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Abstract. We study the convergences of three projected Sobolev gradient flows to the ground
state of the Gross—Pitaevskii eigenvalue problem. They are constructed as the gradient flows of the
Gross—Pitaevskii energy functional with respect to the H&-metric and two other equivalent metrics
on Hé, including the iterate-independent ap-metric and the iterate-dependent a,-metric. We first
prove the energy dissipation property and the global convergence to a critical point of the Gross—
Pitaevskii energy for the discrete-time H' and ao-gradient flow. We also prove local exponential
convergence of all three schemes to the ground state.
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1. Introduction. This paper concerns the following nonlinear Schréodinger ei-
genvalue problem, also known as the Gross—Pitaevskii [17, 4, 14, 25] eigenvalue prob-
lem:

(1) —Au+Vu+ BlulPu=Iu in Q,

' u=0 on 0f),
where  is a bounded Lipschitz domain on R¢ (d=1,2,3), V:Q — R is a nonnegative
potential energy, and 8 > 0. The Gross—Pitaevskii eigenvalue problem has been widely
used in the quantum physics community to represent the Bose-Einstein condensation
[6, 16, 11, 24]. The wavefunction associated with a stationary state of the system can
be described by an eigenfunction u to (1.1), with the eigenvalue A being the chemical
potential.

Many numerical methods have been proposed to compute the ground state of
the problem (1.1), i.e., the L?-normalized eigenfunction corresponding to the smallest
eigenvalue. Among them, one of the most popular classes of methods is the discrete
normalized gradient flow [5] which applies the backward Euler time-discretization for
the continuous L?-gradient flow of the constrained energy. Several alternative gradient
flows have been designed based on the idea of tuning the geometry of the gradient
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flows, including the projected Sobolev gradient flow [12, 23, 13, 31, 20, 18] and the
J-method [22, 1]. Apart from the gradient-flow-based methods, self-consistent field
iteration [7, 9, 28] is another class of methods that solves the nonlinear eigenvalue
problem by iteratively solving a series of linearized eigenvalue problems. There have
been other works investigating numerical methods for the Gross—Pitaevskii equation,
such as the analysis of finite-dimensional approximation [32], error estimate [8], two-
grid method [10], and multigrid method [29, 30], just to name a few. Finally, let
us also mention some analytical studies of the Gross—Pitaevskii equation/eigenvalue
problem, e.g., the formal analytical solutions [27], the stability [21], and the posteriori
analysis [15].

In this work, we focus on the projected Sobolev gradient flow approach to com-
puting the ground state of (1.1). More specifically, the ground state of (1.1) is char-
acterized by the minimizer of the following variational problem:

1 1 B
1.2 in E(u):= [ =|Vul>+=V]ul? +=ult, s.t. =1.
(12 min B)i= [ SV VIR Gl st el
Motivated by Riemannian optimization, i.e., optimization subject to a Riemannian
manifold constraint, finding the ground state of (1.1) is equivalent to minimizing the

energy functional E(u) over an infinite-dimensional Hilbert manifold M in Hg(£2)
defined by

M= {ue HYQ): ull p2(q) = 1}.
The projected Sobolev gradient flow for solving (1.1) is defined as
(1.3) u'(t) = = VEE(u(t)) = ~Pr,mx (Vx E(u(t))),

where VR E(u(t)) is the Riemannian gradient of E associated with the inner product
(,-)x and the manifold M, i.e., the projection of the gradient Vx E(u(t)) onto the
tangent space T, M. We are mainly interested in three projected Sobolev gradient
flows that correspond to (1.3) with different choices of inner products X: (i) the
projected H!-gradient flow [23] where (z,w)x = (z,w) 1) = (Vz, Vw) r2(0); (ii) the
projected ag-gradient flow [12] where (z,w)x = (2,w)q () = [ V2 Vw + Vzw; and
(iii) the projected a,-gradient flow [20] where

(z,w)x = (2,W)q, ) = / Vz - Vw+ Vaw + Blul? zw.
Q

The primary goal of this paper is to prove the convergence property of the time-
discretization of the three projected Sobolev gradient flows above.

Prior work and our contribution. The work [23] established the global expo-
nential convergence of the continuous projected H'-gradient flow to a critical point
of F. However, the convergence analysis of its discrete version remained largely open.
In fact, as stated in [20], even the energy decay and the convergence to critical points
was unclear for the discrete projected H'-gradient flow. In addition, the convergence
of the discrete projected ag-gradient flow has not been proved in previous literature,
though conjectured to be true from numerical studies. One major contribution of this
work is to prove the energy decay as well as the global convergence to a critical point
for the discrete projected H' and ag-gradient flow. Moreover, for the same schemes,
we also obtained the local exponential convergence rate.
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As for the projected a,-gradient flow, the work [20] obtained a global exponential
convergence of the continuous flow to the ground state and also proved the global
convergence (without a rate) of its forward Euler discretization. In the recent work
[31], the author obtained a local exponential convergence of the discrete projected a,,-
gradient flow under the assumption that the discrete iterates are uniformly bounded
in L>°(2). However, such an assumption is very difficult to verify in practice. The
second contribution of the current paper is to prove the local exponential convergence
of the discrete projected a,-gradient flow without such an assumption.

Let us also mention several previous works on minimizing related energy function-
als with more general spherical constraints. The local convergence for Hartree—Fock
and Kohn—Sham functionals over Grassmann manifold was established in [26]. In
[2], the authors generalized the approach in [31] to show a convergence result for
Kohn—Sham functional over Stiefel manifold.

Organization. The rest of this paper will be organized as follows. In section 2,
we review three discrete projected Sobolev gradient flows. In section 3 we state the
main convergence results on the three gradient flows. Sections 4-5 are devoted to the
proofs of the main convergence results. The Appendices A and B contain some useful
lemmas and auxiliary proofs of the main results.

2. Projected Sobolev gradient flow. This section reviews the projected
Sobolev gradient descent for solving (1.1) or, equivalently, (1.2), following [31, 20];
we refer to [31, 20] for more details. We remark that discrete flows/schemes consid-
ered in this paper are discrete only in time and there is no spatial discretization in
the scheme. The spatial discretization of the discrete projected Sobolev gradient flow
was given in [20] and references therein.

We would assume that V' € L*°(£2) and without loss of generality, we further
assume that 0 <V < V. < 00. Notice that since we consider the dimension d €
{1,2,3}, the embedding HJ(2) C L*(€2) holds and the energy E(u) defined in (1.2) is
finite for any u € HZ (2). The tangent space at the base u € M is given by

TuM={§€ Hy () : (u,€) 2@ =0} .

Recall that the problem (1.2) can be viewed as an optimization problem on the mani-
fold M, for which it is natural to consider the projected gradient method, i.e., update
against the Riemannian gradient direction in the tangent space and then retract the
iterate back to the manifold. The retraction map is clear in this setting:
R(u) = eEM YueH}(Q)\{0}.
||U||L2(Q)

However, the Riemannian gradient would depend on the inner product we equip at
u € H}(Q2), which leads to different schemes, including H!-scheme [23], ag-scheme
[12], and a,,-scheme [20], that are described in the following subsections.

2.1. H'-scheme. Let H(Q2) be equipped with the inner product (u,v) g1 (o) :=
(Vu,Vv)p2(q). For any w € HL(Q), by Riesz representation theorem, there exists a
unique Griw € H} () such that

(ngle)H(}(Q):(sz)LQ(Q) VZGH&(Q)

G o H} () — HE(2) is named as the Green’s operator. In other words, u = Giw
is the unique solution to —Au=w in Q with the boundary condition =0 on 2.
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For any u € M and h € T, M, it holds that
E(u-+th) — E(u)

(Vi E(u), h) g o) = lim

t—0 t
1 1 1
= lim -~ / 7|Vu+ch|2+7V|u+th\2+§|u+th|4

_ 1 2 1 2 é 4
/Q<2|Vu| +2V\u| +4|u|

= (VU,Vh)LZ(Q) =+ (Vu + 5\u|2u, h)LZ(Q)
- (u + G (Vu + Blul*u), h)H&(Q) ,

which implies that the H!-gradient of the energy E(u) can be evaluated as
(2.1) Vi E(u) =u+ Gy (Vu + Blul*u).

The lemma below computes the projection of any £ € M on the tangent space T, M.
LEMMA 2.1. Given u € M and £ € H}(Q), the projection of & onto T, M, with
respect to the H}-inner product, is
(€, u)r2(0)

ngu.
2
1Gm ullg1 o

(2.2) Promma (§) =& —

Proof. Let Pr, pm(€) be defined as in (2.2). First, Py, pm(€) € TuM since
(&, u) L2
”ngU”?{(}(Q)

= (g,U)L2(Q) - (E,U)LZ(Q) =0.

(,PTuM(g)au)L%Q) = (§7U)L2(Q) - (nguvu)L2(Q)

In addition, for any n € T, M, it follows from (G u,n)Hé(Q) = (u,n)2(q) =0 that

('PTUM(@,??)H(%(Q) = (5777)1{3(9)-

Therefore, Pr, r(§) is the desired projection. d
Combining (2.1) and (2.2), we obtain the Riemannian gradient of E with respect
to Hi-inner product at u € M:
Vi E(w) =Prmm (Vi E(w) = Pram (u+ G (Vu+ Blu’u))
1+ (G (Vu+ B|u|2u)7u)L2(Q)

=u+ G (Vu+ Blul®u) — iU

2
||gH1U||H3(Q)
With the above, the projected H'-gradient descent is given by
(2.3) um_l:R(unfa VzlE(un)), n=12,...,

where « is the stepsize.

2.2. ap-scheme. Another choice of the inner product on H} () is

(2,W)a0(0) = / Vz-Vw+Vzw,
Q
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whose induced norm ||-[|, ) is equivalent to H'HHC%(Q) since V € L>®(2) and is non-

negative. Similarly, there exists a unique Green’s operator G, : H3 () — H{ (£2) such
that

(2,Ga0W) 4 () = (2, W) L2(0) Vz € H3(Q),
and the ag-gradient of E(u) is
Vao E(u) = u+ BGa, (|ul*u).

The project of € € H}(Q) onto T, M, where u € H}(Q), with respect to the ag-inner
product, also reads similarly

(§7U)L2 Q
P Mao )=¢~ 72()@10”7
||gaouHa0(Q)
and hence the ag-scheme iterates as
(2.4) Uns1 =R (u, —a VEE(u,)), n=12,...,

where

VZSOE(U) = 7)7—11.M7a0 (VGOE(U’)) = P7—14,M7a0 (u + Bgao(‘u|2u))
1+ B (gao(lu|2u)>u)L2(Q)

2
||ga0u||a0(ﬂ)

2.3. au-scheme. Now we turn to the derivation of another projected gradient
flow with respect to an inner product that varies in the base u € Hg (£2). One intuition
is that one can have a derivative neater than (2.1) when choosing the inner product
carefully. More precisely, for a given u € HE () we consider the inner product (-,-)q,
defined by

=+ BGa, (Jul*u) -

a0 U

(2,W)a, () = / Vz-Vw+ Vzw + Blul?zw,
Q
with an associated Green’s operator G, : Hi(Q) — H(Q) satisfying
(Za gauw)au(Q) = (va)Lz(Q) Vz e H& (Q)
Then it is straightforward to show that the a,-gradient of the energy FE is given by
Va,E(u) = u.

Similar to Lemma 2.1, for u € M and & € HJ (£2), the projection of £ onto T, M, with
respect to the a,-inner product, is

(& u) L2

Prima, (&) =& —
IIQauuHiu(m

Ga, U

Therefore, the corresponding Riemannian gradient with respect to the a,-inner prod-
uct at u € M can be computed as

1

VZI%LE(H) = PTuM,au (vauE(U)) —U—
1Ga, vy, )

gauua

which leads to the projected a,-gradient descent scheme

(2.5) un+1:R(un—a ViE(u)) , n=1,2,....
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3. Main results. In this section, we state our main results on the convergence of
the H'-scheme, the ag-scheme, and the a,-scheme. All convergent results we establish
are in sense of strong convergence with respect to the Hg (2) norm.

3.1. Global convergence. It is proved in [20] that for a,-scheme (2.5) with
proper stepsizes, the energy decays along the iterations, i.e., E(up4+1) < E(uy), and
the sequence {u,}22, has a subsequence that converges in H0 (Q) to a critical point
of (1.2). However, as mentioned in [20], it was an open question whether the iterates
{un}22, generated by the H'-scheme (2.3) or the ag-scheme (2.4) converge to crit-
ical points with decaying energy. We give an affirmative answer to this question in
Theorems 3.1, 3.2, 3.3, and 3.4.

THEOREM 3.1 (energy decay for H!-scheme). Suppose that d € {1,2,3} and that
ug € M C H}(Q). Let {u,}° o C M be the iterates generated by the H'-scheme (2.3)
starting at ug. There exist constants C,, Cy, and Cy <1 depending only on 2, d, B,
V, and ||u0||H1(Q); such that as long as the step size satisfies 0 < amin < Ay < Amax <
Co V>0, the followings hold for any n>0:

< > ltall 3y < o

(i) ||VH1E Up ||H1(Q)<||VH1E( )||H1(Q)<C

(ili) E(un) = E(uny1) > 22 ||VE E(uy, ||H1(Q

THEOREM 3.2 (energy decay for ag-scheme). Suppose that d € {1,2,3} and that
ug €M C HY(Q). Let {u,}2q C M be the iterates generated by the ag-scheme (2.4)
starting at ug. There exist constants C,,, Cy, and C, <1 depending only on 2, d, B,
V, and ||u0||H01(Q), such that as long as the step size satisfies 0 < apin < @y < Qpax <
Co ¥V n >0, the followings hold for any n > 0:

< > ||un||a0(m <Cy.

(ii) ||v E(uy H < ”vaoE(un)Hao(Q <Cy.

(iii) E(up) — E(unH) > Qi | VR B (u, Hao(ﬂ)
The boundedness of {un} as in Theorem 3.1 (i) or Theorem 3.2 (i) implies that
the sequence {u,} has weak limits in H}(Q) (I gy () and ||, () are equivalent as

in Lemma A.1), and the following theorems show that any weak limit is a critical
point of E.

THEOREM 3.3 (global convergence for H'-scheme). Under the same assumptions
of Theorem 3.1, for any weak limit u* of {u,}5°, in H (), u* is a critical point of
the problem (1.2), i.e., VR, E(u*) =0, and {u,}52, has a subsequence that converges
to u* strongly in H}(2).

THEOREM 3.4 (global convergence for ag-scheme). Under the same assumptions
of Theorem 3.2, for any weak limit u* of {u,}5° in H(Q), u* is a critical point of
the problem (1.2), i.e., VX E(u*) =0, and {un}32o has a subsequence that converges
to u* strongly in H}(2).

For the a,-scheme, the energy decay property and the global convergence to
critical points are established in [20]. In addition, [20] provides a stronger global con-
vergence result for a,-scheme: the whole sequence {u,}52, converges to the ground
state, not just a critical point of the energy functional. The idea is that the a,-scheme
is positive preserving, i.e., u, > 0 implies u,41 > 0, and that the ground state is the
unique positive eigenfunction of (1.1). However, the positive preserving property is
not guaranteed for the H'-scheme or the ap-scheme, and hence the arguments in [20]
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for global convergence to ground state cannot be applied directly to the H!'-scheme
or the ag-scheme.

3.2. Fast local convergence. In this section, we always denote u* € H}(Q) as
the ground state of the eigenvalue problem (1.1). Consider the linearized problem at

*

u-:

(3.1) {(—A+V+,8|u*|2)u=/\u in ,

u=20 on 0f2.

By [31, Theorem 3.1], u* is also the ground state of the linearized problem (3.1) and
is Holder continuous, if € is convex Lipschitz or 92 is smooth.

Assumption 3.5 (positive eigengap for the linearized problem). Let Ao and A; be
the smallest and the second smallest eigenvalue of the problem (3.1), respectively. We
assume that \; > \g.

The existence of spectral gap of the linearized problem 3.1 in Assumption 3.5
can be verified using the Krein—Rutman theorem under very mild assumption on the
potential V; see, e.g., [3]. With the assumption above, we are ready to state the local
exponential convergence of both H'-scheme and a,-scheme.

THEOREM 3.6 (local convergence for H'-scheme). Suppose that assumptions
made in Theorem 3.1 and Assumption 3.5 hold. In addition, assume that the stepsizes
an < Qmax Where amax satisfies that

AL — A
(3.2) 1+L§ar2naxamaxmin{1, 14A0 0} <1,

where Ly is a constant depending only on Q, d, 8, V, u*, and HUOHH[}(Q)- Then the
sequence {u,}%, C M generated by the H'-scheme (2.3) with initial condition g
close enough to u* converges exponentially in H}(Q) to the ground state u*.

THEOREM 3.7 (local convergence for ag-scheme). Suppose that assumptions made
in Theorem 3.2 and Assumption 3.5 hold, and that amax satisfies (3.2) for some
constant Ly depending only on Q, d, 5, V, u*, and HUOHH[%(Q)' Then the sequence
{un}S2y generated by the ag-scheme (2.4) with initial condition ug close enough to u*
converges exponentially in H}(Q) to the ground state u*.

THEOREM 3.8 (local convergence for a,-scheme). Suppose that Assumption 3.5
holds. There exists constant C,, depending on ), d, 5,V , and ”uO”Hé(QV and constant
L4 depending on Q, d, 8, V, u*, and ”uO”Hé(Q)’ such that if 0 < amin < @p < Qmax <
Co, with (3.2), then the sequence {u,}52, generated by the a,-scheme (2.5) with ini-
tial condition ug close enough to u* converges exponentially in H}(Q) to the ground
state u*.

Theorem 3.6 is, to the best of our knowledge, the first quantitative convergence
result on the H'-scheme (for previous qualitative convergence results; see [23, 20]).
The result in Theorem 3.8 recovers the same exponential convergence result of [31]
but without making extra boundedness assumption on the iterates in L>°(€2), which
cannot be guaranteed. We remark that the spectral gap assumption is essential and
necessary to obtain exponential convergence even for inverse iterations of linear eigen-
value problems. On the technical level, the spectral gap guarantees the locally strong
convexity of the energy E with respect to the L?2-norm; see Lemma 5.1. We also refer
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to [19] for more discussions on the role of spectral gap assumption in convergence of
inverse iterations for nonlinear eigenvalue problems.

Let us remark that all three schemes we analyze in this work are semidiscretized
schemes without spatial discretization. The analysis of fully discretized schemes would
be an interesting future research direction.

4. Proof of global convergence. We prove Theorems 3.1 and 3.3 in this sec-
tion and omit the proofs of Theorems 3.2 and 3.4 that follow almost the same lines,
with the difference that all Hi-inner products and norms are replaced by ag-inner
products and norms. Note that ||'||ao(9) is equivalent to ||'HH3(Q) (see Lemma A.1).

4.1. Technical lemmas. We will frequently use the following Sobolev embed-
dings that hold for d < 4:

(4.1) ull gy < Crllullgy) Yue Hy(Q),
(4.2) lull =10y S C2 llullparsqy Yue LY3(Q).

In addition, the Poincaré inequality holds for some C3 > 0:
(4.3) lull 20y < Cs lull gy ) ¥ u€ Ho(R).

Note that the constants Cy, C3, and C5 only depend on ) and d, and that the
embeddings HE(Q) cC L4(Q) and H} () CC L?(Q) are both compact.

LEMMA 4.1. For any u € H}(Q), the following hold:
(1) NG ull gy ) < lull g-1(q);
(i) [[Garull gy o) < Cs llull p2(q)-
Proof. Let g=Ggiu. Then
2
19013 () = (9, G ) w0y = (9, u)r2(0) < 9l gy o) Null g-1(q) »
which implies ||QH1u||Hé(Q) < |lullg-1(q)- Combining the above equation with the
Poincaré inequality (4.3), one has
2
H9HL2(Q) ||9||H§(Q) <Cs HgHH%(Q) =C3(9,u)r2(0) < Cs ||g||L2(Q) Hu||L2(Q)
for some constant Cs. This implies that HnguHHS(Q) < Csllull p2(q)- d
LEMMA 4.2. For any u € M, it holds that
) 95 B0 1y ) < IV 10 B g
‘ 3
< Nl 3 0y + CsVinax + BCTCx |lull 3 o -
Proof. Note that
(Vi E(u),u)r2(0)

Vi E(u) =V E(u) + 5 H1U,
1Ga ull3 (o
and that
Vg E(u),u)r2
[ o
(VHIE(’LL),U)LZ Q
— () (V%E(u),u)wm =0.

”ngu”iIé(Q)
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So it holds that

(Vi E(u),u)r2(q)

2
1Gm ullg o

2 2

HE ()
which implies
Hv§1E(“)HH5(sz) IV E@llgy g -
One also has that
IV i Bl 13 ) < Nl 3 0 + 19e (V|13 ) + Bl G (Jul ) | 1

< llullgz ) + Cs IVull g2y + B|u?|l 41 g
(4.5) < Jull gz () + C8Vimax + BC2 H“SHLMS(Q)

= ||uHH3(Q) + C3Vinax + BCo ||uH?£4(Q)

3
< ||U’HH01(Q) + C3Vimax + BC?CQ ||u||H01(Q) )

where we used Lemma 4.1. This proves (4.4). |

LEMMA 4.3. For any ue M and £ € T, M, it holds that
1
(4.6) 1R(w+8&) = (ut+ Ol =5 €172 gy e + &l o) -

Proof. Tt follows from (u,§)r2(q) = 0 that Hu-l-inmz) = ||u\|iQ(Q) + ||§Hi2(sz) =
1+ ”5”22(9)’ which implies that

Rlu+) — (u+6) = (1 - 1) wre=((1+ 1) - 1)+,

lu+ &l 2

Set f(z) = (1+2)~ Y2 Then f'(z) = —3(1+ )32 > —1 for all z > 0. Therefore,
one can obtain that

02 (L4 €)  —1=1 (1€l — FO

€02 1€ /1 L
:/0 f(a:)dxz/o (—2) dr =~ €20,

Equation (4.6) then holds by combining the estimations above. d
LEMMA 4.4. For any u,v € H}(Q), it holds that

E(u+v) = B(u) = (Vi E(w),0) 3o
14 C2Vinax
< # [Elle

+%HUII2 1ol 2y + BCT Il loll?
2 Hg (@) 11 HG (9) 1 Hg () WWIHG (Q)

BCY | 4
T [0l 7z ) -
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Proof. We have
E(u+v) — E(u)

1 1 1 1
:/Q<2Vu—|—VU|2—2|Vu|2) +/Q<2V|u+v|2—2V|u|2)
p 4 B
+/Q(4|u+v| 4\u|

:/ (Vu- Vo + Vuv + Blul>uv)
Q

+;/ (Vo> + V|v[?) (
= (Vi E(u),v) 1o
5 [awravie)+ [ (2
which leads to
‘E(u +v) — E(u) — (VHlE(U)7U)H§(Q)‘

1 37 8
Si/ (\VU|2—|—V|U|2)—|—/ <2u|2|v|2+,3|u||v|3+4v|4>
Q Q

1 + CQVmax 3[3
< e, ||H1<m+

Plof+ Blofuo + §lol!)

iO

B
[ul*[ol* + Blo[*uv + ol ),

||U||L4(Q) HU||L4(Q

+ Blull oo HU||L4(Q) v ||UHL4(Q)

14 C2Vipax 36CY | 2 2
< % 1ol a3 @) + Tl lullzs ) 0z @)
3 BCT 4
+ BCT [ull gz ) 10l 2 0y + 741 ol e ) - O

4.2. Proofs of Theorems 3.1 and 3.3.

Proof of Theorem 3.1. Set

e 1/2
2 4

Cu= ({14 O3V ol ) + 252 Tualy)
Gg - Cu + CSVmax + ﬁCfCQCgv

and we will determine the constant C, < 1 later. Our goal is to prove the three
conclusions in Theorem 3.1, i.e.,

<> 113y < Cuu ¥ 2 0.

(ii) ||VH1E Up ||H1(Q) <|IVa E(u )||H1(Q) <CyVn>0.

(iii) E(un) — E(upy1) > 2ain || VR E(u, ||Hé @ YV n>0.
We prove (i), (ii), and (iii) by induction. It is clear that (i) holds for n = 0. Suppose
that (i) holds for 0,1,...,n and that (ii) and (iii) hold for 0,1,...,n — 1. We aim to
show that (ii) and (iii) hold for n and that (i) holds for n + 1.

It follows directly from Lemma 4.2 and (i) that (ii) holds for n. We focus on (iii)
then. Denote

Jn = V}%lE(un) and @, =u, — oznVZlE(un).
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The iterative scheme is
Unt1 = R(Upn) = R (un, — ngn) = Un — Qngn + Ry =y + Ry,
where
(4.7) R, =R (un — @ngn) — (Un — Qngn) -

According to Lemma 4.3, it holds that
O[% 2
||Rn||H3(Q) < ||gn||L2(Q) l[tn — O‘ngnHHg(Q)
(Cu t+ C)CECE
2 )

N ‘SQM

-(Cu+Cy)C3 HgnHHl(Q)

where we used o, < Cq < 1. Similar to (4.5) ||V g1 E(@y) || 3 () can be upper bounded
as

IV 1 E(an )| 12 2 < Nl g3 ey + C3Vimax il 2y + BCTC2 ||71n||§13(9)
< (1+ C3Vimax) [l g3 ) + BCTCo HﬂnH?{é(Q)
< (1 + C?%VmaX)(Cu + Og) + 50?02(Cu + 09)3»

where we used ||un||H1 @) ||un||H1(Q) + ap ||gn||H1(Q) < Cy + Cy4. Then using
Lemma 4.4, one can estlmate that

. 14 C2Vinax 3504
< (VHlE(Un),Rn)Hg(Q)‘ + + | Rn HHI(Q) + = ||UnHH1(Q) | Rn ||H1(Q)

BCY

+ 80 ||“n||H1(Q | Bn ||H1(Q)+ =R ||H1(Q)

~ 1 + C max
< Wl (190 By + -0 | Rl

38CY
+ﬂ1

2 _ 2 BCY 3
a2 0y 1Bl g1 ey + BCY 1l g2 ) | Ballrz ) + 41 ||Rn||H3(Q)>
2
< apCrllgnlli(q) »

where Cg is a constant depending only on 8, Cy, Cy, Vinax, C1, Ca2, and Cs, and that

E(un — angn) — E(un) — (Vi E(uy), _angn)H(}(Q)

]. + C:)?Vmax 2 35011 2 2
S longn 2 0) + =5 lunllz @) llongnll g @

504

+ B0 l[unll 13 ) ”O‘ngnHHl(Q) +— ”angn”Hl(Q

2 2 1 + C(3 max 3BC1 CZ 4 ﬂCfcg
gm0 + 1 -

; S+ BCICLC, +
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Combining the above two inequalities, one has
E(un) — E(unt1)
= E(un) = E(tin) + E(tin) — E(tin + Ry)
> an(leE(“n)agn)Hé(Q)
| Bt = anga) = B(un) = (Vi E(wn), ~0nga) my(o)|
— |E(tn) — E(tin + Ry)|

2
> o [|gnll s )

14+ C2Vinae  38C1C2 lerter
*angnHi{g(Q) ( ; T +BCICLCy + 1 ’

2
—aiCr ||gnHH1(Q)

(0%
> i HgnHHl(Q)’

if

4
5 5 + BCTC.Cy + 1

DN =

2 402 cic2
Omax (CR + 1 i Cdvmax + 3501 Cu 5 L g) S

which can be guaranteed by amax < Co, where C, is a sufficiently small constant.

This means that (iii) holds for n. Then we have that

ln 11773 ) < 2B (tn41) < 2B (un) <+ < zE(uo>

< ||u0||H1(Q +Vmax||“0||L2 o T3 ||“0HL4(Q)

50
L ol 77

(1+Cg max) ||u0||H1(Q) +— (@)

which implies that H“ﬂJrllng(Q) < C,, i.e., (i) holds for n + 1. The proof is hence
completed. ]

We need the following theorem for proving Theorem 3.3. Some ideas in the proof
of Theorem 4.5 follow the proof of Theorem 4.9 in [20].

THEOREM 4.5. Suppose that {v,}22 is a bounded sequence in M C HE () with

hm HVHlE Un HHl(Q =0.

Let v* be any weak limit of {v,}5% in HE(Q). Then v* is a critical point of E and
{v,}22 o has a subsequence that converges to v* strongly in Hg(£2).

Proof. By compact embeddings H}(Q2) cC L*(Q) and Hg(Q) cC L*(2), there
exists a subsequence of {v,}32, converging weakly in Hg(£2) and strongly in L?(£2)
and L*(Q) to some v* € H} (). Without loss of generality, we assume that

v, —v*,  weakly in H3(Q2) and strongly in L*(Q) and L*().

Note that [[Gy (vn — ")l g3 () < Cs llvn —v* || o) and [[Gar (Vn = Vo©)ll g1 ) <
C3|[Vup = V| 2 < C3Vinax [vn = v*|[2() by Lemma 4.1 (ii). We can obtain
that

Grivn — Gav®,  strongly in Hy () and L*(Q),
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and that

G (Vuy) = G (Vo*),  strongly in Hy(Q) and L*(Q).
Denote e, = v, — v*. Then limy, . [[€n[ 4(q) = 0. Note that
lon — (U*)BHH*I(Q) =[(v" +en)’ - (v*)gHHfl(Q)

<3 ||(”*)26"HH—1(Q) +3 Hv*eiHH—l(Q) + HeiHH—l(Q)
<30, H(v*)2€"||L4/3(Q) +3C, ||”*€3L||L4/s(9) +C2 H62||L4/3<Q)

3/4 3/4
=3Cy </ (U*)S/Bef/3> +3Cy </ (U*)4/36§/3>
Q Q
3/4
+Cz (/ 6;’;)
Q

<3Gy |[v* 1 Zaey lenll Laay +3C2 107 [l 1y lenlliaq) + Co lenllfaoy
— 0,

where we used (4.2). By Lemma 4.1 (i), we obtain that HQH1(U7?; - (U*)?’)HHg(Q) <
Hvz - (v*)3HH71(Q) thus
G (|vn)?vn) = Gr ([0*]?v*),  strongly in H}(Q2) and L*(Q).
Then one has that
Lt (G (Vo Bl ) ) gy 1+ (G (V07 4 B Po). ) gy

)

2 112
1Gr vnll () 1Ga v* [ 0
and hence that

V}%E(vn)
1+ (ng (V'Un + /8|Un|2vn)avn)L2(Q)

:Un+gH1(an+ﬁ|Un|2vn)_ H'Un

2
||gH1Un||H3(Q)
1+ (QH1 (Vo* + ﬁ\v*PU*),v*)LQ(Q

— 0" + G (Vo + Blv**v*) — i ’U*”2 )QHw*
H! H}(Q)

=VR E(*) weakly in H(Q),

which combined with lim,,_ o, valE(vn =0 yields that VEIE(U*) =0, i.e.,

iy @)
L+ (G (VU + Bl Po*),v%) 1)
v

2
1Ga1v* I3 ()

— AV + Vv + Bt Po* =

)

which states that v* is a critical point as well as an eigenfunction.

We then prove that v, converges strongly to v* in H}(2). It follows from
limp o0 || VR E(vn) || 1,y =0 and the boundedness of {v,}52, C H}(Q2) that
H H(Q) n

(VZlE(Un)7 vn)Hé () —0= (Vgl E‘(U*)7 ’U*>Hé(Q)a

ie.,
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||'UTLHiI[}(Q) + (Vop, vn) L2@) + (Blvn]*vn, vn) 12 (0)
1+ (G (Vo, + B|vn|2vn),vn)L2(Q)

||gH1”nH?qg(Q)
- HU*H%(Q) + (Vo*,v*) p2(a) + (Blv* 20", v") 2 (0
1+ (G (Vo + B|v*|2v*),v*)L2(Q)

||gH1U*H§{§(Q)
Note that the second, third, and fourth terms above converge respectively. One has
||Un||H5(Q) — ||’U*HH5(Q). Then the proof can be completed since the convergence of
norm together with the weak convergence implies the strong convergence. ]

Proof of Theorem 3.3. Tt follows from Theorem 3.1 (iii) that

> R~ 2F
S IVE B )|y 0 < —— 3" (Blun) = Bluns1)) € =2 (70) < o0,
TL:O min 71:0 min

which implies
0.

i 195500 =

Note that {u,}32, C M is bounded in H}(Q2). We can obtain the desired results by
applying Theorem 4.5. a

5. Proof of local convergence. We present the proof of Theorem 3.6 in this
section. Theorem 3.7 can be proved by following the same lines (see the remark at the
beginning of section 4) and its proof is hence omitted. Theorem 3.8 can also be proved
with a similar analysis with some different technical lemmas, which is presented in
Appendix B.

5.1. Technical lemmas.

LEMMA 5.1. Suppose that Assumption 3.5 holds. Then for any u € M C H}(Q),
it holds that

* )\0 - )\1 * 12
Blu) ~ By > 2T a2

as long as ||u — u*||ig(m <2.

Proof. We have
E(u) — E(u”)

1 5 1 2 B / 1 w2, 1 s2, B ospa
/9(2|Vu +2 [ul +4|u| Q 2|VU| +2 I +4‘U|
1 1 1 1
= (319t 3V + G ) = [ (Gowte+ gvinte Gt

1 1 1 1
> [ (Gl 4 i+ SPlu?) = [ (G90p e viep + S P,

Let u = (u,u*)Lz(Q)u* be the L?-orthogonal projection of u onto the subspace
spanned by u*, and let u; =wu — . It follows from the orthogonality that

[ H2L?(Q) + ||“LH22(Q) - Hu”i%ﬂ) =1
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Therefore,

1 1 1
[ (GvuP + 5viup+ Suiie) - [ (G190 P+ gvie+ GluPhep)

1 . 1 |2, *
=5 (W (A VA4 Bl ) o) = 5 (05 (A +V 4 Blu[)u) 12
1 * (2 1 * 2 )\0
i(ul\ ( A+V+5|u | )u||)L2(Q)+§(UL,( A+V+[‘3|U ‘ )ul)[g(g)*?
Ao )\1 Ao
25 ||u”||L2(Q ”“iHLZ(Q) )
)\
=T HuJ-HL?(Q)
Notice also that
2 2 . 2
”uJ_HL?(Q) =1- Hul\ HL2(Q) =1- ‘(u,u )LQ(Q)’
1 . ; 2
=1— 5 (Il oy + 103 aqy = e = w1 )
1 . 2
=l-7 (2 —flu—wu Hi%n))
* (12 1 * (14
=llu—u ||L2(Q) T lu—u ||L2(Q)-
So we have
o < A1 Ao |2 A1 — Ao 4
B(un) = E(u") 2 =5 [lu = u"[[720) — g llu—u 1220
A1 — Ao |2
Z— lw=u" 7200 -
. 1|2
if |lu—u HLQ(Q) <2. O

LEMMA 5.2. Let C, be the constant as in Theorem 3.1. Then there exists a
constant Ly depending only onQ,d, B, V, u*, and ||“0HH(}(Q) such that

Wl g730) =
holds as long as w € M and u satisfies that ||u||H1 o) < Cu and [Ju— || g1 (q) is
sufficiently small.

Proof. Denote
+ (G (Vu+ B|u|2u),u)L2(Q)

2
1Ga ulls (o)

’)/:
and
=+ (gH1 (Vu* + 5|U*|2U*)7“*)L2(Q)

(5.1) V=
G u* ||§15(Q)

It holds that
IVE B 11y 0y = Vi Ew) = Vi B |1
=||u+Gm (Vu+ Blul*u) = yGpru—u* — G (Vu* + Blu*|Pu*) — 7*gH1“*||H5(Q)
< Ml =l g+ 19 (Ve = Vi)l gy + Bl (6 = @)y
17 =1 G mull gy ) + 7 NG E (=)l )
<= w3y + Co IV (= w5l oy + B[ = (@) | -1 g
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+ 1= Csllull o) + Csv" llu— u™f| 2 (q)
< (14 C3Vinax + C37") llu = 0| gp ) Bl = ()| 1 ) + Csly =7,
where we used Lemma 4.1 and the Poincaré inequality (4.3). The rest of the proof is
to estimate ||u® — (u )3HH71(Q) and |y —~*|. We have
)3||H—1(Q) <G’ — (u ||L4/3 (©)

:C’gH(u—u*)(uz—FUU*"‘( )||L4/3

o~ G

SCQH(U_ 2HL4/3(Q)+02 H( )uu ||L4/3(Q)C H(U_U*)(U*)2HL4/3(Q)

—02</Q(u—u §U§>i+02</ﬂu—u éué(u*)g)z
+Cy (/Q(u—u)4(u*)§)

<Cslu— U*||L4(Q) HUH%‘l(Q) +Cs lu— U*||L4(Q) Hu||L4(Q) ||U*||L4(Q)

+ G llu = 7| gy [ 2 o)
< CPCy |ju— (O PP (HUH?{(}(Q) + el gz o) 1" g ) + ||U*||§{g(n))
<Ly HU*U*HHl(Q)a

where we have used (4.2) and L = C3Cy(C2% + C ||u* ||H1(Q + ||lu* ||H1(Q)) This

finishes the estimation of ||u® — Then we bound |y —~v*|. Set

| - o

= (G (Vu+ Bluf® U)7U)L2<Q>’ = (Gm (V" + Blu”[*u”),u”) 1o
and

B=|Gmulys ), B =Gmu |5 q) -
One has that
|A— A7
,’ G (Vu ,u)Lz(Q) (ng(VU*)’U*)LQ(Q)‘
+ 8] (G (), ) gy — (Grrr (107 P, 07) o |

)
(

’(QHl( u),u—u") 2 q) ’—F‘ (G (Vu—Vu*), u*)Lz(Q)‘
(

8| (Grm (1), = ) | + 8| G0 = (7))o
< ||gH1(VU)||L2(Q) lu—u ||L2(Q) + G (Vu—Vu )||L2(Q) HU‘*”LZ(Q)

4 8Gar (68)] gy 10— 07 gy + 8160 (6 — (69 | o I
<Cj G (Vu)ll g o 1w = vl g3 o) + Cs l1Ga (Ve = Vu')ll g g

+ BC3 || G (u3)||H01(Q) lw — " g ) + BC G (u? — (u*)g)HHé(Q)
<C3 ||VU||L2(Q) [lu— U*“Hg(g) + O3V (u~ U*)HL?(Q)

+BC3 H“BHHA(Q) [ —u*|| g1 () + BC3 [Ju? ~ (“*)SHHA(Q)
< (205 Vinax + BCE 6| -1 gy + BC L) 1w = " g3

=Lallu— u*“Hé(Q) )
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where we used (4.3), Lemma 4.1 (ii), and

[|u ) S O[] Lags ) = Co 1310y < CYCa l[ull 1 ) < CHCTCs,

oo

and set
L =2C3Vimax + BC3 |\u3y|H,1(Q) + BC3 L.
Note also that

1B = B°| =[G ullfy 0 — 191" g |
< ‘(ngngl(U—U*))Hg(Q)‘ + ‘(ng(U—U*)agHW*)Hg(Q)
< ||gH1u||H§(Q) G (u _U*)HH(}(Q) + G (u _U*)HH[}(Q) HgHW*HH(}(Q)
<OF |ull g2y 1w = w*ll g2y + C3 llu = w*[| 12y 47| 20

<203 ||u — " gy 0y = L [l — w* [l gy oy »
where Lp =2C3. Then it holds that

1
< B — B*|+ B*|A— A*|+ A*|B — B*
< o (B= B[+ B A— A"|+ A|B - B)

IV L
v=vl=—5 B

< : (L =]
> Bl|lU—Uu 1
B*(B* = Lp |lu — w*| g3 (q)) Ho ()

+B L llu =l gy gy + AL 1= 0y )

2(Lp+ B*La+ A*Lp) N
< (B")? Ju—u ||H5(Q)

for sufficiently small ||u — u*|| Hi () and the proof is hence completed. O

5.2. Proof of Theorem 3.6.

Proof of Theorem 3.6. Let us set
en=u"—u, and §,= ||6n||H3(Q) .

Let Ly be the constant in Lemma 5.2, and we assume that d,, is small enough such
that both Lemmas 5.1 and 5.2 are satisfied. It can be computed that

(2t — ) — anng(un)Hj{é @

* * 2
= ||tp —u H?{g(ﬂ) — 20, (Up, — u 7v7§1E(un))Hol(Q) +a2 valE(un)HHé(Q)
(5:2) < (14 L2a2)82 + 20 (en, VA E(wn)) 3o
=(1+ Liai)ég + 20 (en, VI E(un)) g1(a)

+ 20[n(€n, v7§1E(un) - le E(un))H&(Q)

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/10/24 to 128.210.107.25 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

684 Z. CHEN, J. LU, Y. LU, AND X. ZHANG
It follows from

1 1
Ew*) — E(uy) :/Q (2|Vun + Ven\2 + §V|un + en|2 + %un + en|4>

1 2 1 2 5 4
[ (390 + 31 + 2l

= / (Vun - Ve, + Vunen + Blun|*unes,)
Q

1 %
+§/Q(|Ven|2+V|en|2+ﬂ\u ?len]?)

36 p B .
[ (St Plenl? + B+ Flealt = Gl Pl
Q

1 *
:(envalE(un))Hé(Q)ﬁ_g‘/ﬂ(‘Ven‘2+V‘en|2+ﬁ|u ‘2|en|2)

36 B B «
(Gt Plenl? + B+ Flealt = Gl Pl
Q

that
(5.3)
* 1 *
(ens Vi Bl inyen = ) = Blun) — 5 [ (Veal? + Ve 8 Plea)
3
= [ (P Plenl? + Buncs + Slentt - Suie ).
Define

1+ (G (Vu, + ﬂu%),un)LZ(Q)

Tn =

9

2
||gH1un||Hé(Q)
and let v* be defined as in (5.1). Then it holds that
(ens Vi E(un) = Vi B(un)) mi () = —n (s Gurtin) g o)
In 2 2 2

(5.4) = —Yn(€n, un)r2(0) = 5 (HunHLZ(Q) +llenllz2 o) = llun + enHL2(Q)>

= 5 llewll

- 2 n L2(Q) .
Combining (5.2), (5.3), and (5.4), we can conclude that

* R 2
H(un —u*)— aanlE(un)HHé(Q)
<1+ Lﬁai)éi + 200 (E(u”) — E(un)) + anyn H€n||2L2(Q)

—an [ (Feal + VieaP + Blu” PleaP?)
Q

36 p B »
=2 [ (Glunllenl 4 BleaPunen + Flenl? = FlaPlenf?)
Q

(5.5)
2
We have v* = A\ since
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The minimality of g yields that
* 2 * 2
(5.6) /Q (Venl? + Vieal2 + Blu* Plenl? > Yo llenlZaqy =7 lenlZa -

It also holds that

A '6nl2+ﬁenl2unen+fen|4QU*%enf)
<-B

u* 1
JRE |2>|en|2+|en|2unen+4|en|4)
pCt
=5 [ (=glenlt+ Jleal') = F Heallucey < T2

We consider sufficiently small §,, such that v, <~+*+ %, which can be guaranteed
by the proof of Lemma 5.2. It thus follows from (5.5), (5.7), and Lemma 5.1 that

(5.7)

H(un—u*)—anv 1E(u, HH1

A 9 . A=A 2
<(1+ Lgai)éi — Q"T ||€nHL2(Q) + an (’Y + 1 Hen”L2(Q)

anBC

(@)

_an/ <|V6n|2+V|en|2+ﬁ\u*|2|en\2) 154
Q

. A —Xo 2
<(1+L2a2)0% + o <”y - >||en||L2(Q)

anﬁcil 54
2 "

- 04”/Q (IVen? + Vien|* + Blu*Plen]?) +
If ~* — % <0, then
[l = ) = €V Blw) [ 73
<(1+Liap)sn — an/ﬂ (IVenl? + Vea|* + Blu**len]) + %Cilaﬁ

<1+ LZ@?L — )0 +

2 O‘W//BC’E1 54
2 "
If % — 21720 > 0, then with (5.6), it holds that

H(Unfu*) aanlE Unp, ||H1(Q

Al— Ao\ 1
4 7

fozn/g(\Ven\2+V|en|2+B|u*|2|en|2)+

Al — A
—— °/ (IVen]? + Vien|? + Blu*Plea|?) +
4y Q

_ 4
< (1 . oz/\14>\)\0> 2+ 2% g
0

<(1+L2%02)8 +an (v _ / (IVenl? + Viea? + BluPleal?)

Oén501 4
2 On

<1+ Lﬁai)éi —ap,

anﬁcil 4
2 On

In both cases we have

(o~ %)~ 0B )]y

AL — A WBCYE
<<1+L3ai—anmin{l, 14)\00}+a 2015721> 62,
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ie.,

||(un—u )_OénVHlE Up, HH1

A=A WBCE N\
§<1+L3ai—anmin{l, 14)\ 0}+a§ 163) On.
0

Therefore, with R,, defined in (4.7), it holds that

On1 < [ (un = ") = @V E(un)|| 11 ) + | Bull iy e

(D)

_ 4 1/2
<1+ LQOzi — a, min< 1, M=o + a0 5,2L On
40 2

g n?

2
7”(0 + a,Cy)C2L262

where Ryl 1 () is established using (4.8) and Lemma 5.2. Note that we have as-
sumed (3.2), that guarantees that

. A1 — Ao
max 14+ L%0% —amin{ 1, <1.
a€[@min;¥max] { g 4o

Thus §,, sufficiently small, we can conclude that 6,11 < Csd,, where Cs € (0,1) is a
constant. This proves the locally exponentially convergent rate. 0

Appendix A. Equivalent norms.

LEMMA A.1 (equivalence between ||- ||H1 @ and |||l ). For any u e HE(S), it
holds that

lull i3 0y < tllag ey < Coto ] 13 -

where Cq, = (1 + CgV}nax)l/Q and C3 is the constant in the Poincaré inequality (4.3).

Proof. Use the definition of ||-HH5(Q) and |||, ) as well as the Poincaré inequal-
ity. ]

LEMMA A.2 (equivalence between ||- ||H1(Q) and |||, . (o)) Let u* be the ground
state of the problem (1.1). For any u € Hg(S2), it holds that

Hu”Hé(Q) < Hu”au* () < Cau* u”Hé(Q) R

where Cy,. = (14 VimaxC3 + BCF Hu*||2L4(Q) )1/2, where Cy and C3 are the constants
n (4.1) and (4.3), respectively.

Proof. Tt holds that

2 2 *
e < 2y = [ 9+ VIl + Bl Pl
Q
2 2 * (12 2
< Nl ) + Vinax [ullz2 ) + B 1w Laq) lullzq)

< (1 Vi3 + BCE " gy ) Nl - 0
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LEMMA A.3 (stability of ||-[|,, ) around u*). Let u* be the ground state of the
problem (1.1). For any € >0, there exists §(e) >0, such that

1
T lella, <llella,. <@ +e)lizlla, Vze HY(Q),

Q% —

holds for any u € HL(Q) with |lu — u*||Hé(Q) <d(e).
Proof. We have that

2 2 * * *
I12lla,. = I2lla, ﬂ‘/(|u|2|u DRER Sﬂ/ lu— | fut ] ]2
Q Q
* * 2
<Bllu—u*{pao llu+u®|paq) 12740
* * * 2
< BCH =gy (210" gy + = 0 lLggiey ) 1212, o -
Thus, it suffices to set §(e) as small enough. O

Appendix B. Proof of Theorem 3.8. We display the proof of Theorem 3.8
in this section. According to [20, Lemma 4.7], the iterates {u,}72, generated by
the a,-scheme yields energy decay and hence ||un||Hé(Q < C, as long as apg.x < Cy,
where C,, and C, are constants depending only on Q, d, 8, V, and HUOHH(}(Q)' We
would need a similar result as Lemma 5.2, for which we prove the following lemma.

LEMMA B.1. Let u* be the ground state of the problem (1.1). For any u € M with
[ ull 13 () < Cus it holds that

1Gast = Gaye "l 0y < Lo 1= "l (0

where Lg = (C3 + BCTC3(C,, + ||“*||Hg(n)))
Proof. Denote g =G4, u and g* =G, . u*. Then

~Ag+Vg+BlufPg=u, —Ag*+Vg*+Blu*|?g" =u",
which lead to
~Ag—9) +V(g—g") + BluP(g — ") = (u— ") + B> — [ul?)g.
Therefore,
991 = [ (6= 0a =)+ [ B = luPatg ~ 9"
<llu—=ull 20y g = 9% 22 (0
+ B llw—u™l s llu+ vl Loy N9l Lay 19 = 97l Lo (o)

< Cg [ U*“au* Q) g — Q*Hau* Q)
+ 804 lu— gy g I+ u”

|H3(Q) HQHH(}(Q) g — 9*||Hé(9) ,

where we used (4.3) and (4.1). This implies that

9= 90 < (3 + BCH (Cu+ 1 gz e ) Nz ) 26 = 7l -

Copyright (C) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/10/24 to 128.210.107.25 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

688 Z. CHEN, J. LU, Y. LU, AND X. ZHANG

Then we can obtain the desired results by noticing

(B.1) ||gauu||Hé(Q) = ||9||H3(Q) <Cs

from

2 2
19023 ) < 11902, @) = (Gaut: 9 a (@)
= (u,9)r2(9) < lull L2 91l L2 ) < Csllgll gy ) - a

The next lemma establishes a similar estimate as in Lemma 5.2.

LEMMA B.2. There exists some constant L, depending only on Q, d, B, V, u*,
and ||u0HH3(Q) such that

HVQE(U)H <Lgllu—u"l,.. (0

a,x ()

holds for all w e M as long as ||u||Hé @ S Cu and [[u—u*(|, . (o) is sufficiently small.
Proof. Denote

1 1

v= =
1Ga,ull2, @) (Gauttst) 20

and
1 1

1Ga w2 ) (Gaue ") 20y

*

7y

By (4.3), (B.1), and Lemma B.1, one has that

‘(gauu»“)Lz(Q) - (gau*U*»U*)Lz(Q)‘
< ‘(ga“u, u— U*)L2(Q)‘ + ’(Qauu = Ga, U U ) 2
SN Ga, ull L2y llu =l L2 (@) + 19au s = Ga,e w12 10"l L2 (0
<Cj [Gantll gz ) llu = u*lly,. @) + C3l1Ga, v = Ga, v, . (o)
< (Cg +C3Lg) |lu— g )
and hence that
|(Ga ) gy = (G " 0" 12

(Ga,usw) 12 () (G W55 U) 20

Y =" = <Lyllu—ul,,.

for some constant L and sufficiently small [ju —u*||, _ (). Then it holds that

vauE(u)Hau*(Q)
= V& E(w) - VE  E(u")

ot = =G0, =" 47 G, 0

<lu=ulla,. )+ 1 =71 19a,ulla,. ) +7" 1Gayt = Ga,. w7

< (14 LyCa,. C3 +7*Lg) llu = u* |, (0

Ay

where we used (B.1), Lemma A.2, and Lemma B.1. |
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Proof of Theorem 3.8. Denote
1

(gau71 Un, Un)Lz(Q) .

en =u" —Up, Op= ”enHau*(Q)a and v, =

We assume that u,, is close enough in H'”Hé(fl) to u* so that the results in Lemmas A.3
and B.2 are true with sufficiently small e satisfying

AL —A
max (1 +¢)? ((1+e)2(1+L2a2)amin{1, ! O}) <1.
€ [min;Omax] g 4Xo

It can be computed that

H(un —u*) @, VR E(uy) ’

aun(ﬂ)

w2 * R 2
< " — -2 n ( n — ava E n ) n
<lun = u™lly,, @) = 20m (un —u un B (t1n) aun(ﬂ)+a
< (14 € (1+ L202)57 + 20n(en, V| B(un))a,
= (1+&)*(1+ Lgay)dy, + 20m(en, tn)a,, @) — 20mYn (€nsGau, Un) ., (o) -

By some computations similar to those in the proof of Theorem 3.6, it holds for
sufficiently small §,, that

2

VZ}M E(uy)

A,y ()

H(un —u*) — anVinE(un) ’

aup ()

AL — A WBCE
<((1+62(1+L%2) —apmin{1, L2014 & ”Bcléfl 52,
g 4 2 )

and hence that
H(un —u*) — a, VR E(uy,)

Qo

Aoy * (Q)

Ay — A\ . 4 1/2
<(1+e) ((1+e)2(1+L3ai)—anmin{l, = °}+O‘ gcl(sg) 5.
0

Note that
Upt1 =R (un - anVZinE(un)) = (un — anVﬁn’E(un)) +R,,
where
R, = (un — aanun E(un)) -R (un — anV?unE(un))
can be estimated similar to Lemma 4.3 that

2
VR E(uy) ]

Aup

2
(8%
1Rl ) < 22

Uy, — anvfu E(uy)

L2(Q)

2
an
< 7L§53(CW Cy + anLyby).

a,x ()

Then we can conclude the locally exponential convergence rate via

Ont1 < H(un —u*) — anvZ}un E(uy)

+ 1Rl
Qo

o 4 1/2
<(1+e) ((1 +e)(1+L2al) - anmin{l, AZ)\*M } + O‘”gcl 53) On

2
+ %Liéi(cau* Cu + anLydy,)
< 056717
where Cs € (0,1) and 4, is sufficiently small. O

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/10/24 to 128.210.107.25 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

690

(1]
2]
3]
(4]

[5]

(8]
[9]

(10]

(11]

(12]

(13]

(14]
(15]
[16]

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

Z. CHEN, J. LU, Y. LU, AND X. ZHANG
Acknowledgment. We thank Daniel Peterseim for some helpful comments.

REFERENCES

R. ALTMANN, P. HENNING, AND D. PETERSEIM, The J-method for the Gross-Pitaevskii eigen-
value problem, Numer. Math., 148 (2021), pp. 575-610.

R. ALTMANN, D. PETERSEIM, AND T. STYKEL, Energy-adaptive Riemannian optimization on
the Stiefel manifold, ESAIM Math. Model. Numer. Anal., 56 (2022), pp. 1629-1653.

H. AMANN, Fized point equations and nonlinear eigenvalue problems in ordered Banach spaces,
SIAM Rev., 18 (1976), pp. 620-709, https://doi.org/10.1137/1018114.

R. ATrE, P. K. PANIGRAHI, AND G. S. AGARWAL, Class of solitary wave solutions of the one-
dimensional Gross-Pitaevskii equation, Phys. Rev. E, 73 (2006), 056611.

W. Bao AND Q. Du, Computing the ground state solution of Bose—FEinstein condensates
by a mnormalized gradient flow, SIAM J. Sci. Comput., 25 (2004), pp. 1674-1697,
https://doi.org/10.1137/51064827503422956.

. N. BosEg, Plancks Gesetz und Lichtquantenhypothese, Z. Phys., 26 (1924), pp. 178-181.

E. Cancks, SCF algorithms for HF electronic calculations, in Mathematical Models and Meth-

ods for ab Initio Quantum Chemistry, Lecture Notes in Chem. 74, Springer, Berlin, 2000,
pp. 17-43.

E. CANCES, R. CHAKIR, AND Y. MADAY, Numerical analysis of nonlinear eigenvalue problems,
J. Sci. Comput., 45 (2010), pp. 90-117.

E. CANCES AND C. LE BRris, On the convergence of SCF algorithms for the Hartree-Fock
equations, ESAIM Math. Model. Numer. Anal., 34 (2000), pp. 749-774.

C. CHIEN AND B. JeENG, A two-grid discretization scheme for semilinear ellip-
tic eigenvalue problems, SIAM J. Sci. Comput., 27 (2006), pp. 1287-1304,
https://doi.org/10.1137,/030602447.

F. DALrovo, S. GIORGINI, L. P. PITAEVSKII, AND S. STRINGARI, Theory of Bose-Einstein
condensation in trapped gases, Rev. Mod. Phys., 71 (1999), 463.

I. DANAILA AND P. KAzEMI, A new Sobolev gradient method for direct minimization of the
Gross—Pitaevskis energy with rotation, SIAM J. Sci. Comput., 32 (2010), pp. 24472467,
https://doi.org/10.1137/100782115.

I. DANAILA AND B. Proras, Computation of ground states of the Gross-Pitaevskit func-
tional via Riemannian optimization, STAM J. Sci. Comput., 39 (2017), pp. B1102-B1129,
https://doi.org/10.1137/17M1121974.

. Dast, D. Haag, H. CARrTARIUS, J. MAIN, AND G. WUNNER, FEigenvalue structure of a
Bose-Einstein condensate in a-symmetric double well, J. Phys. A, 46 (2013), 375301.

. DussON AND Y. MADAY, A posteriori analysis of a nonlinear Gross-Pitacvskii-type eigen-
value problem, IMA J. Numer. Anal., 37 (2017), pp. 94-137.

. EINSTEIN, Quantentheorie des einatomigen idealen Gases (Zweite Abhandlung), SB Preuss.
Akad. Wiss. Phys-math. Klasse, 13 (1925), pp. 3—14.

. GARDINER, Particle-number-conserving Bogoliubov method which demonstrates the validity
of the time-dependent Gross-Pitaevskii equation for a highly condensed Bose gas, Phys.
Rev. A, 56 (1997), 1414.

P. HeD, B. Stamm, AND T. P. WIHLER, Gradient flow finite element discretizations with
energy-based adaptivity for the Gross-Pitaevskii equation, J. Comput. Phys., 436 (2021),
110165.

P. HENNING, The dependency of spectral gaps on the convergence of the inverse iteration for
a nonlinear eigenvector problem, Math. Models Methods Appl. Sci., 33 (2023), pp. 1517—
1544.

P. HENNING AND D. PETERSEIM, Sobolev gradient flow for the Gross—Pitaevskii eigenvalue
problem: Global convergence and computational efficiency, SIAM J. Numer. Anal., 58
(2020), pp. 1744-1772, https://doi.org/10.1137/18M1230463.

A. JACKSON, G. KAVOULAKIS, AND E. LUNDH, Stability of the solutions of the Gross-Pitaevskii
equation, Phys. Rev. A, 72 (2005), 053617.

E. JARLEBRING, S. KvAaaL, AND W. MICHIELS, An inverse iteration method for eigenvalue
problems with eigenvector nonlinearities, SIAM J. Sci. Comput., 36 (2014), pp. A1978—
A2001, https://doi.org/10.1137/130910014.

P. Kazemi AND M. ECKART, Minimizing the Gross-Pitaevskii energy functional with the
Sobolev gradient—Analytical and numerical results, Int. J. Comput. Methods, 7 (2010),
pp. 453-475.

. P. PITAEVSKII, S. STRINGARI, AND S. STRINGARI, Bose-FEinstein Condensation, Internat.
Ser. Monogr. Phys. 116, Oxford University Press, Oxford, 2003.

wn

Q » @ o

=

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/1018114
https://doi.org/10.1137/S1064827503422956
https://doi.org/10.1137/030602447
https://doi.org/10.1137/100782115
https://doi.org/10.1137/17M1121974
https://doi.org/10.1137/18M1230463
https://doi.org/10.1137/130910014

Downloaded 05/10/24 to 128.210.107.25 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

[25] J.

[26] R.

[27] C.

[28] P.

[29] H.
[30] N.

[31] Z.

[32] A

THE GROSS-PITAEVSKII EIGENVALUE PROBLEM 691

ROGEL-SALAZAR, The Gross-Pitaevskii equation and Bose-Einstein condensates, FEur. J.
Phys., 34 (2013), 247.

SCHNEIDER, T. ROHWEDDER, A. NEELOV, AND J. BLAUERT, Direct minimization for calcu-
lating invariant subspaces in density functional computations of the electronic structure,
J. Comput. Math., (2009), pp. 360-387.

TRALLERO-GINER, J. C. DRAKE-PEREZ, V. LOPEZ-RICHARD, AND J. L. BIRMAN, Formal
analytical solutions for the Gross-Pitaevskii equation, Phys. D, 237 (2008), pp. 2342-2352.

UPADHYAYA, E. JARLEBRING, AND E. H. RUBENSSON, A density matriz approach to the con-
vergence of the self-consistent field iteration, Numer. Algebra Control Optim., 11 (2021),
pp. 99-115.

XIE AND M. XIE, A multigrid method for ground state solution of Bose-Einstein condensates,
Commun. Comput. Phys., 19 (2016), pp. 648-662.

ZHANG, F. Xu, AND H. XIE, An efficient multigrid method for ground state solution of
Bose-FEinstein condensates, Int. J. Numer. Anal. Model., 16 (2019), pp. 789-803.

ZHANG, Ezxponential convergence of Sobolev gradient descent for a class of nonlinear eigen-
problems, Commun. Math. Sci., 20 (2022), pp. 377-403.

. ZHOU, An analysis of finite-dimensional approximations for the ground state solution of

Bose-Einstein condensates, Nonlinearity, 17 (2003), pp. 541-550.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



	Introduction
	Prior work and our contribution
	Organization

	Projected Sobolev gradient flow
	<0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	H1?></0:tex-math></0:inline-formula>-scheme
	<0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	a0?></0:tex-math></0:inline-formula>-scheme
	<0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	au?></0:tex-math></0:inline-formula>-scheme

	Main results
	Global convergence
	Fast local convergence

	Proof of global convergence
	Technical lemmas
	Proofs of Theorems&#x00A0;<0:xref 0:ref-type="statement" 0:rid="the3-1" >3.1</0:xref> and&#x00A0;<0:xref 0:ref-type="statement" 0:rid="the3-3" >3.3</0:xref>

	Proof of local convergence
	Technical lemmas
	Proof of Theorem&#x00A0;<0:xref 0:ref-type="statement" 0:rid="the3-6" >3.6</0:xref>

	Acknowledgment
	References
	Appendix A. Appendix A. Equivalent norms
	Appendix B. Appendix B. Proof of Theorem 3.8

