c7 h) — (567 c 6h‘7 0)7 p q 1’
(6c,—c — 6h), p<q-—1.

The cohomology of the cochain complex C (q)® is

HP(M;Z), P> q;

(49) Hgrn = {m(zw-ma/z) p<a

and the diagonal group H (q)21(M) is the differential cohomology. Since we have great use for the
diagonal groups, we introduce the notations

&
(A4) Z'(M) == Z(q)"(M)
i1
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where Z(q)P(M) C C(q)P(M) is the subgroup of cocycles. The group H’(M) is isomorphic to the
group of Cheeger-Simons differential characters on M. It can be given [BSS|, [DGRW, §6] the
structure of an infinite dimensional abelian Lie group with Lie algebra and homotopy groups

T Qe (M)

LieH (M)—m,
(A.5) HY(M:;Z), k=0;
mH (M) = { HEVM;Z), k=1
0, k>2

Remark A.6.

~ 2
(1) The case g = 2 is instructive: H (M) is isomorphic to the group of isomorphism classes of
principal R/Z-bundles with connection over M.
(2) In the main text we use complex differential forms and complex singular cochains in (A.1J),

for which we use the notation ‘Cx(q)P(M)’.

(3) The construction is functorial for smooth maps, so can be phrased in terms of simplicial
sheaves on manifolds [FH2, BNV [ADH].

(4) There are alternative models which replace singular cochains with integer coefficients by
other models of cochains or by maps to Eilenberg-MacLane spaces. The latter approach is
used to define differential versions of generalized cohomology theories, as in [HS, §4].

A.2. Curvature, characteristic class, and nonflat trivializations
The projection
(A.7) (M) — QI(M)
is called the curvature or covariant derivative map, depending on the context. The restriction
of (A7) to differential cocycles Z'(M) < C*(M) factors through H'(M) and has image the

subgroup of closed differential forms with integral periods. There is also a characteristic class

homomorphism
(A.8) H (M) — HY(M; 7).
The short exact sequence
(A.9) 0 — C(g)* (M) == Cq — 1)*(M) — QI (M)[1 - g] — 0
induces a long exact sequence in cohomology:
v g1

(A.10) s HTO(M) — QY (M) — B (M) - HY(M;Z) — 0

Let & € Zq(M ) be a differential cocycle.
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~g—1
Definition A.11. A cochain ¥ € ¢ (M) is a nonﬂa trivialization of & if d7 = (%) holds in

Clq —1)%(M).

By (A.10), a nonflat trivialization ¥ produces a differential form 7 € Q9=Y(M), the covariant
derivative of 7. (It is the image of 7 under (A.7).) For ¢ = 2 we can represent & as a complex line
bundle 7: L — M with connection. Then a nonflat trivialization is a section of 7, and its covariant
derivative is as usual.

Remark A.12. See [F3, Definition 5.12] for a model of nonflat trivializations which works in gener-
alized differential cohomology theories.

A.3. Higher Picard groupoids of differential cocycles

As a warmup, recall that a cochain complex
(A.13) 0— A" Ly 4t 2,

gives rise to a sequence of higher Picard groupoids. For g € Z=Y, form the truncated complex

d d, . _d, 4q

close

Al

(A.14) 0— A° 4—0

in which A

close

g C A7 is the subgroup of closed elements. Define the Picard g-groupoid G, as
follows. The set of objects is AZlose q- The Aglzsled—torsor of 1-morphisms between ag, a1 € Aglose q s

(A.15) Hom, (ag,a1) = {a' € AT ' 1 ag+dd = a1 }.

q—2 : ;o :
The A} ..4-torsor of 2-morphisms between ag, aj € Hom, (ag, a1) is

(A.16) Hom,(ag, a}) = {a" € A% qf 4 da” = ai },

and so on. The homotopy groups of G, are

HT(A), i=0,...,q
(A.17) miS(q) = {

0, 1> q.

A variation of this construction produces higher Picard groupoids out of differential cohomology
on a smooth manifold M. Define the Picard g-groupoid G, (M) to have as its set of objects
Eq(M) c C*(M), the set of differential cocycles of degree g. Then for &g, &1 € éq(M), define

(A.18) Hom, (B0, &1) = {F € C7 (M) : i(&%o) + dF = i(&51)},

38Nonflat’ could be replaced by the more accurate ‘not necessarily flat’.
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where as in Definition the equation (o) + d¥ = i(&) lies in C(g — 1)7(M). In other words,
7 € Hom, (o, 1) is a nonflat trivialization of w; — &g. Now for 7o, 7; € Hom, (&g, 1), define

(A.19) Homy (%o, 71) = {X € CT2 (M)  i(Fo) + dX = i(F1) ).

The homotopy groups of é(q)(M ) are the differential cohomology groups:

< flq_i(M), 1=0,...,q;
(A.20) 7 G(g) (M) = { '
0, 1> q.

Remark A.21. In low degrees the é(q)(M ) have alternative, more geometric, presentations. For
example, 5(2) (M) is equivalent to the following Picard 2-groupoid: an object is a principal R/Z-
bundle P — M with connection ©; a morphism (Py, ©9) — (Py, ©) is a section s of P,@ Py ' — M;
and a 2-morphism sy — s1 is a function f: M — R such that so + f = s1, where f: M — R/Z is
the mod Z reduction of f.

A.4. Integration and Stokes’ theorem

We repeat and expand upon material from [HS|, §3.4], slightly specialized. Let p: M — S be a
proper fiber bundle whose base S is a smooth manifold and whose total space M is a smooth mani-
fold with boundary; the fibers of p are smooth manifolds with boundary. Suppose an H-orientation
is given; see [HS, §2.4]. Then if the fibers have dimension k, integration is a homomorphism

~

(A.22) /M/S: Clq)*(M) —s C(q — k)PF(9).

We also have the usual integration of differential forms, and the diagram

~

CgpP(M) ——— P(M)
(A.23) fM/Si ifM/s
Eg — B H(S) — P H(S)

commutes. Also the integration map (A.22)) commutes with base change.
We state a version of Stokes’ theorem in this context. It concerns the case p = ¢ in (A.22)),
restricted to differential cocycles[]

Theorem A.24. Let & € éq(M) be a differential cocycle with curvature w € Q4(M). Then

. ~ _ x4k ) o o _ wa—k+1
the integral fM/ZoJ e ¢’ (S) is a nonflat trivialization of faM/Sw e Z!

derivative fM/Sw € QI7F(S).

(S) with covariant

39We do not vouch for the signs.



88 D. S. FREED AND A. NEITZKE

See [HS, §3.4] for a more general theorem and proof.

We also need a generalization of Theorem to manifolds with corners. Here we state the
next simplest version—corners of codimension at most 2—and leave to the reader the more general
version. For convenience we use manifolds with corners equipped with the extra structure needed
for objects and morphisms in bordism multicategories, as in [ET1, §A.2]. The data of such a
manifold M of dimension k and depth < d includes manifolds M? ; with corners of depth < d — j,
§ € {0,1}, j € {1,...,d}, and embeddings [0, 1)/~ x ij — OM. The data is designed to fit the
formalism of multicategories. For example, if d = 2 then a 2-categorical interpretation has objects
M°,, M!,; 1-morphisms M°;, M*,: M°, — M*',; and M itself is a 2-morphism M°; — M!,.

Let p: M — S be a proper fiber bundle whose base S is a smooth manifold and whose total
space M is a manifold with corners of depth < 2. Assume that M carries the extra structure
of [ET1, §A.2], fibered over S. In particular, there are fiber bundles p‘s_j: ij — 5,6 € {0,1},

je{1,2}. Let & € Z*(M) be a differential cocycle with curvature w € Q9(M). Define

m=[ @ et M),
M? /S
(A.25) 4

77? :/ LW € Qq_k+j(5).
MS /S

These formulas pertain for j € {1,2}, § € {0, 1}; for j = 0 omit J.

Theorem A.26.
(1) 73 is a nonflat trivialization of 73 — 79 with covariant derwative n’.
(2) Ny is a nonflat trivialization of ﬁ% — ﬁ? with covariant derivative 1.

The diagram
(A.27) a e

captures some of Theorem In the terms of the integral of & over My /S is a 2-morphism
in G(g—r+2)(S). We leave generalizations to greater depths to the reader.
We also use a generalization of Theorem for the integral of a 1-morphism in E(q) (M). For

~ - - ~g—1 .
simplicity, consider a 1-morphism of the form 0 — &. In other words, 7 € ok (M) is a nonflat
trivialization of @ € Zq(M). Let 7 € Q471(M) be the covariant derivative of 7. As in (A.25]), set

- - ~q—k+j—1
0’? = / T el (9),
M? /S

(A.28)
6 _ q—k+j—-1
o) /Mij/ST €N (S).

Theorem A.29.
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0 0

(1) 55 is a nonflat trivialization of ﬁg with covariant derivative 3.
(2) 59: 51— 59 — 7 is a nonflat isomorphism with covariant derivative o?.
(3) 5y: &1 — &) — 7y is a nonflat isomorphism with covariant derivative o.

The data of ﬁg,ﬁ‘{,ﬁo, 5%, 5‘15, 7, assemble to a 3-morphism in §(q,k+2)(S). We depict all but &,

in (30

[enl4

¢
[y

- 59 o - bed -
(A.30) 0 —=— 719 o My —— 0

_—

=<
=o

| —
S

Again, we leave to the reader generalizations of Theorem to greater depths.

Remark A.31. Suppose g = k, so that is a diagram in §(2)(S). Then as in Remark we
interpret 773 as a principal R/Z-bundle 7%: P9 — S with connection, ﬁ‘ls as a nonflat isomorphism
70 — 7!, and %, as a function S — R whose reduction mod Z maps the isomorphism ﬁ(l) to the
isomorphism 7}. Now &3 is a nonflat section of m°. The isomorphism 73: 70 — 7' maps &9 to
a section of 7!, and 5‘15 is a function S — R whose mod Z reduction maps the section &3 to the
section 773(59). Finally, 5o = 0 trivially—there are no nonzero 3-morphisms in §(2)(S)—Which
means that the difference of the functions &} — &\ equals the function 7}y, as is evident from the

foregoing.

Appendix B. Invertible field theories

We briefly outline some general facts about invertible field theories, including those which are
not flat, hence not topological. For simplicity we confine our exposition to a setting which applies
to the Chern-Simons theory we encounter in Invertible field theories which are topological
in a restricted sense (which applies to evaluation on a single manifold, as for example is true for
Chern-Simons theory on flat connections) or are topological in a strong sense (which applies
to evaluation in families) are modeled as maps of spectra in topology; see [FHT), [FHI. [F5] and the
references therein. Here we use generalized differential cohomology, for which we need a model of
“cocycles” which generalize the singular cocycles used in Appendix [A] For background and detailed
development of topics in this appendix, see [FH2, [HS| [BNV] [ADH]| and the references therein.

Let G be a Lie group. Let Man denote the category of smooth manifolds and smooth maps
between them, and let sSet be the category of simplicial sets. Then

(B.1) ByG: Man®® — sSet
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is the simplicial sheaf which assigns to a test manifold .S the nerve of the groupoid of G-connections
on S; see [FH2, Example 5.11]. Similarly,

(B.2) EgG: Man®® — sSet

is the simplicial sheaf which assigns to a test manifold S the nerve of the groupoid of G-connections
on S and a trivialization of the underlying G-bundle. Then EgG is equivalent to the set-valued
sheaf Q' ® g which assigns to a test manifold S the vector space Q}g(g), where g is the Lie algebra
of G; see [FH2, Example 5.14]. A smooth manifold M defines a representable set-valued sheaf
on Man; its value on a test manifold S is the set of smooth maps S — M.

Let h® be a generalized cohomology theory. Define the Z-graded real vector space

(B.3) Vi = h*(pt) @ R,

and suppose given an isomorphism of cohomology theories h®* ® R = H Vi, where the codomain
is the Eilenberg-MacLane theory with HV,*(pt) = V;*. There is then a differential cohomology
theory B (of “Hopkins-Singer type”) which refines the topological theory h®. Furthermore, these
theories—as well as the de Rham complex—can be evaluated on simplicial sheaves, in particular
on By G. The Anderson dual IZ* to the sphere is a universal choice for the codomain of an invertible
field theory. Nonetheless, for Chern-Simons theory in this context it is more convenient to use a
truncation E*, the cohomology theory introduced in as the codomain.

Remark B.4. Chern-Simons theory has not only a G-connection as a background field, but also a
spin structure. In the formalism sketched here we do not treat them symmetrically: we use the spin
structure to integrate differential E-cohomology classes (and cochains). By contrast, in topological
invertible theories we usually do treat them symmetrically and use the universal codomain 17Z°.

An n-dimensional invertible field theory on G-connections is modeled by a map

(B.5) a: BoG — 1"
The theory a has an underlying cohomology class
(B.6) BgG — bt

and curvature

(B.7) BgG — (Q® V)"

of total degree n + 1. (For E—cohomologylﬂ the Z-graded vector space Vg = R is supported
in degree 0, hence the codomain of the curvature (B.7) is Q') The theory « is flat if its
curvature (B.7]) vanishes. In that case « factors through a topological theory

4011 the main text we use a complezified version of differential E-cohomology.
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where hy Iz is the cofiber of h®* — h® ® R. The theory is topologically trivial if its underlying
cohomology class vanishes. A trivialization of the underlying cohomology class lifts « to a
theory defined by the differential form™]

(B.9) n: BoG — (2@ Vi)™

(Compare with Definition and the following paragraph.) Conversely, a differential form
determines an invertible theory , and the isomorphism class of the latter does not change if
the form is shifted by an exact form (or, more generally, by a closed form whose periods are integral
in a sense defined by the cohomology theory h®).

Example B.10. The 3-dimensional spin C* Chern-Simons theory in §5.3.5|is a map
4
(B.11) BoC* — B

Recall [FH2] that the complexified de Rham complex of ByC* is a complex polynomial algebra
generated by a 2-form w which is v/—1/27 times the curvature of the universal C*-connection.
Then the curvature of the theory (B.11) is the 4-form

1
(B.12) §w/\w.

The curvature, and indeed the entire theory (B.11)), should be evaluated on families
(B.13) N

in which 7 is a proper fiber bundle equipped with a relative spin structure and p is a principal
C*-bundle equipped with a connection. Then (B.12]) pulls back to an element of Qf‘c (X).

The discussions in §A.2]and §A-3| have analogs for invertible field theories. Thus there is a notion
of a flat (or nonflat) isomorphism of invertible theories. Furthermore, the equivalence classes of
flat isomorphisms of two n-dimensional invertible theories form a torsor over the abelian group of
flat (n — 1)-dimensional invertible theories. The latter are topological invertible theories in a strong
sense, hence may be treated via methods of stable homotopy theory.

Appendix C. 7Z/27 gradings

The invertible spin C* Chern-Simons theory is obtained by integration in the cohomology the-
ory F with two nonzero homotopy groups; see §5.2.11 (As explained in one integrates complex
differential “cochains” in the differential theory E¢ or, for flat connections, “cochains” in the

4 Our convention is that the partition function for a theory defined by a form 7 is obtained by integrating 2w+/—11.
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secondary theory E¢ /Z.) The homotopy group Z/27Z, which appears along with the standard Z
or C/Z, introduces an additional Z/2Z-grading in the values of the field theory. In this appendix
we collect some remarks and results about this grading. In particular, we complete the proof of
Proposition [6.29, The bottom line is: with a suitable universal choice we can and do ignore the
7./27-gradings in the main text.

C.1. sV-lines

Let sV be the linear category of finite-dimensional complex Z/ 2Z—graded|ﬂ vector spaces; for
Vi1,V € sV the hom space sV(V1, V) consists of even linear maps Vi — Va. Impose the symmetric
monoidal structure of tensor product with the Koszul sign rule. A super category is a complex
linear module category over the tensor category sV. Super categories form a 2-category. The
multiplicative units in this 2-category are called sV-lines, and there are two such up to isomorphism:
the Bose line sV and the Fermi line [I'; the latter is the category of modules over the complex Clifford
algebra Cliff;. An automorphism of an sV-line is a functor defined by tensoring with a super line L;
the complex line L can be even or odd. We refer to [F'T2] for more details about super categories.

Remark C.1. The integral of the level of spin Chern-Simons theory .#x over a spin 2-manifold with
flat C*-connection lies in E sz The nonzero homotopy groups of Ef, /7, are mo B 7= 7./27 and
leé 1z = C/Z; there is a nonzero k-invariant which connects them. An equivalent linear Picard
groupoid is that of complex super lines, and so the value of .#x on a closed 2-manifold is a complex
super line. Similarly, on a spin 1-manifold the relevant space is E(% Iz whose nonzero homotopy
groups are 7T1E([2: iz = 7./27 and 7T2E((2: iz = C/Z. An equivalent linear Picard 2-groupoid is that
of Bose sV-lines. In particular, we do not encounter Fermi sV-lines. (We would have met Fermi
sV-lines had the level lain in the cohomology theory with an additional homotopy group Z/27Z.)

C.2. Spin flip

A Riemannian spin m-manifold is a Riemannian manifold M equipped with a principal Spin,,,-
bundle Bgpin(M) — M which lifts the orthonormal frame bundle Bo(M) — M under the homo-
morphism Spin,,, = O,. A diffecomorphism f: M’ — M of spin m-manifolds is an isometry of the
underlying Riemannian manifolds together with a lift to the Spin,,-bundles. The spin flip @) is
the automorphism idy; with lift given as multiplication by the central element of Spin,,.

Let F' be an n-dimensional field theory of spin manifolds—say nonextended—so defined on a
bordism category of (n— 1)- and n-manifolds. If Y is a closed spin (n — 1)-manifold, then F(Y) is a
super vector space. We say that F' satisfies spin-statistics if the spin flip @y acts on the super vector
space F(Y) = F(Y)? @ F(Y)! as the grading automorphism idpyyp & —idpyy. Any F which is
topological, invertible, and reflection positive satisfies spin-statistics [FHI1, §11]. Complez Chern-
Simons theories are not reflection positive, and in any case what we need is spin-statistics for the
difference line of a triangle, which is defined in via a combination of the C* spin Chern-Simons
theory #cx, the SLoC Chern-Simons theory Zg; ¢, and the abelianization isomorphism .
Although we cannot simply quote [FHI1, §11] for what we need, the basic setup pertains, and so we
review it briefly.

42As usual, we use ‘super’ as a synonym for ‘Z]2Z-graded’.
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Let € be a symmetric monoidal category, and suppose x € € is a dualizable object. Then

coevaluation symmetr evaluation
(C.2) ] coovaluation g g VI | gk ) g SVAIAtON

is by definition the dimension dim z. For example, if € = sV and = V?& V! is a finite dimensional
super vector space, then dim 2 = dim V°—dim V!. If f: & — 2 is a morphism, then the composition

(C.3) 1 20 —reor—-Yrer—1

is by definition the trace tr f. For € = sV and f an (even) endomorphism of VO@ V!, this categorical
trace tr f = tr f ‘VO —tr f ‘vl is usually called the supertrace. For C = Bord,_ ,y(Spin) the spin
bordism category and z = Y a closed spin (n — 1)-manifold with spin flip @y, we find

dimY = S}

nonbounding

xY
(C.4) :
tr &y = Sbounding XY

where ‘(non)bounding’ identifies the spin structure on S'. If F: Bord(,,_1 ) (Spin) — sV is a
topological field theory, then since F' is a symmetric monoidal functor it maps traces to traces:

(05) trF((I)Y) = F(Séounding X Y)

If I is invertible, then spin-statistics holds for Y iff this equals +1; spin statistics holds for F' iff
this equals +1 for all Y.

C.3. Spin-statistics for the difference line £

Next, recall the construction of the complex line £ = L(D,e,0,.A), defined in in an
equivalent description to what we give here. Let D = D? be the standard spin 2-disk; the spin
structure is denoted o. The edge orientations € which appear on the triangle A in give rise to
a universal cover of 9D = S'; see The 2-disk D is equipped with its standard spectral network
(Figure 25), and A = (P, Q, i, 0) is stratified abelianization data (Definition [4.24)).

The line £ derives from three ingredients. First G = SLoC Chern-Simons theory %, on D
produces an sV—lin Z¢(0D) and an isomorphism of sV-lines

(C.6) sv 2P 7 (D).

o

Let ¢ = D_qg be the center point of D and let D’ — D\ {c} the double cover constructed from
the spectral network on D. The spin structure o lifts to a spin structure on the deleted 2-disk D’;
o does not extend over the deleted point. The principal Z-bundle derived from e is used to twist

43The SLoC Chern-Simons theory does not use the spin structure and it factors through ungraded linear objects,
50 F(0D) is canonically a V-line. Here we base extend to sV for consistency with #x .
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this spin structure and the flat C*-bundle over D'—see 1:0 obtain a spin structure ¢ and a flat
C*-bundle over the filled-in 2-disk D. The second ingredient in £ is then the C*-spin Chern-Simons
invariant

(C.7) v 2P o oD).

IR

The third ingredient is the isomorphism of sV-lines

D), S (0D)

(C.8) yg(aD)

constructed in For now we simply note that x(9D) is the composition of three isomorphisms;
we dig into the details in §C.4 below. Finally, the line £ is the composition

(C.9) L=« (D) o x(dD) o Z(D).

That is, the right hand side of is an sV-linear automorphism of sV, hence it is tensoring with
a line £. Note that £ is Z/2Z-graded; it may be even or odd.

Let ®p denote the spin flip of the spin 2-disk (D, o). It induces the spin flip ®5 of (5, 7), and
these spin flips of 2-disks restrict to the spin flip of the boundary circles. In this way ®p induces an
involution on each of , , and , hence too an involution (®p).: £ — L on the line £

which is their composition.
Proposition C.10. (®p), =idg if £ is even, and (Pp)« = —id, if L is odd.

Proof. Define an invertible 1-dimensional field theory f of spin manifolds as follows. If M is a
compact 0-dimensional spin manifold or a 1-dimensional spin bordism, then form the spin mani-
fold M x D and equip it with the structure pulled back from (e,.A) on D. Then f(M) is computed
as the composition in applied to M x —:

(C.11) F(M) = Fox (M x D)"Y o x(M x dD) 0 F,(M x D).
Note that f(pt) = L. By the supertrace of (®p). is

(C.12) () = tr f(Bpr) = F(Shounding)-

Hence the proposition follows if we prove that f satisfies spin-statistics.

Compute f (Séounding) as the composition (C.11)). Write Séounding = O0D?. The complex lines

ﬁG(Séounding x 0D) and yCX(Séounding x &D) have nonzero (basis) elements Fo(D? x 9D) and

Fox (D? x 85) Furthermore, since x is a map of theories, the linear isomorphism

(013) X(Sklmunding X 8D) gZG(Séounding X aD) - y(cx (Sll)ounding X aﬁ)
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maps %, (D? x dD) to Sex (D? x dD). Tt remains to compute the ratio of each of the vectors
ﬁa(Sﬂ)oundmg x D) and S (Séounding x D) and these basis elements. The first ratio is .7 evaluated
on

(014) (Skl)ounding X D) U 7(D2 X 8D)7
and the second ratio is .x evaluated on
(015) (S%ounding X 5) U 7(D2 X 85)7

where the minus sign denotes the opposite spin structure (and reverse orientation). But each of
these is a 3-sphere with the trivial connection, and so each partition function is +1. It follows that

F(Spounding) = +1, as claimed. -

Remark C.16. In the proof we encounter the 3-sphere S in (C.14) with the following spectral
network. The branch locus is an embedded S C S3. The walls are three disjoint embedded open
2-disks B2, each of which has boundary S C S3.

C.4. The freedom to eliminate odd lines

The isomorphism x is the composition of three isomorphisms: see Theorem One of them,
, is given by a canonical construction in Theorem We fixed another, , in Corol-
lary The remaining isomorphism v in derives from Corollary which we did not
fix completely. Namely, since v is an isomorphism of invertible 3-dimensional topological theories,
we can tensor it with an invertible 2-dimensional theory to obtain a new isomorphism. The back-
ground fields of v—Ilisted at the beginning of §5.3.6] are: a spin structure o, a flat H-connection,
and a principal Z-bundle which lifts the associated principal WQ-bundle 6. Observe that the 2-

Arf(0+9) takes value the odd line

dimensional invertible theory whose partition function i (—1)
on Sll)ounding' Hence, possibly after tensoring v with this shifted Arf theory, we can arrange that
L be an even complex line. It then follows from Proposition that the spin flip acts as idg,

which is the claim in Proposition [6.29|

44This is the Arf invariant (0 or 1) of the shifted spin structure o + 4.
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