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Abstract

In this paper, we construct structure preserving schemes for solving Fokker–Planck equations

associated with irreversible processes. The proposed method is first order in time. We consider

two structure-preserving spatial discretizations, which are second order and fourth order

accurate finite difference schemes. They are derived via finite difference implementation of

the classical Qk (k = 1, 2) finite element methods on uniform meshes. Under mild mesh

conditions and practical time step constraints, the schemes are proved monotone, thus are

positivity-preserving and energy dissipative. In particular, our scheme is suitable for capturing

steady state solutions in large final time simulations.

Keywords Fokker–Planck equation · Finite difference · Monotonicity · Positivity · Energy

dissipation · High-order accuracy

Mathematics Subject Classification 65M06 · 65M12 · 65M60

1 Introduction

Irreversible drift-diffusion processes are a class of important stochastic processes in physics

and chemistry. For instance, an irreversible drift-diffusion process can model non-equilibrium

biochemical reactions, which possess non-equilibrium steady states (NESS). The most impor-

tant features for non-equilibrium reactions are nonzero fluxes and positive entropy production

rate at NESS. These features in an irreversible biochemical reaction maintain a circulation at
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NESS and we refer to pioneering studies by Prigogine [31]. Let �b : Rd → Rd be a general

drift field depending only on the state variable �x ∈ Rd . Consider a stationary drift-diffusion

process with white noise Bt that satisfies a stochastic differential equation (SDE) for �xt ∈ Rd

d�xt = �b(�xt ) dt +
√

2σ dBt . (1.1)

In general, σ is a noise matrix and D := σσ T ∈ Rd×d . For simplicity, in this paper we

only discuss the simple case where D > 0 is a constant number. By Ito’s formula, the

corresponding Fokker–Planck equation for SDE (1.1), i.e., the Kolmogorov forward equation

for density ρ(�x, t), is given by

∂tρ = L
∗ρ := −∇ · (�bρ) + ∇ · (D∇ρ). (1.2)

In terms of (1.2), the irreversibility means that one cannot find an invariant measureπ such that

the generator L is symmetric in L2(π). Irreversibility has many equivalent characterizations.

One is equivalent to that it is impossible to write the drift �b in a potential form �b = −D∇ϕ for

any potential ϕ. See another equivalent irreversibility condition (1.7). Irreversible processes

and the associated Fokker–Planck equations can be used to describe more general dynamic

processes, such as the biochemical reactions with non-equilibrium steady state [16, 18, 32],

they can also be used as sampling acceleration and variance reduction [10, 36].

In this paper, we focus on studying second and fourth order in space numerical schemes

for (1.2) with a general drift field �b. We will prove the proposed high-order schemes preserve

(i) the conservation of total mass, (ii) the positivity of ρ, (iii) the energy dissipation law with

respect to φ-entropy, and (iv) the exponential convergence to equilibrium M. To be more

precise, we consider the equation (1.2) in a bounded domain � ⊂ Rd with no-flux boundary

condition

− ρ �b · �n + D∇ρ · �n = 0 on 	, (1.3)

where �n is the unit outer normal of the boundary 	 = ∂�. Let ρ0(�x) be the initial condition

to (1.2). Under the no-flux boundary condition, it is easy to verify the conservation of total

mass
∫

�

ρ dx =
∫

�

ρ0 dx . (1.4)

Designing structure preserving high order numerical schemes for the irreversible Fokker–

Planck equation (1.2) is very important, not only because the irreversible processes are able

to describe lots of fundamental non-equilibrium behaviors, such as circulations at NESS in an

ecosystem, but also because of a general drift field is commonly used to construct acceleration

or control for a given stochastic process or for a process constructed from discretization of

irreversible Fokker–Planck equations; see for instance the optimally controlled transition

path computations [11, 13, 17, 24, 37] and the accelerated sampling and optimization [10,

14, 36, 40].

1.1 Invariant MeasureM andM-Symmetric Decomposition

Assume that there exists a positive invariant measure M ∈ C1(�̄),
∫

M dx = 1 and

M≥ ε0 > 0. M satisfies the static equation

∇ · F s := ∇ ·
(

�bM − D∇M

)

= 0, (1.5)
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and the same no-flux boundary condition

− M�b · �n + D∇M · �n = 0 on 	. (1.6)

For our compact domain �̄, such an invariant measure always exists, cf. [5]. The irreversibility

is then equivalently characterized as that the steady flux is not pointwisely zero

F s = �bM − D∇M 
= 0. (1.7)

The special invariant measure such that F s = 0 is also called a detailed balanced invariant

measure.

Leveraging the existence of the positive invariant measure M, one can utilize M to decom-

pose the irreversible Fokker–Planck equation (1.2) into a dissipative part and a conservative

part. The dissipative part is a gradient flow, which represents the decay from any initial den-

sity to the invariant measure. Meanwhile, the conservative part preserves the total energy and

maintains a nonzero equilibrium flux [18, 32]. To this end, let us derive the M-symmetric

decomposition and the associated energy dissipation relation.

With a positive invariant measure M, we decompose (1.2) into the sum of a gradient flow

part and a Hamiltonian flow part

∂tρ = ∇ ·
(

D∇ρ − �bρ
)

= ∇ ·
(

DM∇ ρ

M
+ ρ

M

(

D∇M − M�b
))

= ∇ ·
(

DM∇ ρ

M

)

+
(

D∇M − M�b
)

· ∇ ρ

M
.

(1.8)

From (1.5), we know

�u := D∇M − M�b, ∇ · �u = 0 in �. (1.9)

The reversibility condition for the drift-diffusion process becomes �u ≡ 0, but we focus on

more general case that �u 
= 0. Using the notation �u = D∇M − M�b and (1.6), we know

�u · �n = 0 on 	. (1.10)

By the exactly same decomposition in (1.8), the no-flux boundary condition (1.3) becomes
(

DM∇ ρ

M
+ ρ

M

(

D∇M − M�b
))

· �n = 0 on 	. (1.11)

This, together with (1.10), implies DM∇ ρ
M

· �n = 0 on 	. Thus, we conclude that

DM∇ ρ

M
· �n = 0, �u · �n = 0 on 	. (1.12)

For certain applications, in the case of the invariant measure M > 0 is given and satisfies

(1.5) and (1.6), we can utilize it to construct a numerical scheme for the following equation,

which stems from above decomposition, in conservative form:

∂tρ = ∇ ·
(

DM∇ ρ

M

)

+ ∇ ·
(

�u ρ

M

)

in {t > 0} × �,

ρ = ρ0 in {t = 0} × �,

DM

(

∇ ρ

M

)

· �n = 0, �u · �n = 0 on {t > 0} × ∂�.

(1.13)

Let us refer to (1.13) as Model 1. In this model, we highlight the positive invariant measure

M is prescribed and the vector field �u is a given time-independent continuously differentiable

function, which satisfies ∇·�u = 0. In general, this �u could be prescribed directly, or computed

from the original drift �b in (1.2).
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Let us show the energy dissipation relation of Model 1. Define operators L∗ and T as

follows

L∗ := ∇ · (DM∇) , T := (D∇M − M�b) · ∇ = �u · ∇. (1.14)

Using the boundary condition in (1.13), it is easy to check that L∗ is a symmetric and

nonnegative operator in L2(�), namely

( f , L∗g) = (L∗ f , g), ( f , L∗ f ) ≤ 0, ∀ f , g ∈ L2(�) satisfying DM∇ f · �n
∣

∣

	
= 0.

(1.15)

Here, the notation (·, ·) denotes the standard L2-inner product. From the properties of �u, it

is straightforward to see the operator T is asymmetric in L2(�), namely

( f , T g) = −(T f , g), ( f , T f ) = 0, ∀ f , g ∈ L2(�). (1.16)

Therefore, define free energy E :=
∫

φ
(

ρ
M

)

M dx for any convex function φ, we have the

following energy dissipation relation.

dE

dt
= (φ′

( ρ

M

)

, ∂tρ) = (φ′
( ρ

M

)

, (L∗ + T )
ρ

M
)

= −
∫

φ′′
( ρ

M

)

M∇ ρ

M
· D∇ ρ

M
dx ≤ 0.

(1.17)

Notice, in above, we used the identity

(φ′
( ρ

M

)

, �u · ∇ ρ

M
) = (�u,∇φ

( ρ

M

)

) = 0,

which is due to the integration by parts and properties ∇ · �u = 0 and �u · �n
∣

∣

	
= 0. This energy

dissipation law was first observed by [4]. In the case of φ(x) = (x − 1)2, the (1.17) reduces

to the following energy dissipation law with respect to the Pearson χ2-divergence

d

dt

∫

�

(ρ − M)2

M
dx = d

dt

∫

�

ρ2

M
dx = −2D

∫

�

M

∣

∣

∣
∇ ρ

M

∣

∣

∣

2
dx ≤ 0. (1.18)

In addition, from the Poincare’s inequality in L2(�) with u = ρ
M

−1, there exists a constant

c, such that,
∫

�

|u|2M dx ≤ c(M∇u, D∇u). (1.19)

We obtain

d

dt

∫

�

(ρ − M)2

M
dx = −2D

∫

�

M

∣

∣

∣
∇ ρ

M

∣

∣

∣

2
dx ≤ −2D

c

∫

�

(ρ − M)2

M
dx . (1.20)

Then, by Gronwall’s inequality, the above inequality gives the exponential decay from

dynamic solution ρ to the equilibrium M,

∫

�

(
ρ

M
− 1)2

M dx =
∫

�

(ρ − M)2

M
dx ≤ e− 2D

c
t

∫

�

(ρ0 − M)2

M
dx . (1.21)

The ergodicity result above implies that as long as a positive invariant measure M exists,

although sometimes its explicit form may not be known, one still can solve it as an equilib-

rium solution to the original model with no-flux boundary condition (1.3), i.e., the invariant

measure M can be obtained from computing the steaty state solution of the following problem
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∂tρ = ∇ · (D∇ρ) − ∇ · (�bρ) in {t > 0} × �,

ρ = ρ0 in {t = 0} × �,

−ρ �b · �n + D∇ρ · �n = 0 on {t > 0} × ∂�.

Let us refer the above equation as Model 2, or the conservative form without decomposition.

The vector field �b is a prescribed time-independent continuously differentiable function. Here,

we emphasis �b can be any general drift field. In order to produce a non-negative invariant

measure, a positivity-preserving numerical scheme for solving Model 2 is also preferred.

1.2 State of the Art

The computational methods for solving the Fokker–Planck equation (1.2) or general

convection–diffusion equations have been extensively investigated. Without being exhaus-

tive, we mention several pioneering studies. A well-known positivity-preserving finite volume

scheme was proposed by Scharfetter and Gummel for some one-dimensional semiconductor

device equations [33]. Extending the Scharfetter-Gummel finite volume scheme to a vari-

ety of drift terms, which include the irreversible expression (1.2), and to different boundary

conditions, is studied in [2, 3, 7, 28, 29, 38]. These numerical schemes are first order accu-

rate structure-preserving and enjoy many good properties, such as preserving positivity and

dissipating energy; see also the underlying Markov process structure for upwind schemes in

[9, 15]. Besides the accuracy and positivity, when numerically solving Fokker–Planck equa-

tions, the large time convergence to the invariant measure is also essential. The ergodicity for

general irreversible process described by (1.2) and the equivalence with the corresponding

reversible process (with a special drift in gradient form) were proved in [8]; see also reviews

in [1] and [4] for the analysis including mixed boundary values. Designing schemes that also

preserve the large time convergence to the invariant measure, particularly for the general

irreversible process without gradient structure, has been attracting lots of attentions, e.g., see

[23] for Fokker–Planck equation in the whole space, and see [6, 12] and the references therein

for boundary-driven convection–diffusion problems. To the best knowledge of the authors,

high order accurate schemes for solving Fokker–Planck equation (1.2) with a general drift

field, which preserve all the desired properties, such as positivity, energy dissipation relation,

and particularly the exponential convergence to the invariant measure, are still not available

in literatures. High order schemes for Fokker–Planck equation with gradient flow structure

was proved in [19] and for generalized Allen-Cahn equation was proved in [34]. Although,

a comprehensive review on various applications of Fokker–Planck equation brought by irre-

versible stochastic processes is out of the scope of the present paper, we highlight the general

irreversible processes and the processes constructed from numerical schemes for the corre-

sponding Fokker–Planck equations have extensively important applications, which include

but not limited to the transition path computations [11, 13, 24, 25, 35, 37] and the accelerated

sampling and optimization [10, 14, 36, 39, 40].

1.3 Main Results, Methodology, and Contributions

In general, for the Fokker–Planck equations with generic drift terms, it is nontrivial to con-

struct high-order accurate numerical schemes that can preserve all the following structures: (i)

mass conservation law (1.4); (ii) energy dissipation relation (1.18); (iii) well-balancedness,

i.e., numerical equilibrium recovers given invariant measure M; and (iv) ergodicity/spectral
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gap estimate (1.21). In this paper, we focus on constructing and analyzing second and fourth

order in space numerical schemes via finite difference implementation of the finite element

method for solving Fokker–Planck equations, mainly for Model 1. We will obtain all the

good properties (i)–(iv) in the fully discrete second and fourth order schemes for Model 1.

Our algorithms enjoy desired numerical properties. Benefiting from the inherent nature of

finite element method, the discrete mass conservation law is satisfied naturally. If the matrix

of the linear system in the backward Euler time discretization is a monotone matrix, i.e., its

inverse matrix has non-negative entries, then we call such schemes monotone schemes. We

show that the schemes for Model 1 are monotone under practical mesh conditions and time

step constraints in Sect. 3, thus both the positivity of the numerical solution and the discrete

energy dissipation law for any convex function f hold. Define discrete energy as

En =
∑

i

ωiMi f

(

ρn
i

Mi

)

. (1.22)

Then the quantity En is non-increasing with respect to time step n. In particular, by selecting

the convex function f (x) = (x −1)2, we show discrete Pearson χ2-divergence energy dissi-

pation law. Finally, the invariant measure is also recovered with an exponential convergence

rate. For the definition of notation in (1.22) and more details on related proofs are shown in

Sect. 4.

When �u ≡ 0, the scheme in this paper for Model 1 reduces to the scheme for the Fokker–

Planck equation in [19], thus the monotonicity discussion of the fourth order scheme is similar

to those in [19]. However, due to the extra term ∇ ·
(

�u ρ
M

)

in Model 1, the monotonicity

discussion in Sect. 3 is not only necessary but also nontrivial. More importantly, the mesh

size and time step constraints for monotonicity in Sect. 3 are simpler than those in [19], even

for the case �u ≡ 0, which is another contribution of this paper.

1.4 Organization of the Paper

The rest of this paper is organized as follows. In Sect. 2, we introduce our numerical schemes,

which are constructed by finite difference implementation of Q1 and Q2 continuous finite

element methods. In Sect. 3, we show the monotonicity of our second-order and fourth-order

schemes in one and two dimension. The system matrices from our fourth order schemes no

longer hold the M-matrix structure, however, we still obtain the monotonicity under simple

sufficient conditions. The structure-preserving properties are discussed in Sect. 4. Numerical

experiment validations are in Sect. 5. Concluding remarks are given in Sect. 6.

2 The Numerical Schemes

Consider a rectangular computational domain � ⊂ Rd (d = 1 or 2) with unit outward normal

�n. Uniformly partition the time interval [0, T ] into Nst subintervals. Let 
t = T /Nst denote

the time step size. We discretize two model problems in the previous section with the only

unknown density ρ.
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2.1 A First Order Accurate Time Discretization

Let ρn denote the solution at time step n. For Model 1 with a given incompressible �u satifying

�u · �n = 0 along the boundary ∂� and a given invariant measure M, we consider the following

backward Euler time discretization:

ρn+1 = ρn + 
t ∇ ·
(

DM∇ ρn+1

M

)

+ 
t ∇ ·
(

�u ρn+1

M

)

. (2.1)

For convenience, introduce an auxiliary variable g := ρ
M

, then gn+1 can be computed as

follows:

Mgn+1 − 
t ∇ · (DM∇gn+1) − 
t ∇ · (�ugn+1) = Mgn in �, (2.2a)

DM∇gn+1 · �n = 0, �u · �n = 0 on ∂�. (2.2b)

For solving Model 2 with given �b, the same backward Euler time discretization is given as

ρn+1 − 
t ∇ · (D∇ρn+1) + 
t ∇ · (�bρn+1) = ρn in �, (2.3a)

−ρn+1 �b · �n + D∇ρn+1 · �n = 0 on ∂�. (2.3b)

Although we do not have explicit formula for M in the most general case Model 2, for

compact domain, we still know the existence of such an invariant measure and thus we can

use M to obtain the stability and energy dissipation relation. Similar to the derivation of

(1.8), we recast (2.3a) as

ρn+1 − 
t ∇ ·
(

DM∇ ρn+1

M

)

− 
t ∇ ·
(

�u ρn+1

M

)

= ρn in �, (2.4)

which is exactly the same as (2.1). Therefore, thanks to the existence of M and the fact that

M-decomposition reduces Model 2 to Model 1, the stability analysis and energy dissipation

law for the backward Euler scheme of Model 2 can also be derived, with an unknown function

M. We have the following proposition for the time discretization (2.1) and (2.3).

Proposition 2.1 Let the invariant measure satisfying (1.5) and (1.6) be M, which has no

explicit formula for Model 2. The backward Euler time discretization (2.1) for Model 1 and

(2.3) for Model 2 satisfy the stability estimate

1


t

∫

�

(ρn+1)2

M
− 1


t

∫

�

(ρn)2

M
≤ −2D

∫

�

M

∣

∣

∣

∣

∇ ρn+1

M

∣

∣

∣

∣

2

, (2.5)

and the exponential decay of energy

∫

�

(ρn − M)2

M
≤ (1 − β)n

∫

�

(ρ0 − M)2

M
≤ e−βn

∫

�

(ρ0 − M)2

M
, (2.6)

where β = 2D
t
c+2D
t

> 0.

Proof First, since the invariant measure M always exists due to the ergodicity of the con-

tinuous Fokker–Planck equation on a compact domain (2.3) can be recast as (2.1); as we

mentioned above.

Second, for (2.1), i.e., (2.2) in terms of gn+1 = ρn+1

M
, we prove the stability estimate (2.5).

Multiplying (2.2a) by gn+1 and integrating in �, we have
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∫

�

M|gn+1|2 + 
t
(

DM∇gn+1,∇gn+1
)

=
∫

�

Mgngn+1 ≤
∫

�

M

( |gn+1|2
2

+ |gn |2
2

)

. (2.7)

Here in the first equality, we used (1.16) and integration by parts with boundary condition

(1.11). Therefore, we obtain
∫

�

M|gn+1|2 + 2D
t

∫

�

M|∇gn+1|2 ≤
∫

�

M|gn |2, (2.8)

and thus (2.5) holds.

Third, from the mass conservation
∫

�
ρ0 =

∫

�
M, we know

∫

ρ2

M
dx −1 =

∫

(ρ−M)2

M
dx

and thus (2.5) becomes

1


t

∫

�

(ρn+1 − M)2

M
− 1


t

∫

�

(ρn − M)2

M
≤ −2D

∫

�

M

∣

∣

∣

∣

∇ ρn+1

M

∣

∣

∣

∣

2

. (2.9)

Then by Poincare’s inequality (1.19) and the inequality in (1.20), we obtain

1


t

∫

�

(ρn+1 − M)2

M
− 1


t

∫

�

(ρn − M)2

M
≤ −2D

c

∫

�

(ρn+1 − M)2

M
. (2.10)

Repeating
∫

�
(ρn−M)2

M
≤ 1

1+ 2D
c


t

∫

�
(ρn−1−M)2

M
for n times we obtain (2.6). ��

On the other hand, without the explicit expression of M, we cannot obtain similar theoret-

ical results for the full discretization of Model 2 beyond the positivity and mass conservation.

Without having any explicit information on the invariant measure, it is challenging to capture

a steady solution by directly solving the dynamic equation in Model 2. For the above two

reasons, in the rest of the paper, we only focus on the analysis of the scheme (2.2) for Model

1.

2.2 The ContinuousQk Finite Element Method for Spatial Derivatives

Given the function gn , the semi-discrete scheme (2.2) is a variable coefficient elliptic equation

for gn+1 with homogeneous Neumann boundary conditions. Recall that (·, ·) denote the L2

inner product on �. After multiplying a test function φ ∈ H1(�) and integration by parts,

the equivalent variational formulation for the unknown gn+1 ∈ H1(�) to the equation (2.2)

can be written as:

(Mgn+1, φ) + 
t (DM∇gn+1,∇φ) + 
t (�ugn+1,∇φ) = (Mgn, φ), ∀φ ∈ H1(�).

Next we consider the finite element method for the spatial operators. Let Eh = {E} denote

a uniform rectangular partition of the rectangular computational domain �. For any integer

k ≥ 1, let Qk(E) be the space of tensor product polynomials of degree at most k. As an

example, for two dimensions,

Qk(E) =

⎧

⎨

⎩

p(x, y) : p(x, y) =
k

∑

i=0

k
∑

j=0

pi j x i y j , (x, y) ∈ E

⎫

⎬

⎭

.

The continuous piecewise Qk polynomial space V h ⊂ H1(�) is defined by

V h = {vh ∈ C(�) : vh |E ∈ Qk(E), ∀E ∈ Eh}.
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Given gn
h ∈ V h , the Qk finite element method is to find gn+1

h ∈ V h satisfying

(Mgn+1
h , φh) + 
t (DM∇gn+1

h ,∇φh) + 
t (�ugn+1
h ,∇φh) = (Mgn

h , φh), ∀φh ∈ V h .

(2.11)

Denote ρn
h = Mgn

h . The finite element scheme (2.11) has the following properties.

Proposition 2.2 For any n ≥ 0, the total mass is conserved in the scheme (2.11), namely

∫

�

ρn
h =

∫

�

ρ0
h . (2.12)

Proof Take φh = 1 in (2.11), then for any n ≥ 0, the identity (Mgn+1
h , 1) = (Mgn

h , 1)

holds. ��

Proposition 2.3 For any n ≥ 0, the following two inequalities hold in the scheme (2.11),

1


t

∫

�

(ρn+1
h )2

M
− 1


t

∫

�

(ρn
h )2

M
≤ −2D

∫

�

M

∣

∣

∣

∣

∣

∇ ρn+1
h

M

∣

∣

∣

∣

∣

2

, (2.13a)

1


t

∫

�

(ρn+1
h − M)2

M
− 1


t

∫

�

(ρn
h − M)2

M
≤ −2D

∫

�

M

∣

∣

∣

∣

∣

∇ ρn+1
h

M

∣

∣

∣

∣

∣

2

. (2.13b)

Proof Consider M > 0 is time independent and D > 0 is constant. For any φh ∈ V h , let us

rewrite (2.11) into the following form

(
√

Mgn+1
h −

√
Mgn

h ,
√

Mφh) + 
t (�ugn+1
h ,∇φh) = −
t D (

√
M∇gn+1

h ,
√

M∇φh).

(2.14)

Take φh = gn+1
h ∈ V h in (2.14). By formula (a − b)a = 1

2
a2 − 1

2
b2 + 1

2
(a − b)2, the first

term on the left-hand side of above becomes

(
√

Mgn+1
h −

√
Mgn

h ,
√

Mgn+1
h ) = 1

2
(
√

Mgn+1
h ,

√
Mgn+1

h ) − 1

2
(
√

Mgn
h ,

√
Mgn

h )

+ 1

2
(
√

Mgn+1
h −

√
Mgn

h ,
√

Mgn+1
h −

√
Mgn

h ).

(2.15)

For the second term on the left-hand side of (2.14), we have


t (�ugn+1
h ,∇gn+1

h ) = 
t

∫

�

�u · gn+1
h ∇gn+1

h = 
t

2

∫

�

�u · ∇|gn+1
h |2.

Since the field �u is incompressible, we have


t (�ugn+1
h ,∇gn+1

h ) = 
t

2

∫

�

(

�u · ∇|gn+1
h |2 + (∇ · �u)|gn+1

h |2
)

= 
t

2

∫

�

∇ · (�u |gn+1
h |2).

By condition �u · �n = 0, see the last equation in (1.13), we have


t (�ugn+1
h ,∇gn+1

h ) = 
t

2

∫

∂�

|gn+1
h |2 (�u · �n) = 0. (2.16)
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Thus, select φh = gn+1
h ∈ V h , substitute (2.15) and (2.16) into (2.14), we get the following

inequality

1

2
(
√

Mgn+1
h ,

√
Mgn+1

h ) − 1

2
(
√

Mgn
h ,

√
Mgn

h )

= −
t D (
√

M∇gn+1
h ,

√
M∇gn+1

h ) − 1

2
(
√

Mgn+1
h −

√
Mgn

h ,
√

Mgn+1
h −

√
Mgn

h )

≤ −
t D (
√

M∇gn+1
h ,

√
M∇gn+1

h ). (2.17)

Recall that ρn+1
h = Mgn+1

h , which is equivalent to gn+1
h = ρn+1

h /M. Multiply (2.17) by

2/
t on both side, we obtain (2.13a). Finally, from mass conservation (2.12), we also have

(2.13b) holds. ��

Proposition 2.4 For any n ≥ 0, the following inequality hold

1


t

∫

�

(ρn+1
h − M)2

M
− 1


t

∫

�

(ρn
h − M)2

M
≤ −2D

c

∫

�

(ρn+1
h − M)2

M
. (2.18)

Consequently, we have the exponential decay of ρn+1
h

∫

�

(ρn
h − M)2

M
≤ (1 − β)n

∫

�

(ρ0
h − M)2

M
≤ e−βn

∫

�

(ρ0
h − M)2

M
, (2.19)

where β = 2D
t
c+2D
t

> 0.

The proof of this proposition is identically same as (2.6) in Proposition 2.1.

2.3 The Finite Difference Implementation

For implementing the finite element method above, usually quadrature is used for computing

the integrals. On the other hand, it is well known that a finite element method with suitable

quadrature is also a finite difference scheme. When (k+1)-point Gauss-Lobatto quadrature is

used for (2.11), the scheme is also referred to as Qk spectral element method [27], and it can

be regarded as a (k + 2)th order accurate finite difference scheme with respect to the discrete

�2-norm at quadrature points for k ≥ 2. See [20, 22] for rigorous a priori error estimates.

Any Qk polynomial on rectangular element can be represented as a Lagrangian interpola-

tion polynomial at (k +1)d Gauss-Lobatto points. Thus, these points are not only quadrature

nodes but also representing all degrees of freedom. In addition, for k ≤ 2, all Gauss-Lobatto

points form a uniform grid. Let 〈·, ·〉 denote the inner product (·, ·) evaluated by Gauss-

Lobatto quadrature. Then, after replacing all integrals in (2.11) by Gauss-Lobatto quadrature,

the scheme becomes:

〈Mgn+1
h , φh〉 + 
t 〈DM∇gn+1

h ,∇φh〉 + 
t 〈�ugn+1
h ,∇φh〉 = 〈Mgn

h , φh〉, ∀φh ∈ V h .

(2.20)

In particular, we can obtain a fourth order accurate finite difference scheme when using Q2

element with 3-point Gauss-Lobatto quadrature in (2.11). For the Q1 element method with

2-point Gauss-Lobatto quadrature in (2.11), we get a second order accurate finite difference

scheme, which is exactly the same as the centered difference at interior grid points. These

two finite difference schemes can be proved monotone for convection–diffusion operators

[19, 21, 34], thus positivity-preserving and energy decaying. In this paper, we only consider

these two finite difference schemes.
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2.4 The Second Order Scheme in One Dimension

For � = [−L, L], consider uniform grid points with spacing h, −L = x1 < x2 < · · · <

xN = L . The mesh Eh consists of intervals [xi , xi+1], i = 1, · · · , N − 1.

Following the discussion in [19], it is straightforward to verify that the scheme (2.20) can

be equivalently written in the following finite difference form:

M1gn+1
1 −
t

u1gn+1
1 + u2gn+1

2

h
+ 
t

D(M1 + M2)g
n+1
1 − D(M1 + M2)g

n+1
2

h2

= M1gn
1 ;

for i = 2, · · · , N − 1,

Mi g
n+1
i + 
t

ui−1gn+1
i−1 − ui+1gn+1

i+1

2h

+ 
t
−D(Mi−1+Mi )g

n+1
i−1 +D(Mi−1 + 2Mi +Mi+1)g

n+1
i −D(Mi +Mi+1)g

n+1
i+1

2h2

= Mi g
n
i ,

and

MN gn+1
N + 
t

uN−1gn+1
N−1 + uN gn+1

N

h

+
t
−D(MN−1 + MN )gn+1

N−1 + D(MN−1 + MN )gn+1
N

h2

= MN gn
N .

For convenience, we introduce some ghost point values defined as

g0 := g2, gN+1 := gN−1, M0 := M2, MN+1 := MN−1

and

u0 := −u2, uN+1 := −uN−1.

We emphasize that ghost point values are only used to simplify the representation of the

scheme, and they are not needed or used in the implementation. Recall that the velocity field

in Model 1 satisfies boundary condition �u · �n = 0, thus u1 = uN = 0. With the ghost point

value notation and the boundary condition u1 = uN = 0, it is straightforward to see that the

scheme above can be written as

Mi g
n+1
i + 
t

ui−1gn+1
i−1 − ui+1gn+1

i+1

2h

+
t
−D(Mi−1+Mi )g

n+1
i−1 +D(Mi−1+2Mi +Mi+1)g

n+1
i −D(Mi + Mi+1)g

n+1
i+1

2h2

= Mi g
n
i , ∀i = 1, · · · , N . (2.21)

The finite difference scheme (2.21) is obtained from finite element method with quadrature,

and its second order accuracy is trivially implied by standard finite element error estimates. At

domain interior points, the scheme (2.4) is the same as the traditional second order centered

difference scheme. However, the traditional centered difference scheme would give a different
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boundary scheme, for which the second order accuracy is quite difficult to justify due to the

first order truncation error at boundaries. See Remark 3.3 in [19] for more details.

2.5 The Second Order Scheme in Two Dimensions

For a square domain � = [−L, L]2, we consider a uniform grid with spacing h consisting

of −L = x1 < x2 < · · · < xN = L and −L = y1 < y2 < · · · < yN = L . The mesh

Eh consists of [xi , xi+1] × [y j , y j+1], i, j = 1, · · · , N − 1. We employ the abbreviation

Mi, j = M(xi , y j ) for a function. With similarly defined ghost point values and the boundary

condition for velocity �u · �n = 0, the scheme finite difference form of (2.20) with Q1 element

and 2 × 2 Gauss-Lobatto quadrature is given as

Mi, j gn+1
i j + 
t

ui−1, j gn+1
i−1, j − ui+1, j gn+1

i+1, j

2h
+ 
t

vi, j−1gn+1
i, j−1 − vi, j+1gn+1

i, j+1

2h

+ 
t
−D(Mi−1, j + Mi, j )g

n+1
i−1, j + D(Mi−1, j + 2Mi, j + Mi+1, j )g

n+1
i j − D(Mi, j + Mi+1, j )g

n+1
i+1, j

2h2

+ 
t
−D(Mi, j−1 + Mi, j )g

n+1
i, j−1 + D(Mi, j−1 + 2Mi, j + Mi, j+1)g

n+1
i j − D(Mi, j + Mi, j+1)g

n+1
i, j+1

2h2

= Mi, j gn
i j , ∀i, j = 1, · · · , N . (2.22)

2.6 The Fourth Order Scheme in One Dimension

Assume the domain � = [−L, L] is partitioned into k uniform intervals with cell length

2h. Then all 3-point Gauss-Lobatto points for each small interval form an uniform grid

−L = x1 < x2 < · · · < xN = L with grid spacing h and N = 2k + 1. Thus the number

of grid points for this fourth order scheme must be odd. The mesh Eh consists of intervals

[xi , xi+2], i = 1, 3, · · · , N − 2.

Following the discussion in [19, 22, 34], it is straightforward to verify that the scheme

(2.20) with P2 element and 3-point Gauss-Lobatto quadrature can be equivalently written in

the following finite difference form:

M1gn+1
1 + 
t

−3u1gn+1
1 − 4u2gn+1

2 + u3gn+1
3

2h

+
t
D(9M1 + 4M2 + M3)g

n+1
1 − D(12M1 + 4M3)g

n+1
2

4h2

+
t
D(3M1 − 4M2 + 3M3)g

n+1
3

4h2
= M1gn

1 ;

Mi gn+1
i + 
t

−ui−2gn+1
i−2 + 4ui−1gn+1

i−1 − 4ui+1gn+1
i+1 + ui+2gn+1

i+2

4h

+
t
D(3Mi−2 − 4Mi−1 + 3Mi )g

n+1
i−2 − D(4Mi−2 + 12Mi )g

n+1
i−1

8h2

+
t
D(Mi−2 + 4Mi−1 + 18Mi + 4Mi+1 + Mi+2)g

n+1
i

8h2

+
t
−D(12Mi + 4Mi+2)g

n+1
i+1 + D(3Mi − 4Mi+1 + 3Mi+2)g

n+1
i+2

8h2
= Mi gn

i ,

∀i = 3, 5, · · · , N − 2 (corresponding to interior knots);

Mi gn+1
i + 
t

ui−1gn+1
i−1 − ui+1gn+1

i+1

2h
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+
t
−D(3Mi−1 + Mi+1)g

n+1
i−1 + 4D(Mi−1 + Mi+1)g

n+1
i − D(Mi−1 + 3Mi+1)g

n+1
i+1

4h2

= Mi gn
i ,

∀i = 2, 4, · · · N − 1 (corresponding to interval midpoints);

MN gn+1
N + 
t

−uN−2gn+1
N−2 + 4uN−1gn+1

N−1 + 3uN gn+1
N

2h

+
t
D(3MN−2 − 4MN−1 + 3MN )gn+1

N−2 − D(4MN−2 + 12MN )gn+1
N−1

4h2

+
t
D(MN−2 + 4MN−1 + 9MN )gn+1

N

4h2
= MN gn

N .

For convenience, we introduce ghost point values defined as

g−1 := g3, g0 := g2, gN+1 := gN−1, gN+2 := gN−2,

M−1 := M3, M0 := M2, MN+1 := MN−1, MN+2 := MN−2,

and

u−1 := −u3, u0 := −u2, uN+1 := −uN−1, uN+2 := −uN−2.

With the ghost point value notation and the velocity boundary condition u1 = uN = 0,

the fourth order finite difference scheme above can be written as

Mi gn+1
i + 
t

−ui−2gn+1
i−2 + 4ui−1gn+1

i−1 − 4ui+1gn+1
i+1 + ui+2gn+1

i+2

4h

+
t
D(3Mi−2 − 4Mi−1 + 3Mi )g

n+1
i−2 − D(4Mi−2 + 12Mi )g

n+1
i−1

8h2

+
t
D(Mi−2 + 4Mi−1 + 18Mi + 4Mi+1 + Mi+2)g

n+1
i

8h2

+
t
−D(12Mi + 4Mi+2)g

n+1
i+1 + D(3Mi − 4Mi+1 + 3Mi+2)g

n+1
i+2

8h2
= Mi gn

i ,

∀i = 1, 5, · · · , N (odd i, corresponding to knots); (2.23a)

Mi gn+1
i + 
t

ui−1gn+1
i−1 − ui+1gn+1

i+1

2h

+
t
−D(3Mi−1 + Mi+1)g

n+1
i−1 + 4D(Mi−1 + Mi+1)g

n+1
i − D(Mi−1 + 3Mi+1)g

n+1
i+1

4h2

= Mi gn
i ,

∀i = 2, 4, · · · N − 1 (even i, corresponding to interval midpoints). (2.23b)

2.7 The Fourth Order Scheme in Two Dimensions

Assume the domain is � = [−L, L] × [−L, L] with an uniform N × N grid point with

spacing h, obtained from all 3 × 3 Gauss-Lobatto points on a uniform rectangular mesh with

k × k cells. Thus N = 2k + 1. For the Q2 finite element method on uniform rectangular

meshes, there are three types of grid point values as shown in Fig. 1:
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Fig. 1 Three types of grid points:

red cell center, blue knots and

black edge centers for a Q2 finite

element cell (Color figure online)

knot: both i and j are odd,

edge center: i is even and j is odd (parallel to x-axis) or

i is odd and j is even (parallel to y-axis),

cell center: both i and j are even.

The fourth order finite difference scheme is given as the following:

Mi j gn+1
i j + 
t

−ui−2, j gn+1
i−2, j + 4ui−1, j g

n+1
i−1, j − 4ui+1, j g

n+1
i+1, j + ui+2, j g

n+1
i+2, j

4h

+ 
t
−vi, j−2gn+1

i, j−2 + 4vi, j−1gn+1
i, j−1 − 4vi, j+1gn+1

i, j+1 + vi, j+2gn+1
i, j+2

4h

+ 
t
D(3Mi−2, j − 4Mi−1, j + 3Mi, j )g

n+1
i−2, j − D(4Mi−2, j + 12Mi, j )g

n+1
i−1, j

8h2

+ 
t
D(Mi−2, j + 4Mi−1, j + 18Mi, j + 4Mi+1, j + Mi+2, j )g

n+1
i j

8h2

+ 
t
−D(12Mi, j + 4Mi+2, j )g

n+1
i+1, j + D(3Mi, j − 4Mi+1, j + 3Mi+2, j )g

n+1
i+2, j

8h2

+ 
t
D(3Mi, j−2 − 4Mi, j−1 + 3Mi, j )g

n+1
i, j−2 − D(4Mi, j−2 + 12Mi, j )g

n+1
i, j−1

8h2

+ 
t
D(Mi, j−2 + 4Mi, j−1 + 18Mi, j + 4Mi, j+1 + Mi, j+2)g

n+1
i j

8h2

+ 
t
−D(12Mi, j + 4Mi, j+2)g

n+1
i, j+1 + D(3Mi, j − 4Mi, j+1 + 3Mi, j+2)g

n+1
i, j+2

8h2

= Mi j gn
i j ,

if(xi , y j ) is a knot;. (2.24a)

Mi j gn+1
i j + 
t

vi, j−1gn+1
i, j−1 − vi, j+1gn+1

i, j+1

2h

+ 
t
−ui−2, j g

n+1
i−2, j + 4ui−1, j g

n+1
i−1, j − 4ui+1, j g

n+1
i+1, j + ui+2, j g

n+1
i+2, j

4h

+ 
t
D(3Mi−2, j − 4Mi−1, j + 3Mi, j )g

n+1
i−2, j − D(4Mi−2, j + 12Mi, j )g

n+1
i−1, j

8h2

+ 
t
D(Mi−2, j + 4Mi−1, j + 18Mi j + 4Mi+1, j + Mi+2, j )g

n+1
i j

8h2

123



Journal of Scientific Computing (2024) 98 :4 Page 15 of 38 4

+ 
t
−D(12Mi, j + 4Mi+2, j )g

n+1
i+1, j + D(3Mi+2, j − 4Mi+1, j + 3Mi, j )g

n+1
i+2, j

8h2

+ 
t
−D(3Mi, j−1 + Mi, j+1)g

n+1
i, j−1

4h2

+ 
t
D(Mi, j−1 + Mi, j+1)g

n+1
i j

h2

+ 
t
−D(Mi, j−1 + 3Mi, j+1)g

n+1
i, j+1

4h2
= Mi j gn

i j ,

if(xi , y j )is an edge (parallel toy-axis) center; (2.24b)

Mi j gn+1
i j + 
t

ui−1, j g
n+1
i−1, j − ui+1, j g

n+1
i+1, j

2h
+ 
t

vi, j−1gn+1
i, j−1 − vi, j+1gn+1

i, j+1

2h

+ 
t
−D(3Mi−1, j + Mi+1, j )g

n+1
i−1, j − D(Mi−1, j + 3Mi+1, j )g

n+1
i+1, j

4h2

+ 
t
D(Mi−1, j + Mi+1, j + Mi, j−1 + Mi, j+1)g

n+1
i j

h2

+ 
t
−D(3Mi, j−1 + Mi, j+1)g

n+1
i, j−1 − D(Mi, j−1 + 3Mi, j+1)g

n+1
i, j+1

4h2
= Mi j gn

i j ,

if (xi , y j )is a cell center. (2.24c)

For the grid point (xi , y j ) which is an edge center for an edge parallel to x-axis, the scheme

is very similar as above, thus omitted here.

3 Monotonicity of the Fully Discrete Schemes

In this section, we will prove the monotonicity of the two fully discrete schemes.

3.1 TheM-Matrix Structure in the Second Order Scheme

A matrix A is called monotone if all entries of its inverse are nonnegative, namely, A−1 ≥ 0.

In this paper, all inequalities for matrices are entry-wise inequalities. A square matrix A is

called an M-matrix if it can be expressed in the form A = sI−B, where B ≥ 0 and s is greater

than the spectral radius of B. There are many equivalent definitions or characterizations of M-

matrix. A comprehensive review of M-matrix can be found in [30]. The nonsingular M-matrix

is an inverse-positive matrix and it serves as a convenient tool for proving monotonicity. A

sufficient and necessary condition to characteristic nonsingular M-matrix is stated as follows:

Lemma 3.1 For a real square matrix A with positive diagonal entries and nonpositive off-

diagonal entries, it is a nonsingular M-matrix if and only if there exists a positive diagonal

matrix D such that AD has all positive row sums.

We also state a sufficient but not necessary condition to verify nonsingular M-matrix; c.f.

[30].
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Lemma 3.2 For a real square matrix A with positive diagonal entries and nonpositive off-

diagonal entries, it is a nonsingular M-matrix if all the row sums of A are nonnegative and

at least one row sum is positive.

3.1.1 The Second Order Scheme in One Dimension

We verify that the matrix in the scheme above satisfies Lemma 3.2. The following mesh

constraint is sufficient for off-diagonal entries in the system matrix to be non-positive:

h|u j | ≤ D min{M j−1, M j , M j+1}, ∀ j . (3.1)

To guarantee the nonnegative row sums of the system matrix with at least one strictly positive

row sum, the following constraints on time step size are sufficient:

Mi + 
t
ui−1 − ui+1

2h
> 0 ∀i . (3.2)

Recall that the velocity field �u is incompressible in Model 1, thus u(x) ≡ C in one dimension.

So (3.2) is trivially satisfied for positive measure M. So we have the following result.

Theorem 3.3 Under the mesh and time step constraints (3.1) and (3.2), the coefficient matrix

for the unknown vector gn+1 in the second order finite difference scheme (2.21) forms an

M-matrix and thus is monotone. In particular, in one dimension, discrete divergence free

velocity field u is constant and the second order finite difference scheme (2.21) is monotone

under the mesh constraint (3.1).

3.1.2 The Second Order Scheme in Two Dimensions

Next we verify that the matrix in the scheme (2.22) satisfies Lemma 3.2. The following mesh

constraint is sufficient for off-diagonal entries in the system matrix to be non-positive:

h|ui, j | ≤ D min{Mi−1, j , Mi+1, j , Mi, j , Mi, j−1, Mi, j+1}, ∀i, j . (3.3)

To guarantee the nonnegative row sums of the system matrix with at least one strictly positive

row sum, the following constraints on time step size are sufficient:

Mi, j + 
t
ui−1, j − ui+1, j

2h
+ 
t

vi, j−1 − vi, j+1

2h
> 0. (3.4)

Notice that (3.4) is trivially satisfied for positive measure M, if the following discrete diver-

gence free constraint is satisfied

ui−1, j − ui+1, j

2h
+ vi, j−1 − vi, j+1

2h
= 0. (3.5)

Recall that the velocity field �u is incompressible in Model 1, thus one can preprocess the

given �u such that the velocity point values satisfies (3.5). So we have the following result.

Theorem 3.4 Under the mesh and time step constraints (3.3) and (3.4), the coefficient matrix

for the unknown vector gn+1 in the second order finite difference scheme (2.22) forms an M-

matrix thus is monotone. In particular, with a discrete divergence free velocity field satisfying

(3.5), the matrix in second order finite difference scheme (2.22) is monotone under the mesh

constraint (3.3).
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3.2 Lorenz’s Sufficient Condition for Monotonicity

In general, M-matrix structure is only a very conveneint condition for verifying monotonicity,

rather than a necessary condition. Moreover, almost all high order schemes simply do not

have any M-matrix structure due to positive off-diagonal entries. In [26], Lorenz proposed

a convenient sufficient condition for a matrix to be a product of M-matrices. We review

Lorenz’s sufficient condition in this subsection. See also [21] for a review.

Let matrix Ad be a diagonal matrix denoting the diagonal part of A = [ai j ] ∈ Rn×n and

Aa = A− Ad . We further decompose Aa into positive and negative off-diagonal parts. More

precisely, we define:

Ad =
{

ai i , if i = j,

0, if i 
= j,
A

+
a =

{

ai j , if ai j > 0, i 
= j,

0, otherwise,
A

−
a = Aa − A

+
a .

Definition 3.5 Let N = {1, 2, . . . , n}. For N1, N2 ⊂ N , we say a matrix A of size n × n

connects N1 and N2, if

∀i0 ∈ N1, ∃ir ∈ N2, ∃i1, . . . , ir−1 ∈ N s.t. aik−1ik

= 0, k = 1, . . . , r . (3.6)

If perceiving A as a directed graph adjacency matrix of vertices labeled by N , then (3.6)

simply means that there exists a directed path from any vertex in N1 to at least one vertex in

N2. In particular, if N1 = ∅, then any matrix A connects N1 and N2.

Definition 3.6 Given a square matrix A and a column vector �x , define

N
0(A�x) = {i : (A�x)i = 0} and N

+(A�x) = {i : (A�x)i > 0}.

The following theorem was proved in [26], see also [21] for a detailed proof.

Theorem 3.7 (Lorenz’s condition) If A−
a has a decomposition A

−
a = A

z +A
s = (az

i j )+ (as
i j )

with A
z ≤ 0 and A

s ≤ 0, such that

1. Ad + A
z is a nonsingular M-matrix,

2. A
+
a ≤ A

z
A

−1
d A

s or equivalently ∀ai j > 0 with i 
= j , ai j ≤
n

∑

k=1

az
ika−1

kk as
k j ,

3. ∃�e ∈ Rn\{0}, �e ≥ 0 with A�e ≥ 0 such that Az or As connects N 0(A�e) with N+(A�e).
Then A is a product of two nonsingular M-matrices, thus A−1 ≥ 0.

In the rest of this section, to obtain monotonicity, we will show that the fourth order scheme

matrix satisfies the conditions in Theorem 3.7 under suitable mesh and time step constraints.

3.3 The Fourth Order Scheme in One Dimension

In general, the high order finite element methods do not have an M-matrix structure. But it

is possible to show that they are products of M-matrices. Next we verify that the Lorenz’s

condition in Theorem 3.7 can be satisfied for the matrix in the scheme (2.23). For convenience

of writing and similar to references [19, 34], we use operator notation. Let A be the linear

operator corresponding the scheme matrix A. The linear operator Ad (associated with the

diagonal matrix Ad ) is:

If i is odd, Ad(�g n+1)i
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= Mi g
n+1
i + 
t

D(Mi−2 + 4Mi−1 + 18Mi + 4Mi+1 + Mi+2)

8h2
gn+1

i ;

if i is even, Ad(�g n+1)i = Mi g
n+1
i + 
t

D(Mi−1 + Mi+1)

h2
gn+1

i .

Let a+ = max{a, 0} be the positive part and a− = − min{a, 0} negative parts of a number

a. The operator A+
a (associated with the matrix A

+
a ) is given by:

If i is odd,

A
+
a (�g n+1)i =

(

−
t

h

ui−2

4
+ 
t

D(3Mi−2 − 4Mi−1 + 3Mi )

8h2

)+
gn+1

i−2

+
(


t

h

ui+2

4
+ 
t

D(3Mi − 4Mi+1 + 3Mi+2)

8h2

)+
gn+1

i+2 ;

if i is even, A
+
a (�g n+1)i = 0.

By definition of (·)+, it is straightforward to see the matrix A
+
a is entry-wise non-negative.

Let A−
a = A − Ad − A

+
a and we further split it by introducing the operator Az (associated

with the matrix A
z) as follows:

If i is odd,

A
z(�g n+1)i = −

(

−
t

h
ui−1 + 
t

D(4Mi−2 + 12Mi )

8h2

−
(

− 
t

h

ui−2

4
+ 
t

D(3Mi−2 − 4Mi−1 + 3Mi )

8h2

)+)

gn+1
i−1

−
(


t

h
ui+1 + 
t

D(12Mi + 4Mi+2)

8h2

−
(
t

h

ui+2

4
+ 
t

D(3Mi − 4Mi+1 + 3Mi+2)

8h2

)+)

gn+1
i+1

−
(

−
t

h

ui−2

4
+ 
t

D(3Mi−2 − 4Mi−1 + 3Mi )

8h2

)−
gn+1

i−2

−
(


t

h

ui+2

4
+ 
t

D(3Mi − 4Mi+1 + 3Mi+2)

8h2

)−
gn+1

i+2 ;

if i is even, A
z(�g n+1)i = 0.

Let As = A
−
a − A

z . The operator As (associated with the matrix A
s) is as follows:

If i is odd,

A
s(�g n+1)i = −

(

−
t

h

ui−2

4
+ 
t

D(3Mi−2 − 4Mi−1 + 3Mi )

8h2

)+
gn+1

i−2

−
(


t

h

ui+2

4
+ 
t

D(3Mi − 4Mi+1 + 3Mi+2)

8h2

)+
gn+1

i+2 ;

if i is even,

A
s(�g n+1)i = −

(

−
t

h

ui−1

2
+ 
t

h2

D(3Mi−1 + Mi+1)

4

)

gn+1
i−1

−
(


t

h

ui+1

2
+ 
t

h2

D(Mi−1 + 3Mi+1)

4

)

gn+1
i+1 .
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It is easy to verify that the following mesh constraint is sufficient for Az ≤ 0 and A
s ≤ 0:

h max{|ui |, |ui+1|, |ui+2|} ≤ D min{Mi , Mi+1, Mi+2}, for odd i . (3.7)

The matrix Ad + A
z is an N -by-N real square matrix with positive diagonal entries and

nonpositive off-diagonals. We use Lemma 3.1 to verify the first condition in Theorem 3.7.

Let D equal to the identity matrix and let �1 = [1, · · · , 1]T. Then, the row sum of (Ad +A
z)D

can be evaluated by (Ad + A
z)�1, namely

If i is odd, the sum of thei th row is: Mi + 
t

4h
(−ui−2 + 4ui−1 − 4ui+1 + ui+2);

if i is even, the sum of thei th row is: Mi + 
t

h2
D(Mi−1 + Mi+1).

To guarantee the positive row sums of the matrix (Ad + A
z)D, the following constraints on

time step size are sufficient:

Mi + 
t
−ui−2 + 4ui−1 − 4ui+1 + ui+2

4h
> 0, for odd i . (3.8a)

Recall that the velocity field u(x) is incompressible in Model 1, thus u ≡ C in one dimension.

So (3.8) is trivially satisfied for positive measure M. ThusAd +A
z is a nonsingular M-matrix.

Meanwhile, the divergence free velocity in one dimension also implies
ui−1−ui+1

2h
= 0, namely

Mi + 
t
ui−1 − ui+1

2h
> 0, for even i . (3.8b)

Thus, we have A�1 > 0. Therefore, N 0(A�1) = ∅ and the third condition in Theorem 3.7

is trivially satisfied. Our next goal is to seek a sufficient condition such that the second

condition in Theorem 3.7 hold. By comparing A+
a (�gn+1)i with Az ◦ (Ad)−1 ◦ As(�gn+1)i , it

is straightforward to verify that A+
a ≤ A

z
A

−1
d A

s is equivalent to the following: for odd i ,

(

Mi−1 − 
t

h

ui−2

2
+ 
t

h2

D(7Mi−2 + 5Mi )

4

)

(

−
t

h

ui−2

4
+ 
t

h2

D(3Mi−2 − 4Mi−1 + 3Mi )

8

)

≤
(

−
t

h

ui−2

2
+ 
t

h2

D(3Mi−2 + Mi )

4

)(

−
t

h
ui−1 + 
t

h2

D(4Mi−2 + 12Mi )

8

)

.

(3.9)

Multiply 32 ( h2


t
)2 on both side of above inequality, after some manipulation, we get:

(

4
h2


t
Mi−1 − 2hui−2 + D(7Mi−2 + 5Mi )

)

(

− 2hui−2 + D(3Mi−2 − 4Mi−1 + 3Mi )
)

≤
(

− 2hui−2 + D(3Mi−2 + Mi )
)(

− 8hui−1 + D(4Mi−2 + 12Mi )
)

.

Let b = max{Mi−2, Mi−1, Mi } and s = min{Mi−2, Mi−1, Mi }, namely, the largest and

smallest quadrature point values of M on an element [xi−2, xi ]. Assume the finite difference

grid spacing satisfies:

h max{|ui−2|, |ui−1|, |ui |} ≤ 1

4
D min{Mi−2, Mi−1, Mi }, for odd i . (3.10)
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Note, (3.10) implies (3.7). It is easy to verify that a sufficient condition for (3.9) is

(1

4
Ds + 2(3D + h2


t
)b

)(1

2
Ds + D(6b − 4s)

)

≤ (2Ds − 1

4
Ds)(16Ds − 2Ds).

Therefore, a sufficient condition is:

3D + h2


t
≤ 49Ds2

2b(12b − 7s)
− Ds

8b
.

Now, we simplify the sufficient condition above. The invariant measure M ≥ ε0 > 0, define

r = b/s, then above inequality can be rewritten as

h2


t
≤ 49D

2r(12r − 7)
− D

8r
− 3D = 7

2
D
( 1

r − 7
12

− 1

r

)

− D

8r
− 3D.

From the definition of r , we know r ≥ 1. Thus, it is sufficient to employ the conditions

r ∈ [1, 1.15] and

h2


t
≤ 0.02D < min

r∈[1,1.15]

{

7

2
D
( 1

r − 7
12

− 1

r

)

− D

8r
− 3D

}

.

This indicates we only need to find a suitable upper bound on h such that b ≤ 1.15s (namely

r ∈ [1, 1.15]) holds. Recall M is continuously differentiable. Assume M take its maximum

at point x∗ on cell [xi−2, xi ] and M take its minimum at point x∗ on cell [xi−2, xi ]. By mean

value theorem, there exist a point ξ ∈ [xi−2, xi ] such that

M(x∗) = M(x∗) + (x∗ − x∗)M′(ξ).

Therefore

b ≤ M(x∗) = M(x∗) + (x∗ − x∗)M′(ξ) ≤ s + 2h max
[xi−2,xi ]

|M′|,

which means in order to let b ≤ 1.15s hold, we can employ a sufficient condition as follows

s + 2h max
[xi−2,xi ]

|M′| ≤ 1.15s.

To this end, we obtain a constraint on h, as follows

h max
[xi−2,xi ]

|M′| ≤ 0.075 min{Mi−2, Mi−1, Mi }, for odd i . (3.11)

As a summary, we have the following theorem:

Theorem 3.8 Under the mesh and time step constraints (3.8), (3.10), (3.11) and 
t
h2 ≥ 50

D
, the

coefficient matrix for the unknown vector �g n+1 in the fourth order finite difference scheme

(2.23) satisfies the Lorenz’s conditions, so it is a product of two M-matrices thus monotone. In

particular, in one dimension, for a discrete divergence free velocity field u (which is constant),

the matrix in fourth order finite difference scheme (2.23) is monotone under the following

constraints: 
t
h2 ≥ 50

D
and, for odd i ,

h max{|ui |, |ui+1|, |ui+2|} ≤ 1

4
D min{Mi , Mi+1, Mi+2},

h max
[xi ,xi+2]

|M′| ≤ 0.075 min{Mi , Mi+1, Mi+2}.
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Remark 1 In practice, to realize the mesh size and time step satifying the constraints above,

one can first choose a small enough mesh size h, then choose a large enough time step 
t .

For instance, for a constant velocity case, for a small enough h, one can use 
t ≥ 50
D

h2. We

emphasize that the sufficient conditions above are not sharp for monotonicity to hold, but

with a fixed mesh size h monotonicity will be lost in the fourth order scheme when 
t → 0.

3.4 The Fourth Order Scheme in Two Dimension

Next we derive a sufficient mesh size and time step conditions for the two-dimensional fourth

order scheme to satisfy the Lorenz’s conditions in Theorem 3.7. For convenience, we follow

[19, 34], to use operator notation for all matrices.

Similar to the one dimensional discussion above, A denotes the linear operator for the

scheme matrix. The linear operator Ad (associated with the diagonal matrix Ad ) is:

If (xi , y j ) is a knot, Ad(�g n+1)i j

= Mi, j g
n+1
i j + 
t

D(Mi−2, j + 4Mi−1, j + 18Mi, j + 4Mi+1, j + Mi+2, j )

8h2
gn+1

i j

+ 
t
D(Mi, j−2 + 4Mi, j−1 + 18Mi, j + 4Mi, j+1 + Mi, j+2)

8h2
gn+1

i j ;

if (xi , y j ) is an edge (parallel to y-axis) center, Ad(�g n+1)i j

= Mi, j g
n+1
i j + 
t

D(Mi, j−1 + Mi, j+1)

h2
gn+1

i j

+ 
t
D(Mi−2, j + 4Mi−1, j + 18Mi j + 4Mi+1, j + Mi+2, j )

8h2
gn+1

i j ;

if (xi , y j ) is a cell center, Ad(�g n+1)i j

= Mi, j g
n+1
i j + 
t

D(Mi−1, j + Mi+1, j + Mi, j−1 + Mi, j+1)

h2
gn+1

i j .

For (xi , y j ) is an edge (parallel to x-axis) center, this case is very similar to the case which

(xi , y j ) is an edge (parallel to y-axis) center, thus omitted. For the sake of brevity, we omit

the case (xi , y j ) is an edge (parallel to x-axis) center when defining operators. Recall that we

use notation (·)+ = max{·, 0} to denote the positive part and (·)− = − min{·, 0} to denote

the negative parts of a number (·). The operator A+
a (associated with the matrix A

+
a ) is given

by:

If (xi , y j ) is a knot,

A
+
a (�g n+1)i j =

(

−
t

h

ui−2, j

4
+ 
t

D(3Mi−2, j − 4Mi−1, j + 3Mi, j )

8h2

)+
gn+1

i−2, j

+
(


t

h

ui+2, j

4
+ 
t

D(3Mi, j − 4Mi+1, j + 3Mi+2, j )

8h2

)+
gn+1

i+2, j

+
(

−
t

h

vi, j−2

4
+ 
t

D(3Mi, j−2 − 4Mi, j−1 + 3Mi, j )

8h2

)+
gn+1

i, j−2

+
(


t

h

vi, j+2

4
+ 
t

D(3Mi, j − 4Mi, j+1 + 3Mi, j+2)

8h2

)+
gn+1

i, j+2;

if (xi , y j ) is an edge (parallel toy-axis) center,
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A
+
a (�g n+1)i j =

(

−
t

h

ui−2, j

4
+ 
t

D(3Mi−2, j − 4Mi−1, j + 3Mi, j )

8h2

)+
gn+1

i−2, j

+
(


t

h

ui+2, j

4
+ 
t

D(3Mi+2, j − 4Mi+1, j + 3Mi, j )

8h2

)+
gn+1

i+2, j ;

if (xi , y j ) is a cell center, A
+
a (�g n+1)i j = 0.

It is straightforward to see the matrix A
+
a is entry-wise non-negative. Let A−

a = A−Ad −A
+
a

and we further split it by introducing the operator Az (associated with the matrix A
z) as

follows:

If(xi , y j ) is a knot,

A
z(�g n+1)i j = −

(

−
t

h
ui−1, j + 
t

D(4Mi−2, j + 12Mi, j )

8h2

−
(

− 
t

h

ui−2, j

4
+ 
t

D(3Mi−2, j − 4Mi−1, j + 3Mi, j )

8h2

)+)

gn+1
i−1, j

−
(


t

h
ui+1, j + 
t

D(12Mi, j + 4Mi+2, j )

8h2
−

(
t

h

ui+2, j

4
+ 
t

D(3Mi, j − 4Mi+1, j + 3Mi+2, j )

8h2

)+)

gn+1
i+1, j

−
(

−
t

h
vi, j−1 + 
t

D(4Mi, j−2 + 12Mi, j )

8h2
−

(

− 
t

h

vi, j−2

4
+ 
t

D(3Mi, j−2 − 4Mi, j−1 + 3Mi, j )

8h2

)+)

gn+1
i, j−1

−
(


t

h
vi, j+1 + 
t

D(12Mi, j + 4Mi, j+2)

8h2
−

(
t

h

vi, j+2

4
+ 
t

D(3Mi, j − 4Mi, j+1 + 3Mi, j+2)

8h2

)+)

gn+1
i, j+1

−
(

−
t

h

ui−2, j

4
+ 
t

D(3Mi−2, j − 4Mi−1, j + 3Mi, j )

8h2

)−
gn+1

i−2, j

−
(


t

h

ui+2, j

4
+ 
t

D(3Mi, j − 4Mi+1, j + 3Mi+2, j )

8h2

)−
gn+1

i+2, j

−
(

−
t

h

vi, j−2

4
+ 
t

D(3Mi, j−2 − 4Mi, j−1 + 3Mi, j )

8h2

)−
gn+1

i, j−2

−
(


t

h

vi, j+2

4
+ 
t

D(3Mi, j − 4Mi, j+1 + 3Mi, j+2)

8h2

)−
gn+1

i, j+2;

if(xi , y j )is an edge (parallel to y-axis) center,

A
z(�g n+1)i j = −

(

−
t

h
ui−1, j + 
t

D(4Mi−2, j + 12Mi, j )

8h2
−

(

− 
t

h

ui−2, j

4
+ 
t

D(3Mi−2, j − 4Mi−1, j + 3Mi, j )

8h2

)+)

gn+1
i−1, j

−
(


t

h
ui+1, j + 
t

D(12Mi, j + 4Mi+2, j )

8h2
−
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(
t

h

ui+2, j

4
+ 
t

D(3Mi, j − 4Mi+1, j + 3Mi+2, j )

8h2

)+)

gn+1
i+1, j

−
(

−
t

h

ui−2, j

4
+ 
t

D(3Mi−2, j − 4Mi−1, j + 3Mi, j )

8h2

)−
gn+1

i−2, j

−
(


t

h

ui+2, j

4
+ 
t

D(3Mi+2, j − 4Mi+1, j + 3Mi, j )

8h2

)−
gn+1

i+2, j ;

If(xi , y j ) is a cell center, A
z(�g n+1)i j = 0.

Similar to (3.7) in subsection 3.3, it is easy to verify thatAz ≤ 0 under the following sufficient

condition: for odd i and odd j ,

h max{|ui, j |, |ui+1, j |, |ui+2, j |} ≤ D min{Mi, j , Mi+1, j , Mi+2, j }, (3.12a)

and h max{|vi, j |, |vi, j+1|, |vi, j+2|} ≤ D min{Mi, j , Mi, j+1, Mi, j+2}. (3.12b)

The matrix A
s = A

−
a − A

z . Therefore, the operator As (associated with the matrix A
s) is as

follows:

If(xi , y j ) is a knot,

A
s(�g n+1)i j = −

(

−
t

h

ui−2, j

4
+ 
t

D(3Mi−2, j − 4Mi−1, j + 3Mi, j )

8h2

)+
gn+1

i−1, j

−
(


t

h

ui+2, j

4
+ 
t

D(3Mi, j − 4Mi+1, j + 3Mi+2, j )

8h2

)+
gn+1

i+1, j

−
(

−
t

h

vi, j−2

4
+ 
t

D(3Mi, j−2 − 4Mi, j−1 + 3Mi, j )

8h2

)+
gn+1

i, j−1

−
(


t

h

vi, j+2

4
+ 
t

D(3Mi, j − 4Mi, j+1 + 3Mi, j+2)

8h2

)+
gn+1

i, j+1;

if(xi , y j ) is an edge (parallel to y-axis) center,

A
s(�g n+1)i j = −

(

−
t

h

ui−2, j

4
+ 
t

D(3Mi−2, j − 4Mi−1, j + 3Mi, j )

8h2

)+
gn+1

i−1, j

−
(


t

h

ui+2, j

4
+ 
t

D(3Mi, j − 4Mi+1, j + 3Mi+2, j )

8h2

)+
gn+1

i+1, j

−
(

−
t

h

vi, j−1

2
+ 
t

D(3Mi, j−1 + Mi, j+1)

4h2

)

gn+1
i, j−1

−
(


t

h

vi, j+1

2
+ 
t

D(Mi, j−1 + 3Mi, j+1)

4h2

)

gn+1
i, j+1;

if(xi , y j ) is a cell center,

A
s(�g n+1)i j = −

(

−
t

h

ui−1, j

2
+ 
t

D(3Mi−1, j + Mi+1, j )

4h2

)

gn+1
i−1, j

−
(


t

h

ui+1, j

2
+ 
t

D(Mi−1, j + 3Mi+1, j )

4h2

)

gn+1
i+1, j

−
(

−
t

h

vi, j−1

2
+ 
t

D(3Mi, j−1 + Mi, j+1)

4h2

)

gn+1
i, j−1

−
(


t

h

vi, j+1

2
+ 
t

D(Mi, j−1 + 3Mi, j+1)

4h2

)

gn+1
i, j+1.
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Obviously, under the sufficient condition (3.12), As ≤ 0 also holds. The matrix Ad + A
z is

a real squared matrix with positive diagonal entries and nonpositive off-diagonals. We use

Lemma 3.1 to verify the first condition in Theorem 3.7. Let D equal to the identity matrix

and applying the same argument as in subsection 3.3. Notice that the row sums of the matrix

Ad + A
z are the outputs of [Ad + Az](�1)i j :

If (xi , y j ) is a knot, Mi, j + 
t
−ui−2, j + 4ui−1, j − 4ui+1, j + ui+2, j

4h

+ 
t
−vi, j−2 + 4vi, j−1 − 4vi, j+1 + vi, j+2

4h
;

if (xi , y j ) is an edge (parallel toy-axis) center, Mi, j + 
t
D(Mi, j−1 + Mi, j+1)

h2

+ 
t
−ui−2, j + 4ui−1, j − 4ui+1, j + ui+2, j

4h
;

if (xi , y j ) is an edge (parallel to x-axis) center, Mi, j + 
t
D(Mi−1, j + Mi+1, j )

h2

+ 
t
−vi, j−2 + 4vi, j−1 − 4vi, j+1 + vi, j+2

4h
;

if (xi , y j ) is a cell center, Mi, j

+ 
t
D(Mi−1, j + Mi+1, j + Mi, j−1 + Mi, j+1)

h2
.

To guarantee the positive row sums, the following constraints on time step size are sufficient:

For odd i and odd j,

Mi, j +
t
−ui−2, j + 4ui−1, j − 4ui+1, j + ui+2, j

4h

+
t
−vi, j−2 + 4vi, j−1 − 4vi, j+1 + vi, j+2

4h
>0; (3.13a)

for odd i and even j,

Mi, j + 
t
D(Mi, j−1 + Mi, j+1)

h2
+ 
t

−ui−2, j + 4ui−1, j − 4ui+1, j + ui+2, j

4h
> 0;
(3.13b)

for even i and odd j,

Mi, j + 
t
D(Mi−1, j + Mi+1, j )

h2
+ 
t

−vi, j−2 + 4vi, j−1 − 4vi, j+1 + vi, j+2

4h
> 0.

(3.13c)

Recall that the velocity field �u is incompressible in Model 1, thus one can preprocess the

given �u such that the velocity point values satisfy the following discrete divergence free

constraint:

For odd i and odd j,

−ui−2, j + 4ui−1, j − 4ui+1, j + ui+2, j

4h
+ −vi, j−2 + 4vi, j−1 − 4vi, j+1 + vi, j+2

4h
= 0;
(3.14a)

for odd i and even j,
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−ui−2, j + 4ui−1, j − 4ui+1, j + ui+2, j

4h
+ vi, j−1 − vi, j+1

2h
= 0; (3.14b)

for even iand odd j,

ui−1, j − ui+1, j

2h
+ −vi, j−2 + 4vi, j−1 − 4vi, j+1 + vi, j+2

4h
= 0; (3.14c)

for even i and even j,

ui−1, j − ui+1, j

2h
+ vi, j−1 − vi, j+1

2h
= 0. (3.14d)

Then, for any incompressible velocity satisfying the discrete divergence free constraint (3.14),

we know the (3.13) is satisfied for positive measure M under the following sufficient condi-

tion:

h max{|vi, j−1|, |vi, j+1|} ≤ 2D min{Mi, j−1, Mi, j+1} for odd i and even j (3.15a)

h max{|ui−1, j |, |ui+1, j |} ≤ 2D min{Mi−1, j , Mi+1, j } for even i and odd j . (3.15b)

Notice that (3.12) implies (3.15). Thus, under the condition (3.13) (in particular, under the

condition (3.12) for a discrete divergence free velocity field), the matrix Ad + A
z is a non-

singular M-matrix. Meanwhile, under the same sufficient condition, we have A�1 > 0, which

indicates N 0(A�1) = ∅, namely, the third condition in Theorem 3.7 is trivially satisfied.

Finally, to verify A
+
a ≤ A

z
A

−1
d A

s in Theorem 3.7, we only need to compare the outputs

of A+
a (�gn+1) with Az ◦ (Ad)−1 ◦ As(�gn+1). If xi j is a knot, we only need the following

inequalities hold:

• For the entry in A
+
a associated with the coefficient of gn+1

i−2, j in A+
a (�g n+1)i j .

(

−
t

h

ui−2, j

4
+ 
t

D(3Mi−2, j − 4Mi−1, j + 3Mi, j )

8h2

)+

×
(

Mi−1, j + 
t
D(Mi−2, j + Mi, j )

h2

+
t
D(Mi−1, j−2 + 4Mi−1, j−1 + 18Mi−1, j + 4Mi−1, j+1 + Mi−1, j+2)

8h2

)

≤
(

−
t

h
ui−1, j + 
t

D(4Mi−2, j + 12Mi, j )

8h2

−
(

− 
t

h

ui−2, j

4
+ 
t

D(3Mi−2, j − 4Mi−1, j + 3Mi, j )

8h2

)+)

×
(

−
t

h

ui−2, j

2
+ 
t

D(3Mi−2, j + Mi, j )

4h2

)

(3.16)

• For the entry in A
+
a associated with the coefficient of gn+1

i+2, j in A+
a (�g n+1)i j .

(


t

h

ui+2, j

4
+ 
t

D(3Mi, j − 4Mi+1, j + 3Mi+2, j )

8h2

)+

×
(

Mi+1, j + 
t
D(Mi, j + Mi+2, j )

h2

+
t
D(Mi+1, j−2 + 4Mi+1, j−1 + 18Mi+1, j + 4Mi+1, j+1 + Mi+1, j+2)

8h2

)

≤
(


t

h
ui+1, j + 
t

D(12Mi, j + 4Mi+2, j )

8h2
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−
(
t

h

ui+2, j

4
+ 
t

D(3Mi, j − 4Mi+1, j + 3Mi+2, j )

8h2

)+)

×
(


t

h

ui+2, j

2
+ 
t

D(Mi, j + 3Mi+2, j )

4h2

)

(3.17)

• For the entry in A
+
a associated with the coefficient of gn+1

i, j−2 in A+
a (�g n+1)i j .

(

−
t

h

vi, j−2

4
+ 
t

D(3Mi, j−2 − 4Mi, j−1 + 3Mi, j )

8h2

)+

×
(

Mi, j−1 + 
t
D(Mi, j−2 + Mi, j )

h2

+
t
D(Mi−2, j−1 + 4Mi−1, j−1 + 18Mi, j−1 + 4Mi+1, j−1 + Mi+2, j−1)

8h2

)

≤
(

−
t

h
vi, j−1 + 
t

D(4Mi, j−2 + 12Mi, j )

8h2

−
(

− 
t

h

vi, j−2

4
+ 
t

D(3Mi, j−2 − 4Mi, j−1 + 3Mi, j )

8h2

)+)

×
(

−
t

h

vi, j−2

2
+ 
t

D(3Mi, j−2 + Mi, j )

4h2

)

(3.18)

• For the entry in A
+
a associated with the coefficient of gn+1

i, j+2 in A+
a (�g n+1)i j .

(


t

h

vi, j+2

4
+ 
t

D(3Mi, j − 4Mi, j+1 + 3Mi, j+2)

8h2

)+

×
(

Mi, j+1 + 
t
D(Mi, j + Mi, j+2)

h2

+
t
D(Mi−2, j+1 + 4Mi−1, j+1 + 18Mi, j+1 + 4Mi+1, j+1 + Mi+2, j+1)

8h2

)

≤
(


t

h
vi, j+1 + 
t

D(12Mi, j + 4Mi, j+2)

8h2

−
(
t

h

vi, j+2

4
+ 
t

D(3Mi, j − 4Mi, j+1 + 3Mi, j+2)

8h2

)+)

×
(


t

h

vi, j+2

2
+ 
t

D(Mi, j + 3Mi, j+2)

4h2

)

(3.19)

The above inequalities hold trivially, if the positive part in each inequalities is zero. For

seeking a sufficient condition, we only need to consider the case that the positive parts are

larger than zero. Let us use (3.16) as an example to derive a sufficient condition. The (3.17)–

(3.19) are processed in the same way. Multiply 64( h2


t
)2 on both side, after some manipulation,

we have:

(

8
h2


t
Mi−1, j + 8D(Mi−2, j + Mi, j )

+ D(Mi−1, j−2 + 4Mi−1, j−1 + 18Mi−1, j + 4Mi−1, j+1 + Mi−1, j+2)
)

×
(

− 2hui−2, j + D(3Mi−2, j − 4Mi−1, j + 3Mi, j )
)
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≤
(

− 4hui−2, j + 2D(3Mi−2, j + Mi, j )
)

×
(

2hui−2, j − 8hui−1, j + D(Mi−2, j + 4Mi−1, j + 9Mi, j )
)

.

Let E
 = [i − 2, i + 2] × [ j − 2, j + 2]. Denote the largest and smallest values of the

invariant measure on E
 by b = maxE

{Mi, j } and s = minE


{Mi, j }. Assume the finite

difference grid spacing satisfies:

h max
E


|�ui, j | ≤ 1

20
D min

E


{Mi, j }. (3.20)

Note that (3.20) implies the condition (3.12). Then we only need

4
(

11D + 2
h2


t

)

b
( 1

10
Ds + D(6b − 4s)

)

≤ (8Ds − 1

5
Ds)(14Ds − 1

2
Ds).

Therefore, a sufficient condition is:

11D + h2


t
≤ 52.65Ds2

b(12b − 7.8s)
. (3.21)

If xi j is an edge center (either parallel to y-axis or parallel to x-axis), we only need the

following inequalities hold:

• For the entry in A
+
a associated with the coefficient of gn+1

i−2, j in A+
a (�g n+1)i j .

(

−
t

h

ui−2, j

4
+ 
t

D(3Mi−2, j − 4Mi−1, j + 3Mi, j )

8h2

)+

×
(

Mi−1, j + 
t
D(Mi−2, j + Mi, j + Mi−1, j−1 + Mi−1, j+1)

h2

)

≤
(

−
t

h
ui−1, j + 
t

D(4Mi−2, j + 12Mi, j )

8h2

−
(

− 
t

h

ui−2, j

4
+ 
t

D(3Mi−2, j − 4Mi−1, j + 3Mi, j )

8h2

)+)

×
(

−
t

h

ui−2, j

2
+ 
t

D(3Mi−2, j + Mi, j )

4h2

)

(3.22)

• For the entry in A
+
a associated with the coefficient of gn+1

i+2, j in A+
a (�g n+1)i j .

(


t

h

ui+2, j

4
+ 
t

D(3Mi+2, j − 4Mi+1, j + 3Mi, j )

8h2

)+

×
(

Mi+1, j + 
t
D(Mi, j + Mi+2, j + Mi+1, j−1 + Mi+1, j+1)

h2

)

≤
(


t

h
ui+1, j + 
t

D(12Mi, j + 4Mi+2, j )

8h2

−
(
t

h

ui+2, j

4
+ 
t

D(3Mi, j − 4Mi+1, j + 3Mi+2, j )

8h2

)+)

×
(


t

h

ui+2, j

2
+ 
t

D(Mi, j + 3Mi+2, j )

4h2

)

(3.23)
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• For the entry in A
+
a associated with the coefficient of gn+1

i, j−2 in A+
a (�g n+1)i j .

(

−
t

h

vi, j−2

4
+ 
t

D(3Mi, j−2 − 4Mi, j−1 + 3Mi, j )

8h2

)+

×
(

Mi, j−1 + 
t
D(Mi−1, j−1 + Mi+1, j−1 + Mi, j−2 + Mi, j )

h2

)

≤
(

−
t

h
vi, j−1 + 
t

D(4Mi, j−2 + 12Mi, j )

8h2

−
(

− 
t

h

vi, j−2

4
+ 
t

D(3Mi, j−2 − 4Mi, j−1 + 3Mi, j )

8h2

)+)

×
(

−
t

h

vi, j−2

2
+ 
t

D(3Mi, j−2 + Mi, j )

4h2

)

(3.24)

• For the entry in A
+
a associated with the coefficient of gn+1

i, j+2 in A+
a (�g n+1)i j .

(


t

h

vi, j+2

4
+ 
t

D(3Mi, j − 4Mi, j+1 + 3Mi, j+2)

8h2

)+

×
(

Mi, j+1 + 
t
D(Mi−1, j+1 + Mi+1, j+1 + Mi, j + Mi, j+2)

h2

)

≤
(


t

h
vi, j+1 + 
t

D(12Mi, j + 4Mi, j+2)

8h2

−
(
t

h

vi, j+2

4
+ 
t

D(3Mi, j − 4Mi, j+1 + 3Mi, j+2)

8h2

)+)

×
(


t

h

vi, j+2

2
+ 
t

D(Mi, j + 3Mi, j+2)

4h2

)

(3.25)

Again, we only need to consider the case that the positive parts in above are larger than
zero. Let us use (3.22) as an example to derive a sufficient condition. The (3.23)–(3.25) are

processed in the same way. Multiply 64( h2


t
)2 on both side, after some manipulation, we

have:

(

4
h2


t
Mi−1, j + 4D(Mi−2, j + Mi, j + Mi−1, j−1 + Mi−1, j+1)

)

×
(

− 2hui−2, j + D(3Mi−2, j − 4Mi−1, j + 3Mi, j )
)

≤
(

− 2hui−2, j + D(3Mi−2, j + Mi, j )
)

×
(

2hui−2, j − 8hui−1, j + D(Mi−2, j + 4Mi−1, j + 9Mi, j )
)

.

Recall that E
 = [i−2, i+2]×[ j−2, j+2] and b = maxE

{Mi, j } and s = minE


{Mi, j }.
Assume the finite difference grid spacing satisfies (3.20). Then we only need

4
(

8D + 2
h2


t

)

b
( 1

10
Ds + D(6b − 4s)

)

≤ (8Ds − 1

5
Ds)(14Ds − 1

2
Ds).

Therefore, (3.21) still serves as a sufficient condition. Now, let us try to simplify above

sufficient condition. The invariant measure M ≥ ε0 > 0, define r = b/s, then (3.21) can be

rewritten as

h2


t
≤ 52.65D

r(12r − 7.8)
− 11D = 6.75D

( 1

r − 0.65
− 1

r

)

− 11D.

123



Journal of Scientific Computing (2024) 98 :4 Page 29 of 38 4

From the definition of r , we know r ≥ 1. Thus, it is sufficient to employ the conditions

r ∈ [1, 1.025] and

h2


t
≤

√
2D < min

r∈[1,1.025]

{

6.75D
( 1

r − 0.65
− 1

r

)

− 11D

}

.

This indicates we only need to find a suitable upper bound on h such that b ≤ 1.025s (namely

r ∈ [1, 1.025]) holds. Recall M is continuously differentiable. Assume M take its maximum

at point �x∗ on E
 and M take its minimum at point �x∗ on E
. By mean value theorem, there

exist a point �ξ ∈ E
 such that

M(�x∗) = M(�x∗) + (�x∗ − �x∗) · ∇M(�ξ).

Therefore

b ≤ s + 4
√

2 h max
E


|(M′
x , M

′
y)|,

which means in order to let b ≤ 1.025s hold, we can employ a sufficient condition as follows

s + 4
√

2 h max
E


|(M′
x , M

′
y)| ≤ 1.025s. (3.26)

To this end, we obtain a constraint on h, as follows

h max
E


|(M′
x , M

′
y)| ≤

√
2

320
min
E


{Mi, j }. (3.27)

As a summary, we have the following theorem:

Theorem 3.9 Under the mesh and time step constraints (3.13), (3.20), (3.27) and 
t
h2 ≥ 1√

2D
,

the coefficient matrix for the unknown vector �g in the fourth order finite difference scheme

(2.24) satisfies the Lorenz’s conditions, so it is a product of two M-matrices thus monotone. In

particular, let E
 = [i −2, i +2]×[ j −2, j +2], with a two dimensional discrete divergence

free velocity field satisfying (3.14), then the matrix in fourth order finite difference scheme

(2.24) is monotone under the following constraints:

h max
E


|�ui, j | ≤ 1

20
D min

E


{Mi, j },

h max
E


|(M′
x , M

′
y)| ≤

√
2

320
min
E


{Mi, j },


t

h2
≥ 1√

2D
.

Remark 2 We emphasize that the conditions above are only convenient sufficient conditions

for monotonicity, rather than sharp necessary conditions. However, the monotonicity in the

fourth order finite difference scheme (2.24) will be lost in numerical tests if 
t approaches

0. So certain lower bound on 
t
h2 is a necessary condition for monotonicity.

4 Properties of the Fully Discrete Numerical Schemes

We only discuss the two dimensional case since all the results can be easily reduced to

the one dimensional case. The discussion in this section holds for both the second order

scheme (2.22) and the fourth order scheme (2.24). For convenience, we use �gh to denote
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the numerical solution vector in two dimensions with entries gi (i = 1, · · · , N 2). The finite

element space V h is N 2-dimensional with Lagrangian Qk basis {φi (x)}N 2

i=1 defined at the

(k + 1) × (k + 1)-point Gauss-Lobatto points.

4.1 Natural Properties of the Finite Element Method

Since the finite difference schemes in Sect. 2 are derivied from a finite element method, they

inherit many good properties from the original finite element method, which will be used for

deriving energy dissipation. We can express the numerical scheme (2.20) in a matrix–vector

form. We introduce the following matrices:

[W]i, j = 〈φ j , φi 〉, [M]i, j = diag(M1, · · · , MN 2),

[Adiff ]i, j = 〈DM∇φ j ,∇φi 〉, [Aadv]i, j = 〈uφ j ,∇φi 〉.

Since we use the Gauss-Lobatto quadrature, the lumped mass matrix W is a diagonal matrix,

with quadrature weights ωi > 0 on the diagonal. Then the matrix–vector form of (2.20) is

(WM + 
tAdiff + 
tAadv)�g n+1
h = WM�g n

h . (4.1)

For simplicity, we define

A := WM + 
tAdiff + 
tAadv,

B := M
−1

W
−1

A = I + 
tM−1
W

−1
A

diff + 
tM−1
W

−1
A

adv.

Thus �g n+1
h = A

−1
WM�g n

h = B
−1 �g n

h .

Consider an arbitrary test function φh ∈ V h with point values φi (i = 1, · · · N 2). Let �φh be

the vector with entries φi . Then the scheme (2.20) is equivalent to the following matrix–vector

form:

�φ T
h A�gn+1

h = �φ T
h WM�gn

h , ∀�φh ∈ RN 2

.

By considering the test function φh ≡ 1, we get

∀gh ∈ V h, 〈ugh,∇1〉 = 0 �⇒ �1 T
A

adv �gh = 0,∀�gh ∈ RN 2 �⇒ �1 T
A

adv = 0,

∀gh ∈ V h, 〈DM∇gh,∇1〉 = 0 �⇒ �1 T
A

diff �gh = 0,∀�gh ∈ RN 2 �⇒ �1 T
A

diff =�.

Thus we have

�1 T
A = �1 T (WM + 
tAdiff + 
tAadv) = �1 T

WM. (4.2)

The next natural property of the finite element method (2.20) isM−1
W

−1
A�1 = �1, under the

assumption that the velocity field satisfies the following discrete divergence free constraint:

∀φh ∈ V h, 〈u,∇φh〉 = 0. (4.3)

It is straightforward to verify that (4.3) is equivalent to (3.5) in the second order scheme, and

equivalent to (3.14) in the fourth order scheme.

Notice that we first have

gh ≡1�⇒〈DM∇gh,∇φh〉=0,∀φh ∈ V h �⇒ �φ T
h A

diff �1=0,∀�φh ∈ RN 2 �⇒ A
diff �1 = �0.
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With the discrete divergence free condition (4.3), we have

gh ≡1�⇒〈ugh,∇φh〉= 0,∀φh ∈ V h �⇒ �φ T
h A

adv�1 = 0,∀�φh ∈ RN 2 �⇒ A
adv�1 = �0.

Therefore

M
−1

W
−1

A�1 = (I + 
tM−1
W

−1
A

diff + 
tM−1
W

−1
A

adv)�1 = �1. (4.4)

4.2 Mass Conservation

By plugging in the test function φh ≡ 1 in (2.20), we get 〈Mgn+1
h , 1〉 = 〈Mgn

h , 1〉, thus

〈ρn+1
h , 1〉 = 〈ρn

h , 1〉,

which can also be written as

N 2
∑

i=1

ωiρ
n+1
i =

N 2
∑

i=1

ωiρ
n
i . (4.5)

4.3 Steady State Preserving

If �g n
h = K �1 for some constant K , then multiply M

−1
W

−1 on both side of (4.1), we have

M
−1

W
−1

A�g n+1
h = �g n

h . (4.6)

It is a well known fact that the stiffness matrix A in the finite element method (2.20) is nonsin-

gular, which is implied by the coercivity of the bilinear form in (2.11) for an incompressible

velocity field. When the linear system above is nonsingular, it is straightforward to verify that

the unique solution is �g n+1
h = K �1. Therefore, in terms of density, we have ρn

i = KMi , ∀i

implies ρn+1
i = KMi , ∀i .

4.4 Positivity

At time step n, assume ρn
i > 0 for every i , then gn

i = ρn
i /Mi ≥ 0 for every i , since

invariant measure is positive. If all suitable mesh and time step constraints hold so that all

the monotonicity results in Sect. 3 hold, then A
−1 ≥ 0 holds. Since Mi > 0 and ωi > 0, we

have

�g n+1
h = A

−1
WM�g n

h ≥ 0

thus ρn+1
i = Mi g

n+1
i ≥ 0.

4.5 Energy Dissipation

For any convex function f (x), define the discrete energy at time step n as

E(ρn
h ) = 〈M f (

ρn
h

M
), 1〉 =

N 2
∑

i=1

ωiMi f

(

ρn
i

Mi

)

= 〈M f (gn
h ), 1〉 =

N 2
∑

i=1

ωiMi f (gn
i ).
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Theorem 4.1 Assume the velocity field satisfies the discrete divergence free constraint (4.3),

e.g, (3.5) in the second order scheme, and (3.14) in the fourth order scheme. If the scheme

(2.20) is monotone, then for any convec function f (x), it dissipates the discrete energy:

N 2
∑

i=1

ωi Mi f

(

ρn+1
i

Mi

)

≤
N 2
∑

i=1

ωiMi f

(

ρn
i

Mi

)

.

Proof Let ai j be the entries of A−1. Then �g n+1
h = A

−1
WM�g n

h gives

gn+1
i =

∑

j

ai jω j M j g
n
j . (4.7)

Next we show that (4.7) is a convex combination due to monotonicity and natural properties of

the finite element method. The monotonicity implies ai j ≥ 0. The property M
−1

W
−1

A�1 = �1
gives

�1 = A
−1

WM�1 �⇒
∑

j

ai jω j M j = 1.

Thus (4.7) is a convex combination. For a convex function f , Jensen’s inequality gives

f (gn+1
i ) ≤

∑

j

ai jω j M j f (gn
j ).

On the other hand, the property (4.2) implies

�1 T
A = �1 T

WM �⇒ �1 T = �1 T
WMA

−1 �⇒
∑

i

ai jωi Mi = 1

So we have

En+1 =
∑

i

ωiMi f (
ρn+1

i

Mi

) =
∑

i

ωiMi f (gn+1
i )

≤
∑

i

ωiMi

⎡

⎣

∑

j

ai jω jM j f (gn
j )

⎤

⎦

=
∑

j

ω j M j

[

∑

i

ai jωiMi

]

f (gn
j ) =

∑

j

ω j M j f (gn
j ) = En . (4.8)

��

Remark 3 As a special case, by choosing the convex function f (x) = (x − 1)2 and using

the discrete mass conservation (4.5), the discrete energy dissipation law (4.8) reduces to the

following form

∑

i

ωi

(

ρn+1
i

Mi

− 1

)2

Mi <
∑

i

ωi

(

ρn
i

Mi

− 1

)2

Mi , (4.9)

which is viewed as a discrete energy dissipation law w.r.t the Pearson χ2-divergence.
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Table 1 Accuracy test for a steady state solution (5.2) to the Fokker–Planck equation (5.1) with a source term

FD grid The second order scheme (2.22) The fourth order scheme (2.24)

l2 error Order l∞ error Order l2 error Order l∞ error Order

9 × 9 2.99E−1 – 2.93E−1 – 1.66E−2 – 1.17E−2 –

17 × 17 6.00E−2 2.32 8.38E−2 1.81 9.98E−4 4.05 8.15E−4 3.84

33 × 33 1.21E−2 2.31 2.21E−2 1.92 6.14E−5 4.02 5.31E−5 3.94

65 × 65 2.59E−3 2.23 5.67E−3 1.96 3.81E−6 4.01 3.31E−6 4.00

129 × 129 5.85E−4 2.15 1.44E−3 1.98 2.37E−7 4.01 2.07E−7 4.00

5 Numerical Tests

5.1 Accuracy Test

We consider the scheme (2.20) solving

ρt = ∇ ·
(

M∇ ρ

M

)

+ �u · ∇ ρ

M
+ f (5.1)

on � = (0, π) × (0, π) with no flux boundary condition, i.e., ∇ ρ
M

· �n = 0. We test the

second order and fourth order spatial accuracy on a steady state solution

ρ(x, y, t) = (3 cos x cos y + 3)(2 + sin x sin y), (5.2)

with M = 2 + sin x sin y, �u = 〈sin x cos y, cos x sin y〉. The source f (x, y) is chosen such

that ρ(x, y, t) above is the exact solution to (5.1).

The time step is set as 
t = 
x and errors at T = 1 are given in Table 1 where l2 error

is defined as
√


x
y
∑

i

∑

j

|ui j − u(xi , y j )|2

with ui j and u(x, y) denoting the numerical and exact solutions, respectively. We observe

the expected order of spatial accuracy.

5.2 Numerical Examples with a Given Sampling TargetM

We consider examples with a given sampling target π . On a 2D domain � = [−4.5, 4.5] ×
[−4.5, 4.5], the stream function for a 2D sinusoidal cellular flow is given as

ψ(x, y) := A sin(kπx) sin(kπ y), (5.3)

where A represents the amplitude of the mixture velocity �u and k is the normalized wave

number of the mixture. Then the incompressible velocity field is given as �u =
(

−∂yψ

∂xψ

)

.

The target density is taken to be a smiling triple-banana image:

M(x, y) = e
−20

[(

x− 6
5

)2
+
(

y− 6
5

)2
− 1

2

]2
+log

(

e−10(y−2)2
)

+ e
−20

[(

x+ 6
5

)2
+
(

y− 6
5

)2
− 1

2

]2
+log

(

e−10(y−2)2
)
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+ e
−20

(

x2+y2−2
)2+log

(

e−10(y+1)2
)

+ 0.1. (5.4)

Then we take a Gaussian mixture as the initial density

ρ0(x, y) = e−16(x+3)2−4y2 + e−16(x−3)2−4y2 + e−4x2−16(y+3)2 + e−4x2−16(y−3)2 + 0.1.

(5.5)

The numerical solutions for both second order and fourth order schemes, as well as the

energy evolution for E =
∫

�
ρ2

M
dx, are given in Fig. 2. From the color contour, no visual

difference can be observed. The positivity-preserving and energy decay can be proved for

both schemes.

Next we consider a different example, in which the fourth order spatial discretization

can produce visually better results than the second order one. The computational domain is

[−3, 3] × [−3, 3], the diffusion constant is D = 0.5, and the velocity filed is defined by

derivatives of the stream function (5.3) with A = 0.2 and k = 1.

Now the initial data is chosen to be

ρ0(x, y) = 1

2
e−16(x+1)2−4y2 + 1

2
e−16(x−1)2−4y2 + e−x2/4−(y+3)2 + e−x2/4−(y−3)2 + 0.1,

(5.6)

while the target density is

M(x, y) = e−(x+3)2−y2/4 + e−(x−3)2−y2/4 + 1

2
e−4x2−16(y+1)2 + 1

2
e−4x2−16(y−1)2 + 0.1.

(5.7)

See Fig. 3 for the numerical solutions of the second example. The second order scheme on

the finest mesh 301 × 301 grid with time step 
t = 0.005 can be regarded as the reference

solution. On the same coarse 101 × 101 grid with the same time step 
t = 0.02, we observe

that the second order scheme produces a wrong solution, while the fourth order scheme

produces a better solution. A preconditioned conjugate gradient method is used to solve the

linear systems in the semi-implicit schemes, and the cost for both second order and fourth

order schemes on the same grid is about the same. Thus the fourth order scheme has clear

advantages, even though the time discretization is only first order.

6 Concluding Remarks

In this paper, we have constructed second order and fourth order space discretization via

finite difference implementation of the finite element method for solving Fokker–Planck

equations associated with irreversible processes. Under mild mesh conditions and time step

constraints for smooth solutions, the high order schemes are proved to be monotone, thus

are positivity-preserving and energy dissipative. Even though the time discretization is only

first order, numerical tests suggest that the fourth order spatial scheme produces better solu-

tions than the second order one on the same grid. The high order schemes proposed in this

paper preserve all the good properties just as the classical first order upwind schemes, such

as (i) the conservation of total mass, (ii) the positivity of ρ, (iii) the energy dissipation law

with respect to φ-entropy, and (iv) exponential convergence to equilibrium M. Those prop-

erties are important but difficult to obtain for high order space discretizations, particularly

for irreversible drift-diffusion processes. This also enables the future studies for sampling
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Fig. 2 Numerical solutions to the Fokker–Planck equation with a smiling triple-banana target density (5.4)

and the initial density (5.5). Both the second order scheme (2.22) and the fourth order scheme (2.24) are used

on the same 201 × 201 grid with 
t = 0.01
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(a) The second order scheme on a 101 × 101

grid with Δt = 0.02.
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(b) The fourth order scheme on a 101 × 101

grid with Δt = 0.02.
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(c) Zoomed-in of Figure (a).
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(d) Zoomed-in of Figure (b).
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(e) The second order scheme on a 201 × 201

grid with Δt = 0.01.
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(f) The second order scheme on a 301 × 301

grid with Δt = 0.005.

Fig. 3 Numerical solutions to the Fokker–Planck equation with the target density (5.7) and the initial density

(5.6). The solution on the finest grid in f can be regarded as the reference solution. By comparing a, b, c and

d with the reference solution in f, we can observe that the fourth order scheme (2.24) produces better results

than the second order scheme (2.22) on a coarse 101 × 101 grid

acceleration and variance reduction using irreversible processes with high order numerical

schemes.
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