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Abstract. We propose in this paper a new minimization algorithm based on a slightly modified
version of the scalar auxialiary variable (SAV) approach coupled with a relaxation step and an
adaptive strategy. It enjoys several distinct advantages over popular gradient based methods: (i)
it is unconditionally energy diminishing with a modified energy which is intrinsically related to
the original energy, and thus no parameter tuning is needed for stability; (ii) it allows the use of
large step-sizes which can effectively accelerate the convergence rate. We also present a convergence
analysis for some SAV based algorithms, which include our new algorithm without the relaxation
step as a special case. We apply our new algorithm to several illustrative and benchmark problems
and compare its performance with several popular gradient based methods. The numerical results
indicate that the new algorithm is very robust, and its adaptive version usually converges significantly
faster than those popular gradient decent based methods.
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convergence
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1. Introduction. Minimization plays an important role in many branches of
science and engineering. In particular, how to accelerate the convergence rate of the
minimization process is a central issue in data science and machine learning problems.
We consider in this paper an unconstrained minimization problem

min
\theta \in RN

f(\theta ),(1.1)

which arises in many applications, including particularly machine learning problems.
For large scale minimization problems, the first order methods such as gradient descent
(GD) and its variants such as stochastic GD [21], Nesterov's accelerated GD [17], and
the adaptive momentum estimation method [15, 24, 10] are popular choices. We refer
to [19, 18, 23], and the references therein, for more detail on the design and analysis
of the GD method and its various variants.

The vanilla GD method for (1.1) is

\theta k+1 = \theta k  - \eta k\nabla f(\theta k),(1.2)

which can also be regarded as a numerical scheme for the gradient flow

\theta t = - \nabla f(\theta ),(1.3)

with time step \eta k. The gradient flow (1.3) is energy diminishing in the sense that
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SAV BASED ALGORITHM FOR DISCRETE GRADIENT SYSTEMS A2305

d

dt
f(\theta ) = (\nabla f(\theta ), \theta t) = - (\theta t, \theta t) = - \| \theta t\| 2 \leq 0,

where (\cdot , \cdot ) (resp., \| \cdot \| ) denotes the l2 inner product (resp., norm). However, gradient
decent type schemes are not necessarily energy diminishing and may blow up if the
time step is too large. Although the stability of GD based methods is well understood,
the main challenge in practice is how to choose the step-size, i.e., learning rate, to
balance between stability and efficiency [22].

We propose in this paper a different class of minimization algorithms inspired
by the recently developed scalar auxiliary variable (SAV) approach for gradient flows
[25, 26]. The SAV approach enjoys a particular advantage of unconditional energy
diminishing compared to popular gradient decent based methods. This advantage
avoids tuning step-sizes and allows the use of large step-sizes, which may effectively
accelerate the convergence rate.

Assume the cost function has a splitting

f(\theta ) =
1

2
(\scrL \theta , \theta ) +

\biggl[ 
f(\theta ) - 1

2
(\scrL \theta , \theta )

\biggr] 
:=

1

2
(\scrL \theta , \theta ) + g(\theta ),(1.4)

where \scrL is a self-adjoint positive semidefinite linear operator. Note that \scrL = 0 is a
trivial splitting. Then, the gradient flow (1.3) becomes

\theta t +\scrL \theta +\nabla g(\theta ) = 0.(1.5)

Inspired by the invariant energy quadratization (IEQ) and SAV approaches [28, 25],
assuming there exists C > 0 such that g(\theta ) >  - C for all \theta , we introduce a scalar
auxiliary variable r(t) =

\sqrt{} 
g(\theta ) +C and expand (1.5) to

\left\{ 
 
 
\theta t +\scrL \theta + \nabla g(\theta )\surd 

g(\theta )+C
r= 0,

rt =
1

2
\surd 

g(\theta )+C
(\nabla g(\theta ), \theta t).

(1.6)

Obviously, with r(0) =
\sqrt{} 
g(\theta | t=0) +C, the above system admits a solution r(t) =\sqrt{} 

g(\theta ) +C with \theta being the solution of (1.5). The main advantage of the expanded
system, which includes an energy evolution equation, is that it allows us to construct
simple numerical schemes with modified energy diminishing. For example, the scheme

\left\{ 
  
  

\theta k+1 - \theta k
\delta t +\scrL \theta k+1 +

\nabla g(\theta k)\surd 
g(\theta k)+C

rk+1 = 0,

rk+1 - rk
\delta t =

\biggl( 
\nabla g(\theta k)

2
\surd 

g(\theta k)+C
, \theta k+1 - \theta k

\delta t

\biggr) (1.7)

can be easily implemented by solving only two linear systems of the form (I+\delta t\scrL )x= b
and is unconditionally energy stable with a modified energy [26].

While the scheme (1.7) has been shown to be very effective for gradient flows, it
is not particularly suitable for the minimization problem (1.1). Indeed, for any fixed
\delta t, assuming \theta k \rightarrow \theta \ast and rk \rightarrow r\ast , then

rk\surd 
g(\theta k)+C

\rightarrow r\ast \surd 
g(\theta \ast )+C

, which is usually not

equal to 1, and consequently, the first equation of (1.7) leads to

0 =\scrL \theta \ast +
r\ast \sqrt{} 

g(\theta \ast ) +C
\nabla g(\theta \ast ) =\scrL \theta \ast +

r\ast \sqrt{} 
g(\theta \ast ) +C

( - \scrL \theta \ast +\nabla f(\theta \ast )) .

If \scrL \not = 0, we observe from the above that in general \nabla f(\theta \ast ) \not = 0 and thus \theta \ast is not a
solution for (1.1). Another complication of this approach is that it is not obvious how
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A2306 XINYU LIU, JIE SHEN, AND XIANGXIONG ZHANG

to choose \scrL such that g(\theta ) is bounded from below for all \theta . The main goal of this
paper is to design suitable SAV based schemes for (1.1), develop their convergence
theory, and validate them through extensive numerical experiments.

The rest of the paper is organized as follows. In section 2, we first discuss a
suitable SAV algorithm for minimization, introduce its relaxed version (RSAV), and
discuss the adaptive rule and choices for the nonnegative operator \scrL (\theta ). Then, we
present in section 3 several numerical results to show the performance of the RSAV
in different optimization problems. We provide a convergence study in section 4 and
some concluding remarks in section 5.

2. A new SAV approach and its relaxed version. We have observed in
the last section that the standard SAV approach is not suitable for the minimization
problem (1.1). In this section, we propose a different SAV approach and its related
version, which are well suited for (1.1).

2.1. A modified SAV approach. We still assume the splitting (1.4) and re-
write (1.3) as

\theta t +\scrL \theta +\nabla f(\theta ) - \scrL \theta = 0.(2.1)

Since f(\theta ) in a minimization problem should always be bounded from below, there
exists C > 0 such that f(\theta ) >  - C for all \theta . We introduce r(t) =

\sqrt{} 
f(\theta ) +C and

expand (2.1) to
\left\{ 
 
 
\theta t +\scrL \theta + \nabla f(\theta )\surd 

f(\theta )+C
r - \scrL \theta = 0,

rt =
1

2
\surd 

f(\theta )+C
(\nabla f(\theta ), \theta t).

(2.2)

Then, a simple SAV scheme to approximate the above is
\left\{ 
  
  

\theta k+1 - \theta k
\delta t +\scrL \theta k+1 +

\nabla f(\theta k)\surd 
f(\theta k)+C

rk+1  - \scrL \theta k = 0,

rk+1 - rk
\delta t =

\biggl( 
\nabla f(\theta k)

2
\surd 

f(\theta k)+C
, \theta k+1 - \theta k

\delta t

\biggr) 
.

(2.3)

Note that if \theta k \rightarrow \theta \ast and rk \rightarrow r\ast , then (2.3) leads to \nabla f(\theta \ast ) = 0, and consequently
\theta \ast is a solution of (1.1).

The scheme (2.3) leads to a coupled linear system for (\theta k+1, rk+1), but it can be
implemented explicitly after solving a linear system, as will be shown in section 4.1.
Let A= I + \delta t\scrL , and then (2.3) can be equivalently implemented as

rk+1 =
1

1+ \delta t (\nabla f(\theta k),A - 1\nabla f(\theta k))
2[f(\theta k)+C]

rk,

\theta k+1 = \theta k  - 
rk+1\sqrt{} 

f(\theta k) +C
\delta tA - 1\nabla f(\theta k).

Moreover, taking the discrete inner product of the first (resp., second) equation
in (2.3) with \theta k+1  - \theta k (resp., 2rk+1) and summing up the results, we obtain the
following.

Theorem 1. If \scrL is nonnegative, then for any \delta t > 0, the modified energy r2 in
the scheme (2.7) is unconditionally diminishing in the sense that

r2k+1  - r2k = - 
1

\delta t
\| \theta k+1  - \theta k\| 2  - (\scrL (\theta k+1  - \theta k), (\theta k+1  - \theta k)) - (rk+1  - rk)

2.
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SAV BASED ALGORITHM FOR DISCRETE GRADIENT SYSTEMS A2307

The above result shows the key advantage of (2.3): the energy dissipation holds
for any \delta t > 0 and any splitting with nonnegative \scrL .

As we shall demonstrate in numerical tests in section 3, when the cost functional
f(\theta ) has a suitable splitting, the above algorithm usually converges much faster than
the vanilla gradient decent method. When the cost function does not have any obvious
quadratic part, we can either choose any suitable nonnegative linear operator \scrL in
(1.4) or simply take \scrL = 0, which results in a fully explicit method,

\left\{ 
  
  

\theta k+1 - \theta k
\delta t + \nabla f(\theta k)\surd 

f(\theta k)+C
rk+1 = 0,

rk+1 - rk
\delta t =

\biggl( 
\nabla f(\theta k)

2
\surd 

f(\theta k)+C
, \theta k+1 - \theta k

\delta t

\biggr) 
,

(2.4)

which we refer to as the SAV GD method. As will be shown in section 4.1, the scheme
(2.4) can be decoupled and implemented as

rk+1 =
rk

1 + \delta t (\nabla f(\theta k),\nabla f(\theta k))
2(f(\theta k)+C)

,

\theta k+1 = \theta k  - \delta t
rk+1\sqrt{} 

f(\theta k) +C
\nabla f(\theta k).

(2.5)

Compared with the vanilla GD method (1.2), there are extra computational costs of
computing both f(\theta k) and (\nabla f(\theta k),\nabla f(\theta k)) in (2.5), but Theorem 1 ensures stability
for any \delta t. In contrast, \delta t in (1.2) needs to be small enough to ensure stability.

2.2. A relaxed version of the modified SAV approach. While for fixed
\delta t, the solution of the SAV scheme (2.3) converges to a solution of the minimization
problem (1.1), the evolution of rk+1 is not directly linked to

\sqrt{} 
f(\theta k+1) +C, and its

value may decrease rapidly to ensure stability when \| \nabla f(\theta k) - \scrL \theta k\| becomes large. In
this case, the ratio rk+1\surd 

f(\theta k+1)+C
may deviate significantly from 1, which indicates that

rk+1 is no longer a good approximation of
\sqrt{} 
f(\theta (tk+1)) +C, and thus \theta k+1 will not be

a good approximation of \theta (tk+1). For dynamic simulation of gradient flows, a remedy
is to monitor the ratio rk+1\surd 

f(\theta k+1)+C
and adjust the time step so that it stays close to

1. For the minimization problem (1.1), since we are mainly interested in the steady
steady state solutions of (1.3), it is found in [32] that setting rk+1 =

\sqrt{} 
f(\theta k+1) +C at

each time step is also very effective. More precisely, we can use the following modified
SAV scheme: \left\{ 

    
    

\theta k+1 - \theta k
\delta t +\scrL \theta k+1 +

\nabla f(\theta k)\surd 
f(\theta k)+C

\~rk+1  - \scrL \theta k = 0,

\~rk+1 - rk
\delta t =

\biggl( 
\nabla f(\theta k)

2
\surd 

f(\theta k)+C
, \theta k+1 - \theta k

\delta t

\biggr) 
,

rk+1 =
\sqrt{} 
f(\theta k+1) +C.

(2.6)

However, the above-modified SAV scheme is no longer energy diminishing. Recently,
another way to link rk+1 with

\sqrt{} 
f(\theta k+1) +C while still being energy diminishing is

proposed in [30] (see also [14, 29]). When applied to (2.1), the relaxed SAV method
takes the following form:

\left\{ 
    
    

\theta k+1 - \theta k
\delta t +\scrL \theta k+1 +

\nabla f(\theta k)\surd 
f(\theta k)+C

\~rk+1  - \scrL \theta k = 0,

\~rk+1 - rk
\delta t =

\biggl( 
\nabla f(\theta k)

2
\surd 

f(\theta k)+C
, \theta k+1 - \theta k

\delta t

\biggr) 
,

rk+1 = \xi \~rk+1 + (1 - \xi )
\sqrt{} 
f(\theta k+1) +C.

(2.7)

Here, the relaxation parameter \xi is a scalar chosen from the set
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A2308 XINYU LIU, JIE SHEN, AND XIANGXIONG ZHANG

\scrV = \{ \xi \in [0,1] : (rk+1)
2  - (\~rk+1)

2  - (\~rk+1  - rk)
2 \leq \eta \scrG (\theta k+1, \theta k)\} ,(2.8)

where \scrG (\theta k+1, \theta k) =
1
\delta t ((\theta k+1  - \theta k),A(\theta k+1  - \theta k)) with A = I + \delta t\scrL , and \eta \in [0,1] is

an artificial parameter with default value \eta = 0.99. In particular, it is shown in [14]
that we can choose

\xi =max

\Biggl\{ 
0,
 - b - 

\surd 
b2  - 4ac

2a

\Biggr\} 
,(2.9)

with the coefficients that

a= (\~rk+1  - 
\sqrt{} 
f(\theta k+1) +C)2,(2.10)

b= 2
\Bigl( 
\~rk+1  - 

\sqrt{} 
f(\theta k+1) +C

\Bigr) \sqrt{} 
f(\theta k+1) +C,(2.11)

c= f(\theta k+1) +C  - (\~rk+1)
2  - (\~rk+1  - rk)

2  - \eta \scrG (\theta k+1, \theta k).(2.12)

Taking the discrete inner product of the first (resp., second) equation in (2.7)
with \theta k+1  - \theta k (resp., 2\~rk+1) and summing up the results, we get

\scrG (\theta k+1, \theta k) =
1

\delta t
((\theta k+1  - \theta k),A(\theta k+1  - \theta k)) = - 2(\~rk+1  - rk)\~rk+1,(2.13)

and then the nonzero choice of \xi can be rewritten as

\xi =
 - b - 

\surd 
b2  - 4ac

2a
=

\sqrt{} 
f(\theta k+1) +C  - 

\sqrt{} 
(\~rk+1)2 + (\~rk+1  - rk)2 + \eta \scrG (\theta k+1, \theta k)\sqrt{} 
f(\theta k+1) +C  - \~rk+1

=

\sqrt{} 
f(\theta k+1) +C  - 

\sqrt{} 
(1 - \eta )\~r2k+1 + \eta r2k + (1 - \eta )(\~rk+1  - rk)2

\sqrt{} 
f(\theta k+1) +C  - \~rk+1

.

The implementation of (2.7) is summarized in Algorithm 1.

Theorem 2. If \scrL is nonnegative and linear, then for any \delta t > 0, the modified
energy r2 in the scheme (2.7) is unconditionally diminishing in the sense that

r2k+1  - r2k = - (1 - \eta )\scrG (\theta k+1, \theta k)\leq 0.

Proof. By (2.13), we obtain

\~r2k+1  - r2k = - 
1

\delta t
\| \theta k+1  - \theta k\| 2  - (\scrL (\theta k+1  - \theta k), (\theta k+1  - \theta k)) - (\~rk+1  - rk)

2.

Adding r2k+1  - \~r2k+1 on both sides and noticing

\scrG (\theta k+1, \theta k) =
1

\delta t
\| \theta k+1  - \theta k\| 2 + (\scrL (\theta k+1  - \theta k), (\theta k+1  - \theta k)),

we obtain

r2k+1  - r2k = - \scrG (\theta k+1, \theta k) - (\~rk+1  - rk)
2 + r2k+1  - \~r2k+1,

which implies the desired result thanks to (2.8).
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SAV BASED ALGORITHM FOR DISCRETE GRADIENT SYSTEMS A2309

Algorithm 1 The basic RSAV scheme.
1: Inputs:

\delta t: step-size,
C: constant to guarantee the positivity of f(x) +C,
A= I + \delta t\scrL : the linear operator,
\theta 0: initial parameter vector

2: r0 \leftarrow 
\sqrt{} 
f(\theta 0) +C

3: for k= 0,1,2, . . . ,M  - 1 do

4: gk =
\nabla f(\theta k)\surd 
f(\theta k)+C

5: \^gk =A - 1gk
6: \~rk+1 =

rk
1+ \delta t

2 (gk,\^gk)

7: \theta k+1 = \theta k  - \delta t\~rk+1\^gk

8: \xi =

\surd 
f(\theta k+1)+C - 

\surd 
(1 - \eta )\~r2k+1+\eta r2k+(1 - \eta )(\~rk+1 - rk)2\surd 
f(\theta k+1)+C - \~rk+1

9: \xi =max\{ 0, \xi \} 
10: rk+1 = \xi \~rk+1 + (1 - \xi )

\sqrt{} 
f(\theta k+1) +C

return \theta M

2.3. Selection of the operator \bfscrL . In the SAV approach for gradient flows
[26], it is found that a proper choice of the splitting (1.4), i.e., the choice of the
quadratic term 1

2 (\scrL \theta , \theta ), can significantly increase the robustness and efficiency of the
SAV schemes. For gradient flows coming from materials science or fluid dynamics,
there are usually obvious candidates in the free energy. However, for minimization
problems, particularly those from machine learning problems, there are usually no
obvious quadratic terms in the energy functions. In these cases, we can artificially
choose some simple operators. In this paper, we consider two simple operators below,
for which the inverse operator (I + \delta t\scrL ) - 1 can be efficiently implemented.

2.3.1. Diagonal matrix. In many optimization problems, an l2 regularization
term is often added into the loss function to avoid overfitting to the data in training
sets, namely,

J(x) = f(x) +
\lambda 

2
\| x\| 2.(2.14)

In this case, a natural choice is to set \scrL = \lambda I. More generally, we can use \scrL =D with
D being a diagonal matrix with positive entries, e.g., D can be the diagonal entries
of the Hessian of the cost function.

2.3.2. Discrete Laplacian matrix. In some machine learning problems, the
discrete Laplacian matrix is used as a smoothing operator which can reduce the vari-
ance during the minibatch training process [20]. This corresponds to \scrL = - \sigma \Delta , where
\sigma is a positive parameter and \Delta is a discrete Laplacian matrix, and (I + \delta t\scrL ) - 1 can
be efficiently inverted by FFT based methods. The acceleration by using discrete
Laplacian in classical primal dual algorithms has been also justified in [13].

2.4. An adaptive algorithm based on the RSAV scheme (2.7). Similar
to the modified SAV scheme (2.3), the RSAV scheme (2.7) is also unconditionally
energy diminishing. A main advantage of unconditionally stable schemes is that one
can adaptively adjust the time step size to achieve faster convergence. In particular,
we can use

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A2310 XINYU LIU, JIE SHEN, AND XIANGXIONG ZHANG

Ik(r, \theta ) =
rk\sqrt{} 

f(\theta k) +C
(2.15)

as an indicator to control the deviation between modified energy and true energy. For
solving differential equations \theta t = - \nabla f(\theta ), Ik(r, \theta ) should be as close to 1 as possible
for the sake of the time accuracy. But for a minimization problem, there is no time
accuracy issue, and thus we can allow Ik(r, \theta ) to deviate from 1 to achieve faster
convergence. However, Ik(r, \theta ) needs to be away from zero to avoid slow convergence,
as the SAV and RSAV algorithms may converge much slower than the vanilla GD
when the ratio Ik(r, \theta ) becomes too small.

We observe from (2.7) that the true step-size for the gradient \nabla f(\theta k) is
\~rk+1\surd 

f(\theta k)+C
\delta t. Thus if the ratio is small, i.e., Ik(r, \theta ) < \gamma , the true step-size for the

gradient would be too small, resulting in slow convergence. To this end, we present
a simple adaptive rule with an adaptive constant \rho > 1 with default value \rho = 1.1
described in Algorithm 2.

Remark 1. Note that in many applications of neural networks and machine learn-
ing, the cost of computing the full batch is generally too high. In these cases, we
can adopt the minibatch approach commonly used in stochastic gradient decent and
restart the RSAV scheme at the beginning of each minibatch.

Remark 2. As a further generalization, we may replace the operator \scrL in (2.3)
and (2.7) by a linear nonnegative operator \scrL k, which may depend on \theta k at each step.
Then, Theorems 1 and 2 still hold with \scrL replaced by \scrL k.

Algorithm 2 The adaptive RSAV scheme.
1: Inputs:

\delta t0: initial step-size, \delta tmin: the lower bound of step-size,
C: constant to guarantee the positivity of f(x) +C,
A= I + \delta t\scrL : the linear operator,
\theta 0: initial parameter vector,
\rho : adaptive constant which is greater than 1,
\gamma : threshold for the indicator I(r, \theta ).

2: r0\leftarrow 
\sqrt{} 

f(\theta 0) +C: Initialize the SAV,
3: for k= 0,1,2, . . . ,M  - 1 do
4: if rk\surd 

f(\theta k)+C
<\gamma and \delta t > \delta tmin then

5: \delta tk+1 =max

\biggl\{ 
rk\surd 

f(\theta k)+C
\delta tk, \delta tmin

\biggr\} 

6: else
7: \delta tk+1 = \rho \delta tk
8:

9: gk =
\nabla f(\theta k)\surd 
f(\theta k)+C

10: \^gk =A - 1gk
11: \~rk+1 =

rk

1+
\delta tk+1

2 (gk,\^gk)

12: \theta k+1 = \theta k  - \delta tk+1\~rk+1\^gk

13: \xi =

\surd 
f(\theta k+1)+C - 

\surd 
(1 - \eta )\~r2k+1+\eta r2k+(1 - \eta )(\~rk+1 - rk)2\surd 
f(\theta k+1)+C - \~rk+1

14: \xi =max\{ 0, \xi \} 
15: rk+1 = \xi \~rk+1 + (1 - \xi )

\sqrt{} 
f(\theta k+1) +C

return \theta M

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SAV BASED ALGORITHM FOR DISCRETE GRADIENT SYSTEMS A2311

3. Numerical results. We present in this section several illustrative numerical
experiments by using our RSAV approach and compare it with popular gradient based
approaches.

In order to present a fair comparison to GD, we consider a composite gradient
method. By abuse of notation, we shall refer to GD with \scrL as the following method
for the splitting (1.4):

\theta k+1 + \delta t\scrL \theta k+1 = \theta k + \delta t(\scrL \theta k  - \nabla f(\theta k)),

which is equivalent to

\theta k+1 = \theta k  - \delta t(I + \delta t\scrL ) - 1\nabla f(\theta k).(3.1)

The scheme (3.1) can also be regarded as the forward-backward splitting scheme

\theta k+1 = \theta k  - \delta t\nabla F (\theta k) - \delta t\nabla G(\theta k+1)

for minimizing a composite function F (\theta ) + G(\theta ) with F (\theta ) = f(\theta )  - 1
2\theta 

T\scrL \theta and
G(\theta ) = 1

2\theta 
T\scrL \theta .

Note that the scheme (3.1) reduces to the vanilla GD (1.2) if setting \scrL = 0, and
(3.1) reduces to the vanilla GD (1.2) with step-size \delta t

1+\delta t if setting \scrL = I. Therefore, we
do not consider GD with \scrL = I, and we compare the adaptive RSAV in Algorithm 2
to the following algorithms:

1. GD with \scrL = 0, which is the vanilla GD (1.2),
2. GD with \scrL = - \sigma \Delta with discrete Laplacian \Delta , which is similar to the Lapla-

cian smoothing GD [20],
3. ADAM [15],
4. Nesterov accelerated GD (NAG) [16].

Unless specified otherwise, we use ADAM and NAG with the default parameter set-
tings as in [22]: NAG with \gamma = 0.9 and ADAM with \beta 1 = 0.9, \beta 2 = 0.999, \varepsilon = 10 - 8.

3.1. A quadratic cost function. We start with a quadratic loss function from
[20]:

f(\theta 1, \theta 2, . . . , \theta 100) =

50\sum 

i=1

\theta 22i - 1 +

50\sum 

i=1

1

100
\theta 22i.(3.2)

For this simple function, we take either \scrL = 0 or \scrL = D, where the diagonal
matrix D is chosen to be the Hessian \nabla 2f(\theta ).

To demonstrate the unconditional stability of SAV based approaches, in Table 1
and Figure 1 we show the results of different initial step-sizes \delta t for the vanilla GD,
i.e., GD with \scrL = 0, as well as GD with \scrL =\scrD . We observe that the vanilla GD blows
up for the constant step-size \delta t= 1, while the adaptive RSAV works quite well.

Next we consider the gradient perturbed by a Gaussian noise

\nabla \epsilon f(x) :=\nabla f(x) + \epsilon \scrN (0, I),(3.3)

where \epsilon controls the noise level, and \scrN (0, I) is the Gaussian noise vector with zero
mean and unit variance in each coordinate. The comparison is given in Table 2
and Figure 2, where \scrL = 0 is used for both GD and adaptive RSAV. We observe
that the adaptive RSAV converges much faster than GD. The fast convergence of
adaptive RSAV is partly due to the indicator Ik(r, \theta ), which can give a proper step-
size. Especially in the noisy case, the true step-size is given at a proper level to reach
a better convergence than GD and reduce the oscillation in the loss curves.
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A2312 XINYU LIU, JIE SHEN, AND XIANGXIONG ZHANG

Table 1
Loss of quadratic function after 1,000 iterations.

(initial) step-size \delta t 0.01 0.1 1

GD (\scrL = 0) 0.3351 0.009121 50

Adaptive RSAV (\scrL = 0) 6.34e-12 5.749e-12 2.264e-18

GD (\scrL =D) 0.3352 0.009194 3.152e-18
Adaptive RSAV (\scrL =D) 0 0 0

SAV BASED ALGORITHM FOR DISCRETE GRADIENT SYSTEMS A9

To demonstrate the unconditional stability of SAV-based approaches, in Table 1
and Figure 1 we show the results of different initial step sizes \delta t for the vanilla gradient
descent, i.e., GD with \scrL = 0, as well as GD with \scrL = \scrD . We observe that the vanilla
gradient descent blows up for the constant step size \delta t = 1, while the adaptive RSAV
works quite well.

Table 1
Loss of quadratic function after 1, 000 iterations.

(initial) step-size \delta t 0.01 0.1 1
GD (\scrL = 0) 0.3351 0.009121 50

adaptive RSAV (\scrL = 0) 6.34e-12 5.749e-12 2.264e-18
GD (\scrL = D) 0.3352 0.009194 3.152e-18

adaptive RSAV (\scrL = D) 0 0 0

Fig. 1. Loss curves for GD and adaptive RSAV with different splits and (initial) step-sizes \delta t.

Next we consider the gradient perturbed by a Gaussian noise

(3.3) \nabla \epsilon f(x) := \nabla f(x) + \epsilon \scrN (0, I),

where \epsilon controls the noise level, \scrN (0, I) is the Gaussian noise vector with zero mean
and unit variance in each coordinate. The comparison is given in Table 2 and Figure
2 where \scrL = 0 is used for both GD and adaptive RSAV. We observe that the adaptive
RSAV converges much faster than GD. The fast convergence of adaptive RSAV is
partly due to the indicator Ik(r, \theta ) which can give a proper step size. Especially in
the noisy case, the true step size is given at a proper level to reach a better convergence
than GD and reduce the oscillation in the loss curves.

Fig. 1. Loss curves for GD and adaptive RSAV with different splits and (initial) step-sizes \delta t.

Table 2
Loss of quadratic function after 1,000 iterations with different noise levels \epsilon and (initial) step-

sizes \delta t. \scrL = 0 is used for both GD and adaptive RSAV.

(Initial) step-size \delta t 0.01 0.1 1

GD (\epsilon = 0.01) 0.335 0.009223 58.58
Adaptive RSAV (\epsilon = 0.01) 0.0002283 0.0002298 0.0002251

GD (\epsilon = 0.05) 0.3348 0.01584 diverge

Adaptive RSAV (\epsilon = 0.05) 0.004934 0.005023 0.004889
GD (\epsilon = 0.1) 0.3354 0.03808 diverge

Adaptive RSAV (\epsilon = 0.1) 0.01746 0.01924 0.0188

A10 XINYU LIU, JIE SHEN, AND XIANGXIONG ZHANG

Table 2
Loss of quadratic function after 1, 000 iterations with different noise levels \epsilon and (initial) step-

sizes \delta t. \scrL = 0 is used for both GD and adaptive RSAV.

(initial) step-size \delta t 0.01 0.1 1
GD (\epsilon = 0.01) 0.335 0.009223 58.58

adaptive RSAV (\epsilon = 0.01) 0.0002283 0.0002298 0.0002251
GD (\epsilon = 0.05) 0.3348 0.01584 diverge

adaptive RSAV (\epsilon = 0.05) 0.004934 0.005023 0.004889
GD (\epsilon = 0.1) 0.3354 0.03808 diverge

adaptive RSAV (\epsilon = 0.1) 0.01746 0.01924 0.0188

(a) \epsilon = 0.01. (b) \epsilon = 0.05. (c) \epsilon = 0.1.

Fig. 2. Loss curves for GD and adaptive RSAV with different noise levels. The learning rate
(lr) refers to the step size \delta t for GD and the initial step size \delta t in the adaptive RSAV.

3.2. Rastrigin function. Consider

(3.4) f(x) = f(\theta 1, \theta 2, . . . , \theta n) =

n\sum 

i=1

\theta 2i + 10n - 10

n\sum 

i=1

cos(2\pi \theta i),

which has many local minima. The function can be defined on any input domain
but it is usually evaluated on x \in [ - 5.12, 5.12] for i = 1, 2, . . . , n. The function has
a global minimum at f(x\ast ) = 0 located at x\ast = (0, 0, . . . , 0). In this example, we
compare the adaptive RSAV with popular optimization methods ADAM and NAG
with their default parameter settings as in [22]: NAG with \gamma = 0.9, and ADAM with
\beta 1 = 0.9, \beta 2 = 0.999, \varepsilon = 10 - 8. We shall keep using these default settings in all
following experiments.

Table 3
Loss of Rastrigin function after 100 iterations in 2D.

initial stepsize \delta t 0.001 0.01 0.1 1
GD (\scrL = 0) 12.93 37.86 109.2 diverge

adaptive RSAV (\scrL = 0) 13.05 13.03 12.95 2.608e-9
NAG 12.93 152 505.1 diverge
ADAM 32.28 12.94 12.93 8.958

We plot in the left of Figure 3 the convergence curves of different methods, and
observe that the RSAV converges much faster than ADAM with the same initial step-
size. We also plot in the right of Figure 3 the paths towards the minimum by different

Fig. 2. Loss curves for GD and adaptive RSAV with different noise levels. The learning rate
(lr) refers to the step-size \delta t for GD and the initial step-size \delta t in the adaptive RSAV.
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Table 3
Loss of Rastrigin function after 100 iterations in two dimensions.

Initial step-size \delta t 0.001 0.01 0.1 1

GD (\scrL = 0) 12.93 37.86 109.2 diverge
Adaptive RSAV (\scrL = 0) 13.05 13.03 12.95 2.608e-9

NAG 12.93 152 505.1 diverge

ADAM 32.28 12.94 12.93 8.958

SAV BASED ALGORITHM FOR DISCRETE GRADIENT SYSTEMS A11

Fig. 3. Rastrigin function: Left: Convergence curves with 100 iterations; Right: Paths with
first 10 iterations. The learning rate (lr) refers to the initial step size \delta t in the adaptive RSAV.

methods. We observe that RSAV enjoys a fast convergence if using a large initial step
size \delta t.

3.3. Rosenbrock function. This is a benchmark problem for optimization of
non-convex functions. We first consider the 2D case with

(3.5) f(x, y) = (a - x)2 + b(y  - x2)2,

it has a global minimum at (x, y) = (a, a2), which is inside a long narrow, parabolic
shaped flag valley. To find the valley is trivial, but to converge to the global minimum
is usually difficult.

We set a = 1 and b = 100 in the following experiments and other parameters the
same as in [20], and start with the initial point with coordinate ( - 3, - 4). In Table
4, we observe that a large step size can lead to blow-up for other methods except
for RSAV. Thus in Figure 4, we only show the results with the largest suitable step
sizes for other algorithms. For adaptive RSAV, we just use the same initial step size
as ADAM. This example reveals the benefits of modified energy decreasing property
of the RSAV. Although ADAM can get close to the global minimum at first, it still
goes to the wrong direction caused by the momentum and eventually goes back after
wasting many iterations. Only RSAV converges to the global minimum directly with
the guide of decreasing (modified) energy.

Table 4
Loss of Rosenbrock function after 1, 000 iterations in 2D.

step-size \delta t 10 - 4 10 - 2 1
GD (\scrL = 0) 0.7142 diverge diverge

adaptive RSAV (\scrL = 0) 0.01086 0.01122 0.0107
NAG 5.326 diverge diverge
ADAM 15198 12.5 1.2

Fig. 3. Rastrigin function. Left: Convergence curves with 100 iterations. Right: Paths with
first 10 iterations. The learning rate (lr) refers to the initial step-size \delta t in the adaptive RSAV.

3.2. Rastrigin function. Consider

f(x) = f(\theta 1, \theta 2, . . . , \theta n) =

n\sum 

i=1

\theta 2i + 10n - 10

n\sum 

i=1

cos(2\pi \theta i),(3.4)

which has many local minima. The function can be defined on any input domain
but it is usually evaluated on x \in [ - 5.12,5.12] for i = 1,2, . . . , n. The function has
a global minimum at f(x\ast ) = 0 located at x\ast = (0,0, . . . ,0). In this example, we
compare the adaptive RSAV with popular optimization methods ADAM and NAG
with their default parameter settings as in [22]: NAG with \gamma = 0.9 and ADAM with
\beta 1 = 0.9, \beta 2 = 0.999, \varepsilon = 10 - 8. We shall keep using these default settings in all
following experiments.

We plot in the left of Figure 3 the convergence curves of different methods and
observe that the RSAV converges much faster than ADAM with the same initial step-
size. We also plot in the right of Figure 3 the paths toward the minimum by different
methods. We observe that RSAV enjoys a fast convergence if using a large initial
step-size \delta t.

3.3. Rosenbrock function. This is a benchmark problem for the optimization
of nonconvex functions. We first consider the two-dimensional (2D) case with

f(x, y) = (a - x)2 + b(y - x2)2;(3.5)

it has a global minimum at (x, y) = (a,a2), which is inside a long narrow, parabolic
shaped flag valley. To find the valley is trivial, but to converge to the global minimum
is usually difficult.
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Table 4
Loss of Rosenbrock function after 1,000 iterations in two dimensions.

Step-size \delta t 10 - 4 10 - 2 1

GD (\scrL = 0) 0.7142 diverge diverge
Adaptive RSAV (\scrL = 0) 0.01086 0.01122 0.0107

NAG 5.326 diverge diverge

ADAM 15198 12.5 1.2
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Fig. 4. 2D Rosenbrock problem: Left: Convergence curves; Right: Paths with 1, 000 iterations
in the (\theta 1, \theta 2) domain.

Next, we consider the high dimensional cases with

(3.6) f(x) =

n\sum 

i=1

(a - \theta i)
2 + b

n - 1\sum 

i=1

(\theta i+1  - \theta 2i )
2,

with the global minimum f(x\ast ) = 0 at x\ast = (a, a2, a, a2, . . . , a, a2). We take a = 1
and b = 100, and the initial point (0, . . . , 0). The results with the dimension equal to
10, 100, and 1000 are shown in Figure 5. We observe similar convergence behavior
for all cases as in the two dimensional case.

(a) n = 10. (b) n = 100. (c) n = 1000.

Fig. 5. Loss of Rosenbrock function with dimension n.

Remark 3. If we compare the adaptive RSAV with Nesterov accelerated gradient
decent, the results are still quite good especially when the dimension is 1000. Thanks
to the adaptive scheme, the performance of RSAV in this problem independent of the
dimension.

Fig. 4. 2D Rosenbrock problem. Left: Convergence curves. Right: Paths with 1,000 iterations
in the (\theta 1, \theta 2) domain.

We set a= 1 and b= 100 in the following experiments and other parameters the
same as in [20] and start with the initial point with coordinate ( - 3, - 4). In Table 4,
we observe that a large step-size can lead to blow-up for other methods except for
RSAV. Thus in Figure 4, we only show the results with the largest suitable step-sizes
for other algorithms. For adaptive RSAV, we just use the same initial step-size as
ADAM. This example reveals the benefits of the modified energy decreasing property
of the RSAV. Although ADAM can get close to the global minimum at first, it still
goes to the wrong direction caused by the momentum and eventually goes back after
wasting many iterations. Only RSAV converges to the global minimum directly with
the guide of decreasing (modified) energy.

Next, we consider the high-dimensional cases with

f(x) =

n\sum 

i=1

(a - \theta i)
2 + b

n - 1\sum 

i=1

(\theta i+1  - \theta 2i )
2,(3.6)

with the global minimum f(x\ast ) = 0 at x\ast = (a,a2, a, a2, . . . , a, a2). We take a= 1 and
b = 100 and the initial point (0, . . . ,0). The results with the dimension equal to 10,
100, and 1000 are shown in Figure 5. We observe similar convergence behavior for all
cases as in the 2D case.

Remark 3. If we compare the adaptive RSAV with Nesterov accelerated gradient
decent, the results are still quite good, especially when the dimension is 1000. Thanks
to the adaptive scheme, the performance of RSAV in this problem is independent of
the dimension.
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Fig. 4. 2D Rosenbrock problem: Left: Convergence curves; Right: Paths with 1, 000 iterations
in the (\theta 1, \theta 2) domain.

Next, we consider the high dimensional cases with

(3.6) f(x) =

n\sum 

i=1

(a - \theta i)
2 + b

n - 1\sum 

i=1

(\theta i+1  - \theta 2i )
2,

with the global minimum f(x\ast ) = 0 at x\ast = (a, a2, a, a2, . . . , a, a2). We take a = 1
and b = 100, and the initial point (0, . . . , 0). The results with the dimension equal to
10, 100, and 1000 are shown in Figure 5. We observe similar convergence behavior
for all cases as in the two dimensional case.

(a) n = 10. (b) n = 100. (c) n = 1000.

Fig. 5. Loss of Rosenbrock function with dimension n.

Remark 3. If we compare the adaptive RSAV with Nesterov accelerated gradient
decent, the results are still quite good especially when the dimension is 1000. Thanks
to the adaptive scheme, the performance of RSAV in this problem independent of the
dimension.

Fig. 5. Loss of Rosenbrock function with dimension n.

3.4. Phase retrieval. The phase retrieval problem [5] can be formulated as

min
z\in CN

f(z) :=
1

2
\| \scrA (z\ast z) - b\| 2,

where z\ast \in C1\times N is the conjugate transpose of z, b\in RM and \scrA :CN\times N  - \rightarrow RM is a
linear operator. For the real-valued function f(z) with complex variable z := a+ ib,
where i is the imaginary unit and a, b \in R are real and imaginary parts of z, we can
define the Fr\'echet derivative induced by the natural choice of real inner product for
CN as the following [31]:

\nabla f(z) := \partial f(z)

a
+ i

\partial f(z)

b
= 2\scrA \ast (\scrA (z\ast z  - b))z,

where\scrA \ast is the adjoint operator of\scrA . Then the vanilla GD algorithm for minz\in CN f(z)
can be defined as in (1.2) using \nabla f(z) above. The GD method with a suitable step
sizing rule is also referred to as the Wirtinger flow [6].

In particular, f(z) is a nonconvex quartic polynomial function of z. For the theo-
rectical convergence of minimizing such a nonconvex function, with a spectral initial-
ization, i.e., z0 being the leading eigenvector of \scrA \ast (b), the convergence of Wirtinger
flow with high probability can be proven for a very special class of phase retrieval
problems [6, 4]. For solving phase retrieval with random initial guess, the conver-
gence for minimizing a smoothed amplitude flow based model was proven in [3]. In
terms of practical performance with only random initialization, state-of-the-art algo-
rithms such as the Riemannian Limited-memory Broyden--Fletcher--Goldfarb--Shanno
method (LBFGS) method could be much more efficient than GD algorithms [6].

We emphasize that we only use such phase retrieval problems as a testing example
to validate the performance of the RSAV method. So we test the algorithms with a
random initialization.

We compare vanilla GD, adaptive RSAV with \scrL = 0, and steepest descent (SD)
[8, 2]. The SD method is to use the optimial step-size in (1.2), and it is possible
to compute such an optimal step-size for a polynomial cost function. We test the
performance of the RSAV algorithm on the following phase retrieval problem. Let
\scrM i \in CN be independent and identically distributed Gaussian and \circ denote the
entrywise product. Let \scrF denote the Fourier transform. The linear operator \scrA is
defined by assigning \| \scrF (\scrM i \circ z)\| 2 to b, e.g., M

N =m. We consider the test case for the
true solution z\ast being an image of size n\times n with n= 256. So the size of unknown is
N = n2 = 2562. We consider two test cases:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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converged after 20000 iterations. However, to compute the optimal step size in the
steepest descent, at least two more evaluations of \scrA are needed, thus quite expensive.
More importantly, for a general cost function, it is difficult to find the optimal step
size. See section 4.4 for an analysis of the step size in the explicit SAV gradient
descent with restarting rk every iteration for quadratic functions.

(a) GD. (b) adaptive RSAV. (c) SD.

Fig. 6. Results after 20, 000 iterations for a phase retrieval problem with z\ast being a 256\times 256
real image of camera man, m = 6 Gaussian random masks and a random initial guess. The vanilla
gradient descent (GD) uses nearly largest stable constant step size \delta t = 0.5.

Fig. 7. (Left) Loss of different optimization algorithms V.S. number of iteration for phase
retrieval: the real image of camera man using 6 Gaussian masks; (Middle) Loss of different opti-
mization algorithms V.S. number of iteration for phase retrieval: the complex image of golden balls
using 10 Gaussian masks. (Right): Loss of different optimization algorithms V.S. number of iter-
ation for phase retrieval: the complex image of golden balls using 10 Gaussian masks. The vanilla
gradient descent (GD) uses nearly largest stable step size \delta t = 0.5.

Fig. 6. Results after 20,000 iterations for a phase retrieval problem with z\ast being a 256\times 256
real image of camera man, m= 6 Gaussian random masks and a random initial guess. The vanilla
GD uses the nearly largest stable constant step-size \delta t= 0.5.

A14 XINYU LIU, JIE SHEN, AND XIANGXIONG ZHANG

converged after 20000 iterations. However, to compute the optimal step size in the
steepest descent, at least two more evaluations of \scrA are needed, thus quite expensive.
More importantly, for a general cost function, it is difficult to find the optimal step
size. See section 4.4 for an analysis of the step size in the explicit SAV gradient
descent with restarting rk every iteration for quadratic functions.

(a) GD. (b) adaptive RSAV. (c) SD.

Fig. 6. Results after 20, 000 iterations for a phase retrieval problem with z\ast being a 256\times 256
real image of camera man, m = 6 Gaussian random masks and a random initial guess. The vanilla
gradient descent (GD) uses nearly largest stable constant step size \delta t = 0.5.

Fig. 7. (Left) Loss of different optimization algorithms V.S. number of iteration for phase
retrieval: the real image of camera man using 6 Gaussian masks; (Middle) Loss of different opti-
mization algorithms V.S. number of iteration for phase retrieval: the complex image of golden balls
using 10 Gaussian masks. (Right): Loss of different optimization algorithms V.S. number of iter-
ation for phase retrieval: the complex image of golden balls using 10 Gaussian masks. The vanilla
gradient descent (GD) uses nearly largest stable step size \delta t = 0.5.

Fig. 7. Left: Loss of different optimization algorithms versus number of iterations for phase
retrieval: the real image of camera man using 6 Gaussian masks. Middle: Loss of different opti-
mization algorithms versus number of iterations for phase retrieval: the complex image of golden
balls using 10 Gaussian masks. Right: Loss of different optimization algorithms versus number of
iterations for phase retrieval: the complex image of golden balls using 10 Gaussian masks. The
vanilla GD uses the nearly largest stable step-size \delta t= 0.5.

1. The true minimizer z\ast is a real image of camera man with size 256\times 256 as
shown in Figure 6, m= 6 Gaussian random masks and a random initial guess.

2. The true minimizer z\ast is a complex image of golden ball with size 256\times 256
(see [12] for details), m = 10 Gaussian random masks and a random initial
condition.

See Figure 7 for the comparision of the performance of gradient based algorithms.
For the vanilla GD, we use the nearly largest stable constant step-size \delta t = 0.5. In
Figure 8, we list a comparsion of the step-size \delta k in the adaptive RSAV method with
the optimital step-size in the SD method. We can see the performance of adaptive
RSAV has the closest performance to the SD. For the real image case, SD converged
after 10,000 iterations and RSAV converged after 20,000 iterations. However, to
compute the optimal step-size in the SD, at least two more evaluations of \scrA are
needed, and thus are quite expensive. More importantly, for a general cost function,
it is difficult to find the optimal step-size. See section 4.4 for an analysis of the step-
size in the explicit SAV GD with restarting rk every iteration for quadratic functions.

3.5. Recommendation system. Consider applying the optimization scheme
to train a recommendation system based on a matrix factorization model. Given a
rate matrix R \in \BbbR m\times n, where m is the number of users and n is the number of items,
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Fig. 8. The value of \delta k in each iteration for phase retrieval: Left: the real image of camera
man using 6 Gaussian masks; Right: the complex image of golden balls using 10 Gaussian masks.

3.5. Recommendation system. Consider applying the optimization scheme
to train a recommendation system based on matrix factorization model. Given a rate
matrix R \in \BbbR m\times n where m is the number of users and n is the number of items,
the model learns the user embedding matrix X \in \BbbR m\times d and item embedding matrix
Y \in \BbbR n\times d such that the product XY T is a good approximation for R. Here, d is the
embedding dimension and usually much smaller than m and n. Denote the user and
item matrix by X = [X1, . . . , Xu, . . . , Xm]T and Y = [Y1, . . . , Yi, . . . , Yn]

T , we have
the loss function as

(3.7) f(X,Y ) =
1

N\kappa 

\sum 

(u,i)\in \kappa 

(Ru,i  - XuY
T
i )2 + \lambda u

\sum 

u

\| Xu\| 22 + \lambda i

\sum 

i

\| Yi\| 22,

where \kappa the training set that the (u, i) pairs for which Ru,i is known, N\kappa is the number
of training data, \lambda u and \lambda i are the penalty parameters for embedding matrix. We
train the model with the MovieLens 100K dataset [11] which contains 100, 000 ratings
(1 - 5) from 943 users on 1682 movies. There is 80\% data split as the training data and
the rest date is used for the testing data, e.g., the training data set \kappa has size 80, 000.
All algorithms use the mini-batch gradient with batch size 80. For l2 regularization,
we set \lambda u = \lambda i = 10 - 4. For the linear operator \scrL = \lambda I  - \sigma \Delta in GD and RSAV, we
let \lambda = 10 - 4 and \sigma = 0.1. In Figure 9, for the training step, we run 10, 000 iterations
for the mini-batch gradient based methods with batch size 80, which is equal to 10
epochs. The result on the test data is shown in Table 5. We can see that RSAV
performs well in the training step, though its testing result is not the best, which
suggests issues of overfitting during the training step. This is more or less a modelling
issue, rather than the optimizaiton issue.

Fig. 8. The value of \delta k in each iteration for phase retrieval. Left: The real image of camera
man using 6 Gaussian masks. Right: The complex image of golden balls using 10 Gaussian masks.

the model learns the user embedding matrix X \in \BbbR m\times d and item embedding matrix
Y \in \BbbR n\times d such that the product XY T is a good approximation for R. Here, d is the
embedding dimension and usually much smaller than m and n. Denote the user and
item matrix by X = [X1, . . . ,Xu, . . . ,Xm]T and Y = [Y1, . . . , Yi, . . . , Yn]

T , and we have
the loss function as

f(X,Y ) =
1

N\kappa 

\sum 

(u,i)\in \kappa 

(Ru,i  - XuY
T
i )2 + \lambda u

\sum 

u

\| Xu\| 22 + \lambda i

\sum 

i

\| Yi\| 22,(3.7)

where \kappa is the training set for the (u, i) pairs for which Ru,i is known, N\kappa is the
number of training data, and \lambda u and \lambda i are the penalty parameters for embedding
matrix. We train the model with the MovieLens 100K dataset [11], which contains
100,000 ratings (1 - 5) from 943 users on 1682 movies. There is an 80\% data split
as the training data and the rest date are used for the testing data, e.g., the training
data set \kappa has size 80,000. All algorithms use the minibatch gradient with batch size
80. For l2 regularization, we set \lambda u = \lambda i = 10 - 4. For the linear operator \scrL = \lambda I  - \sigma \Delta 
in GD and RSAV, we let \lambda = 10 - 4 and \sigma = 0.1. In Figure 9, for the training step, we
run 10,000 iterations for the minibatch gradient based methods with batch size 80,
which is equal to 10 epochs. The result on the test data is shown in Table 5. We can
see that RSAV performs well in the training step, though its testing result is not the
best, which suggests issues of overfitting during the training step. This is more or less
a modelling issue, rather than the optimizaiton issue.

4. Convergence study for some SAV based algorithms. In this section, we
consider a more general version of the SAV scheme based on the following expanded
system:

\Biggl\{ 
\theta t = - 

\Bigl( 
r

[f(\theta )+C]q\nabla f(\theta ) +\scrL \theta  - \scrL \theta 
\Bigr) 
,

rt = q[f(\theta ) +C]q - 1(\nabla f(\theta ), \theta t),
(4.1)

where r(t) = [f(\theta ) +C]q and q \in (0,1). Note that (2.2) is a special case of the above
formulation with q= 1

2 . Similar to (2.3), we can construct a SAV scheme for (4.1) as
follows:
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Fig. 9. The training loss curve of different optimization algorithms for Recommendation Sys-
tem. Here GD refers to GD (\scrL = \lambda I - \sigma \Delta ) and RSAV refers to the adaptive RSAV (\scrL = \lambda I - \sigma \Delta ).

Table 5
The loss function on the test data after 10, 000 training iterations (10 epochs) with different

step-sizes. Here diverge means that the training step already diverges.

step-size \delta t 0.01 0.1 1 10
GD (\scrL = \lambda I  - \sigma \Delta ) 4.6504 2.1465 1.6438 diverge

NAG 2.1451 1.6439 diverge diverge
ADAM 1.8820 4.7194 diverge diverge

adaptive RSAV (\scrL = \lambda I  - \sigma \Delta ) 1.9090 1.9102 1.9156 1.9156

4. Convergence study for some SAV based algorithms. In this section, we
consider a more general version of the SAV scheme based on the following expanded
system

(4.1)

\Biggl\{ 
\theta t =  - 

\Bigl( 
r

[f(\theta )+C]q\nabla f(\theta ) + \scrL \theta  - \scrL \theta 
\Bigr) 

rt = q[f(\theta ) + C]q - 1(\nabla f(\theta ), \theta t),
where r(t) = [f(\theta ) +C]q and q \in (0, 1). Note that (2.2) is a special case of the above
formulation with q = 1

2 . Similar to (2.3), we can construct a SAV scheme for (4.1) as
follows:

(4.2)

\Biggl\{ 
\theta k+1 - \theta k

\delta t =  - 
\Bigl( 

rk+1

[f(\theta k)+C]q\nabla f(\theta k) + \scrL (\theta k+1  - \theta k)
\Bigr) 

rk+1 - rk
\delta t = q[f(\theta k) + C]q - 1(\nabla f(\theta k), \theta k+1 - \theta k

\delta t ).

4.1. Interpretation of the SAV method as a line search method. Let
A = (I + \delta t\scrL ). The system (4.2) can be rewrite as

\Biggl[ 
A \delta t \nabla f(\theta k)

[f(\theta k)+C]q

 - q[f(\theta k) + C]q - 1\nabla f(\theta k) 1

\Biggr] \biggl[ 
\theta k+1

rk+1

\biggr] 
=

\biggl[ 
A\theta k

rk  - q[f(\theta k) + C]q - 1(\nabla f(\theta k), \theta k)

\biggr] 

Fig. 9. The training loss curve of different optimization algorithms for a recommendation sys-
tem. Here GD refers to GD (\scrL = \lambda I  - \sigma \Delta ) and RSAV refers to the adaptive RSAV (\scrL = \lambda I  - \sigma \Delta ).

Table 5
The loss function on the test data after 10,000 training iterations (10 epochs) with different

step-sizes. Here diverge means that the training step already diverges.

Step-size \delta t 0.01 0.1 1 10

GD (\scrL = \lambda I  - \sigma \Delta ) 4.6504 2.1465 1.6438 diverge

NAG 2.1451 1.6439 diverge diverge

ADAM 1.8820 4.7194 diverge diverge
Adaptive RSAV (\scrL = \lambda I  - \sigma \Delta ) 1.9090 1.9102 1.9156 1.9156

\Biggl\{ 
\theta k+1 - \theta k

\delta t = - 
\Bigl( 

rk+1

[f(\theta k)+C]q\nabla f(\theta k) +\scrL (\theta k+1  - \theta k)
\Bigr) 
,

rk+1 - rk
\delta t = q[f(\theta k) +C]q - 1(\nabla f(\theta k), \theta k+1 - \theta k

\delta t ).
(4.2)

4.1. Interpretation of the SAV method as a line search method. Let
A= (I + \delta t\scrL ). The system (4.2) can be rewritten as
\Biggl[ 

A \delta t \nabla f(\theta k)
[f(\theta k)+C]q

 - q[f(\theta k) +C]q - 1\nabla f(\theta k) 1

\Biggr] \biggl[ 
\theta k+1

rk+1

\biggr] 
=

\biggl[ 
A\theta k

rk  - q[f(\theta k) +C]q - 1(\nabla f(\theta k), \theta k)

\biggr] 
.

After a simple Gaussian elimination, we obtain an explicit update formula for (4.2):
\left\{ 
 
 
rk+1 = 1

1+\delta tq
(\nabla f(\theta k),A - 1\nabla f(\theta k))

f(\theta k)+C

rk,

\theta k+1 = \theta k  - rk+1

[f(\theta k)+C]q \delta tA
 - 1\nabla f(\theta k).

(4.3)

Notice that the scheme above can be regarded as a line search method:

\theta k+1 = \theta k + \alpha kPk,

Pk = - A - 1\nabla f(\theta k),

\alpha k =
\delta t

1 + \delta tq (\nabla f(\theta k),A - 1\nabla f(\theta k))
f(\theta k)+C

rk
[f(\theta k) +C]q

> 0

with a search direction Pk and step-size \alpha k.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SAV BASED ALGORITHM FOR DISCRETE GRADIENT SYSTEMS A2319

The step-size \alpha k is guranteed to be positive. On the other hand, it is difficult
to establish any a priori control of \alpha k, and in practice \alpha k could become very small if
rk becomes very small. To avoid small rk, we consider a special version of the SAV
method by redefining rk = [f(\theta k) +C]q, and then we have

\alpha k =
\delta t

1 + \delta tq (\nabla f(\theta k),A - 1\nabla f(\theta k))
f(\theta k)+C

.

In this case, we can view q as a parameter, and the SAV method with rk = [f(\theta k)+C]q

at every iteration becomes the following line search method,

\theta k+1 = \theta k + \alpha kPk,(4.4a)

Pk = - A - 1\nabla f(\theta k),(4.4b)

\alpha k =
\delta t

1 + \delta tq (\nabla f(\theta k),A - 1\nabla f(\theta k))
f(\theta k)+C

,(4.4c)

which is equivalent to\left\{ 
   
   

rk = [f(\theta k) +C]q,
\theta k+1 - \theta k

\delta t = - 
\Bigl( 

\~rk+1

[f(\theta k)+C]q\nabla f(\theta k) +\scrL (\theta k+1  - \theta k)
\Bigr) 
,

\~rk+1 - rk
\delta t = q[f(\theta k) +C]q - 1(\nabla f(\theta k), \theta k+1 - \theta k

\delta t ).

(4.5)

In particular, for any \scrL \geq 0, A - 1 is always positive definite, and thus the
search direction Pk = - A - 1\nabla f(\theta k) is always a descent direction, i.e.,  - \nabla fT (\theta k)Pk =
\nabla f(\theta k)TA - 1\nabla f(\theta k)> 0. The Wolfe condition [27] for the line search method (4.4) is
as follows: there exists 0< c1 < c2 < 1 such that

f(\theta k + \alpha kPk)\leq f(\theta k) + c1\alpha k\nabla f(\theta k)TPk,(4.6a)

\nabla f(\theta k + \alpha kPk)
TPk \geq c2\nabla f(\theta k)TPk.(4.6b)

We recall first the following result [19].

Theorem 3. Assume f(\theta )\in C1 and f(\theta ) is bounded from below. For any descent
direction Pk, there exist intervals of step lengths satisfying the Wolfe condition.

Notice that \alpha (\delta t, q) = \delta t

1+\delta tq
(\nabla f(\theta k),A - 1\nabla f(\theta k))

f(\theta k)+C

is an increasing function of \delta t

and an decreasing function of q, and thus there exists \delta t and q such that
\alpha k =

\delta t

1+\delta tq
(\nabla f(\theta k),A - 1\nabla f(\theta k))

f(\theta k)+C

satisfies the Wolfe conditions (4.6).

We recall below another result [19].

Theorem 4. Assume f(\theta ) \in C1, f(\theta ) is bounded from below and \nabla f(\theta ) is Lip-

schitz continuous. Let cos\phi k =  - \nabla f(\theta k)
TPk

\| \nabla f(\theta k)\| \| Pk\| . If Pk is a descent direction and \alpha k

satisfies the Wolfe conditions, then the iteration \theta k+1 = \theta k + \alpha kPk satisfies
\sum 

k\geq 0

cos2 \phi k\| \nabla f(\theta k)\| 2 <\infty .(4.7)

Let \lambda min(A) and \lambda max(A) be the smallest and largest eigenvalues of the real
symmetric positive definite matrix A, and then by the Courant--Fischer--Weyl min-
max principle [7] and the spectral norm \| A\| = \lambda max(A), we have

PT
k APk

\| Pk\| 2
\geq \lambda min(A), \| APk\| \leq \| A\| \| Pk\| = \lambda max(A)\| Pk\| ,

and thus
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D
ow

nl
oa

de
d 

05
/1

0/
24

 to
 1

28
.2

10
.1

07
.2

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



A2320 XINYU LIU, JIE SHEN, AND XIANGXIONG ZHANG

cos\phi k =
PT
k APk

\| APk\| \| Pk\| 
=

PT
k APk

\| Pk\| 2
\| Pk\| 
\| APk\| 

\geq \lambda min(A)

\lambda max(A)
.

Therefore, the uniform lower bound on cos\phi k and (4.7) implies that \| \nabla f(\theta k)\| \rightarrow 0.
Thus the convergence of the SAV method (4.4) is ensured if using a line search to

find \delta t, q such that \alpha k satisfies the Wolfe condition (4.6). We observe that the above
algorithm involves computing A - 1\nabla f(\theta k) and the evaluation of f(\theta k) and f(\theta k+1).

Remark 4. In practice, one can use backtracking line search on \alpha k to ensure
that the Wolfe conditions are satisfied. This in general does not seem advantageous
over a simple backtracking line search on \alpha . However, for the SAV GD method (2.4),
i.e., A = I, our numerical observation is that the SAV scheme is often more efficient
than the backtracking line search on \alpha . With A= I, the scheme (4.4) reduces to the
following SAV GD method with two parameters \delta t > 0 and qk > 0:.

\theta k+1 = \theta k  - \alpha k\nabla f(\theta k),(4.8a)

\alpha k =
\delta t

1 + \delta tqk
\| \nabla f(\theta k)\| 2

f(\theta k)+C

(4.8b)

4.2. Standard convergence results. We recall that if \alpha k in the line search
method, (4.4) satisfies the Goldstein--Armijo rule [1, 9]: there exists 0 < c1 < c2 < 1
such that

f(\theta k) - c2\alpha k\| \nabla f(\theta k)\| 2 \leq f(\theta k  - \alpha k\nabla f(\theta k))\leq f(\theta k) - c1\alpha k\| \nabla f(\theta k)\| 2,(4.9)

and then it is shown (cf. Theorem 2.1.14 in [17]) that \| \nabla f(\theta k)\| \rightarrow 0.
Theorem 2.1.14 in [17] can be easily adapted to prove the following result for the

line search method (4.4).

Theorem 5. Assume that f(\theta ) is convex and \nabla f(\theta ) is Lipshitz continuous with
the Lipshitz constant L, i.e., \| \nabla f(y)  - \nabla f(x)\| \leq L\| x  - y\| . If \nabla f(\theta \ast ) = 0 and
\alpha k \in (0, 2

L ), then

\| \theta k+1  - \theta \ast \| 2 \leq \| \theta k  - \theta \ast \| 2  - \alpha k

\biggl( 
2

L
 - \alpha k

\biggr) 
\| \nabla f(\theta k)\| 2

and

f(\theta k) - f(\theta \ast )\leq 
1

[f(\theta 0) - f(\theta \ast )] - 1 + \| \theta 0  - \theta \ast \|  - 2
\sum 

k \alpha k(1 - L
2 \alpha k)

.

So for convergence, we need
\sum \infty 

k=0\alpha k(1 - L
2 \alpha k) = +\infty , which can be ensured if

\alpha k \in [a, b] \in (0, 2
L ) for constant bounds a > 0 and b < 2

L . Also, \alpha k < 2
L will ensure

f(\theta k+1)< f(\theta k).

4.3. Decreasing step-sizes for the SAV GD method. We derive from (4.8)
that

\alpha k =
\delta t

1 + \delta tqk
\| \nabla f(\theta k)\| 2

f(\theta k)

=
1

1/\delta t+ qk
\| \nabla f(\theta k)\| 2

f(\theta k)

\leq min

\biggl\{ 
\delta t,

f(\theta k)

qk\| \nabla f(\theta k)\| 2
\biggr\} 
.

For fixed \delta t, the above is often sufficient to ensure f(\theta k+1)< f(\theta k) when \theta k is far
away from the minimizer. It can be understood as follows.
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SAV BASED ALGORITHM FOR DISCRETE GRADIENT SYSTEMS A2321

Theorem 6. Assume that f(\theta ) is strongly convex, i.e., (\nabla f(y) - \nabla f(x), y - x)\geq 
m\| x - y\| 2 with m > 0, and \nabla f(\theta ) is Lipshitz continuous with the Lipshitz constant
L. Let \theta \ast be the minimizer and assume f(\theta \ast ) = 0. Then the following are sufficient
conditions to ensure \alpha k <

2
L for the SAV GD method with two parameters (4.8):

1. For any \delta t > 0, qk >
L2

4m2 .

2. Let \delta t\equiv a 2
L , where a> 0, qk >

a - 1
a

L2

4m2 .

Remark 5. The first sufficient condition implies that \alpha k =
\delta t

1+\delta tqk
\| \nabla f(\theta k)\| 2

f(\theta k)

will be

a decreasing step-size for any \delta t if qk \equiv q > L2

4m2 . Of course, finding 1
q <

4m2

L2 in general

is not easier than finding \delta t < 2
L . But if 2m2 > L, then 4m2

L2 > 2
L implies 1

q < 4m2

L2 is
easier to achieve.

Remark 6. As an example of the second sufficient condition, if we pick qk \equiv 1
2

and a= 2, then 1
2 > 1

2
L2

4m2 \leftrightarrow L< 2m is sufficient to ensure the SAV GD method with
qk \equiv 1

2 is decreasing with \delta t= 4
L , instead of \delta t < 2

L in (1.2).

Proof. First, by the strong convexity and Lipschitz continuity, we have

f(x)\geq f(y) + (\nabla f(y), x - y) +
m

2
\| x - y\| 2,

f(x)\leq f(y) + (\nabla f(y), x - y) +
L

2
\| x - y\| 2.

Since \theta \ast is the minimizer, \nabla f(\theta \ast ) = 0. For any \theta , we have

(\nabla f(\theta ) - \nabla f(\theta \ast ), \theta  - \theta \ast )\geq m\| \theta  - \theta \ast \| 2\Rightarrow (\nabla f(\theta ), \theta  - \theta \ast )\geq m\| \theta  - \theta \ast \| 2

\Rightarrow m
\| \theta  - \theta \ast \| 
\| \nabla f(\theta )\| =

(\nabla f(\theta ), \theta  - \theta \ast )
\| \theta  - \theta \ast \| \| \nabla f(\theta )\| 

\leq 1\Rightarrow \| \nabla f(\theta )\| \geq m\| \theta  - \theta \ast \| .

Hence,

m\| \theta  - \theta \ast \| \leq \| \nabla f(\theta )\| \leq L\| \theta  - \theta \ast \| 
and

m

2
\| \theta  - \theta \ast \| 2 \leq f(\theta ) - f(\theta \ast )\leq 

L

2
\| \theta  - \theta \ast \| 2.

With strong convexity m> 0, we have

2m2

L
\leq \| \nabla f(\theta )\| 2

f(\theta ) - f(\theta \ast )
\leq 2L2

m

and thus

2m2

L
\leq \| \nabla f(\theta )\| 

2

f(\theta )
\leq 2L2

m
.

Finally,

f(\theta k)

qk\| \nabla f(\theta k)\| 2
<

2

L
\leftrightarrow 1

qk
<
\| \nabla f(\theta k)\| 2

f(\theta k)

2

L
\Leftarrow 1

qk
<

4m2

L2
.

Remark 7. In general, if f(\theta ) is only convex but not strong convex, i.e., m = 0,
and f(\theta ) +C > 0, then we only have

\| \nabla f(\theta )\| 2
f(\theta ) +C

\leq L2\| \theta  - \theta \ast \| 2
f(\theta \ast ) +C

.
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This gives a lower bound control on step-size:

\alpha k =
\delta t

1 + \delta tqk
\| \nabla f(\theta k)\| 2

f(\theta k)+C

\geq \delta t

1 + qk\delta t
L2\| \theta k - \theta \ast \| 2

f(\theta \ast )+C

.

In this case, we can set qk \equiv q and do back tracking on \delta t for \alpha k to satisfy the
convergence condition or Goldstein--Armijo rule.

4.4. The step-size for quadratic functions. To see why the step-size \alpha k =
\delta tk

1+\delta tkqk
\| \nabla f(\theta k)\| 2
f(\theta k)+C

could be a good step-size to use, at least for a quadratic cost function,

consider a cost function f(\theta ) = 1
2\| A\theta  - b\| 2 with a square and positive definite matrix

A> 0. The SD algorithm can be written as

\theta k+1 = \theta k  - \beta k\nabla f(\theta k), \beta k =
\| AT (A\theta k  - b)\| 2

[AT (A\theta k  - b)]TATA[AT (A\theta k  - b)]
.

The method (4.8) with C = 0 is

\theta k+1 = \theta k  - \alpha k\nabla f(\theta k), \alpha k =
1

1
\delta tk

+ qk
\| AT (A\theta k - b)\| 2

1
2 (A\theta k - b)T (A\theta k - b)

.

Then for a very large \delta tk and qk \equiv 1
2 , we have

\alpha k \approx 
(A\theta k  - b)T (A\theta k  - b)

(A\theta k  - b)TAAT (A\theta k  - b)
, \beta k =

(A\theta k  - b)TAAT (A\theta k  - b)

(A\theta k  - b)TAATAAT (A\theta k  - b)
.

Let vi be orthornormal eigenvectors of A with eigenvalues of \lambda i. Since vi form a basis
for RN , let A\theta k  - b = r =

\sum 
i rivi. Let z = AT (A\theta k  - b), and then z = AT

\sum 
i rivi =\sum 

i ri\lambda ivi and Az =
\sum 

i ri\lambda 
2
i vi. We get

\alpha k \approx 
rT r

rTAAT r
=

rT r

zT z
=

[
\sum 

i rivi]
T [
\sum 

i rivi]

[
\sum 

i ri\lambda ivi]T [
\sum 

i ri\lambda ivi]
=

\sum 
i r

2
i\sum 

i \lambda 
2
i r

2
i

,

\beta k =
zT z

(Az)T (Az)
=

\sum 
i \lambda 

2
i r

2
i\sum 

i \lambda 
4
i r

2
i

.

We can see that \alpha k is very similar to the optimal step-size \beta k but not the same. In
practice, a random initial guess \theta 0 usually makes \alpha k a descent step-size in the first
few or many iterations for \delta tk \equiv 1 and qk \equiv q= 1

2 .

5. Concluding remarks. We proposed in this paper a new minimization algo-
rithm inspired by the scalar auxiliary variable (SAV) approach for gradient flows.
Since the direct application of the SAV approach to minimization problems may
converge to wrong solutions, we developed a modified version of the SAV approach
coupled with a relaxation step and an adaptive stradegy. The new algorithm en-
joys several distinct advantages, including unconditionally energy diminishing with a
modified energy, and empirical better performance than many first order methods.
In particular, it overcomes the difficulty in selecting proper step-sizes associated with
the usual gradient based algorithms. The energy diminishing property ensures the
convergence, and the relaxation step, built on a connection between the decreasing
modified energy and the original energy, helps to accelerate the convergence.
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We also presented a converence analysis for some SAV based algorithms which
include the new algorithm without the relaxation step as a special case. Numerical re-
sults for several illustrative and benchmark problems indicate that the new algorithm
is very robust and usually converges significantly faster than those popular gradient
decent based methods.

While we only considered a basic version of the SAV based approach which al-
ready showed its promise, it is clear that this approach can be combined with other
techniques of acceleration and generalization to the gradient decent methods. How to
further improve the robustness and accelerate the convergence rate of the SAV based
approach will be the subject of a future study.

REFERENCES

[1] L. Armijo, Minimization of functions having Lipschitz continuous first partial derivatives,
Pacific J. Math., 16 (1966), pp. 1--3.

[2] A. E. Bryson and W. F. Denham, A steepest-ascent method for solving optimum programming
problems, Appl. Mech., 29 (1962), pp. 247--257.

[3] J.-F. Cai, M. Huang, D. Li, and Y. Wang, Solving phase retrieval with random initial guess
is nearly as good as by spectral initialization, Appl. Comput. Harmon. Anal., 58 (2022),
pp. 60--84.

[4] T. T. Cai, X. Li, and Z. Ma, Optimal rates of convergence for noisy sparse phase retrieval
via thresholded Wirtinger flow , Ann. Statist., 44 (2016), pp. 2221--2251.

[5] E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninski, Phase retrieval via matrix
completion, SIAM Rev., 57 (2015), pp. 225--251.

[6] E. J. Candes, X. Li, and M. Soltanolkotabi, Phase retrieval via Wirtinger flow: Theory
and algorithms, IEEE Trans. Inform. Theory, 61 (2015), pp. 1985--2007.

[7] R. Courant and D. Hilbert, Methods of Mathematical Physics: Partial Differential Equa-
tions, John Wiley and Sons, New York, 2008.

[8] H. B. Curry, The method of steepest descent for non-linear minimization problems, Quart.
Appl. Math., 2 (1944), pp. 258--261.

[9] A. A. Goldstein, On steepest descent , J. Soc. Ind. Appl. Math. Ser. A, 3 (1965), pp. 147--151.
[10] Z. Guo, Y. Xu, W. Yin, R. Jin, and T. Yang, A Novel Convergence Analysis for Algorithms

of the Adam Family, preprint, arXiv:2112.03459, 2021.
[11] F. M. Harper and J. A. Konstan, The movielens datasets: History and context , ACM Trans.

Interact. Intell. Syst., 5 (2015), pp. 1--19.
[12] W. Huang, K. A. Gallivan, and X. Zhang, Solving phaselift by low-rank Riemannian opti-

mization methods for complex semidefinite constraints, SIAM J. Sci. Comput., 39 (2017),
pp. B840--B859.

[13] M. Jacobs, F. L\'eger, W. Li, and S. Osher, Solving large-scale optimization problems with
a convergence rate independent of grid size, SIAM J. Numer. Anal., 57 (2019), pp. 1100--
1123.

[14] M. Jiang, Z. Zhang, and J. Zhao, Improving the accuracy and consistency of the scalar
auxiliary variable (SAV) method with relaxation, J. Comput. Phys., 456 (2022), 110954.

[15] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, preprint,
arXiv:1412.6980, 2014.

[16] Y. Nesterov, A method for unconstrained convex minimization problem with the rate of con-
vergence o (1/k\^ 2), Dokl. Akad. Nauk. SSSR, 269 (1983), pp. 543--547.

[17] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Appl. Optim.
87, Springer, New York, 2013.

[18] Y. Nesterov, Lectures on Convex Optimization, Springer Optim. Appl. 137, Springer, New
York, 2018.

[19] J. Nocedal and S. Wright, Numerical Optimization, Springer, New York, 2006.
[20] S. J. Osher, B. Wang, P. Yin, X. Luo, M. Pham, and A. T. Lin, Laplacian Smoothing

Gradient Descent, http://arxiv.org/abs/1806.06317, 2018.
[21] H. Robbins and S. Monro, A stochastic approximation method , Ann. Math. Statist., 22 (1951),

pp. 400--407.
[22] S. Ruder, An Overview of Gradient Descent Optimization Algorithms, preprint,

arXiv:1609.04747, 2016.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

0/
24

 to
 1

28
.2

10
.1

07
.2

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/2112.03459
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1806.06317
https://arxiv.org/abs/1609.04747


A2324 XINYU LIU, JIE SHEN, AND XIANGXIONG ZHANG

[23] E. K. Ryu and W. Yin, Large-Scale Convex Optimization: Algorithms Analyses via Monotone
Operators, Cambridge University Press, Cambridge, 2022.

[24] S. J. Reddi, S. Kale, and S. Kumar, On the convergence of Adam and beyond , in Proceedings
of the International Conference on Learning Representations, 2018.

[25] J. Shen, J. Xu, and J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows,
J. Comput. Phys., 353 (2017), https://doi.org/10.1016/j.jcp.2017.10.021.

[26] J. Shen, J. Xu, and J. Yang, A new class of efficient and robust energy stable schemes for
gradient flows, SIAM Rev., 61 (2019), pp. 474--506.

[27] P. Wolfe, Convergence conditions for ascent methods, SIAM Rev., 11 (1969), pp. 226--235.
[28] X. Yang, Linear, first and second-order, unconditionally energy stable numerical schemes for

the phase field model of homopolymer blends, J. Comput. Phys., 327 (2016), pp. 294--316.
[29] Y. Zhang and J. Shen, A generalized SAV approach with relaxation for dissipative systems,

J. Comput. Phys., (2022), 111311.
[30] J. Zhao, A revisit of the energy quadratization method with a relaxation technique, Appl. Math.

Lett., 120 (2021), 107331, 11, https://doi.org/10.1016/j.aml.2021.107331.
[31] S. Zheng, W. Huang, B. Vandereycken, and X. Zhang, Riemannian Optimization Using

Three Different Metrics for Hermitian PSD Fixed-Rank Constraints: An Extended Ver-
sion, preprint, arXiv:2204.07830, 2022.

[32] Q. Zhuang and J. Shen, Efficient SAV approach for imaginary time gradient flows with
applications to one- and multi-component Bose-Einstein condensates, J. Comput. Phys.,
396 (2019), pp. 72--88, https://doi.org/10.1016/j.jcp.2019.06.043.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

0/
24

 to
 1

28
.2

10
.1

07
.2

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1016/j.jcp.2017.10.021
https://doi.org/10.1016/j.aml.2021.107331
https://arxiv.org/abs/2204.07830
https://doi.org/10.1016/j.jcp.2019.06.043

	Introduction
	A new SAV approach and its relaxed version
	A modified SAV approach
	A relaxed version of the modified SAV approach
	Selection of the operator <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	L?></0:tex-math></0:inline-formula>
	Diagonal matrix
	Discrete Laplacian matrix

	An adaptive algorithm based on the RSAV scheme (<0:xref 0:ref-type="disp-formula" 0:rid="disp14" >2.7</0:xref>)

	Numerical results
	A quadratic cost function
	Rastrigin function
	Rosenbrock function
	Phase retrieval
	Recommendation system

	Convergence study for some SAV based algorithms
	Interpretation of the SAV method as a line search method
	Standard convergence results
	Decreasing step-sizes for the SAV GD method
	The step-size for quadratic functions

	Concluding remarks
	References

