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vibrations, crucial in many cases for describing thermal properties of molecular species. Coupling of modes
is fully implemented and the method eliminates the severe numerical artefacts associated with the commonly
used limitation to the second order expansion in quantum numbers with their negative coupling constants.
The method proceeds by calculating the canonical partition function perturbatively and applying the inverse
Laplace transform. C; is used as a case study.
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R. Zhang et al.
1. Background

The calculation of vibrational level densities is arguably the most
important single part of the description of thermal properties of matter.
Although a description of vibrations as harmonic motion will capture
the main part of their thermodynamics, anharmonicities contribute in a
measurable and occasionally important manner. One example is given
by the recent measurement of the thermionic emission rate constant of
C7 [11. The molecule will be used as a case study here. The description
of such unimolecular reactions requires input of level densities. The
choice of this anion was made because a very detailed study has been
performed to determine the energy dependence of the emission rate
constant as a function of energy. The study eliminated the detrimental
effect of the width of energy distributions of the decaying systems. For
details of the experiments, please see Ref. [1].

Both spectroscopic and quantum chemical studies can provide the
input for the analysis of the effect of anharmonicities (see e.g. Refs. [2—
4] and Ref. [5] for a molecule of astrophysical interest). Most of the
data provide anharmonicities that contribute to the energy quadrati-
cally in the vibrational quantum numbers, i.e., with sums over products
of the vibrational quantum numbers for different modes. When the an-
harmonicities do not couple different modes, it is easy to generalize the
Beyer-Swinehart (B-S) algorithm [6], because that method is basically
a convolution of the level densities of independent degrees of freedom.
For such cases the vibrational energy of a molecule is given as

E= Y Em), 0

where E;(n;) is the energy of oscillator i containing n; quanta, and
the sum runs over all values of modes. With p(E,i) denoting the
level density at total excitation energy E for the system with i modes
included, the B-S convolution, becomes

Knmax i+1)
pE i+ = Y p(E-Ey k., )
k=0

where the sum runs over all possible quantum states of mode i + 1,
limited by energy conservation. With E, (k) = hw;, k this reduces
correctly to the B-S algorithm. This is the procedure used in Ref. [7].
For the second order expansion considered in this paper, the diagonal-
only approximation would reduce the energy functional that will be
used (see Eq. (4)) to

E=Z<hwi(n,~+%)+)(,~,i(ni+%)2>. 3)

The prescription allows a numerically exact calculation once the vibra-
tional spectrum is known, but it clearly only works because Eq. (1)
holds in this case, i.e., if the expression for the energy does not contain
terms with products of quantum numbers of different modes. In Ref. [7]
uncoupled Morse oscillators were assumed for that purpose.

Non-zero off-diagonal couplings are, however, more the rule than
the exception, and a restriction to zero off-diagonal anharmonicities
will give too unrealistic results. This is indicated by a simple counting
of anharmonicities. For a non-linear molecule of N atoms, there are
(BN —6)x (3N —7) off-diagonal couplings vs. only 3N — 6 diagonal, and
the off-diagonal elements are frequently numerically larger than the
diagonal. A numerical example demonstrating this argument is given
in Fig.6 of Ref. [8].

The calculation of the contribution from the off-diagonal terms to
the density of states is a non-trivial matter, even when the anhar-
monicities are limited to quadratic contributions. One method used to
calculate level densities of anharmonic systems is the Wang-Landau
method [9-11]. The method applies a variation of the general Metropo-
lis algorithm, which is stochastic in nature, and has the ensuing re-
quirement on statistics for good precision. More seriously, it encounters
the problem that expressions for the energy that are truncated at the
second order terms, i.e., products of quantum numbers appear at most
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Fig. 1. The direct count low energy vibrational level density of C; for two different
cut-off energies as described in the main text. The 2000 cm™! cutoff data are given
with open circles, the 3000 cm™! cutoff data with small filled black circles. The data
are given as counted; no shift or normalization has been implemented, apart from
setting the zero of energy to the quantum mechanical ground state, as mentioned in
connection with Eq. (4).

up to second order, involve second order anharmonicity coefficients
that are often negative. These negative coefficients limit the range
of quantum numbers to values where the energies still increase with
increasing quantum numbers. The set of quantum numbers where
increases reduce the system energy clearly define a threshold above
which the approximation becomes unphysical.

This limit is reached at fairly low energies, as demonstrated very
clearly in Fig. 1. The figure shows the level densities for C7 calculated
by a direct state count for two cases. In one case, the quantum numbers
of the modes are limited to be below the values 2000 cm™! /fiw,. The
other case is calculated with the upper limits set to 3000 cm™! /hw;.
Both data sets are generated with a count looping over all quantum
numbers up their maxima set by the two limits mentioned, and no
approximations or adjustments were made for either calculation. The
two curves shift notably, even for energies below 1000 cm™!. The
3000 cm~! cut-off curve even produces states at negative energies,
another signal that the second order equation has been used beyond
its applicability. It should be noted that even if the cutoff energies in
this numerical example appear high, oscillators will have populations in
excess of these energies, even in molecules in microcanonical ensembles
with significantly lower average energy per oscillator. Fig. 3 illustrates
the relevance of the problem shown in Fig. 1.

We suggest here a method to avoid the problem by a calculation of
the level densities with a perturbative expansion in the second order
anharmonic terms, applied to the experimentally relevant C; [1]. The
data used in the analysis are the input fundamental vibrational frequen-
cies and the coefficients to the second order terms provided by quantum
chemical calculations. The frequencies and anharmonicities are listed
in Appendix A. We will not treat the problem of the partitioning of the
states on the symmetry species of the molecule, which can be of interest
for some applications. That problem was treated in Ref. [12] and we
refer the interested reader to the general results in that paper.
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2. Setting

The energy including the quadratic contribution will be represented
by the form

E= Zhw(n+ )+ X 4 (m+

) ("" + ;) (nj,m=0,1,2,..)
Y

(€3]

where 7io; describes the harmonic part of the quantum energy, ¥, are
the anharmonicity coefficients, and the sums run over all modes, as
indicated. A form where the terms 1/2 were left out would be both
less cumbersome and more physical, but we will conform to the con-
ventional usage. The non-zero off-diagonal elements of the matrix & ;
(X4 #0,j # k) in the second term couple modes and therefore prevent
a simple separation of variables. Although higher order terms in Eq. (4)
can be considered, as in Ref. [8], the coefficients need to be at least
of fourth order to avoid the convergence problems discussed below.
That would require the determination of a large number of independent
coefficients (3860 in addition to the 15 fundamental frequencies for
c; ). We will not consider those situations here.
For analytical work it is more convenient to write Eq. (4) as

E:Zhwinﬁ;(lj'knjnk*-%Zlflj’k( Zhw+ 21
J2 JZ

/>k

nj+nk

)

We will use the shorthand E, = % > ho; + i Y5k A j i for the quantum
mechanical ground state energy.

The values of the C7-harmonic frequencies and anharmonic co-
efficients used here were calculated with the ORCA 5.04 software
package [13] using the B3LYP functions together with the ma-def2-
SVP basis set and D3BJ dispersion corrections. The anharmonic effects
on the vibrational frequencies were computed with vibrational second-
order perturbation theory (VPT2), as implemented in ORCA, using
very tight convergency criteria for the geometry and the SCF opti-
mization cycles. From the values in Tables A.1,A.2 in Appendix A it
is clear that the second order terms are predominantly negative, as one
might expect by analogy with the Morse potential and other empirical
interatomic potentials.

3. Perturbation-inversion

The method that will be developed is based on the inverse Laplace
transform of the canonical partition function. The technique has proven
to be a powerful tool to obtain level densities [14]. The expressions
in Ref. [14], given in Egs. (6), (7), are a development of the steepest
descend method which already gives good results, both for nuclear den-
sities of states and vibrational level densities [15-17]. A procedure very
similar to the one derived in Ref. [14] was later derived in Ref. [18],
where it was used to calculate anharmonic but separable motion level
densities, i.e., level densities where all off-diagonal elements of the ¥
matrix are zero. As mentioned, the level densities for such situations
can also be calculated exactly with the modified B-S algorithm.

The basic equations of the method are (with g = 1/kgT) [14,19]

1
EME = ———— Z(T)ePPdE (6)
e \27C [kgkgT (e
E(T) = E +kgT )

where C is the heat capacity and Z is the canonical partition function
of the system, calculated at the temperature determined by Eq. (7).
As Helmbholtz free energy, F = E — TS, is given by Z = exp(-fF),
Eq. (6) essentially states that the level density is the exponential of the
entropy, but with a reciprocal square root factor that accounts for the
width of the thermal distribution over which the entropy is calculated.
Eq. (7) defines the temperature which is used in Eq. (6). The inclusion
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of the term kT on the right hand side of Eq. (7) for the inversion point,
derived in Ref. [14], gives an excellent agreement for level densities, as
documented in Ref. [20], and makes the method far superior to other
quasi-analytical expressions.

The prescription in Egs. (6), (7) generates p as a smooth function
of energy which is obviously not exact for a discrete spectrum. It does,
however, often provide an advantage for applications at low energies
when ratios of level densities are used and where an exact sum of delta
functions can lead to complications due to division by zero.

An obstacle to the application of this technique is that, as for the
B-S algorithm, the canonical excitation energy and entropy cannot be
calculated exactly when modes are coupled by higher order terms. One
possible solution of this problem is a calculation with a perturbative
expansion. For small couplings, Aw > |X|, this is a viable procedure
and this is the choice made here.

The partition function, Z, for the set of oscillator frequencies {w;}
and quadratic anharmonicity coefficients {4} is

Z=Zexp< Zha)n —ﬁZ)( iy = -Zz

{n;} Jj=k

n, +ny) ﬁEgS), (8)

where ¥, | indicates summation over all sets of non-negative integers.
This sum dlverges The divergence is avoided with an expansion of the
exponential in the anharmonic terms:

7 ~ e PEss Ze—ﬂZih‘W’z{l —ﬁZ)(j’knjnk 21
ik

{n;} _[>k

nj +ny } 9

To perform the sums over the X’s, terms need to be separated into
diagonal and off-diagonal terms. Symbolically:

nny = Zn +2n]nk (10)
Jzk J>k

The result is a sum of several sums that can all be done. Appendix B
gives the calculations. The result is

Neﬂb;sH
phw
el ;)
x(1-26Y 0, —— —
( ﬂ; e -1y

The canonical energy of this partition function is

_ _odhnZ
(E) = b 12)

—ﬁha)l -1 (11)

ﬂ(eﬂhw/ + efhon)
D= .
’ 2(eﬁ “5 1) (efhor — 1)

Jj>k

/"'w/ [Bho; + e (Bhw; — 1) + 1]
Egs + Z ﬂhm, _ -2 Z (eﬂhwj —1)3

_ ﬂhwk)eﬂh(2w1+wk) +(1- ﬁhw_)eﬁh(wj+2wk) _ 2eﬁh(wj+wk)
+ 2 j’k - !
% 2P = D2ePhon — 12
(Bhow; + )i + (phay, + 1)ePhex — e2Phe; — 2Phor

+ Y7,
Z;{ J.k Z(Cﬁhwj _ 1)2(eﬂhwk _ 1)2

The expression for the heat capacity corresponding to this energy
is rather unwieldy and will be approximated by the leading order
(harmonic) term:

c=Y (pho)? — a3)

7 (1 —ePhor)

If the contribution from the anharmonicity terms is needed, a numerical
derivative of the energy is a convenient alternative. The main numerical
work in the procedure is the solution for the temperature that solves
Eq. (7). In most cases standard methods will converge after a few
iterations.

Fig. 2 shows the level densities of C7, calculated with and without
anharmonicities to first order in X’s. The two curves differ by an order
of magnitude at the energies 4.0-4.3 eV, which is the relevant range
for a comparison with the experimental results in Ref. [1].
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Fig. 2. The level densities of C7‘ with (full line) and without (dashed line) anharmonic-
ities, calculated with Egs. (6), (7), (12), (13) and the data in Appendix A. As the energy
varies from 0.05 eV to 5.00 eV, the ratio of the two level densities reaches an order
of magnitude.
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Fig. 3. The comparison of the thermal energies calculated with Eq. (12) (full line) and
Eq. (4), with the latter corrected for the zero of energy. The curve for Eq. (4) is given by
a dashed part and a dotted part at low temperature (see the main text for explanation).
The gray area indicates the experimentally relevant region for the experiments in
Ref. [1]. The dashed-dotted line is the energy in the harmonic approximation.

Fig. 3 shows the difference between the thermal energies calculated
with the modified partition function in Eq. (12) and the unmodified in
Eq. (4). As mentioned, the latter will diverge in a direct calculation. As
an alternative approximate procedure, the energy is calculated with the
complete energy functional and mode quantum numbers given by the
harmonic, semiclassical mean values n; = kgT /hw,. This misrepresents
the quantum effects at low temperatures, and the curve provides a good
estimate of the energy functional only above the temperature given by
the highest vibrational quantum energy, kgT = ho,,,. The curve is
given as a dashed line above this temperature, and below as a dotted
line, for reference.
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4. Discussion

The main result of this work is Eq. (12) combined with Egs. (6),
(7). These equations provide an expression for the level densities of
molecular oscillators that are described as anharmonic to second order
in the vibrational quantum numbers. The method eliminates the effects
of the unphysical decrease of energy with increasing quantum numbers.
If unattended, this would lead to a serious overestimate of the level
densities at low energies and a corresponding underestimate at high
energies, and will even produce states at negative energies, as shown
in Fig. 1.

The equations are used on the spectra for the experimentally studied
ion C7 with spectral parameters calculated with quantum chemistry.
The change induced by the anharmonicities is an increase by an order
of magnitude at 5 eV excitation energy, explaining some of the exper-
imentally observed reduction of the electron emission constant of two
orders of magnitude relative to a purely harmonic calculation.

The equations derived here hold to first order in the anharmonic-
ities in the expansion of the canonical partition function. From the
introduction it should be clear that although higher order terms will
improve the numerical accuracy, there is a fundamental limitation in
the physical description of the system. An improved numerical accuracy
will therefore not necessarily improve the reliability of the data, and in
fact, as it has also been shown in Fig. 1, the ultimate accuracy is bound
to give unphysical results. The limited numerical accuracy is therefore
a suitable result, in the absence of better parametrizations of the energy
functional. We also note that the method used pushes the onset of the
unphysical region above the physically relevant values, at least for the
example of C;.
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Table A.1 Table A.2
Harmonic frequencies in ecm~'. Anharmonic constants in cm~'. A few of the entries were estimated from
Mode  hw analogy to other values because the calculated values were a couple of orders

of magnitude larger than typical values and clearly unrealistic. The estimated

0 93.655 values are given with two digits..
1 221.095
2 221.783 roos Fe roos Fe
3 358.772 0 0 -0.89178 1 0 -8.24539
4 407.384 1 1 -0.98246 2 0 0.80843
5 544.460 2 1 1.5 2 2 -2.01417
6 577.362 3 0 0.86667 3 1 0.65577
7 636.032 3 2 -4.03581 3 3 0.29628
8 738.211 4 0 -4.96009 4 1 -20.58234
9 849.450 4 2 0.47912 4 3 0.16
10 1090.829 4 4 0.03718 5 0 -4.26471
11 1609.572 5 1 -1.38701 5 2 -5.21469
12 1835.090 5 3 0.00941 5 4 -3.18520
13 1983.342 5 5 -0.07392 6 0 -0.17226
14 2079.877 6 1 0.32419 6 2 0.22624
6 3 -2.33489 6 4 -1.15169
6 5 -0.93211 6 6 -0.29762
7 0 0.22206 7 1 -6.27552
Appendix B 7 2 -1.07441 7 3 -4.05511
7 4 -0.73673 7 5 -0.17
7 6 -0.69470 7 7 -0.27080
In order to make the calculation clear, the terms of Eq. (9) are 8 0 -1.32290 8 ! -5.02924
) _GE . 8 2 0.31465 8 3 -0.33895
marked separately: let Z,,=e™""e. Then the relevant thermal properties s 4 1.03386 s 5 0.89119
are the ones derived from Z [ Zgs- The first term of Z /Zys gives the 8 6 0.31388 8 7 .0.38211
standard harmonic result, 8 8 -0.10615 9 0 -2.25862
9 1 -0.04524 9 2 -3.13677
Zy = Z e~ P Xihom; — H (1- fﬂhw, H z, 14 9 3 -1.54324 9 4 -1.13130
{m ; 9 5 -0.43295 9 6 0.22059
9 7 -2.93443 9 8 -0.12
where z; is defined as the partition function of the harmonic energy 9 9 -0.14373 10 0 -2.01083
term of oscillator i. 10 1 -1204% 10 2 -1.24766
. . . 10 3 1.14751 10 4 0.57753
The second and third terms in the sum in Eq. (9) can be calculated 0 s 0.47182 0 6 -3.27086
as: 0 7 0.54590 10 8 -2.31195
1 3 hom, 10 9 -1.85067 10 10  0.43265
- Z B, [njnk +5(n + nk)] e~ 2t 15) 110 342895 11 1 -279462
(m) J=k 1 2 -2.72642 1 3 -1.78182
1 4 -1.43411 1 5 -2.47176
- Zﬂ Z;( n ) + Z;( ["/nk + %(nj +nk)] e=BXihwjn; E 6  0.08269 11 7 -2.08104
o > = 8 -3.60335 1 9 -3.98896
11 10  -3.04134 11 11 -3.40417
The first sum in the bracket is a sum containing coefficients that depend 12 0 -6.51309 12 1 -17.14643
on the diagonal elements #, ;. This is calculated to: 122 631240 12 3 -4.91900
12 4 -10.76492 12 5 -4.74646
5 hon 12 6 -4.13317 12 7 -4.07986
Zin = Zﬂzf (] +n;)e PRt 16) 12 8 714188 12 9  -5.04136
- 12 10  -6.21649 12 11  -18.04071
©; 12 12 -10.83863 13 0 -3.75399
= -2Zyp z iy m 13 1 -2.99974 13 2 -2.59029
13 3 -3.82730 13 4 -3.31663
The second sum in the bracket in Eq. (15) runs over products of 135 -3.52368 136 -7.70883
. 13 7 -2.61560 13 8 -11.87761
independent quantum numbers and can be calculated as products of 13 9 -9.64089 13 10  -4.32678
averages values. This gives: 13 11 -27.86400 13 12  -16.77331
13 13 -18.38643 14 0 -4.09691
Zp==Y B X [n = (n + nk)] =P Zihoin, an 14 1 -439684 14 2 -4.88354
{m} ik 14 3 -4.52145 14 4 -4.01816
14 5 -5.26196 14 6 -5.77972
-7, Z)( ﬂh B i E( . 1 +— 1 ) 14 7 -4.20216 14 8 -5.43520
“ ) — 1) (ePhox — 1) 2 \ePho; _ 1 T ePhay _ 14 9 -4.91242 14 10 -31.14807
sy . e 14 11  -1637599 14 12 -44.23590
-z Z , P ) 14 13 -11.39418 14 14  -10.12723
O LT (Phoj ) (ePhox — 1)
The partition function is now
The first term is equal to:
Z=Zy(Zy+Zy + Zyy), (18)
giving us the energy aln(1+zz_1[)]+zz_102) 1 0(22_:*'22_102)
Fo _0nZ _ On[Zy(Zo+ Zy1 + Z1)] 19) o . Z“ N 212 T (20)
op op
Zz 4 /)hm pho;
oln(1+ =1L ” + 22 ‘2 B 1 [ 5 4 e /[ﬂhw/-+e i (pho; — 1) +1]
== 0/7 + Z eﬁhw, 1 + Egs. 1+ le +Zn 2 7 (P — 1)3

Zy
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1- ﬂhmk)eﬂh(ij+wk) +(1- ﬂhwj)eﬁh(wj+2wk) _ zeﬁh(wj+wk)

+ )X,
,ZZ . 2P — 1Mok — 1)
¥ (Bhe; + 1)e" i + (Bhay, + 1)ePhox — e2Phoj — 2Phoy
st 2P — 1P — 1)2

The factor of 1/(1+Z,,/Zy+ Z,,/ Z,) in front of the square bracket has
little effect, and could be left out because it amounts to a second order
contribution in the X’s. It is retained in the numerical calculations,
though.
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