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Abstract

We in this paper propose a semiparametric partially linear varying coefficient (SPLVC)
modal regression, in which the conditional mode function of the response variable given co-
variates admits a partially linear varying coefficient structure. In comparison to existing
regressions, the newly developed SPLVC modal regression captures the “most likely” effect
and provides superior prediction performance when the data distribution is skewed. The
consistency and asymptotic properties of the resultant estimators for both parametric and
nonparametric parts are rigorously established. We employ a kernel-based objective func-
tion to simplify the computation and a modified modal-expectation-maximization (MEM)
algorithm to estimate the model numerically. Furthermore, taking the residual sums of
modes as the loss function, we construct a goodness-of-fit testing statistic for hypotheses on
the coefficient functions, whose limiting null distribution is shown to follow an asymptoti-
cally y?-distribution with a scale dependent on density functions. To achieve sparsity in the
high-dimensional SPLVC modal regression, we develop a regularized estimation procedure
by imposing a penalty on the coefficients in the parametric part to eliminate the irrelevant
variables. Monte Carlo simulations and two real-data applications are conducted to examine
the performance of the suggested estimation methods and hypothesis test. We also briefly
explore the extension of the SPLVC modal regression to the case where some varying coef-

ficient functions admit higher-order smoothness.
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1 Introduction

Semiparametric models have become the latest state-of-the-art in recent years due to the flexible
specification that allows traditional linear models to be combined with nonparametric models.
They can reduce the possibility of model misspecification and ameliorate some of the drawbacks
of a fully nonparametric model, such as the “curse of dimensionality” and lack of extrapola-
tion capability. One popular semiparametric specification is a semiparametric partially linear
varying coefficient (SPLVC) regression, which models the key covariates linearly and the rest
of the variables nonparametrically. In particular, the response variable Y € R depends on the
associated covariates X; € RP, Z; € R* and U in the structure of (Ahmad et al., 2005; Fan
and Huang, 2005; Zhou and Liang, 2009)

where U; = (Uy1, -+ ,Uj,) is a 1 x g vector of index variables, a(U;) = (a1(Uy), - -+, a,(U;))"
is a p x 1 vector of unknown smooth nonparametric functions of U;, B8 = (81, -+, B)? is a k-
dimensional vector of unknown parameters, the superscript 1" denotes the transpose of a vector
or matrix, and ¢; is the unobservable random error that satisfies certain additional properties,
such as conditional zero mode in this paper. To avoid the “curse of dimensionality”, we let U; € R
be a scalar throughout the rest of this paper, which ranges over a nondegenerate compact interval
assumed to be the unit interval [0, 1] with little loss of generality. The extension to multivariate
U, involves no fundamentally new ideas but more complicated notations. According to Fan and
Huang (2005), (1.1) allows for nonlinear interaction between the covariates U; and X; to such
an extent that the impact of X; varies at different levels of the covariate U; with different linear
models, thus increasing the flexibility of the model. (1.1) is a prevalent model in sociology,
economics, finance, and statistics because it provides a parsimonious approach for inference in
a variety of contents. Of particular interest is that (1.1) is flexible enough to form a general
family of numerous multidimensional models. For instance, it includes the varying coefficient
model when Z; = 0, the semiparametric partially linear model when X; = 1 and p = 1, and the
single index model when Z; = 0, X; = 1, and p = 1. This suggests that the technical results
developed in what follows can be straightforwardly extended to other non- and semiparametric

modal regression models.

A large number of estimation methods, such as the local linear method, the profile least
squares method, the average derivatives method, and the smoothing spline method, are already
well established for estimating (1.1) built upon the idea of mean or quantile; see Ahmad et
al. (2005) for more details. Aside from these, we can alternatively estimate (1.1) by Robinson
(1988) model utilizing a two-step estimation approach, in which we concentrate out the unknown

functional coefficient a(U;) by using a generalization of residual regression. All of the proposals



discussed thus far, however, are concerned with the conventional mean or quantile regression.
When the data contain a number of outliers or have a skewed distribution (non-Gaussian errors),
the traditional nonparametric regressions applied to the SPLVC model may struggle to extract
the intrinsic trends, resulting in degraded performance. For example, mean regression may
break down in practice if the error distribution lacks a finite second moment (e.g., Cauchy
distribution). Although quantile regression can describe the entire situation of the conditional
distribution of a dependent variable given covariates, it fails to reveal how the conditional mode
depends on covariates directly to detect the “most likely” effect and may produce low density
point predictions; see Figure 1. To gain new insights into the underlying structure of skewed
data, we investigate (1.1) under the content of modal regression and introduce a so-called SPLVC
modal regression to target the most probable value of a dependent variable given covariates.
Besides presenting a comprehensive description of how the conditional mode of the response
variable depends on covariates, SPLVC modal regression can provide a shorter prediction interval
than mean or quantile regression because with the same interval length, the interval around the
conditional mode covers more samples than the interval around the conditional mean or quantile
(Figure 1). Meanwhile, SPLVC modal regression can capture the “most likely” effect of certain
covariates that would otherwise be missed by mean or quantile regression. Therefore, it is
of interest and desire to develop a statistical methodology to complement the current modal
regression literature. To the extent of our knowledge, the present paper is the first work to

systematically develop the theory and methodology for flexible SPLVC modal regression.
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Figure 1: Comparison of Prediction Performance with Skewed Data

Note: Among the three location or centre measures (mean, median, and mode), with the same
coverage probability, modal prediction provides the narrowest width (left plot); while it produces
the highest coverage probability given the same prediction width (right plot).

There are two types of modal regression studied in the literature: unimodal regression
and multimodal regression. Both of them can be obtained by optimizing a joint or conditional
distribution function. Suppose that X is univariate with a compactly supported density. Modal

regression can be defined as
mg(x) = Mode(Y|X = ) = arg max fY|X =2z) =arg max fY,z), (1.2)
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where f(Y|X =z) = f(Y,z)/f(z), f(Y|X = z) is the conditional density of Y given z, f(Y,x)
is the joint distribution of ¥ and z, and f(x) is the marginal distribution of z. We can then
utilize some indirect density-based estimation methods to capture modal regression lines (Chen
et al., 2016). However, such an idea based on density estimation is not particularly feasible in
the presence of high-dimensional covariates and typically has very poor convergence rates. To
avoid estimating the density function, researchers explored the direct imposition of certain mode
structures on Mode(Y|X = x). The path-breaking papers of modal regression in econometrics
are Lee (1989, 1993), in which they investigated modal regression by observing that the con-
ditional mode from the truncated data provides a consistent estimate of the conditional mean
for the original non-truncated data. To achieve consistency, Lee (1989, 1993) required constant
tuning parameters and symmetric error density assumptions around zero on models, implying
that their modal regression estimator is essentially a kind of robust regression estimator. Until
only very recently, Kemp and Santos Silva (2012) and Yao and Li (2014) proposed a kernel-
based objective function with the bandwidth approaching zero to achieve a consistent modal
estimator even for skewed data, where they forced a linear regression structure on Mode(Y|X).
Such findings significantly simplify computations and widen the applicability of modal regres-
sion, making it a valuable addition to the regression tools for social, economic, financial, and
statistical sciences. Since then, there has been an upsurge of interest and effort in developing
modal regression; see for example, the work of Chen et al. (2016), Yao and Xiang (2016), Krief
(2017), Chen (2018), Ota et al. (2019), Zhou and Huang (2019), Feng et al. (2020), Kemp et al.
(2020), and Ullah et al. (2021, 2022) and references therein.

Motivated by the aforementioned literature, we devote to investigating (1.1) in the context
of modal regression, where we treat all bandwidths as going to zero and enable the density
of error terms to be skewed and dependent on covariates. Differing from traditional mean

regression under the error condition E (¢;| X ;, U;, Z;) = 0, we have SPLVC modal regression
Mode(Yi| X, Ui, Zi) = X{ a(U;) + Z{ 3 (1.3)

with the assumptions that ¢; is independent and identically distributed (i.i.d.) and admits a
unique global zero mode such that Mode (¢;|X;,U;, Z;) = 0. The primary goal of this paper
is to develop theories and methods for estimating the unknown parameter 8 and the unknown
functional coefficient a(U;), which can be naturally interpreted as the effects of covariates on
the “most likely” data points of Y or the change in the mode of the response variable Y
corresponding to a unit change in the covariate. Because a(U;) is modeled nonparametrically,
it is reasonable to consider local linear estimation. Nonetheless, since the arguments of 3 (i.e.,
global estimator) and a(U;) (i.e., local estimator) are different, they should be estimated with
modal parametric and nonparametric rates of convergence, respectively. We thus develop a

three-stage estimation procedure to estimate (1.3) by approximating a(U;) with a local linear



function and updating estimates in different stages through a kernel-based objective function.

We obtain the convergence rates and establish the asymptotic distributions of the finite
dimensional parameters and varying coefficients in different stages under regularity conditions.
We show that the second- and third-stage estimators are oracles in the sense that the asymptotic
properties are unaffected by the unknown components. The convergence rate of SPLVC modal
regression is slower than that of mean regression, which is the cost we must pay to estimate the
conditional mode (Parzen, 1962). Nevertheless, based on the simulation results in this paper,
the SPLVC modal regression generally still provides estimates with smaller mean squared errors
(MSESs) and narrower prediction intervals than the SPLVC mean regression for finite sample
performance with skewed data. Since there are no closed-form solutions for the SPLVC modal
regression, we introduce a modified MEM algorithm to efficiently achieve numerical estimates
with the use of a normal kernel function. Note that the proposed estimation procedure implicitly
assumes that all varying coefficient functions possess the same minimum degree of smoothness
and hence can be approximated equally effectively. If some functional coefficients are known to
have higher-order of differentiability, the bias rate of all estimated varying coefficient functions
will be determined by the rate of the local polynomial with the lowest degree. In this case, the
suggested estimation procedure based on local linear approximation may be ineffective (in the
sense of optimal convergence rate). We in the supplementary note S1 generalize the proposed
model to the case where some varying coefficient functions admit higher-order smoothness, and

present a two-step estimation method that can attain the optimal convergence rate.

Furthermore, the most essential assumption in the developed estimation procedure is that
the subset of variables with a constant or varying effect on the response is known in advance.
However, it is impractical to accomplish this artificially in the application. Due to the difference
in estimation rate, treating the parametric component of the SPLVC modal regression as a
nonparametric function would incur a loss in efficiency. Therefore, it is of particular interest
and importance to determine whether the varying coefficient functions truly vary with a certain
variable or follow the linear form. Because of differences in function estimation, the classical
profile likelihood ratio test for the mean estimate cannot be utilized directly for testing varying
coefficient functions in modal regression. To develop an easily understandable and generally
applicable method for the SPLVC regression regarding conditional mode processes, we extend
the generalized likelihood technique of Fan et al. (2001) to propose a goodness-of-fit testing
statistic for hypotheses on the coefficient functions by taking a kernel-based function as the
loss function. The asymptotic behavior of the suggested test demonstrates that its limiting
null distribution follows a x2-distribution with a scale depending on unknown density functions.
Because the asymptotic distribution heavily relies on many unknown terms and is associated
with diverging degrees of freedom, obtaining an accurate distribution for the testing statistic
under consideration is difficult. To avoid density estimation, we construct a residual-based

modal bootstrap procedure to consistently approximate the unknown distribution of the test
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statistic and compute the analogous p-value. The simulation results show that the resulting

testing procedure performs fairly effectively.

Many variables in practical applications might be irrelevant or insignificant, and their in-
clusion would cause a substantial loss in estimation accuracy. As a result, variable selection
should be carried out prior to modeling. In recent decades, many researchers have developed
variable selection procedures based on the concept of penalty functions to model the mean or
quantile of a response variable Y as a function of a selected vector X; see Su and Zhang (2013)
for a detailed review. Although selecting relevant variables in the SPLVC model is not a new
problem, there has been no formal work elaborating variable selection for the SPLVC modal
regression to our knowledge. Generally, variable selection for semiparametric regression models
consists of two components: identifying significant variables in the nonparametric component
and selecting significant variables in the parametric component. Because the proposed test can
be used to identify significant variables in the nonparametric component of the SPLVC modal
regression, we concentrate on the variable section utilizing the penalty function for the paramet-
ric component in this paper. Particularly, the form “Kernel-based objective function+Penalty”
is adopted, which we call penalized SPLVC modal regression. With the proper regularization
parameters and the assumption that the dimension k£ of the parameter 3 is fixed, the penal-
ized modal estimator is shown to possess an oracle property. This implies that the estimator
can correctly select the nonzero coefficients with a probability converging to one and has the
same asymptotic distribution as if the subset of true zero coefficients and the varying coefficient
functions were known. With the aid of a local quadratic approximation, the proposed variable

selection method is computationally convenient by a modified MEM algorithm.

The rest of this paper is organized as follows. In Section 2, we focus on the construction
of a three-stage estimation procedure relying on the local linear approximation to estimate
the newly developed SPLVC modal regression, and present the large sample properties of the
resulting estimators. We also explore bandwidth selection and suggest a varying coefficient
test. Section 3 investigates SPLVC modal regression variable selection with penalty function,
where the oracle property of the variable selection procedure is investigated. The results of
applications to simulated and real datasets are reported in Section 4. Conclusions are given
in Section 5. In the supplementary note, we address the extension of the proposed SPLVC
modal regression to the case where some coefficient functions admit higher-order smoothness,

and provide all technical proofs and additional simulation results.

2 SPLVC Modal Regression

We in this section propose a three-stage estimation procedure to achieve the optimal convergence

rates for both global parameters and varying coefficients. Specifically, in the first stage, the local



linear approximation is employed to get the initial estimators; in the second stage, we obtain
the optimal convergence rate for the parametric estimator using all data points after plugging
in the estimates of varying coefficients; and in the third stage, we re-estimate the varying
coefficient functions through a local linear method after plugging in the estimates of the finite
dimensional parameters. Following that, we discuss practical bandwidth selection and introduce

a goodness-of-fit testing statistic to test whether the varying coefficients are constant.

2.1 Local Linear Modal Estimators

Suppose that {(Y;, X;,U;, Z;)}*, are i.i.d. samples and a(U;) is smooth enough that its first
and second derivatives exist. We then estimate (1.3) by locally approximating the unknown

nonparametric functional coefficient a(U;) with a linear function for a given u € R in the
neighborhood of U, i.e., |U; — u| = o(1),

a;(U;) = aj(u) + aj(”(u)(Ui —u)=a;(u) + bj(u)(U; —u), j=1,---,p,

where “a,, =~ b,” indicates that for sufficiently large n, a, /b, — 1, i.e., a, = b, + 0,(b,), 0,(by,)
represents the term with a probability order smaller than that of b,,, “=” means “is defined as”,
and 045-1) (w)=bj(u) is the first derivative of a;(-). We consider local linear approximation for ease
of presentation, which has advantages in the ability of design adaptation and high asymptotic
efficiency (Fan and Gijbels, 1996), but it is straightforwardly generalized to local polynomial
estimation with the assumption of higher order derivatives.

Denoting a(u) = (aq(u), -+, a,(u))’ € RP and b(u) = (by(u),- - ,b,(u))T € RP, we obtain
the following local kernel-based objective function to recover the unknown functional coefficient

a(U;) and parameter 3 at each data point

Qn(ax(u), b(u), B(u)) = nh11h2 Z¢ (K- — X[ (afu) + b(z;L)l(Ui —w) - Z. g(u)> . (UZ}; u)

(2.1)

where ¢(+) is a nonnegatively symmetric kernel function with bounded support and bandwidth

hy == hy(n) — 0 as n — oo, and K(-) is a bounded and symmetric kernel function associated
with the size of the local neighborhood bandwidth hy := ha(n) — 0 as n approaches infinity. To
prevent notation confusion, we suppress the n for all bandwidths used in this paper. Note that
the kernel function ¢(-) is utilized to target modal estimators, while kernel function K (-) reflects
the fact that (2.1) is only applied to data around u and gives a larger weight to data closer to
the point u, which is consistent with the weight function in classical nonparametric estimation.
According to Yao and Li (2014) and Ullah et al. (2021, 2022), the choice of kernel function
¢(+) is not particularly crucial compared to the choice of bandwidths in modal regression. For

computational simplicity, we choose a standard normal kernel for ¢(-) in this paper to develop a
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modified MEM algorithm. We henceforth use é(u), b(u), and B(u) to denote the naive modal

estimators from (2.1).

Remark 2.1. (Iterative Method) The objective of (2.1) is to provide consistent initial esti-
mators for the following two estimation stages and to make variable selection for the parametric
component easier in Section 3. Nevertheless, we can employ an iterative procedure to obtain
the final efficient estimators for the proposed SPLVC modal regression without conducting the
first-stage estimation. Specifically, (2.3) is mazximized for any given 3. Then, given the es-
timators of a(u) and b(u), we can update B by solving the objective function (2.2). Iterate
these two steps until a stopping rule is satisfied for the convergence of the estimator of 3. The
advantage of this iterative method is that no undersmoothing is required to obtain the optimal
modal convergence rate for the estimator of 3, and thus the common selection criteria for the
optimal bandwidth (i.e., cross-validation) can be directly employed. Such an iterative method,

however, is computationally more expensive than the proposed three-stage estimation procedure.

As 3 is a global parameter and only data in the local neighborhood of u are utilized,
the naive estimator B(u) converges in probability to its true value at a nonparametric rate, as
demonstrated in Theorem 2.2. To achieve the optimal convergence rate for the modal estimator
of B, we substitute the varying coefficient a(U;) with its estimate in the first stage, transforming
the SPLVC modal regression into a pseudo linear modal regression. We then apply the following

global kernel-based objective function to re-estimate (3 using all data points

1l (Y- X)) - ZiB

where h3 := h3(n) — 0 as n — oo is an optimal bandwidth for estimating 3. Comparing
the proposed global kernel-based objective function (2.2) to its local counterpart (2.1), we can
observe that the naive modal estimator only uses local data, whereas the global modal estimator
takes advantage of the full sample information. As expected, the global modal estimator has
the optimal modal parametric convergence rate. Here and hereafter, we refer to 3 from (2.2)

as the semi-modal estimator of 3.

After obtaining 3 from (2.2), it is natural to further re-estimate the nonparametric part
by plugging in the semi-modal estimate, which converts the original model to a pseudo varying
coefficient modal regression. The final estimator of a(U;) is then constructed by maximizing

the following local kernel-based objective function

Qn(a(u),bu)) = nh1h5 Z¢ (Yi — X (el + b;gz) Gi—u) - Z, B) K (Ui — u) , (2.3)

where hy := hy(n) — 0 as n — oo is the bandwidth that is optimal for the estimation of a(U;),

7



and hs := hs(n) — 0 as n — oo is the bandwidth that controls the size of a local neighborhood
of U;. We denote the estimators from (2.3) as é&(u) and b(u).

Remark 2.2. When the skewed error density is reduced to a symmetric one, the SPLVC modal
regression accordingly degenerates in line with the SPLVC mean regression. The shrinking band-
widths associated with the error terms and the resulting slower convergence rates, however, make
the suggested modal regression suboptimal for directly producing mean estimates in this instance.
Researchers can resort to the model established in Zhang et al. (2013) to explore the robust esti-
mators of the SPLVC mean regression on the basis of mode value to attain the mean convergence
rates. Such a modal-based SPLVC regression can be regarded as a robust alternative against out-
liers in the variables or non-normal symmetric errors, with the resultant estimators achieving

efficiency by utilizing constant bandwidths related to the error terms.

The closed-form solutions for (2.1)-(2.3) are unavailable, suggesting that a mode-hunting
procedure should be applied. Because maximizing the objective function Q(-) is equivalent to
maximizing log(Q(-)), we suggest a modified MEM Algorithm 1 based on Li et al. (2007) and
Yao et al. (2012) to estimate modal coefficients by iterating the E-step and M-step until the
algorithm converges or a stopping criterion is satisfied. The monotone ascending property of the
proposed MEM algorithm, i.e., Q,(-9*Y) > @Q,(-9), can be developed along the lines of Yao
and Li (2014) by utilizing Jensen’s inequality, which guarantees the stability and convergence
of the algorithm (i.e., local optimum). The weight scheme in E-Step enables modal regression
to reduce the effect of observations far away from the modal regression curve in order to achieve

robustness, which is one of the benefits of modal regression over mean regression.

Because of the normal kernel function we use, a closed-form expression for the maximizers
of the objective functions exists in M-Step, namely, (X*TW X*T)"1 X*TWY  where W is an
n x n diagonal matrix with diagonal elements {7 (i|-)}"_; obtained in E-step, and X* = (X Z)
is the corresponding variable matrix with X = (X;,---,X,,)T and Z = (Z;,---, Z,)". Such
an explicit expression largely simplifies the computation. Although maximization is searched
across the entire space, the converged value of the MEM algorithm is highly dependent on the
initial point and consequently produces sub-optimal estimates (Yao and Li, 2014; Ullah et al.,
2021, 2022). In practice, if the computation is feasible, it is advisable to begin with a variety of
estimates obtained by different estimation techniques, such as mean, quantile, or other robust
estimates, to verify the stability of the solution (too many local solutions indicate that the
solution is not stable). By choosing the estimate with the largest value of the target function,

we can avoid the ambush of potential local maxima.'

Tt is well-known that starting values impact the quality of the EM algorithm’s solution, and a particular
set of starting values will always converge to the same solution after repeated initializations. In such a case,
we can stop after a specified number of iterations have been reached and keep iterating only from the estimates
with the largest value of the objective function.



Algorithm 1 MEM Algorithm for SPLVC Modal Regression
First-Stage Equation (2.1)

Input: data {(Y;, X;, U;, Z;)}1, kernel bandwidths h; and hy, and the initial guess c(u)® €
R?, b(u)® € RP, B(u)® € RF.

Output: the estimated coefficients c(u) 9™ € R?, b(u)) € RP, B(u)9+) ¢ R,

while the stopping criterion (e.g., Euclidean distance) is not satisfied do

e E-Step Update weight (posterior conditional probability)  (i|c(u)@, b(u)¥), B(u)¥)

Vi X (o) ) 1) D Ui) 2T B\ (1
1 ( ha )

o

7 (ile(w) @, b(w) @, B(u) @) = |
n Yi— X7 (a(u)®) +b(u)®) (U;—u) )~ Z7 B(u) @) i—u

Zi:l ¢ ( ( h1 ) ) K (UT>

e M-Step Update the values of coefficients with the weight calculated in E-Step by

n

(a(U)(g+1),b(U)(g+l),,6<U)(g+1)) —arg max Z {W (i]a(u)(g), b(u)(g),ﬁ(u)(g))

alu).b(w,8 =

o (Lo (Y XL ot 600 (=) = 21800 |

o Set g : =g+ 1.

end while

Second-Stage Equation (2.2)

Input: data {(V;, X;, &(U;), Z;)},, kernel bandwidth hs, and the initial guess B e R¥,
Output: the estimated coefficient B9 € RF.
while the stopping criterion (e.g., Euclidean distance) is not satisfied do

e E-Step Update weight (posterior conditional probability) 7T(Z| B(g)) as

& <Yi—XZTd(Ui)—ZZTB(g)>
T <Z"13(g)) _ hs
S (YrXZTd(Ui)fZZT,@(g)> :
=1

hs

e M-Step Update the value of 39"V with the weight calculated in E-Step by

(9+1) _ - 1 3(9) 1 (Yi-X[aU)-2ZB
Bg—i-l _argmﬁaxizl{ﬂ <z|ﬁ9>10g <h3¢( . .

3

e Set g:=¢g+1.

end while

Note: The algorithm for the third-stage equation (2.3) is similar to that for the first-stage
equation (2.1), but associated with bandwidths hy and hs.




2.2 Asymptotic Properties

Before proceeding to the asymptotic theorems, it is convenient to introduce some notations that
will be used throughout the remaining part of this paper. We define py = [ w?K(w)dw < oo
and v; = [w K*(w)dw < oo for j = 0,1,2, X = (X,U, Z), H, = diag(hy, - , By )prp, 7 = 2 OF
5, and use « 47 and “B7 to denote the convergence in distribution and probability, respectively.
Given random variables W, for n > 1, we write W,, = Op (w,,) if limy_, o, lim sup,, P (|W,,| > bw,,)
=0 and W,, = op (w,,) if lim,, P (|W,| > bw,,) = 0 for any constant b > 0. We let a function
f(n) = O(1) if there exist some nonzero constants ¢ and N such that f(n)/c — 1 forn > N,
and f, < g, means 0 < liminf, ,oo|fn/gn| < limsup,,_,|fn/gn] < 00. Let || - || represent the
Euclidean norm, i.e., ||A| = [tr(AAT)]Y/2, in which tr(A) is the trace of the matrix A, and
a9 (u) € RP indicates the cth derivative of a(u) with respect to u. The following technical
conditions are then listed to establish the consistency and asymptotic properties of the resultant

modal estimators.

C1 The true value of parameter 3, is in the interior of the known compact parameter space,
which is a subset of R¥.

C2 {(V;, X;,U;, Z;)};—, is an i.i.d. random sequence drawn from the joint probability distri-
bution F(Y, X,U,Z) on R x R? x R x R¥. The error term admits a unique global zero

mode such that Mode (¢;| X, Ui, Z;) 2 0 = Mode(Yi|X;,Us, Z;) < X a(U;) + Z1'3.

C3 The index variable U has a bounded support 2. Without loss of generality, {2 is the unit
interval [0, 1]. The marginal density function fy(u) is continuous in some neighborhoods
of w and has a value of fy(u) > 0 on {u: 0 < Fy(u) < 1}, where Fy(u) is the cumu-
lative distribution function and w is an interior point on its support . fy(u) also has a

continuous first derivative and is bounded away from infinity.

C4 «aj(u) € V is rth continuously differentiable on € for j = 1,--- ,p, where V denotes the

class of varying coefficient functions and r >2.

C5 The kernel function K(-) : R — R is a nonnegatively symmetric and bounded kernel with

compact support and integrates to one.

C6 Let f.(e|X) denote the conditional probability density function of € given X . For any X
in the corresponding support set, f€(€|X ) is bounded away from zero and infinity and has
the fourth continuous derivative with respect to ¢ in a neighbour of zero. Furthermore,
fo(€]X) < f.(0|X) for any e # 0 and fe(l)(O\X) = 0 for any X, where fe(d)(-) represents
the dth derivative of f.(-) with respect to e.

C7 There is a constant s > 2 such that E(|| X ||**) < oo and E(||Z||**) < oo with probability

one. The matrices I'(u), I'(u), and T*(u) defined in the following theorems are negative

10



definite matrices in a neighborhood of u, and the eigenvalues of T'(u), I'(u), and I'*(u) are

bounded away from zero and infinity for all u € €. Also, J is a negative definite matrix.

While the above conditions appear to be a little verbose at first glance, they are actually
quite modest and simple to satisfy in the literature of the SPLVC model and modal regression;
see Fan and Huang (2005), Kai et al. (2011), Kemp and Santos Silva (2012), Yao and Li (2014),
and Ullah et al. (2021, 2022). C1 is an ordinary regularity condition that is usually easy to
verify. (C2 is standard in describing the sample generating process for modal regression. The
1.1.d. assumption can be relaxed to cover the strictly a-mixing and stationary case but at the
expense of more tedious proofs. C3 is a reasonable condition related to the localized behavior
around u € (), which is required for establishing the consistency and asymptotic normality
of the resulting estimators. If U does not have a compact support, a transformation from
(—o00, +00) to [0, 1] may be employed. C4 is a commonly used condition on the smoothness of
nonparametric functions in local linear fitting. It controls the precision in the approximation
of the varying coefficient functions as the second derivative of a(u) impacts the bias. The
definition of V is stated in Ahmad et al. (2005). We emphasize that this paper implicitly assumes

that all varying coefficient functions admit the same minimum degree (twice) of smoothness to
(r)
J

of u for j = 1,---,p — 1 while the functional coefficient «,(-) has a continuous (r + 2)th

perform local linear approximation. The situation where «; "’ (-) is continuous in a neighborhood
derivative in a neighborhood of w is investigated in the supplementary note S1. C5 is a mild
condition on the kernel function that is satisfied by many commonly used kernels to derive the
asymptotic variance of estimators. The compact support condition for the kernel function is not
essential and is imposed merely to simplify the proof. It can be eased as long as we put certain
integrability restrictions on the kernel function’s tail. Especially, the standard normal density
function is permitted (Ullah et al., 2021, 2022), which is the default kernel used in numerical
analysis in this paper. C6 enforces a certain smoothness on f.(e|-) in the neighborhood of zero,
which is necessary for identification. It implies that the conditional density of € has a well-
defined unique global mode at zero. Such a unique global mode assumption is used for simple
illustration. The proposed SPLVC modal regression can be applied to the multimode setting
when the population is not homogeneous, where the suggested estimation method will find
multiple modal solutions if starting from multiple initial values, with each solution corresponding
to one local modal estimator; see supplementary note S2. In contrast to mean regression, we
do not need to impose any moment conditions on error terms and can allow Var(e) = co. C7
is the standard rank condition placing restrictions on the moments of covariates to ensure the
existence of the asymptotic mean and variance for modal estimators. The nonsingular restriction
on matrices guarantees that J is invertible, as are I'(u), T'(u), and I'*(u) for all u € Q. All of
the bandwidth requirements that need to be satisfied are listed in the following theorems to
guarantee the consistency of the modal estimators and the biases from previous stages are

negligible at the later stages. As is typical in the semiparametric literature, undersmoothing is
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required for the developed SPLVC modal regression to asymptotically ignore biases.

We provide the asymptotic theorems for the modal estimators in the corresponding stages.
Special care is needed to develop asymptotic theories for semiparametric modal estimators. For
instance, the approximation error caused by local linear estimation must be taken into account.
We first present the following theorem providing the convergence rates of the naive estimators

&(u), b(u), and B(u), where a(-) and by(-) are the true parameter vectors.

Theorem 2.1. Suppose that the reqularity conditions C1-C7 are fulfilled. With probability
approaching one, as n — oo, hy — 0, hy — 0, h3/hy — 0, and nhyh; — oo, there exist
consistent mazimizers (&(u), b(u), B(u)) of (2.1) such that

i lé(u) = ao()]] = O, ((nhah) ™ + 13+ 13),
ii. ||Hob(u) — Habo(u)|| = O, ((nhzh:{’)_l/ Sy hg),
i 1B(u) = Boll = Oy ((mhah) ™ + 13 + 3.

Theorem 2.1 implies that the magnitude of the bias term is bounded in probability by the
best approximation rates obtained by local linear estimation, i.e, the bias of the naive estimator
is of order O,(h2 + h2), while the variance is of order O, (nhyh3)™'. The first component of
the bias results from the modal estimating process, and the second term is attributed to the
local linear approximation of a;(U;). Such results demonstrate that treating bandwidth hy as a
constant to estimate modal parameters will misbehave and result in the inconsistent estimation
of the parameters if the density of error is skewed. The use of local data points substantially
degrades the estimation efficiency of ,é; essentially the rate of convergence is O(n~'/*) with the

1/8 achieved by minimizing the asymptotic MSE of

optimal bandwidth choice hy < hy <X n~
the naive estimator. Although this rate is slower than that of the SPLVC mean or quantile
regression estimator, it is faster than that of the modal estimator derived from nonparametric
kernel density estimation; see Chen et al. (2016). The following theorem provides the asymptotic

normality results for naive estimators when u is in the interior of €.

Theorem 2.2. With nh3h? = O(1) and nhyhi = O(1), under the same conditions as The-
orem 2.1, the estimators satisfying the consistency results in Theorem 2.1 have the following

asymptotic result

éegu) — ap(u)
Janatit | Ratbta) — oo | = T (el ) - Fstw))
B(u) — By



If we allow nh3h3 — 0 and nhoh] — 0, the asymptotic theorem becomes

a(u) — ag(u) 2 2
\/nhoh3 | hy(b(u) — by(u)) iN(O,%F(u)_lE(u)F(U)_I>,

ﬁ(“) — Bo
xXXT 20| X) 0 xZ" P (0|X)
where I'(u) = E 0 MQXXTfe(z)(O]X) 0 U=ul,
zX" P 01X) 0 zZ" (0] X)

X X201 X)
U=ul|, Ay(u) =E 0 U=u]|,
e Z X7 (01 X)

X 2 (0|1X)
ZfP(0X)

v X X1 f.(0]X) 0 v X ZT (0| X)
and Y(u) = E 0 v X X7 f.(0|X) 0 U=ul.
v ZXTf.(0/X) 0 vwZZT f.(0/X)

Because we only need data in a local neighborhood of u to obtain the naive estimator, The-
orem 2.2 indicates that the estimator is \/m—consistent. It also shows that the asymptotic
bias term can be successfully removed under certain conditions, and that the naive estimators
are asymptotically normally distributed, centered at the true values of the parameters of inter-
est. However, the M SFE-optimal bandwidths of h; and hy in Theorem 2.2 have the rate n='/%,
which does not satisfy the condition that lim, ., nh3h? = 0 and lim,_,o nhoh = 0. As a re-
sult, undersmoothing is necessary to eliminate the asymptotic bias at the expense of a relatively
slower convergence rate, which is a common requirement in semiparametric models. This will
be incorporated later when we choose the bandwidths for practical purposes. Because the first
moment of K (+) is zero, b(u) is asymptomatically independent of é&(u) and B(u). Nevertheless,
a(u) and B(u) are dependent on each other regardless of the kerne function used, necessitating
the third-stage estimation procedure to re-estimate a(u) to improve efficiency. Despite concen-
trating on the interior point u, the above asymptotic result holds true when we investigate the

boundary behavior.

Remark 2.3. The practical inferential use of asymptotic distribution on estimators is made dif-
ficult by the complex form of the asymptotic covariance matriz due to the existence of several un-
known quantities, such as f€(2)(0|f() and fe(g)(0|f() We can instead utilize the bootstrap method
for related inference (and bias adjustment for modal estimates). More specifically, we follow the
procedures S1-S3 in Algorithm 2 to obtain B bootstrap pointwise estimators & (u), l =1,--- | B,
such that the bias of &(u) is b (u) = = S22 G (u) — &(u) and the covariance of &(u) is

(u
Vi) = 5 8 (@ () — & (u)(67 (u) — & (w)”, in which & (u) = (1/B) F, &} ().
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Subsequently, we can compute the confidence intervals. The following Theorems 2./ and 2.6 are

both subject to the same comments.

The convergence rates of the naive modal estimators are provided by the two theorems
above, which is crucial in deriving the asymptotic distribution for the final modal estimators.
Although (2.2) is a straightforward linear modal regression objective function, the extra bias
factor from the previous stage needs to be taken care of. Following that, we characterize the
consistency and asymptotic behavior of the semi-modal estimator 3 by plugging in the estimates

of varying coefficients.

Theorem 2.3. Under the regularity conditions C'1-C7 and the additional bandwidth conditions
hi/hs — 0 and hy/hs — 0, with probability approaching one, asn — 0o, hy — 0, and nh} — oo,

there exists a consistent mazimizer B of (2.2) such that
> ~1/2
18— Boll = Oy ((nh3) ™+ 13).

Theorem 2.4. With nh} = O(1), under the same conditions as Theorem 2.3, the estimator

satisfying the consistency result in Theorem 2.3 has the following asymptotic result

N _h_§ 1 d 2,2 —17 7-1
\/nhi (B — B, 2J M| = N0, [ t?¢*(t)dtJ LI~ ).

Furthermore, under the assumption that nhi — 0, we have

nhd (B —8,) 2 0, [ 22(O)dtT LI,
o (8- 8) 5 (0. [ 2o )

where J =E(ZZT 2 0|X)), L = E(ZZ" £.(0|X)), and M = E(Z £ (0|X)).

The first term in the convergence rate characterizes the magnitude of the estimation vari-
ance, whereas the second term hZ captures the magnitude of the estimation bias. Interestingly,
the rate of convergence (\/nh3) is slower than that of the SPLVC mean regression (y/n). The
conditions hy/h3 — 0 and hs/hs — 0 indicate that h; — 0 and hy — 0 are faster than hy — 0
as n — 00, which is the case we must consider to reduce the influence of the bias from the first
stage that may be brought to the second stage. The asymptotic result is identical to that for
the feasible situation where a(U;) is known, implying that the asymptotic bias and variance of
the semi-modal estimator B are independent of the naive modal estimators under suitable con-
ditions. Similar phenomenon is observed in Ullah et al. (2021), where they presented a pseudo

demodeing method for estimating fixed effects modal coefficients for panel data.

Theorem 2.4 demonstrates that the semi-modal estimator 3 improves the convergence rate
of the naive estimator B to the linear modal regression one, \/nh3 = O(n=2/7), with the M SE-
optimal bandwidth choice hs = O(n~'/7). This finding is also compatible with the standard
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SPLVC mean regression result. The optimal bandwidth rate in Theorem 2.4 is larger than
n~Y/8. Intuitively, a large bandwidth is required because the parametric coefficients are global
parameters. Undersmoothing is also required to remove asymptotic bias, indicating that the
estimator B can be asymptotically normal, centered at the true value under sufficient conditions.
All of the aforementioned bandwidth considerations will be taken into account when selecting

bandwidths in practice.

In what follows, with the available semi-modal estimator 3, we provide the consistency and
asymptotic theorem for the final modal estimators é(u) and b(u) at a fixed data point u in the
interior of §2. Similar to Theorem 2.4, we need to impose mild bandwidth conditions to ensure
that the bias from the previous stage can be asymptotically disregarded and does not affect the

convergence rate of the final modal estimators.

Theorem 2.5. Under the reqularity conditions C'1-C7 and the additional bandwidth condition
hs/hs — 0, with probability approaching one, as n — oo, hy — 0, hs — 0, hi/hy — 0, and

nhsh3 — oo, there exist consistent mazimizers (é(u), b(u)) of (2.3) such that
i lé(u) = ao(w)ll = Oy ((nhsh) ™ + 12+ 12),

ii. ||Hsb(u) — Hsbo(u)|| = O, ((nh5h§;)‘1/ 242+ hg).

Theorem 2.6. With nh3hi = O(1) and nhsh] = O(1), under the same conditions as The-
orem 2.5, the estimators satisfying the consistency results in Theorem 2.5 have the following

asymptotic result

[ s | €lu) —aolu) = (R s (2) hi
nhsh; [(hg,(i)(u) B bo(u))> —T'(u) <5A2(u)a0 (u) — ?Al(u)>]

4N (0, %f‘(u)@](u)f’(u)ﬁ :

If we allow nhih3 — 0 and nhsh] — 0, the asymptotic theorem becomes

h 3 a(u) — ag(u) d [ 2% (t)dt ~ IS E )]
Vsl <h5<6<u> . bo<u>>> 7 (0 L5 T Sl ),

@ (01 %
where T'(u) = E (XXTfE (01X) 0 ) ‘U = u] ;

0 X X7 (0] X)

3) (0] % T 0l %
Aw) = E (ng <0|X>> 0 =], 50 = (mx £(0]X) o >‘U:u]7
0 0 01X XTf.(0X)
@ (0 %
and Ay(u) = E ('MQXXT(J;; (O|X>> ‘U =u|.
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The same comments made with respect to naive estimators are applicable here as well. The
condition hz/hs — 0 suggests that hs — 0 is faster than hs — 0 as n — oo, indicating that the
bias from the previous stage is negligible when compared to the final stage bias at the order of
h2. The intuition behind this condition is that hs must fall to zero fast enough to guarantee
the effect of the earlier stage biases does not carry over asymptotically to final stage estimation.
The asymptotic properties of the final modal estimators are in line with those of the estimators
in the varying coefficient modal regression. This observation reveals that the estimators are
optimal for the final stage estimation in the sense that they reach the same rates as those whose

parametric coefficient 3 is known, which is referred to as the oracle estimators.

Since the MSE-optimal bandwidths of hy and hs have a rate of n='/%, the estimator’s
bias can be negligible relative to the variance term by applying the undersmoothing technique,
which enables modal estimators to achieve asymptotic normality centered at the true value.
As a result, this does not produce a faster rate of convergence in probability. Although the
convergence rate and asymptotic bias of &(u) are theoretically the same as those of &(u), the
third-stage estimator é(u) should be more efficient. Because, unlike &(u), which estimates the
parametric component locally, the third-stage estimator &(u) does not need to account for the
uncertainty of estimating the parametric component that has a faster convergence rate. Similar
result is achieved in the SPLVC quantile regression investigated by Kai et al. (2011). Also, the
behavior near the boundary, a well-known appealing property of local linear smoothers, can be

demonstrated to carry over to the final stage estimation.

2.3 Bandwidth Selection

One practical issue concerning the implementation of the three-stage estimation procedure is the
selection of bandwidths. Kernel functions have little effect on estimating in modal regression,
whereas bandwidth strongly influences estimation accuracy since it can control the balance be-
tween mean and modal estimates (i.e., with a large bandwidth, we can achieve mean estimates).
Furthermore, bandwidth is the tuning parameter that regulates the trade-off between bias and
variance of the resultant estimator. Some literature has addressed the problem of bandwidth
selection under the content of modal regression. For example, Chen et al. (2016) proposed
choosing bandwidths by minimizing a loss function defined as the volume of the prediction
band; Zhou and Huang (2019) developed two different cross-validation methods for obtaining
bandwidths in multimodal regression; and Yao and Li (2014) and Ullah et al. (2021) applied
the plug-in method for choosing bandwidths based on expressions of asymptotically optimal
bandwidths. However, to the best of our knowledge, there appear to be no results available

about selecting the bandwidth in the context of the SPLVC modal regression.

To strike a balance between the computation burden and efficiency of the estimators while

minimizing model bias, we suggest a simple rule-of-thumb to select bandwidths in this paper
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based on the asymptotically optimal rates of bandwidths. The MSFE-optimal rate for hy, hs,
ha, and hy is n= Y8, while the MSE-optimal rate for ks is n='/7. Despite sharing the same rate,
the roles of bandwidths h; (or hg) and hy (or hs) are quite different. Especially, the bandwidths
hy and hs associated with variable U govern the smoothing of the regression function, whereas
the bandwidths h;, hs, and h, associated with the response variable Y affect the number of
estimated modes. When hy and hj are large, the undersmoothed estimations of the regression
functions are obtained, and with small values of hy and hs, the oversmoothed estimators are
achieved. Based on these, we follow classical nonparametric estimation to fix the bandwidths
he = Cn™% and h; = Cn~ %3 in numerical studies because we need to undersmooth the
estimators to avoid bias, where C' is a constant set as the appropriate rule-of-thumb value

1.066; and 6y is the standard deviation of variable U.

We work with the undersmoothing assumption on the bandwidths following Kemp and
Santos Silva (2012) and Ullah et al. (2022) to apply the grid search method to select a number
of potential bandwidths for A, hs, and hs, which control the number of modes. To be more
specific, we first calculate the mean regression residual €,,..,, and then select 50 bandwidth
values between 50 M AD and 0.5M ADn~" (the values of =, for bandwidths hy, h3, and hy are
Yh, = 0.15, vp, = 0.143, and 43, = 0.13, respectively), in which M AD represents the median
(med) value of the absolute deviation of the mean regression residual from the corresponding
median value,

MAD = med;{|(Y; —m(-)) — med;(Y; — m(-))[}

and m(-) denotes the associated mean estimate. In the empirical analysis, the default bandwidth
is 1.6 M ADn=. It is crucial to note that the aforementioned approach for selecting bandwidth
may not yield the most efficient estimates (i.e., those obtained by minimizing the integrated
MSE), but it does provide a simple procedure to achieve optimal convergence rates for all

estimators, and its satisfactory performance has been demonstrated in practice.

Remark 2.4. We may adopt some other data-driven methods, such as leave-one-out cross-
validation, to choose bandwidths in the proposed SPLVC modal regression. Nevertheless, MSE
criterion-based cross-validation is inapplicable for modal regression. We can instead utilize the
cross-validation method built on kernel-based objective function, which depends on the fact that
the interval around the conditional mode should cover more samples with the same interval
length. The investigation of the asymptotic property of such a modal cross-validation, however,
is beyond the scope of this paper.

2.4 Varying Coefficient Test

All of the preceding discussions, which provide a solid foundation for developing the SPLVC

modal estimates, rely on the correctly specified semiparametric regression model. If the para-
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metric modal regression is a valid specification, but the SPLVC modal regression under consid-
eration is used, the estimation results based on the overspecified semiparametric model would
not only increase the complexity of the model but also decrease estimation accuracy. Most
importantly, because of the difference in convergence rates, treating a parametric component as
a nonparametric one can result in overfitting the data and efficiency loss. Therefore, it is critical
for the proposed SPLVC modal regression to test whether the varying coefficient functions are

constant, specifically testing the null hypothesis
Ho:aj(u) =ca; forall j=1,---,p
with the alternative hypothesis #H; : oj(u) varying with u for at least one of j = 1,-- -, p, where

a; is assumed to be an unknown constant.

Inspired by Fan et al. (2001) and Fan and Jiang (2007), which offered a general technique
for testing hypotheses regarding nonparametric functions, we construct a goodness-of-fit testing
statistic by taking a kernel-based function as the loss function rather than the sum of squared

errors. We compare the residual sums of modes under both the null and alternative hypotheses

def

Ty © L(H)) — L(Ho), (2.4)

where the residual sum of modes under H, is

1, (Y- Xl —Z]'p
L(HO):h_42¢( ; & 1/8)
i=1

hy
in which af,--- ,a; and 8 are the parametric modal estimates, and the residual sum of modes
under H; is
1, (Yi—-XlaU) - 28
L = — ! ! .
= 3o (L

Remark 2.5. We construct L(H;) using the final estimators &(U;) and B with the same band-
width hy n estimation. Under the null hypothesis, we treat varying coefficient functions as
constants and utilize the linear modal regression in Yao and Li (2014) to estimate {a;}_, and
B directly by applying the plug-in method for bandwidth selection. The key to the success of
the developed test, as demonstrated in the following theorems, is to use the same bandwidth for
constructing L(+) functions under Ho and Hy. Therefore, the bandwidth hy is utilized in the
construction of L(Hg) as well to ensure that bandwidths do not affect kernel-based functions

when comparing.

Since the role of the inference function based on the kernel and the least square is compara-
ble, L(H,) and L(#H,) can be regarded as the degree to which the model fits the data under H,
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and H;, respectively. Intuitively, the values of L(H,) and L(#,) will be extremely close under
Ho, while the value of L(H;) will be sufficiently greater than L(#,) if the alternative hypothesis
‘H;1 is true. Therefore, if T} is larger than an approximate critical value, the null hypothesis H,

is rejected. Defining ¢y as the observed value of Tj, the p-value of the test is followed as
Po = PHO (TO > to), (25)

where Py, () refers to the probability computed under the null hypothesis H,. For a given
significance level «, the null hypothesis Hy would be rejected if py < «; otherwise it would fail

to reject Hy. The test is supported by the following theorem.

Theorem 2.7. Assume that the reqularity conditions in Theorem 2.6 are attained. Under Hy,

Py, (Ty - 0) -1 as n — oo.

Otherwise, if inf,,cp |ou(-) — aul| > 0, there exists a constant ty > 0 such that

Py (Th > to) = 1 as n — .

Technically, we could extend the methodology introduced in Fan et al. (2001) to derive
the asymptotic null distribution of the proposed test. Theorem 2.8 shows that the developed
statistic Ty converges in distribution as n — oo under reasonable regularity conditions, and the
scale i and degree of freedom rgpu, of the asymptotic y2-distribution are dependent on the
unknown density functions. Because we treat hy as a shrinking bandwidth, the components in
Theorem 2.8 are reliant on hy. Nonetheless, if hy is treated as a constant when conducting the

test, the result would be consistent with the classical mean case, i.e., d, = O,(nh3) +O,(y/nh?).

Theorem 2.8. Suppose that all of the conditions in Theorem 2.6 are met. With the additional

constraint nhih5 — 00, under Hy,
o Ty — pn + dn) > N(0, 1).

Furthermore, with a scale v = 2, /02, under Hy, the test statistic rxTy approzimately follows
a x2-distribution

rieTo ~ X*(Ticfin),

where “ ~ " denotes generalized approzimation, d, = O,(nhihy?) + Op(\/ﬁhghz?’ﬂ), o 1S
the asymptotic variance shown in the supplementary note S5, and i, = —[hih5f6(2)(0|X, U,Z)
fu(D)] (01X, U, Z) [ t*¢*(t)dt X X,;K(0).

However, as many researchers have pointed out, unless the bandwidths are sufficiently

small so that the degree of freedom 7, is large, the p-value generated from the asymptotic
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null distribution of the test statistic may be erroneous in the context of finite sample sizes;
see Fan and Jiang (2007). This is especially true for SPLVC modal regression because the
asymptotic null distribution of the proposed statistic is dependent on the nuisance parameters.
To perform the test, we apply the residual-based bootstrap algorithm with appropriate modal
centering adjustments to approximate the null distribution of T and the p-value of the test.
In general, with a moderate sample size, the bootstrap method outperforms the asymptotic
distribution-based method, as only the main order of the degrees of freedom is given in Theorem
2.8. The performance, including the validity of the bootstrap procedure in approximating the
null distribution of the test statistic and the power of the test, is further demonstrated by Monte

Carlo simulations in Section 4.

Algorithm 2 Bootstrap Algorithm for Estimating p-value

S1 Based on the data {(Y;, X, U;, Z;)}i ), estimate the SPLVC modal regression and obtain
the residual & = Y; — X7 &(U;) — Z] 3.

S2 Compute the centered-in-mode residual € = € — Mode(€;) and generate the bootstrap
residuals {€}"_; with replacement from the empirical distribution function of €.

S3 Define Y = X7 &(U;) + ZTB + & and calculate the bootstrap test statistic T based on
the samples {(Y;*, X;,U;, Z;) }1-,.

S4 Repeat S2-S3 for B (e.g. B = 200) times to obtain a bootstrap sample of the test
statistics Ty as {15 }2.,. The p-value is estimated by p = Sp I (Ty, > to) /B. Reject
the null hypothesis Ho when T is greater than the upper-a quantile of {75 }2, or p < a.

We intend to approximate the distribution of 7f using the sampling distribution of 77,
which is justified if 7j converges to the same limiting distribution as 7j. The following theorem

demonstrates the consistency of the above bootstrap testing procedure.

Theorem 2.9. Suppose that all of the conditions in Theorem 2.0 are fulfilled. Under Hy, Ty
~ (i) and

sup| P(Zy < 2[{(Xi, Ui, Zi)}ioy) — P(N(0,1) < 2)| = 0,

z€R
in which Z; = o, (T — pin + d).

Remark 2.6. We bootstrap the centralized residuals from the SPLVC modal regression rather
than the residuals from the parametric modal regression as in Cai et al. (2000), which considered
the goodness-of-fit test for the varying coefficient nonlinear time series model. Regardless of
whether the null or alternative hypothesis is correct, the SPLVC modal estimate of the residual

can always be consistent. However, since we are concentrating on modal regression, we need to
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calculate the centered-in-mode instead of the centered-in-mean residual to ensure Mode(€) = 0.
We utilize the same bandwidths in calculating T§ (including estimators) as in Ty, which satisfies
the conditions on the bandwidths used in the optimal asymptotic performance of the proposed
test.

We consider the test for all varying coefficient functions for concreteness. The same steps
can be applied to test o;(u) = o for a subset of the index j = 1,--- ,p. In addition, since the
varying coefficient functions may be known in certain applications, the proposed goodness-of-fit
testing statistic can be used to determine whether the varying coefficient functions are of some

specific functional forms, where

1< (Y= X ao(Uy) — Z]'B
L<Ho>=h—4§j¢< S ﬂ)
i=1

and a(U;) is the true function under the null hypothesis. Furthermore, we can develop a test

for the situation where o is a known constant. In such a case, L(#) needs to be modified to

1 & (Y- XPay—2Z!8
L(Ho) = T Y o ( I )
i=1

with o representing a known constant vector. Nonetheless, this may not be attractive in

practice because researchers are more concerned with whether the varying coefficient functions

are indeed constant without knowing specific values.

Remark 2.7. (Wald-Type Test) It is natural to investigate the Wald test by directly exam-
ining the variability of the estimated coefficient &(u). Given the null restricted modal regression
Mode (Y| X!, ZI) = X+ ZI'B, based on the results from Theorem 2./, it can be seen that
under certain reqularity conditions, ||a* — a|| = O,(h* + (nh®)™"), where bandwidth h is used
in the modal regression under Hy. If we choose nh2h3 — 0 and nhshl — 0, under Hy, it can be
obtained from Theorem 2.6 that

\/nhshi(a(u) — o) = \/nhshi(&(u) — a) — y/nhshi(a® — a)

= \/nhshi(@(u) — a) + 0,(1) 5 N'(0,E(w)),

where B(u) = ([Pe*(t)dt/ fu(w)EXX"fEOX)U = w] ' EXX"LOX)|U = )
[E(XXTfE(2)(O|X)|U = u)]"'. Following Yao and Li (2014) and Ullah et al. (2021) to con-
sistently estimate f€(0|X) and the corresponding derivatives, we can get the consistent estimate

for the asymptotic covariance matriz Z(u), which is defined as E(u) We then have

nhshiB ) (@lu) — o) 5 N(0, 1),
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where I, is an identity matriz with dimension px p, and ||/nhsh38(u)~ (& (u) —a*)||2 > x2(p).
We finally can construct an asymptotically valid test for a(u) across a range of u such that

£ _ 3E (U Y &(U) — at)|12 2 2
T3 = s [ /nhshEE(U) ™ (@(U) @) s 3(0).
Since the limiting distribution of T§ is a functional of independent x* random variables (with p

degrees of freedom) that is free of nuisance parameters, the critical value of T§ can be calculated.

3 Penalized SPLVC Modal Regression

Variable selection is crucial in high-dimensional econometrics since sparse modeling is often
preferred due to enhanced model predictability and interpretability. This section utilizes the
penalty function to simultaneously estimate parametric coefficients in the SPLVC modal regres-
sion and shrink some coefficients to zero. The theoretical properties of the procedure, including
the consistency in variable selection and the oracle property in estimation, are established with

appropriate choice of the tuning parameter.

3.1 Penalized Modal Estimators

Under the assumption that the dimension £ of the parameter 3 is fixed, we propose the following

penalized kernel-based objective function to conduct variable selection

1~ (Y- XTa(U)) — ZT é
ﬁp(ﬁ):h_g;%( lafgg) Zﬁ)_n;p&(w), (3.1)

where pj,(+) is the penalty function with a tuning parameter \; that includes commonly used
penalty functions, such as the least absolute shrinkage and selection operator (LASSO), adaptive
LASSO, smoothed clipped absolute deviation (SCAD), among others. Fan and Li (2001) studied
the choice of penalty functions in depth and advocated for the use of a nonconcave penalty.
The regularization parameters {)\j}é‘f:l are not necessarily the same for all j, which offers the
flexibility of producing different shrinkage for different modal coefficients to keep some important
variables in the final model. Practically, the regularization parameters can be chosen using the

data-driven criterion BIC shown in Algorithm 3.

There are numerous penalty functions available for conducting variable section; see Su
and Zhang (2013). In order to perform variable selection for the SPLVC modal regression in
a computationally efficient manner, this section shall use the SCAD penalty function for the
calculation. According to Fan and Li (2001), the SCAD penalty is defined as
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2
a)\j

S 20— 1)(1])

pa; ([E) = X (LD (L) < A} + T L < (Jt)) <a) + I{(Jt]) = aAs}

for some constant a > 2, where the first derivative pg\lj)(O) = 0, A; is a penalized parameter

controlling the trade-off between data fit and estimate roughness, and a = 3.7 as suggested
in Fan and Li (2001) from a Bayesian perspective. The SCAD penalty function is continu-
ously differentiable on (—o00,0) U (0,00) but singular at zero. Its derivative vanishes outside
of [—a);,a);]. Consequently, it can obtain sparse solutions and unbiased estimates for large

datasets by shrinking small coefficients toward zeros.

Remark 3.1. To obtain the oracle property, the penalty function py,(-) used for the SPLVC
modal regression should satisfy the following properties: (a) for nonzero fized t, lim(nh3)"/?
px, ([t]) = 0 and limpf\lj)(|t|) =0; (b) for any C > 0, lim(nh3)'/? infly <cmng)-12 P ([t]) — oo.
FEvidently, the SCAD penalty meets these two properties, which is the penalty we concentrate on
in the main part of the paper. Note that adaptive LASSO can also be utilized for conducting
variable selection, as illustrated in Remark 3.2.

Since a(U;) consists of unknown nonparametric functions, (3.1) is not ready for optimiza-
tion. We substitute the resulting estimate from the first-stage estimation into (3.1) and obtain

the penalized equation shown below.

- (Yi - X7 a(U;) - Z?ﬂ)

£r(B) = — 3 oy —n> o, (18- (3:2)
hg - hg -

Optimizing (3.2) is a simultaneous estimation and variable selection procedure. However, it is
not easy for achieving solutions because the penalty function is irregular at the origin and does
not have a second derivative at some points. To tackle the challenging estimation problem,
given an initial value of 5() close to the maximizer of (3.2), we follow Fan and Li (2001) to

apply a locally quadratic approximation for the penalty function such that

o, L[ <’6§0)|> (02 0)
w80~y (1871) + 5§ =mr ¢ (= A) fr =% (39)

in which @@ is not very close to 0. Replace py; (|3;]) in (3.2) with (3.3), we can obtain

W) (150
1 & (Y- XTa(U) - 278\ n<~ |2y (157
L) = h_?,;(b( s > B E.Zl é«» ) g B9
1= J= J

By maximizing the above objective function with a proper penalty parameter \;, we can perform

an automatic variable selection with a sparse estimator of 3, defined as BP . Notice that for
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identifying variables in the nonparametric components, we can apply the aforementioned varying

coefficient test by replacing B with the penalized estimator.

The sparse estimator is expected to possess the selection invariance property under regu-
larity conditions. If we have additional information regarding which components are zero, say
By =0,7=s4+1---,k we could take into account this prior knowledge to maximize the

following constrained kernel-based objective function with all irrelevant variables removed.

1) (0)
1 & (Y- XTaU) - 278\ n<~ | Py (157
mﬁXEP(ﬁ):h_gZ¢( - )_52 ,g@ ) G
i=1 = }

st. B;=0, j=s+1,-- k.

hs

With approximate Karush-Kuhn-Tucker (KKT) condition

A . (1) (0)
_Zji¢(1) (Y; — X7 a(U:) - Z?ﬁ(rs)) —oln Py (’ﬁj ‘)
hy hy 18,
where B(rs) is the solution to this constraint problem, we can have (B(Ts),/85+1, s Br) = ,BP

with probability converging to one.

Remark 3.2. (Identification and Variable Selection) Besides the proposed goodness-of-fit
test for identifying nonparametric coefficient functions and penalized SPLVC modal regression
for selecting parametric coefficients, we can utilize penalization methods to directly identify the
true structure of the SPLVC modal regression. Assume that B in (1.3) is a vector consisting
of unknown functions of U;. We can re-write (1.3) as a varying coefficient modal regression
Mode(Y;|W;) = WTO(U;), where W; = (XI'ZI)T and 0(U;) = (a®(U;),8")". We then

integrate local linear approximation with adaptive LASSO

L - (1@- ~ W) - WO (u)(U, —u>) . (Ui —u)_ SIS )

* ]k * *

=1

to simultaneously identify whether a coefficient is parametric and select significant covariates in
both nonparametric and parametric portions, where h’ and h} are two bandwidths, @1 (-) is the
first derivative of 0(-), A\, and 7, are two tuning parameters, and w; and v; are two determined
positive random quantities. By shrinking the first derivative of the varying coefficient function
to zero, a parametric component can be detected. Following the results in this paper, the oracle
properties of the nonzero coefficient function estimators can be established. Further theoretical

analysis is needed in the future to develop such a variable selection model.

As there are no available closed-form solutions for (3.4), we extend the modified MEM al-
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gorithm shown in Algorithm 3 to estimate (3.4). The E-step computes the weight provided that
the current estimate gives the true parameter of the model, and the M-step updates the estimate
through computationally simpler conditional maximization, which can result in a closed-form
expression due to the use of a normal kernel ¢(-) and the quadratic approximation. The esti-
mation process is repeated iteratively until convergence or stopping criterion is reached; see the
related comments for Algorithm 1. Note that the first term in the BIC selection equation can be
regarded as an “artificial” likelihood since it exhibits certain essential properties of a parametric
log-likelihood. Due to the target of modal estimation, the effective sample size would be nh3
rather than n in the classical mean regression. This is because the classical mean estimation is

v/n-consistent, while the convergence rate of modal estimation is y/nh3.

Algorithm 3 MEM Algorithm for Penalized SPLVC Modal Regression

Selection of \;. Set \; = /\SE(Bj), where SE(f;) is the standard error from (2.2) (i.e.,
bootstrap method). Then, use BIC to select A

RN Y, - XTa(U) - Z] 8" 1 h3
)\opt—argmAinBIC(A)——_Z¢< o) -2, 8 >+ ogn<n 3)%,

hs

where dfy is the number of nonzero coefficients of BP with tuning parameter \.
E-Step. Update weight (posterior conditional probability) ﬂ(i]ﬁp (9)) as

<Yi—Xde(Ui)—ZiTﬁP(9) >
hs
m <i‘ﬁp(g)> = T T :

h3

M-Step. Update the value of 87U+ with the weight calculated in E-Step by
a 1 (Y- XTa(U) - 2Z!pB
P(g+1) _ qroma Z ( P(g)) o i A Y i
J¢; rgmﬁx } {71’ i3 g h3¢ T

k
Z <Bg) ’) Bf} = (ZTWZ + nE/\(ﬁP(g)))—lzTWY’

255

M) (5P (1) (| 2P(9)
where E)\<IBP(9)) = diag {M’ cee }w—kl)}

187 187

3.2 Large Sample Properties

Large sample properties of shrinkage estimation with the SCAD penalty, i.e., consistent vari-

able selection and oracle property for parameter estimation, have been well established in the
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literature (Fan and Li, 2001; Kai et al., 2011; Zhang et al., 2013). In this subsection, we show

that these theoretical results can be extended to the SPLVC modal regression scenario.

Note that maximizing (3.4) will result in a penalized modal regression estimator 37. To
investigate the asymptotic properties of the shrinkage modal estimator, we decompose the modal
regression coefficient vector By into By = (8L, BL,)T € R¥ without loss of generality, where 3, =
(Bots -y Bos)T € R consists of all nonzero components of B, and Byr = (Bosy1, ---, Bor)’ € RF*

is made up of all of the zero components of 3,. Define

1<5<k

an = mae {1 (16os )| Boy # 0}, b, = ma {Ip (0,])| < foy # 0
T
Oy = (0 (8al) o8 (1Boe)))  and @y = diag {p) (1Boal) - .65 (1B} }
where pgi) (+) is the second derivative of penalty. We can then establish the following theoretical

properties about the consistency and sparsity property of the penalized modal estimator of the

parametric part.

Theorem 3.1. Suppose that the reqularity conditions in Theorem 2. are fulfilled. With proba-
bility approaching one, as b, — 0 with n — o0, there exists a consistent maximizer [;'P of (3.4)
such that

187 = Bull = O (k) ™" + 3 +a)

The rate of convergence of the proposed penalized modal estimator in Theorem 3.1 is
dependent on \; and bandwidth hz. As a result, we can further improve the convergence rate
to [|B° — Byl = O,( (nh3)"* + h3) with a slightly stronger assumption Ayqp = maz;{\;} — 0
(i.e.,a, = 0). This demonstrates that the consistent penalized modal estimator indeed exists

with probability tending to one.

Theorem 3.2. Under the same conditions as Theorem 3.1, let 6,, = h3 + (7”Lh3)_1/2 and Apin =
mini{A;}, if Apaz — 0, 0, ' Apiy — 00 when n — oo, and liminf,,_,q liminfg o+ p/\ (|BJ|)/)\ >

0 for all 7, then the penalized modal estimator can correctly identify all zero elements; that is
P (Bg;, - o) Sl

Theorem 3.1 demonstrates the existence of the penalized modal estimator BP that converges
to the true parameter at the rate of Op((nhg)fl/ > + h%+ a,), indicating the dependence on the
penalty function and the regularization parameter A;. It shows that the difference between the
modal estimate with SCAD penalty and the true parameter is asymptotically negligible when A;
is small enough. Theorem 3.2 states that the proposed penalized modal regression possesses the
sparsity property; that is, by choosing an appropriate regularization parameter A;, the penalized

modal estimator estimates a zero coefficient exactly as zero with a probability tending to one.
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According to the preceding two theorems, it is apparent that penalized modal estimator can
achieve the optimal convergence rate for nonzero coefficients in large samples as if the subset of

true zero coefficients were known.

Theorem 3.3. With nhl = O(1) and nh3¥3 = O(1), under the same conditions as Theorem
3.2, the estimator satisfying the consistency result in Theorem 3.1 has the following asymptotic
result

A h2
3 (Ja) + @y) (55 — By + (Jay + @) (\Iu — 53M(1>)> 4N (0, / t2¢2(t)dtL(1)) .

In addition, if \/nh3Vy = 0,(1) and @\ = 0,(1), we can obtain

R h2
\/nhdJay <ﬂ§’ — By — ?3J(1)1M(1)> 4N (0, / t2¢2(t)dtL(1)> :

Furthermore, if nhi — 0, we have

nh3Joy (B{; - 50,) 4N (0, / t2gz52(t)dtL(1)) ,

where Jay, M1y, and Ly are the s x s submatrices of J, M, and L corresponding to the nonzero

components By, respectively.

In Theorem 3.3, we establish the asymptotic distributions of the resultant estimators for
nonzero coefficients under suitable conditions, demonstrating that Béj, has the oracle property,
i.e., performs as well as an oracle estimator in the asymptotic sense (the estimators for the non-
zero coefficients in the true model have the same asymptotic distribution as if the subset of true
zero coefficient 3, were already known or as if the true underlying model were given in advance).
Then, according to the oracle properties, most statistical inferences for BP can be constructed
exactly the same as the oracle estimator. Theorem 3.3 also indicates that undersmoothing is
necessary to remove the asymptotic bias. Because the penalized modal estimator shares the
same convergence rate as the parametric estimator B, the suggested bandwidth in Subsection
2.3 can be adopted here as well.

Remark 3.3. The theoretical results in this section are limited to the finite-parameter setting,
which means that the dimension k of the parameter B is fized. In a general setup, when the
dimension of the parametric components is large, it 1s more realistic to regard it growing with
sample size, that is, k = k(n) — oo as n — oco. We can then establish the oracle property by

requiring the tuning parameters hs and \; to approach zero with the rate depending on n and k.
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4 Numerical Examples

We in this section investigate the finite sample performance of the developed estimation methods
with Monte Carlo simulation studies and two real data analyses. Throughout the section, ¢(-)
and K (-) are fixed as the normal kernel (1/hy/27)exp (—(-)2/2h?), in which h is the bandwidth,
and the word “SPLVC” is suppressed for regression whenever no confusion is caused. Some

additional numerical results are contained in the supplementary note.

4.1 Monte Carlo Experiments

(1) (SPLVC Modal Regression) We carry out simulation experiments to illustrate the
finite sample performances of the proposed estimators in this part, where two Monte Carlo
experiments with different skewed error distributions are conducted (one of which is provided
in the supplementary note S4). We use DGP to represent the data generating process in what
follows, and compare the modal estimates to those of mean regression, which serves naturally
as a competitor here. The sample sizes we consider are n € {100, 200, 400, 600, 1000}. A total
of M =200 simulation replications are conducted in all simulations. We use the square root of

average squared errors (RASE) to assess the performance of the nonparametric estimator a(u)

M n 1/2
RASE(a(U;)) = (MLHZZH(W)(UZ.) —ao(Ui)”2> ’

j=1 i=1

where d(j)(Ui) is the estimate in the jth replication, and utilize the generalized mean squared

errors (GM SE) to evaluate the parametric component (3
GMSE(B) = (B - 50)TE(ZZT)(B — Bo).

We also provide the standard error and M SFE for each parameter estimate. In accordance with
Ullah et al. (2021, 2022), we present the shape of the empirical density of the standardized modal
estimate to check the asymptotic normality property, as well as the coverage probabilities to

measure the prediction performance of the newly introduced model.

DGP 1 We first generate random samples from the following model to illustrate the application
of SPLVC modal regression

Y; = X[ a(U) + Z[ B+ 0(Xi, Z))e;,

and ¢; follows a mixture normal distribution 0.5N(—1,2.5%) + 0.5N(1,0.5?), which is skewed
left with E(€)=0 and Mode(e)=1 (Yao and Li, 2014; Ullah et al., 2021, 2022). We set the

parameters and varying coefficient functions to 8 = (1,2)" and a(U;) = (a1 (Us), ao(U;))T, in
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which oy (U;) = exp(2U; — 1) and aq(U;) = sin(2wU;). The index variable U; is simulated from
the uniform distribution U[0,1]. The covariate vector (X7, ZI)" is normally distributed with
mean 0, variance I,4, and correlation 0.2/*7J!, where k,j = 1,2,3,4. We consider three cases,
where in case 1 we let 0(X;, Z;) = X1; + Z14, in case 2 we define 0(X;, Z;) = Xy;, and in case

3 we allow o(X;, Z;) = Z;;. We then have the following equations.

( Mean Regression:
Case 1 - E(Y:| X;, Ui, Z;) = Xy;exp(2U; — 1) + Xoisin(2nU;) + Zy; + 275,
Modal Regression:
\ Mode(Y;| X;,U;, Z;) = Xq;(exp(2U; — 1) + 1) + Xo;sin(2nU;) + 224, + 22,
([ Mean Regression:
Cose 2 - E(Y:|X;, U, Z;) = Xy;exp(2U; — 1) + Xoisin(2nU;) + Zy; + 275,
Modal Regression:
L Mode(Y| X;, Ui, Z;) = Xqi(exp(2U; — 1) + 1) + Xoisin(2nU;) + Zy; + 2Z;
( Mean Regression:
Case 3 - E(Y;| X, Ui, Z;) = Xyexp(2U; — 1) + Xoisin(2nU;) + Zy; + 2294,
Modal Regression:
. Mode(Y| X;,U;, Z;) = Xyexp(2U; — 1) + Xoisin(27U;) + 271, + 27Z5;.

The simulation results are summarized in Table 1, demonstrating that the developed es-
timation method is capable of estimating the modal regression effectively with finite samples.
For case 1, the modal estimators of 3; are slightly biased for small n, but there are substantial
improvements with an increase in n. For case 2, when the error term is independent of Z and
X, the proposed method works well even with small n. For case 3 in which the error term is
independent of X and Z,, the modal estimator of (; is kind of biased with finite samples. In
all three cases, the modal estimators of 5 are centered around the true parameter values. In
addition, the values of GMSEs and RASFE's obtained from modal regression are clearly smaller
than those achieved from mean regression, indicating that when dealing with skewed data,
modal regression (at least) in this example can provide more accurate estimators compared to
mean regression. Moreover, as expected, when sample size n increases, the values of MSFEs,
GMSEs, and RASFESs are essentially decreased, corroborating the asymptotic theories.

Figure 2 depicts a set of varying coefficient estimators, which noticeably indicates that
the suggested estimation procedure can capture the true varying coefficient functions in modal
regression with finite samples and that the approximation accuracy increases with sample size.
For space consideration, we only report the results for sample sizes 200 and 400 (same for the

DGP 2 in the supplementary note S4). The results are comparable across sample sizes.

To evaluate the asymptotic normality of the modal estimator, we compare the shape of the
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empirical density of the standardized modal estimate to that of the standard normal density.
Figure 3 shows that the sample distributions have a similar bell shape to the standard normal
distribution. In accordance with the asymptotic property, the performance of the asymptotic
normality approximation improves as the same size n increases. Note that there appears to
present some discrepancy between the sample distribution and the standard normal distribution
when the sample size n is small, which may explain some of the facts that the convergence rate

of modal regression is usually slow.

Table 1: The Results of Simulations for SPLVC Regressions

Method Case n 81 MSE(f1) B2 MSE(82) GMSE(B) RASE(a(U;))
100 1.8046 (0.3079)  0.1325  1.9831 (0.2372)  0.0563 0.1829 0.9573
Case 1 200 1.9030 (0.1815)  0.0422  2.0089 (0.1404)  0.0197 0.0546 0.6132
Brimode =2 400 1.9390 (0.1167)  0.0173  1.9943 (0.0890)  0.0079 0.0228 0.5371
Prmode =2 600  1.9188 (0.0972) 0.0160 1.9934 (0.0678) 0.0046 0.0187 0.5135
1000 1.9465 (0.0674)  0.0074  2.0007 (0.0562)  0.0031 0.0091 0.5012
100 1.0183 (0.1476)  0.0220  1.9975 (0.1400)  0.0195 0.0313 0.6822
Case 2 200 0.9960 (0.0934)  0.0087  2.0053 (0.0898)  0.0081 0.0140 0.5701
Mode  Pimode =1 400  0.9986 (0.0661)  0.0044  2.0025 (0.0619)  0.0038 0.0063 0.4689
Bamode =2 500 9957 (0.0496)  0.0025  1.9971 (0.0543)  0.0029 0.0044 0.3907
1000 1.0052 (0.0393)  0.0016  1.9967 (0.0375)  0.0014 0.0022 0.3292
100 1.8448 (0.2329)  0.0781 1.9832 (0.1440)  0.0209 0.0902 0.5876
Case 3 200  1.8726 (0.1352)  0.0344  2.0028 (0.1008)  0.0101 0.0385 0.5271
Brmode =2 400 1.8774 (0.1001)  0.0250  1.9971 (0.0695)  0.0048 0.0281 0.4128
P2,mode =2 600  1.8717 (0.0794) 0.0227 1.9970 (0.0511) 0.0026 0.0250 0.3240
1000 1.8892 (0.0597)  0.0158  2.0020 (0.0402)  0.0016 0.0162 0.2871
100 0.9898 (0.6519)  0.4229  2.0428 (0.6117)  0.3741 0.6377 1.6321
Case 1 200 0.9808 (0.4686)  0.2188  2.0091 (0.4068)  0.1648 0.3105 1.1480
Prmean =1 400  0.9790 (0.3046)  0.0927  1.9969 (0.3029)  0.0913 0.1603 0.8065
Brmean =2 600 0 9897 (0.2497)  0.0621 1.9828 (0.2475) 0.0613 0.1018 0.6554
1000  1.0329 (0.2078)  0.0440  2.0078 (0.1865)  0.0347 0.0733 0.5289
100 1.0026 (0.3382)  0.1138  2.0187 (0.3259)  0.1060 0.1685 0.9865
Case 2 200 0.9994 (0.2276)  0.0516  1.9969 (0.2231)  0.0495 0.0755 0.7062
Mean ~ Plmean =1 400 09839 (0.1447)  0.0211  2.0001 (0.1559)  0.0242 0.0376 0.5054
Prmean =2 600 (9918 (0.1217)  0.0148  1.9848 (0.1347)  0.0183 0.0269 0.4224
1000  1.0169 (0.1048)  0.0112  2.0007 (0.1058)  0.0111 0.0185 0.3472
100 0.9880 (0.4185)  0.1744  2.0247 (0.3383)  0.1145 0.2458 0.8679
Case 3 200 0.9806 (0.3108)  0.0965  2.0122 (0.2330)  0.0542 0.1279 0.6182
Prmean =1 400  0.9940 (0.2089)  0.0435  1.9963 (0.1705)  0.0289 0.0663 0.4455
Prmean =2 600 (9988 (0.1680)  0.0281 1.9980 (0.1297) 0.0167 0.0383 0.3693
1000  1.0156 (0.1326)  0.0178  2.0074 (0.0992)  0.0098 0.0268 0.3099

Note: For case 1 and case 2, a1, mode(Us) = exp(2U; — 1) + 1 and a2 mode (Ui) = sin(27U;); for case 3, a1 mode(Ui) = exp(2U; — 1)

and a2 mode(Us) = sin(2nU;). For all cases, a1,mean(U;) = exp(2U; — 1) and a2 mean (U;) = sin(27U;).
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DGP 1-Case 1 DGP 1-Case 1 DGP 1-Case 2
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Figure 2: Fitted Varying Coefficient Functions with n = 200 or 400

Note: The black curves are the true (mean and modal) varying coefficient functions in each
case. The red curves represent the corresponding estimates for sin(-) functions, while the green
curves denote the analogous estimates for exp(-) functions with 200 replications.

2 4 6 3 4 2

-6 -4 2 0 2 4 6 -5 4 -2 o
DGP 1-Case 1-13, DGP 1-Case 2-17,

0
DGP 1-Case 31,

Figure 3: Empirical Density of the Standardized Estimate

The research focus in many empirical applications is more on prediction. As stated in Sec-

tion 1, one of the main advantages of modal regression is having better prediction performance
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compared to existing regressions (Figure 1). Following Ullah et al. (2021, 2022), we report the
average of the coverage probabilities when conducting predictions according to the same length
of small intervals centered around each estimate. We consider 0.10, 0.20, and 0.50 length of
intervals, separately, where o &~ 2 for ¢; ~ 0.5N(—1,2.5%) + 0.5N(1,0.5?). We follow the same
DGP process as the above three cases with the sample size 2n, where we estimate the model
with the first n data points and make out-of-sample predictions for the remaining n data points
with 200 replications. The results are shown in Figure 4, which demonstrates that modal re-
gression can obtain higher coverage probabilities than mean regression. With the increase of
interval length, the coverage probabilities for both modal and mean regressions are increasing
and moving closer to each other as expected. The results are consistent with those reached in
Yao and Li (2014) and Ullah et al. (2021, 2022).
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Figure 4: Boxplot of Average of Coverage Probability

Note: For each plot, the numbers 1, 2, 4, 6, and 10 represent the values of n=100, 200, 400,
600, and 1000, respectively.

(2) (Penalized SPLVC Modal Regression) We conduct a simulation experiment to illus-

trate the finite sample performance of the proposed estimator with variable selection in this
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part. We first generate random samples from the following model

where X is composed of two covariates and Z is made up of ten covariates. The covariate
vector (XZT, Zi)T is normally distributed with mean 0, variance I15x12, and correlation 0.2l
where r,7 = 1,--- ,12. For the purpose of selection, we set 81 =2, o =1, B3 =1, and 5, =0
for [ =4,--- .10, which indicates that only the first three variables are relevant and the rest are
irrelevant. Other model settings are identical to those in DGP 1. Then, different modal and

mean equations are attained as follows.

[ Mean Regression:
E(Y;| X, Ui, Z)) = Xyeap(2U; — 1) + Xoisin(2rU;) + 2715 + Zog + Zsi + 32, 024,
Casel: ¢ Modal Regression:
Mode(Y;| X;, U, Z;) = Xyi(exp(2U; — 1) + 1) + Xossin(2nwU;) + 374,
+ 29 + Z3i + 25124 02,

[ Mean Regression:
E(Y;| X, Ui, Z)) = Xyeap(2U; — 1) + Xoisin(2rUy) + 2215 + Zog + Zsi + 312, 024,
Case2: ¢ Modal Regression:
Mode(Y;| X;, U, Z;) = Xyi(exp(2U; — 1) + 1) + Xoisin(2nwU;) + 274,
+ 29 + Z3i + 25124 02,

Mean Regression:
E(Y;| X, Ui, Zi) = Xyeap(2U; — 1) + Xoisin(21U;) + 271, + Zoi + Zsi + 32, 024,
Case 3 : ¢ Modal Regression:
Mode(Y;| X, Us, Z;) = Xyexp(2U; — 1) + Xoisin(2wU;) 4+ 374,
"+ Zoi + Zai + 3124 074

\

We report the average number of zero coefficients that are correctly estimated to be zero
(denoted by C') and the average number of nonzero coefficients that are incorrectly estimated
to be zero (indicated by IC'). To present a more comprehensive picture, Table 2 also de-
picts other criteria for evaluating the performance of the developed model, including U-Fitted
(underfitted)—the proportion of ignoring at least one of the nonzero coefficients in all repli-
cations, C-Fitted (correctly fitted)—the proportion of selecting all coefficients correctly in all
replications, and O-Fitted (overfitted)—the proportion of correctly selecting all nonzero coef-
ficients but including at least one zero coefficients in all replications. As seen from Table 2,
the proposed modal regression variable selection procedure performs fairly well in terms of all
evaluation criteria. It can select the true irrelevant variables with a high probability, and the

percentage of incorrect selections steadily decreases as sample size increases. Compared to mean
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regression, modal regression could have better performance of oracle procedure in terms of
accurate variable selections (higher rates of C' and C-Fitted), and offers a more informative
summary of the data. Especially, when n is not very large, mean regression cannot eliminate

certain irrelevant variables.

To assess the accuracy of the resultant estimators, we use GMSE and RASFE to compare
the performance of different estimates. The results are shown in Table 2, where S represents
the estimates with SCAD variable selection and O denotes the oracle estimates assuming the
zero coefficients are known but the other coefficients are unknown. Note that O is only available
in simulation studies and serves as a benchmark here for comparisons. The results show that
the developed variable selection procedure can estimate all nonzero and zero coefficients more
accurately compared to the mean selection method. There is an evident tendency that with the
increase of sample size, the SCAD estimation procedure significantly improves the estimation
accuracy, indicating the consistency of the suggested variable selection procedure. As expected,
the S estimator performs comparably to the oracle procedure in terms of model error and model
complexity as the sample size n increases. Furthermore, we find that modal regression performs
better than mean regression in terms of RASFE-Ss, but slightly worse in terms of GMSFE-S's.
For large sample size, both mean and modal regression variable selection procedures perform

reasonably well.

(3) (Varying Coefficient Test) To examine the finite sample performance of the test statistic,

we generate random samples from the following model
Y: = XiaUs) + Zi + o (X4, Zi)ei,

where 8 = 3, U; ~ U0,1], ¢ ~ 0.5N(—1,2.5%) + 0.5N(1,0.5%), and (X;, Z;)T is normally
distributed with mean 0, variance Isys, and correlation 0.2. To test whether «(U;) deviates
from a constant, i.e., Ho : a(U;) = a vs. Hy : a(U;) # a, we set a(U;) = a+7(cos(2U; —1) — ),
in which a = fol cos(2u — 1)du = 0.8415. The parameter 7 is chosen from the set {0.0,0.5,1.0,
1.5,2.0,2.5,4.0}, which can determine the extent that «(U;) varies with U; and evaluate the
power of the proposed test. Accordingly, v = 0 corresponds to the model under the null
hypothesis, which examines the validity of the bootstrap procedure for approximating the null
distribution of the test statistic 75. When 7 increases, the alternative moves farther away from
the null hypothesis, where one would expect the rejection rates of the null hypothesis to get
higher. To obtain the sizes and powers of the suggested test, the simulation replication is taken
as 200 and the bootstrap replication B is set to 200. Due to the expensive computation, the

sample size is set to 100 or 200, separately. We define o(X;, Z;) = Z; throughout this simulation.

To check whether the resultant statistic 7Ty asymptotically follows x?(d) with d = 7, =
212 /o2 where p,, and o2 are the simulated mean and variance of Tp, respectively, we plot the

sampling distribution of 200 simulation statistics of T, against the x?(d) distribution in Figure
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5. The two plots show that the empirical distribution of the developed statistic and the x?(d)
are close to one another, demonstrating that the y2-distribution can satisfactorily approximate

the null distribution of the proposed statistic.

Figure 5: Empirical Distribution of the Proposed Statistic under H,

Figure 6 displays the relative frequencies of rejecting H, at the significance levels a = 0.01,
0.05, and 0.1, respectively. It shows that the proposed test statistic performs satisfactorily in
terms of both size and power. The power, as expected, is a monotone increasing function of ~.
Under the null hypothesis, i.e., v = 0, the estimated sizes of the suggested test are closer to the
nominal significance levels 1%, 5%, and 10%, indicating that the developed test can provide the
appropriate levels of testing under these three different significance levels. Under the alternative
hypothesis, i.e., v > 0, when the sample size is 100, the powerful function does not increase
rapidly to 1 as 7 deviates from 0, and achieves 90% when ~ > 3. However, when the sample
size rises to 200, the power performance becomes better, achieving close to 1 with v > 1.5.
These findings suggest that the bootstrap estimate of the null distribution of the test statistic
is approximately valid, ad the developed test with the residual-based bootstrap is practically

useful when we have a moderately large dataset.
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Figure 6: Type I Error and Power of Bootstrap Test

Note: The left plot represents the difference between the null (v = 0) and the alternatives.

4.2 Empirical Analyses

Example 1: Application to Return to Education We demonstrate the effectiveness of

the proposed estimating method and test procedure by an application to the return to education
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dataset. It is well-known that there is a nonlinear relationship between wage and educational
level or work experience. A substantial amount of literature has been devoting effort to investi-
gating the empirical relationship between earnings and education. For example, Su et al. (2013)
introduced a local linear GMM estimation of varying coefficient instrumental variables model
with an application to estimating the rate of return to schooling; Cai et al. (2006) utilized a
two-step nonparametric procedure to estimate the return to education; among others. Note,
however, that all of these studies are based on mean regression. To provide more empirical
evidence to support the importance of education, we investigate the mode relationship between
earnings and education using the developed SPLVC modal regression, where we utilize random
samples from the 1985 wave of the Australian Longitudinal Survey (ALS). In the empirical
setting, we choose log(wage) to be the dependent variable Y and work experience as the index
variable U. We use years of education as the variable X and the other four categorical variables
as the control variables, namely, indicators for marital status (Z;), union membership (Z3),
government employment (Z3), and whether a person was born in Australia (Z;). The model is

defined as follows?
YV =a(U) + (U)X + Z11 + Zafo + Z30s + Zafs + €, (4.1)

where a4 (-) and as(+) are unknown varying coefficient functions. The resulting sample contains
2041 observations with work experience of less than or equal to 8 years.® Table S3 in the

supplementary note provides summary statistics for the sample.

We utilize both the SPLVC mean and modal regressions to estimate (4.1). To evaluate
the ability of reproducing data, we compare the in-sample prediction performance of these two
models by reporting mean absolute percentage error (M APE), defined as MAPE = (100/n)
YooY — }A/;| /Y;, where Y; is the estimated value and n is sample size. The standard error in
parenthesis in Table 3 is obtained using the bootstrap technique with 200 replications (Ullah et
al., 2021). As shown in Table 3, all coefficients 3 in modal and mean regressions are statistically
significant at the 5% significance level. Modal regression has coefficient signs that are consistent
with mean regression but have different magnitudes. In general, individuals who were not born
in Australia, were married, worked for the government, and were members of a trade union have
higher wages based on mode effect, which is aligned with the mean results obtained by Cai et
al. (2006). There are some notable differences in the estimates of the coefficients of variables
Z between mean and modal regressions. The modal coefficient of Born in Australia is larger

than that of mean regression (negative values), indicating that although aliens’ average salary

2Due to unobservable heterogeneity in schooling choices, education is an endogenous variable in the labour
economics literature. We do not consider the endogenous issue in this paper, but it would be interesting to
explore such a case in modal regression.

3The data from Su et al. (2013) have only eight observations with experience being more than or equal to
9 years. We delete these observations, yielding a total of 2041 observations. In addition, the distribution of
log(wage) is nearly symmetric, indicating that modal estimation should be similar to mean estimation.
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is higher than those of natives, the effect based on mean is overestimated. With respect to
the variable Married, it is generally known that married females are more mature and thus
more attractive to employers. However, the effect is underestimated via mean regression. For
variable Government Employee, modal regression provides a larger estimated effect compared
to mean regression, which reveals the fact that people who work in government typically earn
higher salaries. The coefficient of Union member of modal regression is larger than that of
mean regression, indicating that in reality the benefit of female workers joining unions has
been underestimated at some points. Moreover, compared to mean regression, modal regression

produces a smaller M APFE, representing better performance in reproducing data.

Table 3: The Estimation Results of Equation (4.1)

Variable SPLVC Modal SPLVC Mean Variable SPLVC Modal SPLVC Mean
-0.0806 -0.0912 0.1422 0.1366
Born in Australia Government Employee
(0.0017) (0.0207) (0.0016) (0.0167)
0.1867 0.1831 0.0132 0.0098
Married Union Member
(0.0028) (0.0190) (0.0007) (0.0151)
MAPE 14.55 15.19
17 Hoe o neeion A L o e eesson
- 14 ,/// \“"-‘—:/ % 006 ~ :\\ “ - ::“\
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Figure 7: Estimated Curves for Wage Equation

Figure 7 reports the estimated curves for a;(u), as(u), and the associated derivatives. In
terms of a(u), both modal and mean regressions accurately reflect the nonlinear relationship
between experience and wage, implying that more experienced female workers tend to have
higher wages in general. Mean regression, on the other hand, overestimates the effect of expe-

rience on wage. For the marginal effect of experience on wage (Jaj(u)/0u), mean regression
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always indicates a positive relationship, whereas modal regression shows a negative relationship
around six years. In regard to as(u), we can observe a positive relationship between education
and wage based on modal and mean regressions, but the magnitude and shape are different,
with mean regression underestimating the effect of education on wage. According to the plot
of das(u)/du, both modal and mean regressions suggest that the marginal effect of education
decreases with the increase of experience for either low or high experienced workers. However,
around the middle levels of experience (six years), modal regression reveals that there is a

positive relationship between experience and the effect of education on wage.

Finally, we apply the proposed varying coefficient test to check whether a;(-) and as()
really vary over experience, i.e., Hy : ay(U;) = aq and as(U;) = ag vs. Hy @ aq(U;) # aq or
as(U;) # awo, where o and s are two unknown constants. The obtained p-value from the
bootstrap algorithm is 0.0150 for the considered null hypothesis, which suggests that we should
reject the null hypothesis at the 5% significance level.

Example 2: Application to Boston Housing Dataset To illustrate variable selection
for modal regression, we analyze the Boston Housing dataset (Fan and Huang, 2005), which
contains 506 observations within the Boston Standard Metropolitan Statistical Area in 1970. We
primarily employ a partially linear model to investigate the relationship between the median
values of owner-occupied homes in the Boston area (MEDV') and the following covariates:
CRIM (per capita crime rate by town), RM (average number of rooms per dwelling), TAX
(full-value property-tax rate per 10,000 USD), NOX (nitric oxides concentration parts per 10
million), PTRATIO (pupil-teacher ratio by town), AGE (proportion of owner-occupied units
built prior to 1940), B (1000(Bk — 0.63)* where Bk is the proportion of blacks in town), and
LSTAT (lower status of the population). See summary statistics for the sample in Table 54 in

the supplementary note.

We choose scaled U = v/LSTAT on the interval [0, 1] as the index variable and standardize
all X-variables and the response variable to facilitate implementation. As argued by Fan and
Huang (2005), the influences of X-variables on M EDV vary with the level of LST ST, thus it
may be reasonable to fit a partially linear varying coefficient model. The main objective of this
example, however, is to demonstrate the variable selection methodology proposed in this paper.

As a result, we instead fit a partially linear model defined as
7
MEDV; = a(U)) + Y B Xy + e, i=1,--+ 506 (4.2)
j=1

to reveal interesting data structures, where we utilize both mean and modal regressions to

simultaneously conduct estimation and variable selection.

Table 4 shows the variable selection results and Figure 8 presents the estimated curves

for a(U;). According to Table 4, both mean and modal regressions can identify three nonzero
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coefficients, which indicates that the covariates CRIM, RM, and AGE have effects on the
median value of owner-occupied home based on mean or mode. In contrast to mean regression,
besides TAX, PTTRATIO, and B, modal regression also shrinkages the coefficient of NOX to
zero, implying that the covariate NOX has no effect on the median value of owner-occupied
home when measured from the “most likely” value (mode). This further suggests that modal
regression can provide a simpler model than mean regression and, on occasion, disclose new
model characteristics that mean regression cannot reveal. In addition, modal regression has
considerably better in-sample prediction performance than mean regression in terms of M APFE,
demonstrating that modal regression with variable selection could be an attractive technique

for simultaneously selecting variables and estimating coefficients.

Table 4: The Selected Parametric Components

Variable  SPLVC Modal SPLVC Mean Variable SPLVC Modal SPLVC Mean

CRIM -1.7616 -0.7459 RM 1.7102 3.6048
TAX 0 0 NOX 0 -2.1708
PTRATIO 0 0 AGE -0.6307 -0.7808
B 0 0
MAPE 86.53 129.90

SPLVC Mean Regression SPLVC Modal Regression

Intercept Function a(U)
Intercept Function a(U)

Figure 8: Estimated Curves (a(U;)) for Boston Housing Dataset

5 Concluding Remarks

To broaden the scope of existing modal regression models, we in this paper propose a novel
SPLVC modal regression and develop a computationally efficient three-stage estimation proce-
dure to estimate the model. The asymptotic properties of the resultant estimators are studied,
and the selection of bandwidths for the developed model is discussed. In contrast to condi-
tional SPLVC mean or quantile regression, the introduced SPLVC modal regression provides
additional information on how the “most likely” values of the dependent variable are affected
by the regressors. It will be advantageous to consider the proposed modal regression as a com-

plement to the existing regression tools and to employ it in situations where the distribution
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of the data is skewed. In addition, we investigate SPLVC modal regression with variable sec-
tion to eliminate irrelevant variables while simultaneously estimate nonzero coefficients, and we
develop a goodness-of-fit testing statistic for hypotheses on coefficient functions by taking a
kernel-based function as the loss function instead of the traditional sum of squared errors. The
modal variable selection procedure is shown to possess the oracle property subject to regular-
ity assumptions. Monte Carlo simulations and empirical analyses reveal the reasonably good
finite sample performance of the newly proposed model. In the supplementary note, we also
discuss the extension of the SPLVC modal regression to the case where some varying coefficient

functions admit higher-order smoothness.

As far as we are aware, this is the first paper that presents a systematic investigation of the
SPLVC modal regression. Given the advantages and superior performance of this model over
existing models with skewed datasets, further research into its applicability in other contexts
would be worthwhile. For instance, measurement error models, also known as errors-in-variable
models in the literature, are frequently encountered in practice when measurements on covari-
ates contain errors. If the measurement error is ignored, the suggested three-stage estimation
procedure will lead to biased estimators. As a result, it is worth extending the SPLVC modal
regression to the case where covariates are measured with errors, which can be investigated
using the deconvolution method. Furthermore, as mentioned in the empirical analysis, we in
this paper do not address the endogeneity issue in the SPLVC modal regression. Endogeneity
in modal regression will be important and meaningful to broaden the application of modal re-
gression models. Such an endogeneity problem can be solved directly by applying the method
of moments or instrumental variable estimation. Finally, due to the complexity of the objec-
tive function, the SPLVC modal regression lacks a convenient inference procedure with suitable
bandwidth selection methods and reliable estimation algorithms when compared to mean or
quantile regression. Although the suggested MEM algorithm can solve models efficiently, it is
necessary to develop other algorithms that are less sensitive to initial values or bandwidths. All

of these will be researched in more depth in the future.
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In this supplementary note, we extend the proposed SPLVC modal regression to the case
where some coefficient functions admit higher-order smoothness, provide summary statistics for
the samples in empirical Examples 1 and 2 (Section 4.2), present additional simulation results
for SPLVC modal regression as well as the Monte Carlo experiment for SPLVC multimodal

regression, and outline all the proofs for the theorems listed in the paper.

S1 Extension to Higher-Order Smoothness Case

The developed three-stage estimation procedure allows the varying coefficient functions to have
different orders of derivatives as long as they are at least two, which is the underlying mechanism
for the local linear approximation. It is nevertheless noticed that the suggested estimation
procedure implicitly assumes that all varying coefficient functions possess the same minimum
degree of smoothness and thus can be approximated equally effectively. When some components
of a(+) are known to admit higher degrees of smoothness than others, the proposed three-stage
estimation procedure may not be optimal for them (in the sense of optimal convergence rate).
Intuitively, a smooth component requires a large bandwidth to decrease variation, whereas a
rough component requires a small bandwidth to reduce bias. In this situation, the rate of
the bias of all estimated varying coefficient functions will be determined by the rate of the
local polynomial with the lowest degree. This implies that all components cannot be optimally

evaluated with a single choice of bandwidth concurrently.

Such a problem has been raised explicitly by Fan and Zhang (1999) for investigating varying
coefficient mean regression. To deal with this issue in SPLVC modal regression, we provide a
two-step estimation procedure by extending the result of Fan and Zhang (1999) and derive the
asymptotic properties. We emphasize that although in advance we cannot know the order of
smoothness of the varying coefficient functions in practice, the extended estimation method
is shown theoretically and numerically to have a significant gain when the considered varying
coefficient function is smoother than the rest of the functions, and has the same performance
as the introduced three-stage estimation procedure when they have the same minimum order
of smoothness. Therefore, the extended two-step estimation procedure can be considered as an

improved (and more reliable) version of the developed three-stage estimation method.



In the first step, we obtain the modal estimator 3 following the suggested method in
Section 2, pretending that all of the components of «(-) possess about the same degrees of
smoothness. We then define Y; = Y; — zr B to alter the original SPLVC modal regression to

the following varying coefficient modal regression
Mode(Y;| X ;,U;) = X{a(U;) + Z!'B - ZI3. (S.1)
(1)
op(1

To illustrate the necessity of the second-step estimation, we first show that we cannot
achieve the optimal estimator even if we utilize the higher order local approximation for some
functions in the proposed three-stage estimation procedure. We assume that a,(-) is smoother

than the rest of the varying coefficient functions without loss of generality, i.e.,
Mode(Y;| X ;,U;) = Za] )Xo 4 ap(U)Xip, j=1,---,p—1. (S.2)

With the assumption that «a,(-) has a bounded fourth derivative and others have a second

derivative, we can locally approximate a,(-) by a cubic function
a,(U;) = o + b, (U; — u) + ¢, (U; — u)? + d, (U; — u)?, (S.3)

where U; is in a neighborhood of u. Then, following the third-stage estimation procedure in
Section 2, we should maximize the following local kernel-based objective function with respect

to ay, bj, ay, by, ¢, and d,, for given kernels ¢(-) and K(-)

1 = Y — m({X”LJ j= 17Xip) U —u
e (G e (M), o

where \; and \; are two bandwidths that depend on sample size n, and

p—1
({XZ]}j 1 Xip) = Z{Oz]—i—b (Ui — u)} Xij— (ap + b, (Ui —u) + ¢, (Ui — u)2 +d, (Ui — u>3) Xip-
j=1
Define
Xll Xll (U1 —'LL) le le (Ul—U) le (Ul—U)2 le(Ul —U)3
X = : : IR : : :
Xon Xt (Up =) - Xop Xop (Up =) Xop (Un — )’ Xop (Un —u)?

According to the Taylor expansion, we can re-write

m{ Xy Y21 Xip) ~ X(au(u), a8 (@), -+ ape (), ol (u), ap(w), af” (u), (1/2)af (w),

2



(1/6)ay) (w)) " + 15207 : + :
a! (u) (U, — )’ X ay? (w) (Uy —u)* X,

o (u) (Uy —u)® Xy ay? (u) (Uy —u)* X1,

L=t [

where a(9(-) denotes the cth derivative of a(-). Following the same procedures for proving
Theorem 2.6, we can show that the bias of the estimator of a,(U;) is O,(A? + \3) and the
variance is O,((nA2A?)™1). Thus, the M SE of the estimator is only O,(A] + A3 4+ (nAA3) ™),
which achieves the rate O,(n~'/2) when the bandwidth \; = Ay = O(n~/%) is used. The
above mathematical illustration demonstrates that the developed three-stage estimator for a,(-)

inherits the non-negligible approximation error and is therefore not optimal.

To achieve the optimal estimator, we in the second step make use of the third-stage
estimates of oy (+), -+, ap_1(+). Following that, a local kernel-based objective function weighted

by a kernel function K (-) is applied to estimate a,(-), i.e.,

1 Z? }5‘]( ) i m(sz) Uz —Uu
A ;425 ( " ) K ( . ) , (S.5)

where m(X;,) = (ap, + b, (U; — u) + ¢, (Ui — u)® + d, (U; — u)*) X,

The solution of (S.5) gives the two-step modal estimators. Similar to the suggested SPLVC
modal regression, we can utilize a modified MEM algorithm to numerically solve the preceding
equation. Provided that the initial bandwidths in the first step are small enough (so that the bias
of the first-step estimator is small), we have the following consistency and asymptotic normality
results for the estimators, where we show that the two-step modal estimators can achieve the

optimal convergence rate and share the same optimality as if {ozj(-)}g;i were known.

Theorem S1. Suppose that the regularity conditions C'1-C7 are met (instead of C4, we need

()z;?)(u) to be continuous in a neighborhood of u for j =1,--- ,p—1 and the functional coefficient

a,(u) has a continuous fourth derivative in a neighborhood of w). With probability approaching
one, as n — 00, Ay — 0, Ay = 0, hy = 0o(A\?), hs = o(N\2), \}/Xa — 0, h3/hs — 0, and
nM\ A} — oo, there exist consistent mazimizers (éy(u), by(u), é,(u), dy(u)) of (S.5) such that
A 3y—1/2 2 4
i- |y () = aop(w)] = Oy ((0A2A) 7/ + X2 4 24),
. Naby() — bop(u))| = Oy ((nAX]) ™%+ X2+ M),
i, N3 (6p () — cop())] = Oy ((nA2X8) 7% 4 X2 4+ ML),
iv. N3(dy() = dopl(w)] = O, (A2 + X2+ 24),
where agy(u), bop(u), cop(w), and doy(u) are the true parameters of (S.2).

3



Theorem S2. With nA3\3 = O(1) and n\A] = O(1), under the same conditions as Theorem
S1, the estimators satisfying the consistency results in Theorem S1 have the following asymptotic

result

o \3 /\2@17(“) — bop(u)) Pl )\_§~ Da® () — )\_%~ "
VI e ) — o) | T (GiReeton ~ 3 )
(

[ T2 (T)dr -

iN(o, 7o) r<u>1i(u)f(u)1).

If we allow nA3A? — 0 and nX\A] — 0, the asymptotic theorem becomes

— bop(u)) ENY: (O, mf‘(u)—li(u)f‘(u)—l) ;

(w)
A3(Ep(u) — cop(w)) Jo(u)
A3(dy(u) — dop(u))
voX X T £.(0]X) 0 v, XX T £.(0]X) 0
T v T v
S To - wXXTF(0]X) To CwXXTLOX) )
v X XT £.(0|X) 0 uXXTf.(0/X) 0
0 X XT1.(0/X) 0 v X XT 1.(0]X)
XXT (0] X) 0 X XT3 (0] X) 0
B 0 mXXTP0X) 0 WXXTEOX) ||
X XT (01 X) 0 na X XT P (0]X) 0 ’
0 X XT 2 (0)1X) 0 X XT 2 (0]1X)
X (0]1X) ua X X7 £ (0] X)
- 0 ~ 0
A =E | |U=ul, and Ay =E A =
1 X F9(0)X) N s XX 12 (0 X) ¢
0 0

The bias of the two-step modal estimators is of O,(A 4+ \3), while the asymptotic variance
has the same convergence rate as that of the three-stage modal estimators as long as the band-
width conditions are satisfied. Also, the bias term is not dominated by the first-step estimation
with the imposed bandwidth conditions. Therefore, when taking the optimal bandwidths A; and
Xy of order n=1/1% * the M SE of the two-step estimator achieves the optimal rate of convergence

Op(n_S/ 1), This indicates that when some varying coefficient functions admit higher degrees

4The result demonstrates that the smoother the varying coefficient function is, the larger the optimal band-
width for the estimator is. In precipice, we can follow the procedures described in Subsection 2.3 to select
bandwidths A; and Ay with M SFE-optimal rates.



of smoothness, the proposed three-stage estimation method in Section 2 will fail to achieve the
optimal convergence rate and will transmit the approximation errors of as(+), - -+, a,—1(-) to the
bias of estimating a,(-). Furthermore, it is straightforward to show that the two-step estimators
enjoy the same optimal rate of convergence as the ideal ones where oy (-), - -+, a,—1(-) are known,
which is consistent with the property of the corresponding mean regression estimators. If a,(-)
is assumed to have at least the same degree of smoothness as the rest of the functions, the two-
step estimators will have the same performance as the three-stage modal estimators by using
a local linear approximation in both steps, as it shares exactly the same asymptotic properties
as a,(-) provided that some bandwidth conditions are met. This suggests that similar to the
varying coefficient mean regression models, the extended two-step modal estimation procedure
can be considered as an improved version of (and more efficient than) the developed three-stage

estimation approach.

(Monte Carlo Experiment) We conduct a Monte Carlo experiment to provide some
insight on the performance of the extended two-step estimation method, where the data are

generated from the following models
Model 1:Y = sin(67U)X; + sin(2rU) Xy + 27 + Ze,
Model 2 : Y = cos(2nU) X, + sin(2nU) Xy + 2Z + Ze,

in which U is simulated from a uniform distribution on [0, 1] and ¢ ~ 0.5N(—1,2.5%) +
0.5N(1,0.5%). The covariate vector (X, Xo, Z) is normally distributed with mean 0, variance
I5ys, and correlation 0.2%=7! in which k,j = 1,2,3. Thus, the varying coefficient functions
in Model 1 admit different degrees of smoothness, whereas the varying coefficient functions in
Model 2 possess the same degree of smoothness. We are primarily interested in as(U) = sin
(2wU) for Model 1, which fluctuates less than sin(67U), and a1(U) = cos(2nU) for Model 2.
We conduct 200 simulations with sample sizes n = 200,400, and 600, and simply set \; = Ag
= {0.1,0.2,0.3} to study the influence of bandwidths. We calculate RASE to assess the perfor-

mance of the proposed three-stage estimation and the extended two-step estimation methods.

Table S1: The Performance of Different Estimation Methods

Bandwidth Method n =200 n =400 n =600 Method n =200 n=400 n =600
Model 1

Al =X =01 Two-Step 0.2543 0.1910 0.1631 Three-Stage 0.3241  0.2685  0.2451

Al =X =02 Two-Step 0.3020 0.2367 0.2123 Three-Stage 0.3721  0.3243  0.3058

A =X =03 Two-Step 0.3124 0.2567 0.2253 Three-Stage 0.4451  0.3893  0.3756
Model 2

A =X =01 Two-Step 0.2526  0.1906  0.1697 Three-Stage 0.2591  0.2058  0.1919

A =X=0.2 Two-Step 0.2999 0.2419  0.2058 Three-Stage 0.3182  0.2698  0.2448

A1 =X=03 Two-Step 0.3261 0.2521  0.2327 Three-Stage 0.3502  0.3086  0.2807




The results in Table S1 show that the improvement of the two-step estimator is quite
substantial for a wide range of bandwidths when some varying coefficient functions admit higher
degrees of smoothness (results for Model 1), which is consistent with the asymptotic theory that
the extended two-step method outperforms the proposed three-stage estimation procedure. The
results for Model 2 indicate that the extended two-step estimation method performs nearly as
well as the proposed three-stage estimation procedure when varying coefficient functions have

the same minimum degrees of smoothness.

S2 SPLVC Multimodal Regression

As mentioned in the paper, the unique global mode assumption can be released without affecting
the estimation procedure. The multimodal dataset is common in economics. For example, if we
look carefully at the country’s income distribution, we can see that there are two modes relating
to developing and developed countries, which is consistent with a dichotomous world made up of
countries with different incomes. SPLVC modal regression can then be used to capture these two
different situations simultaneously. To demonstrate that the proposed estimation method can
also be utilized to estimate SPLVC multimodal regression, we conduct a Monte Carlo simulation

based on DGP 1. We generate random samples from the following model

Y, = X{aU) + ZIB + o(Xi, Z)e, (5.6)
where we set the parameters and varying coefficients be 3 = (1,2)7 and a(U;) = (a1 (U;), o (U;))
in which a4 (U;) = exp(2U; — 1) and a3(U;) = sin(27U;). The index variable U; is simulated
from the uniform distribution U[0,1]. The covariate vector (X}, ZI)T is normally distributed
with mean 0, variance Iy, and correlation 0.2%=7! where k,j = 1,2,3,4. For simplicity, we
only consider the case where o(X;, Z;) = Xy; + Z1;. To create SPLVC multimodal regression,
we generate €; by mixing two normal distributions with equal weights, where one is centered at

0 and the other is centered at 4, and both variances equal 1 (Figure S1).

0 0 0
-4 -3 2 -1 0 1 2 3 4 0 1 2 3 4 5 6 7 8 Bl -4 -2 0 2 4 6 8 10
N(0,1) N4 1) Mixture Normal Distribution with N(0,1) and N(4,1)

Figure S1: Mixture Normal Distribution with Two Modes

The generalized errors {¢;}; indicate that E(e;) = 2 and Mode(e;) = 0 or 4. In this case,

mean regression may produce misleading results by ignoring data heterogeneity. We then have



the following equations showing two different modal regression lines.

([ Mean Regression:

E(Y;| X, Ui, Z;) = Xqi(exp(2U; — 1) 4+ 2) + Xoisin(2nwU;) + 321 + 274,
Modal Regression Line 1:

Mode(Y;| X;,U;, Z;) = Xyiexp(2U; — 1) + Xoisin(2nwUy) + Zy; + 274,
Modal Regression Line 2:

Mode(Y;| X, Us, Z;) = Xy;(exp(2U; — 1) +4) + Xo;sin(2nU;) 4+ 521; + 275;.

\

We consider data sample size n € {200,400,600} with 200 replications. Table S2 displays
the simulation results, which shows that the proposed estimation method can estimate the
SPLVC multimodal regression well with finite samples. With the approximate choice of the
initial estimates, we can capture different modal regression lines for data with multiple modes.
A set of the varying coefficient estimators is shown in Figure S2 (the black curves are the true
varying coefficient functions, while the red and green curves represent the estimates for exp(+)
and sin(-), respectively), which clearly indicates that the suggested estimation procedure can
capture the true varying coefficients in SPLVC multimodal regression with finite samples, and

the fitted performance improves with sample size increasing.

Table S2: The Results of Simulations for SPLVC Multimodal Regression

Method 7 By MSE(B;) B MSE(B:) GMSE(B) RASE(a(U;))
200 1.0025 (0.0671)  0.0045  2.0041 (0.0554)  0.0031 0.0061 0.5473
Mode 1 400 0.9952 (0.0498)  0.0025  2.0065 (0.0438)  0.0020 0.0035 0.2564
600 0.9970 (0.0409)  0.0017  1.9989 (0.0358)  0.0013 0.0034 0.2168
200 4.9770 (0.1374)  0.0193  2.0059 (0.1184)  0.0140 0.0272 0.5662
Mode 2 400 4.9739 (0.1355)  0.0189  1.9951 (0.1061)  0.0112 0.0265 0.4519
600 4.9410 (0.1102)  0.0156  1.9997 (0.0813)  0.0066 0.0230 0.4181
200 2.9585 (0.4820)  0.2320  2.0095 (0.4387)  0.1916 0.3741 1.2427
Mean 400 2.9820 (0.3551)  0.1258  1.9716 (0.3229)  0.1046 0.1850 0.8675
600 2.9700 (0.2996)  0.0902  2.0097 (0.2540)  0.0643 0.1204 0.7183

Modal Regression Line 1 R Modal Regression Line 1

Figure S2: Fitted Varying Coefficient Functions



S3 Summary Statistics

Table S3: The Statistical Characteristics of Sample
(Return to Education)

Variable Mean  Standard Deviation = Min Max

Born in Australian 0.8618 0.3452 0.0000  1.0000
Married 0.1823 0.3862 0.0000  1.0000
Government Employee  (.2861 0.4521 0.0000  1.0000
Union Member 0.4243 0.4944 0.0000  1.0000
Years of Education  11.7418 1.5277 16.0000  3.0000
Years of Experience 1.4552 1.5277 0.0000  8.0000
Log(Hourly Wage) 0.7950 0.1599 1.6767 -0.4260

Table S4: The Statistical Characteristics of Sample
(Boston Housing Dataset)

Variable Mean Standard Deviation Min Max
CRIM 3.6135 8.6015 0.0063 88.9762
RM 6.2846 0.7026 3.5610 8.7800
TAX 408.2372 168.5371 187 711
NOX 0.5547 0.1159 0.3850 0.8710
PTRATIO  18.4555 2.1649 12.6000 22
AGE 68.5749 28.1489 2.9000 100
B 356.6740 91.2949 0.3200  396.9000
LSTAT 12.6531 7.1411 1.7300  37.9700
MEDV 22.5328 9.1971 5 50

S4 Monte Carlo Experiment (DGP 2)

To further illustrate the applicability of the proposed SPLVC modal regression, we generate

random samples from the following DGP with different levels of skewness of density

Y, = X a(U) + ZI'B + 0(Xi, Zi)e,

where ay(U;) = 8U(1 — U;), ao(U;) = 2sin(27U;), B = (1,1,0.5)T, and ¢; ~ 0.5Ga(ky,0) +
0.5Ga(ks, 0) in which Ga represents the Gamma distribution, ks € N~g, s = 1 or 2, is the shape
parameter that can adjust the skewness of v;; (coefficient of skewness= /4/k), and 6 € Ny is

the scale parameter (Ullah et al., 2021). Note that E(e;) = 0.5(ky + k2)0 and Mode(e;) = 0.5
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(k1 + ko — 1)0. To gain an idea of the effect of the different skewness on estimations, we employ
two different schemes to generate the distributions of ¢;, where we set k; =1 or 7, ks = 2, and
6 = 0.5. The index variable Uj is simulated from the uniform distribution U]0, 1]. The covariate
vector (X7, Z)7" is normally distributed with mean 0, variance I5,5, and correlation 0.2/"~7|,
where 7,5 = 1,--- 5. To compare with mean regression, we consider three cases, where in case
1 we let 0(X;, Z;) = Xy; + Zy;, in case 2 we define 0(X;, Z;) = Xy;, and in case 3 we allow
o0(X;, Z;) = Zy;. We then have the following equations.

More Skewed k; = 1

Mean Regression:
Case 1 : E(Y;| X, Ui, Z;) = X1;(8U;(1 — U;) + 0.75) + Xo;(2sin(2wU;)) 4+ 1.7521; + Za; + 0.5Z3;,
Modal Regression:
Mode(Y;| X, Ui, Z;) = X1;(8U;(1 — U;) + 0.5) + Xo;(2sin(2nwU;)) + 1.5Z1; + Zai + 0.5Z3;;
Mean Regression:
Case 2 - E(Y;’X“ Ui, Zz) = X11(8UZ(1 — UZ) + 075) + XQZ(QSZTL(Q’/TU»L)) + Z1i + Z2; + 0.573;,
Modal Regression:
( Mean Regression:
Case 3 - ]E(YZ’X“ Ui, Zi) = Xli(gUi(l — Uz)) + XQ,‘(QSZ'TL(QTFUZ‘)) + 1.75Z; + Zs; + 0.523;,
Modal Regression:
MOdE(YHXZ‘, Ui, Zl) = X1¢(8Ui(1 — UZ)) + X2¢(2$in(27TUi)) 4+ 1.521; + Zo; + 0.573;.

Less Skewed k; =7

Mean Regression:
Case 1 - ]E(YZ’XZ, U, Zi) = XU(8U¢(1 - UZ‘) + 2.25) + XQi(2Sin(27TUi)) + 3.257Z1; + Zs; + 0.525;,
Modal Regression:
Mode(YﬂXi, Ui, Zz) = X12(8Uz(1 — Uz) + 2) + X21(28Z7L(27TU1)) + 321 + Zo; + 0.5Z3;;
( Mean Regression:
Clase - E(Y;| X, Ui, Z;) = X1;(8U; (1 — U;) + 2.25) + Xo;(2sin(2nU;)) + Z1; + Zai + 0.573;,
Modal Regression:
Mode(YHXi, Ui, Zz) = X11(8UZ(1 — Uz) + 2) + X21(28Z7L(27TU1)> + Z1i + Zo; + 0.573;;
Mean Regression:
Case 3 - E(Y;’X“ Ui, ZZ) = X11(8U1(1 — Uz)) + X21(28’LTL(27TU2)) + 3.25Z1; + Zo; + 0.5Z3;,
Modal Regression:
Mode(Y{\Xh Ui, Zl) = Xli(SUi(l — Uz)) + Xgi(28in(27TUi)) 4+ 3Z1; + Zo; + 0.523;.

The estimation results of more skewed and less skewed settings are shown in Tables S5-56,

respectively, containing the estimates and their standard errors (in parentheses), the MSFEs,
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the GMSFEs, and the RASEs. The results for both of these two settings indicate that modal
estimators behave well in finite sample situations. For the more skewed case, same as the
results of DGP 1, we can observe that the modal and mean estimators have comparable bias
while the modal estimators have smaller GMSFEs and RASFEs, indicating some finite sample
efficiency gains of the modal estimators in this example. For the less skewed case, the finite
sample performance of the modal estimators is better than the corresponding mean estimators
in terms of M SFEs, though the efficiency gain is not very large compared to the more skewed
case. However, in the case of less skewed error, the modal estimators are less accurate than the
mean estimators in terms of GMSEs and RASFEs. Figure S3 depicts a set of varying coefficient

estimators with excellent fitting performances.

DGP 2-More Skewed-Case 1

DGP 2-More Skewed-Case 2

L

Y0 o1 02 03 04 05 08 07 08 09 1 Yo 01 02 03 04 05 06 07 08 09 1
U n=200 U n=400

DGP 2-More Skewed-Case 3 DGP 2-More Skewed-Case 3 DGP 2-Less Skewed-Case 1

0 01 02 03 04 05 06 07 08 09 1 " 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 o1 02 03 04 05 06 07 08 09 1
U n=200 U n=400 U n=200 =

DGP 2-Less Skewed-Case 2 DGP 2-Less Skewed-Case 2 DGP 2-Less Skewed-Case 3 DGP 2-Less Skewed-Case 3

4 3
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
U n=400 U n=200 U n=400

Figure S3: Fitted Varying Coefficient Functions with n=200 or 400 (DGP 2)

Note: The meanings of the different lines in the figure are the same as in DGP 1.

Similar to DGP 1, we report the shape of the empirical density of the standardized parame-
ter estimate. Figure S4 indicates that the asymptotic results provide reasonable approximations
in finite samples, and the whole distribution converges to the standard normal as sample size n
increases. To evaluate the predictive capabilities of the modal regressions, different from DGP
1, we report the in-sample prediction performance with 0.1, 0.20, and 0.50 length of intervals
to see how effective the estimation procedure is in reproducing data. Figure S5 shows that the
modal regression estimator has better coverage probabilities than the mean regression estimator

even for in-sample prediction.
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Table S5: The Results of Simulations for DGP 2: More Skewed

Method Case n B1 MSE(B) Ba MSE(f32) Bs MSE(B3) GMSE(B) RASE(a(U;))
100 1.6243 (0.1540)  0.0390  1.0042 (0.1460)  0.0212  0.5017 (0.1420)  0.0201 0.0665 0.6664
Case 1 200 1.5737 (0.1146)  0.0185  0.9964 (0.0749)  0.0056  0.5069 (0.0764)  0.0059 0.0241 0.4961
227,:::115 400 1.5267 (0.0813)  0.0073  1.0040 (0.0449)  0.0020  0.4969 (0.0497)  0.0025 0.0095 0.4142
Pomede =05 6001 5019 (0.0676)  0.0045  0.9961 (0.0370)  0.0014  0.4989 (0.0359)  0.0013 0.0059 0.3825
1000 15070 (0.0528)  0.0028  0.9966 (0.0255)  0.00066  0.5071 (0.0265)  0.00075 0.0053 0.3553
100 0.9965 (0.0799)  0.0064  1.0087 (0.0826)  0.0069  0.4975 (0.0785)  0.0061 0.0143 0.4948
Case 2 200 1.0021 (0.0481)  0.0023  1.0030 (0.0461)  0.0021  0.5003 (0.0459)  0.0021 0.0045 0.3975

3 z
Mode ;;dl _ i 400 1.0001 (0.0203)  0.00085  1.0038 (0.0296)  0.00089  0.5001 (0.0293)  0.00086 0.0016 0.3294
Pomede =05 6001 o003 (0.0231)  0.00053  0.9994 (0.0240)  0.00058  0.5002 (0.0224)  0.0005 0.0011 0.3028
1000 1.0012 (0.0157)  0.00025  0.9981 (0.0155)  0.00024  0.5030 (0.0157)  0.00025 0.0005 0.2749
100 1.5869 (0.1175)  0.0213  1.0037 (0.0784)  0.0061  0.4975 (0.0845)  0.0071 0.0283 0.4739
Case 3 200 1.5363 (0.0934)  0.0100  1.0003 (0.0474)  0.0022  0.5062 (0.0531)  0.0028 0.0139 0.3760
; 15
ﬁ;;ofd;lld 400 1.4913 (0.0633)  0.0041  1.0030 (0.0309)  0.00096  0.4993 (0.0303)  0.00092  0.0048 0.3101
Pomote =05 600 479 )0.0538)  0.0033  0.9979 (0.0247)  0.00061  0.4976 (0.0225)  0.00051 0.0041 0.2830
1000 1.5048 (0.0406)  0.0017  0.9981 (0.0174)  0.00030  0.5035 (0.0167)  0.00026 0.0018 0.2532
100 1.7541 (0.2179)  0.0472  1.0184 (0.2072)  0.0431  0.4957 (0.2045)  0.0416 0.0996 0.6828
Case 1 200 1.7616 (0.1660)  0.0276  0.9862 (0.1374)  0.0190  0.4949 (0.1379)  0.0190 0.0492 0.5078
SIﬂZ::l 17 ’ 400 1.7538 (0.0951)  0.0090  1.0081 (0.0899)  0.0081  0.4928 (0.0934)  0.0087 0.0184 0.4266
Pomean =05 600 | 7481 (0.0907)  0.0082  1.0027 (0.0814)  0.0066  0.4962 (0.0711)  0.0050 0.0144 0.3996
1000 1.7551 (0.0706)  0.0050  1.0041 (0.0551)  0.0030  0.4988 (0.0640)  0.0041 0.0096 0.3744
100 1.0070 (0.1142)  0.0130  1.0102 (0.1235)  0.0153  0.4925 (0.1186)  0.0141 0.0312 0.5101
Case 2 200 1.0038 (0.0890)  0.0079  0.9876 (0.0759)  0.0059  0.4950 (0.0762)  0.0058 0.0142 0.4149
Mean g;"n : 400 1.0023 (0.0486)  0.0024  1.0019 (0.0531)  0.0028  0.4981 (0.0520)  0.0027 0.0053 0.3776
Pomean =05 04 0.9994 (0.0456)  0.0021  1.0009 (0.0467)  0.0022  0.4993 (0.0421)  0.0018 0.0042 0.3652
1000 1.0038 (0.0371)  0.0014  1.0010 (0.0327)  0.0011  0.4988 (0.0361)  0.0013 0.0029 0.3520
100 1.7511 (0.1435)  0.0205  1.0063 (0.1157)  0.0134  0.5000 (0.1218)  0.0148 0.0385 0.4906
Case 3 200 1.7585 (0.1071)  0.0115  0.9971 (0.0821)  0.0067  0.5008 (0.0855)  0.0073 0.0195 0.4093
R

51527:1 17 T a0 171 (0.0654)  0.0043  1.0060 (0.0503)  0.0026  0.4936 (0.0551)  0.0031 0.0073 0.3690
Paimean =05 g4 1.7478 (0.0591)  0.0035  1.0005 (0.0451)  0.0020  0.4972 (0.0401)  0.0016 0.0054 0.3555
1000 1.7519 (0.0476)  0.0023  1.0030 (0.0317)  0.0010  0.5001 (0.0366)  0.0013 0.0036 0.3510

Note: For case 1 and case 2, a1 mode(Us) = 8U;(1 — U;) + 0.5, a2 mode(Us) = 25in(2nU;), a1,mean(Us) = 8U;(1 — U;) + 0.75, and
02, mean(Us) = 2sin(2wU;); for case 3, a1 mode(Ui) = a1, mean(U;) = 8Us(1 — U;) and a2 mode(Ui) = @2,mean(U;) = 2sin(2wU5).

11



Table S6: The Results of Simulations for DGP 2: Less Skewed

Method Case n B MSE(B,) B MSE(B,) B3 MSE(8;s) GMSE(B) RASE(a(U;))
100 3.2666 (0.5561)  0.3788  1.0045 (0.4961)  0.2449  0.4895 (0.4644)  0.2147 0.6171 1.8332
Case 1 200 3.1734 (0.3299)  0.1387  1.0306 (0.2986)  0.0896  0.5289 (0.2679)  0.0723 0.2451 1.1646
g;:: - ? 400 32488 (0.2362)  0.1174  1.0041 (0.1823)  0.0331  0.4983 (0.1751)  0.0305 0.1558 0.8036
Pomote =05 600 3 a3 (0.2026)  0.0952  1.0145 (0.1437)  0.0208  0.4829 (0.1490)  0.0224 0.1148 0.6572
1000 3.2038 (0.1390) ~ 0.0608  1.0057 (0.0862)  0.0074 0.4929 (0.0846) 0.0072 0.0671 0.5161
100 10168 (0.2425)  0.0588  0.9887 (0.2315)  0.0534  0.5068 (0.2315)  0.0534 0.1210 1.0319
Case 2 200 0.9695 (0.1472)  0.0225  1.0145 (0.1204)  0.0169  0.5115 (0.1329)  0.0177 0.0412 0.7598
Mode j;j _ 1 400 1.0095 (0.0858)  0.0074  1.0036 (0.0794)  0.0063  0.5000 (0.0766)  0.0058 0.0151 0.5710
Pamote =05 g4, 1.0072 (0.0597)  0.0036  1.0020 (0.0629)  0.0039  0.4944 (0.0598)  0.0036 0.0080 0.5278
1000 0.9961 (0.0491)  0.0024  1.0015 (0.0442)  0.0019  0.4973 (0.0419)  0.0018 0.0045 0.4683
100 3.2214 (0.3697)  0.1850  1.0139 (0.2523)  0.0635  0.4930 (0.2476)  0.0610 0.2494 0.9257
Case 3 200 3.1705 (0.2467)  0.0896  1.0059 (0.1486) ~ 0.0220  0.5060 (0.1351)  0.0182 0.1149 0.6072
g;:: _ ? 400 3.1630 (0.1888)  0.0620  0.9960 (0.0902)  0.0081  0.49996 (0.0795)  0.0063 0.0706 0.4393
Pomete =05 g0 3.1326 (0.1849)  0.0516  0.9974 (0.0676)  0.0046  0.4962 (0.0710)  0.0050 0.0539 0.3706
1000 3.0853 (0.1561)  0.0316  0.9999 (0.0444)  0.0020  0.5026 (0.0456)  0.0021 0.0348 0.3151
100 3.3018 (0.5701)  0.3261  1.0021 (0.5206)  0.2697  0.4905 (0.4933)  0.2423 0.6050 1.6082
Case 1 200 3.1939 (0.3426)  0.1199  1.0303 (0.3279)  0.1079  0.5278 (0.2978)  0.0890 0.2344 1.1027
ﬂiega:j 12 ’ 400 3.2955 (0.2668)  0.0729  0.9966 (0.2398)  0.0572  0.4877 (0.2127)  0.0452 0.1334 0.7810
Pamean =05 5 3.2618 (0.2119)  0.0448  1.0161 (0.1994)  0.0398  0.4890 (0.1952)  0.0380 0.0826 0.6363
1000 3.2343 (0.1645)  0.0272  1.0179 (0.1449)  0.0212  0.4887 (0.1467)  0.0215 0.0488 0.4943
100 1.0215 (0.2782)  0.0775  0.9923 (0.2867)  0.0818  0.5011 (0.2646)  0.0697 0.1675 0.9593
Case 2 200 0.9559 (0.1814)  0.0347  1.0207 (0.1745)  0.0307  0.5217 (0.1710)  0.0296 0.0656 0.6713
Mean gi;: - 1 400 1.0270 (0.1354)  0.0190  0.9988 (0.1261)  0.0158  0.4936 (0.1244)  0.0154 0.0378 0.4916
Pomean =05 gy 1.0084 (0.1064)  0.0113  1.0106 (0.1099)  0.0121  0.4922 (0.1098)  0.0121 0.0231 0.4090
1000 0.9969 (0.0850)  0.0072  1.0066 (0.0754)  0.0057  0.4934 (0.0814)  0.0066 0.0131 0.3305
100 3.2785 (0.3633)  0.1321  1.0108 (0.2823)  0.0794  0.4882 (0.2749)  0.0753 0.2149 0.8753
Case 3 200 3.2376 (0.2296)  0.0526  1.0098 (0.1878)  0.0352  0.5074 (0.1577)  0.0248 0.0877 0.5930
ﬂiega:j 12 ’ 400 3.2682 (0.1737)  0.0303  0.9979 (0.1348)  0.0181  0.4944 (0.1130)  0.0127 0.0472 0.4329
Pamean =05 5 3.2535 (0.1414)  0.0199  1.0052 (0.1074)  0.0115  0.4966 (0.1047)  0.0109 0.0305 0.3598
1000 3.2377 (0.1033)  0.0108  1.0113 (0.0827)  0.0069  0.4951 (0.0808)  0.0065 0.0180 0.2924

Note: For case 1 and case 2, a1 mode(Us) = 8U;(1 — U;) + 2.25, a2 mode(Us) = 2sin(27U;), a1,mean(U;) = 8U;(1 — U;) + 2, and
a2, mean(Ui) = 2sin(2wU;); for case 3, a1, mode (Ui) = a1,mean(Us) = 8U;(1 — U;) and a2 mode(Us) = @2,mean(U;) = 2sin(27U;).
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S5 Proofs of Theorems

For convenience and simplicity, throughout the following parts of this supplementary note, we
use 9, to denote a variable associated with bandwidths and sample size n, and use ¢ to represent

a positive constant, which may take different forms at different places.

S5-1: Proof of Theorem 2.1

Recall that Y; = X[ a(U;) + Z] B + €. Defining X;" = (X, X[ (Ui — u)/he, Z]), 6 =
(a(u)T7 b(u)T7 /BT)T7 00 = (aO(u)T7 bO(u)T7 Bg)Ta H = dlag(la R 17 h27 e 7h27 17 Ty 1)7 01 -
—_—— —

p P d

HO, and 60,y = HO,, we then achieve

0. (6) = nh11h2 ; 5 (ei + X7 a(U;) - X?}Eix(u) + b(w)(U; — u))) . (UZ}; u) |

Defining 8, = h? + h3 + /(nh$hy)~1, it is sufficient to show that for any given 7, there
exists a large number constant ¢ such that

lll|=c

P{ sup @ (010 + dnpt) < Q, (010)} >1—n,

where 61 is the true value of the parameter. The above equation implies that with probability
tending to one, there is a local maximum in the ball {61y + 0, : ||| < ¢}. Applying Taylor
expansion, it follows that

Qn (010 + 571/-1') - Qn (010)

1 < 6+ R(X;,U;) — 6,u" X Ui —u
= L) K
nh1h2 Z [¢ < hl hQ

i=1

K
nh1h2;¢< In ) ( ha )]
1 = € + R(Xl Uz> (5nll,TX<* Ul —Uu
- _ 4D ’ L) K
nh1h2 ; [ ¢ < hl > ( hl hg

+ 1¢(2) (Ei + R(X, U’)) (5nNTX;)2K <Ui — u)

2 hl hl h2
. N\ 3
e () (O XEN g (Ui
6 h1 h1 ho
:]1 + -[2 + I37

where €f is between ¢; + R(X;, U;) and ¢; + R(X;, U;) — 0,u” X, and R(X;,U;) = X1 ao(Uy)
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— X7 (ap(u) + by(uw)(U; — u)). Based on the result T,, = E(T,,) + O,(y/Var (T,,)), we consider

each part of the above Taylor expansion.

(i) For the first part, which is [; = nhihg i1 <_¢(1) <€i+R§fi7Ui)> <6nuhT1Xi*> K (U;;u>)a
by Taylor expansion, we can re-write it as

) 6+ RX:, U\ p7X;  (Ui—u
E [ _ n]E (1) 7 1y 1 7 K
(1) hihs (¢ ( hy ) hy ha
—0 pt X Ui—u &\ RX:U)p" X Ui—u
— n (1) ) 2) [ > R 7
h1h2E (¢ (’h) h1 k < ho ) +e (h1> ht r he

41 ¢<3> R(XT, Ugp! X7 (Ui —u
h1 h ha

= Iy + Lo + L3,

where €* is between ¢; and ¢; + R(X;,U;). Note that under the same conditions as Theorem
2.1, the order of €* is the same as that of ;. When we do the calculations associated with I3,

we instead use ¢; directly. By some direct calculations for each part, we can get
¢(1 2 ,U'TXZ*K Ui —u
h1h2 hy hq R
pX: > U—-wu .
h h ///¢ ( > fe(el X)K ( ; ) fu(U)dUdedF (X)
1he ;

=00 [ 061 0t X 5o X0 (0) s + wudrar ()

=0, (8,ch?).

TXr (U —u\ R(X:U)
_[ — (2) K 7 K 19 1
2 h1h2 <¢ (hl) hy hs hy

h1h2 ///¢ ( 1) TX*fe( | X)K (U}; u) R()fl?U)fU(U)dUdedF(X)

Y X f. (1 | X K (w )Wﬁ(whﬁu)dwdmnm

Iy =

=0, 5 ch2

I3 Nh_(;nE<1¢(3) (h ) R2(X*}ZJ:;) TXz*K(Uh—u>>
1762 1 )
RQ X* U)[LTX* ) U—u )
" 2hyh /// ( ) 3 fe(el X)K ( i >f (U)dUdedF(X)

=2 [ otryor - o X o 3
fo(why 4+ uw)dwdrdF(X){1 + 0,(1)} = 0,(8,ch2).
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Meanwhile, with the condition h3/h; — 0 held, we obtain

(o () ()
h2h2 ///¢1>2 (hl) T)f) Jle| X)K (U}; “) fu(U)dUdedF(X)

h3h / / ¢ (1) T2 (" X2 fo(mhi | X ) K2 (w) fo(why + u)dwdrd F(X)
=0,(05¢*(hha) ™).

e () 2 () 25
h2h2///¢ () TX*) T 0K (Uf;u)R(X* D fo)dvdear ()

S ) (=1 Aot o) T

4
fU(th + w)dwdrdF (X ){1 +0,(1)} = op(éic2(h§’h2)_1).

These indicate I} = O,(0,¢(hi + h3)) + Op(1/02c2(nh3hy) 1) = O,(d2¢).

A\ 2
(ii) For the second part, which is I, = nhth S ( ? (eﬁRiﬁ,Ui)) <5nuhT1Xi ) K <Uh—;“>),

we can re-write it as

52 6+ R(X;,Up)\ (u"X))? U —u
]E I — n E (2) ) 29 ? 7 )
() 2hahy (¢ ( ha ) h3 K( ha ))

2 . T y*\2 o ) T, T x*)2 -
2hahy h) B2 ha I [ ha

+ 1¢(4) i RQ(Xia Ui)(ﬂTX;)QK Ui—u
2 hl héll h2

=191 + Ioo + Ios.

As the order of €* is the same as that of ¢;, when we do the calculations associated with I3,

we instead use ¢; directly. By some direct calculations for each part, we can obtain

O @ (&) W' X)?  (U—u
I _2h2h1E <¢ <h_1) h2 K( n ))
2 2 . U— A
2h2h1 ///¢( ) (h1> h2 ) fe(e|l XK ( I u) fu(U)dUdedF (X))

2h2 ///¢ (7% = (" X*)? fo(rha | X) K (w) fis (why + w)dwdrd F(X)
=0,(
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I = fhE (¢<3> (h_> R(X;, UZB(MTXZ‘)QK (Uih; u>)
2h2h1 ///d) (h1> Lts U,)lg X*)Qfe(G\X)K<Uh_2 u) fu(U)dUdedF(X)

@ (u ) A
522}?32 ///¢ 37'_7_ XTa22< )( TX*)Zfe(Thl|X)w2K(w)fU(’LUh2+u)dwdeF(X)

{1+ 0p(1)} = 0p((dnc)?).

Meanwhile, we can prove that Ir3 = 0,((0,¢)?). Following the same steps in (i), we obtain

the following result

4;?%2?5?1(2() (;Tlff)Qi(fih;t))Q(Uu) fo(U)dUdedF(X)
Ah3h? )k - |

4h2h2 ///¢ ( }?*) fo(rhn| X) K*(w) fy (why + u)dwdrd F(X)
=0, ((0nc)*(h2h7) ™).

With the condition nh3hy — oo held, the above equations indicate that the second part will

dominate the first part when we choose ¢ big enough.

(iii) The same way to calculate the third part. As the order of € is the same as the order
S . X\ 3 .
of ¢;, which indicates we can obtain I3 ~ nh1h2 S ( ¢(3) ( ) (L) K (Ul_) > By

P ha
directly calculating, we arrive at

s (00 (52) S (%))
6h2h1 ///¢ ( 1) (”T}f*) (EIXLK'(U];2 u) fo(U)dUded F(X)

/ / / o(r) (3 — ) Tg ) f (P XK (w) fur (1w + w)dwdrdF(X)
—0,(53¢%)

2
58 € (;J,T_ka)3 U —u
n 3) [ 1 7
36h2h2]E (¢ (hl) h3 K ( ho )

36h2h2 ///¢ <h1) (“T,f(f*) (e X) K> (U,;u> fo(U)dUded F(X)

36h2h1 ///qb 2(“ h? ) (7h1|X)K2(w)fU(wh2+U)dwdeF(X)
=0, (855 (hyh) ™t
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These indicate that the second part dominates the third part.

Based on these, we can choose ¢ bigger enough such that I, dominates both I; and I3 with
probability 1 —7. Because the second term is negative, P {supH””:C Qn (010 + 0up) < Qn (B10) }
> 1 —n holds. Hence with the probability approaching one, there exists local maximizers é&(u),
b(u) and 3 such that

~

1&(u) = Go(w)| < due,  [16(w)he = Bo(u)hs|| < duc, and |8 — Byl < Gnc.

S5-2: Proof of Theorem 2.2

Following the same steps as proving Theorem 2.1, recall that
Vi=XaU)+ ZB+e =X, (a(u) +bu)(U; —u) + Z] B+ e + Ri(X,,U),

where Ry (X;,U;) = X a(U;) — XT(e(u) + b(u)(U; — u)). Defining 8 = (&(u)”, b(w)”, 3" )T
and 6; = HO, then 6; must satisfy the following equation

1 < ¢ + R(X,Us, Z;) Ui—u
. (1) % 1y 1y £ K z X —
nh%hg zzl¢ < hl ) ( hg ) ! 07

where R(X;,Us, Z;) = R(X;,U;) — X;T(6, — 0y0).

By taking Taylor expansion, we can obtain
Ui —Uu
)<

(
T iqﬁ@ (i> K (Ui — u) X (R(X:,U;) — X;"(61 — 610))
(

)

U, - A 2
“) X; (R(X:, U) = X 7(81 — 01)) =0,
where & is between ¢; and ¢ + R(X;,U;) — X:T(6; — 619). From Theorem 2.1, we know
16, — 610 = O,(6,,), which indicates that
sup  |R(X3, Ui, Z)| < sup {|R(X 5, U] + X7 (61 — 010)}
iU —ul /ha<1 iUy —ul /ha<1
= 0,([16: = 610)]) = O,(6n).

Combining this with the Proof of Theorem 2.1, we can see that the third part which is associated
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with (R(X;, U;) — X;T (0, — 619))? is dominated by the second part which is associated with
R(X;,U;) — X:T (0, — 61). We then mainly focus on the first two parts of the above equation.

Considering — 4 71 6! (h_1> K (U;;u> X+ i S ¢ (h_1> K (U;;u> XIR(X,,
U;), by some direct calculations, we can obtain

IR N A Ui — .
E( ”h%h'zizld) (hl)K< ho )X
T zn:aﬁ‘?) (i> K (Ui — “) X (R(X,,Uy))
nhihy & ha i v
1 1) U—u N
== [ o () % reason (522 ) wavicar )

+ﬁ / / / o (hi) X* [ X)K (Uf; “) R(X,U) fu(U)dUdedF(X)

1 . )
= ///¢(T> X fe(ThﬂX)K(w) fu(why + u)dwdrdF(X)
///¢ (72 = DX fe(rh| X) K (w) R(X, U) fo(why + u)dwdrdF (X)

’ B0 (e HE(X X" f(01X) )
:_fU() 0 ) — TfU(u) 0 ) {1+0p(1>}‘
E(Z £ (01X)]u) E(ZXT (0] X) |u)

Considering #% S ) (}%) K (Uhgu> XX, by directly calculating, we have

1 - €i U T
(g e (i) ¥ (U)X
—h31h2 ///¢(2) (i> XX f (| X)K (U;”) fu(U)dUded F(X)

///¢ (7P -1)X X*Tfe(rhlyX) (w) fu(why + u)dwdeF(X)(l +0,(1))

E(X X" f2(0]X)]u) 0 EXZT01X)[u)
=fu(w) 0 p2B(X X 1 (01X) ) 0
E(ZX" (0] X)|u) 0 E(ZZ" ) (01X)|u)

Meanwhile, with the condition h3/h; — 0 held, we can get

ar( h2h22¢1)< ) (th )X*
+ m i21¢(2) <;—1) K <U"h; u) X (R(X, Ui)))
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T
1 - € Ui—u 1 . € U —u
=k | — W2k v X * - W (&) g i X+
nh2h2 Z (b (h1> ( hg > ! nh2h2 Z ¢ hl h2 !
1 =1 1 =1

(1"‘017
nh4h2 ///gb ( )X X7 f.( X)K (U}; “) fo(U)dUdedF(X)(1+ 0,(1))
26 (rydr VB (X X" (0] X)|u) 0 wE(XZ"f(0|X)[u)
:T%ﬁ](u) 0o E(XXT f(0]X)|u) o
wE(Z X" (0] X)|u) 0 wE(Z2Z" f.(01X)|u)
(1+0p(1))-

Define W,, = nh2h2 Yoy ot ( ) K <U 2“) X . To show Theorem 2.2, it is sufficient to
show that

nhg
where
voE(X XT£.(0|X)|u) 0 voE(X ZT £.(0]X)|u)
T = [ 72¢*(1)dT frr(u) 0 v E(X XT£(0|X)|u) 0
voE(ZXT £.(0]X)|u) 0 voE(Z Z" £.(0) X)|u)

Then, by Slutsky’s theorem and the above two equations, we can achieve Theorem 2.2. To show

the preceding equation, we prove that for any unit vector d € RP,
{d” Cov(T,)d} """ {d"T, — d"E(T;,)} % N(0,1).

We then check Lyapunov’s condition. Let

U—-u) 1
hohi /nK M d"X;,
&= 2ht/n < Iy )h1h2¢ h1

we need to prove nE[& [ — 0. As (dTX;-“)2 < ||l || X2)*, oM (-) is bounded, and K(-) has

compact support, we have

REJE < O (n”!2ny 0% ) B[ K ( u) P13 (h ) d'x:| -
1

0.

ho

Thus, the asymptotic normality for 7, holds.

S5-3: Proof of Theorem 2.3
The proof is similar to Theorem 2.1, except that we need to take the estimation error from the-
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first stage into consideration. Hence, we provide a sketch of the proof here. Recall that

~

1l Y, - X aU) - Z[B\ 1 < 6+ X a(Uy) — XTa(Uy)
Qn(B) —Z¢( e )—nh3;¢( e )

" nh
3=

Define 6, = h% + /(nh3)~1. Tt is sufficient to show that for any given 7, there exists a large
number constant ¢ such that P {sup”“H:C Qn (By + 6,p) < Qn (By)} > 1 — 1, where By is the
true value of the parameter. Using Taylor expansion, it follows that

Qn (:30 + 571/-11) - Qn (:30)

:L i € + XzTaO(Ui) _ X?Q(UZ) - n“TXz
nh3 P h3
_ngb & + X ay(U;) — XTa(Uy)
nh3 — h3
_ i _ o) 6 + X1 ao(Uy) — XTa(Uy)\ (0.u" X,
nh3 i1 h3 h3
N 2 N 3
+1¢(2) (ei—l—X;fFao(Ui) —X;fpa(Ui)) <5nuTX,-) B 1¢(3) (e_> <5nuTXZ-)
2 hg hg 6 h3 h3
=1y + I + I,

where ¢ is between €; 4+ X T a(U;) — X T &(U;) and €;+ X T o (U;) — X &(Uy) — 6,u” X;. Based
on the result 7,, = E (7},) + O,(+/ Var (T},)), we consider each part of the above Taylor expansion.

(1) For the first part, which is I, = nth, Z?:l <_¢(1) <€i+X?a0((}[Zi3_Xde(Ui)) <6n[;i;Xz>)’ we

can re-write it as

_ . T N XTA(T]. TYy.
E(I,) == (0 (Gt Xiool) = X; a(li)) p X,
h?) h3 h3
T T ~
g (g () X e () Kool = X/ (U)X
hs hs hs hs hs
Lo (a6 (X] ao(Ui) — X[ a(Un)*n" X
=6 :
2 hs hs

=1y + Lyo + Iy3,

where €** is between ¢; and ¢; + X! ao(U;) — X &(U;). Notice that as the order of €** is the

7

same as that of ¢;, when we do the calculations associated with I3, we instead use ¢; directly.

By some direct calculations for each part, we can get

—0 6\ plX; —0 e\ p'X
I = nE (1) - ‘ = n H (1) —_ — J¢ X F X = n 2 .
41 s <¢ (hg) I ) I ¢ hs hs fe(e] X)ded F(X) = Op(dnchs)
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P (¢<z> (h ) h X (X o (U:) — X?dwm)

hs 3 hs
“ ()

XTay(U) - XTa(U)
With the conditions that h;/hs — 0 and hy/hs — 0, it can be seen that I,; dominates Iy.

hs
Meanwhile, according to the result in the Proof of Theorem 2.1, we could easily prove that I,

fe(el X)

h dedF(X) = O,(6nc(hi + h3)).
3

dominates I43. We then obtain

e (o0 (L)Y 2B [f g () WX )i x) = 0,025,

These indicate Iy = O,(0,ch3) + O,(\/02c2(nh3)~1) = O,(62¢).

. 2
(ii) For the second part, which is 5 = %,13 D et (%¢(2) <€i+XiTa0(ii3)7XiTa(Ui)> (énlﬁ;xi> )a

we can re-write it as

E(L5) _0n (¢(2) (Ez‘ + X ao(U;) — X?@(Ui)) (HTXi)Q)

2hs hs h3
:ﬁE @ & (w" Xi)? 4 ¢® 2 (X7 o(Ui) = X7 a(Uy) (0" Xi)
2hs hs h3 hs h3
L Ly (4 (X7 ao(Ui) — X7 a(U))* (k" Xi)
2 hs h3

=I5 + I5o + I3,

As the order of € is the same as that of ¢;, when we do the calculations associated with I53,

we instead use ¢; directly. By some calculations for each part, we can achieve

Is; :25—;31@ (¢< ) (;—3) (1 ) =5 // e <h3> X) W) b (6] X)dedF(X) = O,((6,¢)?).

Iso _ﬁ]E (¢< ) (;_3) (XT ao(U;) — X[ aU)))(p" X;)? )

2hg h3
2h3/ ¢(3 (h;) X a0<U) )}(l (U>>(M X) fE(G‘X)dEdF(X):Op((5n0)2).

Meanwhile, we can prove that Is3 = 0,((0,¢)?) and get the following result

45; ( ¢(2)(h3> (MTh)Z( ) i / 422 (h3> 3>4 Fole] X)dedF(X) = O,((6,¢) h3").

These imply that the second part will dominate the first part when we choose ¢ big enough.
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(iii) The same way to calculate the third part. As the order of €/** is the same as the order

of ¢;, we can obtain I ~ n—h3 Yo —g¢(3 (h—3> (%) . By directly calculating, we get

6%@ <¢(3) (hg) (HTX) ) = 6hs // a < ) X (X )ded (X) = 0,065,

3222 <¢(3) (h3> (“Th)?’() ) N 36h2/ ¢(3)2( 3) (HTX) T Sl X)dedF(X) = O (6,h57).

These demonstrate that the second part dominates the third part.

Based on these, we can choose ¢ bigger enough such that the second term dominates the
other two terms with probability 1 — 7. Because the second term is negative, P{supy,=. @n(Bo
+o,1t) < Qn(By)} > 1 —n holds. Hence with the probability approaching one, there exists a
maximizer 3 such that |8 — B, < d,c.

O

S5-4: Proof of Theorem 2.4

Following the same steps as proving Theorem 2.3, since B maximizes @Q,(3), we can take the
derivative of @, (3) with respect to B to obtain

dQn(B) L&y [ar X (ooU) —aU) = ZEB =B\ , _
75 ‘ﬂ:ﬁ— nh@w ( Z;=0.

By taking Taylor expansion, we get

ST Z¢ ( Dz o ZM (1) 2XT (@0) - aw) - 215 - 8y)
- Z¢<3> (h) (X (@alU) — &(U)) — Z'(B - By))* = .

where &* is between ¢; and ¢ + X (ao(U;) — &(U;)) — ZF (B — B,). From Theorem 2.3, we
know |8 — B, = O,(4,), which indicates that

X7 (ao(Uh) = &(U:)) = Z] (B — Bo)| < {I1XT (ewo(Us) — &(U)| +1Z] (B~ Bo)l}
= 0y([1B = Boll) = Op(6n)-

It can be seen that the third part which is associated with (X7 (ao(U;) — &(U;)) — ZT (B —3,))?
is dominated by the second part which is associated with X7 (o (U;) — &(U;)) — ZF (B — By).
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We then mainly focus on the first two parts of the above equation.

Considering ——L; S ¢V (h—) Zi+ L3 6 (h—) Z(XT (o (U;) —&(U3))), with the
3 3
conditions that hy/hs — 0 and hs/hs — 0, by some direct calculations, we can obtain

ke (D) s () s o)
/ [ o ( )Zfe( Z)dedF(Z)
+ i // e (h_3> Zf.(e|Z)(XT(eo(U) — &(U)))ded F(X)
1
— / / 6 (7) 72 f.(Ths| Z)drdF(Z)
_hi% //¢(T) (7> = 1) Z . (rhs| Z)(XT (ao(U;) — &(U5)))drdF(X)
(20021 + o1},

Considering h3 Yoy »? ( ) Z,ZT by directly calculating, we have

(mfﬂ ;d) ( )Z ZT) =7 // o ( )Zsze( |Z)dedF(Z)

=52 //d)(T) (12 = 1)ZZ" f.(hs| Z)drdF (Z) = B(ZZ" f?(0|Z)|u).

Based on the above two equations, we can get

~ h2

B=By=7%(E (22" 12(012)[u) " E(ZFP(01Z)|u)(1 + 0p(1).

Meanwhile, with the conditions hy/hs — 0 and hy/hs — 0 held, we can obtain

( nh? Z¢(1) <€Z> Zit s h3 Z¢ ( ) i(X7 (ao(U3) — @(Ui))))

=i //gb ( )ZZTfe( €|Z)dedF(Z)(1 + 0,(1))

_ f72¢2

P TEZZ L 0\Z){1+ 0, (1)

For the remaining part, we can follow the same idea in the Proof of Theorem 2.2 to easily

achieve the result.

U
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S5-5: Proof of Theorem 2.5

The proof is similar to Theorem 2.1, except that we need to take the estimation errors from the
previous stages into consideration. Define X;r = (XTI, XT(U; —u)/hs), 0" = (a(u)”, b(u)")7,
0; = (co(w)T, bo(uw)")", H = diag(1,--- ,1,hs, -~ ,hs), 01 = HO*, and 8,y = HE},
P P
Let 0, = h3 + hZ + \/W . It is sufficient to show that for any given 7, there exists
a large number constant ¢ such that P {sup”“”:c Qn (ém + (5nu> < Qn (ém)} > 1 —n, where

61 is the true value of the parameter. Using Taylor expansion, it follows that
Qn <é10 + 611/1') - Qn <910>
1 - €i+R(Xi7Ui) _5nﬂ'TXi UZ —Uu
- K
Tbh4h5 ZZI [¢ ( h4 h5
Ly e + R(X,, Uy) Ui—u
- K
nhyhs ;gb ( hy ) ( hs >
S o Y RX,U)\ (047X o (Vim
nhahs ha Dy hs
> _ N\ 2
+ 1¢(2) e+ R(X;,U;) Sopt X K U —u
2 hy hy hs
~ o\ 3
_ ld)(?’) i 571:“’TX1 K Uz — U
6 h4 h4 h5

=I7; 4+ Ig + Iy,

where €2 is between €; + ]—?(XZ-,UZ-) and ¢ + R(X,-,U,-) — 6,7 X; in which R(Xi,Ui) =
XToy(U;) — XT(ap(u) + bo(u)(U; — u)) — ZF (B — By). Based on the result T, = E (T},) +
O,(+/Var (T,,)), we could consider each part of the above Taylor expansion.

(i) For the first part, which is Iy = 237" | <_¢(1) (EiJrR(hXi’Ui)> <5”‘;ZXZ‘> K (Uh;“>),

4
we can get

Iz = Op(0nc(hi + h3)) + Op(3/ 02c*(nhiths) ") = Op(dc)

by combining the results obtained from the Proofs of Theorem 2.1 and 2.3 and the assumptions
h3/h5 — 0 and h%/h4 — 0.

.o n €5 R 7 '3 n T X, 2 i —U
(ii) For the second part, Ig = Wihg, Yo (%qﬁ(z) ( +R§f ’U)> (6 ’24X1> K (UZh—5> ), by
combining the results obtained from the Proof of Theorem 2.1 and assumptions h3/h; — 0 and

nhihs — 0o, we can see that it will dominate the first part when we choose ¢ big enough with
E(Is) = Op((dnc)?)-
(iii) The same way to calculate the third part. As €2 is between ¢; and €; + I:Z(X i, Ui)
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- nuTXi, the order of eiA is the same as the order of ¢;, which indicates that we can obtain

_\3
Iy ~ m S (_%d)(?ﬁ (}i) (mﬁ;z—i&> K (Uh—su>> Combining the results obtained from the

Proof of Theorem 2.1, we can get that the second part dominates the third part.

Based on these, we can choose ¢ bigger enough such that the second term dominates the
other two terms with probability 1 —7. Because the second term is negative, P{sup” pll=c Qn (010
+o,pt) < Q, (019)} > 1 —n holds. Hence with the probability approaching one, there exists

local maximizers &(u) and b(u) such that

|a(u) — ap(u)]| < d,c and Hl~)(u)h5 — bo(u)hs|| < dne.

S5-6: Proof of Theorem 2.6
Following the same steps as proving Theorem 2.4, since 6, maximizes Qn(61), we can take the
derivative of @, (61) with respect to 8; to obtain

— 1) ’ § K X. =0
Nhihg, Zgb < h4 h5 ! ’

i=1

where R(X;,U;, Z;) = R(X;,U;) — X (61 — 614). By taking Taylor expansion, we can obtain
I < € Ui—-u\ o
— W) X.
nhih5 zzl ¢ (h4> ( h5 ) ‘

1 - € U —u\ &~ =~ s -
2 [ = i , Y % T _
+ nhihg) Z¢ <h4> K ( h5 > XZ(R(XZ’ Ul) X’L (01 010))

=1
1 - gAx U —u\ ~ /=~ . s 2
§:<3> < )K= X, (R(X,;,U)—XF0,—-06 =0
nhths izl‘b (h4> ( hs ) <( Ui (01 10)) ’

where é2* is between ¢; and ¢ + I%(Xl, U;) — XZT(él — élO)- From Theorem 2.5, we know
16, — 610 = O,(6), which indicates that

|R(X:,U;) — X[(01 — 010)| < {|R(X:,Us)| + | X[ (01 — 010)[} = O, (1|61 — 010]]) = O,(6).

It can be seen that the third part which is associated with X;(R(X;, U;) — XZ(0, — 049))? is
dominated by the second part which is associated with R(X;,U;) — XF(8; — 015). We then

mainly focus on the first two parts of the above equation.

Considering —@ S oW (;—1) K (U;;“> X, + #i”% S o? (;—1) K <U;L—;“> X,R(X;,

27



U;) and combining the results obtained from the Proof of Theorem 2.2, with the assumption
that hs/hs — 0 held, we get

1 - €; Ui—u\ 5 1 - €; U —u\ 4 =
E([-——— W) K (= X+ ——— @D 2)K (= X,R(X;,U;
( nh§h5;¢ (m) ( I ) +nh§h5;¢ I I (X5, U
E(Xf§3)(0|X)|“)] Ra®w) ,  [LEXXT 2 01X)[0)
0 2 0

=1 fy () folw) (1401}

Considering #i’hs S 6@ (Z_4> K <Uh:u> X, XT by directly calculating, we have

1 < € Ui—-u\ ¢ o
E @)K (= X, X
(nhih5 zzl¢ (h4> ( h5 > e )

E(XXTf2(0/X)|u) 0
0 mE(X X7 £ (0]X)|u) |

= fu(u)

Based on the above two equations, we can achieve

- [EXXT201X)|a) 0 B
01 — 010 = A
0 eE(X XT (01 X) |u)
2 (3) ol 2002 (u ) T E(2) )2
<%MU) E(X £&)(0]X)| )] —h‘r’TUfU(U) eE(X X J(; (01X u) {1+op(1)}>.

Meanwhile, with the condition h2/hs — 0 held, we obtain

1 - € Ui—u\ & 1 u € U—u\ & =
Var | — W) K (= X+ —— @D 2)K (= X,R(X;,U;
ar( nhih5;¢ <h4) ( I ) +nhih5;¢ T I (X5, )

:#@g ] (hi) XX (e X)K* (U}; “) fo(U)AUdedF(X)(1+ 0,(1)

_f72¢2(7)d7
- nhihs fU(u)

VoE(X XT £.(01X)|u) 0

0 wE(X X £.(01X)u) (14 0,(1)).

For the remaining part, we can follow the same idea in the Proof of Theorem 2.2 to easily obtain
the result.

t

S5-7: Proof of Theorem 2.7

Following the result in Theorem 2.2, under the null hypothesis, we can prove
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— h_4i22;¢ (;—1) + 0,(1).

Similarly, by Theorem 2.6, we can obtain

_ 1 - Y- X[a(U) - Z'8 1 - ¢+ R(X., U, Z;)
L(H1)—h—4;¢< » >_h—42¢< . )
1 & €
=520 (i)~

where E(Xi, U, Z;) = X%Fao(Ui) — XiT(Oéo(U) + bo(u)(U; — u)) — Z@T(B — Bo) — X[ a(u) —
ap(u) + (b(w) — be(u))(U; — u)]. Thus, we have L(H;) — L(H,) — 0. Following the similar

steps, we could show T &' L(H1) — L(Ho) > 0 if inf,,ep [|au(.) — aul| > 0.

- X! *—ZTﬁ* 1l (at X (o —a) + Z(By - B))
b = h42¢< )5;¢( hi )

4

S5-8: Proof of Theorem 2.8
Notice that, under Hy, we have

def

Ty ©L(Hy) — L(Ho) = Y on, (Vi — XT&(U) - 27 8) - > on (¥~ Xl — 213)
=1 ;

:{Z% <ei+XiTa0—Xde(U)+ZT60—ZT ) Z% el}

i=1

- {Z% (6 + X o — X[ + Z[ By - Z ") - Z% (a)}
i=1 =1

:Z1 - ZQ.

By Taylor expansion, under the null hypothesis, we can show that Z, follows x?(p) asymptoti-
cally. Therefore, Zy = O,(1). We then mainly focus on the asymptotic distribution of Z;.

Considering Z;, by Taylor expansion, we have
> O, (6) (XTa(U) - XTaw) = Y ay)) (6) (278 - 2] Bo)
; i=1

L1 Z¢<2> &) [XTay — XTa(U) + 27 By — Z1B)” + 0,(1)
=711+ Ziz + 0,(1).
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Based on Theorems 2.4 and 2.6, we know that ||8 — Bo|| = O,(h3 + (nh3)~"/?) and
h3 fo'(U)
{ : / K (w)dual? (U;) + f(z)(ng 0.2) % ZX K, (U; — U)gbh4 (e])} (14 0,(1))
= (R1(Ui) + Ra(Ui)) (1 + 0p(1))

according to the Bahadur representation of the estimator. We can then re-write
Zn ==Y o4 (@) (X a(U;) = X[ o) + Op(nh3h3)
i=1
1
= = oh) (e) XT(Ra(U:) + Ro(Uy)) (1 + 0,(1))

==& () XTRi(U)(1+ 0,1 Zash i) X[ Ra(U3) (1 + 0,(1))
= (Zu1+ Z112)(1 + 0,(1)).

According to the result that S, = E(S,) + O,(y/Var(S,)) and the Strong Law of Large
Number theory, by directly calculating, we can have

h2h2
( Zqﬁ (e)) XTR,(U, )) SRS 01, U Z)XT/ 2K () dua® (U)).
Thus, Zi11 = O,(nh2h2) + O,(y/nh2h;*?). As to Zy1,, note that

Ziig = — Z ¢214) (e:) X[ Ro(U;)
i=1

- Jo' () - (1)
==Y o) (e) XT > XK, (U — U)oy (e
- ha ( ) N 6(2)(0\X,U, Z) j= J h5( J ) h4( J)

_M - D (N2 XT X

- ZZ¢(1) €;) EJ)XTX Ky (U; — Ui) = Zi1o1 + Z1n 20

O‘X U =1 j#i
. U
We can obtain E(Z1191) = _h§h5f§2U>((()|)z’,U,Z) [0|X,U, Z) [*¢*(t)dt X X;K(0). Thus, we have
-1
U
Ziig = — 3 ("Qf)U o) f(0| X, U, Z)/t2¢2(t)thiTX,~K(O)
hihs fe (01X, U, Z)
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ZZ% &) V) () XT XK, (U; — Us) + Op(n /072031,

'Llj;ﬁz

n (2)(O|X U Z)

Combining the above equations, we get

fi'(U) 2 2 T
7y = — (0|X,U,Z At XX, K (0

fo'U 1) () oD ( T
§ §j¢ o) (e;) XT XK, (U; — Uy)
@)X, UZ iy !

+ O, (nh2h3) + Oy (vnh2hy ™) + 0,(n= 20, n3 ).

We then consider Z;5 and obtain
Zyy = Z¢>(2) &) [X] oo — XTa(U;) + 280 — 28] + 0,(1)
Z &) (e Ui) — )" Xi X[ (a(U;) — ag) + % z”: o2 (e) (B — Bo)" 2. 2] (B - By)
i=1
+Z¢ &) (X[ o — X a(U))(Z] By — ZI'B) + 0,(1).
Due to the faster convergence rate of B, we can re-write 2o as
Zi= 23" 02 () (B(U) — a0) X XT (&) — 00) + 0,01
= % i 92553 (e:) R (Un) X: X[ Ru(U;) + i ¢5124) (e:) BRI (U) X: X[ Ry(U7)
‘ i=1
+ o Z 60 (&) RY (U)X, XT Ro(Uy) + 0,(1) = Ziog + Zios + Zrag + 0(1).

Using the same procedure as that used for Z;;; and Zi; 5, respectively, we obtain

1o h4h 2
E(5>_ 6k (e) R U)X X Ri(U) = "2 10X, U, Z)(/uzK(u)duXiTa[(f)(Ui)> .
i=1
Thus, Zia1 = Op(nhih;?) + O,(v/nhth;*?). By directly calculating, we can have

h2
T = 52 3082 (@) () (U)X XT

-1 U n
[ et §2>£7;c(, ;’ 7 2 Kot (s = U)ol /()
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h? LU
S WAGEHDISIUE S S PO ;Z)Km(m

Y (2) ot ()
;;¢ (e3) 851 () (e (U)X X[ X / u? K (u)du (2)(0U|X,U, Z)Khs(Uj—U,-)

= O,(hsh;") + Op(n " 2hshy ) + O, (n 2R3,

In terms of Zi93, it can be decomposed into three parts

_ln () (. fﬁl() T W v vT
Zigs = 5 ;%4 (Ez) (O|X U.2) = ZX Ky (Us = U)oy, (€;) X X

fo'(U)
nfP01X,U,2)

Z K (U — U)oy (€)

fo?(U) T 2
o2 () (oY (e X7 X, XK (U; — Uy | X
2nZZ o OO T, 0,2 el ’
1 n n
+ ﬁ Z Z ¢§l24) (62) ¢&)(€z‘)¢&)(€j>XT
i=1 j=1,5%#1
—1 —1
T 1 X g KU = UK )| X,
fP0)1x,U, 2) 0|X,U, Z)
1
LY @)X
i, A
SN U U
(Q)fU( ) bo.¢ (Z)fU( ) Ky (Uy — Up) Ky (Uy — Uy) | X
f(0|1X,U, Z) 0|X,U, Z)
= Zi231 + Z1232 + Z12,33-
Z12,31 can be rewritten as
-2
24T fo~(U) T 12 ,
Zi231 = o2 Z¢h4 h4 &))" X, [(f5(2)(0|X,U, Z))QXZXi Khs(o) X
fi*(U) T 2
Z Z ¢h €) ¢h (€;))? 'T[ XiX; K, (Uj = Ui) | X+ 0,(1),
ey i ' (f201X,U, ) ’

where we can obtain
[e*@)dt  f2(U)
2nh6h2 (fP(01X,U, 2))?
+ O ((W*h3R2) ™% + Oy (*hERI7)TV2) = O, ((nh§h3) ™).

Ziz31 = f(0|X,U, Z) / K*(t)dt X} X; X X;K*(0)

It is obvious that ]E(Zlg,gg) = E(Zlg’gg) = 0. ThUS, 212’32 = Op((n3h§h}12)_1/2).
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We can re-write Z12 33 as

1 . 1 1 1 2
Z12,33:% Z ¢;(14)(€z‘ ¢§L4)(€J)n Z ¢1(14) (€;)

tj=1t#j i=1,i#j,i7#t
SHU “HU
X |- fy (0) XX/ — fu (U) Ky (Up = Ui) K, (U — Uy) | X,
(0|X7U7Z) f€ (0|X7U7Z)
where
1 f_l f—l
= > o) () X7 @ v (V) X, X7 B v (U) K, (Uy — U)K, (U — Uy | X,
ni:l,i;éj,i;ét (0|X U, Z) (0|X U, Z)

1 —1 o
_ L xr N (U) XZ-XiTthe(O\X,U,Z)/K(t)K(t_ U= Uy
hihs ™ (§2(01X,U. Z))? .

+ Op((nh3h) ™).

We then have

1 W\ xT fo () T
7 § X; XI'X,f.(00X,U,Z
12,33 — 2 h2h5tj ljsét(b}m ¢ ( ) i ( 6(2)<0‘X7U’ Z))2 tf( | )
/K h — U )dt+0 ((nh3h3)~Y2).

Combining the above equations, we obtain

1 fr'(U) T
Z1p3 = Z o) (el () X T U X, X'X,f.(0|X,U, Z)
2 h2h5 t,j= 1j7£t ’ ( 5(2)(O’X7U7 Z))2
/K h — U >dt—|—0 (nh2h2)~172).

Furthermore, we get

—1
T fU (U) T
o Z oh (€05 () X X, X7 X,1.(0|X,U, Z)
2 h h t] 1]7£t j ( 6(2)(O|X7Uaz))2

12 —

~ U _ _ .
/K h )dHO ((nh3h3)™"%) + Op(n*h3hi®)™12) + Op((nhih2) ™).

Combining the above equations, with the bandwidth conditions imposed in the paper sat-

isfied, we have

Jo'(U) 2 .2 T
7 =— (0|X,U,Z dtXT XK (0
TN et ) / 262 (t)dt (0)
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fu'( T
L LR
€ =1 j#i

1 (1) x7 f(?l(U) T
+— o) (e) oy (e XX X [(0| X, U, Z
2n h2h5 ;it h ( ]) J (f6(2)(0|X, U, Z))2 t ( | )
/K h — U )dt+0 (nhihi?) + O, (v/nh2hi*?).

Based on the above calculations, we get

TO:ﬂn+Wn+dn7

where d,, = O,(nhih;?) + O,(y/nh2h;*?),

f[}l(b) 2,2 T
"= — (0| X,U, Z t t)dtX; X;K(0), and
H hih5f€(2)(O|X,U, )f( | )/ ¢~ (t) (0), an

Wn:— o (&) e)XTXKh(U Uy)
(0|X UZ 2; i ’ ’

1 f(fl((/) T
E qb elqﬁ e )X T XX, X, f(00X,U,Z
2nh2h5 IJ# ha h4( j) J ( 6(2)(O|X,U, Z))2 ' ( | )

/K hU>dt

It is noticed that E(W,,) = 0. Let W, = 37", ., w;;, where

wli,g) = —— IOy 40 xTx R (U - U+ oD (e e,

(2)(0|X, U, Z) 2 h2h

T fljl(U) v 7T . Ut - Uj
X} X oz X, £.(0|1X, U, Z)/K(t)K(t o )t

As {¢;}1-, are independent with E(¢;) = 0, we have
Var(W,) = 2n(n — 1)E(w(1,2))*.

Due to the complicated form, we here use o2 = Var(W,,) to denote the variance of W,,. Next,

we discuss the asymptotic distribution of W),,. Let W, ; = w(i, j) + w(j, %), we have

It is easy to show that W, is clear (De Jong, 1987), and G;, G, and G4 are of lower than
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1<i<k<n
Gz = Z E (wirwr;) + B (W] ;) +E (Wi wy ;)

1<i<j<k<n
Gy = Z E (w; kw; jwi gwi ;) + E (w; jwiwi jwir) + E (w; gwiw; gw;) -

1<i<j<k<i<n

By Proposition 3.2 of De Jong (1987), it can be shown that o, W, LN N(0,1). This implies
that
0 (To = pn +du) <5 N(0, 1),

S5-9: Proof of Theorem 2.9

Let £§ and L7 be defined similarly as £y and £, based on a bootstrap sample {(Y;*, X;,U;, Z;)) }1;.

We use the superscript * of a quantity as its bootstrap analogue. Then,
15 = L7 — L§.

The proof mainly consists of the two steps. (1) Noting Y;* = X7 & + ZT' 3 + & and bandwidths
satisfy the corresponding restrictions and using the same arguments as the Proof of Theorem
2.8, it follows that

Ly — Ly = pn+ W, +dy,

where W is defined similarly as W), but with ¢; replaced by €F. (2) We further use the arguments

similar to that given in Theorem 2.8 to obtain that
“1yrrx 4
o, Wr— N(0,1),

which completes the proof.

S5-10: Proof of Theorem 3.1

Following the steps to prove Theorem 2.3, we define 8, = h3 + \/(nhi)~! + a,. Then, it is

sufficient to show that for any given 7, there exists a large number constant ¢ such that

P {SUP Lp(By + onp) < £P(ﬁo)} >1-=n,

lnll=c
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where p is a k x 1 dimension vector. The above equation implies that with probability at least
1 — 4, there exits a local maximum in the ball {8, + o, : ||p|| < ¢}. Using px(0) = 0 and
Taylor expansion, it follows that

S

% (Lp(By + 6att) = L1(By)) =Qn(By + dnpt) — Qu(Bo) — D _[pr, (1Bs0 + 6usj]) — pa, (1850])]

J=1

1 1 N
=0n Q3 (Bo) 1+ S0 Q1P (By) h + gfﬁuTfo’ By u"

= > [l (B0l sen (B0) s + 820 (Brol) 2 {1+ 0,(1)}]

J=1

=M, + My + Mz + My,

where |85 — Byl < ¢d,. From the Proof of Theorem 2.3, we know M; = O,(62¢c), My =
O,(02¢*), and M3 = O,(6?). By choosing bigger enough ¢, M, could domain M; and M; with
probability 1 — 7. Note that M, is bounded by

Vo, mas {pS (18i0]) : B0 # 0} lall + 82 max {p (1Byol) = Bo # 0} 1l

which is also dominated by M, as max {pg?) (18j0l) = Bjo # 0} — 0. Because Q'Y (8,) < 0, we
have Lp(8, + d.pt) < Lp(B,) with probability 1 —n for n > 0 by choosing a sufficiently large c.

U

S5-11: Proof of Theorem 3.2

By the property of SCAD penalty function, as A, — 0, it can be shown that a,, = 0 for
large n. Then, according to Theorem 3.1, it is sufficient to show that for any 8% that satisfies
187 — Byll = 0,(5,) and for some small € = ¢, in which 6, = h2 + 1/(nh3)~!, when n — oo,

with probability tending to one, we have

oL

$<o, for 0 <Y <e j=s+1,....k
0Lp(B) .

3ﬁf > 0, for—e<5f<0,j:s+1,...,k,

which indicates that the maximizer of Lp(3) gets at 5]]-3 =0,j =s+1,...,k. Similar to the
proof of Theorem 3.1, as Qg)(ﬂo) = 0,(8,) and ||B" — Bo|| = 0,(6,), we obtain

9Lp(B)
o7

=nQ(8) —np (16]1) sen 7
=nQ\ (By) +nQP (By) (5o — B]) + 5O (83) (5 — B)? = mpl” (18]1) sen 5
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== aa {7 () s 5] +0, 5./}

where (3 is between 3 and 8. As d,'A > 6, ' A\pin — 00 when n — oo and lim inf,, o lim infgr
J

pf\l)(wjp )/A > 0, the sign of the derivation is completely determined by that of 5. Then, the
above two equations hold. This completes the proof.

U

S5-12: Proof of Theorem 3.3

From the Proof of Theorem 3.2, we know that for j =1, ..., s, we have

1 OLp(B)
n o 0B; 1B=((BL)T.0)T

=85 - p (15,1 sen A7,
—Q(By) + QP (By) By — B5) + 5@ (B B — B )?
= {p” (1) sem s + (05 (1Bsl) + 05(1) (5 = o)}
Combining these equations, we have
Qg)(ﬁw) + Q,(f) (,30')(507 - B(I;j) + %Qg’) (ﬁS)(ﬂO’j - ng)Z
—{Ur+ (@r+ 0, (1) (B — o) } = 0.

From Theorem 3.1, following by Slutskys theorem and the central limit theorem, we know

h2
2

2
\/nh3(Ja) + @) (ﬂfj — By + (Jay + P\ (\IfA — %M(l))) LN (0,/t2¢2(t)dtL(1)> ,

where J(1), M1y and L) are the submatrices of J, M and L.

5 Moy — Joy (B — By) — {0 + (@ + 0,(1))(By — By) } =0,

S5-13: Proof of Theorem S1

Notice that the notations in this proof are independent of the notations in other proofs.

To start, we define X7 = (X, Xip(U; — u)/ o, Xip(U; — w)?/02, Xip(U; — w)3/03), 0 =
(ap<u>7bp(“)vcp(u)vdp(u)>T7 0y = (CLOp( )>b0p< )7COP( )7d0p( )) , H = dlag( s L Ag, e Ay,
p p
A2 A2 N N, 0, = HO, and 0y, = HE,.
p p
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Let 0, = A2 + A3 + /(nA3Ag)~ 1, then it is sufficient to show that for any given 7, there
exists a large number constant ¢ such that P {sup”MH:C Qn (010 + onpt) < Qp (910)} >1-—n,

where 0, is the true value of the parameter. Using Taylor expansion, it follows that

Qn (610 + ppt) — Qn (610)

:nAllAzél(b(eﬁR(X,-,lfl) np,TX*> (Uz)\Q)
e S HC
[

+ 1¢(2) € + R Xza Uz n,l'TX* Uz

2 /\2
_ 1¢(3) i 5”“TX* ’ K Ui—u

6 )\1 )\1 )\2

=l + 11 + L2,

where € is between ¢; + R(Xi,Ul) and ¢ + R(XZ-,UZ-) — 6,pu" X in which R(XZ-,Ui) =
> i 1 aoj (U)X -2 1 65(U)Xi5 — ZT(B — Bo) + Xipaop(Us) — X;"619. Based on the re-
sult T,, = E ( n) + O,(y/Var (T, )), we could consider each part of the above Taylor expansion.

(i) For the first part, which is I;p = rih Sy <—¢(1) <6"+RE\)1("’UL')> (5””/\T1Xi*) K <M>),

A2
we can re-write it as
-0 64+ R(X,U)\ p"X: (U —u
EI — nE (1) 1 1y Y ZK
(F1o) M <¢ ( M\ ) M\ Ao
-0 Xy (U — R(X, U "X (Ui—u
= L ) WPAC) i K (2) ir Ui e
A1 A9 <¢ (/\1 ) A ( Ao ) ¢ /\1 A2 Ao

1 e\ RA(X,, U™ X (Ui—u
2@ (G ir Ui ) .
T3¢ (/\1> N "

= To1 + Loz + 1103,

where €/* is between ¢; and €; + R(X i»Ui). As the order of € is the same as that of ¢;, when
we do the calculations associated with o3, we instead use ¢; directly. By some calculations for
each part, with the conditions h3/hs — 0, hy = 0(A3), and hs = 0(\3) held, we can get

—0 TX* U, —u
Loy =——F [ ¢V LK = 2.
TN (¢ (/\1> A1 ( A2 )) Opl0nei)

38




_5n [LTx* ;K“ Uz
- 2
hoz _)\1)\2IE <¢ (Al) A1 ( ) )
_5n € T X * inQY (Uz) — .X%Tel() 5
_ (2) ){' 0 i X
VY ///¢ ( ) e ( > — A1 foU)dUdedF(X)

ol ) e (52)

S dog (Un) Xy — Y1) a5(U) Xy — Z1(B — Bo)
A
:Op(énCXQl) + Op(hi) + Op(hg) = Op(énC)‘%)-

—0 1 &\ RA(X, U™ X;  (Ui—u
Los ~——E | 2¢® [ & LK = 0,(6,C)3).
103 Ay e ( ¢ ()\1> 3 ( N ) 0p(0nCA3)
Meanwhile, combining the results from Theorem 2.1, with the condition \3/hg — 0 held, we
can obtain
52 pul X U —u 2
(1) 4 1K :O 522)\3)\ 71.
/\2)\2 <¢ <)\1) M\ ( A >) p( nC ( 1 2) )
. 2
)\2)\2 )\1 >\1 )\2 A1

= ///¢2>2( 1> )2 fele| X) K2 (UA_Q “) RQ(i(%’U)fU(U)dUdedF(X)
=0p (G (ATAg) ™!

fu(U)dUdedF(X)

These indicate I1g = O,(6,c(A3 4+ A3)) + Op(\/02¢2(nA3N) 1) = O, (52¢).

n

- N\ 2
(ii) For the second part, I;; = m S (%¢(2) <Ei+R()\Xi’Ui)> (5""I‘;;Xi> K <M>)7 we

1
can re-write it as

52 6+ R(X;,U)\ (W'X:)?  (Ui—u
(2) 7 1 Y i )
E(Ill> QA )\2 <¢ ( )\1 A% K )\2
2 e\ (WX (Ui~ e ROXL U X2)? . (Ui—u
__%n @ (€ i i @ ( & i i
2/\1>\2E<¢ (/\1) )\% K( A2 )+¢ ()\1> )‘? K( A >

1 e\ R X, U)(uTX)?:  (Ui—u
2o [ & i Ui i) g (Y
+2¢ (M) )\411 A2 )

=l + Lo + s

As the order of € is the same as that of ¢;, when we do the calculations associated with I;13,
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we instead use ¢; directly. Combining the results obtained from Proof of Theorem 2.1 and

assumption that hs/hs — 0, we can get

52 6\ (ufX;)? U, —u
_ n 2) [ = i 4 _ 2
I 2/\1/\21['3 <¢ <)\1> /\% K ( Ao )) Op((5nc) )

62 e\ R(X;, Uy) (" X;)? U —u
[ _ n E (3) _z 1y Y1 I3 K 1 _ 2 )
112 i <¢ ()\1) 3 ( Ay ) 0,((6n0)7)

Meanwhile, we can prove that I113 = 0,((d,¢)?) and obtain the following result

o4 € (/LTX*)Z U —u\\ 2
n_T| 2) [ == 7 K i _ 4 5v_1 '
AN2)2 (¢ ( >\1> 2 ( e >) Op((9n€)"(A2A7) )

These indicate that the second part will dominate the first part when we choose ¢ big enough.

(iii) The same way to calculate the third part. As e is between €; + R(X;,U;) and
€ + ]%(Xi, U;) — 5nuTX;", the order of € is the same as the order of ¢;, indicating that we can

obtain ,
I <& 1 &\ [ Opul X Ui —u
I A A CINN (R I Biil liiede  B "l (i ,
12 n)\1/\2 zzl ( 6¢ (/\1) ( /\1 ) ( /\2 >>

Combining the results obtained from the Proof of Theorem 2.1, it can be seen that the second

part dominates the third part.

Based on these, we can choose ¢ bigger enough such that the second term dominates the
other two terms with probability 1 —7. Because the second term is negative, P{supH pll=c Qn (6010
+onpt) < Qn (6019)} > 1 —n holds. This completes the proof.

4

S5-14: Proof of Theorem S2

Following the same steps as proving Theorem S1, 8; must satisfy the following equation

1 <& ¢+ R(X,;, Ui, Z;) U —u
. (1) 7 1y Y1 [ K [ X* _
nATA; ; v ( A1 ) ( A ) =0

2

where R(X;,U;, Z;) = R(X;,U;) — X;T(0, — 6,). By taking Taylor expansion, we can obtain

1 ~ €; Ui —u 1 " € Ui —u ~
W)k (= X @)K (= X (R(X;,U;
”A?A2;¢ (M) ( Az ) Z+nA§A2;¢ <>\1> ( o ) P (R(X5, U3)

=1

5 1 < & Ui—u\ you (7 TG ’
= X7(61 = 610)) = 55> o (A—1> K ( . ) X (R(X0,U) = X7 (6, — 630)) =0,
i=1




where & is between ¢; and ¢ + R(X;,U;) — X;T(6; — 6). From Theorem S1, we know
16, — 610 = O,(6,,), which indicates that

sup  |R(X;,U;, Z)| < sup {|R(X,, U)| + X 7(6: — 610)]}
| U;—ul/A2<1 | U;—ul/A2<1

= 0,(/161 — 610)[1) = Oy(3n).

Thus, the third part which is associated with (R(X;, U;) — X7 (0, — 01,))? is dominated by
the second part which is associated with R(X;, U;) — X:T (6, — 615). We then mainly focus on

the first two parts of the above equation.

Considering — AQAQ S U ( )K (Uz u) X* +'n,)\3/\2 S @ (}%) K <U3_7> XIR(X,,
U;), with the conditions h3/hs — 0, hy = 0(A\3), and hs = 0(\2) held, we can obtain

E<_#%i¢<1><%>K(UA2 )X*
mz o () (% )XR(X“U“)

- ™ / / o (—)X fu(el X) K (U;Q “)fU<U>dUdedF<X>

W ///¢ ( )X*fe(e|X’)K (UA—;“> R(X,U) fy(U)dUdedF(X)

E(X f(0)X)|u) wEXXT 201 X) |u)
M) 0 B EEC P 0 {1+ 0,(1)}
T2 RO (01 X)u) 20 T B XT 12 (0] X)) Kl

0 0

Considering #?/\2 S o? (;—1> K (UA—;“> XX ;T by directly calculating, we have

= (o (50) (5 o)
_ﬁ / / / ey (r) XX f.(e| X) K (U;Z “) fu(U)dUdedF(X) = fu(u)

E(XXTF2(01X) u) 0 1E(XXT 201 X)|u) 0
0 E(XXT 201 X)|u) 0 B XT 2 (01 X)|u)

eE(XXT £P (01 X)|u) 0 uEXXT (01 X)[u) 0
0 puaB(XXT (01 X)|u) 0 peE(XXT (0] X)|u)

Meanwhile, with the condition A3/A; — 0 held, we can obtain
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1 " € Ui—u 1 “ € U; —
— O Z)K (= X @)K XIR(X;,U;
Var( i 2= (5) < (5 X amm o () < () e

_#%///gb(m <Ai) X f.(e| X) K (UA_ZU) Fo(U)dUdedF (X)(1 + 0,(1))

2 12
_Lretn,
wE(X X" f(01X)]u) 0 v E(XXT f(01X)|u) 0
0 VE(X X7 (0] X) u) 0 wB(XXT (0] X)) u)
wE(XXT £.(0]X)|u) 0 wB(XXT £.(0]X)|u) 0
0 v E(XXT f.(0|X)|u) 0 veE(X XT f.(0|X)|u)

(14 0,(1)).

For the remaining part, we can follow the same idea in the Proof of Theorem 2.2 to easily

obtain the result.
O
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