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Abstract

We in this paper propose a semiparametric partially linear varying coefficient (SPLVC)

modal regression, in which the conditional mode function of the response variable given co-

variates admits a partially linear varying coefficient structure. In comparison to existing

regressions, the newly developed SPLVC modal regression captures the “most likely” effect

and provides superior prediction performance when the data distribution is skewed. The

consistency and asymptotic properties of the resultant estimators for both parametric and

nonparametric parts are rigorously established. We employ a kernel-based objective func-

tion to simplify the computation and a modified modal-expectation-maximization (MEM)

algorithm to estimate the model numerically. Furthermore, taking the residual sums of

modes as the loss function, we construct a goodness-of-fit testing statistic for hypotheses on

the coefficient functions, whose limiting null distribution is shown to follow an asymptoti-

cally χ2-distribution with a scale dependent on density functions. To achieve sparsity in the

high-dimensional SPLVC modal regression, we develop a regularized estimation procedure

by imposing a penalty on the coefficients in the parametric part to eliminate the irrelevant

variables. Monte Carlo simulations and two real-data applications are conducted to examine

the performance of the suggested estimation methods and hypothesis test. We also briefly

explore the extension of the SPLVC modal regression to the case where some varying coef-

ficient functions admit higher-order smoothness.
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1 Introduction

Semiparametric models have become the latest state-of-the-art in recent years due to the flexible

specification that allows traditional linear models to be combined with nonparametric models.

They can reduce the possibility of model misspecification and ameliorate some of the drawbacks

of a fully nonparametric model, such as the “curse of dimensionality” and lack of extrapola-

tion capability. One popular semiparametric specification is a semiparametric partially linear

varying coefficient (SPLVC) regression, which models the key covariates linearly and the rest

of the variables nonparametrically. In particular, the response variable Y ∈ R depends on the

associated covariates X i ∈ Rp, Zi ∈ Rk, and U in the structure of (Ahmad et al., 2005; Fan

and Huang, 2005; Zhou and Liang, 2009)

Yi = XT
i α(Ui) +ZT

i β + εi, i = 1, · · · , n, (1.1)

where U i = (Ui1, · · · , Uiq) is a 1× q vector of index variables, α(U i) = (α1(U i), · · · , αp(U i))
T

is a p× 1 vector of unknown smooth nonparametric functions of U i, β = (β1, · · · , βk)T is a k-

dimensional vector of unknown parameters, the superscript T denotes the transpose of a vector

or matrix, and εi is the unobservable random error that satisfies certain additional properties,

such as conditional zero mode in this paper. To avoid the “curse of dimensionality”, we let Ui ∈ R
be a scalar throughout the rest of this paper, which ranges over a nondegenerate compact interval

assumed to be the unit interval [0, 1] with little loss of generality. The extension to multivariate

U i involves no fundamentally new ideas but more complicated notations. According to Fan and

Huang (2005), (1.1) allows for nonlinear interaction between the covariates Ui and Xi to such

an extent that the impact of Xi varies at different levels of the covariate Ui with different linear

models, thus increasing the flexibility of the model. (1.1) is a prevalent model in sociology,

economics, finance, and statistics because it provides a parsimonious approach for inference in

a variety of contents. Of particular interest is that (1.1) is flexible enough to form a general

family of numerous multidimensional models. For instance, it includes the varying coefficient

model when Zi = 0, the semiparametric partially linear model when X i = 1 and p = 1, and the

single index model when Zi = 0, X i = 1, and p = 1. This suggests that the technical results

developed in what follows can be straightforwardly extended to other non- and semiparametric

modal regression models.

A large number of estimation methods, such as the local linear method, the profile least

squares method, the average derivatives method, and the smoothing spline method, are already

well established for estimating (1.1) built upon the idea of mean or quantile; see Ahmad et

al. (2005) for more details. Aside from these, we can alternatively estimate (1.1) by Robinson

(1988) model utilizing a two-step estimation approach, in which we concentrate out the unknown

functional coefficient α(Ui) by using a generalization of residual regression. All of the proposals

1



discussed thus far, however, are concerned with the conventional mean or quantile regression.

When the data contain a number of outliers or have a skewed distribution (non-Gaussian errors),

the traditional nonparametric regressions applied to the SPLVC model may struggle to extract

the intrinsic trends, resulting in degraded performance. For example, mean regression may

break down in practice if the error distribution lacks a finite second moment (e.g., Cauchy

distribution). Although quantile regression can describe the entire situation of the conditional

distribution of a dependent variable given covariates, it fails to reveal how the conditional mode

depends on covariates directly to detect the “most likely” effect and may produce low density

point predictions; see Figure 1. To gain new insights into the underlying structure of skewed

data, we investigate (1.1) under the content of modal regression and introduce a so-called SPLVC

modal regression to target the most probable value of a dependent variable given covariates.

Besides presenting a comprehensive description of how the conditional mode of the response

variable depends on covariates, SPLVC modal regression can provide a shorter prediction interval

than mean or quantile regression because with the same interval length, the interval around the

conditional mode covers more samples than the interval around the conditional mean or quantile

(Figure 1). Meanwhile, SPLVC modal regression can capture the “most likely” effect of certain

covariates that would otherwise be missed by mean or quantile regression. Therefore, it is

of interest and desire to develop a statistical methodology to complement the current modal

regression literature. To the extent of our knowledge, the present paper is the first work to

systematically develop the theory and methodology for flexible SPLVC modal regression.

Figure 1: Comparison of Prediction Performance with Skewed Data

Note: Among the three location or centre measures (mean, median, and mode), with the same
coverage probability, modal prediction provides the narrowest width (left plot); while it produces
the highest coverage probability given the same prediction width (right plot).

There are two types of modal regression studied in the literature: unimodal regression

and multimodal regression. Both of them can be obtained by optimizing a joint or conditional

distribution function. Suppose that X is univariate with a compactly supported density. Modal

regression can be defined as

mg(x) = Mode(Y |X = x) = arg max
Y

f(Y |X = x) = arg max
Y

f(Y, x), (1.2)
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where f(Y |X = x) = f(Y, x)/f(x), f(Y |X = x) is the conditional density of Y given x, f(Y, x)

is the joint distribution of Y and x, and f(x) is the marginal distribution of x. We can then

utilize some indirect density-based estimation methods to capture modal regression lines (Chen

et al., 2016). However, such an idea based on density estimation is not particularly feasible in

the presence of high-dimensional covariates and typically has very poor convergence rates. To

avoid estimating the density function, researchers explored the direct imposition of certain mode

structures on Mode(Y |X = x). The path-breaking papers of modal regression in econometrics

are Lee (1989, 1993), in which they investigated modal regression by observing that the con-

ditional mode from the truncated data provides a consistent estimate of the conditional mean

for the original non-truncated data. To achieve consistency, Lee (1989, 1993) required constant

tuning parameters and symmetric error density assumptions around zero on models, implying

that their modal regression estimator is essentially a kind of robust regression estimator. Until

only very recently, Kemp and Santos Silva (2012) and Yao and Li (2014) proposed a kernel-

based objective function with the bandwidth approaching zero to achieve a consistent modal

estimator even for skewed data, where they forced a linear regression structure on Mode(Y |X).

Such findings significantly simplify computations and widen the applicability of modal regres-

sion, making it a valuable addition to the regression tools for social, economic, financial, and

statistical sciences. Since then, there has been an upsurge of interest and effort in developing

modal regression; see for example, the work of Chen et al. (2016), Yao and Xiang (2016), Krief

(2017), Chen (2018), Ota et al. (2019), Zhou and Huang (2019), Feng et al. (2020), Kemp et al.

(2020), and Ullah et al. (2021, 2022) and references therein.

Motivated by the aforementioned literature, we devote to investigating (1.1) in the context

of modal regression, where we treat all bandwidths as going to zero and enable the density

of error terms to be skewed and dependent on covariates. Differing from traditional mean

regression under the error condition E (εi|X i, Ui,Zi) = 0, we have SPLVC modal regression

Mode(Yi|X i, Ui,Zi) = XT
i α(Ui) +ZT

i β (1.3)

with the assumptions that εi is independent and identically distributed (i.i.d.) and admits a

unique global zero mode such that Mode (εi|X i, Ui,Zi) = 0. The primary goal of this paper

is to develop theories and methods for estimating the unknown parameter β and the unknown

functional coefficient α(Ui), which can be naturally interpreted as the effects of covariates on

the “most likely” data points of Y or the change in the mode of the response variable Y

corresponding to a unit change in the covariate. Because α(Ui) is modeled nonparametrically,

it is reasonable to consider local linear estimation. Nonetheless, since the arguments of β (i.e.,

global estimator) and α(Ui) (i.e., local estimator) are different, they should be estimated with

modal parametric and nonparametric rates of convergence, respectively. We thus develop a

three-stage estimation procedure to estimate (1.3) by approximating α(Ui) with a local linear
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function and updating estimates in different stages through a kernel-based objective function.

We obtain the convergence rates and establish the asymptotic distributions of the finite

dimensional parameters and varying coefficients in different stages under regularity conditions.

We show that the second- and third-stage estimators are oracles in the sense that the asymptotic

properties are unaffected by the unknown components. The convergence rate of SPLVC modal

regression is slower than that of mean regression, which is the cost we must pay to estimate the

conditional mode (Parzen, 1962). Nevertheless, based on the simulation results in this paper,

the SPLVC modal regression generally still provides estimates with smaller mean squared errors

(MSEs) and narrower prediction intervals than the SPLVC mean regression for finite sample

performance with skewed data. Since there are no closed-form solutions for the SPLVC modal

regression, we introduce a modified MEM algorithm to efficiently achieve numerical estimates

with the use of a normal kernel function. Note that the proposed estimation procedure implicitly

assumes that all varying coefficient functions possess the same minimum degree of smoothness

and hence can be approximated equally effectively. If some functional coefficients are known to

have higher-order of differentiability, the bias rate of all estimated varying coefficient functions

will be determined by the rate of the local polynomial with the lowest degree. In this case, the

suggested estimation procedure based on local linear approximation may be ineffective (in the

sense of optimal convergence rate). We in the supplementary note S1 generalize the proposed

model to the case where some varying coefficient functions admit higher-order smoothness, and

present a two-step estimation method that can attain the optimal convergence rate.

Furthermore, the most essential assumption in the developed estimation procedure is that

the subset of variables with a constant or varying effect on the response is known in advance.

However, it is impractical to accomplish this artificially in the application. Due to the difference

in estimation rate, treating the parametric component of the SPLVC modal regression as a

nonparametric function would incur a loss in efficiency. Therefore, it is of particular interest

and importance to determine whether the varying coefficient functions truly vary with a certain

variable or follow the linear form. Because of differences in function estimation, the classical

profile likelihood ratio test for the mean estimate cannot be utilized directly for testing varying

coefficient functions in modal regression. To develop an easily understandable and generally

applicable method for the SPLVC regression regarding conditional mode processes, we extend

the generalized likelihood technique of Fan et al. (2001) to propose a goodness-of-fit testing

statistic for hypotheses on the coefficient functions by taking a kernel-based function as the

loss function. The asymptotic behavior of the suggested test demonstrates that its limiting

null distribution follows a χ2-distribution with a scale depending on unknown density functions.

Because the asymptotic distribution heavily relies on many unknown terms and is associated

with diverging degrees of freedom, obtaining an accurate distribution for the testing statistic

under consideration is difficult. To avoid density estimation, we construct a residual-based

modal bootstrap procedure to consistently approximate the unknown distribution of the test
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statistic and compute the analogous p-value. The simulation results show that the resulting

testing procedure performs fairly effectively.

Many variables in practical applications might be irrelevant or insignificant, and their in-

clusion would cause a substantial loss in estimation accuracy. As a result, variable selection

should be carried out prior to modeling. In recent decades, many researchers have developed

variable selection procedures based on the concept of penalty functions to model the mean or

quantile of a response variable Y as a function of a selected vector X; see Su and Zhang (2013)

for a detailed review. Although selecting relevant variables in the SPLVC model is not a new

problem, there has been no formal work elaborating variable selection for the SPLVC modal

regression to our knowledge. Generally, variable selection for semiparametric regression models

consists of two components: identifying significant variables in the nonparametric component

and selecting significant variables in the parametric component. Because the proposed test can

be used to identify significant variables in the nonparametric component of the SPLVC modal

regression, we concentrate on the variable section utilizing the penalty function for the paramet-

ric component in this paper. Particularly, the form “Kernel-based objective function+Penalty”

is adopted, which we call penalized SPLVC modal regression. With the proper regularization

parameters and the assumption that the dimension k of the parameter β is fixed, the penal-

ized modal estimator is shown to possess an oracle property. This implies that the estimator

can correctly select the nonzero coefficients with a probability converging to one and has the

same asymptotic distribution as if the subset of true zero coefficients and the varying coefficient

functions were known. With the aid of a local quadratic approximation, the proposed variable

selection method is computationally convenient by a modified MEM algorithm.

The rest of this paper is organized as follows. In Section 2, we focus on the construction

of a three-stage estimation procedure relying on the local linear approximation to estimate

the newly developed SPLVC modal regression, and present the large sample properties of the

resulting estimators. We also explore bandwidth selection and suggest a varying coefficient

test. Section 3 investigates SPLVC modal regression variable selection with penalty function,

where the oracle property of the variable selection procedure is investigated. The results of

applications to simulated and real datasets are reported in Section 4. Conclusions are given

in Section 5. In the supplementary note, we address the extension of the proposed SPLVC

modal regression to the case where some coefficient functions admit higher-order smoothness,

and provide all technical proofs and additional simulation results.

2 SPLVC Modal Regression

We in this section propose a three-stage estimation procedure to achieve the optimal convergence

rates for both global parameters and varying coefficients. Specifically, in the first stage, the local
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linear approximation is employed to get the initial estimators; in the second stage, we obtain

the optimal convergence rate for the parametric estimator using all data points after plugging

in the estimates of varying coefficients; and in the third stage, we re-estimate the varying

coefficient functions through a local linear method after plugging in the estimates of the finite

dimensional parameters. Following that, we discuss practical bandwidth selection and introduce

a goodness-of-fit testing statistic to test whether the varying coefficients are constant.

2.1 Local Linear Modal Estimators

Suppose that {(Yi,X i, Ui,Zi)}ni=1 are i.i.d. samples and α(Ui) is smooth enough that its first

and second derivatives exist. We then estimate (1.3) by locally approximating the unknown

nonparametric functional coefficient α(Ui) with a linear function for a given u ∈ R in the

neighborhood of Ui, i.e., |Ui − u| = o(1),

αj(Ui) ≈ αj(u) + α
(1)
j (u)(Ui − u)≡αj(u) + bj(u)(Ui − u), j = 1, · · · , p,

where “an ≈ bn” indicates that for sufficiently large n, an/bn → 1, i.e., an = bn + op(bn), op(bn)

represents the term with a probability order smaller than that of bn, “≡” means “is defined as”,

and α
(1)
j (u)=bj(u) is the first derivative of αj(·). We consider local linear approximation for ease

of presentation, which has advantages in the ability of design adaptation and high asymptotic

efficiency (Fan and Gijbels, 1996), but it is straightforwardly generalized to local polynomial

estimation with the assumption of higher order derivatives.

Denoting α(u) = (α1(u), · · · , αp(u))T ∈ Rp and b(u) = (b1(u), · · · , bp(u))T ∈ Rp, we obtain

the following local kernel-based objective function to recover the unknown functional coefficient

α(Ui) and parameter β at each data point

Qn(α(u), b(u),β(u)) =
1

nh1h2

n∑
i=1

φ

(
Yi −XT

i (α(u) + b(u) (Ui − u))−ZT
i β(u)

h1

)
K

(
Ui − u
h2

)
,

(2.1)

where φ(·) is a nonnegatively symmetric kernel function with bounded support and bandwidth

h1 := h1(n) → 0 as n → ∞, and K(·) is a bounded and symmetric kernel function associated

with the size of the local neighborhood bandwidth h2 := h2(n)→ 0 as n approaches infinity. To

prevent notation confusion, we suppress the n for all bandwidths used in this paper. Note that

the kernel function φ(·) is utilized to target modal estimators, while kernel function K(·) reflects

the fact that (2.1) is only applied to data around u and gives a larger weight to data closer to

the point u, which is consistent with the weight function in classical nonparametric estimation.

According to Yao and Li (2014) and Ullah et al. (2021, 2022), the choice of kernel function

φ(·) is not particularly crucial compared to the choice of bandwidths in modal regression. For

computational simplicity, we choose a standard normal kernel for φ(·) in this paper to develop a
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modified MEM algorithm. We henceforth use α̂(u), b̂(u), and β̂(u) to denote the naive modal

estimators from (2.1).

Remark 2.1. (Iterative Method) The objective of (2.1) is to provide consistent initial esti-

mators for the following two estimation stages and to make variable selection for the parametric

component easier in Section 3. Nevertheless, we can employ an iterative procedure to obtain

the final efficient estimators for the proposed SPLVC modal regression without conducting the

first-stage estimation. Specifically, (2.3) is maximized for any given β. Then, given the es-

timators of α(u) and b(u), we can update β by solving the objective function (2.2). Iterate

these two steps until a stopping rule is satisfied for the convergence of the estimator of β. The

advantage of this iterative method is that no undersmoothing is required to obtain the optimal

modal convergence rate for the estimator of β, and thus the common selection criteria for the

optimal bandwidth (i.e., cross-validation) can be directly employed. Such an iterative method,

however, is computationally more expensive than the proposed three-stage estimation procedure.

As β is a global parameter and only data in the local neighborhood of u are utilized,

the naive estimator β̂(u) converges in probability to its true value at a nonparametric rate, as

demonstrated in Theorem 2.2. To achieve the optimal convergence rate for the modal estimator

of β, we substitute the varying coefficient α(Ui) with its estimate in the first stage, transforming

the SPLVC modal regression into a pseudo linear modal regression. We then apply the following

global kernel-based objective function to re-estimate β using all data points

Qn(β) =
1

nh3

n∑
i=1

φ

(
Yi −XT

i α̂(Ui)−ZT
i β

h3

)
, (2.2)

where h3 := h3(n) → 0 as n → ∞ is an optimal bandwidth for estimating β. Comparing

the proposed global kernel-based objective function (2.2) to its local counterpart (2.1), we can

observe that the naive modal estimator only uses local data, whereas the global modal estimator

takes advantage of the full sample information. As expected, the global modal estimator has

the optimal modal parametric convergence rate. Here and hereafter, we refer to β̃ from (2.2)

as the semi-modal estimator of β.

After obtaining β̃ from (2.2), it is natural to further re-estimate the nonparametric part

by plugging in the semi-modal estimate, which converts the original model to a pseudo varying

coefficient modal regression. The final estimator of α(Ui) is then constructed by maximizing

the following local kernel-based objective function

Qn(α(u), b(u)) =
1

nh4h5

n∑
i=1

φ

(
Yi −XT

i (α(u) + b(u) (Ui − u))−ZT
i β̃

h4

)
K

(
Ui − u
h5

)
, (2.3)

where h4 := h4(n)→ 0 as n→∞ is the bandwidth that is optimal for the estimation of α(Ui),
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and h5 := h5(n)→ 0 as n→∞ is the bandwidth that controls the size of a local neighborhood

of Ui. We denote the estimators from (2.3) as α̃(u) and b̃(u).

Remark 2.2. When the skewed error density is reduced to a symmetric one, the SPLVC modal

regression accordingly degenerates in line with the SPLVC mean regression. The shrinking band-

widths associated with the error terms and the resulting slower convergence rates, however, make

the suggested modal regression suboptimal for directly producing mean estimates in this instance.

Researchers can resort to the model established in Zhang et al. (2013) to explore the robust esti-

mators of the SPLVC mean regression on the basis of mode value to attain the mean convergence

rates. Such a modal-based SPLVC regression can be regarded as a robust alternative against out-

liers in the variables or non-normal symmetric errors, with the resultant estimators achieving

efficiency by utilizing constant bandwidths related to the error terms.

The closed-form solutions for (2.1)-(2.3) are unavailable, suggesting that a mode-hunting

procedure should be applied. Because maximizing the objective function Q(·) is equivalent to

maximizing log(Q(·)), we suggest a modified MEM Algorithm 1 based on Li et al. (2007) and

Yao et al. (2012) to estimate modal coefficients by iterating the E-step and M-step until the

algorithm converges or a stopping criterion is satisfied. The monotone ascending property of the

proposed MEM algorithm, i.e., Qn(·(g+1)) ≥ Qn(·(g)), can be developed along the lines of Yao

and Li (2014) by utilizing Jensen’s inequality, which guarantees the stability and convergence

of the algorithm (i.e., local optimum). The weight scheme in E-Step enables modal regression

to reduce the effect of observations far away from the modal regression curve in order to achieve

robustness, which is one of the benefits of modal regression over mean regression.

Because of the normal kernel function we use, a closed-form expression for the maximizers

of the objective functions exists in M-Step, namely, (X∗TWX∗T )−1X∗TWY , where W is an

n× n diagonal matrix with diagonal elements {π(i|·)}ni=1 obtained in E-step, and X∗ = (X Z)

is the corresponding variable matrix with X = (X1, · · · ,Xn)T and Z = (Z1, · · · ,Zn)T . Such

an explicit expression largely simplifies the computation. Although maximization is searched

across the entire space, the converged value of the MEM algorithm is highly dependent on the

initial point and consequently produces sub-optimal estimates (Yao and Li, 2014; Ullah et al.,

2021, 2022). In practice, if the computation is feasible, it is advisable to begin with a variety of

estimates obtained by different estimation techniques, such as mean, quantile, or other robust

estimates, to verify the stability of the solution (too many local solutions indicate that the

solution is not stable). By choosing the estimate with the largest value of the target function,

we can avoid the ambush of potential local maxima.1

1It is well-known that starting values impact the quality of the EM algorithm’s solution, and a particular
set of starting values will always converge to the same solution after repeated initializations. In such a case,
we can stop after a specified number of iterations have been reached and keep iterating only from the estimates
with the largest value of the objective function.
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Algorithm 1 MEM Algorithm for SPLVC Modal Regression

First-Stage Equation (2.1)

Input: data {(Yi,X i, Ui,Zi)}ni=1, kernel bandwidths h1 and h2, and the initial guess α(u)(0) ∈
Rp, b(u)(0) ∈ Rp, β(u)(0) ∈ Rk.
Output: the estimated coefficients α(u)(g+1) ∈ Rp, b(u)(g+1) ∈ Rp, β(u)(g+1) ∈ Rk.
while the stopping criterion (e.g., Euclidean distance) is not satisfied do

• E-Step Update weight (posterior conditional probability) π
(
i|α(u)(g), b(u)(g),β(u)(g)

)

π
(
i|α(u)(g), b(u)(g),β(u)(g)

)
=

φ

(
Yi−XT

i (α(u)(g)+b(u)(g)(Ui−u))−ZTi β(u)(g)

h1

)
K
(
Ui−u
h2

)
∑n

i=1 φ

(
Yi−XT

i (α(u)(g)+b(u)(g)(Ui−u))−ZTi β(u)(g)

h1

)
K
(
Ui−u
h2

) .
• M-Step Update the values of coefficients with the weight calculated in E-Step by

(
α(u)(g+1),b(u)(g+1),β(u)(g+1)

)
= arg max

α(u),b(u),β

n∑
i=1

{
π
(
i|α(u)(g), b(u)(g),β(u)(g)

)
log

(
1

h1

φ

(
Yi −XT

i (α(u) + b(u) (Ui − u))−ZT
i β(u)

h1

))}
.

• Set g := g + 1.

end while

Second-Stage Equation (2.2)

Input: data {(Yi,X i, α̂(Ui),Zi)}ni=1, kernel bandwidth h3, and the initial guess β(0) ∈ Rk.

Output: the estimated coefficient β(g+1) ∈ Rk.
while the stopping criterion (e.g., Euclidean distance) is not satisfied do

• E-Step Update weight (posterior conditional probability) π
(
i|β(g)

)
as

π
(
i|β(g)

)
=

φ
(
Yi−XT

i α̂(Ui)−ZTi β(g)

h3

)
∑n

i=1 φ
(
Yi−XT

i α̂(Ui)−ZTi β(g)

h3

) .
• M-Step Update the value of β(g+1) with the weight calculated in E-Step by

β(g+1) = arg max
β

n∑
i=1

{
π
(
i|β(g)

)
log

(
1

h3

φ

(
Yi −XT

i α̂(Ui)−ZT
i β

h3

))}
.

• Set g := g + 1.

end while
Note: The algorithm for the third-stage equation (2.3) is similar to that for the first-stage
equation (2.1), but associated with bandwidths h4 and h5.
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2.2 Asymptotic Properties

Before proceeding to the asymptotic theorems, it is convenient to introduce some notations that

will be used throughout the remaining part of this paper. We define µ2 =
∫
w2K(w)dw < ∞

and vj =
∫
wjK2(w)dw <∞ for j = 0, 1, 2, X̂ = (X, U,Z), Hr = diag(hr, · · · , hr)p×p, r = 2 or

5, and use “
d→” and “

p→” to denote the convergence in distribution and probability, respectively.

Given random variables Wn for n ≥ 1, we write Wn = OP (wn) if limb→∞ lim supn P (|Wn| ≥ bwn)

= 0 and Wn = oP (wn) if limn P (|Wn| ≥ bwn) = 0 for any constant b ≥ 0. We let a function

f(n) = O(1) if there exist some nonzero constants c and N such that f(n)/c → 1 for n ≥ N ,

and fn � gn means 0 < lim infn→∞|fn/gn| ≤ lim supn→∞|fn/gn| < ∞. Let ‖ · ‖ represent the

Euclidean norm, i.e., ‖A‖ = [tr(AAT )]1/2, in which tr(A) is the trace of the matrix A, and

α(c)(u) ∈ Rp indicates the cth derivative of α(u) with respect to u. The following technical

conditions are then listed to establish the consistency and asymptotic properties of the resultant

modal estimators.

C1 The true value of parameter β0 is in the interior of the known compact parameter space,

which is a subset of Rk.

C2 {(Yi,Xi, Ui,Zi)}ni=1 is an i.i.d. random sequence drawn from the joint probability distri-

bution F (Y,X, U,Z) on R × Rp × R × Rk. The error term admits a unique global zero

mode such that Mode (εi|X i, Ui,Zi)
a.s.
= 0 ⇒ Mode(Yi|X i, Ui, Zi)

a.s.
= XT

i α(Ui) +ZT
i β.

C3 The index variable U has a bounded support Ω. Without loss of generality, Ω is the unit

interval [0, 1]. The marginal density function fU(u) is continuous in some neighborhoods

of u and has a value of fU(u) > 0 on {u : 0 < FU(u) < 1}, where FU(u) is the cumu-

lative distribution function and u is an interior point on its support Ω. fU(u) also has a

continuous first derivative and is bounded away from infinity.

C4 αj(u) ∈ V is rth continuously differentiable on Ω for j = 1, · · · , p, where V denotes the

class of varying coefficient functions and r ≥2.

C5 The kernel function K(·) : R→ R is a nonnegatively symmetric and bounded kernel with

compact support and integrates to one.

C6 Let fε(ε|X̂) denote the conditional probability density function of ε given X̂. For any X̂

in the corresponding support set, fε(ε|X̂) is bounded away from zero and infinity and has

the fourth continuous derivative with respect to ε in a neighbour of zero. Furthermore,

fε(ε|X̂) < fε(0|X̂) for any ε 6= 0 and f
(1)
ε (0|X̂) = 0 for any X̂, where f

(d)
ε (·) represents

the dth derivative of fε(·) with respect to ε.

C7 There is a constant s > 2 such that E(‖X‖2s) < ∞ and E(‖Z‖2s) < ∞ with probability

one. The matrices Γ(u), Γ̃(u), and Γ̃∗(u) defined in the following theorems are negative
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definite matrices in a neighborhood of u, and the eigenvalues of Γ(u), Γ̃(u), and Γ̃∗(u) are

bounded away from zero and infinity for all u ∈ Ω. Also, J is a negative definite matrix.

While the above conditions appear to be a little verbose at first glance, they are actually

quite modest and simple to satisfy in the literature of the SPLVC model and modal regression;

see Fan and Huang (2005), Kai et al. (2011), Kemp and Santos Silva (2012), Yao and Li (2014),

and Ullah et al. (2021, 2022). C1 is an ordinary regularity condition that is usually easy to

verify. C2 is standard in describing the sample generating process for modal regression. The

i.i.d. assumption can be relaxed to cover the strictly α-mixing and stationary case but at the

expense of more tedious proofs. C3 is a reasonable condition related to the localized behavior

around u ∈ Ω, which is required for establishing the consistency and asymptotic normality

of the resulting estimators. If U does not have a compact support, a transformation from

(−∞,+∞) to [0, 1] may be employed. C4 is a commonly used condition on the smoothness of

nonparametric functions in local linear fitting. It controls the precision in the approximation

of the varying coefficient functions as the second derivative of α(u) impacts the bias. The

definition of V is stated in Ahmad et al. (2005). We emphasize that this paper implicitly assumes

that all varying coefficient functions admit the same minimum degree (twice) of smoothness to

perform local linear approximation. The situation where α
(r)
j (·) is continuous in a neighborhood

of u for j = 1, · · · , p − 1 while the functional coefficient αp(·) has a continuous (r + 2)th

derivative in a neighborhood of u is investigated in the supplementary note S1. C5 is a mild

condition on the kernel function that is satisfied by many commonly used kernels to derive the

asymptotic variance of estimators. The compact support condition for the kernel function is not

essential and is imposed merely to simplify the proof. It can be eased as long as we put certain

integrability restrictions on the kernel function’s tail. Especially, the standard normal density

function is permitted (Ullah et al., 2021, 2022), which is the default kernel used in numerical

analysis in this paper. C6 enforces a certain smoothness on fε(ε|·) in the neighborhood of zero,

which is necessary for identification. It implies that the conditional density of ε has a well-

defined unique global mode at zero. Such a unique global mode assumption is used for simple

illustration. The proposed SPLVC modal regression can be applied to the multimode setting

when the population is not homogeneous, where the suggested estimation method will find

multiple modal solutions if starting from multiple initial values, with each solution corresponding

to one local modal estimator; see supplementary note S2. In contrast to mean regression, we

do not need to impose any moment conditions on error terms and can allow V ar(ε) = ∞. C7

is the standard rank condition placing restrictions on the moments of covariates to ensure the

existence of the asymptotic mean and variance for modal estimators. The nonsingular restriction

on matrices guarantees that J is invertible, as are Γ(u), Γ̃(u), and Γ̃∗(u) for all u ∈ Ω. All of

the bandwidth requirements that need to be satisfied are listed in the following theorems to

guarantee the consistency of the modal estimators and the biases from previous stages are

negligible at the later stages. As is typical in the semiparametric literature, undersmoothing is
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required for the developed SPLVC modal regression to asymptotically ignore biases.

We provide the asymptotic theorems for the modal estimators in the corresponding stages.

Special care is needed to develop asymptotic theories for semiparametric modal estimators. For

instance, the approximation error caused by local linear estimation must be taken into account.

We first present the following theorem providing the convergence rates of the naive estimators

α̂(u), b̂(u), and β̂(u), where α0(·) and b0(·) are the true parameter vectors.

Theorem 2.1. Suppose that the regularity conditions C1-C7 are fulfilled. With probability

approaching one, as n → ∞, h1 → 0, h2 → 0, h2
2/h1 → 0, and nh2h

5
1 → ∞, there exist

consistent maximizers (α̂(u), b̂(u), β̂(u)) of (2.1) such that

i. ‖α̂(u)−α0(u)‖ = Op

(
(nh2h

3
1)
−1/2

+ h2
1 + h2

2

)
,

ii. ‖H2b̂(u)−H2b0(u)‖ = Op

(
(nh2h

3
1)
−1/2

+ h2
1 + h2

2

)
,

iii. ‖β̂(u)− β0‖ = Op

(
(nh2h

3
1)
−1/2

+ h2
1 + h2

2

)
.

Theorem 2.1 implies that the magnitude of the bias term is bounded in probability by the

best approximation rates obtained by local linear estimation, i.e, the bias of the naive estimator

is of order Op(h
2
1 + h2

2), while the variance is of order Op (nh2h
3
1)
−1

. The first component of

the bias results from the modal estimating process, and the second term is attributed to the

local linear approximation of αl(Ui). Such results demonstrate that treating bandwidth h1 as a

constant to estimate modal parameters will misbehave and result in the inconsistent estimation

of the parameters if the density of error is skewed. The use of local data points substantially

degrades the estimation efficiency of β̂; essentially the rate of convergence is O(n−1/4) with the

optimal bandwidth choice h1 � h2 � n−1/8 achieved by minimizing the asymptotic MSE of

the naive estimator. Although this rate is slower than that of the SPLVC mean or quantile

regression estimator, it is faster than that of the modal estimator derived from nonparametric

kernel density estimation; see Chen et al. (2016). The following theorem provides the asymptotic

normality results for naive estimators when u is in the interior of Ω.

Theorem 2.2. With nh5
2h

3
1 = O(1) and nh2h

7
1 = O(1), under the same conditions as The-

orem 2.1, the estimators satisfying the consistency results in Theorem 2.1 have the following

asymptotic result

√
nh2h3

1


 α̂(u)−α0(u)

h2(b̂(u)− b0(u))

β̂(u)− β0

− Γ(u)−1

(
h2

2

2
Λ2(u)α

(2)
0 (u)− h2

1

2
Λ1(u)

)
d→ N

(
0,

∫
t2φ2(t)dt

fU(u)
Γ(u)−1Σ(u)Γ(u)−1

)
.
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If we allow nh5
2h

3
1 → 0 and nh2h

7
1 → 0, the asymptotic theorem becomes

√
nh2h3

1

 α̂(u)−α0(u)

h2(b̂(u)− b0(u))

β̂(u)− β0

 d→ N
(

0,

∫
t2φ2(t)dt

fU(u)
Γ(u)−1Σ(u)Γ(u)−1

)
,

where Γ(u) = E


XX

Tf
(2)
ε (0|X̂) 0 XZTf

(2)
ε (0|X̂)

0 µ2XX
Tf

(2)
ε (0|X̂) 0

ZXTf
(2)
ε (0|X̂) 0 ZZTf

(2)
ε (0|X̂)

∣∣∣∣∣U = u

,

Λ1(u) = E


Xf

(3)
ε (0|X̂)

0

Zf
(3)
ε (0|X̂)

∣∣∣∣∣U = u

, Λ2(u) = E


µ2XX

Tf
(2)
ε (0|X̂)

0

µ2ZX
Tf

(2)
ε (0|X̂)

∣∣∣∣∣U = u

,

and Σ(u) = E


v0XX

Tfε(0|X̂) 0 v0XZ
Tfε(0|X̂)

0 v2XX
Tfε(0|X̂) 0

v0ZX
Tfε(0|X̂) 0 v0ZZ

Tfε(0|X̂)

∣∣∣∣∣U = u

.

Because we only need data in a local neighborhood of u to obtain the naive estimator, The-

orem 2.2 indicates that the estimator is
√
nh2h3

1-consistent. It also shows that the asymptotic

bias term can be successfully removed under certain conditions, and that the naive estimators

are asymptotically normally distributed, centered at the true values of the parameters of inter-

est. However, the MSE-optimal bandwidths of h1 and h2 in Theorem 2.2 have the rate n−1/8,

which does not satisfy the condition that limn→∞ nh
5
2h

3
1 = 0 and limn→∞ nh2h

7
1 = 0. As a re-

sult, undersmoothing is necessary to eliminate the asymptotic bias at the expense of a relatively

slower convergence rate, which is a common requirement in semiparametric models. This will

be incorporated later when we choose the bandwidths for practical purposes. Because the first

moment of K(·) is zero, b̂(u) is asymptomatically independent of α̂(u) and β̂(u). Nevertheless,

α̂(u) and β̂(u) are dependent on each other regardless of the kerne function used, necessitating

the third-stage estimation procedure to re-estimate α(u) to improve efficiency. Despite concen-

trating on the interior point u, the above asymptotic result holds true when we investigate the

boundary behavior.

Remark 2.3. The practical inferential use of asymptotic distribution on estimators is made dif-

ficult by the complex form of the asymptotic covariance matrix due to the existence of several un-

known quantities, such as f
(2)
ε (0|X̂) and f

(3)
ε (0|X̂). We can instead utilize the bootstrap method

for related inference (and bias adjustment for modal estimates). More specifically, we follow the

procedures S1-S3 in Algorithm 2 to obtain B bootstrap pointwise estimators α̂∗l (u), l = 1, · · · , B,

such that the bias of α̂(u) is b̂boot(u) = 1
B

∑B
l=1 α̂

∗
l (u) − α̂(u) and the covariance of α̂(u) is

V̂boot(u) = 1
B−1

∑B
l=1(α̂∗l (u) − ¯̂α

∗
(u))(α̂∗l (u) − ¯̂α

∗
(u))T , in which ¯̂α

∗
(u) = (1/B)

∑B
l=1 α̂

∗
l (u).
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Subsequently, we can compute the confidence intervals. The following Theorems 2.4 and 2.6 are

both subject to the same comments.

The convergence rates of the naive modal estimators are provided by the two theorems

above, which is crucial in deriving the asymptotic distribution for the final modal estimators.

Although (2.2) is a straightforward linear modal regression objective function, the extra bias

factor from the previous stage needs to be taken care of. Following that, we characterize the

consistency and asymptotic behavior of the semi-modal estimator β̃ by plugging in the estimates

of varying coefficients.

Theorem 2.3. Under the regularity conditions C1-C7 and the additional bandwidth conditions

h1/h3 → 0 and h2/h3 → 0, with probability approaching one, as n→∞, h3 → 0, and nh5
3 →∞,

there exists a consistent maximizer β̃ of (2.2) such that

‖β̃ − β0‖ = Op

((
nh3

3

)−1/2
+ h2

3

)
.

Theorem 2.4. With nh7
3 = O(1), under the same conditions as Theorem 2.3, the estimator

satisfying the consistency result in Theorem 2.3 has the following asymptotic result√
nh3

3

(
β̃ − β0 −

h2
3

2
J−1M

)
d→ N

(
0,

∫
t2φ2(t)dtJ−1LJ−1

)
.

Furthermore, under the assumption that nh7
3 → 0, we have√

nh3
3

(
β̃ − β0

)
d→ N

(
0,

∫
t2φ2(t)dtJ−1LJ−1

)
,

where J = E(ZZTf
(2)
ε (0|X̂)), L = E(ZZTfε(0|X̂)), and M = E(Zf

(3)
ε (0|X̂)).

The first term in the convergence rate characterizes the magnitude of the estimation vari-

ance, whereas the second term h2
3 captures the magnitude of the estimation bias. Interestingly,

the rate of convergence (
√
nh3

3) is slower than that of the SPLVC mean regression (
√
n). The

conditions h1/h3 → 0 and h2/h3 → 0 indicate that h1 → 0 and h2 → 0 are faster than h3 → 0

as n→∞, which is the case we must consider to reduce the influence of the bias from the first

stage that may be brought to the second stage. The asymptotic result is identical to that for

the feasible situation where α(Ui) is known, implying that the asymptotic bias and variance of

the semi-modal estimator β̃ are independent of the naive modal estimators under suitable con-

ditions. Similar phenomenon is observed in Ullah et al. (2021), where they presented a pseudo

demodeing method for estimating fixed effects modal coefficients for panel data.

Theorem 2.4 demonstrates that the semi-modal estimator β̃ improves the convergence rate

of the naive estimator β̂ to the linear modal regression one,
√
nh3

3 = O(n−2/7), with the MSE-

optimal bandwidth choice h3 = O(n−1/7). This finding is also compatible with the standard
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SPLVC mean regression result. The optimal bandwidth rate in Theorem 2.4 is larger than

n−1/8. Intuitively, a large bandwidth is required because the parametric coefficients are global

parameters. Undersmoothing is also required to remove asymptotic bias, indicating that the

estimator β̃ can be asymptotically normal, centered at the true value under sufficient conditions.

All of the aforementioned bandwidth considerations will be taken into account when selecting

bandwidths in practice.

In what follows, with the available semi-modal estimator β̃, we provide the consistency and

asymptotic theorem for the final modal estimators α̃(u) and b̃(u) at a fixed data point u in the

interior of Ω. Similar to Theorem 2.4, we need to impose mild bandwidth conditions to ensure

that the bias from the previous stage can be asymptotically disregarded and does not affect the

convergence rate of the final modal estimators.

Theorem 2.5. Under the regularity conditions C1-C7 and the additional bandwidth condition

h3/h5 → 0, with probability approaching one, as n → ∞, h4 → 0, h5 → 0, h2
5/h4 → 0, and

nh5h
5
4 →∞, there exist consistent maximizers (α̃(u), b̃(u)) of (2.3) such that

i. ‖α̃(u)−α0(u)‖ = Op

(
(nh5h

3
4)
−1/2

+ h2
4 + h2

5

)
,

ii. ‖H5b̃(u)−H5b0(u)‖ = Op

(
(nh5h

3
4)
−1/2

+ h2
4 + h2

5

)
.

Theorem 2.6. With nh5
5h

3
4 = O(1) and nh5h

7
4 = O(1), under the same conditions as The-

orem 2.5, the estimators satisfying the consistency results in Theorem 2.5 have the following

asymptotic result

√
nh5h3

4

[(
α̃(u)−α0(u)

h5(b̃(u)− b0(u))

)
− Γ̃(u)−1

(
h2

5

2
Λ̃2(u)α

(2)
0 (u)− h2

4

2
Λ̃1(u)

)]
d→ N

(
0,

∫
t2φ2(t)dt

fU(u)
Γ̃(u)−1Σ̃(u)Γ̃(u)−1

)
.

If we allow nh5
5h

3
4 → 0 and nh5h

7
4 → 0, the asymptotic theorem becomes

√
nh5h3

4

(
α̃(u)−α0(u)

h5(b̃(u)− b0(u))

)
d→ N

(
0,

∫
t2φ2(t)dt

fU(u)
Γ̃(u)−1Σ̃(u)Γ̃(u)−1

)
,

where Γ̃(u) = E

[(
XXTf

(2)
ε (0|X̂) 0

0 µ2XX
Tf

(2)
ε (0|X̂)

)∣∣∣U = u

]
,

Λ̃1(u) = E

[(
Xf

(3)
ε (0|X̂)

0

)∣∣∣U = u

]
, Σ̃(u) = E

[(
v0XX

Tfε(0|X̂) 0

0 v2XX
Tfε(0|X̂)

)∣∣∣U = u

]
,

and Λ̃2(u) = E

[(
µ2XX

Tf
(2)
ε (0|X̂)

0

)∣∣∣U = u

]
.
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The same comments made with respect to naive estimators are applicable here as well. The

condition h3/h5 → 0 suggests that h3 → 0 is faster than h5 → 0 as n→∞, indicating that the

bias from the previous stage is negligible when compared to the final stage bias at the order of

h2
5. The intuition behind this condition is that h3 must fall to zero fast enough to guarantee

the effect of the earlier stage biases does not carry over asymptotically to final stage estimation.

The asymptotic properties of the final modal estimators are in line with those of the estimators

in the varying coefficient modal regression. This observation reveals that the estimators are

optimal for the final stage estimation in the sense that they reach the same rates as those whose

parametric coefficient β is known, which is referred to as the oracle estimators.

Since the MSE-optimal bandwidths of h4 and h5 have a rate of n−1/8, the estimator’s

bias can be negligible relative to the variance term by applying the undersmoothing technique,

which enables modal estimators to achieve asymptotic normality centered at the true value.

As a result, this does not produce a faster rate of convergence in probability. Although the

convergence rate and asymptotic bias of α̃(u) are theoretically the same as those of α̂(u), the

third-stage estimator α̃(u) should be more efficient. Because, unlike α̂(u), which estimates the

parametric component locally, the third-stage estimator α̃(u) does not need to account for the

uncertainty of estimating the parametric component that has a faster convergence rate. Similar

result is achieved in the SPLVC quantile regression investigated by Kai et al. (2011). Also, the

behavior near the boundary, a well-known appealing property of local linear smoothers, can be

demonstrated to carry over to the final stage estimation.

2.3 Bandwidth Selection

One practical issue concerning the implementation of the three-stage estimation procedure is the

selection of bandwidths. Kernel functions have little effect on estimating in modal regression,

whereas bandwidth strongly influences estimation accuracy since it can control the balance be-

tween mean and modal estimates (i.e., with a large bandwidth, we can achieve mean estimates).

Furthermore, bandwidth is the tuning parameter that regulates the trade-off between bias and

variance of the resultant estimator. Some literature has addressed the problem of bandwidth

selection under the content of modal regression. For example, Chen et al. (2016) proposed

choosing bandwidths by minimizing a loss function defined as the volume of the prediction

band; Zhou and Huang (2019) developed two different cross-validation methods for obtaining

bandwidths in multimodal regression; and Yao and Li (2014) and Ullah et al. (2021) applied

the plug-in method for choosing bandwidths based on expressions of asymptotically optimal

bandwidths. However, to the best of our knowledge, there appear to be no results available

about selecting the bandwidth in the context of the SPLVC modal regression.

To strike a balance between the computation burden and efficiency of the estimators while

minimizing model bias, we suggest a simple rule-of-thumb to select bandwidths in this paper
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based on the asymptotically optimal rates of bandwidths. The MSE-optimal rate for h1, h2,

h4, and h5 is n−1/8, while the MSE-optimal rate for h3 is n−1/7. Despite sharing the same rate,

the roles of bandwidths h1 (or h4) and h2 (or h5) are quite different. Especially, the bandwidths

h2 and h5 associated with variable U govern the smoothing of the regression function, whereas

the bandwidths h1, h3, and h4 associated with the response variable Y affect the number of

estimated modes. When h2 and h5 are large, the undersmoothed estimations of the regression

functions are obtained, and with small values of h2 and h5, the oversmoothed estimators are

achieved. Based on these, we follow classical nonparametric estimation to fix the bandwidths

h2 = Cn−0.15 and h5 = Cn−0.13 in numerical studies because we need to undersmooth the

estimators to avoid bias, where C is a constant set as the appropriate rule-of-thumb value

1.06σ̂U and σ̂U is the standard deviation of variable U .

We work with the undersmoothing assumption on the bandwidths following Kemp and

Santos Silva (2012) and Ullah et al. (2022) to apply the grid search method to select a number

of potential bandwidths for h1, h3, and h4, which control the number of modes. To be more

specific, we first calculate the mean regression residual ε̂mean, and then select 50 bandwidth

values between 50MAD and 0.5MADn−γh (the values of γh for bandwidths h1, h3, and h4 are

γh1 = 0.15, γh3 = 0.143, and γh4 = 0.13, respectively), in which MAD represents the median

(med) value of the absolute deviation of the mean regression residual from the corresponding

median value,

MAD = medj{|(Yj − m̂(·))−medi(Yi − m̂(·))|}

and m̂(·) denotes the associated mean estimate. In the empirical analysis, the default bandwidth

is 1.6MADn−γh . It is crucial to note that the aforementioned approach for selecting bandwidth

may not yield the most efficient estimates (i.e., those obtained by minimizing the integrated

MSE), but it does provide a simple procedure to achieve optimal convergence rates for all

estimators, and its satisfactory performance has been demonstrated in practice.

Remark 2.4. We may adopt some other data-driven methods, such as leave-one-out cross-

validation, to choose bandwidths in the proposed SPLVC modal regression. Nevertheless, MSE

criterion-based cross-validation is inapplicable for modal regression. We can instead utilize the

cross-validation method built on kernel-based objective function, which depends on the fact that

the interval around the conditional mode should cover more samples with the same interval

length. The investigation of the asymptotic property of such a modal cross-validation, however,

is beyond the scope of this paper.

2.4 Varying Coefficient Test

All of the preceding discussions, which provide a solid foundation for developing the SPLVC

modal estimates, rely on the correctly specified semiparametric regression model. If the para-
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metric modal regression is a valid specification, but the SPLVC modal regression under consid-

eration is used, the estimation results based on the overspecified semiparametric model would

not only increase the complexity of the model but also decrease estimation accuracy. Most

importantly, because of the difference in convergence rates, treating a parametric component as

a nonparametric one can result in overfitting the data and efficiency loss. Therefore, it is critical

for the proposed SPLVC modal regression to test whether the varying coefficient functions are

constant, specifically testing the null hypothesis

H0 : αj(u) = αj for all j = 1, · · · , p

with the alternative hypothesis H1 : αj(u) varying with u for at least one of j = 1, · · · , p, where

αj is assumed to be an unknown constant.

Inspired by Fan et al. (2001) and Fan and Jiang (2007), which offered a general technique

for testing hypotheses regarding nonparametric functions, we construct a goodness-of-fit testing

statistic by taking a kernel-based function as the loss function rather than the sum of squared

errors. We compare the residual sums of modes under both the null and alternative hypotheses

T0
def
= L(H1)− L(H0), (2.4)

where the residual sum of modes under H0 is

L(H0) =
1

h4

n∑
i=1

φ

(
Yi −XT

i α
∗ −ZT

i β
∗

h4

)
in which α∗1, · · · , α∗p and β∗ are the parametric modal estimates, and the residual sum of modes

under H1 is

L(H1) =
1

h4

n∑
i=1

φ

(
Yi −XT

i α̃(Ui)−ZT
i β̃

h4

)
.

Remark 2.5. We construct L(H1) using the final estimators α̃(Ui) and β̃ with the same band-

width h4 in estimation. Under the null hypothesis, we treat varying coefficient functions as

constants and utilize the linear modal regression in Yao and Li (2014) to estimate {αj}pj=1 and

β directly by applying the plug-in method for bandwidth selection. The key to the success of

the developed test, as demonstrated in the following theorems, is to use the same bandwidth for

constructing L(·) functions under H0 and H1. Therefore, the bandwidth h4 is utilized in the

construction of L(H0) as well to ensure that bandwidths do not affect kernel-based functions

when comparing.

Since the role of the inference function based on the kernel and the least square is compara-

ble, L(H0) and L(H1) can be regarded as the degree to which the model fits the data under H0
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and H1, respectively. Intuitively, the values of L(H0) and L(H1) will be extremely close under

H0, while the value of L(H1) will be sufficiently greater than L(H0) if the alternative hypothesis

H1 is true. Therefore, if T0 is larger than an approximate critical value, the null hypothesis H0

is rejected. Defining t0 as the observed value of T0, the p-value of the test is followed as

p0 = PH0(T0 > t0), (2.5)

where PH0(·) refers to the probability computed under the null hypothesis H0. For a given

significance level α, the null hypothesis H0 would be rejected if p0 < α; otherwise it would fail

to reject H0. The test is supported by the following theorem.

Theorem 2.7. Assume that the regularity conditions in Theorem 2.6 are attained. Under H0,

PH0(T0 → 0)→ 1 as n→∞.

Otherwise, if infαl∈R ‖αl(·)− αl‖ > 0, there exists a constant t0 > 0 such that

PH0(T0 > t0)→ 1 as n→∞.

Technically, we could extend the methodology introduced in Fan et al. (2001) to derive

the asymptotic null distribution of the proposed test. Theorem 2.8 shows that the developed

statistic T0 converges in distribution as n→∞ under reasonable regularity conditions, and the

scale rK and degree of freedom rKµn of the asymptotic χ2-distribution are dependent on the

unknown density functions. Because we treat h4 as a shrinking bandwidth, the components in

Theorem 2.8 are reliant on h4. Nonetheless, if h4 is treated as a constant when conducting the

test, the result would be consistent with the classical mean case, i.e., dn = Op(nh
4
5)+Op(

√
nh2

5).

Theorem 2.8. Suppose that all of the conditions in Theorem 2.6 are met. With the additional

constraint nh3
4h5 →∞, under H0,

σ−1
n (T0 − µn + dn)

d→ N(0, 1).

Furthermore, with a scale rK = 2µn/σ
2
n, under H0, the test statistic rKT0 approximately follows

a χ2-distribution

rKT0 ∼ χ2(rKµn),

where “ ∼ ” denotes generalized approximation, dn = Op(nh
4
5h
−2
4 ) + Op(

√
nh2

5h
−3/2
4 ), σn is

the asymptotic variance shown in the supplementary note S5, and µn = −[h3
4h5f

(2)
ε (0|X, U,Z)

fU(U)]−1fε(0|X, U,Z)
∫
t2φ2(t)dt XT

i XiK(0).

However, as many researchers have pointed out, unless the bandwidths are sufficiently

small so that the degree of freedom rKµn is large, the p-value generated from the asymptotic
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null distribution of the test statistic may be erroneous in the context of finite sample sizes;

see Fan and Jiang (2007). This is especially true for SPLVC modal regression because the

asymptotic null distribution of the proposed statistic is dependent on the nuisance parameters.

To perform the test, we apply the residual-based bootstrap algorithm with appropriate modal

centering adjustments to approximate the null distribution of T0 and the p-value of the test.

In general, with a moderate sample size, the bootstrap method outperforms the asymptotic

distribution-based method, as only the main order of the degrees of freedom is given in Theorem

2.8. The performance, including the validity of the bootstrap procedure in approximating the

null distribution of the test statistic and the power of the test, is further demonstrated by Monte

Carlo simulations in Section 4.

Algorithm 2 Bootstrap Algorithm for Estimating p-value

S1 Based on the data {(Yi,X i, Ui,Zi)}ni=1, estimate the SPLVC modal regression and obtain
the residual ε̃i = Yi −XT

i α̃(Ui)−ZT
i β̃.

S2 Compute the centered-in-mode residual ε̃∗i = ε̃i −Mode(ε̃i) and generate the bootstrap
residuals {ε̃∗i }ni=1 with replacement from the empirical distribution function of ε̃∗i .

S3 Define Y ∗i = XT
i α̃(Ui) +ZT

i β̃ + ε̃∗i and calculate the bootstrap test statistic T ∗0 based on
the samples {(Y ∗i ,X i, Ui,Zi)}ni=1.

S4 Repeat S2-S3 for B (e.g. B = 200) times to obtain a bootstrap sample of the test
statistics T0 as {T ∗0b}Bb=1. The p-value is estimated by p̂ =

∑B
b=1 I (T ∗0b ≥ t0) /B. Reject

the null hypothesis H0 when T0 is greater than the upper-α quantile of {T ∗0b}Bb=1 or p̂ < α.

We intend to approximate the distribution of T0 using the sampling distribution of T ∗0 ,

which is justified if T ∗0 converges to the same limiting distribution as T0. The following theorem

demonstrates the consistency of the above bootstrap testing procedure.

Theorem 2.9. Suppose that all of the conditions in Theorem 2.6 are fulfilled. Under H0, rKT
∗
0

∼ χ2(rKµn) and

sup
z∈R
|P (Z∗0 ≤ z|{(X i, Ui,Zi)}ni=1)− P (N(0, 1) ≤ z)| p→ 0,

in which Z∗0 = σ−1
n (T ∗0 − µn + dn).

Remark 2.6. We bootstrap the centralized residuals from the SPLVC modal regression rather

than the residuals from the parametric modal regression as in Cai et al. (2000), which considered

the goodness-of-fit test for the varying coefficient nonlinear time series model. Regardless of

whether the null or alternative hypothesis is correct, the SPLVC modal estimate of the residual

can always be consistent. However, since we are concentrating on modal regression, we need to
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calculate the centered-in-mode instead of the centered-in-mean residual to ensure Mode(ε̂∗i ) = 0.

We utilize the same bandwidths in calculating T ∗0 (including estimators) as in T0, which satisfies

the conditions on the bandwidths used in the optimal asymptotic performance of the proposed

test.

We consider the test for all varying coefficient functions for concreteness. The same steps

can be applied to test αj(u) = αj for a subset of the index j = 1, · · · , p. In addition, since the

varying coefficient functions may be known in certain applications, the proposed goodness-of-fit

testing statistic can be used to determine whether the varying coefficient functions are of some

specific functional forms, where

L(H0) =
1

h4

n∑
i=1

φ

(
Yi −XT

i α0(Ui)−ZT
i β̃

h4

)

and α0(Ui) is the true function under the null hypothesis. Furthermore, we can develop a test

for the situation where αj is a known constant. In such a case, L(H0) needs to be modified to

L(H0) =
1

h4

n∑
i=1

φ

(
Yi −XT

i α0 −ZT
i β̃

h4

)

with α0 representing a known constant vector. Nonetheless, this may not be attractive in

practice because researchers are more concerned with whether the varying coefficient functions

are indeed constant without knowing specific values.

Remark 2.7. (Wald-Type Test) It is natural to investigate the Wald test by directly exam-

ining the variability of the estimated coefficient α̃(u). Given the null restricted modal regression

Mode (Yi|XT
i ,Z

T
i ) = XT

i α+ZT
i β, based on the results from Theorem 2.4, it can be seen that

under certain regularity conditions, ‖α∗ − α‖ = Op(h̃
2 + (nh̃3)−1), where bandwidth h̃ is used

in the modal regression under H0. If we choose nh5
5h

3
4 → 0 and nh5h

7
4 → 0, under H0, it can be

obtained from Theorem 2.6 that√
nh5h3

4(α̃(u)−α∗) =
√
nh5h3

4(α̃(u)−α)−
√
nh5h3

4(α∗ −α)

=
√
nh5h3

4(α̃(u)−α) + op(1)
d→ N (0,Ξ(u)),

where Ξ(u) = (
∫
t2φ2(t)dt/fU(u))[E(XXTf

(2)
ε (0|X̂)|U = u)]−1[E(XXTfε(0|X̂)|U = u)]

[E(XXTf
(2)
ε (0|X̂)|U = u)]−1. Following Yao and Li (2014) and Ullah et al. (2021) to con-

sistently estimate fε(0|X̂) and the corresponding derivatives, we can get the consistent estimate

for the asymptotic covariance matrix Ξ(u), which is defined as Ξ̂(u). We then have√
nh5h3

4Ξ̂(u)−1(α̃(u)−α∗) d→ N (0, Ip),
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where Ip is an identity matrix with dimension p×p, and ‖
√
nh5h3

4Ξ̂(u)−1(α̃(u)−α∗)‖2 d→ χ2(p).

We finally can construct an asymptotically valid test for α(u) across a range of u such that

T ∗0 = max
1≤i≤n

‖
√
nh5h3

4Ξ̂(Ui)
−1(α̃(Ui)−α∗)‖2 d→ max

1≤i≤n
χ2
i (p).

Since the limiting distribution of T ∗0 is a functional of independent χ2 random variables (with p

degrees of freedom) that is free of nuisance parameters, the critical value of T ∗0 can be calculated.

3 Penalized SPLVC Modal Regression

Variable selection is crucial in high-dimensional econometrics since sparse modeling is often

preferred due to enhanced model predictability and interpretability. This section utilizes the

penalty function to simultaneously estimate parametric coefficients in the SPLVC modal regres-

sion and shrink some coefficients to zero. The theoretical properties of the procedure, including

the consistency in variable selection and the oracle property in estimation, are established with

appropriate choice of the tuning parameter.

3.1 Penalized Modal Estimators

Under the assumption that the dimension k of the parameter β is fixed, we propose the following

penalized kernel-based objective function to conduct variable selection

LP (β) =
1

h3

n∑
i=1

φ3

(
Yi −XT

i α(Ui)−ZT
i β

h3

)
− n

k∑
j=1

pλj (|βj|) , (3.1)

where pλj(·) is the penalty function with a tuning parameter λj that includes commonly used

penalty functions, such as the least absolute shrinkage and selection operator (LASSO), adaptive

LASSO, smoothed clipped absolute deviation (SCAD), among others. Fan and Li (2001) studied

the choice of penalty functions in depth and advocated for the use of a nonconcave penalty.

The regularization parameters {λj}kj=1 are not necessarily the same for all j, which offers the

flexibility of producing different shrinkage for different modal coefficients to keep some important

variables in the final model. Practically, the regularization parameters can be chosen using the

data-driven criterion BIC shown in Algorithm 3.

There are numerous penalty functions available for conducting variable section; see Su

and Zhang (2013). In order to perform variable selection for the SPLVC modal regression in

a computationally efficient manner, this section shall use the SCAD penalty function for the

calculation. According to Fan and Li (2001), the SCAD penalty is defined as
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pλj(|t|) = λj(|t|){I((|t|) < λj)}+
(a− |t|/2λj)

a− 1
I(λj < (|t|) < a) +

a2λj
2(a− 1)(|t|)

I{(|t|) ≥ aλj}

for some constant a > 2, where the first derivative p
(1)
λj

(0) = 0, λj is a penalized parameter

controlling the trade-off between data fit and estimate roughness, and a = 3.7 as suggested

in Fan and Li (2001) from a Bayesian perspective. The SCAD penalty function is continu-

ously differentiable on (−∞, 0) ∪ (0,∞) but singular at zero. Its derivative vanishes outside

of [−aλj, aλj]. Consequently, it can obtain sparse solutions and unbiased estimates for large

datasets by shrinking small coefficients toward zeros.

Remark 3.1. To obtain the oracle property, the penalty function pλj(·) used for the SPLVC

modal regression should satisfy the following properties: (a) for nonzero fixed t, lim(nh3
3)1/2

pλj(|t|) = 0 and lim p
(1)
λj

(|t|) = 0; (b) for any C > 0, lim(nh3
3)1/2 inf |t|≤C(nh33)−1/2 pλj(|t|) → ∞.

Evidently, the SCAD penalty meets these two properties, which is the penalty we concentrate on

in the main part of the paper. Note that adaptive LASSO can also be utilized for conducting

variable selection, as illustrated in Remark 3.2.

Since α(Ui) consists of unknown nonparametric functions, (3.1) is not ready for optimiza-

tion. We substitute the resulting estimate from the first-stage estimation into (3.1) and obtain

the penalized equation shown below.

LP (β) =
1

h3

n∑
i=1

φ3

(
Yi −XT

i α̂(Ui)−ZT
i β

h3

)
− n

k∑
j=1

pλj (|βj|) . (3.2)

Optimizing (3.2) is a simultaneous estimation and variable selection procedure. However, it is

not easy for achieving solutions because the penalty function is irregular at the origin and does

not have a second derivative at some points. To tackle the challenging estimation problem,

given an initial value of β(0) close to the maximizer of (3.2), we follow Fan and Li (2001) to

apply a locally quadratic approximation for the penalty function such that

pλj (|βj|) ≈ pλj

(
|β(0)
j |
)

+
1

2

p
(1)
λj

(
|β(0)
j |
)

|β(0)
j |

(β2
j − β

(0)2
j

)
for βj ≈ β

(0)
j , (3.3)

in which β
(0)
j is not very close to 0. Replace pλj (|βj|) in (3.2) with (3.3), we can obtain

LP (β) =
1

h3

n∑
i=1

φ

(
Yi −XT

i α̂(Ui)−ZT
i β

h3

)
− n

2

k∑
j=1

p
(1)
λj

(
|β(0)
j |
)

|β(0)
j |

 β2
j . (3.4)

By maximizing the above objective function with a proper penalty parameter λj, we can perform

an automatic variable selection with a sparse estimator of β, defined as β̂P . Notice that for
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identifying variables in the nonparametric components, we can apply the aforementioned varying

coefficient test by replacing β with the penalized estimator.

The sparse estimator is expected to possess the selection invariance property under regu-

larity conditions. If we have additional information regarding which components are zero, say

βj = 0, j = s + 1, · · · , k, we could take into account this prior knowledge to maximize the

following constrained kernel-based objective function with all irrelevant variables removed.

max
β
LP (β) =

1

h3

n∑
i=1

φ

(
Yi −XT

i α̂(Ui)−ZT
i β

h3

)
− n

2

s∑
j=1

p
(1)
λj

(
|β(0)
j |
)

|β(0)
j |

 β2
j ,

s.t. βj = 0, j = s+ 1, · · · , k.

With approximate Karush-Kuhn-Tucker (KKT) condition

−Zji
h3

φ(1)

(
Yi −XT

i α̂(Ui)−ZT
i β̂

(rs)

h3

)
= o

n
p

(1)
λj

(
|β(0)
j |
)

|β(0)
j |


 ,

where β̂(rs) is the solution to this constraint problem, we can have (β̂(rs), βs+1, · · · , βk) = β̂P

with probability converging to one.

Remark 3.2. (Identification and Variable Selection) Besides the proposed goodness-of-fit

test for identifying nonparametric coefficient functions and penalized SPLVC modal regression

for selecting parametric coefficients, we can utilize penalization methods to directly identify the

true structure of the SPLVC modal regression. Assume that β in (1.3) is a vector consisting

of unknown functions of Ui. We can re-write (1.3) as a varying coefficient modal regression

Mode(Yi|Wi) = WT
i θ(Ui), where Wi = (XT

i ,Z
T
i )T and θ(Ui) = (αT (Ui),β

T )T . We then

integrate local linear approximation with adaptive LASSO

1

nh∗1h
∗
2

n∑
i=1

φ

(
Yi −W T

i θ(u)−W T
i θ

(1)(u)(Ui − u)

h∗1

)
K

(
Ui − u
h∗2

)
−λn

p+k∑
j=1

|θj(u)|
wj
−γn

p+k∑
j=1

|θ(1)
j (u)|
vj

to simultaneously identify whether a coefficient is parametric and select significant covariates in

both nonparametric and parametric portions, where h∗1 and h∗2 are two bandwidths, θ(1)(·) is the

first derivative of θ(·), λn and γn are two tuning parameters, and wj and vj are two determined

positive random quantities. By shrinking the first derivative of the varying coefficient function

to zero, a parametric component can be detected. Following the results in this paper, the oracle

properties of the nonzero coefficient function estimators can be established. Further theoretical

analysis is needed in the future to develop such a variable selection model.

As there are no available closed-form solutions for (3.4), we extend the modified MEM al-
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gorithm shown in Algorithm 3 to estimate (3.4). The E-step computes the weight provided that

the current estimate gives the true parameter of the model, and the M-step updates the estimate

through computationally simpler conditional maximization, which can result in a closed-form

expression due to the use of a normal kernel φ(·) and the quadratic approximation. The esti-

mation process is repeated iteratively until convergence or stopping criterion is reached; see the

related comments for Algorithm 1. Note that the first term in the BIC selection equation can be

regarded as an “artificial” likelihood since it exhibits certain essential properties of a parametric

log-likelihood. Due to the target of modal estimation, the effective sample size would be nh3
3

rather than n in the classical mean regression. This is because the classical mean estimation is
√
n-consistent, while the convergence rate of modal estimation is

√
nh3

3.

Algorithm 3 MEM Algorithm for Penalized SPLVC Modal Regression

Selection of λj. Set λj = λSE(β̂j), where SE(β̂j) is the standard error from (2.2) (i.e.,

bootstrap method). Then, use BIC to select λ

λopt = arg min
λ
BIC(λ) = − 1

nh3

n∑
i=1

φ

(
Yi −XT

i α̂(Ui)−ZT
i β̂

P

h3

)
+

log(nh3
3)

nh3
3

dfλ,

where dfλ is the number of nonzero coefficients of β̂P with tuning parameter λ.

E-Step. Update weight (posterior conditional probability) π
(
i|βP (g)

)
as

π
(
i|βP (g)

)
=

φ
(
Yi−XT

i α̂(Ui)−ZTi βP (g)

h3

)
∑n

i=1 φ
(
Yi−XT

i α̂(Ui)−ZTi βP (g)

h3

) .
M-Step. Update the value of βP (g+1) with the weight calculated in E-Step by

βP (g+1) = arg max
β

n∑
i=1

{
π
(
i|βP (g)

)
log

(
1

h3

φ

(
Yi −XT

i α̂(Ui)−ZT
i β

h3

))

− n

2

k∑
j=1

p
(1)
λj

(
|βP (g)
j |

)
|βP (g)
j |

 β2
j

}
= (ZTWZ + nΣλ(β

P (g)))−1ZTWY ,

where Σλ(β
P (g)) = diag

{
p
(1)
λ1

(
|βP (g)

1 |
)

|βP (g)
1 |

, · · · ,
p
(1)
λk

(
|βP (g)
k |

)
|βP (g)
k |

}
.

3.2 Large Sample Properties

Large sample properties of shrinkage estimation with the SCAD penalty, i.e., consistent vari-

able selection and oracle property for parameter estimation, have been well established in the
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literature (Fan and Li, 2001; Kai et al., 2011; Zhang et al., 2013). In this subsection, we show

that these theoretical results can be extended to the SPLVC modal regression scenario.

Note that maximizing (3.4) will result in a penalized modal regression estimator β̂P . To

investigate the asymptotic properties of the shrinkage modal estimator, we decompose the modal

regression coefficient vector β0 into β0 = (βT0′ ,β
T
0′′)

T ∈ Rk without loss of generality, where β0′ =

(β01, ..., β0s)
T ∈ Rs consists of all nonzero components of β0 and β0′′ = (β0s+1, ..., β0k)

T ∈ Rk−s

is made up of all of the zero components of β0. Define

an = max
1≤j≤k

{
|p(1)
λj

(|β0j|)| : β0j 6= 0
}
, bn = max

1≤j≤k

{
|p(2)
λj

(|β0j|)| : β0j 6= 0
}
,

Ψλ =
(
p

(1)
λ1

(|β01|) , . . . , p(1)
λs

(|β0s|)
)T

, and Φλ = diag
{
p

(2)
λ1

(|β01|) , . . . , p(2)
λs

(|β0s|)
}
,

where p
(2)
λj

(·) is the second derivative of penalty. We can then establish the following theoretical

properties about the consistency and sparsity property of the penalized modal estimator of the

parametric part.

Theorem 3.1. Suppose that the regularity conditions in Theorem 2.4 are fulfilled. With proba-

bility approaching one, as bn → 0 with n→∞, there exists a consistent maximizer β̂P of (3.4)

such that

‖β̂P − β0‖ = Op

((
nh3

3

)−1/2
+ h2

3 + an

)
.

The rate of convergence of the proposed penalized modal estimator in Theorem 3.1 is

dependent on λj and bandwidth h3. As a result, we can further improve the convergence rate

to ‖β̂P −β0‖ = Op

(
(nh3

3)
−1/2

+ h2
3

)
with a slightly stronger assumption λmax = maxj{λj} → 0

(i.e., an = 0). This demonstrates that the consistent penalized modal estimator indeed exists

with probability tending to one.

Theorem 3.2. Under the same conditions as Theorem 3.1, let δn = h2
3 + (nh3

3)
−1/2

and λmin =

minj{λj}, if λmax → 0, δ−1
n λmin →∞ when n→∞, and lim infn→0 lim infβj→0+ p

(1)
λj

(|βj|)/λj >
0 for all j, then the penalized modal estimator can correctly identify all zero elements; that is

P
(
β̂P0′′ = 0

)
→ 1.

Theorem 3.1 demonstrates the existence of the penalized modal estimator β̂P that converges

to the true parameter at the rate of Op((nh
3
3)
−1/2

+ h2
3 + an), indicating the dependence on the

penalty function and the regularization parameter λj. It shows that the difference between the

modal estimate with SCAD penalty and the true parameter is asymptotically negligible when λj

is small enough. Theorem 3.2 states that the proposed penalized modal regression possesses the

sparsity property; that is, by choosing an appropriate regularization parameter λj, the penalized

modal estimator estimates a zero coefficient exactly as zero with a probability tending to one.
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According to the preceding two theorems, it is apparent that penalized modal estimator can

achieve the optimal convergence rate for nonzero coefficients in large samples as if the subset of

true zero coefficients were known.

Theorem 3.3. With nh7
3 = O(1) and nh3

3Ψ2
λ = O(1), under the same conditions as Theorem

3.2, the estimator satisfying the consistency result in Theorem 3.1 has the following asymptotic

result√
nh3

3(J(1) + Φλ)

(
β̂P0′ − β0′ + (J(1) + Φλ)

−1

(
Ψλ −

h2
3

2
M(1)

))
d→ N

(
0,

∫
t2φ2(t)dtL(1)

)
.

In addition, if
√
nh3

3Ψλ = op(1) and Φλ = op(1), we can obtain√
nh3

3J(1)

(
β̂P0′ − β0′ −

h2
3

2
J−1

(1)M(1)

)
d→ N

(
0,

∫
t2φ2(t)dtL(1)

)
.

Furthermore, if nh7
3 → 0, we have√

nh3
3J(1)

(
β̂P0′ − β0′

)
d→ N

(
0,

∫
t2φ2(t)dtL(1)

)
,

where J(1),M(1), and L(1) are the s× s submatrices of J,M , and L corresponding to the nonzero

components β0′, respectively.

In Theorem 3.3, we establish the asymptotic distributions of the resultant estimators for

nonzero coefficients under suitable conditions, demonstrating that β̂P0′ has the oracle property,

i.e., performs as well as an oracle estimator in the asymptotic sense (the estimators for the non-

zero coefficients in the true model have the same asymptotic distribution as if the subset of true

zero coefficient β0′′ were already known or as if the true underlying model were given in advance).

Then, according to the oracle properties, most statistical inferences for β̂P can be constructed

exactly the same as the oracle estimator. Theorem 3.3 also indicates that undersmoothing is

necessary to remove the asymptotic bias. Because the penalized modal estimator shares the

same convergence rate as the parametric estimator β̃, the suggested bandwidth in Subsection

2.3 can be adopted here as well.

Remark 3.3. The theoretical results in this section are limited to the finite-parameter setting,

which means that the dimension k of the parameter β is fixed. In a general setup, when the

dimension of the parametric components is large, it is more realistic to regard it growing with

sample size, that is, k = k(n) → ∞ as n → ∞. We can then establish the oracle property by

requiring the tuning parameters h3 and λj to approach zero with the rate depending on n and k.
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4 Numerical Examples

We in this section investigate the finite sample performance of the developed estimation methods

with Monte Carlo simulation studies and two real data analyses. Throughout the section, φ(·)
and K(·) are fixed as the normal kernel (1/h

√
2π)exp (−(·)2/2h2), in which h is the bandwidth,

and the word “SPLVC” is suppressed for regression whenever no confusion is caused. Some

additional numerical results are contained in the supplementary note.

4.1 Monte Carlo Experiments

(1) (SPLVC Modal Regression) We carry out simulation experiments to illustrate the

finite sample performances of the proposed estimators in this part, where two Monte Carlo

experiments with different skewed error distributions are conducted (one of which is provided

in the supplementary note S4). We use DGP to represent the data generating process in what

follows, and compare the modal estimates to those of mean regression, which serves naturally

as a competitor here. The sample sizes we consider are n ∈ {100, 200, 400, 600, 1000}. A total

of M =200 simulation replications are conducted in all simulations. We use the square root of

average squared errors (RASE) to assess the performance of the nonparametric estimator α̃(u)

RASE(α̃(Ui)) =

(
1

Mn

M∑
j=1

n∑
i=1

‖α̃(j)(Ui)−α0(Ui)‖2

)1/2

,

where α̃(j)(Ui) is the estimate in the jth replication, and utilize the generalized mean squared

errors (GMSE) to evaluate the parametric component β

GMSE(β̃) = (β̃ − β0)TE(ZZT )(β̃ − β0).

We also provide the standard error and MSE for each parameter estimate. In accordance with

Ullah et al. (2021, 2022), we present the shape of the empirical density of the standardized modal

estimate to check the asymptotic normality property, as well as the coverage probabilities to

measure the prediction performance of the newly introduced model.

DGP 1 We first generate random samples from the following model to illustrate the application

of SPLVC modal regression

Yi = XT
i α(Ui) +ZT

i β + σ(X i,Zi)εi,

and εi follows a mixture normal distribution 0.5N(−1, 2.52) + 0.5N(1, 0.52), which is skewed

left with E(ε)=0 and Mode(ε)=1 (Yao and Li, 2014; Ullah et al., 2021, 2022). We set the

parameters and varying coefficient functions to β = (1, 2)T and α(Ui) = (α1(Ui), α2(Ui))
T , in
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which α1(Ui) = exp(2Ui − 1) and α2(Ui) = sin(2πUi). The index variable Ui is simulated from

the uniform distribution U [0, 1]. The covariate vector (XT
i ,Z

T
i )T is normally distributed with

mean 0, variance I4×4, and correlation 0.2|k−j|, where k, j = 1, 2, 3, 4. We consider three cases,

where in case 1 we let σ(X i,Zi) = X1i + Z1i, in case 2 we define σ(X i,Zi) = X1i, and in case

3 we allow σ(X i,Zi) = Z1i. We then have the following equations.

Case 1 :


Mean Regression:

E(Yi|Xi, Ui,Zi) = X1iexp(2Ui − 1) +X2isin(2πUi) + Z1i + 2Z2i,

Modal Regression:

Mode(Yi|Xi, Ui,Zi) = X1i(exp(2Ui − 1) + 1) +X2isin(2πUi) + 2Z1i + 2Z2i;

Case 2 :


Mean Regression:

E(Yi|Xi, Ui,Zi) = X1iexp(2Ui − 1) +X2isin(2πUi) + Z1i + 2Z2i,

Modal Regression:

Mode(Yi|Xi, Ui,Zi) = X1i(exp(2Ui − 1) + 1) +X2isin(2πUi) + Z1i + 2Z2i;

Case 3 :


Mean Regression:

E(Yi|Xi, Ui,Zi) = X1iexp(2Ui − 1) +X2isin(2πUi) + Z1i + 2Z2i,

Modal Regression:

Mode(Yi|Xi, Ui,Zi) = X1iexp(2Ui − 1) +X2isin(2πUi) + 2Z1i + 2Z2i.

The simulation results are summarized in Table 1, demonstrating that the developed es-

timation method is capable of estimating the modal regression effectively with finite samples.

For case 1, the modal estimators of β1 are slightly biased for small n, but there are substantial

improvements with an increase in n. For case 2, when the error term is independent of Z and

X2, the proposed method works well even with small n. For case 3 in which the error term is

independent of X and Z2, the modal estimator of β1 is kind of biased with finite samples. In

all three cases, the modal estimators of β2 are centered around the true parameter values. In

addition, the values of GMSEs and RASEs obtained from modal regression are clearly smaller

than those achieved from mean regression, indicating that when dealing with skewed data,

modal regression (at least) in this example can provide more accurate estimators compared to

mean regression. Moreover, as expected, when sample size n increases, the values of MSEs,

GMSEs, and RASEs are essentially decreased, corroborating the asymptotic theories.

Figure 2 depicts a set of varying coefficient estimators, which noticeably indicates that

the suggested estimation procedure can capture the true varying coefficient functions in modal

regression with finite samples and that the approximation accuracy increases with sample size.

For space consideration, we only report the results for sample sizes 200 and 400 (same for the

DGP 2 in the supplementary note S4). The results are comparable across sample sizes.

To evaluate the asymptotic normality of the modal estimator, we compare the shape of the
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empirical density of the standardized modal estimate to that of the standard normal density.

Figure 3 shows that the sample distributions have a similar bell shape to the standard normal

distribution. In accordance with the asymptotic property, the performance of the asymptotic

normality approximation improves as the same size n increases. Note that there appears to

present some discrepancy between the sample distribution and the standard normal distribution

when the sample size n is small, which may explain some of the facts that the convergence rate

of modal regression is usually slow.

Table 1: The Results of Simulations for SPLVC Regressions

Method Case n β1 MSE(β1) β2 MSE(β2) GMSE(β) RASE(α(Ui))

Mode

Case 1
β1,mode = 2

β2,mode = 2

100 1.8046 (0.3079) 0.1325 1.9831 (0.2372) 0.0563 0.1829 0.9573

200 1.9030 (0.1815) 0.0422 2.0089 (0.1404) 0.0197 0.0546 0.6132

400 1.9390 (0.1167) 0.0173 1.9943 (0.0890) 0.0079 0.0228 0.5371

600 1.9188 (0.0972) 0.0160 1.9934 (0.0678) 0.0046 0.0187 0.5135

1000 1.9465 (0.0674) 0.0074 2.0007 (0.0562) 0.0031 0.0091 0.5012

Case 2
β1,mode = 1

β2,mode = 2

100 1.0183 (0.1476) 0.0220 1.9975 (0.1400) 0.0195 0.0313 0.6822

200 0.9960 (0.0934) 0.0087 2.0053 (0.0898) 0.0081 0.0140 0.5701

400 0.9986 (0.0661) 0.0044 2.0025 (0.0619) 0.0038 0.0063 0.4689

600 0.9957 (0.0496) 0.0025 1.9971 (0.0543) 0.0029 0.0044 0.3907

1000 1.0052 (0.0393) 0.0016 1.9967 (0.0375) 0.0014 0.0022 0.3292

Case 3
β1,mode = 2

β2,mode = 2

100 1.8448 (0.2329) 0.0781 1.9832 (0.1440) 0.0209 0.0902 0.5876

200 1.8726 (0.1352) 0.0344 2.0028 (0.1008) 0.0101 0.0385 0.5271

400 1.8774 (0.1001) 0.0250 1.9971 (0.0695) 0.0048 0.0281 0.4128

600 1.8717 (0.0794) 0.0227 1.9970 (0.0511) 0.0026 0.0250 0.3240

1000 1.8892 (0.0597) 0.0158 2.0020 (0.0402) 0.0016 0.0162 0.2871

Mean

Case 1
β1,mean = 1

β2,mean = 2

100 0.9898 (0.6519) 0.4229 2.0428 (0.6117) 0.3741 0.6377 1.6321

200 0.9808 (0.4686) 0.2188 2.0091 (0.4068) 0.1648 0.3105 1.1480

400 0.9790 (0.3046) 0.0927 1.9969 (0.3029) 0.0913 0.1603 0.8065

600 0.9897 (0.2497) 0.0621 1.9828 (0.2475) 0.0613 0.1018 0.6554

1000 1.0329 (0.2078) 0.0440 2.0078 (0.1865) 0.0347 0.0733 0.5289

Case 2
β1,mean = 1

β2,mean = 2

100 1.0026 (0.3382) 0.1138 2.0187 (0.3259) 0.1060 0.1685 0.9865

200 0.9994 (0.2276) 0.0516 1.9969 (0.2231) 0.0495 0.0755 0.7062

400 0.9839 (0.1447) 0.0211 2.0001 (0.1559) 0.0242 0.0376 0.5054

600 0.9918 (0.1217) 0.0148 1.9848 (0.1347) 0.0183 0.0269 0.4224

1000 1.0169 (0.1048) 0.0112 2.0007 (0.1058) 0.0111 0.0185 0.3472

Case 3
β1,mean = 1

β2,mean = 2

100 0.9880 (0.4185) 0.1744 2.0247 (0.3383) 0.1145 0.2458 0.8679

200 0.9806 (0.3108) 0.0965 2.0122 (0.2330) 0.0542 0.1279 0.6182

400 0.9940 (0.2089) 0.0435 1.9963 (0.1705) 0.0289 0.0663 0.4455

600 0.9988 (0.1680) 0.0281 1.9980 (0.1297) 0.0167 0.0383 0.3693

1000 1.0156 (0.1326) 0.0178 2.0074 (0.0992) 0.0098 0.0268 0.3099

Note: For case 1 and case 2, α1,mode(Ui) = exp(2Ui − 1) + 1 and α2,mode(Ui) = sin(2πUi); for case 3, α1,mode(Ui) = exp(2Ui − 1)

and α2,mode(Ui) = sin(2πUi). For all cases, α1,mean(Ui) = exp(2Ui − 1) and α2,mean(Ui) = sin(2πUi).
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Figure 2: Fitted Varying Coefficient Functions with n = 200 or 400

Note: The black curves are the true (mean and modal) varying coefficient functions in each
case. The red curves represent the corresponding estimates for sin(·) functions, while the green
curves denote the analogous estimates for exp(·) functions with 200 replications.

Figure 3: Empirical Density of the Standardized Estimate

The research focus in many empirical applications is more on prediction. As stated in Sec-

tion 1, one of the main advantages of modal regression is having better prediction performance

31



compared to existing regressions (Figure 1). Following Ullah et al. (2021, 2022), we report the

average of the coverage probabilities when conducting predictions according to the same length

of small intervals centered around each estimate. We consider 0.1σ, 0.2σ, and 0.5σ length of

intervals, separately, where σ ≈ 2 for εi ∼ 0.5N(−1, 2.52) + 0.5N(1, 0.52). We follow the same

DGP process as the above three cases with the sample size 2n, where we estimate the model

with the first n data points and make out-of-sample predictions for the remaining n data points

with 200 replications. The results are shown in Figure 4, which demonstrates that modal re-

gression can obtain higher coverage probabilities than mean regression. With the increase of

interval length, the coverage probabilities for both modal and mean regressions are increasing

and moving closer to each other as expected. The results are consistent with those reached in

Yao and Li (2014) and Ullah et al. (2021, 2022).

Figure 4: Boxplot of Average of Coverage Probability

Note: For each plot, the numbers 1, 2, 4, 6, and 10 represent the values of n=100, 200, 400,
600, and 1000, respectively.

(2) (Penalized SPLVC Modal Regression) We conduct a simulation experiment to illus-

trate the finite sample performance of the proposed estimator with variable selection in this
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part. We first generate random samples from the following model

Yi = XT
i α(Ui) +ZT

i β + σ(X i,Zi)εi,

where X is composed of two covariates and Z is made up of ten covariates. The covariate

vector (XT
i ,Zi)

T is normally distributed with mean 0, variance I12×12, and correlation 0.2|r−j|,

where r, j = 1, · · · , 12. For the purpose of selection, we set β1 = 2, β2 = 1, β3 = 1, and βl = 0

for l = 4, · · · , 10, which indicates that only the first three variables are relevant and the rest are

irrelevant. Other model settings are identical to those in DGP 1. Then, different modal and

mean equations are attained as follows.

Case 1 :



Mean Regression:

E(Yi|Xi, Ui,Zi) = X1iexp(2Ui − 1) +X2isin(2πUi) + 2Z1i + Z2i + Z3i +
∑10

l=4 0Zli,

Modal Regression:

Mode(Yi|Xi, Ui,Zi) = X1i(exp(2Ui − 1) + 1) +X2isin(2πUi) + 3Z1i

+Z2i + Z3i +
∑10

l=4 0Zli

Case 2 :



Mean Regression:

E(Yi|Xi, Ui,Zi) = X1iexp(2Ui − 1) +X2isin(2πUi) + 2Z1i + Z2i + Z3i +
∑10

l=4 0Zli,

Modal Regression:

Mode(Yi|Xi, Ui,Zi) = X1i(exp(2Ui − 1) + 1) +X2isin(2πUi) + 2Z1i

+Z2i + Z3i +
∑10

l=4 0Zli

Case 3 :



Mean Regression:

E(Yi|Xi, Ui,Zi) = X1iexp(2Ui − 1) +X2isin(2πUi) + 2Z1i + Z2i + Z3i +
∑10

l=4 0Zli,

Modal Regression:

Mode(Yi|Xi, Ui,Zi) = X1iexp(2Ui − 1) +X2isin(2πUi) + 3Z1i

+Z2i + Z3i +
∑10

l=4 0Zli

We report the average number of zero coefficients that are correctly estimated to be zero

(denoted by C) and the average number of nonzero coefficients that are incorrectly estimated

to be zero (indicated by IC). To present a more comprehensive picture, Table 2 also de-

picts other criteria for evaluating the performance of the developed model, including U-Fitted

(underfitted)—the proportion of ignoring at least one of the nonzero coefficients in all repli-

cations, C-Fitted (correctly fitted)—the proportion of selecting all coefficients correctly in all

replications, and O-Fitted (overfitted)—the proportion of correctly selecting all nonzero coef-

ficients but including at least one zero coefficients in all replications. As seen from Table 2,

the proposed modal regression variable selection procedure performs fairly well in terms of all

evaluation criteria. It can select the true irrelevant variables with a high probability, and the

percentage of incorrect selections steadily decreases as sample size increases. Compared to mean
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regression, modal regression could have better performance of oracle procedure in terms of

accurate variable selections (higher rates of C and C-Fitted), and offers a more informative

summary of the data. Especially, when n is not very large, mean regression cannot eliminate

certain irrelevant variables.

To assess the accuracy of the resultant estimators, we use GMSE and RASE to compare

the performance of different estimates. The results are shown in Table 2, where S represents

the estimates with SCAD variable selection and O denotes the oracle estimates assuming the

zero coefficients are known but the other coefficients are unknown. Note that O is only available

in simulation studies and serves as a benchmark here for comparisons. The results show that

the developed variable selection procedure can estimate all nonzero and zero coefficients more

accurately compared to the mean selection method. There is an evident tendency that with the

increase of sample size, the SCAD estimation procedure significantly improves the estimation

accuracy, indicating the consistency of the suggested variable selection procedure. As expected,

the S estimator performs comparably to the oracle procedure in terms of model error and model

complexity as the sample size n increases. Furthermore, we find that modal regression performs

better than mean regression in terms of RASE-Ss, but slightly worse in terms of GMSE-Ss.

For large sample size, both mean and modal regression variable selection procedures perform

reasonably well.

(3) (Varying Coefficient Test) To examine the finite sample performance of the test statistic,

we generate random samples from the following model

Yi = Xiα(Ui) + Ziβ + σ(Xi, Zi)εi,

where β = 3, Ui ∼ U [0, 1], εi ∼ 0.5N(−1, 2.52) + 0.5N(1, 0.52), and (Xi, Zi)
T is normally

distributed with mean 0, variance I2×2, and correlation 0.2. To test whether α(Ui) deviates

from a constant, i.e., H0 : α(Ui) = α vs. H1 : α(Ui) 6= α, we set α(Ui) = α+γ(cos(2Ui−1)−α),

in which α =
∫ 1

0
cos(2u− 1)du = 0.8415. The parameter γ is chosen from the set {0.0, 0.5, 1.0,

1.5, 2.0, 2.5, 4.0}, which can determine the extent that α(Ui) varies with Ui and evaluate the

power of the proposed test. Accordingly, γ = 0 corresponds to the model under the null

hypothesis, which examines the validity of the bootstrap procedure for approximating the null

distribution of the test statistic T0. When γ increases, the alternative moves farther away from

the null hypothesis, where one would expect the rejection rates of the null hypothesis to get

higher. To obtain the sizes and powers of the suggested test, the simulation replication is taken

as 200 and the bootstrap replication B is set to 200. Due to the expensive computation, the

sample size is set to 100 or 200, separately. We define σ(Xi, Zi) = Zi throughout this simulation.

To check whether the resultant statistic rKT0 asymptotically follows χ2(d) with d = rKµn =

2µ2
n/σ

2
n, where µn and σ2

n are the simulated mean and variance of T0, respectively, we plot the

sampling distribution of 200 simulation statistics of T0 against the χ2(d) distribution in Figure
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5. The two plots show that the empirical distribution of the developed statistic and the χ2(d)

are close to one another, demonstrating that the χ2-distribution can satisfactorily approximate

the null distribution of the proposed statistic.

Figure 5: Empirical Distribution of the Proposed Statistic under H0

Figure 6 displays the relative frequencies of rejecting H0 at the significance levels α = 0.01,

0.05, and 0.1, respectively. It shows that the proposed test statistic performs satisfactorily in

terms of both size and power. The power, as expected, is a monotone increasing function of γ.

Under the null hypothesis, i.e., γ = 0, the estimated sizes of the suggested test are closer to the

nominal significance levels 1%, 5%, and 10%, indicating that the developed test can provide the

appropriate levels of testing under these three different significance levels. Under the alternative

hypothesis, i.e., γ > 0, when the sample size is 100, the powerful function does not increase

rapidly to 1 as γ deviates from 0, and achieves 90% when γ > 3. However, when the sample

size rises to 200, the power performance becomes better, achieving close to 1 with γ > 1.5.

These findings suggest that the bootstrap estimate of the null distribution of the test statistic

is approximately valid, ad the developed test with the residual-based bootstrap is practically

useful when we have a moderately large dataset.

Figure 6: Type I Error and Power of Bootstrap Test

Note: The left plot represents the difference between the null (γ = 0) and the alternatives.

4.2 Empirical Analyses

Example 1: Application to Return to Education We demonstrate the effectiveness of

the proposed estimating method and test procedure by an application to the return to education
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dataset. It is well-known that there is a nonlinear relationship between wage and educational

level or work experience. A substantial amount of literature has been devoting effort to investi-

gating the empirical relationship between earnings and education. For example, Su et al. (2013)

introduced a local linear GMM estimation of varying coefficient instrumental variables model

with an application to estimating the rate of return to schooling; Cai et al. (2006) utilized a

two-step nonparametric procedure to estimate the return to education; among others. Note,

however, that all of these studies are based on mean regression. To provide more empirical

evidence to support the importance of education, we investigate the mode relationship between

earnings and education using the developed SPLVC modal regression, where we utilize random

samples from the 1985 wave of the Australian Longitudinal Survey (ALS). In the empirical

setting, we choose log(wage) to be the dependent variable Y and work experience as the index

variable U . We use years of education as the variable X and the other four categorical variables

as the control variables, namely, indicators for marital status (Z1), union membership (Z2),

government employment (Z3), and whether a person was born in Australia (Z4). The model is

defined as follows2

Y = α1(U) + α2(U)X + Z1β1 + Z2β2 + Z3β3 + Z4β4 + ε, (4.1)

where α1(·) and α2(·) are unknown varying coefficient functions. The resulting sample contains

2041 observations with work experience of less than or equal to 8 years.3 Table S3 in the

supplementary note provides summary statistics for the sample.

We utilize both the SPLVC mean and modal regressions to estimate (4.1). To evaluate

the ability of reproducing data, we compare the in-sample prediction performance of these two

models by reporting mean absolute percentage error (MAPE), defined as MAPE = (100/n)∑n
i=1|Yi − Ŷi|/Yi, where Ŷi is the estimated value and n is sample size. The standard error in

parenthesis in Table 3 is obtained using the bootstrap technique with 200 replications (Ullah et

al., 2021). As shown in Table 3, all coefficients β in modal and mean regressions are statistically

significant at the 5% significance level. Modal regression has coefficient signs that are consistent

with mean regression but have different magnitudes. In general, individuals who were not born

in Australia, were married, worked for the government, and were members of a trade union have

higher wages based on mode effect, which is aligned with the mean results obtained by Cai et

al. (2006). There are some notable differences in the estimates of the coefficients of variables

Z between mean and modal regressions. The modal coefficient of Born in Australia is larger

than that of mean regression (negative values), indicating that although aliens’ average salary

2Due to unobservable heterogeneity in schooling choices, education is an endogenous variable in the labour
economics literature. We do not consider the endogenous issue in this paper, but it would be interesting to
explore such a case in modal regression.

3The data from Su et al. (2013) have only eight observations with experience being more than or equal to
9 years. We delete these observations, yielding a total of 2041 observations. In addition, the distribution of
log(wage) is nearly symmetric, indicating that modal estimation should be similar to mean estimation.
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is higher than those of natives, the effect based on mean is overestimated. With respect to

the variable Married, it is generally known that married females are more mature and thus

more attractive to employers. However, the effect is underestimated via mean regression. For

variable Government Employee, modal regression provides a larger estimated effect compared

to mean regression, which reveals the fact that people who work in government typically earn

higher salaries. The coefficient of Union member of modal regression is larger than that of

mean regression, indicating that in reality the benefit of female workers joining unions has

been underestimated at some points. Moreover, compared to mean regression, modal regression

produces a smaller MAPE, representing better performance in reproducing data.

Table 3: The Estimation Results of Equation (4.1)

Variable SPLVC Modal SPLVC Mean Variable SPLVC Modal SPLVC Mean

Born in Australia
-0.0806 -0.0912

Government Employee
0.1422 0.1366

(0.0017) (0.0207) (0.0016) (0.0167)

Married
0.1867 0.1831

Union Member
0.0132 0.0098

(0.0028) (0.0190) (0.0007) (0.0151)

MAPE 14.55 15.19

Figure 7: Estimated Curves for Wage Equation

Figure 7 reports the estimated curves for α1(u), α2(u), and the associated derivatives. In

terms of α1(u), both modal and mean regressions accurately reflect the nonlinear relationship

between experience and wage, implying that more experienced female workers tend to have

higher wages in general. Mean regression, on the other hand, overestimates the effect of expe-

rience on wage. For the marginal effect of experience on wage (∂α1(u)/∂u), mean regression
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always indicates a positive relationship, whereas modal regression shows a negative relationship

around six years. In regard to α2(u), we can observe a positive relationship between education

and wage based on modal and mean regressions, but the magnitude and shape are different,

with mean regression underestimating the effect of education on wage. According to the plot

of ∂α2(u)/∂u, both modal and mean regressions suggest that the marginal effect of education

decreases with the increase of experience for either low or high experienced workers. However,

around the middle levels of experience (six years), modal regression reveals that there is a

positive relationship between experience and the effect of education on wage.

Finally, we apply the proposed varying coefficient test to check whether α1(·) and α2(·)
really vary over experience, i.e., H0 : α1(Ui) = α1 and α2(Ui) = α2 vs. H1 : α1(Ui) 6= α1 or

α2(Ui) 6= α2, where α1 and α2 are two unknown constants. The obtained p-value from the

bootstrap algorithm is 0.0150 for the considered null hypothesis, which suggests that we should

reject the null hypothesis at the 5% significance level.

Example 2: Application to Boston Housing Dataset To illustrate variable selection

for modal regression, we analyze the Boston Housing dataset (Fan and Huang, 2005), which

contains 506 observations within the Boston Standard Metropolitan Statistical Area in 1970. We

primarily employ a partially linear model to investigate the relationship between the median

values of owner-occupied homes in the Boston area (MEDV ) and the following covariates:

CRIM (per capita crime rate by town), RM (average number of rooms per dwelling), TAX

(full-value property-tax rate per 10,000 USD), NOX (nitric oxides concentration parts per 10

million), PTRATIO (pupil-teacher ratio by town), AGE (proportion of owner-occupied units

built prior to 1940), B (1000(Bk − 0.63)2 where Bk is the proportion of blacks in town), and

LSTAT (lower status of the population). See summary statistics for the sample in Table S4 in

the supplementary note.

We choose scaled U =
√
LSTAT on the interval [0, 1] as the index variable and standardize

all X-variables and the response variable to facilitate implementation. As argued by Fan and

Huang (2005), the influences of X-variables on MEDV vary with the level of LSTST , thus it

may be reasonable to fit a partially linear varying coefficient model. The main objective of this

example, however, is to demonstrate the variable selection methodology proposed in this paper.

As a result, we instead fit a partially linear model defined as

MEDVi = α(Ui) +
7∑
j=1

βjXij + εi, i = 1, · · · , 506 (4.2)

to reveal interesting data structures, where we utilize both mean and modal regressions to

simultaneously conduct estimation and variable selection.

Table 4 shows the variable selection results and Figure 8 presents the estimated curves

for α(Ui). According to Table 4, both mean and modal regressions can identify three nonzero
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coefficients, which indicates that the covariates CRIM , RM , and AGE have effects on the

median value of owner-occupied home based on mean or mode. In contrast to mean regression,

besides TAX, PTRATIO, and B, modal regression also shrinkages the coefficient of NOX to

zero, implying that the covariate NOX has no effect on the median value of owner-occupied

home when measured from the “most likely” value (mode). This further suggests that modal

regression can provide a simpler model than mean regression and, on occasion, disclose new

model characteristics that mean regression cannot reveal. In addition, modal regression has

considerably better in-sample prediction performance than mean regression in terms of MAPE,

demonstrating that modal regression with variable selection could be an attractive technique

for simultaneously selecting variables and estimating coefficients.

Table 4: The Selected Parametric Components

Variable SPLVC Modal SPLVC Mean Variable SPLVC Modal SPLVC Mean

CRIM -1.7616 -0.7459 RM 1.7102 3.6048

TAX 0 0 NOX 0 -2.1708

PTRATIO 0 0 AGE -0.6307 -0.7808

B 0 0

MAPE 86.53 129.90

Figure 8: Estimated Curves (α(Ui)) for Boston Housing Dataset

5 Concluding Remarks

To broaden the scope of existing modal regression models, we in this paper propose a novel

SPLVC modal regression and develop a computationally efficient three-stage estimation proce-

dure to estimate the model. The asymptotic properties of the resultant estimators are studied,

and the selection of bandwidths for the developed model is discussed. In contrast to condi-

tional SPLVC mean or quantile regression, the introduced SPLVC modal regression provides

additional information on how the “most likely” values of the dependent variable are affected

by the regressors. It will be advantageous to consider the proposed modal regression as a com-

plement to the existing regression tools and to employ it in situations where the distribution
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of the data is skewed. In addition, we investigate SPLVC modal regression with variable sec-

tion to eliminate irrelevant variables while simultaneously estimate nonzero coefficients, and we

develop a goodness-of-fit testing statistic for hypotheses on coefficient functions by taking a

kernel-based function as the loss function instead of the traditional sum of squared errors. The

modal variable selection procedure is shown to possess the oracle property subject to regular-

ity assumptions. Monte Carlo simulations and empirical analyses reveal the reasonably good

finite sample performance of the newly proposed model. In the supplementary note, we also

discuss the extension of the SPLVC modal regression to the case where some varying coefficient

functions admit higher-order smoothness.

As far as we are aware, this is the first paper that presents a systematic investigation of the

SPLVC modal regression. Given the advantages and superior performance of this model over

existing models with skewed datasets, further research into its applicability in other contexts

would be worthwhile. For instance, measurement error models, also known as errors-in-variable

models in the literature, are frequently encountered in practice when measurements on covari-

ates contain errors. If the measurement error is ignored, the suggested three-stage estimation

procedure will lead to biased estimators. As a result, it is worth extending the SPLVC modal

regression to the case where covariates are measured with errors, which can be investigated

using the deconvolution method. Furthermore, as mentioned in the empirical analysis, we in

this paper do not address the endogeneity issue in the SPLVC modal regression. Endogeneity

in modal regression will be important and meaningful to broaden the application of modal re-

gression models. Such an endogeneity problem can be solved directly by applying the method

of moments or instrumental variable estimation. Finally, due to the complexity of the objec-

tive function, the SPLVC modal regression lacks a convenient inference procedure with suitable

bandwidth selection methods and reliable estimation algorithms when compared to mean or

quantile regression. Although the suggested MEM algorithm can solve models efficiently, it is

necessary to develop other algorithms that are less sensitive to initial values or bandwidths. All

of these will be researched in more depth in the future.
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Supplement to “Semiparametric Partially Linear Varying

Coefficient Modal Regression”

Aman Ullaha Tao Wangb Weixin Yaoa

a. University of California, Riverside b. University of Victoria

In this supplementary note, we extend the proposed SPLVC modal regression to the case

where some coefficient functions admit higher-order smoothness, provide summary statistics for

the samples in empirical Examples 1 and 2 (Section 4.2), present additional simulation results

for SPLVC modal regression as well as the Monte Carlo experiment for SPLVC multimodal

regression, and outline all the proofs for the theorems listed in the paper.

S1 Extension to Higher-Order Smoothness Case

The developed three-stage estimation procedure allows the varying coefficient functions to have

different orders of derivatives as long as they are at least two, which is the underlying mechanism

for the local linear approximation. It is nevertheless noticed that the suggested estimation

procedure implicitly assumes that all varying coefficient functions possess the same minimum

degree of smoothness and thus can be approximated equally effectively. When some components

of α(·) are known to admit higher degrees of smoothness than others, the proposed three-stage

estimation procedure may not be optimal for them (in the sense of optimal convergence rate).

Intuitively, a smooth component requires a large bandwidth to decrease variation, whereas a

rough component requires a small bandwidth to reduce bias. In this situation, the rate of

the bias of all estimated varying coefficient functions will be determined by the rate of the

local polynomial with the lowest degree. This implies that all components cannot be optimally

evaluated with a single choice of bandwidth concurrently.

Such a problem has been raised explicitly by Fan and Zhang (1999) for investigating varying

coefficient mean regression. To deal with this issue in SPLVC modal regression, we provide a

two-step estimation procedure by extending the result of Fan and Zhang (1999) and derive the

asymptotic properties. We emphasize that although in advance we cannot know the order of

smoothness of the varying coefficient functions in practice, the extended estimation method

is shown theoretically and numerically to have a significant gain when the considered varying

coefficient function is smoother than the rest of the functions, and has the same performance

as the introduced three-stage estimation procedure when they have the same minimum order

of smoothness. Therefore, the extended two-step estimation procedure can be considered as an

improved (and more reliable) version of the developed three-stage estimation method.
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In the first step, we obtain the modal estimator β̃ following the suggested method in

Section 2, pretending that all of the components of α(·) possess about the same degrees of

smoothness. We then define Ỹi = Yi − ZT
i β̃ to alter the original SPLVC modal regression to

the following varying coefficient modal regression

Mode(Ỹi|X i, Ui) = XT
i α(Ui) +ZT

i β −ZT
i β̃︸ ︷︷ ︸

op(1)

. (S.1)

To illustrate the necessity of the second-step estimation, we first show that we cannot

achieve the optimal estimator even if we utilize the higher order local approximation for some

functions in the proposed three-stage estimation procedure. We assume that αp(·) is smoother

than the rest of the varying coefficient functions without loss of generality, i.e.,

Mode(Ỹi|X i, Ui) ≈
p−1∑
j=1

αj(Ui)Xij + αp(Ui)Xip, j = 1, · · · , p− 1. (S.2)

With the assumption that αp(·) has a bounded fourth derivative and others have a second

derivative, we can locally approximate αp(·) by a cubic function

αp(Ui) ≈ αp + bp (Ui − u) + cp (Ui − u)2 + dp (Ui − u)3 , (S.3)

where Ui is in a neighborhood of u. Then, following the third-stage estimation procedure in

Section 2, we should maximize the following local kernel-based objective function with respect

to αj, bj, αp, bp, cp, and dp for given kernels φ(·) and K(·)

1

nλ1λ2

n∑
i=1

φ

(
Ỹi −m({Xij}p−1

j=1, Xip)

λ1

)
K

(
Ui − u
λ2

)
, (S.4)

where λ1 and λ2 are two bandwidths that depend on sample size n, and

m({Xij}p−1
j=1, Xip) =

p−1∑
j=1

{αj+bj (Ui − u)}Xij−
(
αp + bp (Ui − u) + cp (Ui − u)2 + dp (Ui − u)3)Xip.

Define

X =

 X11 X11 (U1 − u) · · · X1p X1p (U1 − u) X1p (U1 − u)2 X1p (U1 − u)3

...
...

. . .
...

...
...

...

Xn1 Xn1 (Un − u) · · · Xnp Xnp (Un − u) Xnp (Un − u)2 Xnp (Un − u)3

 .

According to the Taylor expansion, we can re-write

m({Xij}p−1
j=1, Xip) ≈ X

(
α1(u), α

(1)
1 (u), · · · , αp−1(u), α

(1)
p−1(u), αp(u), α

(1)
p (u), (1/2)α

(2)
p (u),

2



(1/6)α
(3)
p (u)

)T
+ 1

2

∑p−1
j=1

 α
(2)
j (u) (U1 − u)2 X1j

...

a′′j (u) (Un − u)2 Xnj

+ 1
4!

 a
(4)
p (u) (U1 − u)4 X1p

...

a
(4)
p (u) (Un − u)4 Xnp

 ,

where α(c)(·) denotes the cth derivative of α(·). Following the same procedures for proving

Theorem 2.6, we can show that the bias of the estimator of αp(Ui) is Op(λ
2
1 + λ2

2) and the

variance is Op((nλ2λ
3
1)−1). Thus, the MSE of the estimator is only Op(λ

4
1 + λ4

2 + (nλ2λ
3
1)−1),

which achieves the rate Op(n
−1/2) when the bandwidth λ1 = λ2 = O(n−1/8) is used. The

above mathematical illustration demonstrates that the developed three-stage estimator for αp(·)
inherits the non-negligible approximation error and is therefore not optimal.

To achieve the optimal estimator, we in the second step make use of the third-stage

estimates of α1(·), · · · , αp−1(·). Following that, a local kernel-based objective function weighted

by a kernel function K(·) is applied to estimate αp(·), i.e.,

1

nλ1λ2

n∑
i=1

φ

(
Ỹi −

∑p−1
j=1 α̃j(Ui)Xij −m(Xip)

λ1

)
K

(
Ui − u
λ2

)
, (S.5)

where m(Xip) = (αp + bp (Ui − u) + cp (Ui − u)2 + dp (Ui − u)3)Xip.

The solution of (S.5) gives the two-step modal estimators. Similar to the suggested SPLVC

modal regression, we can utilize a modified MEM algorithm to numerically solve the preceding

equation. Provided that the initial bandwidths in the first step are small enough (so that the bias

of the first-step estimator is small), we have the following consistency and asymptotic normality

results for the estimators, where we show that the two-step modal estimators can achieve the

optimal convergence rate and share the same optimality as if {αj(·)}p−1
j=1 were known.

Theorem S1. Suppose that the regularity conditions C1-C7 are met (instead of C4, we need

α
(2)
j (u) to be continuous in a neighborhood of u for j = 1, · · · , p−1 and the functional coefficient

αp(u) has a continuous fourth derivative in a neighborhood of u). With probability approaching

one, as n → ∞, λ1 → 0, λ2 → 0, h4 = o(λ2
1), h5 = o(λ2

2), λ4
1/λ2 → 0, h3/h5 → 0, and

nλ1λ
5
2 →∞, there exist consistent maximizers (α̂p(u), b̂p(u), ĉp(u), d̂p(u)) of (S.5) such that

i. |α̂p(u)− α0p(u)| = Op

(
(nλ2λ

3
1)
−1/2

+ λ2
1 + λ4

2

)
,

ii. |λ2(b̂p(u)− b0p(u))| = Op

(
(nλ2λ

3
1)
−1/2

+ λ2
1 + λ4

2

)
,

iii. |λ2
2(ĉp(u)− c0p(u))| = Op

(
(nλ2λ

3
1)
−1/2

+ λ2
1 + λ4

2

)
,

iv. |λ3
2(d̂p(u)− d0p(u))| = Op

(
(nλ2λ

3
1)
−1/2

+ λ2
1 + λ4

2

)
,

where α0p(u), b0p(u), c0p(u), and d0p(u) are the true parameters of (S.2).
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Theorem S2. With nλ5
2λ

3
1 = O(1) and nλ2λ

7
1 = O(1), under the same conditions as Theorem

S1, the estimators satisfying the consistency results in Theorem S1 have the following asymptotic

result

√
nλ2λ3

1




α̂p(u)− α0p(u)

λ2(b̂p(u)− b0p(u))

λ2
2(ĉp(u)− c0p(u))

λ3
2(d̂p(u)− d0p(u))

− Γ̃(u)−1

(
λ4

2

24
Λ̃2(u)α

(4)
0p (u)− λ2

1

2
Λ̃1(u)

)
d→ N

(
0,

∫
τ 2φ2(τ)dτ

fU(u)
Γ̃(u)−1Σ̃(u)Γ̃(u)−1

)
.

If we allow nλ5
2λ

3
1 → 0 and nλ2λ

7
1 → 0, the asymptotic theorem becomes

√
nλ2λ3

1


α̂p(u)− α0p(u)

λ2(b̂p(u)− b0p(u))

λ2
2(ĉp(u)− c0p(u))

λ3
2(d̂p(u)− d0p(u))

 d→ N
(

0,

∫
τ 2φ2(τ)dτ

fU(u)
Γ̃(u)−1Σ̃(u)Γ̃(u)−1

)
,

where Σ̃ = E



v0XX

Tfε(0|X̂) 0 v2XX
Tfε(0|X̂) 0

0 v2XX
Tfε(0|X̂) 0 v4XX

Tfε(0|X̂)

v2XX
Tfε(0|X̂) 0 v4XX

Tfε(0|X̂) 0

0 v4XX
Tfε(0|X̂) 0 v6XX

Tfε(0|X̂)


∣∣∣∣∣U = u

,

Γ̃ = E




XXTf
(2)
ε (0|X̂) 0 µ2XX

Tf
(2)
ε (0|X̂) 0

0 µ2XX
Tf

(2)
ε (0|X̂) 0 µ4XX

Tf
(2)
ε (0|X̂)

µ2XX
Tf

(2)
ε (0|X̂) 0 µ4XX

Tf
(2)
ε (0|X̂) 0

0 µ4XX
Tf

(2)
ε (0|X̂) 0 µ6XX

Tf
(2)
ε (0|X̂)


∣∣∣∣∣U = u

,

Λ̃1 = E




Xf
(3)
ε (0|X̂)

0

µ2Xf
(3)
ε (0|X̂)

0


∣∣∣∣∣U = u

, and Λ̃2 = E



µ4XX

Tf
(2)
ε (0|X̂)

0

µ6XX
Tf

(2)
ε (0|X̂)

0


∣∣∣∣∣U = u

.

The bias of the two-step modal estimators is of Op(λ
2
1 +λ4

2), while the asymptotic variance

has the same convergence rate as that of the three-stage modal estimators as long as the band-

width conditions are satisfied. Also, the bias term is not dominated by the first-step estimation

with the imposed bandwidth conditions. Therefore, when taking the optimal bandwidths λ1 and

λ2 of order n−1/15,4 the MSE of the two-step estimator achieves the optimal rate of convergence

Op(n
−8/15). This indicates that when some varying coefficient functions admit higher degrees

4The result demonstrates that the smoother the varying coefficient function is, the larger the optimal band-
width for the estimator is. In precipice, we can follow the procedures described in Subsection 2.3 to select
bandwidths λ1 and λ2 with MSE-optimal rates.
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of smoothness, the proposed three-stage estimation method in Section 2 will fail to achieve the

optimal convergence rate and will transmit the approximation errors of α1(·), · · · , αp−1(·) to the

bias of estimating αp(·). Furthermore, it is straightforward to show that the two-step estimators

enjoy the same optimal rate of convergence as the ideal ones where α1(·), · · · , αp−1(·) are known,

which is consistent with the property of the corresponding mean regression estimators. If αp(·)
is assumed to have at least the same degree of smoothness as the rest of the functions, the two-

step estimators will have the same performance as the three-stage modal estimators by using

a local linear approximation in both steps, as it shares exactly the same asymptotic properties

as α̃p(·) provided that some bandwidth conditions are met. This suggests that similar to the

varying coefficient mean regression models, the extended two-step modal estimation procedure

can be considered as an improved version of (and more efficient than) the developed three-stage

estimation approach.

(Monte Carlo Experiment) We conduct a Monte Carlo experiment to provide some

insight on the performance of the extended two-step estimation method, where the data are

generated from the following models

Model 1 : Y = sin(6πU)X1 + sin(2πU)X2 + 2Z + Zε,

Model 2 : Y = cos(2πU)X1 + sin(2πU)X2 + 2Z + Zε,

in which U is simulated from a uniform distribution on [0, 1] and ε ∼ 0.5N(−1, 2.52) +

0.5N(1, 0.52). The covariate vector (X1, X2, Z) is normally distributed with mean 0, variance

I3×3, and correlation 0.2|k−j| in which k, j = 1, 2, 3. Thus, the varying coefficient functions

in Model 1 admit different degrees of smoothness, whereas the varying coefficient functions in

Model 2 possess the same degree of smoothness. We are primarily interested in α2(U) = sin

(2πU) for Model 1, which fluctuates less than sin(6πU), and α1(U) = cos(2πU) for Model 2.

We conduct 200 simulations with sample sizes n = 200, 400, and 600, and simply set λ1 = λ2

= {0.1, 0.2, 0.3} to study the influence of bandwidths. We calculate RASE to assess the perfor-

mance of the proposed three-stage estimation and the extended two-step estimation methods.

Table S1: The Performance of Different Estimation Methods

Bandwidth Method n = 200 n = 400 n = 600 Method n = 200 n = 400 n = 600

Model 1

λ1 = λ2 = 0.1 Two-Step 0.2543 0.1910 0.1631 Three-Stage 0.3241 0.2685 0.2451

λ1 = λ2 = 0.2 Two-Step 0.3020 0.2367 0.2123 Three-Stage 0.3721 0.3243 0.3058

λ1 = λ2 = 0.3 Two-Step 0.3124 0.2567 0.2253 Three-Stage 0.4451 0.3893 0.3756

Model 2

λ1 = λ2 = 0.1 Two-Step 0.2526 0.1906 0.1697 Three-Stage 0.2591 0.2058 0.1919

λ1 = λ2 = 0.2 Two-Step 0.2999 0.2419 0.2058 Three-Stage 0.3182 0.2698 0.2448

λ1 = λ2 = 0.3 Two-Step 0.3261 0.2521 0.2327 Three-Stage 0.3502 0.3086 0.2807
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The results in Table S1 show that the improvement of the two-step estimator is quite

substantial for a wide range of bandwidths when some varying coefficient functions admit higher

degrees of smoothness (results for Model 1), which is consistent with the asymptotic theory that

the extended two-step method outperforms the proposed three-stage estimation procedure. The

results for Model 2 indicate that the extended two-step estimation method performs nearly as

well as the proposed three-stage estimation procedure when varying coefficient functions have

the same minimum degrees of smoothness.

S2 SPLVC Multimodal Regression

As mentioned in the paper, the unique global mode assumption can be released without affecting

the estimation procedure. The multimodal dataset is common in economics. For example, if we

look carefully at the country’s income distribution, we can see that there are two modes relating

to developing and developed countries, which is consistent with a dichotomous world made up of

countries with different incomes. SPLVC modal regression can then be used to capture these two

different situations simultaneously. To demonstrate that the proposed estimation method can

also be utilized to estimate SPLVC multimodal regression, we conduct a Monte Carlo simulation

based on DGP 1. We generate random samples from the following model

Yi = XT
i α(Ui) +ZT

i β + σ(X i,Zi)εi, (S.6)

where we set the parameters and varying coefficients be β = (1, 2)T andα(Ui) = (α1(Ui), α2(Ui))
T

in which α1(Ui) = exp(2Ui − 1) and α2(Ui) = sin(2πUi). The index variable Ui is simulated

from the uniform distribution U [0, 1]. The covariate vector (XT
i ,Z

T
i )T is normally distributed

with mean 0, variance I4×4, and correlation 0.2|k−j|, where k, j = 1, 2, 3, 4. For simplicity, we

only consider the case where σ(X i,Zi) = X1i + Z1i. To create SPLVC multimodal regression,

we generate εi by mixing two normal distributions with equal weights, where one is centered at

0 and the other is centered at 4, and both variances equal 1 (Figure S1).

Figure S1: Mixture Normal Distribution with Two Modes

The generalized errors {εi}ni=1 indicate that E(εi) = 2 and Mode(εi) = 0 or 4. In this case,

mean regression may produce misleading results by ignoring data heterogeneity. We then have
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the following equations showing two different modal regression lines.

Mean Regression:

E(Yi|Xi, Ui,Zi) = X1i(exp(2Ui − 1) + 2) +X2isin(2πUi) + 3Z1i + 2Z2i,

Modal Regression Line 1:

Mode(Yi|Xi, Ui,Zi) = X1iexp(2Ui − 1) +X2isin(2πUi) + Z1i + 2Z2i,

Modal Regression Line 2:

Mode(Yi|Xi, Ui,Zi) = X1i(exp(2Ui − 1) + 4) +X2isin(2πUi) + 5Z1i + 2Z2i.

We consider data sample size n ∈ {200, 400, 600} with 200 replications. Table S2 displays

the simulation results, which shows that the proposed estimation method can estimate the

SPLVC multimodal regression well with finite samples. With the approximate choice of the

initial estimates, we can capture different modal regression lines for data with multiple modes.

A set of the varying coefficient estimators is shown in Figure S2 (the black curves are the true

varying coefficient functions, while the red and green curves represent the estimates for exp(·)
and sin(·), respectively), which clearly indicates that the suggested estimation procedure can

capture the true varying coefficients in SPLVC multimodal regression with finite samples, and

the fitted performance improves with sample size increasing.

Table S2: The Results of Simulations for SPLVC Multimodal Regression

Method n β1 MSE(β1) β2 MSE(β2) GMSE(β) RASE(α(Ui))

Mode 1

200 1.0025 (0.0671) 0.0045 2.0041 (0.0554) 0.0031 0.0061 0.5473

400 0.9952 (0.0498) 0.0025 2.0065 (0.0438) 0.0020 0.0035 0.2564

600 0.9970 (0.0409) 0.0017 1.9989 (0.0358) 0.0013 0.0034 0.2168

Mode 2

200 4.9770 (0.1374) 0.0193 2.0059 (0.1184) 0.0140 0.0272 0.5662

400 4.9739 (0.1355) 0.0189 1.9951 (0.1061) 0.0112 0.0265 0.4519

600 4.9410 (0.1102) 0.0156 1.9997 (0.0813) 0.0066 0.0230 0.4181

Mean

200 2.9585 (0.4820) 0.2329 2.0095 (0.4387) 0.1916 0.3741 1.2427

400 2.9820 (0.3551) 0.1258 1.9716 (0.3229) 0.1046 0.1850 0.8675

600 2.9700 (0.2996) 0.0902 2.0097 (0.2540) 0.0643 0.1204 0.7183

Figure S2: Fitted Varying Coefficient Functions

7



S3 Summary Statistics

Table S3: The Statistical Characteristics of Sample
(Return to Education)

Variable Mean Standard Deviation Min Max

Born in Australian 0.8618 0.3452 0.0000 1.0000

Married 0.1823 0.3862 0.0000 1.0000

Government Employee 0.2861 0.4521 0.0000 1.0000

Union Member 0.4243 0.4944 0.0000 1.0000

Years of Education 11.7418 1.5277 16.0000 3.0000

Years of Experience 1.4552 1.5277 0.0000 8.0000

Log(Hourly Wage) 0.7950 0.1599 1.6767 -0.4260

Table S4: The Statistical Characteristics of Sample
(Boston Housing Dataset)

Variable Mean Standard Deviation Min Max

CRIM 3.6135 8.6015 0.0063 88.9762

RM 6.2846 0.7026 3.5610 8.7800

TAX 408.2372 168.5371 187 711

NOX 0.5547 0.1159 0.3850 0.8710

PTRATIO 18.4555 2.1649 12.6000 22

AGE 68.5749 28.1489 2.9000 100

B 356.6740 91.2949 0.3200 396.9000

LSTAT 12.6531 7.1411 1.7300 37.9700

MEDV 22.5328 9.1971 5 50

S4 Monte Carlo Experiment (DGP 2)

To further illustrate the applicability of the proposed SPLVC modal regression, we generate

random samples from the following DGP with different levels of skewness of density

Yi = XT
i α(Ui) +ZT

i β + σ(X i,Zi)εi, (S.7)

where α1(Ui) = 8Ui(1 − Ui), α2(Ui) = 2sin(2πUi), β = (1, 1, 0.5)T , and εi ∼ 0.5Ga(k1, θ) +

0.5Ga(k2, θ) in which Ga represents the Gamma distribution, ks ∈ N>0, s = 1 or 2, is the shape

parameter that can adjust the skewness of vit (coefficient of skewness=
√

4/k), and θ ∈ N>0 is

the scale parameter (Ullah et al., 2021). Note that E(εi) = 0.5(k1 + k2)θ and Mode(εi) = 0.5
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(k1 + k2− 1)θ. To gain an idea of the effect of the different skewness on estimations, we employ

two different schemes to generate the distributions of εi, where we set k1 = 1 or 7, k2 = 2, and

θ = 0.5. The index variable Ui is simulated from the uniform distribution U [0, 1]. The covariate

vector (XT
i ,Z

T
i )T is normally distributed with mean 0, variance I5×5, and correlation 0.2|r−j|,

where r, j = 1, · · · , 5. To compare with mean regression, we consider three cases, where in case

1 we let σ(X i,Zi) = X1i + Z1i, in case 2 we define σ(X i,Zi) = X1i, and in case 3 we allow

σ(X i,Zi) = Z1i. We then have the following equations.

More Skewed k1 = 1

Case 1 :


Mean Regression:

E(Yi|Xi, Ui,Zi) = X1i(8Ui(1− Ui) + 0.75) +X2i(2sin(2πUi)) + 1.75Z1i + Z2i + 0.5Z3i,

Modal Regression:

Mode(Yi|Xi, Ui,Zi) = X1i(8Ui(1− Ui) + 0.5) +X2i(2sin(2πUi)) + 1.5Z1i + Z2i + 0.5Z3i;

Case 2 :


Mean Regression:

E(Yi|Xi, Ui,Zi) = X1i(8Ui(1− Ui) + 0.75) +X2i(2sin(2πUi)) + Z1i + Z2i + 0.5Z3i,

Modal Regression:

Mode(Yi|Xi, Ui,Zi) = X1i(8Ui(1− Ui) + 0.5) +X2i(2sin(2πUi)) + Z1i + Z2i + 0.5Z3i;

Case 3 :


Mean Regression:

E(Yi|Xi, Ui,Zi) = X1i(8Ui(1− Ui)) +X2i(2sin(2πUi)) + 1.75Z1i + Z2i + 0.5Z3i,

Modal Regression:

Mode(Yi|Xi, Ui,Zi) = X1i(8Ui(1− Ui)) +X2i(2sin(2πUi)) + 1.5Z1i + Z2i + 0.5Z3i.

Less Skewed k1 = 7

Case 1 :


Mean Regression:

E(Yi|Xi, Ui,Zi) = X1i(8Ui(1− Ui) + 2.25) +X2i(2sin(2πUi)) + 3.25Z1i + Z2i + 0.5Z3i,

Modal Regression:

Mode(Yi|Xi, Ui,Zi) = X1i(8Ui(1− Ui) + 2) +X2i(2sin(2πUi)) + 3Z1i + Z2i + 0.5Z3i;

Case 2 :


Mean Regression:

E(Yi|Xi, Ui,Zi) = X1i(8Ui(1− Ui) + 2.25) +X2i(2sin(2πUi)) + Z1i + Z2i + 0.5Z3i,

Modal Regression:

Mode(Yi|Xi, Ui,Zi) = X1i(8Ui(1− Ui) + 2) +X2i(2sin(2πUi)) + Z1i + Z2i + 0.5Z3i;

Case 3 :


Mean Regression:

E(Yi|Xi, Ui,Zi) = X1i(8Ui(1− Ui)) +X2i(2sin(2πUi)) + 3.25Z1i + Z2i + 0.5Z3i,

Modal Regression:

Mode(Yi|Xi, Ui,Zi) = X1i(8Ui(1− Ui)) +X2i(2sin(2πUi)) + 3Z1i + Z2i + 0.5Z3i.

The estimation results of more skewed and less skewed settings are shown in Tables S5-S6,

respectively, containing the estimates and their standard errors (in parentheses), the MSEs,
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the GMSEs, and the RASEs. The results for both of these two settings indicate that modal

estimators behave well in finite sample situations. For the more skewed case, same as the

results of DGP 1, we can observe that the modal and mean estimators have comparable bias

while the modal estimators have smaller GMSEs and RASEs, indicating some finite sample

efficiency gains of the modal estimators in this example. For the less skewed case, the finite

sample performance of the modal estimators is better than the corresponding mean estimators

in terms of MSEs, though the efficiency gain is not very large compared to the more skewed

case. However, in the case of less skewed error, the modal estimators are less accurate than the

mean estimators in terms of GMSEs and RASEs. Figure S3 depicts a set of varying coefficient

estimators with excellent fitting performances.

Figure S3: Fitted Varying Coefficient Functions with n=200 or 400 (DGP 2)

Note: The meanings of the different lines in the figure are the same as in DGP 1.

Similar to DGP 1, we report the shape of the empirical density of the standardized parame-

ter estimate. Figure S4 indicates that the asymptotic results provide reasonable approximations

in finite samples, and the whole distribution converges to the standard normal as sample size n

increases. To evaluate the predictive capabilities of the modal regressions, different from DGP

1, we report the in-sample prediction performance with 0.1σ, 0.2σ, and 0.5σ length of intervals

to see how effective the estimation procedure is in reproducing data. Figure S5 shows that the

modal regression estimator has better coverage probabilities than the mean regression estimator

even for in-sample prediction.
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Table S5: The Results of Simulations for DGP 2: More Skewed

Method Case n β1 MSE(β1) β2 MSE(β2) β3 MSE(β3) GMSE(β) RASE(α(Ui))

Mode

Case 1
β1,mode = 1.5

β2,mode = 1

β3,mode = 0.5

100 1.6243 (0.1540) 0.0390 1.0042 (0.1460) 0.0212 0.5017 (0.1420) 0.0201 0.0665 0.6664

200 1.5737 (0.1146) 0.0185 0.9964 (0.0749) 0.0056 0.5069 (0.0764) 0.0059 0.0241 0.4961

400 1.5267 (0.0813) 0.0073 1.0040 (0.0449) 0.0020 0.4969 (0.0497) 0.0025 0.0095 0.4142

600 1.5019 (0.0676) 0.0045 0.9961 (0.0370) 0.0014 0.4989 (0.0359) 0.0013 0.0059 0.3825

1000 1.5070 (0.0528) 0.0028 0.9966 (0.0255) 0.00066 0.5071 (0.0265) 0.00075 0.0053 0.3553

Case 2
β1,mode = 1

β2,mode = 1

β3,mode = 0.5

100 0.9965 (0.0799) 0.0064 1.0087 (0.0826) 0.0069 0.4975 (0.0785) 0.0061 0.0143 0.4948

200 1.0021 (0.0481) 0.0023 1.0030 (0.0461) 0.0021 0.5003 (0.0459) 0.0021 0.0045 0.3975

400 1.0001 (0.0293) 0.00085 1.0038 (0.0296) 0.00089 0.5001 (0.0293) 0.00086 0.0016 0.3294

600 1.0003 (0.0231) 0.00053 0.9994 (0.0240) 0.00058 0.5002 (0.0224) 0.0005 0.0011 0.3028

1000 1.0012 (0.0157) 0.00025 0.9981 (0.0155) 0.00024 0.5030 (0.0157) 0.00025 0.0005 0.2749

Case 3
β1,mode = 1.5

β2,mode = 1

β3,mode = 0.5

100 1.5869 (0.1175) 0.0213 1.0037 (0.0784) 0.0061 0.4975 (0.0845) 0.0071 0.0288 0.4739

200 1.5363 (0.0934) 0.0100 1.0003 (0.0474) 0.0022 0.5062 (0.0531) 0.0028 0.0139 0.3760

400 1.4913 (0.0633) 0.0041 1.0030 (0.0309) 0.00096 0.4993 (0.0303) 0.00092 0.0048 0.3101

600 1.4789 )0.0538) 0.0033 0.9979 (0.0247) 0.00061 0.4976 (0.0225) 0.00051 0.0041 0.2830

1000 1.5048 (0.0406) 0.0017 0.9981 (0.0174) 0.00030 0.5035 (0.0167) 0.00026 0.0018 0.2532

Mean

Case 1
β1,mean = 1.75

β2,mean = 1

β3,mean = 0.5

100 1.7541 (0.2179) 0.0472 1.0184 (0.2072) 0.0431 0.4957 (0.2045) 0.0416 0.0996 0.6828

200 1.7616 (0.1660) 0.0276 0.9862 (0.1374) 0.0190 0.4949 (0.1379) 0.0190 0.0492 0.5078

400 1.7538 (0.0951) 0.0090 1.0081 (0.0899) 0.0081 0.4928 (0.0934) 0.0087 0.0184 0.4266

600 1.7481 (0.0907) 0.0082 1.0027 (0.0814) 0.0066 0.4962 (0.0711) 0.0050 0.0144 0.3996

1000 1.7551 (0.0706) 0.0050 1.0041 (0.0551) 0.0030 0.4988 (0.0640) 0.0041 0.0096 0.3744

Case 2
β1,mean = 1

β2,mean = 1

β3,mean = 0.5

100 1.0070 (0.1142) 0.0130 1.0102 (0.1235) 0.0153 0.4925 (0.1186) 0.0141 0.0312 0.5101

200 1.0038 (0.0890) 0.0079 0.9876 (0.0759) 0.0059 0.4950 (0.0762) 0.0058 0.0142 0.4149

400 1.0023 (0.0486) 0.0024 1.0019 (0.0531) 0.0028 0.4981 (0.0520) 0.0027 0.0053 0.3776

600 0.9994 (0.0456) 0.0021 1.0009 (0.0467) 0.0022 0.4993 (0.0421) 0.0018 0.0042 0.3652

1000 1.0038 (0.0371) 0.0014 1.0010 (0.0327) 0.0011 0.4988 (0.0361) 0.0013 0.0029 0.3520

Case 3
β1,mean = 1.75

β2,mean = 1

β3,mean = 0.5

100 1.7511 (0.1435) 0.0205 1.0063 (0.1157) 0.0134 0.5000 (0.1218) 0.0148 0.0385 0.4906

200 1.7585 (0.1071) 0.0115 0.9971 (0.0821) 0.0067 0.5008 (0.0855) 0.0073 0.0195 0.4093

400 1.7517 (0.0654) 0.0043 1.0060 (0.0503) 0.0026 0.4936 (0.0551) 0.0031 0.0073 0.3690

600 1.7478 (0.0591) 0.0035 1.0005 (0.0451) 0.0020 0.4972 (0.0401) 0.0016 0.0054 0.3555

1000 1.7519 (0.0476) 0.0023 1.0030 (0.0317) 0.0010 0.5001 (0.0366) 0.0013 0.0036 0.3510

Note: For case 1 and case 2, α1,mode(Ui) = 8Ui(1− Ui) + 0.5, α2,mode(Ui) = 2sin(2πUi), α1,mean(Ui) = 8Ui(1− Ui) + 0.75, and

α2,mean(Ui) = 2sin(2πUi); for case 3, α1,mode(Ui) = α1,mean(Ui) = 8Ui(1− Ui) and α2,mode(Ui) = α2,mean(Ui) = 2sin(2πUi).
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Table S6: The Results of Simulations for DGP 2: Less Skewed

Method Case n β1 MSE(β1) β2 MSE(β2) β3 MSE(β3) GMSE(β) RASE(α(Ui))

Mode

Case 1
β1,mode = 3

β2,mode = 1

β3,mode = 0.5

100 3.2666 (0.5561) 0.3788 1.0045 (0.4961) 0.2449 0.4895 (0.4644) 0.2147 0.6171 1.8332

200 3.1734 (0.3299) 0.1387 1.0306 (0.2986) 0.0896 0.5289 (0.2679) 0.0723 0.2451 1.1646

400 3.2488 (0.2362) 0.1174 1.0041 (0.1823) 0.0331 0.4983 (0.1751) 0.0305 0.1558 0.8036

600 3.2331 (0.2026) 0.0952 1.0145 (0.1437) 0.0208 0.4829 (0.1490) 0.0224 0.1148 0.6572

1000 3.2038 (0.1390) 0.0608 1.0057 (0.0862) 0.0074 0.4929 (0.0846) 0.0072 0.0671 0.5161

Case 2
β1,mode = 1

β2,mode = 1

β3,mode = 0.5

100 1.0168 (0.2425) 0.0588 0.9887 (0.2315) 0.0534 0.5068 (0.2315) 0.0534 0.1210 1.0319

200 0.9695 (0.1472) 0.0225 1.0145 (0.1294) 0.0169 0.5115 (0.1329) 0.0177 0.0412 0.7598

400 1.0095 (0.0858) 0.0074 1.0036 (0.0794) 0.0063 0.5000 (0.0766) 0.0058 0.0151 0.5710

600 1.0072 (0.0597) 0.0036 1.0020 (0.0629) 0.0039 0.4944 (0.0598) 0.0036 0.0080 0.5278

1000 0.9961 (0.0491) 0.0024 1.0015 (0.0442) 0.0019 0.4973 (0.0419) 0.0018 0.0045 0.4683

Case 3
β1,mode = 3

β2,mode = 1

β3,mode = 0.5

100 3.2214 (0.3697) 0.1850 1.0139 (0.2523) 0.0635 0.4930 (0.2476) 0.0610 0.2494 0.9257

200 3.1705 (0.2467) 0.0896 1.0059 (0.1486) 0.0220 0.5060 (0.1351) 0.0182 0.1149 0.6072

400 3.1630 (0.1888) 0.0620 0.9960 (0.0902) 0.0081 0.49996 (0.0795) 0.0063 0.0706 0.4393

600 3.1326 (0.1849) 0.0516 0.9974 (0.0676) 0.0046 0.4962 (0.0710) 0.0050 0.0539 0.3706

1000 3.0853 (0.1561) 0.0316 0.9999 (0.0444) 0.0020 0.5026 (0.0456) 0.0021 0.0348 0.3151

Mean

Case 1
β1,mean = 3.25

β2,mean = 1

β3,mean = 0.5

100 3.3018 (0.5701) 0.3261 1.0021 (0.5206) 0.2697 0.4905 (0.4933) 0.2423 0.6050 1.6082

200 3.1939 (0.3426) 0.1199 1.0303 (0.3279) 0.1079 0.5278 (0.2978) 0.0890 0.2344 1.1027

400 3.2955 (0.2668) 0.0729 0.9966 (0.2398) 0.0572 0.4877 (0.2127) 0.0452 0.1334 0.7810

600 3.2618 (0.2119) 0.0448 1.0161 (0.1994) 0.0398 0.4890 (0.1952) 0.0380 0.0826 0.6363

1000 3.2343 (0.1645) 0.0272 1.0179 (0.1449) 0.0212 0.4887 (0.1467) 0.0215 0.0488 0.4943

Case 2
β1,mean = 1

β2,mean = 1

β3,mean = 0.5

100 1.0215 (0.2782) 0.0775 0.9923 (0.2867) 0.0818 0.5011 (0.2646) 0.0697 0.1675 0.9593

200 0.9559 (0.1814) 0.0347 1.0207 (0.1745) 0.0307 0.5217 (0.1710) 0.0296 0.0656 0.6713

400 1.0270 (0.1354) 0.0190 0.9988 (0.1261) 0.0158 0.4936 (0.1244) 0.0154 0.0378 0.4916

600 1.0084 (0.1064) 0.0113 1.0106 (0.1099) 0.0121 0.4922 (0.1098) 0.0121 0.0231 0.4090

1000 0.9969 (0.0850) 0.0072 1.0066 (0.0754) 0.0057 0.4934 (0.0814) 0.0066 0.0131 0.3305

Case 3
β1,mean = 3.25

β2,mean = 1

β3,mean = 0.5

100 3.2785 (0.3633) 0.1321 1.0108 (0.2823) 0.0794 0.4882 (0.2749) 0.0753 0.2149 0.8753

200 3.2376 (0.2296) 0.0526 1.0098 (0.1878) 0.0352 0.5074 (0.1577) 0.0248 0.0877 0.5930

400 3.2682 (0.1737) 0.0303 0.9979 (0.1348) 0.0181 0.4944 (0.1130) 0.0127 0.0472 0.4329

600 3.2535 (0.1414) 0.0199 1.0052 (0.1074) 0.0115 0.4966 (0.1047) 0.0109 0.0305 0.3598

1000 3.2377 (0.1033) 0.0108 1.0113 (0.0827) 0.0069 0.4951 (0.0808) 0.0065 0.0180 0.2924

Note: For case 1 and case 2, α1,mode(Ui) = 8Ui(1 − Ui) + 2.25, α2,mode(Ui) = 2sin(2πUi), α1,mean(Ui) = 8Ui(1 − Ui) + 2, and

α2,mean(Ui) = 2sin(2πUi); for case 3, α1,mode(Ui) = α1,mean(Ui) = 8Ui(1− Ui) and α2,mode(Ui) = α2,mean(Ui) = 2sin(2πUi).
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Figure S4: Empirical Density of the Standardized Estimate

Note: The first three rows are for the more skewed case, while the last three rows are for the
less skewed case.
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Figure S5: Boxplot of Average of Coverage Probability: σmoreskewed ≈ 0.433 and σlessskewed ≈ 0.75

Note: The notations in each plot are the same as those of Figure 4.
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S5 Proofs of Theorems

For convenience and simplicity, throughout the following parts of this supplementary note, we

use δn to denote a variable associated with bandwidths and sample size n, and use c to represent

a positive constant, which may take different forms at different places.

S5-1: Proof of Theorem 2.1

Recall that Yi = XT
i α(Ui) + ZT

i β + εi. Defining X∗Ti = (XT
i ,X

T
i (Ui − u)/h2,Z

T
i ), θ =

(α(u)T , b(u)T ,βT )T , θ0 = (α0(u)T , b0(u)T ,βT0 )T , H = diag(1, · · · , 1︸ ︷︷ ︸
p

, h2, · · · , h2︸ ︷︷ ︸
p

, 1, · · · , 1︸ ︷︷ ︸
d

), θ1 =

Hθ, and θ10 = Hθ0, we then achieve

Qn(θ) =
1

nh1h2

n∑
i=1

φ

(
εi +XT

i α(Ui)−XT
i (α(u) + b(u)(Ui − u))

h1

)
K

(
Ui − u
h2

)
.

Defining δn = h2
1 + h2

2 +
√

(nh3
1h2)−1, it is sufficient to show that for any given η, there

exists a large number constant c such that

P

{
sup
‖µ‖=c

Qn (θ10 + δnµ) < Qn (θ10)

}
≥ 1− η,

where θ10 is the true value of the parameter. The above equation implies that with probability

tending to one, there is a local maximum in the ball {θ10 + δnµ : ‖µ‖ ≤ c}. Applying Taylor

expansion, it follows that

Qn (θ10 + δnµ)−Qn (θ10)

=
1

nh1h2

n∑
i=1

[
φ

(
εi +R(X i, Ui)− δnµTX∗i

h1

)
K

(
Ui − u
h2

)

− 1

nh1h2

n∑
i=1

φ

(
εi +R(X i, Ui)

h1

)
K

(
Ui − u
h2

)]

=
1

nh1h2

n∑
i=1

[
−φ(1)

(
εi +R(X i, Ui)

h1

)(
δnµ

TX∗i
h1

)
K

(
Ui − u
h2

)
+

1

2
φ(2)

(
εi +R(X i, Ui)

h1

)(
δnµ

TX∗i
h1

)2

K

(
Ui − u
h2

)
− 1

6
φ(3)

(
ε∗i
h1

)(
δnµ

TX∗i
h1

)3

K

(
Ui − u
h2

)]
=I1 + I2 + I3,

where ε∗i is between εi +R(X i, Ui) and εi +R(X i, Ui)− δnµTX∗i , and R(X i, Ui) = XT
i α0(Ui)
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−XT
i (α0(u) + b0(u)(Ui − u)). Based on the result Tn = E (Tn) + Op(

√
Var (Tn)), we consider

each part of the above Taylor expansion.

(i) For the first part, which is I1 = 1
nh1h2

∑n
i=1

(
−φ(1)

(
εi+R(Xi,Ui)

h1

)(
δnµTX∗i

h1

)
K
(
Ui−u
h2

))
,

by Taylor expansion, we can re-write it as

E(I1) =
−δn
h1h2

E
(
φ(1)

(
εi +R(X i, Ui)

h1

)
µTX∗i
h1

K

(
Ui − u
h2

))
=
−δn
h1h2

E
(
φ(1)

(
εi
h1

)
µTX∗i
h1

K

(
Ui − u
h2

)
+ φ(2)

(
εi
h1

)
R(X∗i , Ui)µ

TX∗i
h2

1

K

(
Ui − u
h2

)
+

1

2
φ(3)

(
ε∗∗i
h1

)
R2(X∗i , Ui)µ

TX∗i
h3

1

K

(
Ui − u
h2

))
= I11 + I12 + I13,

where ε∗∗i is between εi and εi + R(X i, Ui). Note that under the same conditions as Theorem

2.1, the order of ε∗∗i is the same as that of εi. When we do the calculations associated with I13,

we instead use εi directly. By some direct calculations for each part, we can get

I11 =
−δn
h1h2

E
(
φ(1)

(
εi
h1

)
µTX∗i
h1

K

(
Ui − u
h2

))
=
−δn
h1h2

∫∫∫
φ(1)

(
ε

h1

)
µTX∗

h1

fε(ε|X̂)K

(
U − u
h2

)
fU(U)dUdεdF (X̂)

=
δn
h1

∫∫∫
φ (τ) τµTX∗fε(τh1|X̂)K (w) fU(wh2 + u)dwdτdF (X̂)

=Op(δnch
2
1).

I12 =
−δn
h1h2

E
(
φ(2)

(
εi
h1

)
µTX∗i
h1

K

(
Ui − u
h2

)
R(X∗i , Ui)

h1

)
=
−δn
h1h2

∫∫∫
φ(2)

(
ε

h1

)
µTX∗

h1

fε(ε|X̂)K

(
U − u
h2

)
R(X∗, U)

h1

fU(U)dUdεdF (X̂)

=
−δn
h1

∫∫∫
φ (τ) (τ 2 − 1)µTX∗fε(τh1|X̂)K (w)

R(X∗, U)

h1

fU(wh2 + u)dwdτdF (X̂)

=Op(δnch
2
2).

I13 ≈
−δn
h1h2

E
(

1

2
φ(3)

(
εi
h1

)
R2(X∗i , Ui)µ

TX∗i
h3

1

K

(
Ui − u
h2

))
=
−δn

2h1h2

∫∫∫
φ(3)

(
ε

h1

)
R2(X∗, U)µTX∗

h3
1

fε(ε|X̂)K

(
U − u
h2

)
fU(U)dUdεdF (X̂)

=
−δnh4

2

2

∫∫∫
φ(τ)(3τ − τ 3)

(XTα(2)(u))2µTX∗

4h3
1

fε(τh1|X̂)K(w)w4

fU(wh2 + u)dwdτdF (X̂){1 + op(1)} = op(δnch
2
2).
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Meanwhile, with the condition h2
2/h1 → 0 held, we obtain

δ2
n

h2
1h

2
2

E
(
φ(1)

(
εi
h1

)
µTX∗i
h1

K

(
Ui − u
h2

))2

=
δ2
n

h2
1h

2
2

∫∫∫
φ(1)2

(
ε

h1

)
(µTX∗)2

h2
1

fε(ε|X̂)K2

(
U − u
h2

)
fU(U)dUdεdF (X̂)

=
δ2
n

h3
1h2

∫∫∫
φ2 (τ) τ 2(µTX∗)2fε(τh1|X̂)K2 (w) fU(wh2 + u)dwdτdF (X̂)

=Op(δ
2
nc

2(h3
1h2)−1).

δ2
n

h2
1h

2
2

E
(
φ(2)

(
εi
h1

)
µTX∗i
h1

K

(
Ui − u
h2

)
R(X∗i , Ui)

h1

)2

=
δ2
n

h2
1h

2
2

∫∫∫
φ(2)2

(
ε

h1

)
(µTX∗)2

h2
1

fε(ε|X̂)K2

(
U − u
h2

)
R2(X∗, U)

h2
1

fU(U)dUdεdF (X̂)

=
δ2
nh

3
2

h5
1

∫∫∫
φ2 (τ) (τ 2 − 1)2(µTX∗)2fε(τh1|X̂)w4K2 (w)

(XTα(2)(u))2

4

fU(wh2 + u)dwdτdF (X̂){1 + op(1)} = op(δ
2
nc

2(h3
1h2)−1).

These indicate I1 = Op(δnc(h
2
1 + h2

2)) + Op(
√
δ2
nc

2(nh3
1h2)−1) = Op(δ

2
nc).

(ii) For the second part, which is I2 = 1
nh1h2

∑n
i=1

(
1
2
φ(2)

(
εi+R(Xi,Ui)

h1

)(
δnµTX∗i

h1

)2

K
(
Ui−u
h2

))
,

we can re-write it as

E(I2) =
δ2
n

2h2h1

E
(
φ(2)

(
εi +R(X i, Ui)

h1

)
(µTX∗i )2

h2
1

K

(
Ui − u
h2

))
=

δ2
n

2h2h1

E

(
φ(2)

(
εi
h1

)
(µTX∗i )2

h2
1

K

(
Ui − u
h2

)
+ φ(3)

(
εi
h1

)
R(X i, Ui)(µ

TX∗i )2

h3
1

K

(
Ui − u
h2

)

+
1

2
φ(4)

(
ε∗∗i
h1

)
R2(X i, Ui)(µ

TX∗i )2

h4
1

K

(
Ui − u
h2

))
=I21 + I22 + I23.

As the order of ε∗∗i is the same as that of εi, when we do the calculations associated with I23,

we instead use εi directly. By some direct calculations for each part, we can obtain

I21 =
δ2
n

2h2h1

E
(
φ(2)

(
εi
h1

)
(µTX∗i )2

h2
1

K

(
Ui − u
h2

))
=

δ2
n

2h2h1

∫∫∫
φ(2)

(
ε

h1

)
(µTX∗)2

h2
1

fε(ε|X̂)K

(
U − u
h2

)
fU(U)dUdεdF (X̂)

=
δ2
n

2h2
1

∫∫∫
φ(τ)(τ 2 − 1)(µTX∗)2fε(τh1|X̂)K(w)fU(wh2 + u)dwdτdF (X̂)

=Op((δnc)
2).
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I22 =
δ2
n

2h2h1

E
(
φ(3)

(
εi
h1

)
R(X i, Ui)(µ

TX∗i )2

h3
1

K

(
Ui − u
h2

))
=

δ2
n

2h2h1

∫∫∫
φ(3)

(
ε

h1

)
R(X, U)(µTX∗)2

h3
1

fε(ε|X̂)K

(
U − u
h2

)
fU(U)dUdεdF (X̂)

=
δ2
nh

2
2

2h3
1

∫∫∫
φ(τ)(3τ − τ 3)

XTα(2)(u)

2
(µTX∗)2fε(τh1|X̂)w2K(w)fU(wh2 + u)dwdτdF (X̂)

{1 + op(1)} = op((δnc)
2).

Meanwhile, we can prove that I23 = op((δnc)
2). Following the same steps in (i), we obtain

the following result

δ4
n

4h2
2h

2
1

E
(
φ(2)

(
εi
h1

)
(µTX∗i )2

h2
1

K

(
Ui − u
h2

))2

=
δ4
n

4h2
2h

2
1

∫∫∫
φ(2)2

(
ε

h1

)
(µTX∗)4

h4
1

fε(ε|X̂)K2

(
U − u
h2

)
fU(U)dUdεdF (X̂)

=
δ4
n

4h2h2
1

∫∫∫
φ2(τ)(τ 2 − 1)2 (µTX∗)4

h4
1

fε(τh1|X̂)K2(w)fU(wh2 + u)dwdτdF (X̂)

=Op((δnc)
4(h2h

5
1)−1).

With the condition nh5
1h2 → ∞ held, the above equations indicate that the second part will

dominate the first part when we choose c big enough.

(iii) The same way to calculate the third part. As the order of ε∗i is the same as the order

of εi, which indicates we can obtain I3 ≈ 1
nh1h2

∑n
i=1

(
− 1

6
φ(3)

(
εi
h1

)(
δnµTX∗i

h1

)3

K
(
Ui−u
h2

))
. By

directly calculating, we arrive at

δ3
n

6h2h1

E

(
φ(3)

(
εi
h1

)
(µTX∗

i )
3

h3
1

K

(
Ui − u
h2

))

=
δ3
n

6h2h1

∫∫∫
φ(3)

(
ε

h1

)
(µTX∗)

3

h3
1

fε(ε|X̂)K

(
U − u
h2

)
fU(U)dUdεdF (X̂)

=
δ3
n

6

∫∫∫
φ(τ)(3τ − τ 3)

(µTX∗)
3

h3
1

fε(τh1|X̂)K(w)fU(wh2 + u)dwdτdF (X̂)

=Op(δ
3
nc

3).

δ6
n

36h2
2h

2
1

E

(
φ(3)

(
εi
h1

)
(µTX∗

i )
3

h3
1

K

(
Ui − u
h2

))2

=
δ6
n

36h2
2h

2
1

∫∫∫
φ(3)2

(
ε

h1

)
(µTX∗)

6

h6
1

fε(ε|X̂)K2

(
U − u
h2

)
fU(U)dUdεdF (X̂)

=
δ6
n

36h2h1

∫∫∫
φ2(τ)(3τ − τ 3)2 (µTX∗)

6

h6
1

fε(τh1|X̂)K2(w)fU(wh2 + u)dwdτdF (X̂)

=Op(δ
6
nc

6(h2h
7
1)−1).

18



These indicate that the second part dominates the third part.

Based on these, we can choose c bigger enough such that I2 dominates both I1 and I3 with

probability 1−η. Because the second term is negative, P
{

sup‖µ‖=cQn (θ10 + δnµ) < Qn (θ10)
}

≥ 1− η holds. Hence with the probability approaching one, there exists local maximizers α̂(u),

b̂(u) and β̂ such that

‖α̂(u)− α̂0(u)‖ ≤ δnc, ‖b̂(u)h2 − b̂0(u)h2‖ ≤ δnc, and ‖β̂ − β0‖ ≤ δnc.

�

S5-2: Proof of Theorem 2.2

Following the same steps as proving Theorem 2.1, recall that

Yi = XT
i α(Ui) +ZT

i β + εi = XT
i (α(u) + b(u)(Ui − u)) +ZT

i β + εi +R1(X i, Ui),

where R1(X i, Ui) = XT
i α(Ui) −XT

i (α(u) + b(u)(Ui − u)). Defining θ̂ = (α̂(u)T , b̂(u)T , β̂
T

)T

and θ̂1 = Hθ̂, then θ̂1 must satisfy the following equation

− 1

nh2
1h2

n∑
i=1

φ(1)

(
εi +R(X i, Ui,Zi)

h1

)
K

(
Ui − u
h2

)
X∗i = 0,

where R(X i, Ui,Zi) = R(X i, Ui)−X∗Ti (θ̂1 − θ10).

By taking Taylor expansion, we can obtain

− 1

nh2
1h2

n∑
i=1

φ(1)

(
εi
h1

)
K

(
Ui − u
h2

)
X∗i

+
1

nh3
1h2

n∑
i=1

φ(2)

(
εi
h1

)
K

(
Ui − u
h2

)
X∗i (R(X i, Ui)−X∗Ti (θ̂1 − θ10))

− 1

nh4
1h2

n∑
i=1

φ(3)

(
ε̃∗i
h1

)
K

(
Ui − u
h2

)
X∗i

(
R(X i, Ui)−X∗Ti (θ̂1 − θ10)

)2

= 0,

where ε̃∗i is between εi and εi + R(X i, Ui) − X∗Ti (θ̂1 − θ10). From Theorem 2.1, we know

‖θ̂1 − θ10‖ = Op(δn), which indicates that

sup
i:|Ui−u|/h2≤1

|R(X i, Ui,Zi)| ≤ sup
i:|Ui−u|/h2≤1

{|R(X i, Ui)|+ |X∗Ti (θ̂1 − θ10)|}

= Op(‖θ̂1 − θ10)‖) = Op(δn).

Combining this with the Proof of Theorem 2.1, we can see that the third part which is associated
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with (R(X i, Ui) −X∗Ti (θ̂1 − θ10))2 is dominated by the second part which is associated with

R(X i, Ui)−X∗Ti (θ̂1− θ10). We then mainly focus on the first two parts of the above equation.

Considering− 1
nh21h2

∑n
i=1 φ

(1)
(
εi
h1

)
K
(
Ui−u
h2

)
X∗i+

1
nh31h2

∑n
i=1 φ

(2)
(
εi
h1

)
K
(
Ui−u
h2

)
X∗iR(X i,

Ui), by some direct calculations, we can obtain

E

(
− 1

nh2
1h2

n∑
i=1

φ(1)

(
εi
h1

)
K

(
Ui − u
h2

)
X∗i

+
1

nh3
1h2

n∑
i=1

φ(2)

(
εi
h1

)
K

(
Ui − u
h2

)
X∗i (R(X i, Ui))

)

=− 1

h2
1h2

∫∫∫
φ(1)

(
ε

h1

)
X∗fε(ε|X̂)K

(
U − u
h2

)
fU(U)dUdεdF (X̂)

+
1

h3
1h2

∫∫∫
φ(2)

(
ε

h1

)
X∗fε(ε|X̂)K

(
U − u
h2

)
R(X, U)fU(U)dUdεdF (X̂)

=
1

h1

∫∫∫
φ (τ) τX∗fε(τh1|X̂)K (w) fU(wh2 + u)dwdτdF (X̂)

− 1

h2
1

∫∫∫
φ (τ) (τ 2 − 1)X∗fε(τh1|X̂)K (w)R(X, U)fU(wh2 + u)dwdτdF (X̂)

=
h2

1

2
fU(u)

E(Xf
(3)
ε (0|X̂)|u)

0

E(Zf
(3)
ε (0|X̂)|u)

−
h2

2α
(2)(u)

2
fU(u)

µ2E(XXTf
(2)
ε (0|X̂)|u)

0

µ2E(ZXTf
(2)
ε (0|X̂)|u)


 {1 + op(1)}.

Considering 1
nh31h2

∑n
i=1 φ

(2)
(
εi
h1

)
K
(
Ui−u
h2

)
X∗iX

∗T
i , by directly calculating, we have

E

(
1

nh3
1h2

n∑
i=1

φ(2)

(
εi
h1

)
K

(
Ui − u
h2

)
X∗iX

∗T
i

)

=
1

h3
1h2

∫∫∫
φ(2)

(
ε

h1

)
X∗X∗Tfε(ε|X̂)K

(
U − u
h2

)
fU(U)dUdεdF (X̂)

=
1

h2
1

∫∫∫
φ (τ) (τ 2 − 1)X∗X∗Tfε(τh1|X̂)K (w) fU(wh2 + u)dwdτdF (X̂)(1 + op(1))

=fU(u)

E(XXTf
(2)
ε (0|X̂)|u) 0 E(XZTf

(2)
ε (0|X̂)|u)

0 µ2E(XXTf
(2)
ε (0|X̂)|u) 0

E(ZXTf
(2)
ε (0|X̂)|u) 0 E(ZZTf

(2)
ε (0|X̂)|u)

 .
Meanwhile, with the condition h2

2/h1 → 0 held, we can get

Var

(
− 1

nh2
1h2

n∑
i=1

φ(1)

(
εi
h1

)
K

(
Ui − u
h2

)
X∗i

+
1

nh3
1h2

n∑
i=1

φ(2)

(
εi
h1

)
K

(
Ui − u
h2

)
X∗i (R(X i, Ui))

)
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=E

(
− 1

nh2
1h2

n∑
i=1

φ(1)

(
εi
h1

)
K

(
Ui − u
h2

)
X∗i

)(
− 1

nh2
1h2

n∑
i=1

φ(1)

(
εi
h1

)
K

(
Ui − u
h2

)
X∗i

)T

(1 + op(1))

=
1

nh4
1h

2
2

∫∫∫
φ(1)2

(
ε

h1

)
X∗X∗Tfε(ε|X̂)K2

(
U − u
h2

)
fU(U)dUdεdF (X̂)(1 + op(1))

=

∫
τ 2φ2(τ)dτ

nh3
1h2

fU(u)

v0E(XXTfε(0|X̂)|u) 0 v0E(XZTfε(0|X̂)|u)

0 v2E(XXTfε(0|X̂)|u) 0

v0E(ZXTfε(0|X̂)|u) 0 v0E(ZZTfε(0|X̂)|u)


(1 + op(1)).

Define Wn = 1
nh21h2

∑n
i=1 φ

(1)
(
εi
h1

)
K
(
Ui−u
h2

)
X∗i . To show Theorem 2.2, it is sufficient to

show that

Tn =
√
nh2h3

1Wn
d→ N (0, T ),

where

T =
∫
τ 2φ2(τ)dτfU(u)

v0E(XXTfε(0|X̂)|u) 0 v0E(XZTfε(0|X̂)|u)

0 v2E(XXTfε(0|X̂)|u) 0

v0E(ZXTfε(0|X̂)|u) 0 v0E(ZZTfε(0|X̂)|u)

.

Then, by Slutsky’s theorem and the above two equations, we can achieve Theorem 2.2. To show

the preceding equation, we prove that for any unit vector d ∈ Rp,{
dT Cov (Tn)d

}−1/2 {
dTTn − dTE (Tn)

} d→ N(0, 1).

We then check Lyapunov’s condition. Let

ξi =
√
h2h3

1/nK

(
U − u
h2

)
1

h1h2

φ(1)

(
εi
h1

)
dTX∗i ,

we need to prove nE|ξ1|3 → 0. As
(
dTX∗i

)2 ≤ ‖d‖2 ‖X∗i ‖
2 , φ(1)(·) is bounded, and K(·) has

compact support, we have

nE|ξ|3 ≤ O
(
n−1/2h

−3/2
2 h

3/2
1

)
E
∣∣∣K3

(
U − u
h2

)
φ(1)3

(
εi
h1

)
dTX∗i

∣∣∣→ 0.

Thus, the asymptotic normality for Tn holds.

�

S5-3: Proof of Theorem 2.3

The proof is similar to Theorem 2.1, except that we need to take the estimation error from the-
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first stage into consideration. Hence, we provide a sketch of the proof here. Recall that

Qn(β) =
1

nh3

n∑
i=1

φ

(
Yi −XT

i α̂(Ui)−ZT
i β

h3

)
=

1

nh3

n∑
i=1

φ

(
εi +XT

i α(Ui)−XT
i α̂(Ui)

h3

)
.

Define δn = h2
3 +

√
(nh3

3)−1. It is sufficient to show that for any given η, there exists a large

number constant c such that P
{

sup‖µ‖=cQn (β0 + δnµ) < Qn (β0)
}
≥ 1 − η, where β0 is the

true value of the parameter. Using Taylor expansion, it follows that

Qn (β0 + δnµ)−Qn (β0)

=
1

nh3

n∑
i=1

φ

(
εi +XT

i α0(Ui)−XT
i α̂(Ui)− δnµTXi

h3

)
− 1

nh3

n∑
i=1

φ

(
εi +XT

i α0(Ui)−XT
i α̂(Ui)

h3

)
=

1

nh3

n∑
i=1

[
−φ(1)

(
εi +XT

i α0(Ui)−XT
i α̂(Ui)

h3

)(
δnµ

TXi

h3

)

+
1

2
φ(2)

(
εi +XT

i α0(Ui)−XT
i α̂(Ui)

h3

)(
δnµ

TXi

h3

)2

− 1

6
φ(3)

(
ε∗i
h3

)(
δnµ

TXi

h3

)3
]

=I4 + I5 + I6,

where ε∗i is between εi+X
T
i α0(Ui)−XT

i α̂(Ui) and εi+X
T
i α0(Ui)−XT

i α̂(Ui)−δnµTXi. Based

on the result Tn = E (Tn)+Op(
√

Var (Tn)), we consider each part of the above Taylor expansion.

(i) For the first part, which is I4 = 1
nh3

∑n
i=1

(
−φ(1)

(
εi+X

T
i α0(Ui)−XT

i α̂(Ui)

h3

)(
δnµTXi

h3

))
, we

can re-write it as

E(I4) =
−δn
h3

E
(
φ(1)

(
εi +XT

i α0(Ui)−XT
i α̂(Ui)

h3

)
µTXi

h3

)
=
−δn
h3

E
(
φ(1)

(
εi
h3

)
µTXi

h3

+ φ(2)

(
εi
h3

)
(XT

i α0(Ui)−XT
i α̂(Ui))µ

TXi

h2
3

+
1

2
φ(3)

(
ε∗∗∗i
h3

)
(XT

i α0(Ui)−XT
i α̂(Ui))

2µTXi

h3
3

)
=I41 + I42 + I43,

where ε∗∗∗i is between εi and εi +XT
i α0(Ui)−XT

i α̂(Ui). Notice that as the order of ε∗∗∗i is the

same as that of εi, when we do the calculations associated with I43, we instead use εi directly.

By some direct calculations for each part, we can get

I41 =
−δn
h3

E
(
φ(1)

(
εi
h3

)
µTXi

h3

)
=
−δn
h3

∫∫
φ(1)

(
ε

h3

)
µTX

h3

fε(ε|X)dεdF (X) = Op(δnch
2
3).
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I42 =
−δn
h3

E
(
φ(2)

(
εi
h3

)
µTXi

h3

(XT
i α0(Ui)−XT

i α̂(Ui))

h3

)
=
−δn
h3

∫∫
φ(2)

(
ε

h3

)
µTX

h3

fε(ε|X)
XTα0(U)−XT α̂(U)

h3

dεdF (X) = Op(δnc(h
2
1 + h2

2)).

With the conditions that h1/h3 → 0 and h2/h3 → 0, it can be seen that I41 dominates I42.

Meanwhile, according to the result in the Proof of Theorem 2.1, we could easily prove that I42

dominates I43. We then obtain

δ2
n

h2
3

E
(
φ(1)

(
εi
h3

)
µTXi

h3

)2

=
δ2
n

h2
3

∫∫
φ(1)2

(
ε

h3

)
(µTX)2

h2
3

fε(ε|X)dεdF (X) = Op(δ
2
nc

2h−3
3 ).

These indicate I4 = Op(δnch
2
3) +Op(

√
δ2
nc

2(nh3
3)−1) = Op(δ

2
nc).

(ii) For the second part, which is I5 = 1
nh3

∑n
i=1

(
1
2
φ(2)

(
εi+X

T
i α0(Ui)−XT

i α̂(Ui)

h3

)(
δnµTXi

h3

)2
)

,

we can re-write it as

E(I5) =
δ2
n

2h3

E
(
φ(2)

(
εi +XT

i α0(Ui)−XT
i α̂(Ui)

h3

)
(µTXi)

2

h2
3

)
=
δ2
n

2h3

E

(
φ(2)

(
εi
h3

)
(µTXi)

2

h2
3

+ φ(3)

(
εi
h3

)
(XT

i α0(Ui)−XT
i α̂(Ui))(µ

TXi)
2

h3
3

+
1

2
φ(4)

(
ε∗∗∗i
h3

)
(XT

i α0(Ui)−XT
i α̂(Ui))

2(µTXi)
2

h4
3

)
=I51 + I52 + I53,

As the order of ε∗∗i is the same as that of εi, when we do the calculations associated with I53,

we instead use εi directly. By some calculations for each part, we can achieve

I51 =
δ2
n

2h3

E
(
φ(2)

(
εi
h3

)
(µTXi)

2

h2
3

)
=

δ2
n

2h3

∫∫
φ(2)

(
ε

h3

)
(µTX)2

h2
3

fε(ε|X)dεdF (X) = Op((δnc)
2).

I52 =
δ2
n

2h3

E
(
φ(3)

(
εi
h3

)
(XT

i α0(Ui)−XT
i α̂(Ui))(µ

TXi)
2

h3
3

)
=
δ2
n

2h3

∫∫
φ(3)

(
εi
h3

)
(XTα0(U)−XT α̂(U))(µTX)2

h3
3

fε(ε|X)dεdF (X) = op((δnc)
2).

Meanwhile, we can prove that I53 = op((δnc)
2) and get the following result

δ4
n

4h2
3

E
(
φ(2)

(
εi
h3

)
(µTXi)

2

h2
3

)2

=
δ4
n

4h2
3

∫∫
φ(2)2

(
ε

h3

)
(µTX)4

h4
3

fε(ε|X)dεdF (X) = Op((δnc)
4h−5

3 ).

These imply that the second part will dominate the first part when we choose c big enough.
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(iii) The same way to calculate the third part. As the order of ε∗∗∗i is the same as the order

of εi, we can obtain I6 ≈ 1
nh3

∑n
i=1−

1
6
φ(3)

(
εi
h3

)(
δnµTXi

h3

)3

. By directly calculating, we get

δ3
n

6h3

E

(
φ(3)

(
εi
h3

)
(µTXi)

3

h3
3

)
=

δ3
n

6h3

∫∫
φ(3)

(
ε

h3

)
(µTX)

3

h3
3

fε(ε|X)dεdF (X) = Op(δ
3
n).

δ6
n

36h2
3

E

(
φ(3)

(
εi
h3

)
(µTXi)

3

h3
3

)2

=
δ6
n

36h2
3

∫∫
φ(3)2

(
ε

h3

)
(µTX)

6

h6
3

fε(ε|X)dεdF (X) = Op(δ
6
nh
−7
3 ).

These demonstrate that the second part dominates the third part.

Based on these, we can choose c bigger enough such that the second term dominates the

other two terms with probability 1− η. Because the second term is negative, P{sup‖µ‖=cQn(β0

+δnµ) < Qn(β0)} ≥ 1 − η holds. Hence with the probability approaching one, there exists a

maximizer β̃ such that ‖β̃ − β0‖ ≤ δnc.

�

S5-4: Proof of Theorem 2.4

Following the same steps as proving Theorem 2.3, since β̃ maximizes Qn(β), we can take the

derivative of Qn(β) with respect to β to obtain

dQn(β)

dβ

∣∣∣
β=β̃

= − 1

nh2
3

n∑
i=1

φ(1)

(
εi +XT

i (α0(Ui)− α̂(Ui))−ZT
i (β̃ − β0)

h3

)
Zi = 0.

By taking Taylor expansion, we get

− 1

nh2
3

n∑
i=1

φ(1)

(
εi
h3

)
Zi +

1

nh3
3

n∑
i=1

φ(2)

(
εi
h3

)
Zi(X

T
i (α0(Ui)− α̂(Ui))−ZT

i (β̃ − β0))

− 1

nh4
3

n∑
i=1

φ(3)

(
ε̃∗∗i
h3

)
Zi(X

T
i (α0(Ui)− α̂(Ui))−ZT

i (β̃ − β0))2 = 0,

where ε̃∗∗i is between εi and εi + XT
i (α0(Ui) − α̂(Ui)) − ZT

i (β̃ − β0). From Theorem 2.3, we

know ‖β̃ − β0‖ = Op(δn), which indicates that

|XT
i (α0(Ui)− α̂(Ui))−ZT

i (β̃ − β0)| ≤ {|XT
i (α0(Ui)− α̂(Ui))|+ |ZT

i (β̃ − β0)|}
= Op(‖β̃ − β0‖) = Op(δn).

It can be seen that the third part which is associated with (XT
i (α0(Ui)− α̂(Ui))−ZT

i (β̃−β0))2

is dominated by the second part which is associated with XT
i (α0(Ui)− α̂(Ui))−ZT

i (β̃ − β0).
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We then mainly focus on the first two parts of the above equation.

Considering − 1
nh23

∑n
i=1 φ

(1)
(
εi
h3

)
Zi+

1
nh33

∑n
i=1 φ

(2)
(
εi
h3

)
Zi(X

T
i (α0(Ui)−α̂(Ui))), with the

conditions that h1/h3 → 0 and h2/h3 → 0, by some direct calculations, we can obtain

E

(
− 1

nh2
3

n∑
i=1

φ(1)

(
εi
h3

)
Zi +

1

nh3
3

n∑
i=1

φ(2)

(
εi
h3

)
Zi(X

T
i (α0(Ui)− α̂(Ui)))

)

=− 1

h2
3

∫∫
φ(1)

(
ε

h3

)
Zfε(ε|Z)dεdF (Z)

+
1

h3
3

∫∫
φ(2)

(
ε

h3

)
Zfε(ε|Z)(XT

i (α0(Ui)− α̂(Ui)))dεdF (X̂)

=
1

h3

∫∫
φ (τ) τZfε(τh3|Z)dτdF (Z)

− 1

h2
3

∫∫
φ (τ) (τ 2 − 1)Zfε(τh3|Z)(XT

i (α0(Ui)− α̂(Ui)))dτdF (X̂)

=
h2

3

2
E(Zf (3)

ε (0|Z)|u){1 + op(1)}.

Considering 1
nh33

∑n
i=1 φ

(2)
(
εi
h3

)
ZiZ

T
i , by directly calculating, we have

E

(
1

nh3
3

n∑
i=1

φ(2)

(
εi
h3

)
ZiZ

T
i

)
=

1

h3
3

∫∫
φ(2)

(
ε

h3

)
ZZTfε(ε|Z)dεdF (Z)

=
1

h2
3

∫∫
φ (τ) (τ 2 − 1)ZZTfε(τh3|Z)dτdF (Z) = E(ZZTf (2)

ε (0|Z)|u).

Based on the above two equations, we can get

β̃ − β0 =
h2

3

2

(
E(ZZTf (2)

ε (0|Z)|u)
)−1 E(Zf (3)

ε (0|Z)|u)(1 + op(1)).

Meanwhile, with the conditions h1/h3 → 0 and h2/h3 → 0 held, we can obtain

Var

(
− 1

nh2
3

n∑
i=1

φ(1)

(
εi
h3

)
Zi +

1

nh3
3

n∑
i=1

φ(2)

(
εi
h3

)
Zi(X

T
i (α0(Ui)− α̂(Ui)))

)

=
1

nh4
3

∫∫
φ(1)2

(
ε

h3

)
ZZTfε(ε|Z)dεdF (Z)(1 + op(1))

=

∫
τ 2φ2(τ)dτ

nh3
3

E(ZZTfε(0|Z)){1 + op(1)}.

For the remaining part, we can follow the same idea in the Proof of Theorem 2.2 to easily

achieve the result.

�
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S5-5: Proof of Theorem 2.5

The proof is similar to Theorem 2.1, except that we need to take the estimation errors from the

previous stages into consideration. Define X̃
T

i = (XT
i ,X

T
i (Ui − u)/h5), θ∗ = (α(u)T , b(u)T )T ,

θ∗0 = (α0(u)T , b0(u)T )T , H = diag(1, · · · , 1︸ ︷︷ ︸
p

, h5, · · · , h5︸ ︷︷ ︸
p

), θ̃1 = Hθ∗, and θ̃10 = Hθ∗0.

Let δn = h2
4 + h2

5 +
√

(nh3
4h5)−1. It is sufficient to show that for any given η, there exists

a large number constant c such that P
{

sup‖µ‖=cQn

(
θ̃10 + δnµ

)
< Qn

(
θ̃10

)}
≥ 1− η, where

θ̃10 is the true value of the parameter. Using Taylor expansion, it follows that

Qn

(
θ̃10 + δnµ

)
−Qn

(
θ̃10

)
=

1

nh4h5

n∑
i=1

[
φ

(
εi + R̃(X i, Ui)− δnµTX̃i

h4

)
K

(
Ui − u
h5

)

− 1

nh4h5

n∑
i=1

φ

(
εi + R̃(X i, Ui)

h4

)
K

(
Ui − u
h5

)]

=
1

nh4h5

n∑
i=1

[
−φ(1)

(
εi + R̃(X i, Ui)

h4

)(
δnµ

TX̃i

h4

)
K

(
Ui − u
h5

)

+
1

2
φ(2)

(
εi + R̃(X i, Ui)

h4

)(
δnµ

TX̃i

h4

)2

K

(
Ui − u
h5

)

− 1

6
φ(3)

(
ε∆i
h4

)(
δnµ

TX̃i

h4

)3

K

(
Ui − u
h5

)]
=I7 + I8 + I9,

where ε∆i is between εi + R̃(X i, Ui) and εi + R̃(X i, Ui) − δnµ
TX̃i in which R̃(X i, Ui) =

XT
i α0(Ui) −XT

i (α0(u) + b0(u)(Ui − u)) − ZT
i (β̃ − β0). Based on the result Tn = E (Tn) +

Op(
√

Var (Tn)), we could consider each part of the above Taylor expansion.

(i) For the first part, which is I7 = 1
nh4h5

∑n
i=1

(
−φ(1)

(
εi+R̃(Xi,Ui)

h4

)(
δnµT X̃i

h4

)
K
(
Ui−u
h5

))
,

we can get

I7 = Op(δnc(h
2
4 + h2

5)) + Op(
√
δ2
nc

2(nh3
4h5)−1) = Op(δ

2
nc)

by combining the results obtained from the Proofs of Theorem 2.1 and 2.3 and the assumptions

h3/h5 → 0 and h2
5/h4 → 0.

(ii) For the second part, I8 = 1
nh4h5

∑n
i=1

(
1
2
φ(2)

(
εi+R̃(Xi,Ui)

h4

)(
δnµT X̃i

h4

)2

K
(
Ui−u
h5

))
, by

combining the results obtained from the Proof of Theorem 2.1 and assumptions h3/h5 → 0 and

nh5
4h5 →∞, we can see that it will dominate the first part when we choose c big enough with

E(I8) = Op((δnc)
2).

(iii) The same way to calculate the third part. As ε∆i is between εi and εi + R̃(X i, Ui)
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−δnµTX̃i, the order of ε∆i is the same as the order of εi, which indicates that we can obtain

I9 ≈ 1
nh4h5

∑n
i=1

(
−1

6
φ(3)

(
εi
h4

)(
δnµT X̃i

h4

)3

K
(
Ui−u
h5

))
. Combining the results obtained from the

Proof of Theorem 2.1, we can get that the second part dominates the third part.

Based on these, we can choose c bigger enough such that the second term dominates the

other two terms with probability 1−η. Because the second term is negative, P{sup‖µ‖=cQn(θ10

+δnµ) < Qn (θ10)} ≥ 1 − η holds. Hence with the probability approaching one, there exists

local maximizers α̃(u) and b̃(u) such that

‖α̃(u)−α0(u)‖ ≤ δnc and ‖b̃(u)h5 − b0(u)h5‖ ≤ δnc.

�

S5-6: Proof of Theorem 2.6

Following the same steps as proving Theorem 2.4, since θ̃1 maximizes Qn(θ1), we can take the

derivative of Qn(θ1) with respect to θ1 to obtain

− 1

nh2
4h5

n∑
i=1

φ(1)

(
εi + R̃(X i, Ui)− X̃T

i (θ̃1 − θ̃10)

h4

)
K

(
Ui − u
h5

)
X̃i = 0,

where R̃(X i, Ui,Zi) = R̃(X i, Ui)− X̃T
i (θ̃1 − θ̃10). By taking Taylor expansion, we can obtain

− 1

nh2
4h5

n∑
i=1

φ(1)

(
εi
h4

)
K

(
Ui − u
h5

)
X̃i

+
1

nh3
4h5

n∑
i=1

φ(2)

(
εi
h4

)
K

(
Ui − u
h5

)
X̃i(R̃(X i, Ui)− X̃T

i (θ̃1 − θ̃10))

− 1

nh4
4h5

n∑
i=1

φ(3)

(
ε̃∆∗i
h4

)
K

(
Ui − u
h5

)
X̃i

(
R̃(X i, Ui)− X̃T

i (θ̃1 − θ̃10)
)2

= 0,

where ε̃∆∗i is between εi and εi + R̃(X i, Ui) − X̃T
i (θ̃1 − θ̃10). From Theorem 2.5, we know

‖θ̃1 − θ̃10‖ = Op(δ), which indicates that

|R̃(X i, Ui)− X̃T
i (θ̃1 − θ̃10)| ≤ {|R̃(X i, Ui)|+ |X̃T

i (θ̃1 − θ̃10)|} = Op(‖θ̃1 − θ̃10‖) = Op(δ).

It can be seen that the third part which is associated with X̃i(R̃(X i, Ui) − X̃T
i (θ̃1 − θ̃10))2 is

dominated by the second part which is associated with R̃(X i, Ui) − X̃T
i (θ̃1 − θ̃10). We then

mainly focus on the first two parts of the above equation.

Considering − 1
nh24h5

∑n
i=1 φ

(1)
(
εi
h4

)
K
(
Ui−u
h5

)
X̃i + 1

nh34h5

∑n
i=1 φ

(2)
(
εi
h4

)
K
(
Ui−u
h5

)
X̃iR̃(X i,
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Ui) and combining the results obtained from the Proof of Theorem 2.2, with the assumption

that h3/h5 → 0 held, we get

E

(
− 1

nh2
4h5

n∑
i=1

φ(1)

(
εi
h4

)
K

(
Ui − u
h5

)
X̃i +

1

nh3
4h5

n∑
i=1

φ(2)

(
εi
h4

)
K

(
Ui − u
h5

)
X̃iR̃(X i, Ui)

)

=
h2

4

2
fU(u)

[
E(Xf

(3)
ε (0|X̂)|u)

0

]
− h2

5α
(2)(u)

2
fU(u)

[
µ2E(XXTf

(2)
ε (0|X̂)|u)

0

]
{1 + op(1)}.

Considering 1
nh34h5

∑n
i=1 φ

(2)
(
εi
h4

)
K
(
Ui−u
h5

)
X̃iX̃

T
i , by directly calculating, we have

E

(
1

nh3
4h5

n∑
i=1

φ(2)

(
εi
h4

)
K

(
Ui − u
h5

)
X̃iX̃

T
i

)

=fU(u)

[
E(XXTf

(2)
ε (0|X̂)|u) 0

0 µ2E(XXTf
(2)
ε (0|X̂)|u)

]
.

Based on the above two equations, we can achieve

θ̃1 − θ̃10 =

[
E(XXTf

(2)
ε (0|X̂)|u) 0

0 µ2E(XXTf
(2)
ε (0|X̂)|u)

]−1

(
h2

4

2
fU(u)

[
E(Xf

(3)
ε (0|X̂)|u)

0

]
− h2

5α
(2)(u)

2
fU(u)

[
µ2E(XXTf

(2)
ε (0|X̂)|u)

0

]
{1 + op(1)}

)
.

Meanwhile, with the condition h2
5/h4 → 0 held, we obtain

Var

(
− 1

nh2
4h5

n∑
i=1

φ(1)

(
εi
h4

)
K

(
Ui − u
h5

)
X̃i +

1

nh3
4h5

n∑
i=1

φ(2)

(
εi
h4

)
K

(
Ui − u
h5

)
X̃iR̃(X i, Ui)

)

=
1

nh4
4h

2
5

∫∫∫
φ(1)2

(
ε

h4

)
X̃X̃Tfε(ε|X̂)K2

(
U − u
h5

)
fU(U)dUdεdF (X̂)(1 + op(1))

=

∫
τ 2φ2(τ)dτ

nh3
4h5

fU(u)

[
v0E(XXTfε(0|X̂)|u) 0

0 v2E(XXTfε(0|X̂)|u)

]
(1 + op(1)).

For the remaining part, we can follow the same idea in the Proof of Theorem 2.2 to easily obtain

the result.

�

S5-7: Proof of Theorem 2.7

Following the result in Theorem 2.2, under the null hypothesis, we can prove
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L(H0) =
1

h4

n∑
i=1

φ

(
Yi −XT

i α
∗ −ZT

i β
∗

h4

)
=

1

h4

n∑
i=1

φ

(
εi +XT

i (α0 −α∗) +ZT
i (β0 − β∗))

h4

)
=

1

h4

n∑
i=1

φ

(
εi
h4

)
+ op(1).

Similarly, by Theorem 2.6, we can obtain

L(H1) =
1

h4

n∑
i=1

φ

(
Yi −XT

i α̃(Ui)−ZT
i β̃

h4

)
=

1

h4

n∑
i=1

φ

(
εi + R̃(Xi, Ui,Zi)

h4

)

=
1

h4

n∑
i=1

φ

(
εi
h4

)
+ op(1),

where R̃(X i, Ui,Zi) = XT
i α0(Ui) −XT

i (α0(u) + b0(u)(Ui − u)) − ZT
i (β̃ − β0) −XT

i [α̃(u) −
α0(u) + (b̃(u) − b0(u))(Ui − u)]. Thus, we have L(H1)− L(H0) → 0. Following the similar

steps, we could show T0
def
= L(H1)− L(H0) > 0 if infαl∈R ‖αl(.)− αl‖ > 0.

�

S5-8: Proof of Theorem 2.8

Notice that, under H0, we have

T0
def
= L(H1)− L(H0) =

n∑
i=1

φh4

(
Yi −XT

i α̃(Ui)−ZT
i β̃
)
−

n∑
i=1

φh4
(
Yi −XT

i α
∗ −ZT

i β
∗)

=

{
n∑
i=1

φh4

(
εi +XT

i α0 −XT
i α̃(Ui) +ZT

i β0 −ZT
i β̃
)
−

n∑
i=1

φh4 (εi)

}

−

{
n∑
i=1

φh4
(
εi +XT

i α0 −XT
i α
∗ +ZT

i β0 −ZT
i β
∗)− n∑

i=1

φh4 (εi)

}
=Z1 − Z2.

By Taylor expansion, under the null hypothesis, we can show that Z2 follows χ2(p) asymptoti-

cally. Therefore, Z2 = Op(1). We then mainly focus on the asymptotic distribution of Z1.

Considering Z1, by Taylor expansion, we have

Z1 =−
n∑
i=1

φ
(1)
h4

(εi) (XT
i α̃(Ui)−XT

i α0)−
n∑
i=1

φ
(1)
h4

(εi) (ZT
i β̃ −ZT

i β0)

+
1

2

n∑
i=1

φ
(2)
h4

(εi)
[
XT

i α0 −XT
i α̃(Ui) +ZT

i β0 −ZT
i β̃
]2

+ op(1)

=Z11 + Z12 + op(1).
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Based on Theorems 2.4 and 2.6, we know that ‖β̃ − β0‖ = Op(h
2
3 + (nh3

3)−1/2) and

α̃(Ui)−α0

=

{
h2

5

2

∫
u2K(u)duα

(2)
0 (Ui) +

f−1
U (U)

nf
(2)
ε (0|X, U,Z)

n∑
j=1

XjKh5(Uj − Ui)φ
(1)
h4

(εj)

}
(1 + op(1))

= (R1(Ui) + R2(Ui))(1 + op(1))

according to the Bahadur representation of the estimator. We can then re-write

Z11 = −
n∑
i=1

φ
(1)
h4

(εi) (XT
i α̃(Ui)−XT

i α0) +Op(nh
2
3h

2
4)

= −
n∑
i=1

φ
(1)
h4

(εi)X
T
i (R1(Ui) + R2(Ui))(1 + op(1))

= −
n∑
i=1

φ
(1)
h4

(εi)X
T
i R1(Ui)(1 + op(1))−

n∑
i=1

φ
(1)
h4

(εi)X
T
i R2(Ui)(1 + op(1))

= (Z11,1 + Z11,2)(1 + op(1)).

According to the result that Sn = E(Sn) + Op(
√
V ar(Sn)) and the Strong Law of Large

Number theory, by directly calculating, we can have

E
(
−

n∑
i=1

φ
(1)
h4

(εi)X
T
i R1(Ui)

)
=

3nh2
5h

2
4

2
fε(0|X, U,Z)XT

i

∫
u2K(u)duα

(2)
0 (Ui).

Thus, Z11,1 = Op(nh
2
5h

2
4) +Op(

√
nh2

5h
−3/2
4 ). As to Z11,2, note that

Z11,2 =−
n∑
i=1

φ
(1)
h4

(εi)X
T
i R2(Ui)

=−
n∑
i=1

φ
(1)
h4

(εi)X
T
i

f−1
U (U)

nf
(2)
ε (0|X, U,Z)

n∑
j=1

XjKh5(Uj − Ui)φ
(1)
h4

(εj)

=− f−1
U (U)

nf
(2)
ε (0|X, U)

n∑
i=1

(φ
(1)
h4

(εi))
2XT

i XiKh5(0)

− f−1
U (U)

nf
(2)
ε (0|X, U)

n∑
i=1

n∑
j 6=i

φ
(1)
h4

(εi)φ
(1)
h4

(εj)X
T
i XjKh5(Uj − Ui) = Z11,21 + Z11,22.

We can obtain E(Z11,21) = − f−1
U (U)

h34h5f
(2)
ε (0|X,U,Z)

fε(0|X, U,Z)
∫
t2φ2(t)dtXT

i XiK(0). Thus, we have

Z11,2 =− f−1
U (U)

h3
4h5f

(2)
ε (0|X, U,Z)

fε(0|X, U,Z)

∫
t2φ2(t)dtXT

i XiK(0)
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− f−1
U (U)

nf
(2)
ε (0|X, U,Z)

n∑
i=1

n∑
j 6=i

φ
(1)
h4

(εi)φ
(1)
h4

(εj)X
T
i XjKh5(Uj − Ui) +Op(n

−1/2h
−7/2
4 h−1

5 ).

Combining the above equations, we get

Z11 =− f−1
U (U)

h3
4h5f

(2)
ε (0|X, U,Z)

fε(0|X, U,Z)

∫
t2φ2(t)dtXT

i XiK(0)

− f−1
U (U)

nf
(2)
ε (0|X, U,Z)

n∑
i=1

n∑
j 6=i

φ
(1)
h4

(εi)φ
(1)
h4

(εj)X
T
i XjKh5(Uj − Ui)

+Op(nh
2
5h

2
4) +Op(

√
nh2

5h
−3/2
4 ) +Op(n

−1/2h
−7/2
4 h−1

5 ).

We then consider Z12 and obtain

Z12 =
1

2

n∑
i=1

φ
(2)
h4

(εi)
[
XT

i α0 −XT
i α̃(Ui) +ZT

i β0 −ZT
i β̃
]2

+ op(1)

=
1

2

n∑
i=1

φ
(2)
h4

(εi) (α̃(Ui)−α0)TXiX
T
i (α̃(Ui)−α0) +

1

2

n∑
i=1

φ
(2)
h4

(εi) (β̃ − β0)TZiZ
T
i (β̃ − β0)

+
n∑
i=1

φ
(2)
h4

(εi) (XT
i α0 −XT

i α̃(Ui))(Z
T
i β0 −ZT

i β̃) + op(1).

Due to the faster convergence rate of β̃, we can re-write Z12 as

Z12 =
1

2

n∑
i=1

φ
(2)
h4

(εi) (α̃(Ui)−α0)TXiX
T
i (α̃(Ui)−α0) + op(1)

=
1

2

n∑
i=1

φ
(2)
h4

(εi)R
T
1 (Ui)XiX

T
i R1(Ui) +

n∑
i=1

φ
(2)
h4

(εi)R
T
1 (Ui)XiX

T
i R2(Ui)

+
1

2

n∑
i=1

φ
(2)
h4

(εi)R
T
2 (Ui)XiX

T
i R2(Ui) + op(1) = Z12,1 + Z12,2 + Z12,3 + op(1).

Using the same procedure as that used for Z11,1 and Z11,2, respectively, we obtain

E
(1

2

n∑
i=1

φ
(2)
h4

(εi)R
T
1 (Ui)XiX

T
i R1(Ui)

)
=
nh4

5h
−2
4

8
fε(0|X, U,Z)

(∫
u2K(u)duXT

i α
(2)
0 (Ui)

)2

.

Thus, Z12,1 = Op(nh
4
5h
−2
4 ) +Op(

√
nh4

5h
−5/2
4 ). By directly calculating, we can have

Z12,2 =
h2

5

2n

n∑
i=1

φ
(2)
h4

(εi) (α
(2)
0 (Ui))

TXiX
T
i∫

u2K(u)du
f−1
U (U)

f
(2)
ε (0|X, U,Z)

n∑
j=1

XjKh5(Uj − Ui)φ
(1)
h4

(εj)
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=
h2

5

2n

n∑
i=1

φ
(2)
h4

(εi)φ
(1)
h4

(εi)(α
(2)
0 (Ui))

TXiX
T
i Xi

∫
u2K(u)du

f−1
U (U)

f
(2)
ε (0|X, U,Z)

Kh5(0)

+
h2

5

2n

n∑
i=1

n∑
j 6=i

φ
(2)
h4

(εi)φ
(1)
h4

(εj)(α
(2)
0 (Ui))

TXiX
T
i Xj

∫
u2K(u)du

f−1
U (U)

f
(2)
ε (0|X, U,Z)

Kh5(Uj − Ui)

= Op(h5h
−1
4 ) +Op(n

−1/2h5h
−9/2
4 ) +Op(n

−1/2h
3/2
5 h−4

4 ).

In terms of Z12,3, it can be decomposed into three parts

Z12,3 =
1

2

n∑
i=1

φ
(2)
h4

(εi)
f−1
U (U)

nf
(2)
ε (0|X, U,Z)

n∑
j=1

XT
j Kh5(Uj − Ui)φ

(1)
h4

(εj)XiX
T
i

f−1
U (U)

nf
(2)
ε (0|X, U,Z)

n∑
j=1

XjKh5(Uj − Ui)φ
(1)
h4

(εj)

=
1

2n2

n∑
i=1

n∑
j=1

φ
(2)
h4

(εi) (φ
(1)
h4

(εj))
2XT

j

[
f−2
U (U)

(f
(2)
ε (0|X, U,Z))2

XiX
T
i K

2
h5

(Uj − Ui)

]
Xj

+
1

n2

n∑
i=1

n∑
j=1,j 6=i

φ
(2)
h4

(εi)φ
(1)
h4

(εi)φ
(1)
h4

(εj)X
T
j[

f−1
U (U)

f
(2)
ε (0|X, U,Z)

XiX
T
i

f−1
U (U)

f
(2)
ε (0|X, U,Z)

Kh5(Uj − Ui)Kh5(0)

]
Xi

+
1

2n2

n∑
i 6=j,j 6=t,t 6=i

φ
(2)
h4

(εi)φ
(1)
h4

(εt)φ
(1)
h4

(εj)X
T
j[

f−1
U (U)

f
(2)
ε (0|X, U,Z)

XiX
T
i

f−1
U (U)

f
(2)
ε (0|X, U,Z)

Kh5(Ut − Ui)Kh5(Uj − Ui)

]
Xt

= Z12,31 + Z12,32 + Z12,33.

Z12,31 can be rewritten as

Z12,31 =
1

2n2

n∑
i=1

φ
(2)
h4

(εi) (φ
(1)
h4

(εi))
2XT

i

[
f−2
U (U)

(f
(2)
ε (0|X, U,Z))2

XiX
T
i K

2
h5

(0)

]
Xi

+
1

2n2

n∑
i=1

n∑
j=1,j 6=i

φ
(2)
h4

(εi) (φ
(1)
h4

(εj))
2XT

j

[
f−2
U (U)

(f
(2)
ε (0|X, U,Z))2

XiX
T
i K

2
h5

(Uj − Ui)

]
Xj + op(1),

where we can obtain

Z12,31 =

∫
φ2(t)t2dt

2nh6
4h

2
5

f−2
U (U)

(f
(2)
ε (0|X, U,Z))2

fε(0|X, U,Z)

∫
K2(t)dtXT

i XiX
T
i XiK

2(0)

+Op((n
3h4

5h
13
4 )−1/2) +Op((n

3h3
5h

12
4 )−1/2) = Op((nh

6
4h

2
5)−1).

It is obvious that E(Z12,32) = E(Z12,33) = 0. Thus, Z12,32 = Op((n
3h3

5h
12
4 )−1/2).

32



We can re-write Z12,33 as

Z12,33 =
1

2n

n∑
t,j=1,t 6=j

φ
(1)
h4

(εi)φ
(1)
h4

(εj)
1

n

∑
i=1,i 6=j,i 6=t

φ
(2)
h4

(εi)

XT
j

[
f−1
U (U)

f
(2)
ε (0|X, U,Z)

XiX
T
i

f−1
U (U)

f
(2)
ε (0|X, U,Z)

Kh5(Ut − Ui)Kh5(Uj − Ui)

]
Xt,

where

1

n

∑
i=1,i 6=j,i 6=t

φ
(2)
h4

(εi)X
T
j

[
f−1
U (U)

f
(2)
ε (0|X, U,Z)

XiX
T
i

f−1
U (U)

f
(2)
ε (0|X, U,Z)

Kh5(Ut − Ui)Kh5(Uj − Ui)

]
Xt

=
1

h2
4h5

XT
j

f−1
U (U)

(f
(2)
ε (0|X, U,Z))2

XiX
T
i Xtfε(0|X, U,Z)

∫
K(t)K

(
t− Ut − Uj

h5

)
dt

+Op((nh
3
5h

5
4)−1/2).

We then have

Z12,33 =
1

2n

1

h2
4h5

n∑
t,j=1,j 6=t

φ
(1)
h4

(εi)φ
(1)
h4

(εj)X
T
j

f−1
U (U)

(f
(2)
ε (0|X, U,Z))2

XiX
T
i Xtfε(0|X, U,Z)∫

K(t)K
(
t− Ut − Uj

h5

)
dt+Op((nh

3
5h

5
4)−1/2).

Combining the above equations, we obtain

Z12,3 =
1

2n

1

h2
4h5

n∑
t,j=1,j 6=t

φ
(1)
h4

(εi)φ
(1)
h4

(εj)X
T
j

f−1
U (U)

(f
(2)
ε (0|X, U,Z))2

XiX
T
i Xtfε(0|X, U,Z)∫

K(t)K
(
t− Ut − Uj

h5

)
dt+Op((nh

3
5h

5
4)−1/2).

Furthermore, we get

Z12 =
1

2n

1

h2
4h5

n∑
t,j=1,j 6=t

φ
(1)
h4

(εi)φ
(1)
h4

(εj)X
T
j

f−1
U (U)

(f
(2)
ε (0|X, U,Z))2

XiX
T
i Xtfε(0|X, U,Z)∫

K(t)K
(
t− Ut − Uj

h5

)
dt+Op((nh

3
5h

5
4)−1/2) +Op((n

3h3
5h

12
4 )−1/2) +Op((nh

6
4h

2
5)−1).

Combining the above equations, with the bandwidth conditions imposed in the paper sat-

isfied, we have

Z1 =− f−1
U (U)

h3
4h5f

(2)
ε (0|X, U,Z)

fε(0|X, U,Z)

∫
t2φ2(t)dtXT

i XiK(0)
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− f−1
U (U)

nf
(2)
ε (0|X, U,Z)

n∑
i=1

n∑
j 6=i

φ
(1)
h4

(εi)φ
(1)
h4

(εj)X
T
i XjKh5(Uj − Ui)

+
1

2n

1

h2
4h5

n∑
t,j=1,j 6=t

φ
(1)
h4

(εi)φ
(1)
h4

(εj)X
T
j

f−1
U (U)

(f
(2)
ε (0|X, U,Z))2

XiX
T
i Xtfε(0|X, U,Z)∫

K(t)K
(
t− Ut − Uj

h5

)
dt+Op(nh

4
5h
−2
4 ) +Op(

√
nh2

5h
−3/2
4 ).

Based on the above calculations, we get

T0 = µn +Wn + dn,

where dn = Op(nh
4
5h
−2
4 ) +Op(

√
nh2

5h
−3/2
4 ),

µn = − f−1
U (U)

h3
4h5f

(2)
ε (0|X, U,Z)

fε(0|X, U,Z)

∫
t2φ2(t)dtXT

i XiK(0), and

Wn = − f−1
U (U)

nf
(2)
ε (0|X, U,Z)

n∑
i=1

n∑
j 6=i

φ
(1)
h4

(εi)φ
(1)
h4

(εj)X
T
i XjKh5(Uj − Ui)

+
1

2n

1

h2
4h5

n∑
t,j=1,j 6=t

φ
(1)
h4

(εi)φ
(1)
h4

(εj)X
T
j

f−1
U (U)

(f
(2)
ε (0|X, U,Z))2

XiX
T
i Xtfε(0|X, U,Z)∫

K(t)K
(
t− Ut − Uj

h5

)
dt.

It is noticed that E(Wn) = 0. Let Wn =
∑n

i,j=1,i 6=j ωi,j, where

ω(i, j) = − f−1
U (U)

nf
(2)
ε (0|X, U,Z)

φ
(1)
h4

(εi)φ
(1)
h4

(εj)X
T
i XjKh5(Uj − Ui) +

1

2n

1

h2
4h5

φ
(1)
h4

(εi)φ
(1)
h4

(εj)

XT
j

f−1
U (U)

(f
(2)
ε (0|X, U,Z))2

XiX
T
i Xtfε(0|X, U,Z)

∫
K(t)K

(
t− Ut − Uj

h5

)
dt.

As {εi}ni=1 are independent with E(εi) = 0, we have

V ar(Wn) = 2n(n− 1)E(ω(1, 2))2.

Due to the complicated form, we here use σ2
n = V ar(Wn) to denote the variance of Wn. Next,

we discuss the asymptotic distribution of Wn. Let Wi,j = ω(i, j) + ω(j, i), we have

Wn =
n∑

i,j=1,i<j

ωi,j.

It is easy to show that Wn is clear (De Jong, 1987), and G1, G2, and G4 are of lower than
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(V ar(Wn))2, where

G1 =
∑

16i<k6n

E
(
ω4
i,k

)
G2 =

∑
16i<j<k6n

E
(
ω2
i,kω

2
i,j

)
+ E

(
ω2
j,kω

2
j,i

)
+ E

(
ω2
k,iω

2
k,j

)
,

G4 =
∑

16i<j<k<l6n

E (ωi,kωi,jωl,kωl,j) + E (ωi,jωi,lωk,jωk,l) + E (ωi,kωi,lωj,kωj,l) .

By Proposition 3.2 of De Jong (1987), it can be shown that σ−1
n Wn

d→ N(0, 1). This implies

that

σ−1
n (T0 − µn + dn)

d→ N(0, 1).

�

S5-9: Proof of Theorem 2.9

Let L∗0 and L∗1 be defined similarly as L0 and L1 based on a bootstrap sample {(Y ∗i ,X i, Ui,Zi))}ni=1.

We use the superscript ∗ of a quantity as its bootstrap analogue. Then,

T ∗0 = L∗1 − L∗0.

The proof mainly consists of the two steps. (1) Noting Y ∗i = XT
i α̃+ZT

i β̃+ ε̃∗i and bandwidths

satisfy the corresponding restrictions and using the same arguments as the Proof of Theorem

2.8, it follows that

L1 − L0 = µn +W ∗
n + dn,

where W ∗
n is defined similarly as Wn but with εi replaced by ε̃∗i . (2) We further use the arguments

similar to that given in Theorem 2.8 to obtain that

σ−1
n W ∗

n
d→ N(0, 1),

which completes the proof.

�

S5-10: Proof of Theorem 3.1

Following the steps to prove Theorem 2.3, we define δn = h2
3 +

√
(nh3

3)−1 + an. Then, it is

sufficient to show that for any given η, there exists a large number constant c such that

P

{
sup
‖µ‖=c

LP (β0 + δnµ) < LP (β0)

}
≥ 1− η,
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where µ is a k× 1 dimension vector. The above equation implies that with probability at least

1 − δ, there exits a local maximum in the ball {β0 + δnµ : ‖µ‖ ≤ c}. Using pλ(0) = 0 and

Taylor expansion, it follows that

1

n
(LP (β0 + δnµ)− LP (β0)) =Qn(β0 + δnµ)−Qn(β0)−

s∑
j=1

[pλj (|βj0 + δnµj|)− pλj (|βj0|)]

=δnQ
(1)
n (β0)Tµ+

1

2
δ2
nµ

TQ(2)
n (β0)Tµ+

1

6
δ3
nµ

TQ(3)
n (β∗0)TµTµ

−
s∑
j=1

[
δnp

(1)
λ (|βj0|) sgn (βj0)µj + δ2

np
(2)
λ (|βj0|)µ2

j {1 + op(1)}
]

=M1 +M2 +M3 +M4,

where ‖β∗0 − β0‖ ≤ cδn. From the Proof of Theorem 2.3, we know M1 = Op(δ
2
nc), M2 =

Op(δ
2
nc

2), and M3 = Op(δ
3
n). By choosing bigger enough c, M2 could domain M1 and M3 with

probability 1− η. Note that M4 is bounded by

√
sδn max

{
p

(1)
λ (|βj0|) : βj0 6= 0

}
‖µ‖+ δ2

n max
{
p

(2)
λ (|βj0|) : βj0 6= 0

}
‖µ‖2,

which is also dominated by M2 as max
{
p

(2)
λ (|βj0|) : βj0 6= 0

}
→ 0. Because Q

(2)
n (β0) < 0, we

have LP (β0 + δnµ) < LP (β0) with probability 1− η for η > 0 by choosing a sufficiently large c.

�

S5-11: Proof of Theorem 3.2

By the property of SCAD penalty function, as λmax → 0, it can be shown that an = 0 for

large n. Then, according to Theorem 3.1, it is sufficient to show that for any βP that satisfies

‖βP − β0‖ = Op(δn) and for some small ε = cδn in which δn = h2
3 +

√
(nh3

3)−1, when n → ∞,

with probability tending to one, we have

∂LP (β)

∂βPj
< 0, for 0 < βPj < ε, j = s+ 1, . . . , k,

∂LP (β)

∂βPj
> 0, for − ε < βPj < 0, j = s+ 1, . . . , k,

which indicates that the maximizer of LP (β) gets at βPj = 0, j = s + 1, . . . , k. Similar to the

proof of Theorem 3.1, as Q
(1)
n (β0) = Op(δn) and ‖βP − β0‖ = Op(δn), we obtain

∂LP (β)

∂βPj
=nQ(1)

n (β)− np(1)
λ

(
|βPj |

)
sgn βPj

=nQ(1)
n (β0) + nQ(2)

n (β0)(β0j − βPj ) +
n

2
Q(3)
n (β∗0)(β0j − βPj )2 − np(1)

λ

(
|βPj |

)
sgn βPj
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=− nλ
{
λ−1p

(1)
λ

(
|βPj |

)
sgn βPj +Op (δn/λ)

}
,

where β∗0 is between β and β0. As δ−1
n λ ≥ δ−1

n λmin →∞ when n→∞ and lim infn→0 lim infβPj →0

p
(1)
λ (|βPj |)/λ > 0, the sign of the derivation is completely determined by that of βPj . Then, the

above two equations hold. This completes the proof.

�

S5-12: Proof of Theorem 3.3

From the Proof of Theorem 3.2, we know that for j = 1, ..., s, we have

1

n

∂LP (β)

∂βj

∣∣∣
β=((β̂P

0′ )
T ,0)T

=Q(1)
n (β̂P0′)− p

(1)
λ

(
|β̂P0′j|

)
sgn β̂P0′j

=Q(1)
n (β0′) +Q(2)

n (β0′)(β0′j − β̂P0′j) +
1

2
Q(3)
n (β∗0)(β0′j − β̂P0′j)2

−
{
p

(1)
λ (|β0′j|) sgn β0′j + (p

(2)
λ (|β0′j|) + op(1))(β̂P0′j − β0′j)

}
.

Combining these equations, we have

Q(1)
n (β0′) +Q(2)

n (β0′)(β0′j − β̂P0′j) +
1

2
Q(3)
n (β∗0)(β0′j − β̂P0′j)2

−
{

Ψλ + (Φλ + op(1))(β̂P0′j − β0′j)
}

= 0.

From Theorem 3.1, following by Slutskys theorem and the central limit theorem, we know

h2
3

2
M(1) − J(1)(β̂

P

0′ − β0′)−
{

Ψλ + (Φλ + op(1))(β̂
P

0′ − β0′)
}

= 0,

√
nh3

3(J(1) + Φλ)

(
β̂
P

0′ − β0′ + (J(1) + Φλ)
−1

(
Ψλ −

h2
3

2
M(1)

))
d→ N

(
0,

∫
t2φ2(t)dtL(1)

)
,

where J(1),M(1) and L(1) are the submatrices of J,M and L.

�

S5-13: Proof of Theorem S1

Notice that the notations in this proof are independent of the notations in other proofs.

To start, we define X∗Ti = (Xip, Xip(Ui − u)/λ2, Xip(Ui − u)2/λ2
2, Xip(Ui − u)3/λ3

2), θ =

(ap(u), bp(u), cp(u), dp(u))T , θ0 = (a0p(u), b0p(u), c0p(u), d0p(u))T , H = diag(1, · · · , 1︸ ︷︷ ︸
p

, λ2, · · · , λ2︸ ︷︷ ︸
p

,

λ2
2, · · · , λ2

2︸ ︷︷ ︸
p

, λ3
2, · · · , λ3

2︸ ︷︷ ︸
p

), θ̃1 = Hθ, and θ10 = Hθ0.
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Let δn = λ2
1 + λ4

2 +
√

(nλ3
1λ2)−1, then it is sufficient to show that for any given η, there

exists a large number constant c such that P
{

sup‖µ‖=cQn (θ10 + δnµ) < Qn (θ10)
}
≥ 1 − η,

where θ10 is the true value of the parameter. Using Taylor expansion, it follows that

Qn (θ10 + δnµ)−Qn (θ10)

=
1

nλ1λ2

n∑
i=1

[
φ

(
εi + R̃(X i, Ui)− δnµTX∗i

λ1

)
K

(
Ui − u
λ2

)

− 1

nλ1λ2

n∑
i=1

φ

(
εi + R̃(X i, Ui)

λ1

)
K

(
Ui − u
λ2

)]

=
1

nλ1λ2

n∑
i=1

[
−φ(1)

(
εi + R̃(X i, Ui)

λ1

)(
δnµ

TX∗i
λ1

)
K

(
Ui − u
λ2

)

+
1

2
φ(2)

(
εi + R̃(X i, Ui)

λ1

)(
δnµ

TX∗i
λ1

)2

K

(
Ui − u
λ2

)

− 1

6
φ(3)

(
ε∗i
λ1

)(
δnµ

TX∗i
λ1

)3

K

(
Ui − u
λ2

)]
=I10 + I11 + I12,

where ε∗i is between εi + R̃(X i, Ui) and εi + R̃(X i, Ui) − δnµ
TX∗i in which R̃(X i, Ui) =∑p−1

j=1 α0j(Ui)Xij −
∑p−1

j=1 α̃j(Ui)Xij − ZT
i (β̃ − β0) + Xipα0p(Ui) − X∗Ti θ10. Based on the re-

sult Tn = E (Tn) +Op(
√

Var (Tn)), we could consider each part of the above Taylor expansion.

(i) For the first part, which is I10 = 1
nλ1λ2

∑n
i=1

(
−φ(1)

(
εi+R̃(Xi,Ui)

λ1

)(
δnµTX∗i

λ1

)
K
(
Ui−u
λ2

))
,

we can re-write it as

E(I10) =
−δn
λ1λ2

E

(
φ(1)

(
εi + R̃(X i, Ui)

λ1

)
µTX∗i
λ1

K

(
Ui − u
λ2

))

=
−δn
λ1λ2

E

(
φ(1)

(
εi
λ1

)
µTX∗i
λ1

K

(
Ui − u
λ2

)
+ φ(2)

(
εi
λ1

)
R̃(X i, Ui)µ

TX∗i
λ2

1

K

(
Ui − u
λ2

)

+
1

2
φ(3)

(
ε∗∗i
λ1

)
R̃2(X i, Ui)µ

TX∗i
λ3

1

K

(
Ui − u
λ2

))
= I101 + I102 + I103,

where ε∗∗i is between εi and εi + R̃(X i, Ui). As the order of ε∗∗i is the same as that of εi, when

we do the calculations associated with I103, we instead use εi directly. By some calculations for

each part, with the conditions h3/h5 → 0, h4 = o(λ2
2), and h5 = o(λ2

2) held, we can get

I101 =
−δn
λ1λ2

E
(
φ(1)

(
εi
λ1

)
µTX∗i
λ1

K

(
Ui − u
λ2

))
= Op(δncλ

2
1).
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I102 =
−δn
λ1λ2

E

(
φ(2)

(
εi
λ1

)
µTX∗i
λ1

K

(
Ui − u
λ2

)
R̃(X i, Ui)

λ1

)

=
−δn
λ1λ2

∫∫∫
φ(2)

(
ε

λ1

)
µTX∗

λ1

fε(ε|X̂)K

(
U − u
λ2

)
Xipα0p(Ui)−X∗Ti θ10

λ1

fU(U)dUdεdF (X̂)

+
−δn
λ1λ2

∫∫∫
φ(2)

(
ε

λ1

)
µTX∗

λ1

fε(ε|X̂)K

(
U − u
λ2

)
∑p−1

j=1 α̃0j(Ui)Xij −
∑p−1

j=1 α̃j(Ui)Xij −ZT
i (β̃ − β0)

λ1

fU(U)dUdεdF (X̂)

=Op(δncλ
4
2) +Op(h

2
4) +Op(h

2
5) = Op(δncλ

4
2).

I103 ≈
−δn
λ1λ2

E

(
1

2
φ(3)

(
εi
λ1

)
R̃2(X i, Ui)µ

TX∗i
λ3

1

K

(
Ui − u
λ2

))
= op(δncλ

4
2).

Meanwhile, combining the results from Theorem 2.1, with the condition λ4
2/h6 → 0 held, we

can obtain

δ2
n

λ2
1λ

2
2

E
(
φ(1)

(
εi
λ1

)
µTX∗i
λ1

K

(
Ui − u
λ2

))2

= Op(δ
2
nc

2(λ3
1λ2)−1).

δ2
n

λ2
1λ

2
2

E

(
φ(2)

(
εi
λ1

)
µTX∗i
λ1

K

(
Ui − u
λ2

)
R̃(X i, Ui)

λ1

)2

=
δ2
n

λ2
1λ

2
2

∫∫∫
φ(2)2

(
ε

λ1

)
(µTX∗)2

λ2
1

fε(ε|X̂)K2

(
U − u
λ2

)
R̃2(X, U)

λ2
1

fU(U)dUdεdF (X̂)

=op(δ
2
nc

2(λ3
1λ2)−1).

These indicate I10 = Op(δnc(λ
2
1 + λ4

2)) + Op(
√
δ2
nc

2(nλ3
1λ2)−1) = Op(δ

2
nc).

(ii) For the second part, I11 = 1
nλ1λ2

∑n
i=1

(
1
2
φ(2)

(
εi+R̃(Xi,Ui)

λ1

)(
δnµTX∗i

λ1

)2

K
(
Ui−u
λ2

))
, we

can re-write it as

E(I11) =
δ2
n

2λ1λ2

E

(
φ(2)

(
εi + R̃(X i, Ui)

λ1

)
(µTX∗i )2

λ2
1

K

(
Ui − u
λ2

))

=
δ2
n

2λ1λ2

E

(
φ(2)

(
εi
λ1

)
(µTX∗i )2

λ2
1

K

(
Ui − u
λ2

)
+ φ(3)

(
εi
λ1

)
R̃(X i, Ui)(µ

TX∗i )2

λ3
1

K

(
Ui − u
λ2

)

+
1

2
φ(4)

(
ε∗∗i
λ1

)
R̃2(X i, Ui)(µ

TX∗i )2

λ4
1

K

(
Ui − u
λ2

))
=I111 + I112 + I113.

As the order of ε∗∗i is the same as that of εi, when we do the calculations associated with I113,
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we instead use εi directly. Combining the results obtained from Proof of Theorem 2.1 and

assumption that h3/h5 → 0, we can get

I111 =
δ2
n

2λ1λ2

E
(
φ(2)

(
εi
λ1

)
(µTX∗i )2

λ2
1

K

(
Ui − u
λ2

))
= Op((δnc)

2).

I112 =
δ2
n

2λ1λ2

E

(
φ(3)

(
εi
λ1

)
R̃(X i, Ui)(µ

TX∗i )2

λ3
1

K

(
Ui − u
λ2

))
= op((δnc)

2).

Meanwhile, we can prove that I113 = op((δnc)
2) and obtain the following result

δ4
n

4λ2
1λ

2
2

E
(
φ(2)

(
εi
λ1

)
(µTX∗i )2

λ2
1

K

(
Ui − u
λ2

))2

= Op((δnc)
4(λ2λ

5
1)−1).

These indicate that the second part will dominate the first part when we choose c big enough.

(iii) The same way to calculate the third part. As ε∗i is between εi + R̃(X i, Ui) and

εi + R̃(X i, Ui)− δnµTX∗i , the order of ε∗i is the same as the order of εi, indicating that we can

obtain

I12 ≈
1

nλ1λ2

n∑
i=1

(
−1

6
φ(3)

(
εi
λ1

)(
δnµ

TX∗i
λ1

)3

K

(
Ui − u
λ2

))
.

Combining the results obtained from the Proof of Theorem 2.1, it can be seen that the second

part dominates the third part.

Based on these, we can choose c bigger enough such that the second term dominates the

other two terms with probability 1−η. Because the second term is negative, P{sup‖µ‖=cQn(θ10

+δnµ) < Qn (θ10)} ≥ 1− η holds. This completes the proof.

�

S5-14: Proof of Theorem S2

Following the same steps as proving Theorem S1, θ̃1 must satisfy the following equation

− 1

nλ2
1λ2

n∑
i=1

φ(1)

(
εi +R(X i, Ui,Zi)

λ1

)
K

(
Ui − u
λ2

)
X∗i = 0,

where R(X i, Ui,Zi) = R̃(X i, Ui)−X∗Ti (θ̃1 − θ10). By taking Taylor expansion, we can obtain

− 1

nλ2
1λ2

n∑
i=1

φ(1)

(
εi
λ1

)
K

(
Ui − u
λ2

)
X∗i +

1

nλ3
1λ2

n∑
i=1

φ(2)

(
εi
λ1

)
K

(
Ui − u
λ2

)
X∗i (R̃(X i, Ui)

−X∗Ti (θ̃1 − θ10))− 1

nλ4
1λ2

n∑
i=1

φ(3)

(
ε̃∗i
λ1

)
K

(
Ui − u
λ2

)
X∗i

(
R̃(X i, Ui)−X∗Ti (θ̃1 − θ10)

)2

= 0,
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where ε̃∗i is between εi and εi + R̃(X i, Ui) − X∗Ti (θ̃1 − θ10). From Theorem S1, we know

‖θ̃1 − θ10‖ = Op(δn), which indicates that

sup
i:|Ui−u|/λ2≤1

|R(X i, Ui,Zi)| ≤ sup
i:|Ui−u|/λ2≤1

{|R̃(X i, Ui)|+ |X∗Ti (θ̃1 − θ10)|}

= Op(‖θ̃1 − θ10)‖) = Op(δn).

Thus, the third part which is associated with (R̃(X i, Ui) −X∗Ti (θ̃1 − θ10))2 is dominated by

the second part which is associated with R̃(X i, Ui)−X∗Ti (θ̃1 − θ10). We then mainly focus on

the first two parts of the above equation.

Considering− 1
nλ21λ2

∑n
i=1 φ

(1)
(
εi
λ1

)
K
(
Ui−u
λ2

)
X∗i+

1
nλ31λ2

∑n
i=1 φ

(2)
(
εi
λ1

)
K
(
Ui−u
λ2

)
X∗i R̃(X i,

Ui), with the conditions h3/h5 → 0, h4 = o(λ2
2), and h5 = o(λ2

2) held, we can obtain

E

(
− 1

nλ2
1λ2

n∑
i=1

φ(1)

(
εi
λ1

)
K

(
Ui − u
λ2

)
X∗i

+
1

nλ3
1λ2

n∑
i=1

φ(2)

(
εi
λ1

)
K

(
Ui − u
λ2

)
X∗i R̃(X i, Ui)

)

=− 1

λ2
1λ2

∫∫∫
φ(1)

(
ε

λ1

)
X∗fε(ε|X̂)K

(
U − u
λ2

)
fU(U)dUdεdF (X̂)

+
1

λ3
1λ2

∫∫∫
φ(2)

(
ε

λ1

)
X∗fε(ε|X̂)K

(
U − u
λ2

)
R̃(X, U)fU(U)dUdεdF (X̂)

=
λ2

1

2
fU(u)


E(Xf

(3)
ε (0|X̂)|u)

0

µ2E(Xf
(3)
ε (0|X̂)|u)

0

−
λ4

2α
(4)
0p (u)

24
fU(u)


µ4E(XXTf

(2)
ε (0|X̂)|u)

0

µ6E(XXTf
(2)
ε (0|X̂)|u)

0


 {1 + op(1)}.

Considering 1
nλ31λ2

∑n
i=1 φ

(2)
(
εi
λ1

)
K
(
Ui−u
λ2

)
X∗iX

∗T
i , by directly calculating, we have

E

(
1

nλ3
1λ2

n∑
i=1

φ(2)

(
εi
λ1

)
K

(
Ui − u
λ2

)
X∗iX

∗T
i

)

=
1

λ3
1λ2

∫∫∫
φ(2)

(
ε

λ1

)
X∗X∗Tfε(ε|X̂)K

(
U − u
λ2

)
fU(U)dUdεdF (X̂) = fU(u)

E(XXTf
(2)
ε (0|X̂)|u) 0 µ2E(XXTf

(2)
ε (0|X̂)|u) 0

0 µ2E(XXTf
(2)
ε (0|X̂)|u) 0 µ4E(XXTf

(2)
ε (0|X̂)|u)

µ2E(XXTf
(2)
ε (0|X̂)|u) 0 µ4E(XXTf

(2)
ε (0|X̂)|u) 0

0 µ4E(XXTf
(2)
ε (0|X̂)|u) 0 µ6E(XXTf

(2)
ε (0|X̂)|u)

 .

Meanwhile, with the condition λ4
2/λ1 → 0 held, we can obtain
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Var

(
− 1

nλ2
1λ2

n∑
i=1

φ(1)

(
εi
λ1

)
K

(
Ui − u
λ2

)
X∗i +

1

nλ3
1λ2

n∑
i=1

φ(2)

(
εi
λ1

)
K

(
Ui − u
λ2

)
X∗i R̃(X i, Ui)

)

=
1

nλ4
1λ

2
2

∫∫∫
φ(1)2

(
ε

λ1

)
X∗X∗Tfε(ε|X̂)K2

(
U − u
λ2

)
fU(U)dUdεdF (X̂)(1 + op(1))

=

∫
τ 2φ2(τ)dτ

nλ3
1λ2

fU(u)
v0E(XXTfε(0|X̂)|u) 0 v2E(XXTfε(0|X̂)|u) 0

0 v2E(XXTfε(0|X̂)|u) 0 v4E(XXTfε(0|X̂)|u)

v2E(XXTfε(0|X̂)|u) 0 v4E(XXTfε(0|X̂)|u) 0

0 v4E(XXTfε(0|X̂)|u) 0 v6E(XXTfε(0|X̂)|u)


(1 + op(1)).

For the remaining part, we can follow the same idea in the Proof of Theorem 2.2 to easily

obtain the result.
�
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