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Biological microorganisms and artificial micro-swimmers often locomote in heterogeneous
viscous environments consisting of networks of obstacles embedded into viscous fluid
media. In this work, we use the squirmer model and present a numerical investigation
of the effects of shape on swimming in a heterogeneous medium. Specifically, we
analyse the microorganism’s propulsion speed as well as its energetic cost and swimming
efficiency. The analysis allows us to probe the general characteristics of swimming in a
heterogeneous viscous environment in comparison with the case of a purely viscous fluid.
We found that a spheroidal microorganism always propels faster, expends less energy
and is more efficient than a spherical microorganism in either a homogeneous fluid or
a heterogeneous medium. Moreover, we determined that above a critical eccentricity, a
spheroidal microorganism in a heterogeneous medium can swim faster than a spherical
microorganism in a homogeneous fluid. Based on an analysis of the forces acting on the
squirmer, we offer an explanation for the decrease in the squirmer’s speed observed in
heterogeneous media compared with homogeneous fluids.
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1. Introduction

Artificial micro-swimmers that mimic the locomotion of biological microorganisms show
great promise for biomedical applications such as drug delivery and microsurgery (Nelson,
Kaliakatsos & Abbott 2010; Sengupta, Ibele & Sen 2012; Li et al. 2017; Zhang et al.
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2021; Wang et al. 2022). These potentially transformative applications have led to growing
interdisciplinary efforts in recent years to gain an even deeper understanding of the
locomotion of micro-swimmers (Moran & Posner 2017; Hu, Pane & Nelson 2018; Tsang
et al. 2020; Wu et al. 2020). As a testament to their fundamental importance, studies
on the hydrodynamics of swimming microorganisms (Lauga & Powers 2009; Yeomans,
Pushkin & Shum 2014; Elgeti, Winkler & Gomper 2015) have contributed directly to the
development of various bio-inspired artificial swimmers (Bente et al. 2018; Fu et al. 2021).

Microorganisms employ various mechanisms to overcome the constraints of swimming
in viscous environments devoid of inertial effects (Brennen & Winet 1977; Purcell 1977).
For instance, in these low-Reynolds-number environments, propulsion is enabled through
the use of flagella that bend or rotate as they generate propagating waves, or through cilia
that beat in coordinated fashions. Lighthill (1952) pioneered the study of ciliary propulsion
by proposing the squirmer model, which consists of a distribution of slip velocities
on an otherwise rigid sphere. Through a set of so-called swimming modes, the slip
velocities can be tuned to differentiate between various swimmers. The first and second
modes, for instance, represent neutral squirmers and pushers or pullers, respectively. As
a result of its versatility, the squirmer model has become a widely used locomotion
model to investigate various low-Reynolds-number problems, including nutrient uptake by
microorganisms (Magar, Goto & Pedley 2003; Magar & Pedley 2005; Michelin & Lauga
2011), optimization (Michelin & Lauga 2010), hydrodynamic interactions (Ishikawa,
Simmonds & Pedley 2007; Drescher et al. 2009), collective motion (Ishikawa et al. 2007),
swirling motion (Pedley, Brumley & Goldstein 2016; Nganguia et al. 2020; Housiadas
2021; Housiadas, Binagia & Shaqfeh 2021) and swimming in confined spaces (Reigh et al.
2017; Aymen et al. 2023; Della-Giustina, Nganguia & Demir 2023).

Microorganisms often locomote in environments consisting of networks of obstacles
embedded into incompressible, viscous fluid media. Some examples include spermatozoa
in cervical mucus with filamentous network (Rutllant, Lopez-Bejar & Lopez-Gatius 2005),
spirochetes that swim in highly complex and heterogeneous media to cross the blood—brain
barrier (Radolf & Lukehart 2006; Wolgemuth 2015), or Helicobacter pylori moving
through the gastric mucus gel that protects the stomach (Celli et al. 2009; Mirbagheri
& Fu 2016). Mathematically, the Brinkman equation (Brinkman 1949) models viscous
Newtonian flows with an embedded sparse network of obstacles. The incompressible
Brinkman equations are given by

w V20 — Vip* — it =0, V*.u" =0, (1.1a,b)

where the stars (*) denote dimensional variables, w is the fluid viscosity, v=2 is the
permeability, and u* and p* are the velocity and pressure fields, respectively. The
last term in the equation represents the additional hydrodynamic resistance due to the
network of obstacles. The Brinkman equation has been employed to investigate the
effects of viscous heterogeneous environment on locomotion performance of ciliated
microorganisms (Leshansky 2009; Nganguia & Pak 2018) and flagellated or filamentous
microorganisms (Siddiqui & Ansari 2003; Leshansky 2009; Jung 2010; Ho & Olson 2016;
Leiderman & Olson 2016; Mirbagheri & Fu 2016). In the case of ciliated microorganisms,
studies have employed mainly the spherical squirmer model and thus did not provide
insights on the plausible effects of shape on the overall swimming performance.

The influence of shape goes well beyond mere theoretical interest since biological
microorganisms with non-spherical shapes are ubiquitous in nature (Rodrigues, Lisicki
& Lauga 2021). In an attempt to develop more realistic models, the spherical squirmer
model has been extended to include various shape effects (Keller & Wu 1977; Zantop &
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Stark 2020). In particular, Keller & Wu (1977) generalized the squirmer model to a prolate
spheroidal body of arbitrary eccentricity to better represent ciliates such as Paramecium
or Tetrahymena. Their model has recently been extended to include a force-dipole mode
(Ishimoto & Gaffney 2014; Theers et al. 2016; Pohnl, Popescu & Uspal 2020) and
radial modes (Aymen et al. 2023). Recent studies from our group have revealed critical
behaviours that result from varying shapes of a caged squirmer in a heterogeneous medium
(Aymen et al. 2023; Della-Giustina et al. 2023). Indeed, a configuration consisting of
a spherical squirmer enclosed in a spheroidal droplet resulted in the forward motion
of the squirmer and the backward motion of the droplet. In complex fluids, two-mode
spherical squirmers experience a reduction in their propulsion speed and a gain in
swimming efficiency compared with their counterpart in Newtonian fluids (Datt et al.
2015; Nganguia, Pietrzyk & Pak 2017). However, van Gogh et al. (2022) showed that very
elongated spheroidal squirmers could propel faster and more efficiently compared with
spherical squirmers.

In this paper, we employ the spheroidal squirmer model to probe the role of particle
geometry on swimming in a Brinkman medium. Specifically, we concern ourselves with
the propulsion of microorganisms in highly heterogeneous media whose heterogeneity
is at a length scale much smaller than the squirmer’s. The medium is also assumed
to have constant permeability. This consideration does not account for any microscopic
interactions that might occur between the squirmer’s individual cilia and the stationary
obstacles that make up the heterogeneous network. Moreover, our results for moderate to
large values of v may not be quantitatively accurate using the proposed approach since
the length scale associated with the damping interactions is small relative to the cell size
(high solid volume fractions). We note that Darcy’s equation will be better suited in these
limits. We use numerical simulations to quantify the impact of these heterogeneous media
on both the speed and the energetic cost of swimming. The results reveal key features
that are distinct from those obtained using the spherical squirmer model, suggesting the
possibility for biological and artificial micro-swimmers to tune their geometrical shape
for improving their swimming performance in heterogeneous environments. The paper
is organized as follows. We formulate the problem in §2 by introducing the prolate
spheroidal squirmer model and the governing equations, and discussing the numerical
implementation. We summarize our results in § 3, discussing specifically the effects of
heterogeneity and shape on the propulsion speed (§ 3.1) and the power dissipation and
swimming efficiency (§ 3.2). Next, we explore the problem of a spheroidal squirmer with
fixed volume (§ 3.3), departing from previous studies that examined the role of spheroidal
geometry under constant semi-major length. We close the section by conducting a force
analysis, and propose an explanation for the differences in the propulsion speed between
heterogeneous and homogeneous fluids (§ 3.4). Finally, we conclude this work with some
remarks and a discussion about the implications of our findings for the design of artificial
micro-swimmers and drug delivery machines in § 4.

2. Mathematical formulation and method
2.1. The spheroidal squirmer model

Given the geometry of the microorganisms, we consider a prolate spheroidal squirmer with
semi-major and semi-minor axes a and b, respectively, and the corresponding orthogonal
coordinate system given by (&, 7, ¢), where 1 <& <00, -1 <n<1land 0 <¢ <2x
(figure 1b). To represent the effect of ciliary motion, we consider the tangential velocities
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Figure 1. (a) Set-up of the problem: a spheroidal squirmer in a Brinkman medium, a viscous fluid with
embedded stationary particles (represented by the black areas). The red arrow denotes the direction of
swimming, while the blue arrows represent the flow of fluid through the pores (the areas filled with fluid).
(b) The system of prolate spheroidal coordinates. (¢) Scanning electron micrograph image of Paramecium
(reproduced from Bouhouche ef al. 2022). The scale bar is 10 um, and the red dotted curve has been added to
illustrate the approximately prolate shape of the microorganism.

distribution on the spheroidal squirmer’s surface given by (Pohnl et al. 2020)

Vi =£0.m) =& Y By Va(n) ey, 2.1)

n=1

where V,(n) = 2(5& —nH)~12 Prll(n)/(n2 + n) and P}l(n) are the associated Legendre
polynomials of the first kind of order 1 and degree n, and & = a/c is a shape parameter
denoting the surface of the squirmer with semi-major axis a, semi-minor axis b and
semi-focal length ¢ = +/a? — b? in the prolate spheroidal coordinate system (£, 17, ¢) (see
Appendix A). Thus one can show that the shape parameter is related to the squirmer’s
aspect ratio o = a/b by & = 0(0* — 1)~'/2. The unit normal and tangent vectors on the
spheroidal surface are given by n = e¢ and s = —e;;. For squirming motion in Brinkman
flow, the B, modes can be related to Brinkman singularity solutions (Howells 1974;
Leiderman & Olson 2016; Nganguia & Pak 2018). In particular, the B; mode corresponds
to a Brinkmanlet, while the B, mode represents a Brinkman dipole. We note that unlike
in spherical squirmers, all odd modes contribute to the propulsion of spheroidal squirmers
(Pohnl et al. 2020). However, as is done customarily in locomotion studies, we consider
only the first two modes, B; and B;. The sign of the B, mode can be adjusted to represent
different types of swimmers (Pedley 2016). These include pushers (8, = By/B1 < 0, e.g.
Escherichia coli), pullers (82 > 0, e.g. Chlamydomonas reinhardtii) and neutral squirmers
(B2 = 0, e.g. Paramecium).

2.2. Governing equations

We consider a spheroidal squirmer propelling through an axisymmetric flow in an
unbounded heterogeneous medium, as illustrated in figure 1(a). We begin our analysis by
modelling a squirmer with constant semi-major axis length (i.e. the semi-major axis length
a = 1 when non-dimensionalized) and circular cross-section, whose semi-minor axis
length is a function of eccentricity, e = ¢/a (0 < e < 1, with ¢ = 0 describing a sphere).
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The axisymmetric incompressible flow is modelled by the Brinkman equations (1.1a,b).
We non-dimensionalize lengths by a squirmer’s characteristic length L. In §§ 3.1 and 3.2,
the length scale is L = a, the semi-major axis length, consistent with previous studies (van
Gogh et al. 2022). Velocities are non-dimensionalized by the first mode of actuation B,
and pressure by uB1 /L. The non-dimensionalized incompressible Brinkman equations are
thus given by

Vu—Vp—58u=0, V-.u=0, (2.2a,b)

where the dimensionless group § = Lv compares the squirmer characteristic length to
the Brinkman screening length. As § approaches zero, the Brinkman equation reduces to
the Stokes equation; for large 8, the equation reduces to the Darcy equation. With these
scalings, the dimensionless tangential surface velocity distribution on a squirmer is given
by

v =%, m =8 _ BuVa) ey, (2.3)

n=1

where B, = B,/B1. For a two-mode squirmer, the surface velocity reduces to vy =
=& (1 4+ B8 — n2)1/2/(§g - nz)l/zen. In the frame of reference moving with the
squirmer, the flow is uniform in the far field,

u(§ - o0) =-U, (2.4)
and the boundary condition on the surface of the squirmer is given by
u§ = &) = vs. (2.5)

To determine the propulsion velocity U = Ue,, the system is closed by enforcing the
force-free condition

/n-adSzO, (2.6)
S

where 0 = —pl + p is the stress tensor expressed in terms of the identity tensor / and the
symmetric strain (or deformation) tensor y = Vu + (V u)T.

2.3. Numerical simulations

We solve the governing equations using the COMSOL Multiphysics environment, building
on numerical implementations from our previous studies (van Gogh et al. 2022; Aymen
et al. 2023; Della-Giustina et al. 2023). To take advantage of the axial symmetry of the
problem, an axisymmetric computational domain in the 7—z plane is used to simulate only
half of the full flow domain. To simulate the locomotion of a squirmer in an unbounded
fluid, we ensure that the computational domain (of size 500a x 500b; a and b have already
been defined earlier) is sufficiently large that the numerical results are independent of
the size of the domain. We achieved this by conducting convergence studies for both
domain and mesh sizes. Here, P2 4+ P1 (second order for fluid velocity, and first order
for pressure) triangular mesh elements are used for the simulations for increased accuracy,
with local mesh refinement near the squirmer to properly resolve the spatial variation of
the flow field. The degree of freedom ranges from 1 x 10° to 2 x 103 for the simulations
depending on eccentricity. The unknown swimming velocity of the squirmer is obtained
by solving the momentum and continuity equations simultaneously with the force-free
swimming condition applied on the squirmer surface. Using the parallel direct solver
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(PARDISO) for all simulations, we solve the fully coupled problem and obtain the velocity
and pressure fields. We validated the numerical implementation against previous results
for the propulsion speeds of spherical (Lighthill 1952; Blake 1971) and spheroidal (Keller
& Wu 1977; Theers et al. 2016; Pohnl et al. 2020) squirmers in a Newtonian fluid,
the power dissipation and efficiency for two-mode spheroidal squirmers in a Newtonian
fluid (Appendix B). We further corroborated our numerical set-up using analytical results
for spherical squirmers in heterogeneous media (Nganguia & Pak 2018). For spheroidal
squirmers in heterogeneous media, we developed a new analytical model that expresses
the velocity field, propulsion speed, power dissipation and swimming efficiency in terms
of spheroidal wave functions. Our implementation of the spheroidal wave functions, using
the approach in Hodge (1970) and Kirby (2006), led to slow numerical convergence
for large values of their argument (which in our case is given by ¢é). This limited the
application of our analytical model to eccentricities e < 0.6, thus justifying the need for
numerical simulations beyond this regime. Detailed derivations of the model are provided
in Appendix C.

3. Results

The Paramecium and Oxytricha families of ciliates are examples of biological
microorganisms with aspect ratios a/b > 2, corresponding to eccentricities e > 0.866
(Rodrigues et al. 2021). For this reason, in this paper we consider eccentricities up to
e = 0.99. Moreover, since the propulsion speed of a two-mode squirmer (spherical or
spheroidal) in homogeneous fluids and heterogeneous media depends only on the first
mode (Lighthill 1952; Keller & Wu 1977; Nganguia & Pak 2018), we will focus on
neutral squirmers and leave all analyses or notes regarding two-mode squirmers to the
appendices. Finally, where our results are compared with the case of a spheroidal squirmer
in a Newtonian fluid, the performance metrics (speed U, power P and efficiency ¢)
will be scaled by their corresponding values for a spheroidal squirmer in an unbounded
Newtonian fluid, denoted with a subscript N. In a purely viscous fluid, the propulsion speed

is Uy = &l&y — (ég — 1) coth™! &y], the power dissipation is Py = 4nc(§§ — D[ +
Sg) coth™! &0 — &o] (where ¢ = 1/&p), and the swimming efficiency is {y = 253[50 +
(1 —&2)coth™ &12/(&3 — D& — (1 + &3) coth™! &1% (Keller & Wu 1977; Theers et al.
2016; Pohnl et al. 2020; van Gogh et al. 2022).

3.1. Propulsion speed

Figure 2(a) shows the propulsion speed U as a function of the fluid resistance §. The
various curves denote different values of the eccentricity e, ranging from e = 0 (spherical
squirmer) to e = 0.9 (elongated spheroidal squirmer). Increasing eccentricities yield larger
speed, and we deduce that spheroidal squirmers (e # 0) swim faster compared to spherical
squirmers. In homogeneous fluids (§ = 0), elongated squirmers with ¢ = 0.9 show upward
of 15 % gain in speed compared to spherical squirmers. However, the speed decreases
monotonically with increasing fluid resistance. We can also contrast the propulsion of a
spheroidal squirmer in homogeneous vs heterogeneous media. As illustrated in figure 2(b),
a squirmer in a heterogeneous medium always swims slower compared to a squirmer
in a homogeneous fluid. However, while the squirmer experiences a reduction in speed,
more elongated squirmers are able to maintain speeds close to that of their counterpart
in Newtonian fluids for a wider range of fluid resistance. Indeed, significant reduction in
speed becomes more visible around § = 1 for e < 0.6 and around § ~ 4 for ¢ = 0.9.
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Figure 2. Propulsion speed as a function of the fluid resistance § for different values of eccentricity. In (b),
the speed is scaled by its corresponding value for a spheroidal squirmer in a Newtonian fluid: Uy = &y[&o —
(53 -1 coth™! &p]. In both plots, the symbols denote numerical simulations using the finite element method
(FEM), while the dashed, solid and dotted lines denote prediction for spherical (e = 0) and spheroidal (¢ =
0.3, 0.6) neutral squirmers using the analytical models for spherical squirmers in Nganguia & Pak (2018) and
the proposed model for spheroidal squirmers developed in Appendix C.

These observations can be made more clearly by plotting the speed as a function of the
eccentricity for various values of the fluid resistance. As seen in figure 3(b), increasing
the fluid resistance yields a decrease in the propulsion speed for a fixed eccentricity, while
increasing eccentricity yields to faster swimmers for a fixed fluid resistance. Figure 3(a)
shows the propulsion speed scaled by the speed of a spherical squirmer in the same fluid
environment, and suggests that spheroidal squirmers swim faster compared to spherical
squirmers. The figure also demonstrates that the effects of shape become even more
pronounced in highly heterogeneous media: a very elongated squirmer (e ~ 0.99) that
experiences high fluid resistance (6 = 100) sees a greater than ten-fold increase in speed
over a spherical squirmer in homogeneous or heterogeneous media, and a nearly 10 %
increase in speed over a similarly shaped squirmer in a homogeneous fluid. Another
interesting result arises from analysing the speed scaled by the speed Uys of a spherical
squirmer in a homogeneous fluid (Lighthill 1952). In this case, figure 3(b) shows that
spheroidal squirmers in heterogeneous media can propel faster compared to spherical
squirmers in homogeneous fluids. The critical eccentricity at which this trend occurs is
represented by the dashed curve in figure 3(c).

A good indication of the effect that a micro-swimmer has on its surroundings and/or on
hydrodynamic interactions is how fast its flow decays. For a spherical neutral squirmer, the
flow decays as ~1/r> in homogeneous and heterogeneous media (Nganguia & Pak 2018).
Figure 4 shows the component of velocity w in the swimming direction as a function of
the distance from the squirmer’s semi-major axis a. Figures 4(a,b) show variations in w
that result from changes in the eccentricity for a fixed fluid resistance § = 0 and 100,
respectively. The velocity component on the surface of a spheroidal squirmer is larger
than that on the surface of a spherical squirmer. However, this difference shows a strong
dependence on the fluid resistance: it is insignificant in a homogeneous fluid, and becomes
more evident in a heterogeneous medium. Away from the micro-swimmer, the flow
near the squirmer decreases significantly with increasing eccentricity in homogeneous
fluids, while it becomes independent of shape in highly heterogeneous media.
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Figure 3. Propulsion speed as a function of the eccentricity e for different values of the fluid resistance 8. Lines
indicate analytical results, and symbols indicate numerical results. (a) The speed of the spheroidal squirmer
in the Brinkman medium is scaled by the speed of the spherical squirmer in the same environment (with the
same ). (b) The speed is scaled by its corresponding value Uys = 2/3 for a spherical squirmer (¢ = 0) in
a Newtonian fluid (§ = 0). (¢) The d—e diagram delimitates the regions where enhanced (U/Uys > 1) and
hindered (U/Uys < 1) swimming occur. The dashed line indicates U/Uys = 1.
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Figure 4. Velocity component in the swimming direction as a function of the distance from the surface of
the spheroidal squirmer. (a,b) Effect of eccentricity on velocity for (a) § = 0 and (b) § = 100. (¢) Effect of
heterogeneity on velocity for e = 0.6. The black dash-dotted line is added to represent the slope ~1/r> in the
far field. Note that the flow is plotted in the laboratory frame where u — 0 as r — oo.

Summarizing figures 4(a,b), the difference in the flow between spheroidal and spherical
squirmers depends on the near or far field: spheroidal squirmers experience greater flow
than that of spherical squirmers at close proximity with the micro-swimmers. On the
other end, in the far field, the flow becomes independent of the micro-swimmers’ shape.
When we fix e = 0.6 instead, and vary the fluid resistance (figure 4c), we observe that
the flow decreases significantly with increasing fluid resistance. This trend is consistent
with the results in figure 2 that show the propulsion speed decreasing monotonically with
increasing fluid resistance. Finally, one common feature in figure 4 is that the flow decays
as ~1/r independently of e and 8, and consistent with the flow decay for spherical neutral
squirmers.

3.2. Power dissipation and swimming efficiency

A spherical squirmer in a heterogeneous medium expends more energy to swim as the
fluid resistance increases. Although power dissipation increases monotonically with fluid
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Figure 5. Power dissipation as a function of the fluid resistance § for different values of eccentricity. In
(b), the power is scaled by its corresponding value for a spheroidal squirmer in a Newtonian fluid: Py =
4nc(§§ — D[+ §§) coth™! & — &o] or (B12) with B> = 0. (¢) Power dissipation as a function of eccentricity
e for different values of the fluid resistance. The variable is scaled by its corresponding values for a spherical
squirmer (e = 0).

resistance, Nganguia & Pak (2018) reported that under these conditions, the squirmer
actually swims more efficiently for low to moderate values of the fluid resistance.

In this subsection, we discuss the power dissipation and swimming efficiency for a
spheroidal squirmer propelling in a heterogeneous medium. The power dissipation is
calculated using

P:—/n-a-udS, (3.1)
S

while the swimming efficiency is obtained using Lighthill’s definition (Lighthill 1952) of
the ratio of the power required to tow a rigid spheroid in uniform motion with velocity U
to the work done by the squirmer:

Pp Fp-U

P P
where Fp is the drag force. Intuitively, one may expect the power dissipation of
spheroidal squirmers to decrease with increasing eccentricity, the elongated shape of the
squirmer making it easier to navigate around the stationary obstacles. This is certainly
captured in figure 5(a). We also note that the largest influence of shape is observed in
highly heterogeneous media, where the difference in power dissipation between spherical
squirmers (P = 800) and elongated squirmers with, for example, e = 0.9, stands at 300 (a
62.5 % reduction).

When the power dissipation in a heterogeneous medium is scaled by that in a
homogeneous fluid, one immediately observes that spheroidal squirmers in heterogeneous
media expend more energy compared to their counterparts in homogeneous fluids.
However, a number of intriguing behaviours emerge. For e < 0.6, the curves collapse
together up to approximately § = 50, when squirmers with higher eccentricity have higher
power dissipation as the fluid resistance continues to increase. Moreover, squirmers with
e = 0.9 can yield either lower or higher power dissipation compared to less elongated
squirmers. The outcome depends on specific combinations of the eccentricity and
medium’s resistance: for example, for § < 60 (§ > 60), squirmers with e = 0.9 exert less
(more) power dissipation compared to squirmers with e < 0.3. Unlike the propulsion speed
and the power dissipation, the swimming efficiency displays a non-monotonic behaviour
as a function of the fluid resistance. As the latter increases, the efficiency reaches a
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Figure 6. Swimming efficiency as a function of the fluid resistance é for different values of eccentricity,
using FEM and prolate spheroidal wave functions (PSWF) (dashed curves in (a) and (). In (), the
efficiency is scaled by its corresponding value for a spheroidal squirmer in a Newtonian fluid: {y = 2&3[50 +
(1 — &3 coth™ £12 /(&2 — D&y — (1 + &3) coth ™! £1? or (B15) with B, = 0. (¢) Swimming efficiency as a
function of eccentricity e for different values of the fluid resistance. The variable is scaled by its corresponding
values for a spherical squirmer (¢ = 0).

maximum before converging to zero at high values of the fluid resistance. Figure 6(a)
shows that greater efficiency can be achieved by replacing spherical with spheroidal
squirmers. Furthermore, we found that spheroidal squirmers in heterogeneous media are
more efficient compared to their counterparts in homogeneous fluids for low to moderate
3, as illustrated in figure 6(b). This is consistent with the efficiency of a spherical squirmer
(Nganguia & Pak 2018). We further observe that squirmers with e < 0.6 yield nearly
identical efficiencies over the range of fluid resistance.

Note that for sufficiently slender-shaped (e > 0.8) tangential squirmers in homogeneous

fluid, the power dissipation is P < Pp (Keller & Wu 1977). This observation justifies the
curve with ¢ > 1 (e = 0.9) at low to moderate § values in figure 6(a). However, using
the spheroidal squirmer model (1) yields the power dissipation only outside the ciliary
envelope (the layer representing the boundary of beating cilia), and (2) omits interactions
of the individual cilia with the surrounding medium. Considering a ciliate model to mimic
microorganisms such as Tetrahymena, Ito, Omori & Ishikawa (2019) reported that the
power dissipation generated within the ciliary envelope can contribute as high as ~90 %
of the total power dissipation from both inside and outside the envelope. Therefore, since
much of the power is generated within the ciliary envelope, efficiencies { > 1 are plausible
only for cilia much shorter than the cell body length scale L and the damping length scale
o .
Plotting the power dissipation (figure 5¢) and swimming efficiency (figure 6¢) as
a function of the squirmer’s eccentricity enables us to better compare the effects of
heterogeneity and shape on spherical versus spheroidal squirmers. In both figures, the
variables are scaled by the corresponding values for a spherical squirmer. As a general
trend, for a fixed value of the fluid resistance, spheroidal squirmers expend less energy
and are more efficient swimmers compared to spherical squirmers in both homogeneous
and heterogeneous media. However, we observe two distinct regimes across the range of
fluid resistance. As illustrated in figure 5(c), the power dissipation is non-monotonic: it
first decreases as § approaches 10, then increases for § > 10. Figure 6(c) shows a similar
non-monotonic trend for the swimming efficiency, albeit this behaviour occurs at a value
of the fluid resistance an order of magnitude smaller (§ ~ 1).
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Figure 7. (a) Swimming velocity, (b) power dissipation, and (c) efficiency normalized by their corresponding
Newtonian values (§ = 0) for the spheroidal squirmers with the constant-volume constraint. Excellent
qualitative agreement with the constant semi-major length analysis (figures 2, 5(b), and 6(b), respectively)
is observed.

3.3. Biological modelling

The results in the previous analysis have been obtained for general spheroidal
microorganisms without constraints on surface area or volume, instead considering
constant semi-major length L = a (van Gogh et al. 2022). Rodrigues et al. (2021) showed
that the corresponding propulsion speed Uy = &p[§p — (“;‘02 — 1) coth™! &y] agreed with
the experimentally measured range of velocities experienced by ciliates from different
taxonomic classes. While solutions obtained using a to scale the problem have yielded
good agreement with experimental data, our formulation can also be adapted to account for
other geometrical and biologically relevant constraints. For example, under the assumption
of fixed volume (L = V!/3, where V is the volume of the squirmer), the spheroidal
squirmer must satisfy ab® ~ rg, where rg is the radius of a spherical squirmer with the
same volume as the spheroidal squirmer. Generally, the shape parameter is given by
& = a/c. Under constant volume of the squirmer, we determine a = (4n /3)_1/ 31—
16713, b= @n/3)7131 = 1/EHY6 and ¢ = (4n/3)7'3 (&3 — &)~'/3. In other
words, the lengths that define the spheroidal shape of the organisms now vary with
eccentricity through &.

Our simulations show that the volume constraint does not alter the qualitative results
that we obtained under the assumption of constant semi-major length. This is illustrated
in figure 7, where the propulsion speed, power dissipation and swimming efficiency of
squirmers with different aspect ratios but equal volume are scaled by corresponding values
in Newtonian fluids. All variables are plotted as functions of the fluid resistance. As
observed in figures 7(a,c), squirmers of equal volume and eccentricity e < 0.9 propel at the
same speed and swimming efficiency, whereas very elongated squirmers (e > 0.9) benefit
from small but noticeable gains in both speed and efficiency. The effect of eccentricity
with fixed volume is more pronounced in terms of the power dissipation (figure 7b), where
we observe that the latter increases consistently with both eccentricity and fluid resistance.
This contrasts with the power dissipation with fixed semi-major length (figure 5b), where
the power dissipation increased with fluid resistance but exhibited a non-trivial behaviour
as a function of eccentricity.

3.4. Force analysis

In this subsection, we discuss changes in the forces that act to generate propulsion of the
squirmer and how they vary with eccentricity (e) and fluid resistance (§).
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Figure 8. (a,c) Viscous stress contribution, and (b,d) pressure contribution to the force in the swimming
direction z as function of the eccentricity. (a,b) Results for the constant semi-major axis length (e = ¢); (¢,d)
results for the constant-volume cases. In all plots, the curves denote different values of the fluid resistance with
8 =0,1,5, 10, lines depict the pumping forces, and symbols depict the towing forces.

We decompose the force-free condition into

/a-ndS=/(—p)I-ndS+/}'l-ndS=0, (3.3)
S S S

F pres Fise

where F ), is the contribution due to pressure, and F ;- results from the viscous stress.
In the swimming direction, our numerical simulations confirm that these two forces are
equal in magnitude with opposite signs.

Figure 8 illustrates the variation of the viscous (figures 8a,c) and pressure (figures 8b,d)
forces as a function of the eccentricity for different values of the fluid resistance. Each
force is further decomposed into contributions that result from the towing and pumping
dynamics. Specifically, the results represent the forces exerted by the surrounding medium
on the squirmer. Both the viscous and pressure forces reveal a strong dependence on the
eccentricity and the fluid resistance. We can rewrite the decomposition in (3.3) as

Fpump + Fipp = 0, (3-4)
986 A20-12
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Figure 9. Translational drag coefficient (symbols, left-hand axis) and magnitude of the pumping force (lines,
right-hand axis) as functions of eccentricity for (a) constant semi-major length and (b) constant-volume
constraints.

where F ), is the pumping force generated by the squirmer when it is being held fixed,
while Fy,, = a(8) U is the force required to tow the squirmer at a given velocity U. In
this last expression, «(§) is the translational drag coefficient (Yang et al. 2017) that, in our
analysis, also depends on the fluid resistance. From this, we express the propulsion speed
as

Epump, 3.5)
a(d)

This relation, along with the results in figure 9, provides justification for the behaviour
observed in figures 2 and 7(a): the propulsion speed decreases with increasing fluid
resistance. Indeed, when the semi-major axis length is constant (figure 9a), the pumping
force (right-hand axis in the figure, denoted by lines) decreases (increases) with increasing
eccentricity (fluid resistance). The same trend is observed for the drag coefficient
(left-hand axis in the figure, denoted by symbols). In the case of constant volume
(figure 9b), the pumping force increases with both eccentricity and fluid resistance. The
drag coefficient also increases with higher fluid resistance, but shows a non-monotonic
trend as a function of eccentricity: o generally decreases with increasing eccentricity,
except for e >> 0.9. In both cases, the magnitude of the drag coefficient is higher compared
with the pumping force (| (8)| > |[Fpumpl). Ultimately, this leads to a slower propulsion
speed as the fluid resistance increases.

4. Concluding remarks

The spheroidal geometry encompasses spheres, cylinders and disks in their respective
limits. This versatility makes the spheroidal squirmer model ideal to investigate the effects
of shape on the propulsion of non-spherical micro-swimmers. Expanding upon work
by Nganguia & Pak (2018) on spherical squirmers, we investigate numerically how the
micro-swimmer’s geometry impacts locomotion in heterogeneous viscous media.

Our results show that spheroidal squirmers in heterogeneous media experience reduced
speed, increased energy expenditure and enhanced swimming efficiency compared to their
counterparts in homogeneous fluids. This is not unlike the case of spherical squirmers
(Nganguia & Pak 2018). However, spheroidal squirmers in heterogeneous media display
superior swimming performance over spherical squirmers. Specifically, we found that
heterogeneous media present the ideal swimming environment, with enhancement in

986 A20-13


https://doi.org/10.1017/jfm.2024.347

https://doi.org/10.1017/jfm.2024.347 Published online by Cambridge University Press

E. Demir, B. van Gogh, D. Palaniappan and H. Nganguia

propulsion speed and efficiency, and a reduction in energy cost. Indeed, spheroidal
squirmers in heterogeneous media can swim faster (figure 3c), expend less energy (up
to § < 10; figure Sc) and swim as or more efficiently (up to 6 > 100; figure 6¢) compared
with spherical squirmers in homogeneous fluids.

We also examine how the pressure and viscous forces vary as functions of both
the eccentricity and fluid resistance. Remarkably, we found that while the selection of
geometrical constraints had no impact on the qualitative behaviour of the kinematic
and energetic factors, it showed more pronounced effects on the forces. Based on these
findings, we were able to explain why the propulsion speed decreases in a heterogeneous
medium.

Recent studies have investigated the propulsion of spheroidal microorganisms in
microchannels (Theers et al. 2016; Qi et al. 2020) and in environments described by
Newtonian (Theers et al. 2016; Pohnl et al. 2020) and complex (van Gogh et al. 2022)
fluids. Our findings complement these studies related to spheroidal microorganisms by
addressing swimming in heterogeneous media. Interesting subjects for future studies
include the ways in which our findings will influence the hydrodynamic interaction of
swimmers as well as nutrient transport and uptake by microorganisms in heterogeneous
viscous environments. Work in these directions is currently under way.
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Appendix A. Prolate spheroidal coordinate system

Recall the prolate spheroidal coordinate system given by (&, n, ¢), where 1 < & < oo,
—1 <n<1land0 < ¢ < 2x (figure 1b). The position vector of the squirmer in cylindrical

coordinates is given by
x=c/E2—1,/1—n%e, +ctne,, (AD)

where the basis vectors satisfy e, =cos¢e;+singe,, and ¢ = a’? — b? is the

semi-focal length of the spheroid, with a = c& and b = ¢\/£% — 1. The eccentricity of the
squirmer is e = c¢/a, and we define the shape parameter £y = 1/e, where £ > & denotes
the fluid domain excluding the surface (§ = &p). In this coordinate system, the metric
coefficients are given by

hy = c\/(%‘2 - (1 —n?), (A2a—c)

and the unit basis vectors are related to those in the Cartesian coordinates by

5\/1—77 nvEr—1 n 52—1 5\/1—77

e+ —e e; = — . (A3a,b)
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Appendix B. Outline of the derivation for the power dissipation and swimming
efficiency of a two-mode squirmer in a Newtonian fluid

Motivated by the approximately prolate spheroidal bodies of many ciliates, we use the
prolate spheroidal coordinates (£, n, ¢) to derive a series solution for the propulsion
speed of a prolate microorganism. The power dissipation and swimming efficiency of a
spheroidal squirmer have also been reported, but only for a neutral squirmer (Keller &
Wu 1977). To fill this gap in knowledge and complement existing studies, here we derive
analytical expressions for the power dissipation and swimming efficiency for a two-mode
squirmer.

The derivations follow similar approaches used for the neutral squirmer (Keller & Wu
1977; van Gogh et al. 2022).

We consider an axisymmetric flow, and express the flow field in terms of the stream
function Yy as (Dassios 2007)

1 dyw 1 dyn

- , BI
hyhy n ° hghy 0E " B

uy = uyes + vyey =

where
Yy = C1 Ha(§) Ga(n) + Co£ (1 — n?) + C3 H3(§) Ga(n) + Can(1 — ), (B2)

where the coefficients C; are easily obtained after applying the boundary conditions, and
the functions G,(x) and H,(x) are the Gegenbauer functions of the first and second kind,
respectively, given by (Dassios, Hadjinicolaou & Payatakes 1994)

1 2
Go(x) = 5 (1 =x%),

1 3
Ga(x) = 5 (x—x7),

' (B3)
Ha(x) = 411“ — ) (f}i) v

1 2 5 x—1
H3(x)=ﬁ —4 4+ 6x"4+3x(x*—1)In i/l

It can be shown that the pressure is given by
_ —2(Can +3C4$) +6C4(§> — ) coth™' &
B AE?—n?) '

The total force on the spheroidal squirmer in the direction of motion is given by

1
F=2mnc% /g2 — 1 / | [(—pN + Ve)la /&S — 1+ P ele E0y/ 1 — n2] dn, (BS)

which reduces to
8nC
Fz(/aqmg.q= T2 (B6)
S C

The swimming problem can be decomposed into two sub-problems: a towing problem
(T) and a pumping problem (P) (Pak & Lauga 2014; Nganguia & Pak 2018). The force
resulting from each problem is given by (B6), with the coefficient C, determined from
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boundary conditions for the specific problem. The force-free condition for the propulsion
of a spheroidal squirmer in a Newtonian fluid, ( f g0 - n dS) -e, = Fp+ Fr =0, reduces
to

G +C3 =0, (B7)
where
¢ = U & = D HylGo) — 260 Halko) .
2 H>(80) — &0 H,(%0)
and
p Eoc? Hy(&o) ®9)

7 Ha(60) — §o Hy(60)
are the coefficients corresponding to the towing and pumping problems, respectively.
Substituting the coefficients, solving for the propulsion speed, and simplifying using the

definition for the inverse hyperbolic cotangent In[(x + 1)/(x — 1)]/2 = coth™! x, yields

Uy = &l& — (£ — 1) coth™! &1 (B10)

Once the flow field is determined, the power dissipation Py = — |, gn+0 - uydS can be
calculated. In spheroidal coordinates,

1
P =206 [ noee +uvoele & — D& — 1) dn, (B11)

and after lengthy calculations, one can show that
Pn =Pp, + Pp,, (B12)
where
Pp, = —4ne(€ — DIgo — (& + 1) coth™' o),
4mcEl B2

e 8 — S1gj + 45§ BI13
" 98y — (9&5 — 3) coth—lgo{ &y + 458 (B13)

+3(&3 — 1) coth™ & [14£) — 3085 + (1 — 12&3 + 15&7) coth™! £]}.

We then use the power dissipation to calculate the swimming efficiency (Lighthill 1952):
_Fp-Ux
=
where Fp is the drag force for a spheroidal squirmer in a homogeneous fluid, or the force
needed to pull a rigid spheroid at the swimming velocity Uy = Uye,. We find that the
swimming efficiency is given by

655150 — (§ — 1) coth™! &]% [3¢9 — (355 — 1) coth™ &]

Hy + 2H;

N (B14)

; (B15)

{N

where
Hy =3(& — Dl& — (& + 1) coth™" &]* [380 — (355 — 1) coth™ &],
Hy = £3[& — (£ + 1) coth ™ £1{8 — 51£7 + 45&7 +3(63 — Dcoth ' & ¢ . (B16)
x [14&) — 30&3 + (1 — 12823 + 15&7) coth™! &1}
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Figure 10. (a) Power dissipation and (b) swimming efficiency for a spheroidal squirmer as a function of the
eccentricity e. Both variables are scaled by the corresponding values for a spherical squirmer (e = 0), and the
fluid is Newtonian (§ = 0). Curves are obtained from (B12) and (B15), while the symbols denote numerical
simulations. The curves are colour-coded to represent a neutral squirmer (black) and puller (blue).

To validate these expressions, we compare them against numerical results for the case § =
0 (Newtonian fluids). Figures 10(a,b) show excellent quantitative agreement between the
analytical results and the numerical simulations for the power dissipation and swimming
efficiency of a neutral squirmer and a pusher with 8 = 1. The results in figure 10(a) show
that more elongated, spheroidal squirmers expend less energy in swimming compared to
spherical squirmers. In terms of swimming efficiency, figure 10(b) shows that spheroidal
squirmers are more efficient compared with spherical squirmers. Note that for a two-mode
squirmer, the propulsion speed still depends on the first mode alone. More generally, only
the odd modes contribute to the propulsion speed (Pohnl e al. 2020). This also suggests
that, unlike the case for a spherical squirmer, a spheroidal squirmer can locomote in the
absence of the first mode, propelled by the By, modes.

Appendix C. Analytical solution for the propulsion of a spheroidal squirmer in a
Brinkman medium and validation of the numerical implementation

In this appendix, we derive the propulsion speed, power dissipation and swimming
efficiency for a prolate spheroidal squirmer in a Brinkman medium. While semi-separable
solutions in spheroidal coordinates (Dassios et al. 1994) can be utilized for harmonic and
biharmonic equations, the case for Brinkman flows requires solutions of the Helmholtz
equations. It is known that solutions of the Helmholtz equations can be written in terms of
series of the so-called spheroidal wave functions (Aoi 1955; Stratton et al. 1956; Flammer
1957; Abromowitz & Stegun 1964). These mathematically sophisticated special functions
have been employed mainly in the context of electromagnetic or sound wave propagation.
For instance, they have been used to derive electrophoretic mobility functions of spheroidal
particles (Yoon & Kim 1989; Miloh & Goldstein 2015). The model that we developed
becomes slow-converging with increasing eccentricity, and performs best for eccentricity
up to 0.6, thus justifying our use of numerical simulations to investigate shape effects with
e > 0.6.

We again assume axial symmetry and express the Brinkman equation in terms of a
stream function ¥ . Substituting (B1) into the Brinkman equation (2.2a,b) gives

D*(D?* — ¥ =0, (CD)
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where

D? = ! E =1 —+ -7 i (C2)
IREGETY asz o]
Equation (C1) can be solved by letting ¥ =¥ 4 w®@  where ¥ satisfies
D>y =0, and ¢ @ satisfies (D* — §2)¥ @ = (. The general solutions are

w® = /&~ 1)1 - )Y CLPLE PLa) + C2PLE) QL)

n=1

+C ok & ol +Crole) Pl (C3)

and

4 o0
v® = S - i - 3 ERY G, ) 5dix, )

k=1 n=1
+ ESH RY iy, £) Py, ), (C4)

where x = dc, P)'(x) and Q}'(x) are associated Legendre functions of the first and second

kind of order m and degree n, respectively, and RY;) and S%Q are radial and angular wave
functions, respectively. The superscripts k = 1,2, 3,4 and j = 1, 2 are the orders of the

prolate wave functions. Each of the four radial prolate wave functions is related to spherical

Bessel functions j,, y,, hfll) and hﬁlz), while the angular wave functions each correspond to

associated Legendre functions.

The constants C,, and E,, in the general solutions (C3) and (C4) are determined from
applying boundary conditions. Specifically, since the flow field is bounded in the domain
& <& <ooand —1 < n < 1, we must have C,ll = Cﬁ = Cﬁ =0, and ¥ reduces to

0
v = J&—a-» Y G olE Piop. (C5)
n=1
Regarding ¥®, the angular functions satisfy Sﬁ) (ix, n) — oo, whereas only the radial

functions of the third kind (k = 3) decay exponentially as & — oo, so we must have
EXt4 = 0and E! = E2 = E} = 0. The stream function reduces to

v® = /- na —’72)2215 Ry Gix, §) 81, i, m), (C6)
k=1 n=1
where
o -1
RYGx. &) = [i™2 Y "+ D +2)d"(ix)
r=0,1
21
x /nx 55 Z "+ D+ 2)d"(x) Kz (X6), 7
r=0,1
(1)(1)( n) = Z dI"(IX)PH_l(’I)
r=0,1
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and K;y3,2(x§) are the modified Bessel functions. The prime indicates summation over
every other value: when n — 1 is even (odd), the sum is over even (odd) values of r
(Flammer 1957). At the surface of the spheroidal squirmer (§ = &), we have

1
W(E =&) =—5 U — D —n?), (C8)
>, 2B
¥<s = &) =—b*\[1 -2 ) +" 2 Pe(n) = Uco(1 = ). (C9)
k=1

Substituting the stream function into these equations gives a system of equations for the
coefficients C,, and E,;:

o o 1
> Ca Qo) Po(m) + D ExRy (ix §0) Sy, (i m) — 5 U\ &5 — 1P} () = 0.

n=1 n=1

(C10)
o oo
0 0
cha—[ 52—1Q}l<s>} P}1<m+ZEna—[\/s — 1R (ix. s>] S$,) Gix. m)
n=1 S Eo n=1 %- ‘EO
=\ 2By
ZUCZSOP}(H)—CZSOZ —— P,(). (Cl1)
k*+k
Upon using the orthogonality properties of the associated Legendre polynomials
! 2m(m + 1)
PLop PLp)dn = T 8, C12
[ Ehnplonan==2ED s, c12)
we have
0
f Py () Sy G, mdn = Y 'd}"(ix) / Py, (1) P}y () dny
- r=0,1
2m(m+ 1)
d — S C13
,;2 1160 =5, = B (C13)

One obtains

o 3 Ue\/&5 — 1
2m(m+1>{cm TR S A S )}_2&5% 14
:1

2m + 1 0! (&) 3 0L
v 2 1B
2m(m + 1) ZE as[ 57— TR, (i, )l " (i)
A 1 1
2m+1 = —wsz 104,
2 2
%L Uc*& 5 — 4 c“80Bm ' (C15)

0 0
FVE - TehOl 2m+ 1 EVE-Teh©l,
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Solving for C, in (C14) yields

UZ %-2_1 OO, 3)
o) 2V ) e R

lm

2m+1 "3 QLo 2m+1 = Q0,,(50)
(C16)
Substituting (C16) into (C15) gives
K~ O
B Z Edly(ix) | -2 WE IR Ok gy, &)
om+1 ! m(m + 1) Oy (§0) 0).(0)
_EUCZS _ §o _Vgg_l
T30 Y T mm+ 1) QmEo) 201 E0)
2
4 §0Bm (C17)

(2m + D(m* +m) Om(§o)

C.1. Propulsion speed

The propulsion speed U is determined using the force-free condition |, g0 -ndS=Fp—+
F7 = 0, again split into contributions from the pumping problem and the towing problem.
After lengthy calculations, we determine that the magnitude of the propulsion speed can
be written in the form

F
U= (C18)
o
where
3
1 2 2
Fpump = TV + Y (K + MV + K2 + M), (C19)
j=1
3
_ 7 ) o) 2@ @)
a=T"+Y K" +M" + K2 + M), (C20)

j=1

and the superscripts (1) and (2) denote the contributions from ¥ (1 and ¥ ®, respectively;
the tilde indicates expressions associated with the towing problem. The expressions for 7T,
K and M in (C19) and (C20) represent the contributions from the pressure, normal and
tangential components of the viscous stress, respectively. The terms due to ¥ 1) are given
by

8
T = =X Cise(e} — 1) 01 6o), )
(1) _ g ! 3/2 p®
K" =4n- @& - 1) Z Cun(n + 1) QL (0) [ag (5 (5)Qn<s>)Lo, (€22)
M _ gy 1 3/2 Qi 3
K =87 G Z Con(n + 1)[ 2 P (5)Qn(g)L), (C23)
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Ky = 4m g & -1 Z Can(n+ 1) Qu(Eo) [n(n + 1) PG (0) Qu(o)

S ATRGOTHEN €24
1 o/
M =8~ 67— 1 Z Can(n + 1) 0,50 iy (50) Ou(0) (C25)
M) = 4 — ,/go 1 Z Can(n -+ 1) 0)(60) Py (50) Q) (50). (C26)
n=1

PP o) (5))} , (C27)

M = —4x = go(go - 1)2 Cun(n + 1) On(60) [ag (
§o

3

where Pf,m (x) are associated Legendre functions of the first kind defined over x > 1. The
terms due to ¥® are given by

K = 1)”2 Z E, R (ix. £0) d)"(x) (r + 1)(r +2)
n=1 r=0
)
P , , C28
[85 (g () 0ri1(8) . (C28)
KP =8x c—;) & — DY SV E M x) (r+ D +2)
n=1 r=0
3Rﬁ) 3)
x| e P © 0@ | (C29)
&
K = @0 - 1>Z Z Evd)(ix) 52 [\/52 1R iy 5)]
n=1 r=0 &o
X [(r 4+ D +2) P () Qr1(8) — PP (6) 0 (9)]ey» (C30)
M = \/so ~1 Z Z E, RY) (ix. £0) d}"(ix)
n=1 r=0
X (r+ D)(r +2) PS) (50) Qrt1 (50), (C31)
1 ., &, 9
M —an et - DY Y B |5 [ e - 18060 |
n=1 r=0
J 3) !
X 3% (sP @)Q,H@)LO, (C32)
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M(Z) — 471? - (%-0 _ I)Z Z E, dln(l)() 852 |: /52 _ lR(3)(1X s)i|

n=1 r=0 &
x PV (50) L1 (§0).- (C33)

C.2. Power dissipation and swimming efficiency

The power dissipation is obtained from P = — | g0 - n-vdSandis given by
3 3
— 7, 7(2) &) 2
P=U|Y @+ |+ @ +T17), (C34)
j=1 j=1

where the terms associated with the towing and pumping problems admit a general form
() and are given by

0 \i PR k2 Can(n+ 1) QL (Eo) k(k + 1) PO (0) Oy (E0),

Ty Ty
(C335)

7 ﬁ ) Z k2 - Canln +1) Qo) PP Go)Qy60). (C36)
k n

7 = @0 - )szz Can(n +1) Qu(§0)
Tk n
« [3< P ) 0! (5))] , (C37)
9€ \& )
n 1 2B, -
T = d4n = Jg3 - 1222 Gy g BR800 (7 +2)
Ty Tn
x (r+ D[k(k + l)P(3)(€o) AGNE (C38)

A A 0
7Y = (so - 1)222 P +kEn¥ [\/s — 1R ix. s>} d}"(ix)
Tk

o
[8 ( P () 0} @))] : (C39)
9t \ & "
2B i 02
P =4 L Gl 1)222 Rt v [\/s 1R Gix. S)L d"(ix)
Ty Tn T 0
x [P{} (50) Q4 (€o)], (C40)
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Towing
Ty ={keZ|ptk) =p() Nk =1}

T,={neZlpmn =p)rn=1}
T, ={reZ|pr)=p2)Ar=>0}

Pumping
Py ={keZlptk)=pnePy)nk=>1}

P,={neZ|pn) =pkelPy)Arn=>1}
P ={reZ|p(r) #p(n € Py) Ar >0}

Table 1. Index sets associated with summations in (C35)—(C40) for the towing and pumping problems. The
symbol A denotes ‘and’. The function p(-) returns the parity of the argument (odd, even, or none). For instance,
Ty indicates that k is an integer such that the parity of k is equal to the parity of 1, and k is greater than 1. Here,
Tk and T, are positive odd integers, while T, is an even integer > 0. Similarly, Px and P, are positive integers
with the same parity, and [P, is an integer > 0 with parity opposite to that of P; and IP,,.

(@) (b) (©)

1.0 ‘Nganguia & Pak (2018)
© FEM,e=0 =i
08" ¢ FEM,e=0.3
"7 = B-PSWF,e=0.6 jg

* FEM,e=0.6
0.6 :

¢/en

YT —

0.2

1073 10° 103 103 100 103 1073 10° 103

8 8 )
Figure 11. (@) Swimming efficiency as a function of the fluid resistance for pullers/pushers. The numerical
simulations using the finite element method (FEM) implemented in COMSOL are validated using the
spheroidal model in (B14), derived using prolate spheroidal wave functions (PSWF) and the exact solution
for a spherical squirmer in a Brinkman medium (Nganguia & Pak 2018). () Swimming efficiency scaled by
the corresponding value in a Newtonian fluid given in (B15). (¢) Comparison in raw efficiency between neutral
squirmers and pullers/pushers.

where the indices are
w = min(k,n), ¢q = max(k,n), f=min(k,r+1), g=max(k,r+1). (C4la—d)

The index set for the summations in (C35)—-(C40) are associated with the towing
problem. The expressions for the pumping problem are recovered by letting
(T,, Ty, T)) = (P, P, P,). Table 1 lists the index sets corresponding to the towing and
pumping problems.Once the power dissipation is found, the swimming efficiency can be
calculated using (B14) for a squirmer in a heterogeneous medium.

Figures 11(a,b) illustrate the excellent agreement between theories and simulations
for pusher and puller type swimmers. Figure 11(c) compares the efficiencies of neutral
squirmers and pullers/pushers of the same eccentricity. For the entire range of §
values, both the spherical and spheroidal neutral squirmers swim more efficiently in a
heterogeneous medium compared to their puller/pusher counterparts. However, the prolate
spheroids swim more efficiently compared to their spherical counterparts regardless of
their actuation type (i.e. neutral or puller). Both findings are in agreement with the
literature reporting the shape dependence of the efficiency (Daddi-Moussa-Ider et al.
2021), and the increase in efficiency with increased eccentricity (Guo et al. 2021).
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