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Abstract

As a complement to standard mean and quantile regression, nonparametric modal
regression has been broadly applied in various fields. By focusing on the most likely
conditional value of Y given x, the nonparametric modal regression is shown to be
resistant to outliers and some forms of measurement error, and the prediction inter-
vals are shorter when data is skewed. However, the bandwidth selection is critical but
very challenging, since the traditional cross-validation method cannot be applied. We
propose to select the bandwidth by applying the asymptotic global optimal bandwidth
and the flexible generalized hyperbolic (GH) distribution as the distribution of the
error. Unlike the plug-in method, the new method does not require preliminary pa-
rameters to be chosen in advance, is easy to compute by any statistical software, and
is computationally efficient compared to the existing kernel density estimator (KDE)

based method. Numerical studies show that the GH based bandwidth performs better
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than existing bandwidth selector, in terms of higher coverage probabilities. Real data

applications also illustrate the superior performance of the new bandwidth.

Key words: generalized hyperbolic distribution; nonparametric modal regression; kernel

density estimator

1 Introduction

When we try to model the relationship between a response Y and covariates X, the con-
ditional mean E(Y|X), is modeled linearly or nonparametrically. However, when data is
skewed, contaminated or contain outliers, such as wages, prices and expenditures in econo-
metric applications, the mean cannot reveal much useful information, and thus, the mean
regression is no longer appropriate. As a result, the quantile regression and modal regression,
regression analysis built on the conditional quantiles and mode, were proposed as comple-
ments. Figure 1 illustrates the relationship between the three location measures, namely the
mean, median and mode, show interesting stories from the perspective of confidence inter-
vals. For skewed data, when the confidence intervals are of the same length, the CI for mode
has the highest coverage probability. When the Cls are of the same coverage probability, the
CI for mode is the shortest in width.

By assuming the mode of conditional density f(y|x) to be a linear function of x, Lee
(1989, 1993); Lee and Kim (1998); Kemp and Santos Silva (2012); Yao and Li (2014) proposed
modal linear regressions. Better prediction performance and robustness show the superior
performance of the new regression methodology in the numerical studies. Ota et al. (2019)
proposed to estimate the conditional mode based on a linear quantile regression model, and
studied its asymptotic distribution. By minimizing the derivative of estimated conditional

quantile function, Zhang et al. (2021) estimated the conditional mode, and further developed
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Figure 1: Comparison of mean, median and mode: (a) widths of intervals with the same
coverage probabilities; (b) coverage probabilities of intervals with the same width.
bootstrap inference technique for the conditional mode estimator.

However, similar to any other parametric method, modal linear regression might be
misleading and give unsatisfactory prediction performance when the strong parametric as-
sumptions about linearity does not hold. Feng et al. (2020) approached the nonparametric
modal regression problem from a classical empirical risk minimization point of view. Xiang
and Yao (2022) proposed a local polynomial modal regression (LPMR), which estimate the
mode of f(y|x) through local polynomial regressions. Krief (2017) studied a partial linear
modal regression problem, and proposed a consistent and asymptotic normal estimator. Ul-
lah et al. (2021, 2022a) further applied modal regression to fixed effects panel data and time
series sequences, respectively. Ullah et al. (2022b) proposed a semiparametric partially linear
varying coefficient modal regression to expand the applicability of the modal regression.

Due to the “curse of dimensionality”, the dimension of X is restricted to be d = 1, and
assume {(x1,y1),..., (Tn,yn)} to be an iid sample from f(x,y). Then, the LPMR assumes
that

Mode(y|z) = arg max f (ylz) = m(z),



where m(-) is an unknown but smooth function. Xiang and Yao (2022) proposed to estimate
m(+) at a fixed point xy by kernel density estimator (KDE). To be more specific, the LPMR

maximizes the following log-likelihood:

0(0) = %ZKM (zi — 0) Py (yi - Zﬁj(l’z‘ - fo)]) ; (1.1)

where @ = (Bo,...,8,)", Kun(r) = h"'K(x/h) and ¢,(t) = h~1¢(t/h) are the symmetric
kernel functions and (hy, he) are the bandwidths. An EM algorithm is proposed, and then
the v-th derivative of m(z) can be estimated by 1, (20) = v!5,, for v =0,...,p.

Bandwidth selection has always been a crucial issue in nonparametric and semipara-
metric techniques. Classical bandwidth selection techniques include cross-validation (CV),
generalized cross-validation (GCV), plug-in method, and information based criteria, such as
AIC and BIC. The CV and GCV aim to minimize an unbiased estimator of the mean aver-
age squared error, while AIC focused on the expected Kullback-Leibler discrepancy. Being
totally automatic, CV and GCV are popularly used tools, but have always been criticized
for being time consuming. In addition, several new bandwidth selection methodologies have
been proposed in the last few years, see for example, Shang (2013); Levine (2013); Sun and
Li (2011); Xiang and Yao (2016, 2018).

Chen et al. (2018) studied a new method that is different from the traditional plug-
in method. By minimizing a cross-validated criterion function, the method is fully data-
driven, and do not need a good initial value. While proposing a new nonparametric density
estimation procedure, Kirkby et al. (2021) suggested to select the bandwidth by an efficient
cross-validation procedure, based on closed-form expressions in terms of the primal and dual
B-spline basis.

In this article, we propose a new bandwidth selector for LLMR based on generalized hy-

perbolic distribution (GH) and the asymptotic global bandwidth of Xiang and Yao (2022).



Xiang and Yao (2022) proposed nonparametric modal regression and provide the asymptotic
global bandwidth by minimizing the asymptotic mean integrated squared errors. However,
their “optimal” bandwidth can’t be used directly because of the unknown error densities.
We propose to choose the bandwidth by assuming a generalized hyperbolic distribution for
the error density and then plugging-in unknown quantities with their estimators. First intro-
duced by Barndorff-Nielsen (1978), GH distributions have been widely applied in financial
modelling McNeil et al. (2005), mainly because GH distributions are semi-heavy tailed, and
have quite some special and limiting cases, such as variance-gamma, hyperbolic, normal-
inverse Gaussian, t distribution, skew ¢, etc. Browne and McNicholas (2015) introduced a
multivariate mixture of generalized hyperbolic distributions, as a complement to the tradi-
tional mixture of Gaussian distributions, and mixture of ¢-distributions and mixture of skew-¢
distributions. By fitting generalized hyperbolic mixtures on a reduced subspace, Morris and
McNicholas (2016) systematically applied GH mixtures to dimension reduction in clustering,
classification and discriminant analysis. See Choi et al. (2021); Gaunt and Merkle (2021) for
more related work on GH.

Numerical study show that the new method performs better or comparable to existing
method, in terms of prediction performance. Some real data applications are also provided to
illustrate the effectiveness of the new method. The rest of the article is organized as follows.
The derivation of the new method is given in Section 2. In Section 3 and 4, simulation

studies and real data examples are shown. A discussion section ends the article.

2 Generalized hyperbolic based bandwidth selector

Introduced by Barndorff-Nielsen (1977), the name of generalized hyperbolic (GH) distribu-
tion is based on the fact that the log-density of its distribution has the shape of a hyperbola.

Due to the five free parameters, the GH distributions can be very flexible and effective, and



contain many special and limiting cases, such as the Gaussian, ¢, variance-gamma, inverse
Gaussian, Laplace and skew-t distribution, and has been popularly used in in modelling ex-
treme values, and thus popularly used in financial and risk management. Recently, Browne
and McNicholas (2015); Morris and McNicholas (2016) have applied generalized hyperbolic
distributions to clustering, classification, discriminant analysis and dimension reduction.

Consider the GH distribution with probability density function (pdf)

(7/5)>\ Bla—n) Ky_12(a/0? 4 (x — 1)?)
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where v = /a? — 2 and K,(-) is a modified Bessel function of the third kind, x is a
location parameter, 0 is a scale parameter, A\ is a shape parameter, and « and [ describes
the kurtosis and skewness. Browne and McNicholas (2015) describes several limiting cases
of the GH distribution. For example, when A\ = 1, it becomes the hyperbolic distribution.
For A = —1/2, we obtain the normal-inverse Gaussian (NIG) distribution.

Figure 2 shows the log-density of several GH distributions. By taking a log transforma-
tion, the log-density of Gaussian, ¢ and variance-gamma appear very close to each other,
while the other two GH distributions are quite different. Therefore, the presence of the in-
dex parameter A makes GH extremely flexible, which is not found in its special and limiting
cases.

For the LPMR (1.1), as well known, the choice of kernels is not very important, but
the selection of the optimal smoothing parameters (hq, hy) is critical to the estimation of
m(z). After deriving the asymptotic variance and asymptotic bias, Xiang and Yao (2022)
used a global optimal bandwidth, which minimize the asymptotic weighted mean integrated

squared error
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Figure 2: Log-density and density of the generalized hyperbolic distribution with A = 2 (blue)
and A = 2 (turquoise), Gaussian distribution (black), t-distribution with five degrees of freedom
(orange), variance-gamma distribution with Vgec=>5(green), inverse Gaussian distribution with p =
1,A = 0.5 (brown), skew t-distribution with five degrees of freedomskewing parameter v = 2
(darkorchid).

where
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w(z) is a weight function, such as 1 or the design density f(z), and g(+|z) is the conditional

distribution of the residual € given x. When p = 1 and v = 0, the estimator is referred to as



the local linear modal regression (LLMR), and the corresponding asymptotic global optimal

bandwidth is

~

h1=

3K 1/8
{47155@ n N&?)] ’

hy = 6hy, (2.1)

where 62 = (VL2 +3MN + L)/N. However, since the quantities g(0|z),g" (0|z),g" (0]x)
and m” (z) are unknown beforehand, the bandwidth (2.1) is not ready to use. In Xiang
and Yao (2022), the authors applied a series of approximations to estimate the unknown
quantities. First, a polynomial of order three is applied to approximate the unknown function
as m(x) = ap + a7 + aox® + azz?, and the parameters o = (g, o, o, v3) T can be readily
estimated by the modal linear regression (Yao and Li, 2014), as é&. Then, /" (z) = 2d,+6d3z

is ready for use. Let ¢; = y; — m(z;), Xiang and Yao (2022) applied KDE to approximate
9(0lz),¢" (0]z), g" (0]z) as

Y)(0]z) = hm {A},V:QZB.

In this article, we assume the error distribution g(-) to be GH. After the estimated errors
are calculated based on the aforementioned polynomial approximation, we fit a GH to €;,
and the maximum likelihood estimators of the parameters are calculated. Note that the
GH is very general with 5 parameters and the generality makes the likelihood function very
flat, causing problems with fitting. To solve this problem, in practice, we fit the data with
different sub models, such as hyperbolic distribution (hyperb), generalized inverse Gaussian
(gig), normal inverse Gaussian (NIG), variance gamma (VG) and skew hyperbolic (SH),
and pick the one that has the largest log-likelihood. After the parameters are estimated,

the quantities g(0|z), g" (0|z),¢" (0|z) can then be calculated. The detailed formulations are



deferred to the Appendix.

3 Numerical studies

In this section, we use Monte Carlo simulations and real data examples to investigate the
finite sample performance of the newly proposed bandwidth selection method, and compare
it with the existing KDE based bandwidth selector. All the simulations are conducted using
R, and the fitting of the GH distribution is done through the GeneralizedHyperbolic

package.

3.1 Simulation study

The model considered in this simulation study is as follows:

Y =2sin(nX) + o(X)e,

where X ~ U(0,1), o(X) = 14 2X. The error is assumed to follow one of the following

distributions:
(L) e~ N(0,1);
(L) €~ ts;
(IIL) € ~ 0.5N(~1,2.5%) + 0.5N (1, 0.5%);
(IV.) € ~ x*(4);
(V.) € ~ SkewLaplace(1,1, 2);

(VL) €~ 0.5N(—2,12) + 0.5N(2, 22);



where the pdf of skew Laplace distribution is

1 ZT—p .
——e a if o < p;
a+[3 Y - Y
fla;p, o, B)
__w .
ﬁe 5, otherwise.

Case I and II are symmetric, and Case II is a classic heavy-tailed distribution, Case III, IV
and V are skewed distributions, and Case VI is a multi-modal distribution. Suppose that

the error density € has a mode at ¢. Then, the modal regression in our simulation study is
Mode(y|z) = arg max f(y|x) = m(z) = 2sin(7X) + co(x).
y

Different shapes of error distributions have different ¢ values and therefore produce different
shapes of modal regression. Figure 3 shows the modal regression m(z) of each case.

The performance of the LPMR is reported, where the bandwidth is selected by either
Xiang and Yao (2022), referred to as LPMR(KDE), or the new GH based method, referred to
as LPMR(GH). The sample sizes n = 100,200 and 400 are conducted over 500 replications.

The prediction performance are compared in two aspects. Table 1 reports the aver-
age(std) of the coverage probabilities of prediction intervals of the same length (symmet-
ric about each estimate), over the 500 replications. Three interval lengths are considered:
0.10,0.20 and 0.50, where o = 2 approximates the standard deviation of €. In addition, with
30%, 50% and 90% as the levels of confidence, Table 77 reports the average widths and per-
centage of coverage of the prediction intervals. The confidence interval is constructed based
on the similar method suggested by Yao and Li (2014), which could make use of the skewness
of the error distribution assumed by LPMR. From Table 1 and 2, we can see that when the
error is symmetrically distributed (Case I & II), the new method performs comparable to
the KDE based method. When the error distribution is skewed or bimodal (Case I11-VI), for

confidence intervals with the same length, the CI based on LPMR(GH) has higher coverage
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Figure 3: The mode regression m(z) of Case I — VI.
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probability, especially for wider ClIs.

Table 1: Average (Std) of percentage of coverage with o = 2.

n = 100 n = 200 n = 400
Case | Width | LPMR(KDE) LPMR(GH) | LPMR(KDE) LPMR(GH) | LPMR(KDE) LPMR(GH)
0.1c | 0.082(0.002)  0.081(0.003) | 0.083 (0.001) 0.082 (0.002) | 0.084 (0.001) 0.083 (0.001)

I | 020 | 0.164(0.003) 0.160(0.005) | 0.165 (0.002) 0.164 (0.003) | 0.166 (0.001) 0.165 (0.002)
0.50 | 0.392(0.007)  0.385(0.012) | 0.395(0.004) 0.392 (0.007) | 0.398 (0.002) 0.395 (0.005)

0.1c | 0.074(0.003)  0.073(0.003) | 0.076 (0.001) 0.075 (0.002) | 0.077 (0.001) 0.075 (0.002)

II | 020 | 0.147(0.005)  0.145(0.006) | 0.150 (0.003) 0.148 (0.004) | 0.152 (0.002) 0.150 (0.003)
0.50 | 0.350(0.011)  0.344(0.013) | 0.356 (0.005) 0.352 (0.009) | 0.360 (0.003) 0.355 (0.007)

0.1c | 0.073(0.015)  0.078(0.015) | 0.078 (0.012) 0.080 (0.011) | 0.087 (0.012) 0.085 (0.012)

I | 020 | 0.144(0.029)  0.154(0.028) | 0.154 (0.024) 0.158 (0.020) | 0.172 (0.022) 0.168 (0.023)
0.50 | 0.336(0.053)  0.355(0.048) | 0.354 (0.040) 0.359 (0.033) | 0.388 (0.037) 0.381 (0.038)

0.1c | 0.033(0.003)  0.036(0.002) | 0.035 (0.002) 0.037 (0.002) | 0.036 (0.002) 0.037 (0.001)

IV | 020 | 0.067(0.005) 0.072(0.004)) | 0.069 (0.004) 0.074 (0.004) | 0.071 (0.003) 0.075 (0.003)
0.50 | 0.166(0.013)  0.178(0.011) | 0.172 (0.010) 0.183 (0.009) | 0.178 (0.008) 0.185 (0.006)

0.1c | 0.051(0.006)  0.057(0.006) | 0.054 (0.005) 0.059 (0.004) | 0.056 (0.005) 0.061 (0.003)

V | 020 | 0.103(0.011) 0.113(0.011) | 0.108 (0.010) 0.118 (0.007) | 0.111 (0.009) 0.121 (0.005)
0.50 | 0.253(0.022)  0.271(0.020) | 0.265 (0.018) 0.281 (0.011) | 0.273 (0.016)  0.286 (0.006)

0.1c | 0.031(0.008)  0.039(0.009) | 0.029 (0.005) 0.035 (0.005) | 0.033 (0.005) 0.037 (0.003)

VI | 020 | 0.061(0.016) 0.078(0.018) | 0.059 (0.011) 0.069 (0.010) | 0.067 (0.009) 0.074 (0.006)
0.50 | 0.154(0.038)  0.192(0.041) | 0.147 (0.024) 0.170 (0.021) | 0.165 (0.020) 0.180 (0.013)

3.2 Real data examples

Example 1 (Air quality data) The Air Quality data contains the hourly air pollutant data of

the air quality monitoring stations of 12 stations in Beijing, and is from the Beijing Municipal

Environmental Monitoring Center. The data set includes the hourly data of six major air

pollutants and six associated meteorological variables at each location.

12



In this study, we are interested in how PM2.5 is related to dew point temperature, and we
apply the data from Oam to 5am of 2017. Figure 4 shows the fitted modal regression and 95%
prediction bounds of the air quality data based on different bandwidths. It can be seen that
the curve fitted by the GH based bandwidth is smoother than the KDE based bandwidth. In
addition, we use Monte-Carlo cross-validation (MCCV) and d-fold cross-validation (CV) to
compare the prediction performance. In MCCV, the data points are randomly partitioned
into disjoint training subset of size n — d, and testing subsets of size d, and the procedure
is repeated for 200 times. The average (std) of coverage probability of Cls with different
widths are summarized in Table 3, where o = 2. It can be seen that the GH based bandwidth

selector could offer higher coverage probability than the KDE based method.
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Figure 4: Scatter plot, fitted modal regression and 95% prediction bounds of the air quality
data: (a) KDE based bandwidth; (b) GH based bandwidth.

Example 2 (Forest Fire Data)

The forest fire data contains 517 observations, collected between January 2000 and De-
cember 2003, from the Montesinho Natural Park in the northeastern region of Portugal. We
are interested in how temperature (temp) affects relative humidity (RH). Figure 5 shows the
fitted modal regression and 95% prediction bounds of the data. We have similar findings to

Example 1, i.e, GH based bandwidth provides smoother curves.

13




Again, with CV and MCCV, we calculate the average (std) of percentage of coverage of
CIs with the same widths with ¢ = 2, and the results are summarized in Table 4. We can

also see that the coverage probability improved a lot by LPMR(GH).
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Figure 5: Scatter plot, fitted modal regression and 95% prediction bounds of the forest fire
data: (a) KDE based bandwidth; (b) GH based bandwidth.

Example 3 (Income distribution data) In this study, we consider the 2017 China General
Social Survey (CGSS) data, which is the first national, comprehensive, and continuous large-
scale social survey project in China. We are intersted in how age, years of education and
years of work are related to income (divided by 1000). After deleting the observations with
missing values, the final sample consisted of 2,149 urban residents, including females aged
18-55 and males aged 18-60.

Due to the “curse of dimensionality”, the nonparametric modal regression considered
in this article is not appropriate for multivariate predictors. As a result, we apply the
linear modal regression (Yao and Li, 2014). Similarly, we apply both the KDE and GH
methods to select the bandwidth, and the results are denoted by LMR(KDE) and LMR(GH),
respectively. The results are compared to mean regression (LSE) and median regression
(MEDREG). 90% of the data is considered as training set, and the remaining 10% are used

for prediction. The process is repeated over 500 repetitions. Table 5 and Table 6 report

14




the average (std) of the coverage probabilities of prediction interals (of the same length),
and average (std) of widths of the prediction intervals (at the same level of confidence). We
can see that when the CI is of the same length, LMR(GH) could provide higher coverage

probability. In the meanwhile, at the same desired confidence lever, the CI of LMR(GH) is

the shortest, especially for higher confidence levels.

4 Concluding remarks

In this article, we propose a new bandwidth selection method for nonparametric modal re-
gression based on the generalized hyperbolic distribution. With 5 free parameters, the GH
is very general and have many special and limiting cases, like variance-gamma, hyperbolic,
normal-verse Gaussian, ¢, and so on. The method can be easily implemented using any sta-
tistical software and is intuitively appealing. Also, unlike the plug-in type method, the new
method does not require preliminary parameters to be chosen, and is desirable in real data
applications. Simulation studies and real data examples show that, compared to the existing
KDE based bandwidth selector, the new method can offer higher coverage probability for
confidence intervals with the same width.

In this article, we only investigate the bandwidth selector for nonparametric modal re-
gression analysis. It is also of great interest to extend our work to other nonparametric or

semiparametric modal regression analysis tools.
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Appendix

Calculation details.

Hyperbolic distribution

The pdf is:

1 e[V i () e
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where G,() is a modified Bessel function of the third kind. Then,

Fi@) = £ (i? - ”2(‘%2“))
e

1 VT 1+<x—u>2_ﬂx—,u] §r ovVl4mi(x—p)
()

B 25\/1+7T2G1 0 ) ) /1 + (%)252

£(a) = (@) (’5” A ‘”)
SERVENC RS

+ () (gm@; — )t (1 n (afgﬂy)g eTE (1 . (T)j 52)

_ 1 e[V Hx—M)Q_Wx—u {r V14 a%(x—p)
20V 1+ m2Gq(€) 0 0 0 /1 + (%)252
" (&T B (5\/1+7T2(13M))

SRVENE ks

1 fﬁ{m\/w(%)an“g“]
+ e
25\/ 1+ 7T2G1(§)

x (ém@c - (1 (5 “)) N <1 ; (;‘)) 52)

16



. (6_ WIEE w2<xu>)

S ()
B s (gm@mw (1 (55 “)) TR <1 N <x5“)2>252)

AL T 22 (0 — )6 (1 + (u)2> E —eVi+72 (1 + (u)Z) e

o)
I = f'(a) (5” A i Gt ) @A

L= f(@)A+ f(x)A

T m2(r —
fre) = B By = g [ - AT
L+ (52)7

AT =36V1+ 2z — o (1 + (x _“)2>_ — 3¢V + 72 (w — p)*0 " (1 n (x - u>2>_

) +2f (@) A+ f(z)A’

17



Normal inverse Gaussian (NIG)

) = NEF o Gy (VT ()
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Table 2: Average widths (percentage of coverage) of the prediction intervals.

n = 100 n = 200 n = 400

Case | confidence | LPMR(KDE) LPMR(GH) | LPMR(KDE) LPMR(GH) | LPMR(KDE) LPMR(GH)
30% 1.477(0.298)  1.491(0.296) | 1.464(0.295)  1.474(0.296) | 1.456(0.2975)  1.460(0.297)

I 50% 2.624(0.497)  2.647(0.496) | 2.606(0.497)  2.627(0.497) | 2.587(0.499)  2.603(0.498)
90% 6.829(0.897)  6.908(0.897) | 6.793(0.899)  6.835(0.899) | 6.745(0.899)  6.776(0.899)

30% 1.649(0.298)  1.670(0.297) | 1.631(0.296)  1.650(0.296) | 1.619(0.298)  1.629(0.298)

11 50% 3.026(0.497)  3.053(0.498) | 2.984(0.495)  3.016(0.495) | 2.970(0.499)  2.996(0.499)
90% | 9.682(0.8987)  9.710(0.898) | 9.653(0.896)  9.696(0.896) | 9.603(0.897)  9.640(0.898)

30% 1.494(0.297)  1.431(0.297) | 1.466(0.297)  1.441(0.296) | 1.347(0.297)  1.344(0.297)

111 50% 3.069(0.496)  2.940(0.497) | 3.043(0.498)  3.005(0.498) | 2.729(0.497)  2.726(0.496)
90% 13.312(0.896)  13.158(0.896) | 13.449(0.896) 13.413(0.896) | 12.871(0.897) 12.862(0.897)

30% 3.262(0.295)  3.265(0.296) | 3.214(0.297)  3.235(0.296) | 3.189(0.295)  3.239(0.297)

vV 50% 5.891(0.496)  5.922(0.497) | 5.783(0.497)  5.821(0.498) | 5.724(0.497)  5.833(0.497)
90% 16.696(0.899)  16.904(0.898) | 16.306(0.898) 16.511(0.898) | 16.167(0.896) 16.657(0.896)

30% 2.185(0.297)  2.165(0.297) | 2.128(0.299)  2.112(0.299) | 2.074(0.299)  2.073(0.298)

v 50% 4.191(0.497)  4.163(0.497) | 4.085(0.497)  4.079(0.498) | 4.061(0.498)  4.057(0.497)
90% 14.100(0.897)  14.083(0.897) | 13.981(0.897) 13.998(0.897) | 13.907(0.897) 13.930(0.897)

30% 2.810(0.297)  2.776(0.296) | 3.531(0.299)  3.486(0.298) | 3.452(0.297)  3.441(0.297)

VI 50% 5.500(0.497)  5.440(0.497) | 7.058(0.498)  7.008(0.498) | 6.891(0.497)  6.909(0.498)
90% 16.283(0.896)  16.282(0.896) | 16.717(0.899) 16.583(0.899) | 16.538(0.897)  16.501(0.896)
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Table 3: Average (Std) of percentage of coverage for the air pollution data

MCCV d = 30 MCCV d = 70

Width | LPMR(KDE) LPMR(GH) | LPMR(KDE) LPMR(GH)
5o | 0.148 (0.056) 0.155 (0.058) | 0.142 (0.038) 0.161 (0.042)
60 | 0.165 (0.059) 0.179 (0.061) | 0.166 (0.042) 0.186 (0.042)
7o | 0.188 (0.062) 0.204 (0.064) | 0.186 (0.044) 0.210 (0.045)
8¢ | 0.209 (0.067) 0.224 (0.066) | 0.208 (0.047) 0.231 (0.047)
90 | 0.229 (0.068) 0.244 (0.068) | 0.230 (0.049) 0.250 (0.050)
100 | 0.250 (0.067) 0.264 (0.067) | 0.251 (0.051) 0.268 (0.052)

10-fold CV 5-fold CV

Width | LPMR(KDE) LPMR(GH) | LPMR(KDE) LPMR(GH)
50 | 0.077 (0.078) 0.097 (0.082) | 0.109 (0.042) 0.097 (0.041)
60 | 0.101 (0.080) 0.106 (0.086) | 0.120 (0.055) 0.119 (0.044)
7o | 0.106 (0.082) 0.124 (0.101) | 0.128 (0.046) 0.132 (0.031)
8¢ | 0.115 (0.082) 0.139 (0.104) | 0.136 (0.039) 0.146 (0.043)
90 | 0.121 (0.082) 0.147 (0.106) | 0.148 (0.034) 0.166 (0.048)
100 | 0.130 (0.090) 0.171 (0.119) | 0.166 (0.042) 0.196 (0.083)
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Table 4: Average (Std) of percentage of coverage for the forest fire data

MCCV d = 50 MCCV d = 100
Width | LPMR(KDE) LPMR(GH) | LPMR(KDE) LPMR(GH)
60 | 0.309 (0.039) 0.336 (0.042) | 0.341 (0.035) 0.368 (0.038)
8o | 0.393 (0.044) 0.425 (0.049) | 0.432 (0.038) 0.463 (0.041)
100 | 0.469 (0.046) 0.501 (0.050) | 0.514 (0.039) 0.542 (0.041)
120 | 0.535 (0.047) 0.566 (0.051) | 0.582 (0.038) 0.609 (0.039)
160 | 0.644 (0.047) 0.671 (0.047) | 0.689 (0.034) 0.710 (0.030)
200 | 0.725 (0.044) 0.752 (0.044) | 0.771 (0.031) 0.789 (0.027)
10-fold CV 5-fold CV
Width | LPMR(KDE) LPMR(GH) | LPMR(KDE) LPMR(GH)
60 | 0.381 (0.083) 0.412 (0.103) | 0.359 (0.088) 0.390 (0.114)
8¢ | 0.506 (0.098) 0.500 (0.110) | 0.468 (0.095) 0.477 (0.134)
100 | 0.586 (0.097) 0.586 (0.100) | 0.545 (0.113) 0.560 (0.150)
120 | 0.632 (0.093) 0.646 (0.097) | 0.596 (0.120) 0.624 (0.122)
160 | 0.722 (0.090) 0.732 (0.087) | 0.699 (0.089) 0.718 (0.115)
200 | 0.792 (0.076) 0.812 (0.083) | 0.787 (0.073)  0.793 (0.080)

Table 5: Average (Std) of percentage of coverage for the

income distribution data

Width LSE MEDREG | LMR(KDE) | LMR(GH)
40 | 0.071(0.017) | 0.116(0.022) | 0.107(0.024) | 0.133(0.022)
60 | 0.109(0.019) | 0.158(0.024) | 0.171(0.030) | 0.194(0.026)
80 | 0.145(0.022) | 0.200(0.027) | 0.207(0.033) | 0.250(0.031)
100 | 0.177(0.023) | 0.263(0.029) | 0.257(0.034) | 0.299(0.029)
120 | 0.219(0.024) | 0.313(0.029) | 0.326(0.034) | 0.349(0.030)
140 | 0.259(0.026) | 0.362(0.030) | 0.365(0.040) | 0.416(0.029)
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Table 6: Average(std) widths of the prediction intervals for the income distribution data.

Confidence

LSE

MEDREG

LMR(KDE)

LMR(GH)

10%
20%
30%
40%
50%
60%

8.419(1.621)
18.027(2.417)
27.484(3.279)
37.414(3.521)
48.177(3.830)
59.807(4.408)

7.048(1.661)
15.595(2.557)
23.155(2.741)
32.205(3.107)
43.224(4.607)
55.809(4.631)

6.042(1.940)
13.002(2.249)
19.796(2.524)
28.256(3.235)
37.693(3.766)
48.797(4.906)

5.403(1.365)
12.087(1.951)
18.441(2.211)
26.565(3.058)
35.229(3.371)
46.106(4.872)
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