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Significance

Here, we identified diacylglycerol 
lipase- beta (DAGLβ) as a principal 
regulator of AMP- activated 
protein kinase (AMPK) activation 
in primary macrophages and 
in vivo. DAGLβ disruption 
enhanced membrane liver kinase 
B1 (LKB1) activity and 
subsequent AMPK activation to 
regulate the bioenergetic state of 
macrophages. Notably, AMPK 
inhibition reversed the 
antinociceptive phenotype of 
Daglb deficient mice, which could 
be explained in part by effects on 
hyper- excitability of dorsal root 
ganglion neurons. Our findings 
provide important mechanistic 
insights into crosstalk between 
endocannabinoid biosynthesis 
and bioenergetic regulation and 
support disruption of DAGLβ as a 
targeted approach for activating 
AMPK signaling to block 
inflammation and related pain.
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Diacylglycerol lipase- beta (DAGLβ) serves as a principal 2- arachidonoylglycerol 
(2- AG) biosynthetic enzyme regulating endocannabinoid and eicosanoid metabolism 
in immune cells including macrophages and dendritic cells. Genetic or pharmacological 
inactivation of DAGLβ ameliorates inflammation and hyper- nociception in preclinical 
models of pathogenic pain. These beneficial effects have been assigned principally to 
reductions in downstream proinflammatory lipid signaling, leaving alternative mecha-
nisms of regulation largely underexplored. Here, we apply quantitative chemical-  and 
phospho- proteomics to find that disruption of DAGLβ in primary macrophages leads to 
LKB1–AMPK signaling activation, resulting in reprogramming of the phosphoproteome 
and bioenergetics. Notably, AMPK inhibition reversed the antinociceptive effects of 
DAGLβ blockade, thereby directly supporting DAGLβ–AMPK crosstalk in vivo. Our 
findings uncover signaling between endocannabinoid biosynthetic enzymes and ancient 
energy- sensing kinases to mediate cell biological and pain responses.

endocannabinoids | diacylglycerol lipase | activity based protein profiling | AMPK | inflammation

Diacylglycerol lipase- beta (DAGLβ) and the functionally related DAGLα isoform represent 
key biosynthetic enzymes of the endocannabinoid, 2- arachidonoylglycerol (2- AG) and 
downstream metabolic product arachidonic acid (AA) (1–3). These transmembrane serine 
hydrolases regulate cell signaling by hydrolyzing diacylglycerol (DAG) lipid messengers 
including the 2- AG precursor and PKC agonist SAG (4, 5). DAGLα functions principally 
in central tissues (2, 3, 6–11) (e.g., brain and spinal cord) while DAGLβ activity is enriched 
in liver (2) and immune cells including macrophages (12), microglia (13), and dendritic 
cells (14). DAGLβ inactivation affects peripheral prostaglandins and inhibitors of this 
serine hydrolase have been likened to nonsteroidal antiinflammatory drugs (NSAIDs) in 
preclinical pain models, but without ulcerogenic effects (15). The prominent effects of 
DAGLβ inhibitors in neuropathic pain, however, suggest pharmacological mechanisms 
beyond AA- prostaglandin signaling alone (16, 17).

Emerging studies on the role of exercise and caloric restriction in pain modulation iden­
tified an intriguing connection between bioenergetics and endocannabinoids (18, 19). 
Regulation of energy homeostasis is mediated principally through sensing of low cellular 
ATP levels through an evolutionarily conserved system mediated by AMP- activated protein 
kinase (AMPK) (20, 21). AMPK can monitor energy availability and respond to changes in 
the ATP/ADP and ATP/AMP ratio through direct binding of adenine nucleotides (22, 23) 
and activation of its kinase activity (23–26). Once activated, AMPK reprograms cellular 
metabolism through regulation of the phosphoproteome toward decreased anabolism and 
increased catabolism (20, 21). Pharmacological activation of AMPK can produce therapeutic 
responses in the clinic. The antihyperglycemic drug metformin activates AMPK to regulate 
glucose metabolism for treatment of type 2 diabetes (27). The NSAID aspirin also acts as 
an AMPK activator to induce a pseudo- starved state of macrophages that suppresses inflam­
mation (28). Depending on the biological system, activation of the endocannabinoid system 
can stimulate (29–31) or inhibit AMPK (32). These disparate findings underscore the need 
for additional studies aimed at understanding AMPK- endocannabinoid crosstalk and regu­
lation in the context of pain signaling.

AMPK is a heterotrimeric complex that consists of a single α-  (catalytic), β-  (regulatory), 
and γ-  (regulatory) subunit (20, 21). In humans, multiple isoforms of each subunit are 
encoded by different genes: α- subunit (PRKAA1 and PRKAA2), β- subunit (PRKAB1 and 
PRKAB2), and γ- subunit (PRKAG1, PRKAG2, and PRKAG3). The γ- subunit binds AMP 
(and ADP to a lesser extent) to stimulate AMPK activity through a key phosphorylation 
on threonine 172 (T172) in the α- subunit that contains the kinase domain (22–26). The 
β- subunit allows AMPK to bind and respond to glycogen (33). AMPK T172 phospho­
rylation is mediated by the upstream kinases liver kinase B1 (24, 34) (LKB1, encoded by 
STK11) and calcium/calmodulin- dependent protein kinase 2 (35, 36) (CAMKK2). D
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Mutations in STK11 cause the autosomal dominant disorder 
Peutz- Jeghers syndrome and these patients are at high risk for 
developing tumors (37). Biochemical and genetic analyses demon­
strate that LKB1 mediates the bulk of AMPK activation in 
response to conditions of energy stress (38). The upstream regu­
latory mechanisms of LKB1 are poorly defined although recent 
studies have identified lipids as potential mediators (39).

Here, we identified DAGLβ as a principal regulator of LKB1–
AMPK activation in primary macrophages and in vivo. We dis­
covered crosstalk between endocannabinoid biosynthetic and 
AMPK pathways in primary macrophages using chemoproteomic 
and phosphoproteomic profiling. DAGLβ disruption enhanced 
membrane LKB1 activity and subsequent AMPK activation to 
regulate the bioenergetic state of macrophages. Notably, AMPK 
inhibition reverses the antinociceptive phenotype of DAGLβ KO 
mice, which could be explained in part by effects on hyper-  
excitability of dorsal root ganglion neurons. Collectively, our find­
ings describe blockade of endocannabinoid biosynthesis as a targeted 
AMPK activation mechanism in vivo.

Results

Kinome Profiling Reveals Enhanced LKB1 Activity in DAGLβ- 
Disrupted Macrophages. Genetic or pharmacological disruption 
of DAGLβ alters cellular levels of key signaling lipids including 
diacylglycerol (DAG), endocannabinoid (2- AG), and eicosanoid 
lipids (1, 2, 12). Each of these lipids can signal through cognate 
receptor proteins to position DAGLβ as a potential metabolic 
“hub” for regulating diverse cell biology (Fig. 1). While these prior 
studies focused on assigning DAGLβ as a key 2- AG biosynthetic 
enzyme, global analyses can reveal unanticipated regulatory 
mechanisms mediated by DAGLβ in cell biology. We selected 
primary macrophages as our model system because of the enriched 
activity and importance of DAGLβ in regulating innate immune 
responses (12–14).

We reasoned that a global assessment of changes in kinase func­
tional profiles in DAGLβ- disrupted systems may reveal crosstalk 
between lipid and protein signaling to further illuminate the cell 
biological functions of this key endocannabinoid biosynthetic 
enzyme. These functional proteomic studies are especially impor­
tant given that our transcriptomic analyses did not reveal overt 
changes in gene expression upon genetic disruption of DAGLβ in 
primary macrophages (SI Appendix, Fig. S1). To enable quantitative 

proteomics, we differentiated bone marrow- derived macro­
phages (BMDMs) in SILAC media to generate “light” and 
“heavy” BMDMs for our tandem liquid chromatography- mass 
spectrometry (LC- MS/MS) studies as previously reported (40). 
We performed lipopolysaccharide (LPS, 100 ng/mL, 16 h) stim­
ulations to confirm that SILAC light and heavy BMDMs 
showed comparable inflammatory responses as determined by 
elevated TNFα secretion. Genetic knockout (KO) of DAGLβ 
resulted in significantly reduced LPS- stimulated TNFα release 
from BMDMs, which matched previous reports in macrophages 
(12, 13) (SI Appendix, Fig. S2).

We utilized ATP acyl phosphate activity- based protein profiling 
(ABPP) to gain insights into signaling alterations in DAGLβ- disrupted 
BMDMs (SI Appendix, Fig. S3A). This class of activity- based 
probe facilitates covalent modification of conserved lysines in the 
ATP- binding pocket for assessing activity states of protein and 
lipid kinases (41–43) (SI Appendix, Fig. S3B). SILAC light and 
heavy BMDMs derived from DAGLβ wild- type (WT) and KO 
mice, respectively, were lysed, fractionated into soluble and mem­
brane proteomes, and treated with ATP acyl phosphates to label 
active- site lysines. Light and heavy proteomes were combined after 
probe labeling followed by digestion with trypsin protease, enrich­
ment of desthiobiotin- modified peptides by avidin- affinity chro­
matography, and LC- MS/MS analysis to quantify isotopically 
tagged active- site peptides of kinases. See SI Appendix for addi­
tional details of the LC- MS ABPP procedure including the quality 
control confidence criteria for evaluation of probe- modified 
peptides.

Using this approach, we quantified changes in probe binding 
on 170 kinases (>260 distinct modified K sites) in DAGLβ WT 
compared with KO BMDMs under basal and LPS- activated states 
(Fig. 2 A–C and SI Appendix, Fig. S4). The majority of probe- 
 modified sites quantified did not show substantial changes with 
DAGLβ disruption (median SILAC heavy (KO)/light (WT) ratio 
or SR ~0.7, Dataset S1). Strikingly, we observed a >10- fold 
enhancement in probe binding to membrane LKB1 (encoded by 
Stk11) in DAGLβ KO compared with WT LPS- stimulated 
BMDMs (K178 site, SR >20; Fig. 2D). The K178 site is conserved 
between mouse and human LKB1 and located adjacent to the 
HxD motif of the catalytic loop (44–46). The probe- modified 
peptide containing the K178 site matches the consensus sequence 
targeted by ATP acyl phosphates (42, 43). In contrast, probe 
binding to LKB1 in the soluble fraction LPS counterpart and total 
LKB1 protein expression was largely unchanged, which supports 
functional probe binding changes in contrast with general alter­
ations in protein expression (SR = 0.9, Fig. 2 D and E and 
SI Appendix, Fig. S5).

DAGLβ Disruption Activates AMPK in Primary Macrophages. 
The prominent increase in ATP acyl phosphate probe labeling 
of LKB1 K178 in membrane fractions of DAGLβ- deficient 
BMDMs suggested potential crosstalk between endocannabinoid 
biosynthetic and LKB1–AMPK pathways. Previous studies 
demonstrated that membrane localization of LKB1 is needed for 
AMPK activation in mammalian cells (39, 47) and mutagenesis 
of the HxD motif adjacent to K178 resulted in impaired LKB1 
phosphorylation of AMPK (46). We compared the levels of 
phospho- AMPK (T172) in DAGLβ KO and WT BMDMs in 
the absence and presence of LPS stimulation. DAGLβ expression 
and activity were assessed using western blots and the DAGL- 
directed activity- based probe (HT- 01) (12), respectively. Total 
AMPK levels were largely consistent across the treatment 
conditions. In contrast, phospho- AMPK (pAMPK) levels were 
significantly increased in LPS- stimulated DAGLβ KO compared 
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Fig. 1. DAGLβ regulation of lipid signaling. DAGLβ biosynthesizes 
2- arachidonylglycerol (2- AG) through sn- 1 specific hydrolysis of arachidonic 
acid- esterified diacylglycerols (1- stearoyl- 2- arachidonoylglycerol or SAG shown 
as a principal substrate). Blockade of DAGLβ results in DAG accumulation and 
2- AG reduction that can affect protein kinase C and endocannabinoid receptor 
(CB1 and CB2) signaling, respectively. The 2- AG pool regulated by DAGLβ can 
be further hydrolyzed by 2- AG hydrolases (monoacylglycerol lipase or MAGL 
as an example) to produce arachidonic acid (AA) utilized by COX enzymes for 
biosynthesizing prostaglandins (PGE2). Akin to nonsteroidal antiinflammatory 
drugs (NSAIDs), DAGLβ inhibitors reduce inflammation through blockade 
of prostaglandin signaling. The AlphaFold structure of DAGLβ is shown 
(AF- Q91WC9- F1).D
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with WT BMDMs and treatment with the AMPK inhibitor 
dorsomorphin (48) (10 µM, 4 h) reduced pAMPK levels (Fig. 3A 
and SI Appendix, Fig. S6). Dorsomorphin can reduce pAMPK 
levels by altering conformation of the activation loop (containing 
T172) upon binding to reduce phosphorylation by AMPK kinases 
and/or promote dephosphorylation of T172 by phosphatases (49).

Next, we tested whether this AMPK signaling effect could be 
recapitulated with acute perturbation using the DAGLβ- selective 
inhibitor KT109 (12). We treated WT BMDMs from C57BL/6 
J mice (naive or LPS- stimulated) with KT109 (200 nM, 4 h) 
followed by HT- 01- based ABPP confirmation of DAGLβ inac­
tivation and western blot evaluation of AMPK activation. We 
observed substantial DAGLβ inhibition from KT109 treatments 
in BMDMs under basal and LPS- activated conditions (~70 to 
90%, Fig. 3B). Total AMPK expression levels in BMDMs appeared 
to be elevated with LPS stimulation. In agreement with our genetic 
disruption data, pAMPK levels in BMDMs were significantly 

enhanced with KT109 treatments, and dorsomorphin reversed 
this activation event (Fig. 3B and SI Appendix, Fig. S6).

To assess the functional impact of DAGLβ–AMPK crosstalk, we 
first performed LC- MS/MS proteomics to assess global alterations 
in DAGLβ KO (SILAC heavy) compared with WT (SILAC light) 
BMDM proteomes. Gene Ontology (GO) analysis revealed enrich­
ment for biological processes related to energy metabolism (ATP 
synthesis, oxidative phosphorylation, and ATP synthesis coupled 
electron transport) as well as general catabolic processes (SI Appendix, 
Fig. S7). These proteomic findings are supportive of AMPK activa­
tion that is characterized by a shift in metabolism from anabolic 
(e.g., fatty acid production, protein biosynthesis) to catabolic pro­
cesses (e.g., glycolysis, fatty acid oxidation) (20, 21). As a result, cells 
exhibit more aerobic and glycolytic characteristics that collectively 
present as an enhanced bioenergetic phenotype.

We measured the cellular bioenergetic profiles of BMDMs using 
extracellular flux assays to directly assess ex vivo the extracellular 
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Fig. 2. LKB1 ATP- probe binding activity is enhanced in DAGLβ- disrupted BMDMs. (A) Kinome tree of ATP acyl phosphate probe binding activity to kinase active 
sites (142 protein kinases, 28 metabolic kinases) detected by quantitative chemical proteomics under basal (blue circles, 3 kinases), LPS- stimulated (green circles, 
21 kinases), and both treatment conditions (red circles, 118 kinases). Lysates from DAGLβ WT and KO BMDMs (basal and LPS activated) were fractionated to 
soluble and membrane proteomes for kinome profiling studies. The SILAC ratio (SR) was determined by heavy (KO)/light (WT) peptide area under the curve of 
MS1 extracted ion chromatograms (EICs). Kinome tree illustration reproduced courtesy of Cell Signaling Technology, Inc. (http://www.cellsignal.com). (B) The SR 
values [log2(H- KO/L- WT)] were plotted as a function of the Z score to identify statistically significantly increased (Top quadrants) or decreased (Bottom quadrants) 
probe binding to kinases detected in soluble (blue shading) and membrane fractions (red shading; >twofold change, P < 0.01). (C) ATP acyl phosphates broadly 
profile probe binding activity of the BMDM kinome. (D) Representative MS1 EICs of STK11 (LKB1) probe- modified (K178) peptide show a striking enhancement in 
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as mean ± SEM and representative of n = 3 biologically independent replicates. See Dataset S1 for complete list of SR values for kinase binding sites quantified.
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acidification rate (ECAR, measure of aerobic glycolysis) and oxygen 
consumption rate (OCR, measure of oxidative phosphorylation) 
(50). We measured the glycolytic capacity of BMDMs and observed 
a significant elevation in both the stressed and basal ECAR in 
DAGLβ KO compared with WT counterparts (P < 0.01; Fig. 3 C 
and D). In contrast, OCR was not significantly changed in 
BMDMs lacking DAGLβ (SI Appendix, Fig. S8).

Collectively, our cell biological studies identified AMPK acti­
vation as a functional output from perturbing DAGLβ that repro­
grams BMDMs into a more glycolytic state. When integrated with 
our (chemo)proteomics data, our collective findings reveal a 
potential DAGLβ–LKB1–AMPK signaling axis that is important 
for regulating BMDM cell metabolism and signaling.

DAGLβ Inactivation Reprograms the Macrophage Phosphop­
roteome. To characterize cell biological alterations in DAGLβ- 
disrupted BMDMs, we performed quantitative phosphoproteomics 
analysis of SILAC BMDMs in the absence and presence of 

LPS stimulation. DAGLβ SILAC light (WT) and heavy (KO) 
BMDMs were generated and treated with LPS (100 ng/mL) to 
trigger the proinflammatory response as described above and 
in the Materials and Methods. Afterward, BMDMs were lysed 
and light and heavy proteomes combined 1:1, followed by 
trypsin digestion, and titanium dioxide (TiO2) enrichment of 
phosphopeptides (51). LC- MS/MS analysis was implemented to 
identify phosphopeptides and quantify changes in phosphorylation 
at specific protein posttranslationally modified (PTM) sites 
upon DAGLβ disruption (SI Appendix, Fig. S9). We confirmed 
enrichment of peptides (4,409 total phosphopeptides detected 
on 1,595 proteins) containing phosphorylated serines (87%), 
threonines (12%), and tyrosines (1%) at the expected frequency 
reported in literature (52, 53) (Fig.  4A and Dataset  S1). See 
SI Appendix for details of the phosphoproteomic analyses.

Upon LPS stimulation, we identified phosphorylation events 
that were both up-  (315) and down- regulated (529) as measured 
by altered phosphopeptide signals detected across 612 proteins 

A B

C D

Fig. 3. AMPK activation in DAGLβ- disrupted BMDMs. (A) Live- cell treatment of AMPK inhibitor dorsomorphin (10 μM, 4 h) in DAGLβ KO and WT cells. Compound 
treatment was performed after LPS stimulation (100 ng/mL, 16 h). Antibodies were used for detecting AMPK and phospho- AMPK (Thr172) protein levels by 
western blot. The serine hydrolase probe HT- 01 (1 μM, 30 min at 37 °C) was used for ABPP analysis of DAGLβ. Bar plot of the quantified pAMPK/AMPK protein 
signals (RFU, LPS stimulated conditions) as determined by western blot. Data shown are mean ± SEM. A two- sample Student’s t test was used to evaluate 
statistical significance. *P < 0.05. (n = 5 biologically independent replicates). (B) BMDMs were stimulated with LPS (100 ng/mL, 16 h), followed by in situ treatment 
with KT109 (200 nM, 4 h) and/or dorsomorphin (10 μM, 4 h). BMDM membrane proteomes from treated cells were used for HT- 01 analysis (1 μM, 30 min at 
37 °C). BMDM- soluble proteomes were used for western blot analysis and quantification of AMPK and phospho- AMPK (Thr172) levels. Data shown are mean 
± SEM. Statistical significance was determined using a two- sample Student’s t test. *P < 0.05. (n = 3 biologically independent replicates). (C and D) Analysis of 
cellular bioenergetics by a glycolytic stress test. DAGLβ WT and DAGLβ KO BMDMs were analyzed using a Seahorse XF analyzer to interrogate basal and stressed 
extracellular acidification rates (ECAR) of cells. See SI Appendix, Materials and Methods for additional details. Statistical significance was determined by a Welch’s 
two- sided t test; *P < 0.05, **P < 0.01, ***P < 0.001. All data shown represent mean ± SEM; (n = 23 to 25 samples). All data shown are representative of n = 5 
biologically independent experiments.
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[heavy (KO)/light (WT) SR >2 or < 0.5 and P < 0.05; Fig. 4A 
and Dataset S1]. Interestingly, a small fraction of phosphosites 
also showed comparable alterations in the absence of LPS stimu­
lation (SI Appendix, Fig. S10). Down- regulated phosphosites in 
DAGLβ KO BMDMs were enriched for NF- κB pathway, which 
supports the reported antiinflammatory phenotypes from DAGLβ 
disruption (12–14), as well as additional functions related to tran­
scriptional response of cells (GO analysis of phosphosites with SR 
< 0.5, P < 0.05; Fig. 4B).

Our phosphoproteomics investigation also provided insights 
into phosphorylation changes that further support activation of 
AMPK. Although the AMPK T172 phosphorylated site (AAPK2) 
was not detected, we identified increased phosphorylation of 
6- phosphofructo- 2- kinase/fructose- 2,6- bisphosphatase 2 (PFK­
FB2) serine 469 (S469; S466 in human PFKFB2 or hPFKFB2), 
which was reported as a key site for PFKFB2 activation by AMPK 
(55, 56) (SR >20 in basal and LPS conditions, Fig. 4C). PFKFB2 
controls the synthesis and degradation of fructose 2,6- bisphosphate 

that functions as an allosteric effector of 6- phosphofructo- 1- kinase 
(PFK- 1) to stimulate glycolysis (54). PFKFB2 activation can also 
be mediated by alternative kinase pathways including PKA and 
AKT1 that can affect phosphorylation of S469 and/or S486 (S483 
in hPFKFB2) (54). We did not detect alterations in phosphoryl­
ation of PFKFB2 S486, which suggests specificity of AMPK acti­
vation in DAGLβ- disrupted BMDMs (SR ~1, Fig. 4D).

Further evidence for AMPK activation was provided by decreased 
MAPK signaling as evidenced by increased phosphorylation of an 
inhibitory CRAF site [RAF1 S642 (57), SR = 2.5] and decreased 
phosphorylation of ERK1 in DAGLβ- disrupted BMDMs (T203, 
Y205, SR = 0.05; Fig. 4C). Treatment of DAGLβ KO BMDMs 
with dorsomorphin resulted in significantly enhanced ERK1/2 
phosphorylation at longer treatment times (SI Appendix, Fig. S11). 
Activated ERK can inhibit AMPK through phosphorylation and 
inactivation of LKB1 (58, 59). Comparison of phosphosites iden­
tified here with reported AMPK substrate sites revealed that many 
of the detected sites did not exhibit alterations like PFKFB2 S469, 
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suggesting that DAGLβ inactivation affected phosphorylation of a 
subset of AMPK substrate sites (SI Appendix, Fig. S12A and 
Dataset S2). We also identified AMPK substrates with alterations 
in phosphorylation on noncanonical sites that are candidates for 
future studies (ULK1- S521, LYN- S19, MADD- S1058, Fig. 4C and 
SI Appendix, Fig. S12B).

In summary, global phosphoproteomics reveal multiple lines 
of evidence supporting AMPK activation including phosphoryl­
ation of direct glycolytic substrates (PFKFB2) and downregulation 
of MAPK signaling (CRAF and ERK) that can block LKB1- AMPK 
signaling.

DAGLβ- AMPK Crosstalk in Pain Response In  Vivo. Genetic 
and pharmacological inactivation of DAGLβ affects behavioral 
responses in preclinical models of pain (15, 60–62). DAGLβ 
KO mice show an antiallodynic phenotype in the LPS model of 
inflammatory pain, while KT109 reverses LPS- induced allodynia 
in WT mice (15). AMPK activation with AMP analogs (e.g., 
metformin, AICAR, etc.) elicits antinociception in preclinical pain 
assays as well as clinical pain due in part to the antiinflammatory 
effects of AMPK signaling (63–66). Considering our cell 
biological findings supporting DAGLβ- AMPK crosstalk through 
LKB1 activation, we tested whether AMPK signaling serves as a 
mechanism for mediating the antinociceptive phenotype observed 
in DAGLβ KO mice.

In this experiment, DAGLβ WT and KO mice were given a daily 
intraperitoneal (i.p.) injection of saline or dorsomorphin (20 mg kg−1) 
for 5 d. Following the day 4 injection, each mouse was given an 
injection of LPS (2 µg) into the intraplantar region of the right hind 
paw. At 1 h after the day 5 injection, each subject was assessed for von 
Frey thresholds in both the LPS- treated paw and contralateral (con­
trol) paw (Fig. 5A). In agreement with previous findings, LPS elicited 
significant allodynic responses in DAGLβ WT but not in KO mice. 
Dorsomorphin did not affect LPS- induced allodynia in DAGLβ WT 
mice or affect contralateral paw thresholds in either genotype. 
Strikingly, this AMPK inhibitor significantly reversed the antiallody­
nic phenotype of DAGLβ KO mice [F(1, 20) = 57.0, P < 0.0001, 
Fig. 5B and SI Appendix, Fig. S13].

Collectively, the behavioral studies complement our cell bio­
logical findings in BMDMs to support DAGLβ- AMPK crosstalk 
in pain sensitization in vivo.

DAGLβ- AMPK Regulates DRG Neuron Hyperexcitability in 
Neuropathic Pain States. To assess further DAGLβ- AMPK 
signaling in nociception, we tested whether perturbing the 
DAGLβ- AMPK axis affects paclitaxel- induced dorsal root 
ganglia (DRG) neuron excitability. Macrophage infiltration and 
accumulation in the DRG can facilitate pronociceptive neuronal 
and immune cell interactions that contribute to chronic pain states 
(67, 68). Specifically, DRG macrophages produce inflammatory 
mediators that directly act on nociceptors expressing cell- surface 
receptors of proinflammatory signals (e.g., TNFα, prostaglandins) 
to alter excitability and peripheral sensitization (69). Depletion 
of DRG macrophages in mice prevents and reverses mechanical 
allodynia in neuropathic pain models (67).

Chemotherapy- induced allodynia was induced in DAGLβ WT 
and KO mice using a cycle of paclitaxel treatment, consisting of 
a single i.p. injection of paclitaxel (8 mg kg−1) every other day for 
a total of four injections (days 1, 3, 5, and 7). To evaluate 
DAGLβ- AMPK crosstalk in DRG excitability, DAGLβ KO mice 
were given a daily i.p. injection of saline or dorsomorphin (20 mg 
kg−1) beginning on day 8 for 6 d. Two hours after the final injec­
tion, animals were sacrificed and primary cultures of DRG neu­
rons were prepared from adult mice as previously described (70). 
Whole- cell patch clamp electrophysiology measurements were 
performed to evaluate DRG neuron excitability as previously 
reported (70) and described in SI Appendix, Materials and Methods.

The threshold potential (membrane potential for the activation 
of an action potential) in DRG neurons from DAGLβ WT mice 
was significantly more negative in the paclitaxel treated compared 
with control mice, indicating enhanced excitability (Fig. 6A and 
Dataset S3). Compared to DRG neurons from paclitaxel- treated 
DAGLβ WT mice, the KO counterparts exhibited significantly 
reduced excitability (Fig. 6B and Dataset S3). Rheobase was sig­
nificantly increased, and the number of evoked action potentials 
was reduced when compared to paclitaxel- treated DAGLβ WT 
DRG neurons (Fig. 6 B and C). Treatment with dorsomorphin 
in vivo resulted in significantly reduced rheobase and concomitant 
increased action potential events in DRG neurons from 
paclitaxel- treated DAGLβ KO mice, indicating increased neuronal 
excitability. No difference in neuronal excitability was observed 
between DAGLβ WT and dorsomorphin- treated KO DRG neu­
rons (Fig. 6 B and C and SI Appendix, Fig. S14).
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Collectively, we demonstrate that blocking AMPK through 
in vivo dorsomorphin treatments in DAGLβ- disrupted mice rein­
stated paclitaxel- induced DRG neuronal hyper- excitability. These 
studies provide a mechanism that accounts for the antinociceptive 
phenotypes resulting from disruption of DAGLβ- AMPK.

Discussion

DAGLs are enzymes that hydrolyze AA- esterified DAGs to 
 biosynthesize 2- AG, an eicosanoid precursor, critical to inflam­
matory signaling (1) in microglia (13) and dendritic cells (14) 
and reverses nociceptive behavior in rodents (15, 60–62). 
Currently, DAGLβ function is ascribed principally to 2- AG- AA-  
eicosanoid signaling but the efficacy of DAGLβ inhibitors in 
inflammatory and neuropathic pain models suggests alternative 
pathways that are currently unknown. These studies are particu­
larly important because long- term exposure to DAGLβ inhibitors 
does not produce overt metabolic, behavioral, or addictive side 
effects that positions this enzyme as a promising target to treat 
chronic pain (15). Our findings here describe a complementary 
kinase- mediated pathway that connects bioenergetics with endo­
cannabinoid biosynthesis as a unique mechanism for blockade of 
inflammation and pain.

We deployed SILAC ABPP studies with chemical probes that 
profile ATP- binding pockets of kinases to identify a striking 
enhancement in binding activity for LKB1, the upstream regulator 
of AMPK (24, 34, 71, 72) in DAGLβ- disrupted BMDMs (Fig. 2). 
The detection of increased LKB1 binding activity in membrane 
but not soluble fractions of DAGLβ KO BMDMs agrees with 
recent reports that membrane localization, through lipid binding, 
of LKB1 results in activation (39). We performed orthogonal 
analyses to support the resulting AMPK activation through direct 
detection of T172 phosphorylation by western blots and global 
phosphoproteomics to identify increased phosphorylation on 
AMPK substrates at known (S469 on PFKFB2) and potentially 
novel sites (S521 on ULK1; Fig. 4). We interpret the negligible 
change in phosphorylation of PFKFB2 S486, a reported substrate 
site for multiple kinases including AMPK (54), as evidence for 
potential specificity of AMPK activation of this key glycolytic 
enzyme in DAGLβ- disrupted macrophages although follow- up 
studies are needed to provide direct verification (Fig. 4D). Further 
support was provided by chemoproteomic studies that revealed a 
striking increase in LKB1 binding in an otherwise unchanged 
kinome (Fig. 2 and SI Appendix, Fig. S4). These alterations in 
cellular signaling were complemented by increased glycolysis in 
DAGLβ KO BMDMs (Fig. 3 C and D).

Fig. 6. Dorsomorphin induced hyperexcitability in DRG neurons from paclitaxel- treated DAGLβ KO mice. Action potential thresholds (A), rheobase (B) and 
current- response relationship (C) in small- diameter DRG neurons from DAGLβ WT or DAGLβ KO mice. Threshold potential data in (A) were analyzed using two- 

tailed unpaired Student’s t test and rheobase data in (B) were analyzed using one- way ANOVA with Bonferroni’s posttest. Scatter plots in (A) and (B) represent 
values from individual neurons and the horizontal bar indicates the mean. Number of neurons per group are indicated in the parenthesis. (C) Data are mean ± 
SEM and analyzed using two- way repeated- measures ANOVA with Bonferroni’s posttest. Filled points indicate statistical significance (P < 0.05) versus paclitaxel 
+ vehicle- treated DAGLβ KO neurons. Number of neurons per group are indicated in the parenthesis.
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The physiological relevance of DAGLβ- AMPK crosstalk was 
demonstrated in in vivo pain models that evaluated behavioral 
responses upon DAGLβ perturbation in the presence of the AMPK 
inhibitor dorsomorphin (48). Notably, dorsomorphin extinguished 
the antinociceptive phenotype of DAGLβ KO mice in a LPS mouse 
model of inflammatory pain (Fig. 5). Our electrophysiology studies 
in DRG neurons isolated from paclitaxel- treated DAGLβ KO mice 
provided mechanistic insights to DAGLβ- AMPK signaling and 
pain sensitization. Genetic deletion of DAGLβ reduced the char­
acteristic hyper- excitability of DRG neurons from paclitaxel- treated 
mice. In support of AMPK regulation, dorsomorphin caused an 
emergence of paclitaxel- induced hyper- excitability in DRGs from 
paclitaxel- treated DAGLβ KO mice (Fig. 6).

While our studies establish DAGLβ- AMPK crosstalk in cells 
and in vivo, a potential role for the DAGLα isoform in regulating 
bioenergetic pathways, to the best of our knowledge, remains 
unknown. Future studies aimed at understanding regulation of 
bioenergetics by DAGL isoforms may provide insight into devel­
oping targeted agents for tissue-  and cell type–specific AMPK 
activation. Our mechanistic understanding of DAGLβ- AMPK 
crosstalk in pain would be further advanced by identifying the cell 
type(s) mediating DRG neuron hyper- excitability. Given that 
DAGLβ shows minimal expression and activity in neurons (13), 
a potential explanation is that DRG macrophages (67, 68) mediate 
the in vivo change in sensory neuron hyperresponsiveness. As 
LKB1- selective inhibitors become available, their evaluation in 
future studies using chemoproteomics and complementary activity 
assays (39) will be important to test further whether LKB1 serves 
as the principal AMPK- activating kinase in DAGLβ- disrupted 
systems. Orthogonal methods for evaluating AMPK activity are 
also needed given that ATP acyl phosphate probe binding to the 
catalytic subunit of AMPK was unchanged in our chemopro­
teomic studies and likely explained by the complicated activation 
mechanism involving sensing and binding of AMP, ADP, and ATP 
by this kinase (20).

In conclusion, our findings establish a critical link between 
endocannabinoid biosynthesis and macrophage bioenergetics in 
pathogenic pain response. The cellular and in vivo findings support 
disruption of DAGLβ as a unique approach for activating AMPK 
signal transduction for developing nonopioid analgesics. Identifying 
alternative pathways for AMPK activation and regulation is not 

only important for understanding fundamental cell metabolism 
but also has direct and broader impacts on human health. It is 
estimated that greater than 150 million people worldwide take the 
AMPK activator drug metformin (73). Metformin is associated 
with a variety of side effects, including birth defects in cases where 
the father used this drug for treatment of diabetes (74). Thus, 
developing more targeted AMPK activators represents a need of 
clinical interest.

Materials and Methods

Details on SILAC bone marrow derived macrophage (BMDM) differentiation, gel- 
based competitive activity- based protein profiling (ABPP), quantitative LC- MS/
MS proteomics, chemoproteomics and phosphoproteomics, extracellular flux 
analysis, behavioral assessment of animal nociception, and electrophysiology 
of dorsal root ganglia (DRG) neurons can be found in SI Appendix.

Data, Materials, and Software Availability. Proteomics data have been depos-
ited at ProteomeXchange via the PRIDE database (http://www.proteomexchange.
org) and are publicly available under accession numbers PXD047413 and https://
doi.org/10.6019/PXD047413 (75). RNA- seq data are available on NCBI Gene 
Expression Omnibus, under accession number GSE249312 (76).
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