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The classical paper by Lighthill (Commun. Pure Appl. Maths, vol. 109, 1952, p. 118) on
the propulsion of ciliated microorganisms has become the reference against which many
modern studies on swimming in low Reynolds number are compared. However, Lighthill’s
study was limited to propulsion in a uniform flow, whereas several biologically relevant
microorganisms experience non-uniform flows. Here we propose a benchmark for ciliary
propulsion in paraboloidal flows. We first consider the axisymmetric problem, with the
microorganisms on the centreline of the background flow, and derive exact analytical
solutions for the flow field. Our results reveal flow features, swimming characteristics
and performance metrics markedly different from those generated in a uniform flow. In
particular, the background paraboloidal flow introduces a Stokes quadrupole singularity at
the leading-order flow field, generating vortices. Moreover, we determine the necessary
conditions on the strength of the background flow for optimal power dissipation and
swimming efficiency. We then consider the more general case of a microorganism off the
centreline of the background flow. In this case, the squirmer experiences a paraboloidal,
linear shear and uniform flows due to its position relative to the flow’s centreline. Our
findings show that while the linear shear flow does not affect the translational and
rotational velocities of the squirmer, it does influence the velocity field and, therefore,
the power dissipation.
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1. Introduction
Fundamental research on microorganisms’ swimming in general, and ciliary propulsion in
particular, is of great practical importance. It has led to the development of microrobots
(Nelson, Kaliakatsos & Abbott 2010; Wu et al. 2020) that are employed in a wide range of
biological and biomedical applications (Wang et al. 2022) such as drug delivery systems
(Gao et al. 2012; Li et al. 2017; Tsang et al. 2020; Wu et al. 2020; Zhang et al. 2021).
Lighthill’s seminal work on ciliary propulsion in a Newtonian fluid (Lighthill 1952)
spearheaded many modern studies on the swimming of ciliated microorganisms. The
pioneering study remains the reference to assess the performance metrics of ciliated
microorganisms in a variety of environments including heterogeneous media (Leshansky
2009; Nganguia & Pak 2018) and complex fluids (Pak et al. 2012; Datt et al. 2015; Pietrzyk
et al. 2019). A common feature between Lighthill and the investigations that followed is
the assumption of a background uniform flow. However, many biological systems live in
dynamic fluid environments that are subject to non-uniform flows such as small pathogens
in blood vessels (Uppaluri et al. 2012), spermatozoa swimming through cervical mucus
and vaginal fluid (Rutllant, Lopez-Bejar & Lopez-Gatius 2005; Riffell & Zimmer 2007;
Zimmer & Riffell 2011; Denissenko et al. 2012), among others.

Focusing specifically on Poiseuille flows ubiquitous in the biological microcirculation,
experiments dating back to the 1960s have explored its effect on the dynamics of a
suspension of particles (Goldsmith & Mason 1961; Segré & Silberberg 1961). Later,
Kessler investigated the influence of Poiseuille flows on the directed locomotion of algal
cells (Kessler 1985) whereas, much more recently, other investigators have reported
Poiseuille flows’ effects on the dynamics, orientations and trajectories of biological
microorganisms (Zottl & Stark 2012; Choudhary et al. 2022; Omori et al. 2022; Walker
et al. 2022), artificial microswimmers (Acemoglu & Yesilyurt 2015) and vesicles (Danker,
Vlahovska & Misbah 2009; Agarwal & Biros 2020).

Zottl & Stark (2012) have investigated the influence of a Poiseuille flow on the swinging
and tumbling motion of microswimmers in a channel by reducing the problem to a
dynamical system for the position and orientation of the swimmer. Using the squirmer
model, they found that hydrodynamic interactions between the swimmer and the channel’s
walls play an important role in stabilising the upstream motion of the swimmer. Notably,
they assumed that the swimmer propelled with the velocity v = (2B1/3)e of a squirmer
in a quiescent flow, where e is the swimmer’s orientation. The same assumption appears
to have been made by Choudhary et al. (2022) in their analysis of the effects of inertia
on the motion of a channel-confined squirmer in a Poiseuille flow. In this study, they
showed that inertia and the type of squirmer (neutral pusher/puller) play a critical role
in determining the stability of the squirmer’s dynamics. The importance of the orientation
and motility of swimmers in Poiseuille flows was brought to light by Omori et al. (2022)
who, through experiments and simulations, investigated the precise mechanism behind the
rheotactic behaviour of the shape-changing Chlamydomonas reinhardtii. In their study,
the authors assume a time-dependent swimming velocity to account for change in the
velocity due to the swimmer’s deformation and orientation namely the background flow.
To demonstrate the critical role of cell motility on the trajectory and migration of the
microorganism, they conduct experiments on motile vs non-motile cells. Their findings
revealed that given an initial position off the centreline of the background flow, only
motile cells were able to adjust their strokes in order to continuously migrate towards
the centreline. The critical role cell motility plays in ciliates’ motion was also investigated
by Marumo, Yamagishi & Yajima (2021) using three-dimensional tracking experiments
of free-swimming Tetrahymena. In their study, the authors reported that the non-motile
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Propulsion in paraboloidal flows

cells, while rotating along their symmetry axis, remain on a straight path from their initial
position.

These studies illustrate the growing interest on the dynamics of swimming
microorganisms in Poiseuille flow, focusing on the influence of motility, orientation and
shape on the trajectory and motion of the swimmers. However, the assumption of the
swimmer propelling at the same velocity it would in a quiescent flow may not hold in
a Poiseuille flow, especially since Poiseuille flows introduce hydrodynamic features that
significantly affect motions such as vortices (Zottl & Stark 2012). Moreover, existing
studies did not provide information on performance metrics that are critical for the design
of artificial microswimmers, such as the work done by swimmers locomoting in Poiseuille
flows. These observations reveal that a systematic study of the influence of the Poiseuille
flow on the propulsion of biological microorganisms, to derive swimming characteristics
and performance metrics akin to those obtained for propulsion in uniform flows (Lighthill
1952; Blake 1971), is lacking.

A Poiseuille flow is obtained by superimposing a uniform flow and a paraboloidal flow,
so investigating the influence of paraboloidal flows on the propulsion of microorganisms
represents the first key step towards a complete understanding of the influence of Poiseuille
flows on microorganisms’ propulsion. Note that, in terms of singularities commonly
identified in hydrodynamic studies, a uniform flow past a sphere consists of a Stokeslet
and potential dipole at the sphere’s centre (Lamb 1945; Happel & Brenner 1973). On
the other hand, for a paraboloidal flow, one needs a Stokeslet, potential dipole, Stokes
quadrupole and potential octupole (Chwang & Wu 1975; Palaniappan & Daripa 2000).
The effects of uniform flows on microorganisms’ propulsion have been disseminated
extensively. However, while the influence of paraboloidal flows on spheres (Chwang &
Wu 1975) and droplets (Palaniappan & Daripa 2000, 2005) has been studied, to the best
of the authors’ knowledge its pivotal effects on the performance metrics and swimming
characteristics of microorganisms have yet to be explored. The present study addresses this
gap in knowledge.

Our paper is organised as follows. We first consider the axisymmetric case in § 2, where
the microswimmer is aligned on the centreline of the background flow. After formulating
the problem and solving the governing equations, we discuss the various performance
metrics including the propulsion speed, power dissipation and swimming efficiency. In § 3
we then analyse the most general case that accounts for the position and orientation of the
microswimmer off the centreline of the background flow. Finally, we conclude with few
remarks on the implication of our work in § 4.

2. Propulsion along the centreline
We first consider the case of an axisymmetric unbounded paraboloidal flow of strength
Ũp whose stream function is given by ψ̃∞ = Ũpr4 sin4 θ/4 (Jeong 2019) where the ( ˜ )
denotes dimensional variables. The corresponding flow field becomes

ũ∞ =
〈

1
r2 sin θ

∂ψ̃∞
∂θ

, − 1
r sin θ

∂ψ̃∞
∂r

〉

= Ũp

〈
r2 sin2 cos θ, −r2 sin3 θ

〉
. (2.1)

The microswimmer is modelled as a squirmer with surface velocity (Lighthill 1952; Blake
1971; Pedley 2016)

ũsq =
∞∑

n=1

AnPn(cos θ)er +
∞∑

n=1

BnVn(cos θ)eθ , (2.2)
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Figure 1. A squirmer with surface velocity usq propelling with velocity Us in an unbounded paraboloidal flow
with velocity strength Up. The squirmer is positioned at the centre of the background flow profile, translating
along the ez direction.

where An and Bn are the radial and tangential swimming modes, respectively, Pn(cos θ)
are the Legendre polynomials, Vn(cos θ) = −2/[n(n + 1)]P1

n(cos θ) and P1
n(cos θ) are the

associated Legendre polynomials. The squirmer translates with velocity Ũs and is placed
at the centreline of the paraboloidal flow (figure 1). Moreover, we consider the problem
in the laboratory frame of reference where the origin of the coordinate system is taken
to be at the centre of the squirmer with the parabolic flow evaluated at the origin. In
this configuration, the squirmer is translating in a fluid that is quiescent in the far-field
(Schonberg & Hinch 1989; Asmolov 1999; Hood, Lee & Roper 2015).

All equations governing the problem are scaled using the squirmer’s radius a for length,
the first swimming mode B1 for velocity, and the ratio µB1/a for pressure (where µ is the
viscosity of the fluid). Note that in the case of a radial squirmer, A1 is used in place of B1.
Given the size of the microswimmer, inertial effects can be omitted and the flow field is
governed by the incompressible Stokes equation

−∇p + ∇2u = 0, ∇ · u = 0, (2.3a,b)

where p and u are the pressure and velocity fields of the fluid, respectively. The
dimensionless squirmer’s surface velocity

usq =
∞∑

n=1

αnPn(cos θ)er +
∞∑

n=1

βnVn(cos θ)eθ . (2.4)

For a radial squirmer (βn = 0), αn = An/A1 whereas βn = Bn/B1 for a tangential squirmer
(αn = 0). Note that the parameters B1, B2 and B3 are associated with a Stokeslet, a stresslet
and a Stokes quadrupole, respectively (Pak & Lauga 2014). Physically, the B1 mode
determines the propulsion speed while the B2 mode dominates the far-field flow induced
by the swimmer and, typically, captures the swimmer’s typologies (neutral, pusher, puller).
For this reason, many previous studies have neglected modes beyond n = 2 (Zhu, Lauga
& Brandt 2012; Chisholm et al. 2016; Li, Lauga & Ardekani 2021; Thery, Maab & Lauga
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2023). The velocity field in the far-field is

u(r → ∞) = 0, (2.5)

and
u(r = 1) = U s + usq − u∞, (2.6)

on the surface of the squirmer where, after some algebraic manipulations, the
dimensionless spatially varying paraboloidal flow can be expressed in the form

u∞ = Up

〈
r2

[
2
5 (P1(cos θ) − P3(cos θ))

]
, −r2

[
2
15

(
P1

3(cos θ) − 6P1
1(cos θ)

)]〉
, (2.7)

with Up = Ũp/B1 (see Appendix A for details of the derivation). We deduce from (2.7)
that the paraboloidal flow will affect the flow field up to order n = 3. Thus, while previous
studies in uniform flows have justifiably omitted swimming modes Bn≥3, here we consider
a three-mode squirmer to fully characterise the effect of paraboloidal flows on swimming.

We use Lamb’s general solution for the incompressible Stokes equation (Lamb 1945;
Happel & Brenner 1973)

ur =
∞∑

n=0

(
Onrn+1 + Qnrn−1 + Rn

rn + Sn

rn+2

)
Pn (cos θ) , (2.8)

uθ =
∞∑

n=1

(
−n + 3

2
Onrn+1 − n + 1

2
Qnrn−1 + n − 2

2
Rn

rn + n
2

Sn

rn+2

)
Vn (cos θ) (2.9)

and the boundary conditions to determine the exact flow and pressure fields. The
coefficients On, Qn, Rn, Sn in the general solution are expressed in terms of the propulsion
speed Us that, in turn, is obtained by applying the force-free condition on the surface of
the squirmer S (r = 1) ∫

S
σ · n dS = 0, (2.10)

where σ = −pI + ∇u + (∇u)T, I is the identity tensor and n = er is the unit outward
normal vector. In spherical coordinates the swimming direction ez = cos θer − sin θeθ ,
and (2.10) reduces to

∫ 2π

0

∫ π

0
(σrr cos θ − σrθ sin θ)|r=1 sin θ dθ dφ = 0. (2.11)

After lengthy calculations, (2.11) yields the propulsion speed

Ũs = 1
3
[
−A1 + 2B1 + 2Up (A1 + B1)

]
. (2.12)

Equation (2.12) contrasts with the propulsion speed Ũuniform = (2B1 − A1)/3 of a
spherical squirmer in a uniform flow (Lighthill 1952; Blake 1971). However, the speed
remains independent of higher swimming modes An≥2 and Bn≥2. In keeping with previous
studies, in the rest of our analysis we only consider the flow field generated by a
squirmer with purely tangential surface velocity. The value Up = −1 corresponds to the
propulsion-free case, when the background flow is tuned to negate the first swimming
mode B1. This configuration is equivalent to the pumping problem (Pak & Lauga 2014),
when the squirmer is held fixed and the flow field is generated solely as a result of
interaction between the background flow and the surface velocity.

986 A14-5
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Substituting Us = 2(1 + Up)/3 and the coefficients On, Qn, Rn, Sn (n ≤ 3) into the
solutions, the flow field u = ⟨ur, uθ ⟩ and pressure are obtained as

ur = 2 cos θ
3r3 −

β2
(
r2 − 1

)
(3 cos 2θ + 1)

4r4

+ β3

[
cos θ(5 cos 2θ − 1)

4r5 − cos θ(5 cos 2θ − 1)

4r3

]

+ Up

[
3 − r2 + 3

(
7r2 − 5

)
cos 2θ

]

12r5 cos θ, (2.13)

uθ = sin θ
3r3 + β2 sin θ cos θ

r4 −
β3

(
r2 − 3

)
sin θ(5 cos 2θ + 3)

16r5

+ Up

[
−27 + 19r2 + 3

(
7r2 − 15

)
cos 2θ

]

48r5 sin θ, (2.14)

p = β2(−24r cos 2θ − 8r)
16r4 + β3(−15 cos θ − 25 cos 3θ)

16r4 + Up
7 (3 cos θ + 5 cos 3θ)

16r4 .

(2.15)

Note that in the absence of a background flow (Up = 0), the velocity field reduces to
that of a squirmer in a quiescent fluid (Lighthill 1952; Blake 1971). The velocity field can
also be expressed in the form u = ⟨∂ψ/∂θ/(r2 sin θ), −∂ψ/∂r/(r sin θ)⟩ where the stream
function

ψ = sin2 θ

3r
−
β2

(
r2 − 1

)
sin2 θ cos θ

2r2 +
β3 sin2 θ

[
−15

(
r2 − 1

)
cos 2θ − 9r2 + 9

]

48r3

+ Up
sin2 θ

[
3

(
7r2 − 5

)
cos 2θ + 19r2 − 9

]

48r3 . (2.16)

To validate our results, we employed physics-informed neural networks (PINNs) to
approximate the velocity field for Up = 0, and the propulsion speed Us for various values
of the background flow’s maximum velocity (see Appendix B for details). Recall again
that paraboloidal flows only affect the first and third terms in Lamb’s general solution.
Therefore, for n = 2 and n ≥ 4, the velocity fields generated as a result of squirming in a
paraboloidal flow and quiescent fluid are identical.

2.1. Flow field
The squirmer propels against the direction of the background flow. Thus, propulsion is
along the positive (negative) z direction when the background flow is directed towards
the negative (positive) z direction (Up < 0) [(Up > 0)]. The flow field informs us on the
types of hydrodynamic interactions between squirmers and other organisms/particles one
can expect. We consider three cases to analyse the flow fields: Up = −2, Up = −1 (no
propulsion) and Up = 1. Figure 2 shows the velocity magnitude and streamlines for a
neutral squirmer (figure 2a–d) and a pusher with β2 = −1 (figure 2e–h). In a quiescent
flow (figure 2a), neutral squirmers generate currents that advect particles in front of the
swimmer away from the swimmer, whereas particles on the back of the swimmer are
pulled towards the swimmer. This dynamics contrasts with that observed in a paraboloidal
flow, as illustrated in figures 2(b)–2(d). In these cases, the situation is reversed: particles
are drawn towards the swimmer at the front and driven away from its back. This behaviour
is consistent across magnitudes of the background flow, including in the absence of
986 A14-6
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propulsion when the flow cancels out the propulsion generated by the squirmer’s surface
velocity (Ûp = B1). For pushers in a quiescent flow (figure 2e), particles are advected away
from the swimmer both at the front and back, unless they are at the immediate vicinity of
the swimmer’s back, in which case the particles are pulled towards the swimmer. This
overall dynamic is also observed in paraboloidal flows and across magnitudes of the
background flow (figure 2f –h). The flow fields generated by three-mode squirmers show
interesting and non-trivial variations that depend on the strength of the third mode β3.
This, in turn, has important implications on the hydrodynamic interactions experienced
at the front and back of a three-mode squirmer. Figure 3 shows the velocity magnitude
and streamlines for a three-mode squirmer with (figure 3a,b) β3 = −1 and (figure 3c–f )
β3 = −20. At β3 = −1 in a uniform flow (figure 3a,c), the interaction dynamics is similar
to that of a neutral squirmer: particles are repulsed at the front of the swimmer and
attracted at the back. The dynamics is reversed in a paraboloidal flow (figure 3b,d), where
this time particles move towards the swimmer’s front whereas they are being advected
away from its back. The flow field generated by the squirmer becomes nearly identical in
uniform flows compared with paraboloidal flows when the magnitude of the swimming
mode is increased. Figures 3(e) and 3( f ) show the microvortices that are generated during
the squirmer’s motion. Although their features are similar, the velocity fields of the
squirmers differ in their orientation. As a result, while the squirmer repels (draws in)
particles at their front (back) in a quiescent fluid, it behaves in the opposite manner in a
paraboloidal flow by pulling in (advecting away) particles at its front (back).

An interesting feature that also influences hydrodynamic interactions are vortices (or
eddies). They have been reported for pushers and pullers with rotational velocities near
a wall or flat plate (Drescher et al. 2009; Poddar, Bandopadhyay & Chakraborty 2020)
and in the feeding patterns of starfish (Gilpin, Prakash & Prakash 2017). In unbounded
domains, these microvortices appear to be a signature of three-mode squirmers with large
β3 in both uniform flows (see Gilpin et al. (2017) and figure 3e) and paraboloidal flows
(figure 3f ).

Moreover, while microvortices are not present for three-mode squirmers in quiescent
fluids with relatively small β3, their presence in paraboloidal flows shows a dependence
on the strength of the background flow. Specifically, microvortices are only observed for
three-mode squirmers with small β3 and Up < 0, as illustrated in figure 3(b). The existence
of vortical regions in the flow field of neutral squirmers and pushers present yet another
significant difference between propulsion in uniform flows vs paraboloidal flows. Indeed,
the microvortices in figure 2(b,c) for neutral squirmers and figure 2( f ) for pushers are a
direct consequence of the paraboloidal flows. These flows introduce a Stokes quadrupole in
the near-field, resulting in flow patterns similar to those generated by three-mode squirmers
with small β3 and Up < 0 (figure 3b) or more generally with large β3 (figure 3f ). Here we
note that the flow field in a uniform flow has zero vorticity, whereas in a paraboloidal flow
the vorticity ∇ × u /= 0. We further remark that vortices, like flow reversals, often point
to stagnation points (x∗, z∗) = (rs sin θ, rs cos θ) in the flow. For three-mode squirmers
with β2 = 0, figure 3(b,e, f ) indicates that stagnation points exist along the x-axis (θ =
π/2), where ur = 0. After setting uθ = 0, the stagnation points are found to depend on
the magnitude of the β3 mode and on the strength of the background flow. The radius rs is
given by

rs = ±3

√
β3 − Up

8 + 3β3 − Up
, (2.17)

and the stagnation points are represented by the ⋆ symbols in figures 3(b) and 3( f ).
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Figure 3. Velocity magnitude and streamlines for a three-mode squirmer with (a–d) β2 = 0,β3 = −1 and
(e, f ) β2 = 0,β3 = −20 in a uniform flow (a,c,e) and in a paraboloidal flow with Up = −2 (b) and Up = 1
(d, f ). The colour bar represents the magnitude of the velocity field. The (⋆) symbols on either side of the
squirmer in (b, f ) denote the location of stagnation points, given by (2.17).
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Figure 4. Paraboloidal-to-uniform ratios of (a) power dissipation and (b) swimming efficiency as a function
of the β2 swimming mode for various strengths of the paraboloidal background flow Up.

2.2. Power dissipation and swimming efficiency
In this section, we discuss the work done by the squirmer and its efficiency. The power
dissipation is given by P = −

∫
S σ · u · n dS. In spherical coordinates, P is expressed as

P = −
∫ 2π

0

∫ π

0

(
σrrur + σrθuθ + σrφuφ

)∣∣
r=1 sin θ dθ dφ. (2.18)

Note that for the axisymmetric motion considered here, σrφ = 0, uφ = 0. After some
calculations, we obtain

P = 4π

105

{
70

(
2 + β2

2

)
+ 35β2

3 − Up
[
38β3 − 7(16 + 7Up)

]}
. (2.19)

Equation (2.19) contrasts with the power dissipation Puniform = 8π(2 + β2
2 + β2

3/2)/3 of
a squirmer in a uniform flow (Lighthill 1952; Blake 1971). Moreover, we observe that
the power dissipation varies not only as a function of the swimming modes, but also
as a function of the background flow’s strength. For a neutral squirmer (β2 = β3 = 0)
with Up = 0, we recover Puniform = 16π/3. When Up < −16/7 or Up > 0, a neutral
squirmer in a paraboloidal flow expends more energy compared with its counterpart in
a uniform flow. However, swimming in a paraboloidal flow becomes more beneficial for
the squirmer provided Up ∈ (−16/7, 0). We can similarly compare the power dissipation
for pushers/pullers (β3 = 0) in paraboloidal flows relative to their work in uniform flows.
Figure 4(a) shows the paraboloidal-to-uniform ratio ε = P/Puniform for a range of β2
values with flow strength Up = −3 (solid), Up = −2 (dashed) and Up = 1 (dash-dotted).
As expected from the analysis of the neutral squirmer, pushers/pullers always expend less
energy compared with their counterparts in uniform flows for Up = −2.

Before discussing three-mode squirmers, we analyse the efficiency for two-mode
squirmers. The swimming efficiency η = FDUs/P (Lighthill 1952), where FD = Fp

D +
Fs

D = 4πUp + 6πUs is the force required to drag a rigid sphere at the swimming speed in
the same fluid medium. Here, Fp

D alone is the drag force experienced by a rigid sphere in
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Figure 5. Parameter space of (β2,β3) for the paraboloidal-to-uniform ratios of power dissipation (a) and
efficiency (b) for a three-mode squirmer with Up = −2. The intersection of the vertical lines correspond to
the combination (β2,β3) at which a two-mode squirmer in a paraboloidal is a more ideal swimmer than a
three-mode squirmer in a uniform flow.

a paraboloidal flow (Chwang & Wu 1975) while Fs
D is the Stokes drag in the absence of a

paraboloidal background flow. After some simplification, the efficiency is given by

η =
70(1 + Up)(1 + 2Up)

70
(
2 + β2

2
)
+ 35β2

3 − Up
[
38β3 − 7(16 + 7Up)

] . (2.20)

Figure 4(b) shows the ratio ν = η/ηuniform for the flow strengths in figure 4(a). In
this case, the efficiency of a swimmer in a uniform flow is given by ηuniform = 1/(2 +
β2

2 + β2
3/2) (Lighthill 1952; Blake 1971). We conclude from the results that all two-mode

squirmers in paraboloidal flows experience a gain in swimming efficiency (ν > 1), except
for Up = −1/2, −1. For Up = −1 the efficiency is zero since the squirmer does not propel
(Us = 0). On the other hand, efficiency is also zero when Up = −1/2 (the drag forces Fp

D
and Fs

D cancel each other out).
In the case of a three-mode squirmer, we produce the β2 − β3 parameter space (figure 5)

to determine the conditions under which the addition of the third swimming mode may
yield behaviour distinct from that of a two-mode squirmer. In this analysis, we consider
Up = −2. On one hand, figure 5(a) shows that squirmers in a paraboloidal flow expend
more energy when β3 ! 0.5. On the other hand, while the ratio ε may vary depending on
β3, figure 5(b) shows that ν > 1 for a three-mode squirmer. Thus, despite ε being greater
than unity, the three-mode squirmer is always a more efficient swimmer in paraboloidal
flows compared with uniform flows.

The parameter spaces in figure 5 are subdivided into distinct spheroidal-shaped ‘holes’
or ‘sinks’, especially in the regions β3 < 0.5 for the swimming efficiency (figure 5b).
The smallest of these sinks S contains the combinations (β2,β3) that minimise power
dissipation and maximise swimming efficiency. The location of the epicentre of S is
(0, 38Up/35), as illustrated by the intersection of the dashed lines in figure 5. The case
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β3 = 38Up/35 corresponds to the non-zero value that eliminates the expression 35β2
3 −

38Upβ3 in (2.19) and (2.20). In other words, at this value a three-mode squirmer in
a paraboloidal flow expends the same energy and swims as efficiently as a two-mode
squirmer subject to the same background flow. This suggests that squirmers in paraboloidal
flows may be able to take advantage of the background flow to lower their rate of work and
become more efficient swimmers. In terms of artificial microswimmers, our findings raise
the possibility of novel design principles for microrobots that take advantage of specific
properties of the background flow to reduce their work.

To conclude this section, we discuss the potential biological relevance of these results.
The first swimming mode B1 can be approximated using B1 = 3Ũs/2 where Ũs is obtained
from experimental measurements of the velocity of various microorganisms including
ciliates (Rodrigues, Lisicki & Lauga 2021). Values of the β2 = B2/B1 swimming modes
have been estimated previously for artificial and biological swimmers (Evans et al. 2011).
In general, they range from −1 (Escherichia coli Drescher et al. 2011), to ≈0 (Volvox
Short et al. (2006) and artificially created squirmers such as autonomous vesicles Miura
et al. (2010) or squirming droplets Thutupalli, Seemann & Herminghaus 2011), to 1
(Chlamydomonas Pedley & Kessler 1990). This range of β2 values lies squarely in the
region of least power expenditure and greatest efficiency found in figure 5. Biological
microorganisms naturally strive to optimise their motion, and our results capture this
behaviour. To the best of the authors’ knowledge, measurements of higher swimming
modes have not been performed on biological microorganisms. Moreover, higher modes
lead to greater energy expenditure and less efficient swimming. Our results, however, raise
the possibility of designing still-efficient artificial microswimmers. Specifically, the later
can be built by accounting for the properties of the background flow such that adding a
third swimming mode with B3 ≈ Ũp does not increase (decrease) the power dissipation
(swimming efficiency) of the microswimmer compared with a swimmer with only the
first two modes. In addition to minimising work, the carefully added swimming gait could
serve other purposes such as aiding in the transport of cargo (Ouyang et al. 2023).

3. A note on the propulsion of an off-centred squirmer
Results presented in § 2 apply to the propulsion of a squirmer located on the centreline of
the paraboloidal flow, in which case the swimmer can only propel along the background
flow direction ez. For completeness, we now consider the case of a squirmer that is
positioned off the centreline of the background flow. The latter is located at a distance
(x0, y0) from the origin (figure 6). We specifically focus on determining the translational
and rotational velocities of the squirmer in this general case.

The paraboloidal flow in Cartesian coordinates is given by (Chwang & Wu 1975)

ũ∞ = Ūp

[
(x − x0)

2 + ( y − y0)
2
]

ez. (3.1)

Expanding the quadrating terms and simplifying yields the paraboloidal flow in spherical
coordinates

ũ∞ = Ūp

[
r2 sin2 θ − r sin θ (γ̇1 cosφ + γ̇2 sinφ) + Γ

]
ez, (3.2)

where γ̇1 = 2x0 and γ̇2 = 2y0 are local shear rates and Γ = x2
0 + y2

0. Equation (3.2)
reveals that in addition to the paraboloidal flow Ūpr2 sin2 θez, the off-centred squirmer
experiences a linear shear flow −Ūpr sin θ(γ̇1 cosφ + γ̇1 sinφ)ez and a uniform flow
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y

x

z

Up

Us

Figure 6. A squirmer with radius a and surface velocity usq off the centreline of a paraboloidal flow located a
distance (x0, y0) from the origin.

ŪpΓ ez (Chwang & Wu 1975; Hanna & Vlahovska 2010). We observe immediately that
positioning the squirmer off the centreline of the background flow introduces a rotational
motion in the azimuthal direction eφ that results from the linear shear flow. The boundary
conditions in the laboratory frame become

û(r = a) = ûsq + Û s + Ω̂s × xs − ũ∞, (3.3)
û(r → ∞) = 0, (3.4)

where xs = aer and Ω̂s = Ω̂sek is the rotational velocity of the squirmer obtained by
imposing the torque-free condition

∫

S
xs × (σ · n) dS = 0. (3.5)

As in § 2, the translational velocity Û s = Ûsek is obtained using the force-free condition
(2.10). The index k denotes the coordinates x, y, z, so the translational and rotational
velocities can occur in any direction. The generalised surface velocity ûsq for the purely
tangential squirming motion is given by (Pak & Lauga 2014)

usq,r = 0 (3.6)

usq,θ =
∞∑

n=1

n∑

m=0

[

−2 sin θPm′
n

nan+2

(
Bmn cos mφ + B̂mn sin mφ

)

+ mPm
n

an+1 sin θ

(
Ĉmn cos mφ − Cmn sin mφ

)]
(3.7)

usq,φ =
∞∑

n=1

n∑

m=0

[
2mPm

n
nan+2 sin θ

(
B̂mn cos mφ − Bmn sin mφ

)

+ sin θPm′
n

an+1

(
Cmn cos mφ + Ĉmn sin mφ

)]

, (3.8)
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where Pm
n = Pm

n (cos θ) are the associated Legendre polynomials and Bmn, B̂mn, Cmn and
Ĉmn are the squirming modes.

We use Lamb’s general solution for exterior problems (Pak & Lauga 2014) and apply the
boundary conditions to obtain the velocity field u = ⟨ur, uθ , uφ⟩ for the general squirming
motion of a three-mode squirmer (up to squirming modes B03 and C03) in paraboloidal
flows. The components of the velocity field are given by (C5)–(C7) in Appendix C. After
applying the force- and torque-free conditions ((2.10) and (3.5)), lengthy calculations yield
the translational and rotational velocities

Us = 4
3a3

(
B11ex + B̂11ey − B01ez

)
+ Ūp

(
2
3

a2 + Γ

)
ez, (3.9)

Ωs = 1
a3

(
C11ex + Ĉ11ey − C01ez

)
. (3.10)

The translational velocity due to purely tangential surface velocity in (2.12) is recovered by
using a simple rescaling B01 = −a3B1/2, Ūp = Up/a2 and setting Γ = 0, B11 = B̂11 = 0.
Moreover, in the absence of a paraboloidal flow (Ūp = 0) the translational and rotational
velocities agree with the results obtained using the reciprocal theorem (Pak & Lauga 2014).
Note that the propulsion of the off-centred squirmer becomes restricted to the x − y plane
when the strength of the paraboloidal flow Ūp = 4B01/a3(2a2 + 3Γ ).

The power dissipation is calculated using (2.18), and can be expressed in terms of
contributions from the quiescent and background flows: P = Puniform + PŪp

. In this
case, Puniform is the expression obtained by Pak & Lauga (2014) for a non-axisymmetric
squirmer (equation (77) in their paper) whereas PŪp

is given by

PŪp
= πµ

{
− 4

105

[
224B01 + 72

a2 B03 − 252
a2

(
γ̇1B12 + γ̇2B̂12

)]
Ūp

+ 4a3

105

[
41a2 + 42

(
γ̇ 2

1 + γ̇ 2
2

)]
Ū2

p

}
. (3.11)

Equation (3.11) shows that the power dissipation depends explicitly on the linear shear
flow, generated as a result of the position of the squirmer relative to the paraboloidal flow’s
centreline. This result contrasts with (3.9) and (3.10) that do not depend on the local shear
rates γ̇1 or γ̇2, and suggest that the linear shear flow does not influence the translational
and rotational velocities of the squirmer. In terms of the dependence on shear flow, our
conclusion about the translational velocity is akin to the result obtained by Pak, Feng &
Stone (2014) in the case of a surfactant-covered drop in a Poiseuille flow.

4. Concluding remarks
In this paper, we have investigated the propulsion of a spherical ciliated microorganism,
represented by a squirmer, in a paraboloidal flow. First, we considered the axisymmetric
problem. We have obtained exact analytical solutions of the propulsion speed, power
dissipation, swimming efficiency, flow and pressure fields, and contrasted our results with
those of Lighthill, the long-standing benchmark for microswimming studies in uniform
flows. We have found that while the propulsion speed Us = 2(1 + Up)/3 only depends
on the first swimming mode (as it does for propulsion in uniform flows first reported by
Lighthill 1952; Blake 1971), it is now influenced by the strength of the background flow.
The dependence on the maximum velocity of the paraboloidal flow played a significant
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role in the amount of work being experienced by the squirmer. However, although we have
determined the range of flow strength that minimises work, we have shown that squirmers
in paraboloidal flows are always more efficient compared with squirmers in uniform flows.
We then considered the more general, non-axisymmetric problem of a squirmer off the
centreline of the background flow. In this framework, the shear-induced orientation and
rotation of the squirmer now enter the problem. We have determined that the translational
and rotational velocities of the squirmer are independent of the linear shear flow induced
by the background flow. However, the linear shear-flow plays a role in the velocity field
generated by the squirmer.

Since paraboloidal flows are a critical component of Poiseuille flow, our findings provide
metrics for future studies of microswimming in this biologically relevant non-uniform
flow. Specifically, critical questions to be addressed include: How will propulsion in
complex fluids compare with locomotion in Newtonian fluids? What gains in performance
metrics will particle geometry yield compared with spherical swimmers? How will
swimming with a cage (Reigh & Lauga 2017; Reigh et al. 2017) be affected in a
paraboloidal flow? Our results also have significant implications on various biological
processes that depend on the flow fields generated by microswimmers, including feeding
(Magar, Goto & Pedley 2003; Ishikawa et al. 2016; Gilpin et al. 2017) and hydrodynamic
interactions (Jabbarzadeh & Fu 2018).
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Appendix A. Paraboloidal background flow
Here we outline the derivation of the paraboloidal background flow in (2.7). Using the
stream function formulation ψ∞ = Upr4 sin4 θ/4, the background velocity is given by

ũ∞ =
〈
Upr2 cos θ sin2 θ, −Upr2 sin3 θ

〉
. (A1)

The Legendre and associated Legendre polynomials

P1 = cos θ,

P2 = 1
2

(
3 cos2 θ − 1

)
,

P3 = 1
2

(
5 cos3 θ − 3 cos θ

)
,

P1
1 = − sin θ,

P1
2 = −3 cos θ sin θ,

P1
3 = −6 sin θ + 15

2 sin3 θ,

P2
2 = 3 sin2 θ .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A2)
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After some algebraic manipulations, P3 is used to obtain cos θ sin2 θ = 2(P1 − P3)/5.
Similarly, P1

3 is used to obtain sin3 θ = 2(P1
3 − 6P1

1)/15. Substituting cos θ sin2 θ and
sin3 θ into (A1) yields

u∞ = Up

〈
r2

[
2
5 (P1(cos θ) − P3(cos θ))

]
, −r2

[
2
15

(
P1

3(cos θ) − 6P1
1(cos θ)

)]〉
. (A3)

For completeness, we provide the derivatives of the Legendre and associated Legendre
polynomials. Note that the derivatives are obtained with respect x, where Pm

n ≡ Pm
n (x),

followed by the substitution x = cos θ :

P′
1 = 1,

P′
2 = 3 cos θ,

P′
3 = 3

2

(
5 cos2 θ − 1

)
,

P1′
1 = cos θ

sin θ
,

P1′
2 = 3 cos2 θ

sin θ
− 3 sin θ,

P2′
2 = −6 cos θ .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A4)

Appendix B. Validation using PINNs
To validate our analytical results, we simulate the propulsion of a pusher with β2 = −1
using a PINN. The problem is implemented in DeepXDE (a Python library for scientific
machine learning Lu et al. 2021) with a Tensorflow backend (Abadi et al. 2015). We
employ a feed-forward neural network consisting of an input layer with two nodes, three
hidden layers with 100 nodes per layer and an output layer with three nodes. We use the
Adam optimiser and the hyperbolic tangent as the activation function. The learning rate is
gradually lowered using a learning rate scheduler, from an initial value of ν = 3 × 10−3.
A total of 1000 and 300 training points were used inside the computational domain and
on the domain’s boundaries, respectively. We perform the computations in the domain
[r, θ ] = [1, 10] × [0, π]. Figure 7 shows comparisons of the velocity magnitude ∥u∥ =√

u2
r + u2

θ as a function of the radius for the flow in the back (θ = π, figure 7a) and side
(θ = π/2, figure 7b) of a pusher (β2 = −1). In both panels, the simulations show good
agreement with the analytical solution. The convergence of the PINN simulations towards
the propulsion speed is shown in figure 7(c) as a function of the number of iterations for
various values of the strength of the background paraboloidal flow.

Appendix C. Derivation of the coefficients in the velocity field
Here we provide an outline of the derivation of the coefficients in the velocity field of
the general squirming motion. Lamb’s general solution for three-dimensional exterior
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Uniform flow
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U
s
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Figure 7. (a,b) Magnitude of the axisymmetric velocity ∥u∥ =
√

u2
r + u2

θ as a function of the radius r for a
pusher with β2 = −1. The flow decay is shown at the back of the squirmer θ = π (a) and at the side of the
swimmer θ = π/2 (b). In (c), the convergence of the propulsion speed predicted by the PINN simulations is
shown as a function of the number of iterations. The curves are colour-coded to denote different values of the
paraboloidal flow’s strength Up. The dash-dotted horizontal lines represent the value of the exact propulsion
speed, obtained from (2.12).

problems, which satisfies (3.4), is given by (Pak & Lauga 2014)

ur =
∞∑

n=1

n∑

m=0

(n + 1)Pm
n

2(2n − 1)µrn+2

{[
Dmnr2 − 2Emn(2n − 1)µ

]
cos mφ

+
[
D̂mnr2 − 2Êmn(2n − 1)µ

]
sin mφ

}
(C1)

uθ =
∞∑

n=1

n∑

m=0

1
2rn sin θ

{
sin2 θPm′

n

[
n − 2

n(2n − 1)µ

(
Dmn cos mφ + D̂mn sin mφ

)

− 2
r2

(
Emn cos mφ + Êmn sin mφ

)]
+ 2m

r
Pm

n

(
F̂mn cos mφ − Fmn sin mφ

)}
(C2)

uφ =
∞∑

n=1

n∑

m=0

1
2rn sin θ

{
mPm

n

[
n − 2

n(2n − 1)µ

(
−D̂mn cos mφ + Dmn sin mφ

)

− 2
r2

(
−Êmn cos mφ + Emn sin mφ

)]
+ 2

r
sin2 θPm′

n

(
Fmn cos mφ + F̂mn sin mφ

)}
.

(C3)

Translation and rotation can occur in any of the ex, ey and ez, where

ex = sin θ cosφer + cos θ cosφeθ − sinφeφ,

ey = sin θ sinφer + cos θ sinφeθ + cosφeφ,

ez = cos θer − sin θeθ .

⎫
⎪⎬

⎪⎭
(C4)

These unit vectors suggest that the velocity fields in these directions will differ only for
indices mn = 01, 11 whereas the linear shear flow involves index 12. The corresponding
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flow field and pressure for a three-mode squirmer are given by

ur = 1
µr3

{
P1

(
D01r2 − 2E01µ

)

+ P1
1

[(
D11r2 − 2E11µ

)
cosφ +

(
D̂11r2 − 2Ê11µ

)
sinφ

]}

+ 1
2µr4

{
P2

(
D02r2 − 6E02µ

)

+ P1
2

[(
D12r2 − 6E12µ

)
cosφ +

(
D̂12r2 − 6Ê12µ

)
sinφ

]

+ P2
2

[(
D22r2 − 6E22µ

)
cos 2φ +

(
D̂22r2 − 6Ê22µ

)
sin 2φ

]}

+ 2
5µr5 P3

(
D03r2 − 10E03µ

)
, (C5)

uθ = 1
2r sin θ

{
sin2 θP′

1

(
− 1

µ
D01 − 2

r2 E01

)

+ sin2 θP1′
1

[
− 1

µ

(
D11 cosφ + D̂11 sinφ

)
− 2

r2

(
E11 cosφ + Ê11 sinφ

)]

+ 2
r

P1
1

(
F̂11 cosφ − F11 sinφ

)}
+ 1

2r2 sin θ

{

−
2 sin2 θP′

2
r2 E02

−
2 sin2 θP1′

2
r2

(
E12 cosφ + Ê12 sinφ

)
+ 2

r
P1

2

(
F̂12 cosφ − F12 sinφ

)

−
2 sin2 θP2′

2
r2

(
E22 cos 2φ + Ê22 sin 2φ

)
+ 4

r
P2

2

(
F̂22 cos 2φ − F22 sin 2φ

)}

+ 1
2r3 sin θ

sin2 θP′
3

(
1

15µ
D03 − 2

r2 E03

)
, (C6)

uφ = 1
2r sin θ

{
2 sin2 θP′

1
r

F01

+ P1
1

[
− 1

µ

(
−D̂11 cosφ + D11 sinφ

)
− 2

r2

(
−Ê11 cosφ + E11 sinφ

)]

+
2 sin2 θP1′

1
r2

(
F11 cosφ + F̂11 sinφ

)}

+ 1
2r2 sin θ

{
2 sin2 θP′

2
r

F02

−
2P1

2
r2

(
−Ê12 cosφ + E12 sinφ

)
+

2 sin2 θP1′
2

r

(
F12 cosφ + F̂12 sinφ

)

−
4P2

2
r2

(
−Ê22 cos 2φ + E22 sin 2φ

)
+

2 sin2 θP2′
2

r

(
F22 cos 2φ + F̂22 sin 2φ

)}

+ 1
2r3 sin θ

2 sin2 θP′
3

r
F03, (C7)
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Coefficients ex ey ez

D01 ▽ ▽ ▽∗

D02
6µ

a2 E02 − −

D03 µ

(
a5Ūp + 10

a2 E03

)
− −

E01 △ △ △∗

E02 B02 − −

E03
a7

20
Ūp + B03 − −

F01 C01 C01 C01 + a3Ωs

F02 C02 − −
F03 C03 − −

Table 1. Coefficients of the flow field for m = 0. The − denotes a coefficient that remains the same across
directions. The coefficients represented by ▽,

!∗, △, △∗ are expressed in terms of the translational velocity
and/or maximum velocity of the background flow ((C9)–(C11a,b)).

and

p = 1
8µr5

{
r cot θ

(
sin θ

(
8D01r2 + 3D03

)
− 2 cosφ(3D12r + 4F̂11µ(2r − 1))

− 2 sinφ(3D̂12r + 4F11µ − 8F11µr)
)

+ r (6D02r cos 2θ

+ cos 3θ csc θ(5D03 sin θ + 6D12r cosφ + 6D̂12r sinφ

− 8F11µ sinφ + 8F̂11µ cosφ) − 8r sin θ(D11r cosφ + D̂11r sinφ

+ 3D22 sin θ cos 2φ)) + 2D02r2 + 12 sin 2φ
(

cos 2θ
(

D̂22r2 + 4Ê12µ + 5Ê22µ
)

− D̂22r2 + 4Ê12µ + 3Ê22µ
)}

. (C8)

The unknown coefficients Dmn, D̂mn, Emn, Êmn, Fmn, F̂mn are obtained by satisfying the
boundary condition given by (3.3) and are provided in tables 1 and 2. The coefficients ▽,
▽∗, △, △∗ in table 1 are given by

▽ = −µaŪp

(
2a2

5
+ Γ

)
+ 2

a2 µE01, (C9)

▽∗ = µa
[

Us − Ūp

(
2a2

5
+ Γ

)]
+ 2

a2 µE01, (C10)

△ = B01 − a3

2
Ūp

(
3a2

5
+ Γ

2

)
, △∗ = a3

4
Us + B01 − a3

2
Ūp

(
3a2

5
+ Γ

2

)
. (C11a,b)

The translational and rotational velocities are obtained from the force- and torque-free
conditions along each direction. Specifically, in spherical coordinates, the force- and
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Coefficients ex ey ez

D11
µ

a2 (−a3Us + 2E11)
2µ

a2 E11
2µ

a2 E11

D12 µ

(
−2a3γ̇1

3
Ūp + 6

a2 E12

)
− −

D̂11
2µ

a2 Ê11
µ

a2 (−a3Us + 2Ê11)
2µ

a2 Ê11

D̂12 µ

(
−2a3γ̇2

3
Ūp + 6

a2 Ê12

)
− −

E11 −a3

4
Us + B11 B11 B11

E12 B12 − −

Ê11 B̂11 −a3

4
Us + B̂11 B̂11

Ê12 B̂12 − −
F11 −a3Ωs + C11 C11 C11
F12 C12 − −
F̂11 Ĉ11 −a3Ωs + Ĉ11 Ĉ11
F̂12 Ĉ12 − −

Table 2. Coefficients of the flow field for m = 1. The − denotes a coefficient that remains the same across
directions.

torque-free conditions in the ex direction are
∫ 2π

0

∫ π

0

(
σrr sin θ cosφ + σθr cos θ cosφ − σφr sinφ

)∣∣
r=a a2 sin θ dθ dφ = 0, (C12)

−
∫ 2π

0

∫ π

0

(
σφr cos θ cosφ + σθr sinφ

)∣∣
r=a a3 sin θ dθ dφ = 0, (C13)

the force- and torque-free conditions in the ey direction are
∫ 2π

0

∫ π

0

(
σrr sin θ sinφ + σθr cos θ sinφ + σφr cosφ

)∣∣
r=a a2 sin θ dθ dφ = 0, (C14)

−
∫ 2π

0

∫ π

0

(
σφr cos θ sinφ − σθr cosφ

)∣∣
r=a a3 sin θ dθ dφ = 0, (C15)

and the force- and torque-free conditions in the ez direction are
∫ 2π

0

∫ π

0
(σrr cos θ − σθr sin θ)|r=a a2 sin θ dθ dφ = 0, (C16)

∫ 2π

0

∫ π

0
σφr sin θ

∣∣
r=a a3 sin θ dθ dφ = 0. (C17)
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