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Abstract. The monotonicity of discrete Laplacian, i.e., inverse positivity of
stiffness matrix, implies discrete maximum principle, which is in general not true
for high order accurate schemes on unstructured meshes. On the other hand,
it is possible to construct high order accurate monotone schemes on structured
meshes. All previously known high order accurate inverse positive schemes are
or can be regarded as fourth order accurate finite difference schemes, which is
either an M-matrix or a product of two M-matrices. For the Q3 spectral element
method for the two-dimensional Laplacian, we prove its stiffness matrix is a
product of four M-matrices thus it is unconditionally monotone. Such a scheme
can be regarded as a fifth order accurate finite difference scheme. Numerical tests
suggest that the unconditional monotonicity of Qk spectral element methods will
be lost for k≥9 in two dimensions, and for k≥4 in three dimensions. In other
words, for obtaining a high order monotone scheme, only Q2 and Q3 spectral
element methods can be unconditionally monotone in three dimensions.
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1 Introduction

1.1 Monotone high order schemes

In many applications, monotone discrete Laplacian operators are desired and useful
for ensuring stability such as discrete maximum principle [7] or positivity-preserving
of physically positive quantities [15,24,28]. Let ∆h denote the matrix representation
of a discrete Laplacian operator, then it is called monotone if (−∆h)

−1≥0, i.e., the
matrix (−∆h)

−1 has nonnegative entries. In this paper, all inequalities for matrices
are entry-wise inequalities. It is well known that the simplest second order accurate
centered finite difference scheme

u′′(xi)≈
u(xi−1)−2u(xi)+u(xi+1)

∆x2

is monotone because the corresponding matrix −∆h is an M-matrix thus inverse
positive. The most general extension of this result is to state that a linear finite
element method with special implementation under a mild mesh constraint forms
an M-matrix thus monotone on unstructured triangular meshes [32]. Other than
discrete maximum principle, monotonicity often implies more properties, e.g., energy
dissipation can be proven via Jensen’s inequality for a monotone scheme solving a
Keller-Segel equation [15].

The discrete maximum principle is not true for high order finite element methods
on unstructured meshes [14]. On structured meshes, there exist a few high order
accurate inverse positive finite difference schemes. To the best of our knowledge,
the following schemes for solving a two-dimensional Poisson equation are the only
ones proven to be monotone beyond the second order accuracy, and all of them can
be regarded as finite difference schemes with four order accuracy for function values
for solving elliptic and parabolic equations:

1. The classical 9-point scheme [4,10,17] are monotone because the stiffness ma-
trix is an M-matrix.

2. In [3,5], a fourth order accurate finite difference scheme was constructed. The
stiffness matrix is a product of two M-matrices thus monotone.

3. The Lagrangian P 2 finite element method on a regular triangular mesh [31]
has a monotone stiffness matrix [25]. On an equilateral triangular mesh, the
discrete maximum principle can also be proven [14]. It can be regarded as a fi-
nite difference scheme at vertices and edge centers, on which superconvergence
of fourth order accuracy holds.
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4. Monotonicity was proven for the Q2 spectral element method on an uniform
rectangular mesh for a variable coefficient Poisson equation under suitable
mesh constraints [21]. This scheme can be regarded as a fourth order accurate
finite difference scheme [19, 22]. See also [11] for extensions to quasi-uniform
meshes.

For solving −∆u=f with homogeneous Dirichlet boundary condition on a rect-
angular domain, all schemes above can be written in the form Su=M f with stiffness
matrix S−1≥0 and mass matrix M≥0, thus

(−∆h)
−1=S−1M≥0.

The last two methods are finite difference schemes constructed from the variational
formulation, thus they do not suffer from the drawbacks of the first two conventional
finite difference schemes, such as loss of accuracy on quasi-uniform meshes, difficulty
with other types of boundary conditions such as Neumann boundary, etc..

1.2 Monotonicity of Qk spectral element method

The Lagrangian Qk continuous finite element method on rectangular meshes imple-
mented by (k+1)-point Gauss-Lobatto quadrature is often referred to as the spectral
element method in the literature [26], which has been a very popular high order ac-
curate method for more than three decades for various second order equations such
as the wave equations [9]. In this paper we are interested in the monotonicity of the
Qk spectral element method for solving the Poisson equation −∆u=f . For a one-
dimensional problem, the stiffness matrix in Qk spectral element method reduces
to the stiffness matrix of the P k finite element method without any quadrature,
for which the discrete maximum principle for arbitrary k can be proven by discrete
Green’s function [29]. For two-dimensional problems, Q2 spectral element method
was proven monotone in [21].

The P k finite element method with (k+1)-point Gauss-Lobatto quadrature for a
one-dimensional problem −u′′(x)=f can be equivalently written as a finite difference
scheme at all Gauss-Lobatto quadrature points [22], and for homogeneous Dirichlet
boundary its matrix-vector form can be written as Su=M f , where u and f are
vectors of function point values, M is the lumped mass matrix, S is the stiffness
matrix. The stiffness matrix of Qk spectral element method for −uxx−uyy = f

on a rectangular mesh with homogeneous Dirichlet boundary can be written as
S⊗M+M⊗S. The result in [29] implies S−1M≥0 for arbitrary polynomial degree
k on a uniform mesh in one dimension, thus it might seem natural to conjecture that
monotonicity S⊗M+M⊗S holds also for arbitrary polynomial degree k on uniform
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rectangular meshes in two dimensions. However, the monotonicity (S⊗M+M⊗
S)−1≥0 is simply not true for Qk element for k≥9, as shown by numerical tests in
Section 6.

Thus an interesting question is whether Qk spectral element method is monotone
for 2D Laplacian. The Q2 case was proven in [21]. In this paper, we will prove the
monotonicity of the Q3 case. In two dimensions, the cases for Qk with 4≤ k≤ 8
remain open.

For 3D Laplacian, the numerical tests in Section 6 suggest that Qk spectral
element method with k≥4 cannot be uncoditionally monotone. In other words, the
stiffness matrix in Qk spectral element method for −uxx−uyy−uzz is

S⊗M⊗M+M⊗S×M+M⊗M×S,

which is no longer monotone when k≥4 as suggested by numerical tests. Notice that
the proof of the monotonicity of Q2 spectral element method for 2D Laplacian in [21]
can be easily extended to the three dimensional case. Thus from this perspective,
it is also interesting to study Q3 spectral element method.

1.3 Contribution and organization of the paper

For proving inverse positivity, the main viable tool in the literature is to use M-
matrices which are inverse positive. A convenient sufficient condition of M-matrices
is to require all off-diagonal entries to be non-positive. Except the fourth order com-
pact finite difference, all high order accurate schemes induce positive off-diagonal
entries, destroying such a structure, which is a major challenge of proving mono-
tonicity. In [3] and [1], and also the appendix in [21], M-matrix factorizations of
the form (−∆h)

−1 =M1M2 were shown for special high order schemes but these
M-matrix factorizations seem ad hoc and do not apply to other schemes or other
equations. In [25], Lorenz proposed some matrix entry-wise inequality for ensuring a
matrix to be a product of two M-matrices and applied it to P 2 finite element method
on uniform regular triangular meshes. In [21], Lorenz’s condition was applied to Q2

spectral element method on uniform meshes. See extensions to quasi-uniform meshes
in [11].

For Qk spectral element method with k≥3, it does not seem possible to apply
Lorenz’s condition directly. Instead, we will demonstrate that Lorenz’s condition can
be applied to a few auxiliary matrices to establish the monotonicity in Q3 spectral
element method, which can be regarded as a fifth order accurate finite difference
scheme [19,22]. To the best of our knowledge, this is the first time that monotonicity
can be proven for a fifth order accurate scheme in two dimensions. We are able to
show the fifth order Q3 spectral element on a uniform mesh in two dimensions can be
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factored into a product of four M-matrices, whereas existing M-matrix factorizations
for high order schemes involved products of only two M-matrices.

The rest of the paper is organized as follows. In Section 2, we briefly review
the conventional monotone high order finite difference schemes. In Section 3, we
review the monotone P 2 and Q2 finite element methods in their equivalent finite
difference forms, which are fourth order accurate in an a priori error estimate of
function values at finite difference grid points for a smooth solution. In Section 4,
we review the Lorenz’s condition for proving monotonicity. In Section 5, we prove
the monotonicity of Q3 spectral element scheme on a uniform mesh. Some numerical
tests of these schemes are given in Section 6. Section 7 are concluding remarks.

2 Classical monotone high order finite difference

schemes

2.1 9-point scheme

The 9-point scheme was somewhat suggested already in 1940s [13] and discussed in
details in [10, 17]. It can be extended to higher dimensions [2, 4].

Consider solving the two-dimensional Poisson equations −uxx−uyy=f with ho-
mogeneous Dirichlet boundary conditions on a rectangular domain Ω=(0,1)×(0,1).
Let ui,j denote the numerical solutions at a uniform grid (xi,yj) = ( i

Nx
, j

Ny
), and

fi,j=f(xi,yj). For convenience, we introduce two matrices,

U=





ui−1,j+1 ui,j+1 ui+1,j+1

ui−1,j ui,j ui+1,j

ui−1,j−1 ui,j−1 ui+1,j−1



, F =





fi−1,j+1 fi,j+1 fi+1,j+1

fi−1,j fi,j fi+1,j

fi−1,j−1 fi,j−1 fi+1,j−1



.

Then the 9-point discrete Laplacian for the Poisson equation at a grid point (xi,yj)
can be written as

1

12∆x2





−1 2 −1
−10 20 −10
−1 2 −1



:U+
1

12∆y2





−1 −10 −1
2 20 2
−1 −10 −1



:U=
1

12





0 1 0
1 8 1
0 1 0



:F, (2.1)

where : denotes the sum of all entry-wise products in two matrices of the same size.
Under the assumption ∆x=∆y=h, it reduces to the following:

1

6h2





−1 −4 −1
−4 20 −4
−1 −4 −1



 :U=
1

12





0 1 0
1 8 1
0 1 0



 :F. (2.2)
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The 9-point scheme can also be regarded as a compact finite difference scheme [12].
There can exist a few or many different compact finite difference approximations of
the same order [18]. For instance, with the fourth order compact finite difference
approximation to Laplacian used in [20,23], we get the following scheme:

1

12∆x2





−1 2 −1
−10 20 −10
−1 2 −1



 :U+
1

12∆y2





−1 −10 −1
2 20 2
−1 −10 −1



 :U

=
1

144





1 10 1
10 100 10
1 10 1



 :F. (2.3)

Both schemes (2.1) and (2.3) are fourth order accurate and they have the same
stencil and the same stiffness matrix in the left hand side. We have not observed
any significant difference in numerical performances between these two schemes.

Remark 2.1. For solving 2D Laplace equation −∆u=0 with Dirichlet boundary
conditions, the 9-point scheme becomes sixth order accurate [12].

Nonsingular M-matrices are inverse-positive matrices. There are many equivalent
definitions or characterizations of M-matrices, see [27]. The following is a convenient
sufficient but not necessary characterization of nonsingular M-matrices [21]:

Theorem 2.1. For a real square matrix A with positive diagonal entries and non-

positive off-diagonal entries, A is a nonsingular M-matrix if all the row sums of A

are non-negative and at least one row sum is positive.

By condition K35 in [27], a sufficient and necessary characterization is,

Theorem 2.2. For a real square matrix A with positive diagonal entries and non-

positive off-diagonal entries, A is a nonsingular M-matrix if and only if that there

exists a positive diagonal matrix D such that AD has all positive row sums.

Remark 2.2. Non-negative row sum is not a necessary condition for M-matrices.
For instance, the following matrix A is an M-matrix by Theorem 2.2:

A=





10 0 0
−10 2 −10
0 0 10



, D=





0.1 0 0
0 2 0
0 0 0.1



, AD=





1 0 0
−1 4 −1
0 0 1



.

The stiffness matrix in the scheme (2.2) has diagonal entries 20
6h2 and offdiagonal

entries − 1
6h2 , − 4

6h2 and 0, thus by Theorem 2.1 it is an M-matrix and the scheme
is monotone. In order for the stiffness matrix in (2.1) and (2.3) to be an M-matrix,
we need all the off-diagonal entries to be nonnegative, which is true under the mesh
constraints 1√

5
≤ ∆x

∆y
≤
√
5.
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2.2 The Bramble and Hubbard’s scheme

In [3], a fourth order accurate monotone scheme was constructed. Consider solving
a one-dimensional problem

−u′′=f, x∈ [0,1], u(0)=σ0, u(1)=σ1, (2.4)

on a uniform grid xi=
i

n+1
(i=0,1,··· ,n+1). The scheme can be written as

−σ0+2u1−u2

∆x2
=f1,

−un−1+2un−σ1

∆x2
=fn,

1
12
ui−2− 4

3
ui−1+

5
2
ui− 4

3
ui+1+

1
12
ui+2

∆x2
=fi, i=2,3,··· ,n−1.

The matrix vector form of the scheme is 1
∆x2Hu= f̃ where

H=







































2 −1

−4

3

5

2
−4

3

1

12
1

12
−4

3

5

2
−4

3

1

12
. . .

. . .
. . .

. . .
. . .

1

12
−4

3

5

2
−4

3

1

12
1

12
−4

3

5

2
−4

3
−1 2







































,

u=























u1
u2

...

un−1

un























, f̃=























f1
f2

...

fn−1

fn























+































σ0

∆x2

− σ0

12∆x2

0

− σ1

12∆x2
σ1

∆x2































.

For two-dimensional Laplacian, the scheme is defined similarly. In particular, assume
∆x=∆y=h for a square domain, the stiffness matrix can be written as 1

h2 (H⊗I+I⊗
H), where I is the identity matrix and ⊗ is the Kronecker product. Its monotonicity
was proven in [3].
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3 Monotone high order finite element methods on

structured meshes

It is well-known that finite element methods with suitable quadrature are equivalent
to finite difference schemes. The schemes in this section are equivalent to finite
difference schemes defined at quadrature points.

3.1 Finite element method with the simplest quadrature

Consider an elliptic equation on Ω=(0,1)×(0,1) with Dirichlet boundary conditions:

Lu≡−∇·(a∇u)+cu=f on Ω, u=g on ∂Ω. (3.1)

Assume there is a function ḡ ∈H1(Ω) as an extension of g so that ḡ|∂Ω = g. The
variational form of (3.1) is to find ũ=u−ḡ∈H1

0 (Ω) satisfying

A(ũ,v)=(f,v)−A(ḡ,v), ∀v∈H1
0 (Ω), (3.2)

where

A(u,v)=

∫∫

Ω

a∇u·∇vdxdy+

∫∫

Ω

cuvdxdy, (f,v)=

∫∫

Ω

fvdxdy.

Let h be quadrature point spacing of a regular triangular mesh shown in Fig. 1
(or a rectangular mesh shown in Fig. 2) and V h

0 ⊆H1
0 (Ω) be the continuous finite

element space consisting of piecewise P 2 polynomials (or Q2 polynomials), then
the most convenient implementation of finite element method is to use the simple

(a) The quadrature points and a
finite element mesh for P 2

(b) The corresponding finite dif-
ference grid

Figure 1: An illustration of Lagrangian P 2 element and the simple third order accurate quadrature
using vertices and edge centers.



L. Cross and X. Zhang / Ann. Appl. Math., 40 (2024), pp. 1-30 9

(a) The quadrature points and a
finite element mesh

(b) The corresponding finite dif-
ference grid

Figure 2: An illustration of Lagrangian Q2 element and the 3×3 Gauss-Lobatto quadrature.

quadrature consisting of vertices and edge centers with equal weights (or 3×3 Gauss-
Lobatto quadrature rule) for all the integrals, see Fig. 1 for P 2 method (or Fig. 2
for Q2 method). Such a numerical scheme can be defined as: find uh∈V h

0 satisfying

Ah(uh,vh)=〈f,vh〉h−Ah(gI ,vh), ∀vh∈V h
0 , (3.3)

where Ah(uh,vh) and 〈f,vh〉h denote using simple quadrature for integrals A(uh,vh)
and (f,vh) respectively, and gI is the piecewise P

2 (or Q2) Lagrangian interpolation
polynomial at the quadrature points shown in Fig. 1 for P 2 method (or Fig. 2 for
Q2 method) of the following function:

g(x,y)=

{

0, if (x,y)∈(0,1)×(0,1),

g(x,y), if (x,y)∈∂Ω.

Then ūh=uh+gI is the numerical solution for the problem (3.1). Notice that (3.3)
is not a straightforward approximation to (3.2) since ḡ is never used. When the
numerical solution is represented by a linear combination of Lagrangian interpolation
polynomials at the grid points, it can be rewritten as a finite difference scheme. We
also call it a variational difference scheme since it is derived from the variational
form.

3.2 The P 2 finite element method

For Laplacian Lu=−∆u, the scheme (3.3) on a uniform regular triangular mesh can
be given in a finite difference form [31]:

1

h2





0 −1 0
−1 4 −1
0 −1 0



 :U=fi,j, if (xi,yj) is an edge center, (3.4a)
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1

9h2





1 −4 1
−4 12 −4
1 −4 1



 :U=0, if (xi,yj) is a vertex. (3.4b)

Notice that the stiffness matrix is not an M-matrix due to the positive off-diagonal
entries in (3.4b) and its inverse positivity was proven in [25].

Since the simple quadrature is exact for integrating only quadratic polynomials
on triangles, it is not obvious why the finite difference scheme (3.4) is fourth order
accurate. With such a quadrature on two adjacent triangles forming a rectangle in
a regular triangular mesh, we obtain a quadrature on the rectangle, see Fig. 3. For
a reference square [−1,1]×[−1,1], the quadrature weights are 2

3
and 4

3
for an edge

center and the cell center respectively.

Figure 3: The simple quadrature on two triangles give a quadrature on a square.

Lemma 3.1. The quadrature on a square [−1,1]×[−1,1] using only four edge centers
with weight 2

3
and one cell center with weight 4

3
is exact for P 3 polynomials.

Proof. Since the quadrature is exact for integrating P 2 polynomials on either triangle
in Fig. 3, it suffices to show that it is exact for integrating basis polynomials of
degree three, i.e., x2y, xy2, x3 and y3. It is straightforward to verify that both exact
integrals and quadrature of these four polynomials on the square are zero.

Therefore, with Bramble-Hilbert Lemma (see Exercise 3.1.1 and Theorem 4.1.3
in [8]), we can show that the quadrature rule is fourth order accurate if we regard
the regular triangular mesh in Fig. 3(a) as a rectangular mesh.

The standard L2(Ω)-norm estimate for the finite element method with quadra-
ture (3.3) using Lagrangian P 2 elements is third order accurate of function value for
smooth exact solutions [8]. On the other hand, superconvergence of function values
in finite element method without quadrature can be proven [6, 30], e.g., the errors



L. Cross and X. Zhang / Ann. Appl. Math., 40 (2024), pp. 1-30 11

at vertices and edge centers are fourth order accurate on triangular meshes for func-
tion values if using P 2 basis, see also [16]. It can be shown that using such fourth
order accurate quadrature will not affect the fourth order superconvergence even for
a general variable coefficient elliptic problem, see [22]. Notice that the scheme can
also be given on a nonuniform mesh and its fourth order accuracy still holds on a
quasi uniform mesh since it is also a finite element method.

3.3 The Q2 spectral element method

The scheme (3.3) with Lagrangian Q2 basis is fourth order accurate [22] and mono-
tone on a uniform mesh under suitable mesh constraints [21].

Consider a uniform grid (xi,yj) for a rectangular domain [0,1]×[0,1] where xi=ih,
i=0,1,··· ,n+1 and yj=jh, j=0,1,··· ,n+1, h= 1

n+1
, where n must be odd. Let uij

denote the numerical solution at (xi,yj). Let u denote an abstract vector consisting
of uij for i,j=1,2,··· ,n. Let ū denote an abstract vector consisting of uij for i,j=
0,1,2,··· ,n,n+1. Let f̄ denote an abstract vector consisting of fij for i,j=1,2,··· ,n
and the boundary condition g at the boundary grid points. Then the matrix vector
representation of (3.3) is Sū=M f , where S is the stiffness matrix and M is the
lumped mass matrix. For convenience, after inverting the mass matrix, with the
boundary conditions, the whole scheme can be represented in a matrix vector form
L̄hū= f̄ . For Laplacian Lu=−∆u, L̄hū= f̄ on a uniform mesh is given as

(L̄hū)i,j :=
−ui−1,j−ui+1,j+4ui,j−ui,j+1−ui,j−1

h2

=fi,j, if (xi,yj) is a cell center, (3.5a)

(L̄hū)i,j :=
−ui−1,j+2ui,j−ui+1,j

h2
+
ui,j−2−8ui,j−1+14ui,j−8ui,j+1+ui,j+2

4h2

=fi,j, if (xi,yj) is an edge center for an edge parallel to the y-axis, (3.5b)

(L̄hū)i,j :=
ui−2,j−8ui−1,j+14ui,j−8ui+1,j+ui+2,j

4h2
+
−ui,j−1+2ui,j−ui,j+1

h2

=fi,j, if (xi,yj) is an edge center for an edge parallel to the x-axis, (3.5c)

(L̄hū)i,j :=
ui−2,j−8ui−1,j+14ui,j−8ui+1,j+ui+2,j

4h2

+
ui,j−2−8ui,j−1+14ui,j−8ui,j+1+ui,j+2

4h2

=fi,j, if (xi,yj) is a knot, (3.5d)

(L̄hū)i,j :=ui,j=gi,j, if (xi,yj) is a boundary point. (3.5e)
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If ignoring the denominator h2, then the stencil can be represented as:

cell center
−1

−1 4 −1
−1

knots

1
4
−2

1
4 −2 7 −2 1

4
−2
1
4

edge center (edge parallel to y-axis)
−1

1
4 −2 11

2 −2 1
4

−1

edge center (edge parallel to x-axis)

1
4
−2

−1 11
2 −1
−2
1
4

3.4 The Q3 spectral element method

In the scheme (3.3), if using Lagrangian Q3 basis with 4×4 Gauss-Lobatto quadra-
ture, we get Q3 spectral element method, which is also a fifth order accurate finite
difference scheme [22]. The 4-point Gauss-Lobatto quadrature for the reference

interval [−1,1] has four quadrature points [−1−
√
5
5

√
5
5
1]. Thus on an uniform rect-

angular mesh, the corresponding finite difference grid consisting of quadrature points
is not exactly uniform, see Fig. 4.

(a) Quadrature points and a fi-
nite element mesh

(b) The corresponding finite dif-
ference grid

Figure 4: An illustration of a mesh for Q3 element and the 4×4 Gauss-Lobatto quadrature.
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Figure 5: Three adjacent 1D cells for P 3 elements using 4-point Gauss-Lobatto quadrature.

Now consider a uniform mesh for a one-dimensional problem and assume each
cell has length h, see Fig. 5. There are two quadrature points inside each interval,
and we refer to them as the left interior point and the right interior point. The Q3

spectral element method in difference form for one-dimension problem (2.4) can be
written as L̄hū= f̄ :

(L̄hū)i :=
4

h2

[

13ui−
15
√
5+25

8
(ui−1+ui+1)+

15
√
5−25

8
(ui−2+ui+2)−

1

4
(ui−3+ui+3)

]

=fi, xi is a knot, (3.6a)

(L̄hū)i :=
4

h2

[

−3
√
5+5

4
ui−1+5ui+

−5

2
ui+1+

15
√
5−25

8
ui+2

]

=fi, xi is the left interior point, (3.6b)

(L̄hū)i :=
4

h2

[

15
√
5−25

8
ui−2−

5

2
ui−1+5ui−

3
√
5+5

4
ui+1

]

=fi, if xi is the right interior point, (3.6c)

(L̄hū)0 :=u0=σ0, (L̄hū)n+1 :=un+1=σ1. (3.6d)

The explicit scheme in two dimensions will be given in Section 5.

4 Lorenz’s condition for monotonicity

In this section, we briefly review the Lorenz’s condition for monotonicity [25], which
will be the main tool to prove the monotonicity of the Q3 spectral element method.
The monotonicity implies discrete maximum principle for the scheme, see [7, 21].

Definition 4.1. Let N ={1,2,··· ,n}. For N1,N2⊂N , we say a matrix A=[aij] of
size n×n connects N1 with N2 if

∀i0∈N1, ∃ir∈N2, ∃i1,··· ,ir−1∈N , s.t. aik−1ik 6=0, k=1,··· ,r. (4.1)

If perceiving A as a directed graph adjacency matrix of vertices labeled by N , then

(4.1) simply means that there exists a directed path from any vertex in N1 to at least

one vertex in N2. In particular, if N1=∅, then any matrix A connects N1 with N2.
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Given a square matrix A and a column vector x, we define

N 0(Ax)={i : (Ax)i=0}, N+(Ax)={i : (Ax)i>0}.

Given a matrix A=[aij]∈Rn×n, define its diagonal, off-diagonal, positive and negative
off-diagonal parts as n×n matrices Ad, Aa, A

+
a , A

−
a :

(Ad)ij=

{

aii, if i=j,

0, if i 6=j,
Aa=A−Ad,

(A+
a )ij=

{

aij, if aij>0, i 6=j,

0, otherwise,
A−

a =Aa−A+
a .

The following two results were proven in [25]. See also [21] for a detailed proof.

Theorem 4.1. If A≤M1M2 ···MkL, where M1,··· ,Mk are nonsingular M-matrices

and La≤ 0, and there exists a nonzero vector e≥ 0 such that one of the matrices

M1,··· ,Mk,L connects N 0(Ae) with N+(Ae). Then M−1
k M−1

k−1 ···M−1
1 A is an M-

matrix, thus A is a product of k+1 nonsingular M-matrices and A−1≥0.

Theorem 4.2 (Lorenz’s condition). If A−
a has a decomposition:

A−
a =Az+As=(azij)+(asij)

with As≤0 and Az≤0, such that

Ad+Az is a nonsingular M-matrix, (4.2a)

A+
a ≤AzA−1

d As or equivalently ∀aij>0 with i 6=j, aij≤
n
∑

k=1

azika
−1
kk a

s
kj , (4.2b)

∃e∈Rn\{0}, e≥0 with Ae≥0 s.t. Az or As connects N 0(Ae) with N+(Ae). (4.2c)

Then A is a product of two nonsingular M-matrices thus A−1≥0.

The following result can be found in [11]:

Proposition 4.1. The matrix L in Theorem 4.1 must be an M-matrix.

In practice, the condition like (4.2c) can be difficult to verify. In this paper, the
vector e will be taken as 1 consisting of all ones in Theorem 4.1.
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5 Monotonicity of Q3 spectral element method on

a uniform mesh

5.1 The main approach for proving monotonicity

Even though Lorenz’s condition Theorem 4.2 can be nicely verified for the Q2 spec-
tral element method in finite difference form [21], it is very difficult to apply Lorenz’s
condition to higher order Qk spectral element methods due to their much more
complicated structure. In particular, even for Q3 scheme, simple decomposition of
A−

a =Az+As such that A+
a ≤AzA−1

d As is difficult to show. Instead, we propose to
apply Theorem 4.2 to a few simpler intermediate and auxiliary matrices, then use
Theorem 4.1. To be specific, let A=A3 be the matrix representation of Q3 spectral
element method in finite difference form, and let A0=M1 be an M-matrix. Then we
seek to construct matrices Ai and Li satisfying the conditions in Theorem 4.2 such
that

A1≤A0L0, A2≤A1L1, A3≤A2L2,

with the constraints that Ai1≥0 and A0=M1 connects N 0(Ai1) with N+(Ai1) for
all Ai. With e=1 in Theorem 4.1, we have

A1≤A0L0=M1L0⇒A1=M1M2⇒A2≤M1M2L1⇒A2=M1M2M3

⇒A3≤M1M2M3L2⇒A=A3=M1M2M3M4.

We remark that the matrices Ai and Li satisfying constraints above may not be
unique. It is tedious to verify the inequalities for the matrices listed in the rest of
the section, especially for the matrices for the two-dimensional scheme. We have
verified all matrices by symbolic computation on computers.

5.2 One-dimensional scheme

We first demonstrate the main idea for the one-dimensional case, for which we only
need to construct matrices such that A1≤A0L0, A≤A1L1.

Let L̄h denote the coefficient matrix in (3.6), then consider A= h2

4
L̄h. For con-

venience, we will perceive the matrix A as a linear operator A. Notice that the
coefficients for two interior points are symmetric in (3.6), thus we will only show
stencil for the left interior point for simplicity:

A at boundary point x0 or xn+1 :
h2

4

A at knot :−1

4

15
√
5−25

8

−15
√
5−25

8
13

−15
√
5−25

8

15
√
5−25

8
− 1

4
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A at interior point :
−3

√
5−5

4
5 − 5

2

3
√
5−5

4

where bolded entries indicate the coefficient for the operator output location xi.
For all the matrices defined below, they will have symmetric structure at two

interior points, thus for simplicity we will only show the stencil of the corresponding
linear operators for the left interior point. We first define three matrices A1, A0,
and Z0

A1 at boundary:
h2

4

A1 at knot : 0
15
√
5−25

8
−7 13 −7

15
√
5−25

8
0

A1 at interior point: − 1

2
4.8 −2 0

A0 at boundary:
h2

4

A0 at knot: 0 0 −7 15 −7 0 0

A0 at interior point: − 1

2
4.8 − 1

2
0

Z0 at boundary: 0

Z0 at knot: 0 0 0 0 0 0 0

Z0 at interior point: 0 0 −2+
1

2
0

Then we define

L0=I+(A0)
−1
d Z0,

where I is the identity matrix and (A0)d denotes the diagonal part of A0. By
considering composition of two operators A0 and L0, we get the matrix product
A0L0. Due to the definition of Z0, A0L0 still has the same stencil as above:

A0L0 at boundary:
h2

4

A0L0 at knot: 0
35

16
−7 15 −7

35

16
0

A0L0 at interior point: − 1

2
4.8+

5

32
−2 0

It is straightforward to see A1≤A0L0. By Theorem 2.1, A0 is an M-matrix, thus we
set M1=A0. Also it is easy to see that A1(1)>0 thus N 0(A11) is an empty set. So
A0 trivially connects N 0(A11) with N+(A11). By Theorem 4.1, we have

A1≤A0L0=M1L0 ⇒ A1=M1M2,
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Figure 6: The directed graph defined by matrix M1 for the finite difference grid shown in Fig. 5.

where M2 is an M-matrix.
Let (A1)d denote the diagonal part of A1. Then define L1= I+(A1)

−1
d Z1 using

the following Z1:

Z1 at boundary: 0

Z1 at knot: 0 0 0 0 0 0 0

Z1 at interior point: − 11

10
0 − 1

2
0

And the matrix A1L1 still have the same stencil and symmetry:

A1L1 at boundary:
h2

4

A1L1 at knot:
−165

√
5+275

384

15
√
5−25

8
+
35

48
−7+

−75
√
5+125

384

13+2(
77

48
) −7+

−75
√
5+125

384

15
√
5−25

8
+
35

48

−165
√
5+275

384

A1L1 at interior point: − 8

5
4.8+

5

24
− 5

2

11

24

A direct comparison verifies that

A≤A1L1=M1M2L1.

Also it is easy to see that A(1)i=0 if xi is not a boundary point. The operator A0

has a three-point stencil at interior grid points, thus the directed graph defined by
the adjacency matrix A0 has a directed path starting from any interior grid point
to any other point, see Fig. 6. So M1 =A0 connects N 0(A1) with N+(A1). By
Theorem 4.1, we have

A≤A1L1=M1M2L1⇒A=M1M2M3,

where M3 is an M-matrix. Therefore,

A−1=M−1
3 M−1

2 M−1
1 ≥0.
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5.3 Two-dimensional case

Due to symmetry, the stencil of the scheme can be defined at three different types of
points, see Fig. 7(a). Let each rectangular cell have size h×h and denote Q3 scheme
by L̄hū= f̄ . Let A= h2

4
L̄h. Then for a boundary point (xi,yj)∈∂Ω,

A(ū)ij=
h2

4
uij.

And the stencil of A at interior grid points is given as

−1
4

15
√
5−25
8

−15
√
5−25
8

A at knot: −1
4

15
√
5−25
8

−15
√
5−25
8

26 −15
√
5−25
8

15
√
5−25
8

−1
4

−15
√
5−25
8

15
√
5−25
8

−1
4

−1
4

15
√
5−25
8

−15
√
5−25
8

A at edge point: 3
√
5−5
4

−5
2

18 −3
√
5−5
4

−15
√
5−25
8

15
√
5−25
8

−1
4
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3
√
5−5
4

−5
2

A at interior point: 3
√
5−5
4

−5
2

10 −3
√
5−5
4

−3
√
5−5
4

Next we list the definition of matrices Ai and Zi by the corresponding linear
operators Ai and Zi. For convenience, we will only list the stencil at interior grid
points. For the domain boundary points (xi,yj)∈∂Ω, all Ai matrices will have the

same value as A: Ai(ū)ij=
h2

4
uij. And Zi(ū)ij=0 for (xi,yj)∈∂Ω. The matrix Li is

defined as
Li=I+(Ai)

−1
d Zi, i=0,1,2.

The matrices and their products are given by

0

15
√
5−25

8

−15
√
5−25

8

A1 at knot: 0 15
√
5−25

8

−15
√
5−25

8
26 −15

√
5−25

8

15
√
5−25

8
0

−15
√
5−25

8

15
√
5−25

8

0

0

0

−7

A1 at edge point: 0 − 5

2
17 − 1

100

−7

0

0

0

− 1

2

A1 at interior point: 0 − 1

2
10 − 1

2

− 1

2



20 L. Cross and X. Zhang / Ann. Appl. Math., 40 (2024), pp. 1-30

0

0

−15
√
5−25

8

A0 at knot: 0 0 −15
√
5−25

8
30 −15

√
5−25

8
0 0

−15
√
5−25

8

0

0

0

0

−7

A0 at edge point: 0 − 1

100
17 − 1

100

−7

0

0

0

− 1

2

A0 at interior point: 0 − 1

2
10 − 1

2

− 1

2

0

0

0

Z0 at knot : 0 0 0 0 0 0 0

0

0

0

0

0

0

Z0 at edge point: 0 − 5

2
+ 1

100
0 0

0

0

0

0

0

Z0 at interior point: 0 0 0 0

0
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0

747
√
5+1245

2720

−15
√
5−25

8

A0L0 at knot: 0 747
√
5+1245

2720

−15
√
5−25

8
30 −15

√
5−25

8

747
√
5+1245

2720
0

−15
√
5−25

8

747
√
5+1245

2720

0

0

0

−7

A0L0 at edge point: 0 − 5

2
17+ 249

170000
− 1

100

−7

0

0

0

− 1

2

249

3400

A0L0 at interior point: 0 − 1

2
10 − 1

2

249

3400
− 1

2

− 1

4

15
√
5−25

8

−15
√
5−25

8

A2 at knot: − 1

4

15
√
5−25

8

−15
√
5−25

8
26 −15

√
5−25

8

15
√
5−25

8
− 1

4

−15
√
5−25

8

15
√
5−25

8

− 1

4
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0

15
√
5−25

8

1

4

−7

A2 at edge point: 3
√
5−5

4
− 5

2
17 −3

√
5−5

4

−7

15
√
5−25

8

1

4

0

0

− 5

2
− 5

14

A2 at interior point: 0 − 5

2
10 − 1

2

− 5

14
− 1

2

0

0

0

Z1 at knot : 0 0 0 0 0 0 0

0

0

0

0

0

0

Z1 at edge point: 0 0 0 −3
√
5−5

4
+ 1

100

0

0

0

0

− 5

2
+ 1

2
− 5

14

Z1 at interior point: 0 − 5

2
+ 1

2
0 0

− 5

14
0
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3
√

5−505

2720

15
√

5−25

8

−15
√

5−25

8

A1L1 at knot: 3
√

5−505

2720

15
√
5−25

8

−15
√
5−25

8
26+4(747

√
5+1745

2720
) −15

√
5−25

8

15
√
5−25

8

3
√
5−505

2720

−15
√
5−25

8

15
√

5−25

8

3
√
5−505

2720

0

7

5

1

4

7

5
−7

A1L1 at edge point: 75
√

5+124

680
− 5

2
+2( 1

4
) 17 −3

√
5−5

4

7

5
−7

7

5

1

4

0

1

56
0

1

56
2( 1

10
) − 5

2
− 5

14

A1L1 interior point: 0 − 5

2
10+2( 1

10
) − 1

2
+ 1

56

− 5

14
− 1

2
+ 1

56
2( 75

√
5+124

3400
)

0

0

0

Z2 at knot: 0 0 0 0 0 0 0

0

0

0

0

0

0

Z2 at edge point: 0 0 0 0

0

0

0

0

0

Z2 at interior point: 0 0 0 −2

−2
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− 1

4

15
√
5−25

8

−15
√
5−25

8

A2L2 at knot : − 1

4

15
√
5−25

8

−15
√
5−25

8
26 −15

√
5−25

8

15
√
5−25

8
− 1

4

−15
√
5−25

8

15
√
5−25

8

− 1

4

−3
√
5+5

8

15
√
5−25

8

1

4
+−3

√
5+5

8

−7 7

5

A2L2 at edge point: 3
√
5−5

4
− 5

2
17+2(7

5
) −3

√
5−5

4

−7 7

5

15
√
5−25

8

1

4
+−3

√
5+5

8

−3
√
5+5

8

0 1

2

0 0 − 5

2
− 5

14
+ 1

2

A2L2 at interior point: 1

2
− 5

2
10 −2− 1

2

− 5

14
+ 1

2
−2− 1

2
0

By Theorem 2.1, A0 is an M-matrix, thus we set M1=A0. Notice that the matrix
M1 =A0 has a 5-point stencil and the directed graph defined by M1 is given in
Fig. 7(b), in which there is a directed path starting from any interior grid point to
any other point. For convenience, let A3=A. Then we have Ak(1)≥0 (k=0,1,2,3).
Moreover, Ak(1)ij > 0 (k= 0,1,2,3) for any domain boundary point (xi,yj)∈ ∂Ω.
The directed graph defined by M1 easily implies that M1 connects N 0(Ai1) with
N+(Ai1) for all i=0,1,2,3.

By straightforward comparison, we can verify that A1≤A0L0, A2≤A1L1, A≤
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(a) Three point types defining
the stencil: knot (black), edge
point (blue), interior point
(green)

(b) The directed graph de-
fined by the matrix M1

Figure 7: An illustration of a Q3 mesh with 2×2 cells.

A2L2. By Theorem 4.1, we have

A1≤A0L0=M1L0⇒A1=M1M2⇒A2≤M1M2L1⇒A2=M1M2M3

⇒A≤M1M2M3L2⇒A=M1M2M3M4⇒A−1≥0.

Remark 5.1. The matrices Ai and Li are found by matching the inequalities above.
Such matrices are not unique. These matrices and the inequalities can be easily
verified by computer codes.

6 Numerical tests

6.1 Monotonicity tests

For solving a one-dimensional Poisson equation −u′′=f on the domain (0,1) with
homogeneous Dirichlet boundary condition u(0) = u(1) = 0, consider the classical
continuous finite element method using P k polynomial basis on a uniform mesh
consisting of N intervals. If all the integrals are replaced by (k+1)-point Gauss-
Lobatto quadrature, then it is equivalent to a finite difference scheme at all Gauss-
Lobatto points excluding two domain boundary points. The finite difference scheme
can be written as Su=M f or Hu= f , where S is the stiffness matrix, M≥0 is the
lumped mass matrix and H=M−1S. The results in [29] imply that S≥0 thus H≥0
for any k. See Fig. 8 for the smallest entry in the matrix H−1 for k=2,3,··· ,15 on
different meshes.
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Figure 8: H−1 ≥ 0 holds for any k in P k finite element method with (k+1)-point Gauss-Lobatto
quadrature on a uniform mesh with N cells for one-dimensional Laplacian.

For a two-dimensional Poisson equation −uxx−uyy=f on the domain (0,1)×(0,1)
with homogeneous Dirichlet boundary condition, the Qk spectral element method,
i.e., Qk finite element method with (k+1)×(k+1)-point Gauss-Lobatto quadrature,
is equivalent to a finite difference scheme at all Gauss-Lobatto points excluding all
domain boundary points. On a uniform mesh consisting of N×N rectangular cells,
the stiffness matrix and lumped matrix can be written as S⊗M+M⊗S and M⊗M

respectively [22]. So the finite difference scheme matrix in two dimensions can be
written as

H2D=(M⊗M)−1(S⊗M+M⊗S)=H⊗I+I⊗H,

where the matrices S,M,H are the same ones as in the one-dimensional scheme.
Unfortunately, here the Kronecker product and H−1 simply does not imply the
inverse positivity of H2D. In numerical tests on a N×N mesh, there is a clear cut
off at k=9. For Qk spectral element method with k≥ 9, the inverse positivity is
simply lost in two dimensions even on very coarse meshes, see numerical results in
Fig. 9.

In three dimensions, the finite difference scheme matrix (−∆h) of the Q
k spectral

element method can be written as

H3D=H⊗I⊗I+I⊗H⊗I+I⊗I⊗H.

The numerical tests shown in Fig. 10 suggest that H3D is no longer unconditionally
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Figure 9: On a uniform mesh with N×N cells, inverse positivity of the matrix is simply lost in Qk

spectral element method for 2D Laplacian if k≥9.
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Figure 10: The smallest entry in the matrix (H⊗I⊗I+I⊗H⊗I+I⊗I⊗H)−1 for Qk spectral element

method on a uniform N×N×N mesh for Qk spectral element method will be negative if k≥4.

monotone for Qk spectral element method with k≥4.

6.2 Accuracy tests

For verifying the order for smooth solutions, we show some accuracy tests of the
monotone schemes mentioned in this paper for solving −∆u=f on a square (0,1)×
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Table 1: Accuracy test on uniform meshes for (6.1).

Finite Difference Grid
Q2 spectral element method P 2 finite element method 9-point scheme (2.1)

l2 error order l∞ error order l2 error order l∞ error order l2 error order l∞ error order
7×7 3.62E-1 - 1.10E-0 - 9.68E-1 - 2.59E-0 - 2.48E-2 - 5.69E-2 -

15×15 3.75E-2 3.26 9.68E-2 3.50 7.81E-2 3.63 3.00E-1 3.11 2.61E-4 6.56 6.46E-4 6.45
31×31 2.44E-3 3.94 7.18E-3 3.75 4.70E-3 4.05 1.84E-2 4.02 3.65E-5 2.84 8.97E-5 2.85
63×63 1.54E-4 3.98 5.50E-4 3.70 2.89E-4 4.02 1.11E-3 4.04 2.55E-6 3.83 6.57E-6 3.77

Finite Difference Grid
compact finite difference (2.3) Bramble-Hubbard scheme

l2 error order l∞ error order l2 error order l∞ error order
7×7 9.88E-2 - 2.26E-1 - 3.14E-1 - 8.23E-1 -

15×15 5.40E-3 4.19 1.33E-2 4.08 1.76E-2 4.15 6.16E-2 3.73
31×31 3.22E-4 4.06 7.91E-4 4.07 3.38E-3 2.37 1.15E-2 2.41
63×63 1.98E-5 4.01 5.11E-5 3.95 3.04E-4 3.47 1.20E-3 3.32

Table 2: Accuracy test of Q3 spectral element method on uniform meshes.

Q3 Finite Element Mesh Finite Difference Grid l2 error order l∞ error order
2×2 5×5 1.18E0 - 2.61E0 -
4×4 11×11 6.08E-2 4.28 1.45E-1 4.17
8×8 23×23 2.87E-3 4.40 7.10E-3 4.35

16×16 47×47 9.82E-5 4.87 2.41E-4 4.88
32×32 95×95 3.12E-6 4.97 7.60E-6 4.99

(0,1) with Dirichlet boundary conditions. We will simply refer to the classical 9-
point scheme (2.1) as 9-point scheme, and refer to its variant (2.3) as compact
finite difference. The schemes are tested for the Poisson equation −∆u= f with
nonhomogeneous Dirichlet boundary condition:

f=74π2cos(5πx)cos(7πy)−8, (6.1a)

u=cos(5πx)cos(7πy)+x2+y2. (6.1b)

The errors of fourth order accurate schemes on uniform grids are listed in Table 1.
The errors of Q3 spectral element method on uniform rectangular meshes are listed
in Table 2.

7 Concluding remarks

We have proven that the Q3 spectral element method on a uniform mesh is mono-
tone, by proving its finite difference scheme matrix is a product of four M-matrices
for two-dimensional Laplace operator.
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