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Abstract

The Open Tree of Life (OToL) project produces a supertree that
summarizes phylogenetic knowledge from tree estimates published in the
primary literature. The supetree construction algorithm iteratively calls
Aho’s BUILD algorithm thousands of times in order to assess the compata-
bility of different phylogenetic groupings. We describe an incrementalized
version of the BUILD algorithm that is able to share work between suc-
cessive calls to BuiLD. We provide details that allow a programmer to
implement the incremental algorithm BUILDINC, including pseudo-code
and a description of data structures. We assess the effect of BUILDINC on
our supertree algorithm by analyzing simulated data and by analyzing a
supertree problem taken from the OToL 13.4 synthesis tree. We find that
BuiLDINC provides up to 550-fold speedup for our supertree algorithm.

Introduction

The Open Tree of Life (OToL) project summarizes phylogenetic knowledge from
tree estimates published in the primary literature. Curators for the project
import published trees, associate the tip labels of the trees to standardized
taxonomic labels, and correct errors in trees that occurred during the deposition
of the trees into repositories. OToL also produces a synthesis tree [Hinchliff
et al., 2015 that combines hundreds of input phylogenies with a comprehensive
taxonomic tree from the Open Tree Taxonomy |Rees and Cranston), 2017, OTT
hereafter|. This “synthetic tree” is a supertree — a tree that is produced by



combining multiple input trees, and having a leaf label-set that is the union of
the leaf label-sets of the input trees [Gordon, [1986].

Our supertree method is intended to summarize and transparently repre-
sent the published input trees, not to produce a phylogeny estimate that is
more accurate than the inputs [Redelings and Holder, 2017]. Each edge of the
supertree corresponds to a supporting branch in one of the input trees. The
synthetic tree can be used as a comprehensive phylogeny of living and extinct
taxa. It can also be used as a means of navigating the OToL. curated collection
of published input trees, and of exploring conflict between them. The OToL
portal at https://tree.opentreeoflife.org allows browsing or downloading
the latest release of the synthetic tree. It also allows for uploading and curating
input phylogenies.

The OToL synthetic tree is created by an algorithm that will add a grouping
from an input tree to the full tree if that grouping is compatible with the pre-
viously added groups. More specifically, the supertree algorithm iterates over
branches of input phylogenies to determine if the groups subtending each inter-
nal branch can be added to the synthesis tree |[Redelings and Holder} 2017]. The
order in which input phylogenies are considered is an input to the algorithm,
and this order is provided by data curators for the OToL project. The taxonomy
tree is always the last phylogeny to be considered.

The current implementation of the supertree algorithm is fast enough to
allow the full supertree to be updated periodically. A faster implementation
would allow users to explore the effects of differing inputs, such as a different
set of phylogenies or a different ranking of trees. This would enable constructing
alternative synthetic trees on demand via the web-interface for a variety of users.

The core algorithm for determining compatibility of each potential grouping
with previously added groups is the classic BUILD [Aho et al.| [1981] algorithm.
BUILD is invoked thousands of times during the construction of the supertree
using OToL’s pipeline |Redelings and Holder} |2017]. Each invocation applies
BUILD to the set of all previously added groups (which are already known to
be consistent) plus one new group. Here we describe improvements to naively
calling BUILD iteratively. Implementing the incrementalized BUILDINC algo-
rithm has resulted in dramatic reductions in running times for the key steps in
the supertree pipeline. This new algorithm will allow the OToL project to offer
more frequent updates to the synthetic tree and explore features such as on-
demand supertree construction under the direct control of users of the project’s
web-services.

While we focus on the use of BUILD within the OToL project, BUILD is
an ingredient that is used in a wide range of algorithms, such as computing a
consensus of equally likely trees [Sanderson et al., 2011], inferring species trees
from gene trees [Roch and Warnow, 2015|, determining orthology and paralogy
relations between genes in a gene family |Lafond and El-Mabrouk, [2014], and
hierarchical clustering [Chatziafratis et al., [2018]. In order to determine what
opportunities are opened up by an incrementalized version of BUILD, researchers
must examine each algorithm that uses BUILD. However, we highlight two
possiblities. First, an incrementalized BUILD might be used to construct an
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“online” version of an existing algorithm — that is, an algorithm in which input
is added in batches and that produces a complete result after each batch. A
batch could represent a new data point, or it could represent the next gene in a
genome-wide scan. Second, an incrementalized BUILD might aid in discovering
a compatible subset of trees or bi-partitions instead of merely declaring failure
when a given set is incompatible. Thus, an incrementalized version of BUILD
has implications beyond the OToL project.

Context for Build in the current OToL pipeline

The current pipeline divides the full supertree problem into subproblems as
described in [Redelings and Holder| |2017]. These subproblems cover regions of
the taxonomy tree in such a way that adjacent sub-problems contain common
nodes (higher taxa) but do not contain common edges. Each subproblem also
contains the relevant region of any input tree that coincides with the region
of the taxonomy tree. Repeated calls to BUILD produce a supertree solution
to each subproblem. Solving the subproblems is a time-consuming step for
the entire pipeline. Increasing the speed of the subproblem-solver would speed
up the pipeline, but would also allow it to handle larger subproblems. Larger
subproblems occur when OToL curators add more input phylogenies to the
pipeline and this large set of inputs conflict with more groupings found in the
taxonomy. Larger subproblems also occur when the final location of an incertae
sedis taxon is far from its initial location in the taxonomy [see |Redelings and
Holder} |2019, for a discussion of the handling of incertae sedis taxa]. The
increased speed might eliminate the need for decomposing the supertree problem
into subproblems.

Methods

We will begin the methods description with a review of the BUILD algorithm
and the description of the new optimizations to the algorithm that are the focus
of this paper. After the algorithmic discussion, the simulation study to evaluate
performance will be explained.

Overview of the Build algorithm

The BUILD algorithm is a recursive algorithm that determines if a set of rooted
triplets of the form xz,y| e z are jointly compatible [Aho et all [1981]. Here, we
use the symbol e to stand for the root of the tree to emphasize the rooting of the
triple. If they are compatible it constructs a tree that displays all the triplets.

The algorithm works by creating a graph for each recursive level. If the
graph forms a single connected component, then the BUILD algorithm has de-
tected an incompatibility between the set of triplets. The graph contains a node
corresponding to each leaf that is relevant to the current recursion level. At the
root-most level of the recursion every leaf is relevant. A rooted triple is relevant



to a recursion level only if each of the three leaves is relevant at that level.
For each relevant triple z,y| @ z an edge is added between x and y. Since the
leaves in the more closely related pair {z,y} are sometimes called the “cluster”
of the triple, the resulting graph is called the “cluster graph” for the given set
of triplets.

If no triplets are incompatible on a level, then the procedure applies BUILD
to each connected component of the cluster graph. This is the recursive aspect
of the algorithm. The nodes that form a connected component at one level will
constitute the relevant nodes for the next recursive call. Thus the relevant leaf
set is partitioned at each level. However, the edges between nodes are not passed
to the next recursive level. Instead they are constructed from the set of relevant
triplets at each level. A rooted triple that is relevant at one level may not be
relevant at a subsequent recursion level. Thus, not all rooted triplets have a
corresponding edge at the next level. A set of triplets is jointly compatible only
if the BUILD algorithm finds no incompatibility at any recursive level.

Rooted Splits

The BUILD algorithm was originally designed to work on sets of rooted triplets.
However, when working with evolutionary trees, it is more convenient to work
with sets of rooted splits because each branch corresponds to a rooted split.
A rooted split o on taxon set T is written o = 01| ® 03, where o and oy are
non-overlapping subsets of 7. We refer to o1 as the include group or “cluster”,
and o9 as the exclude group. The root of the tree is on the side of the exclude
group. Note that o1 U gs may be smaller than 7.

It is straightforward to extend BUILD to operate on a set of rooted splits by
treating each rooted split as shorthand for all the rooted triplets that it implies.
So BUILD is commonly modified to take a set of rooted splits ¥ instead of a set
of rooted triplets.

The relationship of the current optimizations to previous
work

Previous approaches to speed up BUILD have tried to improve the order of
computation for the analysis at each recursive level. [Deng and Fernandez-Bacal
[2018] decreased the order to O(M log® M) for a set of phylogenies with M =
(number of edges) + (number of leaves). This is accomplished by decreasing
the time for the analysis on each recursive level from O(M?) to O(log> M). It
also involves sharing work between different levels of the recursive algorithm by
retaining a graph between successive levels instead of creating a new graph from
scratch on each level.

Our approach differs from previous work because we attempt to share work
between successive calls to BUILD. When calling BUILD with one set of splits
followed by calling BUILD again with one additional split, we seek to reuse work
from the first call while performing the second. This requires saving work from
the first call in an object that represents the solution to BUILD, and passing



A Solution object S contains the following fields:
S.T: an array of taxon identifiers relevant to the solution level.

S.C: an array of Component objects - one for each non-trivial connected
component of the relevant taxa for this level of BUILD.

S.M: an array that maps a leaf index to the component that it is assigned to.

S.I: an array of “implied splits”. These are splits o where o2 does not
intersect S.T.

A Component object C contains the following fields:

C.T: a linked list of taxon identifiers for every taxon assigned to this compo-
nent.

C.AX: an array of splits relevant to the component.

C.S: either NULL (if no solution is possible) or a Solution object for the
component.

C.0: an array of pointers to original Solution objects subsumed by this
component.

Figure 1: Definitions for the Solution and Component record types. The field
C.0 is not used by non-incremental BUILD.

that solution object as input to the second call. We do not attempt to decrease
the order of the computation as a function of the number of leaves or edges.
Instead we base our incremental approach on a naive algorithm that has total
cost O(M?3). Tt may be possible to create an algorithm that is both incremental
and has a more favorable order of computation for large M, but we do not
attempt that here.

Data structures used to explain implementations of Build

In order to explain our incremental BUILD algorithm in an understandable man-

ner, we seek to introduce the full complexity of the algorithm in stagesﬂ We

thus begin by describing a version of the traditional BUILD algorithm that saves
its work in a solution data structure. This will allow us to focus on changes
to the algorithm instead of changes to the data structures when we introduce
the first incremental version of the algorithm at a later stage. Our version of

1One might even say “incrementally”.




the BUILD algorithm constructs the connected components of the cluster graph
without explicitly constructing the cluster graph. That is, our algorithm does
not directly represent the edges of the cluster graph in memory.

We begin by introducing the Solution and Component record types that we
will use to store temporary work during the algorithm. Using the terminology
common to object-oriented programming, we will refer to an instance of these
record types residing in a computer’s memory as an “object.” The following
sections will describe the distinct steps in BUILD using some common program-
ming notational conventions: (1) parentheses after the name of an algorithm
denote the arguments supplied to that algorithm and (2) the period (or “dot”)
notation after the name of a data object is used to refer to a field within that
record.

An initial Solution object can be created before applying the BUILD algo-
rithm. Upon termination, the result of the algorithm will be emitted by storing
it in that Solution object. As mentioned above in the overview of the algo-
rithm, each level of BUILD’s recursion starts with a set of taxa and a set of
relevant splits. Connected components of taxa are created and merged as each
input split is considered. In our object-oriented description of the algorithm,
this corresponds to creation of a Solution object for the current level of recur-
sion. That Solution object will hold a set of Component objects — each of which
will store information about the connected components created during the algo-
rithm. Each Component represents a sub-problem that needs to be solved. If no
incompatibility is detected at the current level, then the algorithm recursively
calls BUILD to create a Solution object for each Component.

Thus the Solution object forms a tree by indirect recursion to mirror the re-
cursive structure of BUILD: each Solution object can contain some Component
objects, and each Component object contains a Solution object (see Section
B.1). We refer to the tree associated with a Solution object as a “solution
data structure”.

The Solution and Component objects for a level of Build

The definition of the Solution and Component record types is given in Figure
Creating a new Solution object is done with a procedure referred to as
CREATEBLANKSOLUTION(T'), where T is a collection of taxon identifiers. A
new solution object, S, has only its S.T field initialized; That field holds a copy
of the taxon identifiers; thus initialization has computational complexity O(|T).

Defining the Build algorithm

To start the algorithm, an initial Solution object can be created and initialized
by filling its S.T field with the complete taxon set, 7. All other fields of the
solution object are initially empty. We can think of the entire BUILD algorithm
as taking a taxon set T" and set of rooted splits, . The full BUILD algorithm
consists of the following steps:



1. initialize a Solution object, S to contain the taxon set T. We will refer
to this set of operation as a function: CREATEBLANKSOLUTION(T);

2. call a helper algorithm BUILDA(S, ¥); and
3. return the result stored in object S.

The BUILDA algorithm describes the set of operations to be performed at a
single level of recursion as well as how to call the next levels of recursion.

Dissecting the operations required at each level of BuildA
The operations performed in BUILDA(S, ¥) can be separated in several steps:

1. REMOVEIRRELEVANTSPLITS(S, X) to remove splits from ¥ that are not
relevant at the current level. Splits that are removed here as irrelevant are
also implied by the split S.T| @ (7 — S.T) and are recorded on the solution
in field S.I.

2. MERGECOMPONENTS(S, X) to find the connected components of the clus-
ter graph by merging any two components that overlap the include group
(“cluster”) of a split in 3.

3. FAIL(S). Return FAILURE if there is only one connected component.

4. AssIGNSPLITSTOCOMPONENTS(S, ¥) to the single component on the
next recursive level where they may be relevant.

5. Iterate. For each non-trivial component C €S.C:

(a) use CREATEBLANKSOLUTION(C.T) to create a new solution object
for each Component object and store this in C.S.

(b) Recurse. Call BUILDA(C.S, C.AX) on the sub-problem for each non-
trivial component C, Return FAILURE if that call fails.

The REMOVEIRRELEVANTSPLITS, MERGECOMPONENTS, and ASSIGNSPLIT-
STOCOMPONENTS steps all have the form of a for-loop that iterates over splits
in ¥ and modifies S. This fact will be used later, when we seek to incrementalize
these steps. It suggests a naive incrementalization strategy of simply iterating
over any newly added splits AY, to add their effects to S.

The RemovelrrelevantSplits(S, ) step

We assume that each split in ¥ has an include group fully contained in S.T. This
means that a split is relevant at this recursive level if and only if its exclude set
intersects the relevant taxon set (S.T).

This procedure examines each split ¢ in . If ¢ is not relevant, then o is
added to the collection S.I of implied splits and removed from ¥. Splits removed
in this step were relevant at previous recursion levels, but are irrelevant for the



solution at or below the recursive level S because they do not separate any
taxa in S.T from other taxa in S.T. Determining which splits to remove has
computational complexity O(V x E) where V = |T| and E = |X|.

Although this is not central to the operation of the algorithm, we note the
splits in S.I are implied by the branch of the solution tree leading to S. Thus
the solution tree implies all the splits in ¥, and split ¢ is recorded on the branch
that implies it.

It is not necessary to perform this step at the root level of the recursion, as
all tips are inside of T for that solution object.

The MergeComponents(S, X) step

The MERGECOMPONENTS step partitions taxa according to which connected
component of the cluster graph they are in. This step can also be thought of
as partitioning taxa in T according to an equivalence relation, where taxa are
equivalent if they are in the same connected component of the cluster graph.
Note in this version of BUILD we construct the connected components of the
cluster graph without constructing the graph.

To perform the partitioning, we begin by assigning each taxon ¢t € T to its
own connected component {¢}. This corresponds to a graph with no edges. We
then consider each split o € ¥ and merge any components that overlap ¢; into
a single connected component. This is equivalent to adding edges to the cluster
graph connecting all taxa in oy.

Our implementation represents the components as two related maps between
components and elements: (1) the linked list of taxon identifiers included in each
component (the C.T field of the component C), and (2) the array that maps each
taxon to its component (stored in S.M).

Detecting mergers requires considering every taxon in every include group,
and has order O(|X| x |T|). There can be at most |T'| mergers. The cost of
merging linked lists is just O(|T'|) since merging linked lists is an O(1) operation.
Unfortunately, when we merge two components C; and Cy where Cy is smaller,
we must also rewrite the array entry for taxa in Co. The cost per taxon is
the number of times that taxon is part of a merger where it is in the smaller
component. Since this can happen up to log, |T'| times per taxon in the worst
casd?] the cost is |T'|log|T]|. The total cost is thus O(|X| x |T'| + |T|log |T|). If
we define M = |X| + |T| following Deng and Fernandez-Bacal [2018], then this
is O(M? + M log M) = O(M?).

The Fail(S) step

FAIL can be done in O(1) by having an array S.C of active non-trivial compo-
nents, and checking the size of that array. If the size is 1, and the taxon set for
the single component has the same size as S.T, then the operation fails.

2The worst case is when you have a perfectly balanced merger tree for the components.



The AssignSplitsToComponents(S, X) step

For each split 0 € ¥ we have a guarantee that all the taxa in o; are in the
same component by definition of the cluster graph. We refer to the component
that contains the include group of ¢ as its “corresponding component”. We can
determine the corresponding component of any split o by simply looking up the
component for the first element of o1 in S.M. We implement the assignment of a
split o to a component C by placing a reference to o into C.AX.

Simple optimization: Trivial and non-trivial components

In a solution object S, we store an array S.M of pointers to components. We also
implement S.T as an array, so that if ¢ = T'[¢] then taxon ¢ belongs to component
S.M[i].

Trivial components are defined as components that contain only one taxon.
An optimization to improve memory usage and speed is to simply use a NULL
reference in the S.M array to indicate that the corresponding taxon is in a trivial
component, rather than creating a Component object for every trivial compo-
nent. This requires only minor tweaks to the MERGECOMPONENTS step to cre-
ate a new Component object on-the-fly whenever a set of trivial components are
merged into each other with no non-trivial component involved in the merger.

Example #1: Creating a Solution

Consider calling BUILD(T, X) with taxa T = {A1, A3, B} and splits ¥ = {A; Ao|e
B}. This creates a solution data structure shown in Figure BuUILD begins
by creating a Solution object S; where S;.T = [A;1, Ao, B] and then calling
BUILDA(Sy, X).

BUILDA creates a single non-trivial component C; containing {A;, A2} and
a single trivial component containing B. BUILDA does not fail, because there
is more than one component. The single split A; Ay| @ B is assigned to Cj.
BUILDA then creates a new solution C;.S where C;.S.T = [A1, A5] and then calls
BUILDA(C; .S, C1.AX).

The second-level BUILDA removes the split A; As| e B from C;.AY. and adds
it to C1.S.I. It then calls MERGECOMPONENTS, FAIL, and ASSIGNSPLITSTO-
COMPONENTS with no effects. No non-trivial components are created, and the
call to BUILDA succeeds because it contains the trivial components {A;} and
{Az}. Since there are no non-trivial components, another round of recursion is
not performed.

Stepwise construction of BuildInc

The goal of the incrementalized algorithm is to reuse previous work from com-
puting BUILD(7,X) when computing BUiLD(7,% + AX). The incremental-
ized algorithm has the signature BUILDINC(S, AY). Although the taxon set T
and the previously added splits ¥ are not explicitly present in the signature of
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Figure  2: The Solution object S; returned by calling

BUILD([A;, A3, B], {A1A2| @ B}). Solution objects have rounded edges
and a pink border. Component objects have rectangular edges and a blue
border. The temporary values C;.AY and C;.0 are shown with the values they
contain before being cleared. Solid arrows indicate pointers. Dashed arrows
show the correspondence between Solution objects and nodes on the solution
tree.

BuiLDINC, they are contained within S. S may also contain intermediate results
from a previous BUILDINC call, so that BUILDINC can reuse previous work. If
BUILDINC(S, AY) succeeds, then S is modified in-place to contain the new splits
AY in addition to X. However, if BUILDINC fails, then S is unmodified.

In order to simplify the description of the incrementalized algorithm BuILD-
INC, we first introduce two partially-incrementalized algorithms BUILDINC' and
BuiLDINC”. This allows us to simplify the explanation of BUILDINC by intro-
ducing concepts in a step-wise fashion. The BUILDINC’ and BUILDINC” algo-
rithms both mutate the solution object even when the algorithm returns FALSE.
The fully incrementalized algorithm BUILDINC adds the ability to track changes
that are made to the solution object, and then roll them back if the algorithm
ultimately returns FALSE. We now describe key difference in the steps of the
first incrementalized algorithm BUILDINC'. We will use the ’ and " symbols to
decorate the names of algorithms based on whether they are used in BuiLbINC'
or BuiLpINc”.

The incrementalized algorithm allows adding input splits either one-at-a-
time, or in larger batches. We assume that the input splits have been partitioned
into a series of non-overlapping subsets AY; according to some strategy that
is chosen in advance. Each subset constitutes a batch. The simplest strategy
is to set AX; = {o;} for some split o;, so that splits are added one-at-a-time.
However, it is possible to incorporate input splits into the solution object in
larger batches, and we explore this option in the Results section below.
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Given a partition of the input splits, the general structure for all of the
incrementalized algorithms is:

1. initialize a Solution object, S, to contain the taxon set 7. We will refer
to this set of operation as a function: CREATEBLANKSOLUTION(T);

2. BUILDINCAC(S, )
3. for each subset AY;
(a) call BUILDINCA(S, AY;)
4. return the result stored in object S.

In the descriptions that follow, ¥ will be used to denote the set of splits that
have been added in previous increments of BUILDINC' without failing. Thus,
3 + AY would be the set of splits included if the current round of BUILDINC’
succeeds, and AY is the set of splits that are new to the current increment of
BuiLpINC'.

BuildIncA’(S, AY): RemovelrrelevantSplits'(S, AY) step

This is identical to REMOVEIRRELEVANTSPLITS except that (for reasons de-
scribed below) S.I may already contain some splits before this step begins.

BuildIncA’: MergeComponents'(S, AY) step

We seek to construct the connected components of the cluster graph for the splits
3(8) 4+ AX from the connected components for ¥(S). We will refer to connected
components under the cluster graph for ¥(S) as “original” components. The
addition of the splits AY may add edges to the cluster graph, but it cannot
remove any. Therefore, the addition of AY may merge original components,
but it cannot split them. In order to compute the new connected components,
we simply need to iterate over splits in AY and continue merging components.

Characterizing how the components for > 4+ AY are related to any original
components is central to our approach. The non-trivial components for X4+ AX
can be characterized as new, modified, or unmodified.

e new (a component composed entirely of previously-trivial components)
e unmodified (a non-trivial component present in the original S.C)

e modified (a non-trivial component that contains at least one original non-
trivial component,)

If S is initially empty, then all non-trivial components will be new. If S is
not initially empty, then all three types of non-trivial components can occur.
If an original component C’' is a subset of a component C, then we say that
C' is subsumed by C. We now describe how these three classes of non-trivial
components retain original solutions.

11



A new (non-trivial) component C will have an empty solution C.S. There is
no original solution to retain, since all its subsumed components are trivial.

For unmodified (non-trivial) components, we retain the single original Solution
object in the field C.S. We will modify the retained solution if any splits from
AY. are assigned to C.

Modified (non-trivial) components have a taxonomic set C.T that was not a
connected component in the previous iteration of BUILDINCA’. However, the
Component object does not need to be created de novo; instead, we repurpose
the Component object from one of the subsumed non-trivial components to rep-
resent the new, larger equivalence class. The previous solution in C.S is not the
solution for the enlarged taxon set. However, we retain all the solutions for all
subsumed non-trivial components in an additional field for in the component
data structure, C.0.

BuildIncA’: AssignSplitsToComponents'(S, AY) step

Splits in AY must be assigned to their corresponding components by placing
them in C.AX, just as in BUILDINCA. However, splits in ¥ are treated differently
depending on which original component they were previously assigned to.

Splits from 3(8) that were assigned to an unmodified component C are still
associated with that component. This is because they were contained in C.S,
and it has been retained.

Splits from X(8) that were assigned to a modified component C are no longer
associated with C because C.S has been discarded. We therefore iterate over
original components C’ that were subsumed by C and append their splits to
C.AY (see Section [B.2).

New components cannot contain any splits from 3(S), so we do not need to
do anything extra for them.

BuildIncA’: recursive call to BuildIncA'step

We seek to construct a solution for each of the components C € S.C using
BuiLDINCA’. In all cases we do this by calling BUILDINCA’(C.S, C.AX) to
add splits in C.AXY to the solution C.S. For unmodified components, C.S is the
original solution for C, so previous work is re-used. Any corresponding splits
from AY are added to this original solution.

For modified components, C.S is a NULL reference indicating that no solution
has been calculated. We construct an empty Solution with taxa C.T. The set
C.AY. contains splits corresponding to C from both %(S) and AX. Therefore,
despite the existence of previous work in C.0, we do not manage to re-use any
of it.

For new components, C.S is also NULL. We also construct an empty Solution
with taxa C.T. The set C.AY contains only splits from AXY. There is no previous
work that could be re-used here.

12



Example #2: Adding a split to an unmodified component

When incrementally adding a split that resolves a node below the top level,
BUILDINCA passes the split down the tree until it reaches the level of the re-
solved node. At levels higher than the resolved node, the split is assigned to one
of the components, but does not modify it. At the resolved node, the split either
modifies components or causes the creation of a new non-trivial component.

To see this, let’s consider incrementally adding the split oo =ajaz| ® az to
a Solution object that contains o1 =ajagas| ® b (Fig. [3). Here the split oy
resolves a node in the original solution data structure.

Running BUILDINCA'(S1,{02}) leaves the only non-trivial Component C; at
the top level unchanged. o5 is AsSIGNed to C; and ends up in C;.AX.

This leads to a call to BUILDINCA'(S3, {02}). o2 is not removed, so S3.I is
unchanged. However, oy leads to the creation of a new non-trivial component
Cy in MERGE. o9 is ASSIGNed to Co and ends up in Co.X.

Finally, we get a call to BUILDINCA'(S3,{o3}). Here o5 is finally removed,
and placed into S3.I. No non-trivial components are created, so we are done.

Example #3: Merging two components

When incrementally adding a split that groups two children of a node in the
solution tree, the components that correspond to the grouped children tend to
re-emerge at a lower level. However, BUILDINCA'is not able to recognize this,
and so must solve each of these re-emergent components from scratch.

To see this, let’s consider incrementally adding the split ;b |ec to a Solution
object that contains ajas| ® by and b1bs| e ¢ (Fig. [4)). The new split merges the
original components C; (containing and {A;, A2}) and Cs (containing { By, Ba}).
The new component {A;, As, By, Ba} is then stored in the modified Component
object for Cj.

BuUILDINCAhandles merged components by extracting the splits from sub-
sumed solutions. Therefore, C;.AY. contains all three splits, and not just the
incrementally added split. We can see that the original component {A;, A3}
re-emerges at a lower level as C3. However, BUILDINCA'solves it from scratch.
The component {Bjy, By} does not re-emerge at a lower level. This is because
the split b1bo| @ ¢ can be satisfied on the same level, and is not passed down.

The partially incrementalized algorithm BuildInc”

The BUILDINC' algorithm can only reuse work for unmodified components; mod-
ified components must be recomputed from scratch. Figuring out how to re-use
previous work for modified components was one of the most difficult steps in
designing BUILDINC. The key insight is that a solution data structure can be
regarded as a collection of splits (see section . Thus, instead of extracting
the splits from original solutions that were subsumed by a modified component,
we may simply pass down the original solutions themselves.
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Figure 3: Adding a split to an unmodified component. Top: the result of
adding the split A; A3 As| @ B. Bottom: the result of incrementally adding the
split A1 As| e As, starting with the top Solution.
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Figure 4: Merging two components. (a) The initial solution contains the splits
A1As|e By and By Bs|eC. In both (b) and (c), when A; B1|eC is incrementally
added, the original components C; and C, are merged and stored in the modified
Component object for C;.The original component {A4;, A2} re-emerges at a lower
level as C3. (b) In BUILDINCA’, C;.AY contains all three splits, and not just
the incrementally added split. The re-emergent component {4, Ao} is solved
from scratch. (c¢) In BUILDINCA”, C;.AX contains only the new split A; Bo|eC'.
The original solution S3 is punctured, and its split By Bs| e C is added to S4.I.
However, the original solution S for {A;, A} is passed down to C3 and can be
re-used, saving work.
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Performing operations such as MERGECOMPONENTS, ASSIGNSPLITSTOCOM-
PONENTS, and REMOVEIRRELEVANTSPLITS turns out to be more efficient when
the input splits are packaged in original solutions. These operations frequently
do not break apart the collections of splits.

Most importantly, passing down original solutions can sometimes allow us
to reuse solutions instead of recomputing them from scratch. When an original
component C’ is subsumed by merging, it may sometimes re-emerge deeper in
the recursion stack as a descendant of the merged component. If the original
solution S manages to percolate down the tree to the new location of C’ then
we can re-use S. However, if any of the splits in X(8) is satisfied at an earlier
recursion level, then S must be broken up and cannot be re-used. This will be
described in further detail below and illustrated in Example #4.

We therefore modify the signature of BUILDINCA’(S, AY) to BUILDINCA” (S,
AY, 0), where 0 is a set of original solutions. The call BUILDINCA” (S, AX, 0)
indicates an attempt to add both splits in AY and splits in 0 to the splits in S.
We will write £(0) to indicate the splits contained in 0, where

s’co

These original solutions in 0 satisfy three properties that we will prove in
Appendix [Al

1. If 0 is non-empty, then S contains no splits.
2. Each original solution in 0 has a taxon set that is a subset of S.T.

3. All the original solutions in 0 have non-overlapping taxon sets.

BuildIncA”: MergeComponents”’ (S, AY, 0) step

We seek to construct the connected components of the cluster graph for the
splits 3(S) U AX U X(0) from the connected components for ¥(8). In addition
to iterating over AY. and merging components, BUILDINCA” must additionally
handle splits in ¥(0). One possible approach would be to iterate over splits in
¥(0) and merge components that overlap each split. However, it turns out that
there is a more efficient way.

We note that each original solution S’ € 0 is a connected component of the
original cluster graph for some higher recursive level. Additionally, the taxa in
S'.T are connected solely by edges corresponding to splits in X(S’) (see Section
. This is because any split whose include group overlaps the component is
assigned to (and only relevant to) that component. Therefore, the effect of the
splits 3(S’) is only to connect the taxa in S'.T. We may therefore iterate over
original solutions S’ € 0 and merge any two components that both overlap S'.T.
This makes it unnecessary to extract the splits o €8’.

16



BuildIncA”: AssignSplitsToComponents’ (S, AY, 0) step

BUILDINCA” needs to assign splits in X(8), AX, and X(0) to their corresponding
components. FEach split in AY. is assigned to a component C and stored in C.AY,
just as as in BUILDA and BUILDINCA'. However, there are two major differences
from BUILDINCA'.

First, BUILDINCA"” does not need to do anything for splits in 3(S), because
they are already assigned to their correct component. BUILDINCA'needed to
extract splits from C.0 and add them to AY if C was a merged component.
However, BUILDINCA” passes C.0 down to the next recursive level directly, so
this is unnecessary. Note that since BUILDINCA” no longer assigns splits from
%(8) to C.AXY, C.AX will consist only of splits from AX.

Second, BUILDINCA” must assign splits in ¥(0) that were recieved from the
previous recursive level to their corresponding component. However, all splits
for a subsolution S’ € 0 have to end up in the same component. This is because
S’.T must be entirely contained in one component. The splits of 8’ must then be
in the same component. Therefore, we may simply assign original solutions S’
to components in their entirety. We can determine which component a solution
S’ goes to by looking up the component for any element in 8'.T.

BuildIncA”: recursive call to BuildIncA”

As before, BUILDINCA” (S, AXY, 0) must iterate over the non-trivial components
C € 8.C and construct a solution C.S for each of them. In all cases this is done by
calling BUulLDINCA”(C.S, C.AY, C.0). Passing original solutions from modified
components down the tree in C.0 allows us to reuse previous work, as described
in the section on REMOVEIRRELEVANTSPLITS” below. The only difference from
BUILDINCA'is the third argument, the set of original solutions, 0.

BuildIncA”: RemovelrrelevantSplits”(S, AX, 0) step

There are two differences between BUILDINCA'(S, AY) and BUILDINCA”(S,
AY, 0). First, 0 might contain a solution S’ to the problem we are trying to
solve. In that case, we would like to reuse that solution. Second, when checking
for implied splits, we need to check inside each original solution S’ € 0 as well
as inside AY.. We now discuss these differences in greater detail.

Reusing previous work in BuildIncA” (S, AX, 0)

Suppose that 0 contains a solution S’ with the same taxon set as S. In that case,
we would like to re-use the previous work in S’ instead of solving the problem
from scratch.

We first note that X(8) must be empty, since 0 was non-empty, so it is safe
to discard S and use S’ instead. Second, 0 is empty after removing 8'. This is
because 8’ contains all the taxa in S.T and there are no remaining taxa in S.T
for any other solutions to contain.
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We therefore replace the call to BUILDINCA” (S, AY, 0) with BUILDINCA” (S, AX, ().
This preserves the invariant that S and 0 cannot both be non-empty.

Removing implied splits from original solutions

Recall that a split o should be placed into S.I if and only if 02 does not intersect
S.T. For an original solution 8’ € 0, we claim that only splits in S'.I can satisfy
this condition. If a split ¢ from 8’ is not in §’.I, then o, must intersect S'.T.
But S'.T is a subset of S.T, so o intersects S.T as well and cannot go into S.I.
Therefore, for each original solution 8’, we only need to check the splits in S'.1.

If any split in S’.I meets the criterion, then we remove it from 8'.I (con-
ceptually) and move it to S.I. However, if one of the splits is removed from a
solution, then the solution no longer has the property that its splits are all in
the same connected component. It is no longer a solution. In such a case, we
say that the solution is “punctured”.

In order to retain our invariants, we remove punctured solutions from 0.
However, we must retain the splits that they contain. For each punctured
original solution S’, we copy the splits in S’.I that were not moved to S.I into
the set AYX. We move the child solutions §'.C;.S into 0. In this way, all the
splits of 8’ are retained — some in S.I, some in AY,, and some in 0.

Original solutions in 0 that are not punctured may be retained unmodified.

Note that replacing an original solution 8’ € 0 with its child solutions retains
the invariants that solutions in 0 (i) have non-overlapping taxon sets and (ii)
are contained within S.T. The taxon sets of child solutions to a solution 8’ are
contained within 8’.T and are non-overlapping. Since S'.T is contained within
S.T and does not overlap with any other solutions in 0, its child solutions must
also be contained within S.T and not overlap any other solutions in 0.

Example #4: Merging two components and re-using origi-
nal solutions

When incrementally adding a split that groups two children of a node, the
components that correspond to the grouped children tend to re-emerge at a
lower level. While BUILDINCA solves the solutions from scratch, BUILDINCA”
is able to re-use the original solutions to these components.

To see this, we show how BUILDINCA” solves the same problem that BUILDINCA'solved
in Example #3 (Fig. [4). Unlike BUILDINCA’, BUILDINCA” leads to C;.AX
containing only the single incrementally-added split A;B;| e C. Instead of ex-
tracting the splits A; A| @ By and By Bs| e C from the original solutions So and
S3, BUILDINCA” passes down the original solutions themselves.

The original component {47, A3} re-emerges at a lowever level, and is solved
by re-using the original solution Se. The other original solution Sz is punctured,
and its split By Ba| e A is added to S4.1.
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The fully incrementalized algorithm BuildInc

The BUILDINC' and BUILDINC” algorithms modify the original solution data
structure as they execute. When these algorithms discover that the additional
splits are incompatible with the previous solution, we cannot simply revert to
the previous solution, because it has been modified. We must therefore recreate
the previous solution data structure from scratch, discarding all of the saved
work.

We address this problem by extending BUILDINC” to record any change that
it makes to the original solution. We can then reverse these changes in the case
of failure. We call the extended algorithm BUILDINC. Much of the description
of BUILDINC thus boils down to (i) specifying just what information must be
recorded to reverse changes made by BUILDINCA” and (ii) some optimizations
that avoid spending time recording information that will never be used.

An overview of the Rollback approach

All modifications to each Solution object S are complete before any modifica-
tions are made to its children. We can therefore represent modifications to the
solution data structure as a sequence R of modifications to individual Solution
objects. If BUILDINCA returns failure at the top level, we can then walk this
sequence in reverse order, and roll back the changes that it describes. We create
the record type RollbackInfo to record modifications made to an individual
Solution object (Figure |).

Component mergers are the most interesting type of modifications that
BUILDINCA” makes to Solution objects. We can represent component mergers
for each Solution object as a sequence of individual mergers of two components.
For each component merger, we record enough information about the two origi-
nal components to reverse the merger. It is then possible to reverse the mergers
by walking the sequence in reverse order, and undoing each merger in turn. We
create the record type MergeRollbackInfo to record modifications made to an
individual Solution object (Figure [5)).

Mergers are of two types: mergers of two non-trivial components, or mergers
of a non-trivial component with a trivial component. We handle mergers of
two trivial components, by creating an empty “non-trivial component” data
structure, and merging it with each trivial component in turn.

Details of rollback info
The RollbackInfo record type

Changes that occur to S during BUILDINCA(S, AY) include (i) appending ad-
ditional implied splits to 8.I, (ii) modifying the component list S.C, and (iii)
merging components. We can therefore record the changes that occur to S in
terms of (i) the original set of implied splits S.I, (ii) the original list of compo-
nents S.C, and (iii) a sequence of records that describe individual merges of two
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A RollbackInfo object r contains the following fields:
r.S: a pointer to the Solution object that this rollback info is about.
r.n_old_implied_splits: the previous number of implied splits S.I.
r.merge rollback_info: the sequence of MergeRollbackInfo objects
r.n_orig_components: the original number of components

r.old_components: the array of pointers to components after merging but
before removing empty components.

A MergeRollbackInfo object m contains the following fields:
m.componentl = pointer to C;
m.component2 = pointer to Cy, or NULL if Cs is trivial.

m.component2_first = pointer to the first element of C5.T, or NULL if Cs is
trivial.

m.orig_solution = pointer to the original solution C;.S.

Figure 5: Definitions for the RollbackInfo and MergeRollbackInfo.
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components. We note that implied splits are only ever appended to the end of
S.I. Therefore, as an additional optimization we can simply record the original
length of S.I, and revert to the original version by truncating the array to that
length.

The MergeRollbackInfo record type

When merging two non-trivial components C; and Cs, let us assume that Cs is
the smaller component. The modifications that occur to Cy, Co, and S are the
following:

e S.M [t] is set to C; for each taxon ¢ €Cy.T.
e the elements of C.T are removed and appended to C;.T.
e C;.Sis set to NULL.

We can restore Cq.S from the saved reference. The pointer to the first element
of C,.T allows us to split the linked list C;.T in two at the proper place, and return
the latter half to C5.T. We can then walk the restored elements of C,.T and set
S.M[t] =C; for each ¢ €Ca.T.

Sometimes we merge a non-trivial component C with a trivial component
containing the taxon ¢. In such cases, there is no non-trivial component Co. We
indicate such cases in the RollbackInfo object by setting component2 = NULL.
Such mergers can be rolled back by removing the last element of C;.T, setting
S.M[t] = NULL and setting C;.S = orig_solution.

Optimizations

Recording and replaying rollback info allows us to avoid discarding saved work.
However, both recording and replaying rollback info also have a cost. In order
to achieve the optimum speedup from rollback info, we must avoid paying this
cost when we do not need to.

Optimization #1

We only need to undo changes to a Solution object if it was part of the previous
solution data structure. In order to determine if a Solution object S is part
of the previous solution data structure, we initialize a counter S.visits to 0
when creating a new Solution object. We then increment the counter each
time the Solution object is visited by BUILDINCA. We then avoid appending
the rollback info for S to the sequence of changes R if S.visits = 0.

Optimization #2

Sometimes an original Solution object contains only trivial components. In
such a case, we do not need to walk the list of merge records in reverse, undoing
each component merger. We can simply clear the component list, and set all
the entries of S.M to NULL.
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Optimization #3

If the number of original components is 0, then we will either not record the
rollback info r at all (optimization #1), or we will record r but not look at the
merge records (optimization #2). In that case, creating the sequence of merge
records is a waste of time. We therefore pass a flag to MERGECOMPONEN-
TWITHTRIVIAL and MERGECOMPONENTS indicating whether or not to record
merge records.

This optimization is essential because it avoids creating merge records for
cases where they will not be used. One of those cases is when implementing
BuiLD(X) by calling BUILDINCA(S, ¥) for a blank Solution S. In order for
BuiLDINC not to be slower than BUILD, we must avoid creating merge records
in this case.

Modifications to BuildIncA

In order to record rollback info, we must make a few modifications to BUILD-
INCA. In RemoveIrrelevantSplits, we record the original number of implied
splits. In MergeComponents we record (i) the original number of components,
(ii) a merge-record for each component merger, and (iii) a copy of C after new
components are added, but before empty components are removed.

Rollback(S,r)

After running BUILDINCA, BUILDINC must run ROLLBACKALL(S, R) in case of
failure. This consists of running ROLLBACKONE(S, r) on individual RollbackInfo
objects r.

1. Truncate S.I to its previous length r.n_orig implied_splits.

2. If r.n_orig_components is equal to 0, then clear S.C and set S.M[t] = NULL
for each taxon t.

3. If r.n_orig components is more than 0, walk the list of merge records in
reverse order, and undo each one.

4. If we recorded the original components vector Sy.C then

(a) swap(S.C, S¢.C).

(b) Truncate S.C to r.n_orig_components.

This process seems simple enough, but one aspect of it that is tricky. Some
components are created during merging that (i) are not original components,
and also (ii) end up being empty. So they are not final components. We need
these components to survive (i.e not be deallocated) so that we can temporarily
add elements to them during rollback. We will then move these elements out of
them into original components.
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Batching + Oracle
Batching

Recall that our supertree algorithm works by considering an ordered list of
trees. We seek to construct the set of splits from these trees that are jointly
compatible.

The batching approach works by batch-adding the splits for the each tree
in order. To batch-add a group of splits, we try and add the whole group of
splits. If that succeeds, then we keep the whole group. If it fails, and the group
has one split then we are done. If it fails, and the group has more than one
split, then we batch-add the first half of the group, followed by the second half
of the group. This ends up being both simpler and more efficient than trying
fixed-size batches because we do not need to figure out the ideal batch size and
it has exponential back-off.

Batching improves efficiency when 3 is large because the cost of determining
the compatibility of ¥+ AY does not increase much as the size of AY. increases.
If all the splits in AY. will be accepted, it is thus substantially more efficient to
add them in one batch.

Oracle

The oracle first runs conflict analysis on each input phylogeny T to identify
branches of T' that conflict with the tree of currently accepted splits. We then
batch-add splits corresponding to the non-conflicting branches of T'. This makes
batching more efficient by making it more likely that large batches do not contain
any conflicting splits.

Unfortunately, the oracle cannot filter splits for the taxonomy tree if there are
any incertae sedis taxa. This is because taxonomy branches may correspond to
partial splits in the presence of incertae sedis taxa. Our current conflict analysis
does not handle partial splits.

Simulation experiments

The simulations script (gen_subproblem.py) can be found in the otcetera repos-
itory on GitHub (https://github.com/OpenTree0fLife/otceteral). The user
of the script specifies: (a) a number of leaves in the full tree, (b) a number of
phylogenetic input trees to simulate, (¢) a tip inclusion probability for each phy-
logenetic input, (d) a number of edge-contract-refine (ECR) moves to conduct
on each input tree, and (e) an edge contraction probability for the taxonomy.
For each replicate, the script uses DendroPy [Sukumaran and Holder} 2010] to
generate a pure birth (Yule) tree with the specified number of leaves as the
true (model) full tree for that replicate. The specified number of phylogenetic
inputs are created by sub-sampling the full tree (using the tip-inclusion prob-
ability to assess whether a tip remains in the sampled input); if all tips are
deleted a new phylogenetic input is drawn, rather than emitting an empty tree.
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number of OTUs where each sample data set has 20 phylogenetic trees as inputs.

Then the specified number of ECR moves are applied to the tree to mimic
phylogenetic estimation noise. The last tree emitted for each replicate is de-
signed to mimic the taxonomic input in the problems used by the Open Tree of
Life project. The taxonomic input is complete (lacks any sub-sampling based
on taxon inclusion probabilities). In addition to having errors introduced by
ECR moves, the taxonomic input undergoes branch collapsing (using the user-
supplied edge-contraction probability on each internal edge independently) to
mimic the unresolved character of most taxonomies.

We simulated a collection of supertree problems containing 50-1000 taxa, all
with 20 phylo-inputs.

Each OTU was included in the phylogeny inputs with probability 0.5. Each
edge in the taxonomy was collapsed with probability 0.75. We introduced two
ECR errors per tree. For each simulation condition, we determined the run time
by averaging across 15 simulated data sets.
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batch oracle incremental rollback time

0 0 0 0 3323m
1 1 0 0 345m
0 0 1 0 527m
1 1 1 0 271m
0 0 1 1 5m 44s
1 1 1 1 2m 568

Table 1: Run times for handling the OToL 13.4 data set without subproblem
decomposition.

Results

We examined the effect of different optimizations by looking at their run time on
simulated data sets and one real data set. Run times are for an Intel i7-5820K
CPU with 32 Gb RAM running Linux.

Simulated data

We first examined the effect of the Batching and Oracle optimizations on sim-
ulated data sets as the number of taxa increased (Figure @ Batching yields a
speedup that increases from 1.6-fold at 50 taxa to 17-fold at 1000 taxa. Using
the oracle to eliminate inconsistent splits shows no speedup when not paired
with batching.

However, when combined with batching, the oracle yields an additional
speedup that increases from 1.3-fold at 50 taxa to 2.4-fold at 1000 taxa. This
indicates that the oracle allows larger batch sizes to succeed.

Given that our simulation protocol performs two ECR edits to each phy-
logeny, we expect about four splits to be inconsistent with the underlying tree
per phylo-input. Therefore larger trees have a smaller fraction of inconsistent
splits. That may explain why larger trees recieve a bigger speedup from batch-
ing.

Incrementalizing BUILD yields a larger speedup than the Oracle+Batch op-
timization (Figure[7). The speedup increases from 20-fold at 50 taxa to 398-fold
at 1000 taxa. This represents an additional 9.9-fold speedup over Batching +
Oracle at 1000 taxa. Much of this speedup relies on the abilty to save work via
rollback: the incremental algorithm achieves only a 116-fold speedup at 1000
taxa. Rollback ability thus provides a speedup of 3.4-fold for BUILDINC over
BuiLpInc”.

It is possible to combine the Batching and Oracle optimizations with BUILD-
INc. This is because BUILDINC allows AX to include a batch of splits instead
of just adding one split at a time. Adding Batching to BUILDINC yields a slight
speedup of 27% over BUILDINC alone at 1000 taxa. However adding Batching
+ Oracle yields a 2.1-fold slowdown.
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OpenTree data

We also examined a data set taken from the OToL synthesis release 13.4. As
mentioned above, the OToL project normally divides the full supertree problem
into subproblems after taxonomy-only taxa are removed |Redelings and Holder,
2017). Here we consider the effect of optimizations on running the full supertree
problem without dividing it. This is a much larger scale than the simulated
data sets, which are designed to be similar to a single subproblem.

The data set includes 1223 non-empty trees in addition to the taxonomy. The
taxonomy tree has 94,028 leaves. To give an idea of the size of the input trees,
the three largest input trees contain 11217, 8369, and 7160 leaves respectively.
All but 80 trees contain fewer than 331 leaves.

The total run time without optimization is 3323 minutes = 55 hours 23 min-
utes (Table . Batching + Oracle decreases the runtime to 345 minutes, which
is a 9.6-fold decrease. BUILDINC decreases the runtime further to 5 minutes
44s. This is a 60-fold speedup over Batching 4+ Oracle, and a 579-fold speedup
overall. Surprisingly, if we disable rollback, the runtime is 527 minutes, which
is even slower than Batching 4+ Oracle. This indicates that the OToL supertree
problem contains more conflicting splits than the simulated data set above.
Additionally, BuiLDINC + Batching + Oracle achieves an additional 1.95-fold
speedup over BUILDINC. This is different than in the simulations above, where
BuiLbINC + Batching 4+ Oracle was slower than BUiLDINC.

When using the naive BUILD algorithm, our supertree algorithm considers
a total of 183850 splits and calls BUILD 183850 times. Of these splits, 160682
are accepted. So, 87.4% of splits are accepted and 12.6% are rejected.

When the oracle is enabled, 162517 splits are considered. This lowers the
fraction of rejected splits to 1.1%. When using the Oracle + Batch optimiza-
tions, BUILD is called only 14481 times.

Figure [§| shows that some phylo-inputs take a lot more time than others.
Processing splits from the taxonomy tree takes a large fraction of the total time.
However, when graphed against the number of accepted splits, the relationship
is more linear, indicating that the effect of large trees is at least partly driven
by the fact that large trees have a large number of splits.

Discussion

We set out to improve the speed of our supertree algorithm that calls BUILD
many times in a row. By using an incremental algorithm that re-uses work from
previous calls to BUILD we were able to achieve a speedup of up to 579-fold in
practice.

Incrementalizing faster version of Build

Our current approach uses a naive approach to BUILD that achieves O(M?3)
time. Future research should consider whether it is possible to modify our in-
cremental algorithm to incorporate recent improvements to BUILD that decrease
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the order, such asDeng and Fernandez-Baca) [2018]. In fact, their algorithm re-
lies on another incremental algorithm — incremental graph connectivity — which
identifies new connected components that appear as edges are deleted or added
[Holm et al.,[2001]. One approach might therefore be to replace our map of taxa
to Component objects at each level with a graph that supports incremental con-
nectivity queries. This would involve incrementally adding any required edges
at each recursive level and identifying connected components that are merged.

One difficulty with this strategy is that we assume the data structures used
to find connected components on each recursive level are separate. In constrast,
Deng and Fernandez-Bacal [2018] construct a single graph at the beginning of
the algorithm, and then remove additional edges from the single, shared graph
at each recursive level. It might be possible to adapt this approach by saving
a copy of the relevant portion of the graph at each recursive level to preserve a
snapshot of previous work that is unmodified by work at deeper levels. However,
even if this is feasible, it is not yet clear how much this would change the running
time of the algorithm.
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A  Proof of Invariants

A.1 At least one of S or 0 is empty

When BUILDINCA” is first called, 0 has no splits, so the invariant holds.
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The REMOVEIRRELEVANTSPLITS step can alter S and 0 in two ways. First,
if 0 contains a solution S8’ with the same taxon set as S, then we can replace S
with 8’ and clear 0. Second, if one of the sub-solutions in 0 is punctured, we
remove it from 0 and add its child solutions to 0, but S remains empty. In both
of these cases, the invariant is preserved. Further steps inside BUILDINCA” do
not modify S or O.

When BUILDINCA” is recursively called on an unmodified component, 0
will be empty. When BUILDINCA” is called on a modified component or a new
component, S will be empty. So, this invariant is preserved in recursive calls to
BuiLDINCA”.

Therefore, since the invariant is initially true, and is preserved within BUILDINCA”
and at recursive calls, it holds by induction.

A.2 Original solutions in 0 have a taxon set inside S.T

0 is empty when BUILDINCA” is first called. When C.0 is initially filled by merg-
ing two components, all the original solutions in C.0 are for original components
that are subsets of the new component. Therefore, when calling BuiLbINCcA” (C.S,
C.AX, C.0), all the solutions in 0=C.0 will have a taxon set inside S.T.

When REMOVEIRRELEVANTSPLITS replaces a punctured solution with its
child solutions, the child solutions remain inside the taxon set of the current
problem, since they are contained within their parent taxon set, which was
inside the taxon set of the current problem. QED.

A.3 Original solutions in 0 have non-overlapping taxon
sets

0 is empty when BUILDINCA” is first called. When 0 is initially filled by merging
a component, all the solutions in 0 must have non-overlapping taxon sets, since
they are solutions for different equivalence classes on the same level.

When REMOVEIRRELEVANTSPLITS replaces a punctured solution by its child
solutions, it preserves this property, since the taxon sets of the child solutions
are non-overlapping, and are contained within the taxon set of their removed
parent. Thus the solutions in 0 will always have non-overlapping taxon sets.

B Properties of Solution s

B.1 Extracting the tree from a Solution

If the full BUILD algorithm succeeds, a tree can be extracted from the Solution
object. A Solution object S maps to a node n in the tree. The node’s children
consist of either (i) internal nodes (one for each component in S.C) or (ii) leaves
(one for each trivial component; i.e. taxon identifier for which S.M is a NULL
reference). The original Solution object created in BUILD corresponds to the
root of the tree.

30



B.2 Extracting the splits X from a Solution

Each Solution object S is created by performing BUILDA on a set of splits X.
If BUILDA(S, X)) succeeds, then after it is complete S will contain the splits X.
However, only the splits S.I are directly contained in S. The remaining splits of
¥ that are not stored in S.I are contained in the child solutions of S (and their
descendants).

We can recover the set of splits in S as follows:

»(S)=8s.1U ( U 2(0.5)>. (1)

ces.c

A solution is considered “empty” if it contains no splits. This can only happen
if both S.T and S.C are empty. It is possible for S.C to be empty while S.T is
non-empty, so both fields must be used.

B.3 The relationship between S.T and ¥(.5)

Additionally, if S is a solution to some component C, then the taxon set S.T is
determined by the splits 3(8):

sT= J o (2)

oeX(S)

Addionally the taxa in S.T form a connected component that is connected only
through edges corresponding to splits in X(S).

The only exception to equation is the top level Solution. The top
level taxon set is directly initialized by the user and does not correspond to a
component that was identified by running BUILDA, so there may be taxa in T
that are not mentioned in 3. These taxa will connect directly to the root since
they are not in the include group of any split. However, for Solution objects
below the top level, equation (2]) holds.
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