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Abstract

Complex interactions between battery materials make design optimization difficult. In this
work, we quickly and efficiently optimize three interacting design variables of a carbon nucleation
layer used in sodium metal batteries. Unlike existing materials optimization approaches focusing
on maximizing favorable material properties, we execute a multi-parameter materials optimization
scheme that uses cell-level aging data as the target objective. We employ a Bayesian optimization
algorithm that intelligently selects the nucleation layer designs to test in sequence, quickly finding
the design that yields the highest lifetime. Results from simulation studies conducted after the fact
indicate that a well-tuned Bayesian optimization algorithm can optimize the nucleation layer
properties roughly five times faster than a random sampling approach and roughly two times faster
than a poorly-tuned Bayesian algorithm. We then examine correlations on all 177 cells with
different nucleation layers and use electrochemical impedance spectroscopy and imaging to
propose the primary mechanism for nucleation layer performance, considering dead sodium as the
dominant mode of capacity loss. The algorithms, hyperparameter tuning strategies, and post-
optimization mechanism analysis used in this work broadly apply to other battery chemistries and
electrode designs and are essential for quickly bringing metal battery performance on par with
existing battery technologies.

Keywords: batteries; materials optimization; sodium metal; machine learning; Bayesian
optimization

1. Introduction

The global push to electrification will require significantly more energy storage from batteries
than is presently available. In order to meet these demands, new batteries must be developed and
manufactured using more easily sourced materials [1]. However, researching and developing new
battery materials is a costly and time-consuming process. Battery materials are a complex area of
research where the materials often interact with one another making it difficult to explore the
material design space in entirety [2], [3]. Most existing approaches to battery materials
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development identify a desirable cell-level trait (e.g., high power capability), establish a link
between the desired trait and the mechanisms that affect it (e.g., electrode thickness, charge transfer
resistance), and then develop new materials focused on maximizing the material properties that
affect the mechanism (e.g., electrode mass loading, particle size) [4], [5]. This approach is
sometimes referred to as mechanistic modeling and models favorable material properties as a
function of structure and composition using small, locally optimized models built using physical
knowledge of the system [6]. The complex interactions between battery components often produce
trade-offs where optimal performance may be achieved at a more median material property value,
not at maximums or minimums [7]. However, studying a single mechanism or design variable in
isolation does not guarantee good results when implemented into a battery cell with multiple other
interacting components. Conversely, building a mechanistic model of a complex battery system
with nonlinear interacting components is extremely time- and cost-intensive. In turn, if the
relationship defining the favorable material property is not yet understood, accurate modeling for
material design is entirely infeasible [8], [9].

To this end, machine learning-assisted experimental searching is being studied as a new
method for rapidly developing battery materials and understanding the design space. Machine
learning approaches largely ignore the underlying mechanisms and physics of material interactions
and instead make inferences from data. In this approach, a machine learning surrogate model is
trained using a small dataset of initial experiments to learn the relationship between the design
variables (inputs) and the performance metric of interest (output) [10], [11]. Then, the fitted
experiment surrogate model is used to guide future experiments in sequence, reaching an optimal
design in as few iterations as possible. Machine learning assisted experimental searching has been
used to discover and optimize various battery materials, manufacturing processes, and control
protocols [12]-[18]. In [12], researchers developed a battery fast charging protocol to have
minimal impact on cell lifetime by sequentially testing charging current profiles suggested by a
Bayesian optimization algorithm. Similarly, researchers in [19] demonstrated a machine learning-
guided autonomous robotic system used to search for non-aqueous lithium-ion battery electrolytes
with high electrochemical stability. While the studies mentioned above are unique and promising,
there is little work published that tackles the challenge of optimizing battery materials using cell-
level performance metrics. It is challenging to close the gap between material-level optimization
and cell-level performance since materials optimized in isolation are not guaranteed to produce
excellent performance when implemented in cells. There is a great need to investigate materials
optimization schemes that use cell cycling and aging data to formulate a target objective based on
cell-level performance instead of component-level material properties.

Among all battery systems, sodium batteries are one of the most promising batteries beyond
lithium-ion [20]. Specifically, the anode-free sodium battery has been demonstrated to exhibit
energy density competitive with lithium batteries and leverage the native electrochemical stability
of sodium metal in standard electrolyte media to achieve Coulombic efficiencies near or exceeding
99.9% [21]. However, a bottleneck toward design in this system relates to the design characteristics
of the negative electrode where sodium metal is electroplated. The reversibility of the sodium
electroplating reaction is highly dependent on the negative electrode surface properties due to its
role in the sodium nucleation and growth process. Unfavorable conditions lead to uncontrolled SEI
formation and the accumulation of electrochemically inactive or “dead” sodium [4], [5], [22], [23].
A number of strategies have been adopted to promote reversible sodium deposition, such as
increasing surface area to reduce the local current density, using sodium wettable surfaces, and



using 3D electrodes that accommodate the large sodium expansion during plating [24]-[30].
Recent studies have shown that a thin nucleation layer that guides smooth, layer-by-layer
depositions of sodium is critical to achieving optimal battery performance metrics [31], [32].
However, the first-principle insight behind the design of nucleation layers for sodium metal
remains challenging due to the complexity of understanding nucleation at a liquid-solid interface.
Consequently, it is difficult to translate the general design rules identified in the literature to
designing nucleation layers when considering trade-offs such as increased surface area leading to
a decrease in surface area but poorer dispersion in the electrode slurry [31], [33]. In turn, the
sodium metal system is an ideal platform for applying design optimization at the electrode level,
even though no current studies have focused on this promising system.

This work demonstrates an experimental campaign to concurrently optimize three related
design variables of a carbon nucleation layer in sodium metal batteries that maximize cell-level
cycling performance. The three design variables, namely the concentration of carbon black, the
concentration of carbon nanotube additives, and the time spent oxidizing in air, are highly related
and have been shown to affect plating reversibility significantly [26], [34], [35]. Unlike existing
materials optimization works focusing on maximizing favorable material properties, we directly
optimize cell-level performance using cell lifetime as the target objective. This direct approach
ensures all inactive components in the cell are accounted for in the optimization process, ensuring
a more generalizable result. Additionally, rather than selecting design variables that involve time-
consuming measurements of material properties, we optimize process variables that have a clear
relationship with the structure of our electrode. Doing so ensures our approach is more adaptable
to settings with equipment and time limitations, such as in practical battery manufacturing settings.
The well-tuned Bayesian optimization algorithm employed here can find a nucleation layer design
with the highest lifetime five times faster than a random search approach. Moreover, we find that
a poorly tuned Bayesian optimization algorithm is two times faster than the random searching
approach, suggesting that implementing the algorithm can still generate significant time savings
for most battery materials design projects.

Overall, our work demonstrates the advantages and effectiveness of directly using cycling
performance as the objective of a multi-parameter battery component optimization study. Because
a non-physics-based model is employed, this approach is easily adaptable to other battery
components and cell chemistries. Furthermore, we provide valuable insights and strategies for
others who wish to efficiently select algorithm hyperparameters before initiating a battery
materials optimization campaign.

2. Methods

2.1. Nucleation Layer Preparation

All nucleation layers began as a slurry of thermally oxidized LITX 66 carbon black from Cabot
Corp., multi-wall carbon nanotubes from Cheap Tubes, and PVDF binder using N-Methyl-2-
pyrrolidone (NMP) as a solvent. The carbon nanotubes were roughly 10-20 nm in size. The carbon
black (CB) and carbon nanotubes (CNT) concentrations were randomly sampled following the
predefined ranges of 20-90 and 0-50 wt%, respectively, with 1-wt% increments. The upper



boundary on concentration is selected based on the upper limit of active material content that can
be deposited using the doctor blading method, and the CNT concentration range is based on
literature for CNT additives in battery electrodes [36]-[38]. Similarly, the thermal oxidation time
was determined by randomly sampling values in the range of 0-8 hours with 1-hour increments.
Thermal oxidation has been shown to affect the microstructure of carbon significantly [39], [40].
The range of values along with the minimum increment of each design variable are presented in
Table 1.

The CB powder was thermally oxidized in air at 450 °C . After oxidation, the slurries were
mixed and cast on conductive carbon-coated aluminum foil (MTI Corp.) using a doctor blade set
at 150 um. The cast slurries were then dried in a vacuum oven for 12 hours before constructing
cells. All nucleation layers have ~1 mg/cm? mass loading and 30-40 um thickness. This ensures
that the variations in the nucleation layer properties, such as porosity, surface area, and
conductivity, are functions of the design variables.

Table 1: Nucleation layer design variable space with minimum, maximum, and increment values
specified for each variable.

Design Variable or Processing

. Minimum Value Maximum Value Increment
Condition
CB Concentration (w/w) 0.20 0.90 0.01
CNT Concentration (w/w) 0.00 0.50 0.01
PVdF Concentration (w/w) 0.10 0.40 0.01
Oxidation Time (h) 0.00 8.00 1.00

2.2. Cell Assembly, Cycling, and Characterization

All cells were made using 1M NaPFs mixed in diglyme electrolyte. Prior to mixing the
electrolyte, the NaPFs salt was dried at 100°C for more than 12 hours in an Ar glovebox. To dry
the diglyme, we used a 4A molecular sieve for more than 48 hours. The NaPF salt is Strem brand
and 99%, while the diglyme was Sigma-Aldrich 99.5%. Since the quality of the electrolyte can
significantly impact cell performance, the electrolyte was only used to make cells up to one day
after preparation. All of the half-cells were assembled using CR2032 stainless steel cases from
MTI Corp. inside of an Ar glovebox. The half-cells use a sodium metal working electrode that is
pressed onto a stainless-steel disc. All electrodes were punched from aluminum foil using a 1 cm
diameter punch. We use two Celgrad 2325 separators soaked in electrolyte to separate the sodium
metal from the nucleation layer. Post assembly, all cells were allowed to rest for 12 hours before
beginning cycling.

Cycling was conducted at room temperature on a Neware BTS4000 battery tester. First, the
cells are galvanostatically discharged to 0 V at a rate of 0.5 mA/cm?. This activates the half-cell
system. Cycling starts with a discharge (plating) of 0.25 mAh/cm? at a rate of 0.5 mA/cm?. The
discharge step takes roughly 30 minutes. Next, the cell is charged (stripping) until it reaches the
upper cutoff voltage of 0.1 V. All electrochemical impedance spectroscopy (EIS) measurements
were done using aa multichannel Metrohm Autolab tester at room temperature. EIS cycling



follows the standard cycling protocol, that is, discharge 0.25 mAh/cm? capacity at a rate of 0.5
mA/cm?. We recorded the EIS spectra at cycles 1, 3, and 10, using a perturbation of 5 mV between
1 Hz and 10° Hz. All SEM images were performed with an FEI Inspect F50 SEM. Last, we used
Micromeritics Instruments Corporation ASAP 2020 to measure nitrogen absorption.

3. Sequential Bayesian Optimization for Materials Design

Sequential Bayesian optimization is a popular method used for optimizing the designs of
complex systems [7], [17], [18]. While any Bayesian model can be used, Gaussian process (GP)
regression is the most popular model. The GP regression model estimates the performance metric
as a function of the tunable design variables. After fitting the GP regression model to an initial
dataset, new designs are selected and tested. In each iteration, their test results are added to the
dataset to update the GP regression model. Efficient optimization is realized by using a carefully
chosen acquisition function to intelligently select the next design to test [17]. Acquisition functions
have been widely studied in literature across many different domains, with a select few remaining
more popular than others because of their applicability to a wide range of design problems [17],
[18], [41]-[43]. Acquisition functions come in various functional forms, each designed to balance
the trade-off between exploring new regions in the design space with little information
(exploration) or exploiting existing regions where the performance metric is already found to take
on a favorable value (exploitation). In what follows, we discuss the GP regression model used in
the sequential optimization framework and introduce the handful of acquisition functions
compared in this study.

3.1. Gaussian Process Regression

We use GP regression to build a probabilistic machine learning model that approximates the
performance metric (cell lifetime) over the entire design space [44]. Specifically, our effort
involves training a GP regression model to learn the mapping from a vector of D input variables x
to their corresponding target y. Similar to other supervised machine learning techniques, GP model
training requires a training dataset organized as a pre-collected set of Ni,i, input-output pairs,

D = {(x;,y:) ?’:trlai“. We can then assemble an Ny, X D design matrix X; by aggregating all
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vector i, 1.€., Yy = [yl, e yNtrain]T. In our problem formulation, the GP input vector X; consists
of three nucleation layer design variables (CB conc., CNT conc., and thermal oxidation time in
hours) that affect the physical properties of the nucleation layer. The GP output variable y; is the
measured lifetime (cycles) of a half-cell built under the setting of x;. We assume the observation
(y) of the underlying function (f) is corrupted by i.i.d. zero-mean Gaussian noise, giving rise to
the Gaussian observation model, y = f(x) + &, where f(X) is the underlying function we wish to
approximate and e~N'(0,02) with o2 being the noise variance. We then model the latent
function, f(x), using a GP, denoted as:

f0) = GP(mx), k(x,x")) (D

where the mean function m(x) and covariance function (also known as a kernel) k(x,x") can be
expressed as the following
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Our GP regression formulation assumes a zero-mean prior, i.e., m(x) = 0, as is traditionally
done, and let the covariance function model f(x). The kernel we choose to use is the popular
squared exponential kernel, defined as

ksg(x,X") = of ex (— M) 4)
SE\X, f exXp 212
where of is the signal variance of the input, and [ is the length scale. Fitting a GP regression model
entails optimizing the two kernel parameters, afz and [, and noise variance, 62, which together
form a set of hyperparameters. The exact version of the squared exponential kernel used in this
work has a length scale term uniquely defined for each input variable in X. This is more commonly
called automatic relevance determination, or ARD for short. The GP regression model is fit to the
data D by iteratively tuning the values of the three hyperparameters to minimize the negative log-
likelihood of the observed data D. This process is carried out automatically using the GPy package
in Python.

After training, the fitted GP regression model can be used to make predictions at new, unseen

test points X, = {x}‘}?’:ti“ (untested nucleation layer designs we wish to estimate the lifetime at)
for unknown observations y, = {y; Iivzt‘ft, where Nie; is the number of test sample points. Our

design problem aims at making predictions at X,, which may span the entire range of the design
space outlined in Table 1, by interpolating between the training points. The first step in predicting
the function values f, at the test points X, is to assemble the multivariate Gaussian prior as

K +021 K
(o5 ) ®
* KX*,Xt KX*,X*

where Ky, x, 1s the covariance matrix consisting of covariances between function values at the

training points X and is calculated using Eqn. 4.,1is the identity matrix, similarly, the matrix
Kx, x. 1s the matrix of covariances between the test points X, and the off-diagonal matrices, Ky, x,

and Ky, x,, are called the cross-covariances. As described in the original Gaussian observation

model, y = f(x) + &, we assume all observations include an additive, zero mean Gaussian noise
whose variance is 6Z. Under this assumption, we must include the addition of the noise variance
02 in each diagonal element of the training covariance matrix Kx.x, » 1.€., assuming

Vi~ (0, Ky x, + 0Z1).

The GP regression model can be used to make predictions at new test points X, by calculating
the conditional distribution p(y,|X.,, D), calculated as follows

p(y.|X,,D) = N(y,|m,,Z,) (6)

where
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where m, and X, are the predicted mean and covariance at the new test points X,, respectively.
3.2. Acquisition Functions

In any Bayesian optimization framework, the acquisition function is responsible for selecting
the next design points to evaluate. The better the chosen points, the quicker and more effective the
optimization process is. First, the GP regression model estimates the objective function over the
entire design space. Then, the acquisition function is evaluated at each design point, and designs
are ranked based on their acquisition function values. Acquisition functions have been the focus
of many studies and vary in objective and complexity based on discipline.

Here, we investigate three commonly used acquisition functions: probability of improvement
(PI), expected improvement (EI), and upper confidence bound (UCB). We selected these
acquisition functions because they have probabilistic formulations that work well with the GP
regression model’s probabilistic output. The GP regression model predicts a Gaussian lifetime
distribution, parameterized by the predicted mean and variance calculated using Eqns. 7 and 8.
The selected acquisition functions’ ability to leverage the predicted mean and variance is
convenient and desirable for sequential searching because the predicted uncertainty provides
additional information about the model’s fit of the experimental results across the design space.
Acquisition functions that consider both a predicted mean and variance have a more dynamic
exploration/exploitation trade-off that is effective at sequential searching.

Through simulation studies, we compare the speed at which each acquisition function achieves
the optimum nucleation layer design [18], [41]. Additionally, we examine methods of determining
suitable hyperparameter values and provide insights useful to others who wish to implement
Bayesian optimization algorithms for materials discovery in practice. In what follows, we
introduce each acquisition function and discuss their formulation and implementation.

3.2.1. Probability of improvement

PI is a classic acquisition function widely used across many engineering disciplines [45]. The
basic idea underlying PI is that it is most desirable to find a new design point that yields the highest
probability of improvement above a predefined threshold [46]. The PI acquisition function
leverages the GP regression model’s predicted mean and variance and takes the following form

pp(x) — T)

e ©)

PIX)=P(f(x)=1) = c1><
where ®(+) is the cumulative distribution function (CDF) of the standard normal distribution, Up
and o7 are the GP model-predicted mean and standard deviation of function f at design point X,

and 7 is a user-defined improvement threshold, typically defined as T = u* + &§, with u™ being the
maximum predicted lifetime from the GP regression model given the observed cells and the



hyperparameter § controlling the exploration-exploitation trade-off. Later in this work, we
examine selecting a suitable value of § and provide insight into how one might choose a suitable
value for § before conducting an optimization campaign.

3.2.2. Expected improvement

Another classical acquisition function is EI. The EI acquisition function extends the definition
of the traditional PI acquisition function to include an additional term that considers the magnitude
of improvement a new design point x might yield [47]. The EI acquisition function has the
following form

EI(x) =E[(f —7)H(f — 7)]
pp(x) — 1 pp(x) — 7
G(X)¢ <W> + (,Uf(X) - T)q) <W) O'f(X) >0 (10)

0 O'f(X)ZO

where ¢ () denotes the probability density function (PDF) of the standard normal distribution, and
H (") is the standard Heaviside step function (H ( f - T) equals one if f — 7 > 0, and 0 otherwise).
Similar to the PI acquisition function, the EI acquisition function analyzes the design space
considering a minimum improvement threshold T = u* + 6.

3.2.3. Upper confidence bound

The third acquisition function we analyze in this study is the upper confidence bound (UCB)
function. The UCB acquisition function takes the following form

UCB(x) = (%) + fop(x) (1)

where S is a hyperparameter used to control the exploration/exploitation trade-off. At first, when
few design points have been tested, it is generally more advantageous to explore the design space
by selecting points in regions of highest uncertainty. Later, as the optimization continues, it is
better to select design points near existing points that are observed to have high objective function
values (cell designs with long lifetimes). The hyperparameter 3 takes the form B, = Boe*, where
Po and € are parameters that determine the decay rate over each iteration k. Here, 3, decreases
over each iteration to slowly transition from exploring the design space to exploiting existing
designs.



4. Results and Discussion

4.1. Dataset Creation

To study the variables of conducting a materials optimization study in practice, we constructed
a dataset in advance and examined it through optimization simulations. We randomly generated
32 unique nucleation layer designs to build the dataset by randomly sampling the design variable
space outlined in Table 1 using the Latin Hypercube sampling technique. We then constructed
two sodium metal half-cells for each of the 32 nucleation layer designs, a total of 64 cells. Sodium
metal was used as the counter/reference electrode in the half-cells along with 1M NaPFg diethylene
glycol dimethyl ether (diglyme) electrolyte. Each of the 32 nucleation layer designs is visualized
in Fig. 1d, where each point in the 3D space represents a unique set of design variable values and
is colored with respect to the maximum lifetime of the pair of cells.
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Figure 1: (a) The sodium metal plating and stripping process for a representative half-cell,
visualized as the charge and discharge curves. The cycling loss is calculated as the difference
between the plating and stripping capacities. (b) An illustration of the sodium metal plating and
stripping process taking place of the carbon-based nucleation layer. (¢) The cumulative loss of
capacity as a function of cycle number for all cells. The dashed line at 50% represents the



threshold used to determine the end of life. (d) A 3D scatterplot of the 32 unique nucleation layer
designs colored with respect to the maximum lifetime of the pair of cells.

We quantitatively assess the cell-level performance of the different nucleation layer designs
by analyzing their cycling performance. The cells were galvanostatically cycled at 0.5 mA/cm? for
roughly 500 cycles. Reporting CE is common method of evaluating cell performance, and in this
work, we use CE to evaluate total charge losses. We first calculate the relative capacity loss at
each cycle N using the following

(12)

0.25 — Q.8
0, = . —_—
lossy (%) = 100 ( 075

where Qf,hg is the charge capacity at the N-th cycle, and the constant 0.25 represents the fixed
discharge capacity of 0.25 mAh/cm? that is constant for all cycles. Since discharge capacity
(plating) is constant each cycle, all capacity losses arise from charging (stripping). We then
calculate a cell’s relative capacity-fade trajectory by cumulatively summing the loss at each cycle
(see Fig. 1c¢). Cells are then compared in terms of their total lifetime, calculated as the number of
cycles until their relative charge capacity loss exceeds the 50% threshold. We selected 50% for the
threshold because it struck a balance between capturing long-term cycling stability and limiting
the time spent cycling cells to no more than eight weeks.

In Figure 1a, we visualize the sodium metal plating and stripping process for a representative
half-cell. Sodium metal is plated onto the nucleation layer surface during the discharge step until
a capacity of 0.25 mAh/cm? has been reached. Then, the sodium metal is stripped off the nucleation
layer until an upper voltage limit of 100 mV is reached. This ensures that he stripping reaction can
occur, but that we avoid completely desodiating the carbon nucleation layer. We quantify the loss
of sodium each cycle as the difference between the charge and discharge capacities, calculated as
a percentage using Eqn. 12. Each cycle, internal side reactions between the metallic sodium and
the other components in the cell lead to dead sodium formation, captured as the small difference
in capacity, and best quantified through the cell’s CE and lifetime. The imperfect plating and
stripping process 1is illustrated in Fig. 1b, where dead sodium can be seen remaining on the
nucleation layer during stripping.

A cell’s lifetime 1s determined by its rate of dead sodium formation over many cycles. To
determine a cell’s lifetime, we cumulative sum the loss from each cycle and record the cell’s
lifetime as the cycle at which the loss exceeds 50%. This threshold roughly corresponds to a total
anode-free full-cell capacity fade of 25%. The loss trajectories for all cells over the first 500 cycles
are plotted in Fig. 1¢. We observe that there is some cycle-to-cycle variability indicated by the
bumpy trajectories, likely due to the instability of the plating and stripping process. We also
observe that the initial capacity loss for most cells is steep, indicating increased dead sodium
formation during early cycles, likely caused by SEI formation. After the early cycles, cycling
appears to stabilize for most cells. Then, towards the end of life, many cells experience increasing
loss of sodium each cycle until they reach the end-of-life threshold.
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4.2. Sequential Bayesian Optimization Study

An overview of the sequential Bayesian optimization methodology is shown in Fig. 2. The
sequential optimization process begins in Fig. 2a, where we identify three quantifiable design
variables that can be manipulated to affect the material properties of the nucleation layers in the
sodium metal half-cells. Next, an initial batch of samples must be tested to fit the GP regression
model and approximate the objective function over the entire design space. A general guideline is
to test just enough samples to cover the range of each design variable. We explore the impact of
the initial number of samples on the algorithm’s performance later in this section. After the initial
samples are tested and the lifetimes determined (Fig. 2b), a GP regression model can be fit to the
data to estimate cell lifetime as a function of its three nucleation layer design variables (Fig. 2¢).
Next, the GP regression model is used to estimate cell lifetime over the entire design space. All
the possible nucleation layer designs are then ranked using one of the three acquisition functions
outlined in Sec. 3.2. (Fig. 2d). The process starts again by building nucleation layers for new cells
using the design variable values suggested by the acquisition function (Fig. 2a). The sequential
process of building cells and evaluating their performance repeats until a suitable optimum is
achieved.
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Figure 2: Overview of the closed-loop optimization framework used to optimize the design of
the nucleation layer in a sodium metal half-cell. (a) Sodium half-cells with different nucleation
layer designs are constructed by altering the three design variables: CB concentration, CNT
concentration, and oxidation time. (b) half-cell total capacity loss as a function of the cycle
number. (¢) 3D design variable space where the GP regression model has estimated the lifetime
of cells as a function of their design variable values. (d) visualization of the acquisition function
used to select the next design points to test calculated over the entire design variable space.
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4.2.1. Simulation Results

Sequential optimization simulations are carried out to analyze the impact of different factors
on the speed and behavior of the optimization algorithm. We examine the sensitivity of the
algorithm to the number of initial data points, the acquisition functions used, and the values of the
acquisition function hyperparameters. Optimization simulations are run by first selecting a small
number of initial samples to fit the GP regression model. Besides the study that investigates the
initial number of starting datapoints, we randomly choose six samples as a starting dataset for all
other tests. We then fit the GP regression model to the starting dataset and estimate the lifetime
over the entire design variable range. Then, the acquisition function is used to select the next
nucleation layer design to test. However, since we have evaluated the GP regression model over
the entire range of design variable values, the acquisition function may select a design point at
which we have not tested a cell. In this case, we calculate the Euclidean distance between the
chosen design point and all remaining unobserved data points in the dataset. The cell closest to the
chosen design point is selected and added to the observed dataset for the next iteration. While this
approximation is not perfect, it is good enough to enable us to run more complex optimization
studies without continuously testing cells. The process of fitting the GP regression model,
evaluating the acquisition function, and adding a new point to the dataset is repeated until no data
points remain. Since the initial batch of cells was randomly selected, all sequential optimization
studies are repeated 100 times, and results are reported as averages of the multiple runs.
Furthermore, each acquisition function uses an optimized set of hyperparameters.

Figures 3a, 3b, and 3¢ summarize the simulation results characterizing the performance of
each acquisition function as compared to a random sampling approach which randomly selects the
next design point to test. The significance of using random sampling as a baseline optimization
method is two-fold. First, random sampling is chosen because it is similar to the traditional design
of experiments (DOE) optimization approach that aims to discover the global maximum by testing
points throughout the entire design space. Both random sampling and DOE cannot adapt to the
results of the experiments as they are performed. For DOE, the test points are predetermined prior
to conducting any tests, and for random sampling, the next test points are chosen randomly each
iteration to fill the design space. Second, random sampling is chosen as a baseline optimization
approach because it is a viable method for solving high-dimensional optimization problems. While
this work only considers three design variables, batteries are complex systems, and it is entirely
possible that new battery materials optimization problems may be conducted with ten or more
design variables, posing a greater challenge. Additionally, random sampling has been shown to be
an effective method for high-dimensional optimization in other engineering disciplines [17], [18],
[43].

In Fig. 3a, we plot the maximum achieved cell lifetime vs. the number of experimental
iterations. This plot is used to assess how quickly each algorithm leads to a set of design variables
exhibiting improved half-cell lifetime over the previous iteration. Each of the curves is strictly
monotonically increasing because any cells tested that do not perform better than the current best
cell are not of interest and thus reflected in the plot as no change in maximum lifetime over the
previous iteration. From the results in Fig. 3a, we can see that all three tested acquisition functions
reach the optimal nucleation layer design much quicker than the random sampling approach,
roughly 10—15 iterations sooner on average. In particular, the PI and EI acquisition functions reach

12



the optimal design in approximately six to seven iterations, while the UCB acquisition function
averages closer to 15 iterations.

This result suggests two key findings. First, the PI and EI acquisition functions performed
similarly because they both considered the probability of improvement in their formulation. If the
probability of improvement term were not dominant, we would expect the EI acquisition function
to perform significantly differently; however, it did not. This result suggests that the excellent
performance of both PI and EI is due to their formulation that considers the probability of
improvement a new point may yield if added to the dataset. Second, the significant difference
between the UCB acquisition function and the other two is also due to differences in formulation.
The UCB acquisition function directly considers the magnitude of objective function improvement
over a threshold, where the threshold is a scaled form of the predicted variance. If the predicted
variance is large and uniform over the entire design space, the UCB acquisition function will
struggle to pick good designs. This happens because the large variance will mask the smaller
changes in the predicted lifetimes and alter the acquisition function’s design ranking. In contrast,
the probability of improvement term used in PI and EI normalizes the predicted mean by the
predicted variance. This normalization helps to filter out noise in the experimental results.

o
=3
o

........ . —— le-§
B e = E 09 9) s *
] : Random
. — i Sampling
B 3404 — 99,88 i =t e Pl
o = = 4 —ae EI
5 = o =0
2, ] ; t ol U i =+- UCB
2 3209  99.86 f = 41
=8 Random = ! s Random ';
< 300+ Sampling 3 f Sampling 2
- come Pl = 99.841 comee PI g 34
H =
280 ! —a-= EI k —a-- FHI §
—+- UCB 99.821 —-+- UCB
B et
0 5 10 15 20 25 0 5 10 15 20 25 0 5 0 15 20 25
Number of iterations Number of iterations Number of iterations
d

Oxidation Time (h)

220

o

Predicted Lifetime [cycles]

T
=
=

Oxidation Time (h)

=
2

Figure 3: Overview of optimization simulation study results. (a) The maximum measured
lifetime is plotted as a function of the current iteration. (b) The mean CE over the first 100 cycles
corresponding to the cell with the maximum lifetime from (a), is plotted as a function of the
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iteration number. (c¢) The variance of CE over the first 100 cycles to the cell with the maximum
lifetime from (a), is plotted as a function of the iteration number. (d) The evolution of GP

model’s lifetime predictions for the tested samples. (¢) The evolution of the GP model’s lifetime
predictions over the entire design space, plotted with fewer data points for better visibility.

Figures 3b and 3c show the same trend as Fig. 3a. These two plots were generated based on
the results in Fig. 3a. where the CE and variance in CE are plotted for the current best cell identified
via the lifetime metric. We see the same monotonic trend in these two plots, showing that with
increased lifetime CE increase and its variance decreases. In Figs. 3d and 3e, we visualize the
evolution of the GP regression model’s predictions over the iterations. The PI acquisition function
was used to generate the results in Fig. 3. The visualization in Fig. 3d provides insight into how
the PI acquisition function decided which design variable combinations to test next. The PI
acquisition function prioritized testing design variable combinations from iterations three to
fourteen with lower oxidation time. The PI acquisition function intelligently identified the overall
trend that cells with lower oxidation time performed better. This effect is more noticeable in Fig.
3e where the color gradient shows how the GP predicts that cells with lower oxidation time will
have longer lifetimes. The algorithm’s intelligent understanding of the design space led it to reach
the optimum design variable combination roughly five times quicker than the random sampling
approach and roughly two times quicker than the UCB acquisition function.

4.2.2. Algorithm sensitivity to initial sample selection

A key factor that influences the performance of the optimization algorithm is the number of
initial samples used to fit the GP regression model. To investigate this, we varied the number of
randomly selected starting points and repeatedly ran the sequential optimization algorithm to
completion. The results, shown in Fig. 4, indicate the PI and EI acquisition functions are
significantly better suited to our materials optimization problem than the UCB acquisition function
is. The PI and EI acquisition functions show minimal change in performance with the number of
initial starting points. While the PI and EI acquisition functions certainly perform better, we
believe the small size of our dataset influenced this result. Using only 32 total design points is
likely insufficient to properly study the initial samples’ impact on the algorithm’s performance. In
the future, it would prove worthwhile to investigate this further. On the other hand, the UCB and
random sampling approach follow the same trend. Increasing the initial starting points decreases
the iterations required to achieve the optimal nucleation layer design. This result is more consistent
with what we expected to observe for the PI and EI acquisition functions. In any case, increasing
the number of initial samples should never negatively impact the optimization algorithm. Still,
balancing the time required to build and test the samples upfront is essential.
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Figure 4: The sequential optimization algorithm’s sensitivity to changes in the number of initial
samples available. Sequential optimization simulations are repeatedly run using each of the three
acquisition functions. Average results from 100 runs are presented.

4.2.3. Acquisition function hyperparameter study

Another key factor that influences the performance of the optimization algorithm is the
hyperparameters in the acquisition functions. The simulation studies we presented above were
performed using near-optimal values of hyperparameters. Here, we discuss how the
hyperparameter values were selected and provide insights on how one might choose suitable
parameter values before initiating a battery materials optimization campaign.

We analyzed the algorithm’s sensitivity to changes in the hyperparameters by repeatedly
running the algorithm to completion over a range of values. We selected the values of the
hyperparameters, which were found to reach the maximum objective value in the fewest number
of iterations. The PI and EI acquisition functions have a single hyperparameter to tune, namely 6.
The § parameter controls the threshold of improvement, which filters out design points that don’t
yield an improvement in lifetime greater than the current best cell plus §. The PI and EI sensitivity
analysis results are shown in Figs. Sa and Sb. These two acquisition functions perform best with
6 greater than ~20, evident by the noticeable decrease in the average number of iterations needed
to achieve the maximum objective value for § values greater than 20. Surprisingly, the EI
acquisition function responded to changes in § in the same way the PI acquisition function did.
This result further reinforces the notion that the probability of improvement measured in the PI
acquisition function formulation is more important than the magnitude of improvement term in the
EI formulation.

The UCB acquisition function has two hyperparameters that need to be optimized, namely f,
and €. The S, parameter controls the initial magnitude of the threshold term, and the € parameter
controls the rate of decay over each iteration. Together, these parameters define the threshold as a
function of the predicted variance. The results of the UCB hyperparameter sensitivity analysis are
shown in Fig. S5c. The trend indicates smaller values of 5, and € perform better. Interestingly, the
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hyperparameter values have a noticeable impact on the performance of the UCB acquisition
function, even though its best performance is still worse than that of PI and EI.
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Figure 5: Acquisition function hyperparameter sensitivity analysis results. a) the optimal PI
hyperparameter value was selected to be 6 = 30, b) the optimal EI hyperparameter value was
also selected to be 6 = 30, and c) the optimal initial values for the UCB acquisition function
were selected to be € = 0.1 and 5, = 1.5 where the value of f3;, decreases each iteration
following the relationship: B, = Boe®.

Finding the optimal values for the acquisition function hyperparameters via simulation helps
us understand the algorithm’s true potential for rapid materials design optimization. However,
preemptively selecting the best values for the hyperparameters using post-experiment simulation
is infeasible in practice. To get around this, researchers have proposed using simple physics-based
and mechanistic models to approximate the objective function for a given set of design variables.
Then, simulation experiments, like the ones we conducted, can be run using the simplified model
as the ground truth to understand the range of suitable hyperparameter values better. For example,
researchers in [12] used a simplified physics-based model for acquisition function hyperparameter
selection prior to initiating the optimization campaign. The simplified physics model approximated
heat generation within a Li-ion battery cell as a function of the charging currents (design variables).
The heat generation was used to compute the expected degradation in the battery cells, which could
then be mapped to the total battery lifetime (objective function).

Unfortunately, this approach only works well when the relationship between the design
variables and the objective function is well understood. In our case, there is a disconnect between
the material-level nucleation layer properties and the cell-level performance that cannot easily be
modeled. For example, optimizing the nucleation layer for the maximum surface area does not
guarantee long lifetime when tested in a cell. Scenarios like these, where the underlying physics
of new materials is not yet understood, are becoming more common. Therefore, we find it essential
to share our post-experiment hyperparameter selection results so that others in the community
looking to implement optimization algorithms might use our results to inform their algorithm
development.

Further investigating the optimal hyperparameter value for the PI acquisition function reveals
that it may be related to the cell-to-cell variance. Figure 6a shows the distribution of inter-cell
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variance, calculated as the standard deviation of the lifetimes for cells of the same nucleation layer
design. The mean variation in lifetime between cells of the same design is roughly 25 cycles, which
is close to the optimal PI hyperparameter value of § = 30 (Fig. 6b). This suggests that the optimal
hyperparameter value is close to the inter-cell variance. In other words, the algorithm needs to be
sure a new nucleation layer design will produce a cell with a lifetime greater than the current best
cell, even in the presence of unavoidable cell-to-cell variation. We find this result intriguing and
believe it would be worthwhile to further investigate the relationship between acquisition function
hyperparameters and battery performance variability in future work. Understanding and
quantifying the intrinsic cell-to-cell variability that arises when testing cells at identical conditions
could help design new customized acquisition functions more suitable for optimizing battery
materials. It is likely that optimization speeds could be further increased using custom-designed
acquisition functions [48] or by adaptively selecting the best point among the candidates suggested
by multiple different acquisition functions [49], [50].

Last, we investigate a scenario where the hyperparameter values cannot be estimated by any
means. Figure 6¢ compares each acquisition function’s optimization speed using optimized and
randomized hyperparameter values. The experiment was conducted with six initial samples and
was repeated 100 times. The random sampling approach to design selection is used as a baseline
for comparison. The PI and EI acquisition functions show a significant reduction in the run-to-run
variance when using a set of optimized acquisition function hyperparameters. On the other hand,
the UCB acquisition function shows no significant change in performance from using optimized
hyperparameters. This is likely due to our dataset’s small size, which inherently makes sensitivity
analysis more difficult. Furthermore, tuning the two interacting parameters in the UCB acquisition
function is more difficult than tuning the single parameter in PI and EI, adding to the challenge.
Using a more rigorous hyperparameter selection method, we may have been able to improve the
results of the UCB acquisition function. However, the potential performance gain is small and
likely not worth the effort.
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Figure 6: (a) Histogram of cell lifetime variability for cells of the same nucleation layer design.
The mean lifetime standard deviation is 25.42 cycles. (b) PI acquisition function hyperparameter
sensitivity analysis results from Fig. 5, but with an added zoom window showing the trend more
clearly. (c¢) Comparison between optimized and randomized acquisition function hyperparameter
values for each of the three acquisition functions, PI, EI, and UCB. Simulations were repeatedly
run one-hundred times using six initial samples. The random sampling approach to design
selection is used as a baseline for comparison.

Most notably, we observe that even the acquisition functions with randomized
hyperparameters performed better than the naive random sampling approach. This result is great
news for others looking to implement optimization algorithms in practice, as a significant
performance boost can likely be achieved without performing hyperparameter selection. The main
trade-off, however, is that the results are widely varying. The performance increase over the
random sampling approach could be as little as two times faster or as much as five times faster. So
in any case, it is always better to try and preemptively simulate the optimization algorithm and
select appropriate hyperparameter values in advance.
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4.3. Experimental Insight for Optimized Performance

In addition to the experimental dataset used thus far to demonstrate optimizing cells’ nucleation
layer designs based on three parameters: carbon black concentration, CNT concentration, and
carbon oxidation, two additional sets of sodium metal coin cells were produced to determine and
qualify the choice and selection of the three isolated optimization parameters for use in this study.
Details of these additional experimental tests are provided in the Supplementary Material.
Altogether the experimental results led to a total of 177 cells with 69 different nucleation layer
designs. Our efforts in this section focus on using this significant body of results to establish
broader correlations that can guide us toward a better understanding of the physical mechanistic
behavior of a good nucleation layer.

To uncover the physical mechanisms responsible for cell performance, we turn to the dataset
of 177 cells and examine correlations between voltage features visible in standard galvanostatic
cycling data and cells’ lifetimes. We quantitatively evaluate the Pearson correlation coefficient p
between different voltage features measured from the half-cell cycling data and a cell’s measured
lifetime, where lifetime is a measure of cumulative loss of sodium metal based on the CE% over
the duration of cycling until a cutoff of 50% sodium loss is reached. Hence, the best-performing
cells with the highest CE% will lead to the longest measured lifetime. A high correlation with a
low P-value (p < 0.05) means a statistically significant linear relationship between two variables.
For example, a positive correlation indicates that cell lifetime tends to increase as the measured
voltage feature increases. We identified six features from the galvanostatic charge-discharge
curves that exhibit high correlations with measured lifetime. The correlation analysis results are
presented in Fig. 7. The two features with the highest Pearson correlation coefficient pertain to the
nucleation peak that occurs at the onset of electroplating. They are the time to nucleation, which
is the time required to reach the minimum value of the nucleation peak, and the initial slope of the
voltage curve, which is the slope of the galvanostatic transient from the onset of electroplating to
the minimum point of the nucleation peak. The third best feature is the growth overpotential at
which sodium plating occurs. Scatterplots of cell lifetime as a function of the three best features
for all 177 cells are shown in Fig. 7a-c. The data points are colored from light to dark, representing
performance from worst to best. We also overlay regression lines to visualize the trend in the data.
The two best feature correlations (see Fig. 7a-b) indicate that the best-performing nucleation layer
designs exhibit steep slopes that lead to the nucleation peak the fastest.

Other notable features include the nucleation and growth overpotentials, the hysteresis between
the electroplating and stripping profiles, and the voltage measured at the very end of the sodium
plating process. Figure 7d summarizes the correlation coefficient for each feature in a tornado
plot, where features with higher correlation coefficients are more strongly related to cell
performance. Figure 7e visualizes all the features described in Fig. 7a-d labeled onto a slip plot,
connecting the galvanostatic plating and stripping curves to visualize the sodium loss. In Fig. 7e,
we refer to the cells using the abbreviations CB, CNT, and Ox, which denote the CB concentration,
the CNT concentration, and the oxidation time, respectively.

At first glance of Fig. 7e, the differences between the best and worst cells in our
optimization study are subtle. However, these two conditions provide an ideal comparison for
mechanistic insight into the origin of the two primary parameters correlated to lifetime: time to
nucleation peak and initial slope. The main difference between the cells is due to the significant
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difference in CE% visualized at the end of the plating profiles in Fig. 7e. Additional differences
are due to the less prominent features (growth and nucleation overpotential, hysteresis, and end
discharge voltage). To better understand the role of these features, we performed additional EIS
analysis on cells prepared with the best and worst performing nucleation layers, as this technique
provides insight into interfaces and diffusion phenomena in the nucleation layer and how they
evolve.
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Figure 7: Overview of the most significant correlations from examining the cycle aging data
from 177 sodium metal half-cells with 69 nucleation layer designs. The data points are colored
from light to dark, representing performance from worst to best. Features with higher correlation
coefficients are more strongly related to cell performance. (a) cell lifetime plotted as a function
the time to the nucleation peak, with a correlation of 0.661. (b) cell lifetime as a function of the
initial slope of the voltage curve, with a correlation of -0.557. (c) cell lifetime as a function of the
growth overpotential voltage, with a correlation of 0.250. (d) a tornado plot summarizing the
most significant feature-lifetime correlations observed from the 177 cells. (e) the features in (d)
are visualized on a slip plot showing the voltage profiles of the best and worst cells from the
optimization dataset. All features are calculated as averages over the first 50 cycles.

Figures 8a and 8c plot the EIS spectra for the best and worst half-cell nucleation layers from
the optimization study. Initial EIS data is collected from the cell before metal plating, and
subsequent data is measured while the cell is in the charged (stripped) state over the course of ten
cycles. We calculate the charge transfer resistance (R¢) by fitting an equivalent circuit to the EIS
data and use this information to evaluate the surface kinetics. For the best-performing cell, we
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observe during the course of ten cycles, the width of the semicircle, which generally represents the
Rt value, gradually decreases to approximately 6.5 Q. In contrast, the worst-performing cell
exhibits a semicircle width of about 9.2 Q after the first cycle, which remains invariant in later
cycles. From these EIS results, the best-performing nucleation layer involves an evolution of the
electrode-electrolyte charge-transfer interface over the duration of 10 cycles, whereas the worst-
performing nucleation layer does not decrease beyond the 1% cycle. This indicates that interfacial
changes occur within the first few cycles, which impact the cell’s lifetime and lead to a lower
overall resistance. This is analogous to the formation cycles of traditional host anodes such as
graphite in Li-ion batteries, where the SEI can continue to improve in the initial few cycles in order
to form a robust interphase [51]. Figure A4 plots the variance of the CE as a function of cycle
number. The variance significantly decreases after 10 cycles, suggesting the interface has
stabilized. The constant R value of the low-performing nucleation layer indicates a stable SEI
film is formed in this electrolyte system in accordance with previous studies [21]. Although the
SEI film is stable, a further evolution of the interface is associated with improved cell lifetime.
Figure AS in the Supplementary Material shows an additional high-performing cell with a
decreasing Rt value over 10 cycles, further supporting this trend.
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Figure 8: Electrochemical testing and characterization of a high-performing (CB: 0.53, CNT:
0.16, Ox: 2h) and low-performing (CB:0.65, CNT: 0.15, Ox: 7h) nucleation layer design. (a) a
Nyquist plots from EIS measurements on the high-performance cell after discharging to 0V and
through 10 cycles. The inset figure shows cycles 1-10 in more detail. (b) SEM image of a
smooth, faceted sodium deposit on the high-performance substrate (scalebar = 10 um). (c)
Nyquist plots from the low-performance cell. The inset figure shows cycles 1-10 in more detail.
(d) SEM image of a rough, porous deposit from the low-performance cell (scalebar = 10 um). (e)
Plots of the real part of impedance (Z’) as a function of the inverse square root of angular
frequency (o ) from the Warburg region of both cells at cycle 10. (f) Nitrogen physisorption
isotherms for CB powders oxidized for 2 and 7 hours.
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To better understand this relationship, we carried out SEM imaging of the sodium metal
deposits from the best and worst-performing nucleation layers (Figs. 8c-d). As expected, the planar
deposits of sodium metal indicate that nucleation and growth occur in these samples in the kinetic
regime [52]. However, evident differences are visible in the sodium deposits’ porosity between
these two different cases. In the worst-performing nucleation layer, micro-scale pores are
distributed throughout the sodium deposits. In contrast, the best-performing nucleation layers
result in smoother sodium deposits that visibly exhibit higher volumetric density. Notably, the
porous nature of the sodium metal in our poor-performing cell is similar to that discussed
elsewhere in the literature for unstable sodium deposition conditions, such as high current density
[53]. Two possible reasons for this porous morphology could be (1) diffusion limitations of sodium
metal at the nucleation layer-electrolyte interface, or (2) the formation of large dead sodium
deposits on the nucleation layer in the initial cycles that physically obstruct localized regions from
nucleation and growth of sodium metal.

To evaluate this, we first analyzed the role of diffusion since faster sodium diffusion along the
nucleation layer could lead to more uniform metal deposition [34], [54]. We calculated diffusion
coefficients using Huggins’ method [55] based on the slope of the impedance’s real or imaginary
parts vs. the frequency’s inverse square root, ® 2. These plots are shown in Fig. 8e, and the
diffusion coefficient values for the high-performance and low-performance cells are 3.69 X 10~
and 5.28 x 10 cm?/s, respectively. Whereas we believe such differences in diffusion coefficient
could be related to differences in the surface area of the carbons used in the nucleation layers, as
shown in Fig. 8f, the measured diffusion coefficient of the worst-performing cell is higher than
that of the best-performing cell. This elucidates that diffusion limitations are likely not associated
with the performance differences between these two cells. Conversely, we believe these results
can be explained through dead sodium or SEI that is formed in the first cycle on a poor nucleation
layer.

Based on Fig. 7, broad correlations across all of our devices with N = 177 indicate that a
steeper spike into the nucleation peak and less time to nucleation leads to faster sodium loss and
degradation. This feature appears from our experiments to be the most important toward
determining the effectiveness of a stable nucleation layer. EIS and imaging associate this to a more
resistive interface for charge-transfer reactions and correlated increase in porosity of the sodium
metal deposits not explained by diffusion-related effects in the two different nucleation layers (Fig.
8). In this regard, we hypothesize that in circumstances where the two separate events of SEI
formation on the nucleation layer and the initial nucleation of sodium metal are not temporally
separated, the formation of significant patches of dead sodium layers can result and impede the
stable, dense growth of sodium metal deposits. This could be associated with sodium nuclei
formation that fractures off from the nucleation layer due to interfacial stress related to concomitant
SEI formation on the nucleation layer. Such dead sodium deposits would produce a physical barrier
toward the layer-by-layer growth of dense sodium metal that would explain the increased porosity
and poorer long-term cycling behavior of our worst nucleation layers. Overall, we emphasize that
this approach of using optimization methods to engineer complex systems such as sodium
nucleation layers to obtain high performance, followed by using these systems to evaluate
statistically validated design features and mechanisms represents a powerful tool for future battery
design efforts.
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5. Conclusion

Bayesian optimization and similar machine learning-assisted design optimization strategies are
promising solutions to accelerate the development of next-generation batteries. In this work, we
demonstrated the ability to quickly optimize three related design variables of a carbon nucleation
layer in a sodium metal half-cell. Through repeated simulation, we comprehensively evaluated the
performance of the optimization framework and found that using the traditional PI and EI
acquisition functions we could reach the optimal nucleation layer design five times faster than a
random sampling approach. Additionally, when the acquisition function hyperparameters cannot
be optimized in advance, all three of the Bayesian optimization algorithms tested still reached the
optimal nucleation layer design roughly two times faster than a random sampling approach.

While the Bayesian optimization algorithm used in this study shows much promise for
accelerating battery materials development, we highlight some challenges of applying the
algorithm in electrochemical environments. Firstly, the algorithm’s speed and efficiency decrease
as cell-to-cell variability increases. Cell-to-cell variability typically arises from poor production
control or inherently unstable system designs. However, we believe this could be solved by
developing new acquisition functions more robust to noise or by testing more cells under the same
conditions. Second, the algorithm does not work well for optimizing many (n >> 20) design
variables, as it requires significantly more experiments to thoroughly cover the entire design space
and collect enough data for the model to properly fit the dataset. Last, the algorithm struggles to
correctly model design variables that are not continuously variable, as it produces large
discontinuities in the model predictions which can cause the algorithm to get stuck during
optimization and only focus on a smaller region of the entire design space. Design variables like
oxidation time in air and material concentrations work better with the algorithm because they are
continuously variable over the entire design space.

Nonetheless, we showed that optimizing the cell-level performance by tuning the material-
level properties of a sodium nucleation layer is an effective approach to materials design. We
further investigated the relationship between nucleation layer performance and material properties
using traditional battery cell characterization methods to analyze the full set of N = 177 cells. We
find that two primary features, the slope of the nucleation peak and time until the nucleation peak
minima in the galvanostatic profile, are highly correlated to cell performance, and indicate these
regimes are may be responsible for the majority of dead sodium formation. EIS and imaging
characterization correlate poorly performing samples to higher interfacial charge transfer
resistance and greater sodium metal porosity that can be attributed to dead sodium that forms due
to near-simultaneous SEI formation and sodium metal nucleation on the nucleation layer. The
strategies presented in this work broadly apply to battery materials and component optimization
and will prove crucial in accelerating the development of next-generation batteries.
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