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Abstract 

Complex interactions between battery materials make design optimization difficult. In this 

work, we quickly and efficiently optimize three interacting design variables of a carbon nucleation 

layer used in sodium metal batteries. Unlike existing materials optimization approaches focusing 

on maximizing favorable material properties, we execute a multi-parameter materials optimization 

scheme that uses cell-level aging data as the target objective. We employ a Bayesian optimization 

algorithm that intelligently selects the nucleation layer designs to test in sequence, quickly finding 

the design that yields the highest lifetime. Results from simulation studies conducted after the fact 

indicate that a well-tuned Bayesian optimization algorithm can optimize the nucleation layer 

properties roughly five times faster than a random sampling approach and roughly two times faster 

than a poorly-tuned Bayesian algorithm. We then examine correlations on all 177 cells with 

different nucleation layers and use electrochemical impedance spectroscopy and imaging to 

propose the primary mechanism for nucleation layer performance, considering dead sodium as the 

dominant mode of capacity loss. The algorithms, hyperparameter tuning strategies, and post-

optimization mechanism analysis used in this work broadly apply to other battery chemistries and 

electrode designs and are essential for quickly bringing metal battery performance on par with 

existing battery technologies. 

Keywords: batteries; materials optimization; sodium metal; machine learning; Bayesian 

optimization  

 

1. Introduction 

The global push to electrification will require significantly more energy storage from batteries 

than is presently available. In order to meet these demands, new batteries must be developed and 

manufactured using more easily sourced materials [1]. However, researching and developing new 

battery materials is a costly and time-consuming process. Battery materials are a complex area of 

research where the materials often interact with one another making it difficult to explore the 

material design space in entirety [2], [3]. Most existing approaches to battery materials 
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development identify a desirable cell-level trait (e.g., high power capability), establish a link 

between the desired trait and the mechanisms that affect it (e.g., electrode thickness, charge transfer 

resistance), and then develop new materials focused on maximizing the material properties that 

affect the mechanism (e.g., electrode mass loading, particle size) [4], [5]. This approach is 

sometimes referred to as mechanistic modeling and models favorable material properties as a 

function of structure and composition using small, locally optimized models built using physical 

knowledge of the system [6]. The complex interactions between battery components often produce 

trade-offs where optimal performance may be achieved at a more median material property value, 

not at maximums or minimums [7]. However, studying a single mechanism or design variable in 

isolation does not guarantee good results when implemented into a battery cell with multiple other 

interacting components. Conversely, building a mechanistic model of a complex battery system 

with nonlinear interacting components is extremely time- and cost-intensive. In turn, if the 

relationship defining the favorable material property is not yet understood, accurate modeling for 

material design is entirely infeasible [8], [9].  

To this end, machine learning-assisted experimental searching is being studied as a new 

method for rapidly developing battery materials and understanding the design space. Machine 

learning approaches largely ignore the underlying mechanisms and physics of material interactions 

and instead make inferences from data. In this approach, a machine learning surrogate model is 

trained using a small dataset of initial experiments to learn the relationship between the design 

variables (inputs) and the performance metric of interest (output) [10], [11]. Then, the fitted 

experiment surrogate model is used to guide future experiments in sequence, reaching an optimal 

design in as few iterations as possible. Machine learning assisted experimental searching has been 

used to discover and optimize various battery materials, manufacturing processes, and control 

protocols [12]–[18]. In [12], researchers developed a battery fast charging protocol to have 

minimal impact on cell lifetime by sequentially testing charging current profiles suggested by a 

Bayesian optimization algorithm. Similarly, researchers in [19] demonstrated a machine learning-

guided autonomous robotic system used to search for non-aqueous lithium-ion battery electrolytes 

with high electrochemical stability. While the studies mentioned above are unique and promising, 

there is little work published that tackles the challenge of optimizing battery materials using cell-

level performance metrics. It is challenging to close the gap between material-level optimization 

and cell-level performance since materials optimized in isolation are not guaranteed to produce 

excellent performance when implemented in cells. There is a great need to investigate materials 

optimization schemes that use cell cycling and aging data to formulate a target objective based on 

cell-level performance instead of component-level material properties. 

Among all battery systems, sodium batteries are one of the most promising batteries beyond 

lithium-ion [20]. Specifically, the anode-free sodium battery has been demonstrated to exhibit 

energy density competitive with lithium batteries and leverage the native electrochemical stability 

of sodium metal in standard electrolyte media to achieve Coulombic efficiencies near or exceeding 

99.9% [21]. However, a bottleneck toward design in this system relates to the design characteristics 

of the negative electrode where sodium metal is electroplated. The reversibility of the sodium 

electroplating reaction is highly dependent on the negative electrode surface properties due to its 

role in the sodium nucleation and growth process. Unfavorable conditions lead to uncontrolled SEI 

formation and the accumulation of electrochemically inactive or “dead” sodium [4], [5], [22], [23]. 

A number of strategies have been adopted to promote reversible sodium deposition, such as 

increasing surface area to reduce the local current density, using sodium wettable surfaces, and 
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using 3D electrodes that accommodate the large sodium expansion during plating [24]–[30]. 

Recent studies have shown that a thin nucleation layer that guides smooth, layer-by-layer 

depositions of sodium is critical to achieving optimal battery performance metrics [31], [32]. 

However, the first-principle insight behind the design of nucleation layers for sodium metal 

remains challenging due to the complexity of understanding nucleation at a liquid-solid interface. 

Consequently, it is difficult to translate the general design rules identified in the literature to 

designing nucleation layers when considering trade-offs such as increased surface area leading to 

a decrease in surface area but poorer dispersion in the electrode slurry [31], [33]. In turn, the 

sodium metal system is an ideal platform for applying design optimization at the electrode level, 

even though no current studies have focused on this promising system. 

This work demonstrates an experimental campaign to concurrently optimize three related 

design variables of a carbon nucleation layer in sodium metal batteries that maximize cell-level 

cycling performance. The three design variables, namely the concentration of carbon black, the 

concentration of carbon nanotube additives, and the time spent oxidizing in air, are highly related 

and have been shown to affect plating reversibility significantly [26], [34], [35]. Unlike existing 

materials optimization works focusing on maximizing favorable material properties, we directly 

optimize cell-level performance using cell lifetime as the target objective. This direct approach 

ensures all inactive components in the cell are accounted for in the optimization process, ensuring 

a more generalizable result. Additionally, rather than selecting design variables that involve time-

consuming measurements of material properties, we optimize process variables that have a clear 

relationship with the structure of our electrode. Doing so ensures our approach is more adaptable 

to settings with equipment and time limitations, such as in practical battery manufacturing settings. 

The well-tuned Bayesian optimization algorithm employed here can find a nucleation layer design 

with the highest lifetime five times faster than a random search approach. Moreover, we find that 

a poorly tuned Bayesian optimization algorithm is two times faster than the random searching 

approach, suggesting that implementing the algorithm can still generate significant time savings 

for most battery materials design projects. 

Overall, our work demonstrates the advantages and effectiveness of directly using cycling 

performance as the objective of a multi-parameter battery component optimization study. Because 

a non-physics-based model is employed, this approach is easily adaptable to other battery 

components and cell chemistries. Furthermore, we provide valuable insights and strategies for 

others who wish to efficiently select algorithm hyperparameters before initiating a battery 

materials optimization campaign.  

 

2. Methods 

2.1. Nucleation Layer Preparation  

All nucleation layers began as a slurry of thermally oxidized LITX 66 carbon black from Cabot 

Corp., multi-wall carbon nanotubes from Cheap Tubes, and PVDF binder using N-Methyl-2-

pyrrolidone (NMP) as a solvent. The carbon nanotubes were roughly 10-20 nm in size. The carbon 

black (CB) and carbon nanotubes (CNT) concentrations were randomly sampled following the 

predefined ranges of 20–90 and 0–50 wt%, respectively, with 1-wt% increments. The upper 
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boundary on concentration is selected based on the upper limit of active material content that can 

be deposited using the doctor blading method, and the CNT concentration range is based on 

literature for CNT additives in battery electrodes [36]–[38].  Similarly, the thermal oxidation time 

was determined by randomly sampling values in the range of 0-8 hours with 1-hour increments. 

Thermal oxidation has been shown to affect the microstructure of carbon significantly [39], [40]. 

The range of values along with the minimum increment of each design variable are presented in 

Table 1.  

The CB powder was thermally oxidized in air at 450 °C . After oxidation, the slurries were 

mixed and cast on conductive carbon-coated aluminum foil (MTI Corp.) using a doctor blade set 

at 150 m. The cast slurries were then dried in a vacuum oven for 12 hours before constructing 

cells. All nucleation layers have ~1 mg/cm2 mass loading and 30-40 m thickness. This ensures 

that the variations in the nucleation layer properties, such as porosity, surface area, and 

conductivity, are functions of the design variables. 

Table 1: Nucleation layer design variable space with minimum, maximum, and increment values 

specified for each variable.  

Design Variable or Processing 

Condition 
Minimum Value Maximum Value Increment 

CB Concentration (w/w) 0.20 0.90 0.01 

CNT Concentration (w/w) 0.00 0.50 0.01 

PVdF Concentration (w/w) 0.10 0.40 0.01 

Oxidation Time (h) 0.00 8.00 1.00 

 

2.2. Cell Assembly, Cycling, and Characterization 

All cells were made using 1M NaPF6 mixed in diglyme electrolyte. Prior to mixing the 

electrolyte, the NaPF6 salt was dried at 100°C for more than 12 hours in an Ar glovebox. To dry 

the diglyme, we used a 4A molecular sieve for more than 48 hours. The NaPF6 salt is Strem brand 

and 99%, while the diglyme was Sigma-Aldrich 99.5%. Since the quality of the electrolyte can 

significantly impact cell performance, the electrolyte was only used to make cells up to one day 

after preparation. All of the half-cells were assembled using CR2032 stainless steel cases from 

MTI Corp. inside of an Ar glovebox. The half-cells use a sodium metal working electrode that is 

pressed onto a stainless-steel disc. All electrodes were punched from aluminum foil using a 1 cm 

diameter punch. We use two Celgrad 2325 separators soaked in electrolyte to separate the sodium 

metal from the nucleation layer. Post assembly, all cells were allowed to rest for 12 hours before 

beginning cycling.  

Cycling was conducted at room temperature on a Neware BTS4000 battery tester. First, the 

cells are galvanostatically discharged to 0 V at a rate of 0.5 mA/cm2. This activates the half-cell 

system. Cycling starts with a discharge (plating) of 0.25 mAh/cm2 at a rate of 0.5 mA/cm2. The 

discharge step takes roughly 30 minutes. Next, the cell is charged (stripping) until it reaches the 

upper cutoff voltage of 0.1 V. All electrochemical impedance spectroscopy (EIS) measurements 

were done using aa multichannel Metrohm Autolab tester at room temperature. EIS cycling 
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follows the standard cycling protocol, that is, discharge 0.25 mAh/cm2 capacity at a rate of 0.5 

mA/cm2. We recorded the EIS spectra at cycles 1, 3, and 10, using a perturbation of 5 mV between 

1 Hz and 105 Hz. All SEM images were performed with an FEI Inspect F50 SEM. Last, we used 

Micromeritics Instruments Corporation ASAP 2020 to measure nitrogen absorption. 

3. Sequential Bayesian Optimization for Materials Design 

Sequential Bayesian optimization is a popular method used for optimizing the designs of 

complex systems [7], [17], [18]. While any Bayesian model can be used, Gaussian process (GP) 

regression is the most popular model. The GP regression model estimates the performance metric 

as a function of the tunable design variables. After fitting the GP regression model to an initial 

dataset, new designs are selected and tested. In each iteration, their test results are added to the 

dataset to update the GP regression model. Efficient optimization is realized by using a carefully 

chosen acquisition function to intelligently select the next design to test [17]. Acquisition functions 

have been widely studied in literature across many different domains, with a select few remaining 

more popular than others because of their applicability to a wide range of design problems [17], 

[18], [41]–[43]. Acquisition functions come in various functional forms, each designed to balance 

the trade-off between exploring new regions in the design space with little information 

(exploration) or exploiting existing regions where the performance metric is already found to take 

on a favorable value (exploitation). In what follows, we discuss the GP regression model used in 

the sequential optimization framework and introduce the handful of acquisition functions 

compared in this study. 

3.1. Gaussian Process Regression 

We use GP regression to build a probabilistic machine learning model that approximates the 

performance metric (cell lifetime) over the entire design space [44]. Specifically, our effort 

involves training a GP regression model to learn the mapping from a vector of D input variables 𝐱 

to their corresponding target 𝑦. Similar to other supervised machine learning techniques, GP model 

training requires a training dataset organized as a pre-collected set of 𝑁train input-output pairs, 

𝒟 = {(𝐱𝑖, 𝑦𝑖)}
𝑖=1
𝑁train . We can then assemble an 𝑁train × 𝐷  design matrix 𝐗t  by aggregating all 

𝑁train  input vectors (column vectors), i.e., 𝐗t = [𝐱1, … , 𝐱𝑁train
]

T
, and an 𝑁train-element target 

vector 𝐲t, i.e., 𝐲t = [𝑦1, … , 𝑦𝑁train
]

T
. In our problem formulation, the GP input vector 𝐱𝑖 consists 

of three nucleation layer design variables (CB conc., CNT conc., and thermal oxidation time in 

hours) that affect the physical properties of the nucleation layer. The GP output variable 𝑦𝑖 is the 

measured lifetime (cycles) of a half-cell built under the setting of 𝐱𝑖. We assume the observation 

(𝑦) of the underlying function (𝑓) is corrupted by i.i.d. zero-mean Gaussian noise, giving rise to 

the Gaussian observation model, 𝑦 = 𝑓(𝐱) + 𝜀, where 𝑓(𝐱) is the underlying function we wish to 

approximate and 𝜀~𝒩(0, 𝜎𝜀
2)  with 𝜎𝜀

2  being the noise variance. We then model the latent 

function, 𝑓(𝐱), using a GP, denoted as: 

 𝑓(𝐱) = 𝒢𝒫(𝑚(𝐱), 𝑘(𝐱, 𝐱′)) (1) 

where the mean function 𝑚(𝐱) and covariance function (also known as a kernel) 𝑘(𝐱, 𝐱′) can be 

expressed as the following 
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 𝑚(𝐱) = 𝔼[𝑓(𝐱)] (2) 

 𝑘(𝐱, 𝐱′) = 𝔼 [(𝑓(𝐱) − 𝑚(𝐱))(𝑓(𝐱′) − 𝑚(𝐱′))
T

] (3) 

Our GP regression formulation assumes a zero-mean prior, i.e., 𝑚(𝐱) = 0, as is traditionally 

done, and let the covariance function model 𝑓(𝐱). The kernel we choose to use is the popular 

squared exponential kernel, defined as 

 𝑘SE(𝐱, 𝐱′) = 𝜎f
2 exp (−

‖𝐱 − 𝐱′‖2

2𝑙2
) (4) 

where 𝜎f
2 is the signal variance of the input, and 𝑙 is the length scale. Fitting a GP regression model 

entails optimizing the two kernel parameters, 𝜎f
2 and 𝑙, and noise variance, 𝜎𝜀

2, which together 

form a set of hyperparameters. The exact version of the squared exponential kernel used in this 

work has a length scale term uniquely defined for each input variable in 𝐱. This is more commonly 

called automatic relevance determination, or ARD for short. The GP regression model is fit to the 

data 𝒟 by iteratively tuning the values of the three hyperparameters to minimize the negative log-

likelihood of the observed data 𝒟. This process is carried out automatically using the GPy package 

in Python.  

After training, the fitted GP regression model can be used to make predictions at new, unseen 

test points 𝐗∗ = {𝐱𝑖
∗}𝑖=1

𝑁test (untested nucleation layer designs we wish to estimate the lifetime at) 

for unknown observations 𝐲∗ = {𝑦𝑖
∗}𝑖=1

𝑁test, where 𝑁test is the number of test sample points. Our 

design problem aims at making predictions at 𝐗∗, which may span the entire range of the design 

space outlined in Table 1, by interpolating between the training points. The first step in predicting 

the function values 𝐟∗ at the test points 𝐗∗ is to assemble the multivariate Gaussian prior as  

 [
𝐲t

𝐟∗
] ~𝒩 (𝟎, [

𝐊𝐗t,𝐗t
+ 𝜎𝜀

2𝐈 𝐊𝐗t,𝐗∗

𝐊𝐗∗,𝐗t
𝐊𝐗∗,𝐗∗

] ) (5) 

where 𝐊𝐗t,𝐗t
 is the covariance matrix consisting of covariances between function values at the 

training points 𝐗t and is calculated using Eqn. 4., 𝐈 is the identity matrix, similarly, the matrix 

𝐊𝐗∗,𝐗∗
 is the matrix of covariances between the test points 𝐗∗, and the off-diagonal matrices, 𝐊𝐗∗,𝐗t

 

and 𝐊𝐗t,𝐗∗
, are called the cross-covariances. As described in the original Gaussian observation 

model, 𝑦 = 𝑓(𝐱) + 𝜀, we assume all observations include an additive, zero mean Gaussian noise 

whose variance is 𝜎𝜀
2. Under this assumption, we must include the addition of the noise variance 

𝜎𝜀
2  in each diagonal element of the training covariance matrix 𝐊𝐗t,𝐗t

, i.e., assuming 

𝐲t~𝒩(𝟎, 𝐊𝐗t,𝐗t
+ 𝜎𝜀

2𝐈).  

The GP regression model can be used to make predictions at new test points 𝐗∗ by calculating 

the conditional distribution 𝑝(𝐲∗|𝐗∗, 𝒟), calculated as follows 

 𝑝(𝐲∗|𝐗∗, 𝒟) = 𝒩(𝐲∗|𝐦∗, 𝚺∗) (6) 

where 
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 𝐦∗ = 𝐊𝐗t,𝐗∗

T (𝐊𝐗t,𝐗t
+ 𝜎𝜀

2𝐈)
−1

𝐲t (7) 

 𝚺∗ = 𝐊𝐗∗,𝐗∗
− 𝐊𝐗t,𝐗∗

T (𝐊𝐗t,𝐗t
+ 𝜎𝜀

2𝐈)
−1

𝐊𝐗t,𝐗∗
 (8) 

where 𝐦∗ and 𝚺∗ are the predicted mean and covariance at the new test points 𝐗∗, respectively. 

3.2. Acquisition Functions 

In any Bayesian optimization framework, the acquisition function is responsible for selecting 

the next design points to evaluate. The better the chosen points, the quicker and more effective the 

optimization process is. First, the GP regression model estimates the objective function over the 

entire design space. Then, the acquisition function is evaluated at each design point, and designs 

are ranked based on their acquisition function values. Acquisition functions have been the focus 

of many studies and vary in objective and complexity based on discipline.  

Here, we investigate three commonly used acquisition functions: probability of improvement 

(PI), expected improvement (EI), and upper confidence bound (UCB). We selected these 

acquisition functions because they have probabilistic formulations that work well with the GP 

regression model’s probabilistic output. The GP regression model predicts a Gaussian lifetime 

distribution, parameterized by the predicted mean and variance calculated using Eqns. 7 and 8. 

The selected acquisition functions’ ability to leverage the predicted mean and variance is 

convenient and desirable for sequential searching because the predicted uncertainty provides 

additional information about the model’s fit of the experimental results across the design space. 

Acquisition functions that consider both a predicted mean and variance have a more dynamic 

exploration/exploitation trade-off that is effective at sequential searching. 

Through simulation studies, we compare the speed at which each acquisition function achieves 

the optimum nucleation layer design [18], [41]. Additionally, we examine methods of determining 

suitable hyperparameter values and provide insights useful to others who wish to implement 

Bayesian optimization algorithms for materials discovery in practice. In what follows, we 

introduce each acquisition function and discuss their formulation and implementation.  

3.2.1. Probability of improvement 

PI is a classic acquisition function widely used across many engineering disciplines [45]. The 

basic idea underlying PI is that it is most desirable to find a new design point that yields the highest 

probability of improvement above a predefined threshold [46]. The PI acquisition function 

leverages the GP regression model’s predicted mean and variance and takes the following form 

 𝑃𝐼(𝐱) = 𝑃(𝑓(𝐱) ≥ 𝜏) = Φ (
𝜇𝑓̂(𝐱) − 𝜏

𝜎𝑓̂(𝐱)
) (9) 

where Φ(∙) is the cumulative distribution function (CDF) of the standard normal distribution, 𝜇𝑓̂ 

and 𝜎𝑓̂ are the GP model-predicted mean and standard deviation of function 𝑓 at design point 𝐱, 

and 𝜏 is a user-defined improvement threshold, typically defined as 𝜏 = 𝜇+ + 𝛿, with 𝜇+ being the 

maximum predicted lifetime from the GP regression model given the observed cells and the 



8 

 

hyperparameter 𝛿  controlling the exploration-exploitation trade-off. Later in this work, we 

examine selecting a suitable value of 𝛿 and provide insight into how one might choose a suitable 

value for 𝛿 before conducting an optimization campaign.  

3.2.2. Expected improvement 

Another classical acquisition function is EI. The EI acquisition function extends the definition 

of the traditional PI acquisition function to include an additional term that considers the magnitude 

of improvement a new design point 𝑥  might yield [47]. The EI acquisition function has the 

following form 

 

𝐸𝐼(𝐱) = 𝐸[(𝑓 − 𝜏)𝐻(𝑓 − 𝜏)]

= {
𝜎(𝐱)𝜙 (

𝜇𝑓̂(𝐱) − 𝜏

𝜎𝑓̂(𝐱)
) + (𝜇𝑓̂(𝐱) − 𝜏)Φ (

𝜇𝑓̂(𝐱) − 𝜏

𝜎𝑓̂(𝐱)
) 𝜎𝑓̂(𝐱) > 0

0 𝜎𝑓̂(𝐱) = 0

 
(10) 

where 𝜙(∙) denotes the probability density function (PDF) of the standard normal distribution, and 

𝐻(∙) is the standard Heaviside step function (𝐻(𝑓 − 𝜏) equals one if 𝑓 − 𝜏 > 0, and 0 otherwise). 

Similar to the PI acquisition function, the EI acquisition function analyzes the design space 

considering a minimum improvement threshold 𝜏 = 𝜇+ + 𝛿. 

3.2.3. Upper confidence bound 

The third acquisition function we analyze in this study is the upper confidence bound (UCB) 

function. The UCB acquisition function takes the following form 

 𝑈𝐶𝐵(𝐱) = 𝜇𝑓̂(𝐱) + 𝛽𝜎𝑓̂(𝐱) (11) 

where 𝛽 is a hyperparameter used to control the exploration/exploitation trade-off. At first, when 

few design points have been tested, it is generally more advantageous to explore the design space 

by selecting points in regions of highest uncertainty. Later, as the optimization continues, it is 

better to select design points near existing points that are observed to have high objective function 

values (cell designs with long lifetimes). The hyperparameter 𝛽 takes the form 𝛽𝑘 = 𝛽0𝜖𝑘, where 

𝛽0 and 𝜖 are parameters that determine the decay rate over each iteration 𝑘. Here, 𝛽𝑘 decreases 

over each iteration to slowly transition from exploring the design space to exploiting existing 

designs.  
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4. Results and Discussion 

4.1. Dataset Creation 

To study the variables of conducting a materials optimization study in practice, we constructed 

a dataset in advance and examined it through optimization simulations. We randomly generated 

32 unique nucleation layer designs to build the dataset by randomly sampling the design variable 

space outlined in Table 1 using the Latin Hypercube sampling technique. We then constructed 

two sodium metal half-cells for each of the 32 nucleation layer designs, a total of 64 cells. Sodium 

metal was used as the counter/reference electrode in the half-cells along with 1M NaPF6 diethylene 

glycol dimethyl ether (diglyme) electrolyte. Each of the 32 nucleation layer designs is visualized 

in Fig. 1d, where each point in the 3D space represents a unique set of design variable values and 

is colored with respect to the maximum lifetime of the pair of cells. 

 

Figure 1: (a) The sodium metal plating and stripping process for a representative half-cell, 

visualized as the charge and discharge curves. The cycling loss is calculated as the difference 

between the plating and stripping capacities. (b) An illustration of the sodium metal plating and 

stripping process taking place of the carbon-based nucleation layer. (c) The cumulative loss of 

capacity as a function of cycle number for all cells. The dashed line at 50% represents the 
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threshold used to determine the end of life. (d) A 3D scatterplot of the 32 unique nucleation layer 

designs colored with respect to the maximum lifetime of the pair of cells. 

We quantitatively assess the cell-level performance of the different nucleation layer designs 

by analyzing their cycling performance. The cells were galvanostatically cycled at 0.5 mA/cm2 for 

roughly 500 cycles. Reporting CE is common method of evaluating cell performance, and in this 

work, we use CE to evaluate total charge losses. We first calculate the relative capacity loss at 

each cycle 𝑁 using the following 

 𝑙𝑜𝑠𝑠𝑁 (%) = 100 ∙  (
0.25 − 𝑄𝑁

Chg

0.25
) (12) 

where 𝑄𝑁
Chg

 is the charge capacity at the 𝑁-th cycle, and the constant 0.25 represents the fixed 

discharge capacity of 0.25 mAh/cm2 that is constant for all cycles. Since discharge capacity 

(plating) is constant each cycle, all capacity losses arise from charging (stripping). We then 

calculate a cell’s relative capacity-fade trajectory by cumulatively summing the loss at each cycle 

(see Fig. 1c). Cells are then compared in terms of their total lifetime, calculated as the number of 

cycles until their relative charge capacity loss exceeds the 50% threshold. We selected 50% for the 

threshold because it struck a balance between capturing long-term cycling stability and limiting 

the time spent cycling cells to no more than eight weeks.  

In Figure 1a, we visualize the sodium metal plating and stripping process for a representative 

half-cell. Sodium metal is plated onto the nucleation layer surface during the discharge step until 

a capacity of 0.25 mAh/cm2 has been reached. Then, the sodium metal is stripped off the nucleation 

layer until an upper voltage limit of 100 mV is reached. This ensures that he stripping reaction can 

occur, but that we avoid completely desodiating the carbon nucleation layer. We quantify the loss 

of sodium each cycle as the difference between the charge and discharge capacities, calculated as 

a percentage using Eqn. 12. Each cycle, internal side reactions between the metallic sodium and 

the other components in the cell lead to dead sodium formation, captured as the small difference 

in capacity, and best quantified through the cell’s CE and lifetime. The imperfect plating and 

stripping process is illustrated in Fig. 1b, where dead sodium can be seen remaining on the 

nucleation layer during stripping.  

A cell’s lifetime is determined by its rate of dead sodium formation over many cycles. To 

determine a cell’s lifetime, we cumulative sum the loss from each cycle and record the cell’s 

lifetime as the cycle at which the loss exceeds 50%. This threshold roughly corresponds to a total 

anode-free full-cell capacity fade of 25%. The loss trajectories for all cells over the first 500 cycles 

are plotted in Fig. 1c. We observe that there is some cycle-to-cycle variability indicated by the 

bumpy trajectories, likely due to the instability of the plating and stripping process. We also 

observe that the initial capacity loss for most cells is steep, indicating increased dead sodium 

formation during early cycles, likely caused by SEI formation. After the early cycles, cycling 

appears to stabilize for most cells. Then, towards the end of life, many cells experience increasing 

loss of sodium each cycle until they reach the end-of-life threshold.  
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4.2. Sequential Bayesian Optimization Study 

An overview of the sequential Bayesian optimization methodology is shown in Fig. 2. The 

sequential optimization process begins in Fig. 2a, where we identify three quantifiable design 

variables that can be manipulated to affect the material properties of the nucleation layers in the 

sodium metal half-cells. Next, an initial batch of samples must be tested to fit the GP regression 

model and approximate the objective function over the entire design space. A general guideline is 

to test just enough samples to cover the range of each design variable. We explore the impact of 

the initial number of samples on the algorithm’s performance later in this section. After the initial 

samples are tested and the lifetimes determined (Fig. 2b), a GP regression model can be fit to the 

data to estimate cell lifetime as a function of its three nucleation layer design variables (Fig. 2c). 

Next, the GP regression model is used to estimate cell lifetime over the entire design space. All 

the possible nucleation layer designs are then ranked using one of the three acquisition functions 

outlined in Sec. 3.2. (Fig. 2d). The process starts again by building nucleation layers for new cells 

using the design variable values suggested by the acquisition function (Fig. 2a). The sequential 

process of building cells and evaluating their performance repeats until a suitable optimum is 

achieved.  

 

Figure 2: Overview of the closed-loop optimization framework used to optimize the design of 

the nucleation layer in a sodium metal half-cell. (a) Sodium half-cells with different nucleation 

layer designs are constructed by altering the three design variables: CB concentration, CNT 

concentration, and oxidation time. (b) half-cell total capacity loss as a function of the cycle 

number. (c) 3D design variable space where the GP regression model has estimated the lifetime 

of cells as a function of their design variable values. (d) visualization of the acquisition function 

used to select the next design points to test calculated over the entire design variable space. 
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4.2.1. Simulation Results 

Sequential optimization simulations are carried out to analyze the impact of different factors 

on the speed and behavior of the optimization algorithm. We examine the sensitivity of the 

algorithm to the number of initial data points, the acquisition functions used, and the values of the 

acquisition function hyperparameters. Optimization simulations are run by first selecting a small 

number of initial samples to fit the GP regression model. Besides the study that investigates the 

initial number of starting datapoints, we randomly choose six samples as a starting dataset for all 

other tests. We then fit the GP regression model to the starting dataset and estimate the lifetime 

over the entire design variable range. Then, the acquisition function is used to select the next 

nucleation layer design to test. However, since we have evaluated the GP regression model over 

the entire range of design variable values, the acquisition function may select a design point at 

which we have not tested a cell. In this case, we calculate the Euclidean distance between the 

chosen design point and all remaining unobserved data points in the dataset. The cell closest to the 

chosen design point is selected and added to the observed dataset for the next iteration. While this 

approximation is not perfect, it is good enough to enable us to run more complex optimization 

studies without continuously testing cells. The process of fitting the GP regression model, 

evaluating the acquisition function, and adding a new point to the dataset is repeated until no data 

points remain. Since the initial batch of cells was randomly selected, all sequential optimization 

studies are repeated 100 times, and results are reported as averages of the multiple runs. 

Furthermore, each acquisition function uses an optimized set of hyperparameters.  

Figures 3a, 3b, and 3c summarize the simulation results characterizing the performance of 

each acquisition function as compared to a random sampling approach which randomly selects the 

next design point to test. The significance of using random sampling as a baseline optimization 

method is two-fold. First, random sampling is chosen because it is similar to the traditional design 

of experiments (DOE) optimization approach that aims to discover the global maximum by testing 

points throughout the entire design space. Both random sampling and DOE cannot adapt to the 

results of the experiments as they are performed. For DOE, the test points are predetermined prior 

to conducting any tests, and for random sampling, the next test points are chosen randomly each 

iteration to fill the design space. Second, random sampling is chosen as a baseline optimization 

approach because it is a viable method for solving high-dimensional optimization problems. While 

this work only considers three design variables, batteries are complex systems, and it is entirely 

possible that new battery materials optimization problems may be conducted with ten or more 

design variables, posing a greater challenge. Additionally, random sampling has been shown to be 

an effective method for high-dimensional optimization in other engineering disciplines [17], [18], 

[43].  

In Fig. 3a, we plot the maximum achieved cell lifetime vs. the number of experimental 

iterations. This plot is used to assess how quickly each algorithm leads to a set of design variables 

exhibiting improved half-cell lifetime over the previous iteration. Each of the curves is strictly 

monotonically increasing because any cells tested that do not perform better than the current best 

cell are not of interest and thus reflected in the plot as no change in maximum lifetime over the 

previous iteration. From the results in Fig. 3a, we can see that all three tested acquisition functions 

reach the optimal nucleation layer design much quicker than the random sampling approach, 

roughly 10–15 iterations sooner on average. In particular, the PI and EI acquisition functions reach 
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the optimal design in approximately six to seven iterations, while the UCB acquisition function 

averages closer to 15 iterations.  

This result suggests two key findings. First, the PI and EI acquisition functions performed 

similarly because they both considered the probability of improvement in their formulation. If the 

probability of improvement term were not dominant, we would expect the EI acquisition function 

to perform significantly differently; however, it did not. This result suggests that the excellent 

performance of both PI and EI is due to their formulation that considers the probability of 

improvement a new point may yield if added to the dataset. Second, the significant difference 

between the UCB acquisition function and the other two is also due to differences in formulation. 

The UCB acquisition function directly considers the magnitude of objective function improvement 

over a threshold, where the threshold is a scaled form of the predicted variance. If the predicted 

variance is large and uniform over the entire design space, the UCB acquisition function will 

struggle to pick good designs. This happens because the large variance will mask the smaller 

changes in the predicted lifetimes and alter the acquisition function’s design ranking. In contrast, 

the probability of improvement term used in PI and EI normalizes the predicted mean by the 

predicted variance. This normalization helps to filter out noise in the experimental results. 

 

Figure 3: Overview of optimization simulation study results. (a) The maximum measured 

lifetime is plotted as a function of the current iteration. (b) The mean CE over the first 100 cycles 

corresponding to the cell with the maximum lifetime from (a), is plotted as a function of the 
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iteration number. (c) The variance of CE over the first 100 cycles to the cell with the maximum 

lifetime from (a), is plotted as a function of the iteration number. (d) The evolution of GP 

model’s lifetime predictions for the tested samples. (e) The evolution of the GP model’s lifetime 

predictions over the entire design space, plotted with fewer data points for better visibility. 

Figures 3b and 3c show the same trend as Fig. 3a. These two plots were generated based on 

the results in Fig. 3a. where the CE and variance in CE are plotted for the current best cell identified 

via the lifetime metric. We see the same monotonic trend in these two plots, showing that with 

increased lifetime CE increase and its variance decreases. In Figs. 3d and 3e, we visualize the 

evolution of the GP regression model’s predictions over the iterations. The PI acquisition function 

was used to generate the results in Fig. 3. The visualization in Fig. 3d provides insight into how 

the PI acquisition function decided which design variable combinations to test next. The PI 

acquisition function prioritized testing design variable combinations from iterations three to 

fourteen with lower oxidation time. The PI acquisition function intelligently identified the overall 

trend that cells with lower oxidation time performed better. This effect is more noticeable in Fig. 

3e where the color gradient shows how the GP predicts that cells with lower oxidation time will 

have longer lifetimes. The algorithm’s intelligent understanding of the design space led it to reach 

the optimum design variable combination roughly five times quicker than the random sampling 

approach and roughly two times quicker than the UCB acquisition function.  

4.2.2. Algorithm sensitivity to initial sample selection 

A key factor that influences the performance of the optimization algorithm is the number of 

initial samples used to fit the GP regression model. To investigate this, we varied the number of 

randomly selected starting points and repeatedly ran the sequential optimization algorithm to 

completion. The results, shown in Fig. 4, indicate the PI and EI acquisition functions are 

significantly better suited to our materials optimization problem than the UCB acquisition function 

is. The PI and EI acquisition functions show minimal change in performance with the number of 

initial starting points. While the PI and EI acquisition functions certainly perform better, we 

believe the small size of our dataset influenced this result. Using only 32 total design points is 

likely insufficient to properly study the initial samples’ impact on the algorithm’s performance. In 

the future, it would prove worthwhile to investigate this further. On the other hand, the UCB and 

random sampling approach follow the same trend. Increasing the initial starting points decreases 

the iterations required to achieve the optimal nucleation layer design. This result is more consistent 

with what we expected to observe for the PI and EI acquisition functions. In any case, increasing 

the number of initial samples should never negatively impact the optimization algorithm. Still, 

balancing the time required to build and test the samples upfront is essential. 
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Figure 4: The sequential optimization algorithm’s sensitivity to changes in the number of initial 

samples available. Sequential optimization simulations are repeatedly run using each of the three 

acquisition functions. Average results from 100 runs are presented.  

4.2.3. Acquisition function hyperparameter study 

Another key factor that influences the performance of the optimization algorithm is the 

hyperparameters in the acquisition functions. The simulation studies we presented above were 

performed using near-optimal values of hyperparameters. Here, we discuss how the 

hyperparameter values were selected and provide insights on how one might choose suitable 

parameter values before initiating a battery materials optimization campaign. 

We analyzed the algorithm’s sensitivity to changes in the hyperparameters by repeatedly 

running the algorithm to completion over a range of values. We selected the values of the 

hyperparameters, which were found to reach the maximum objective value in the fewest number 

of iterations. The PI and EI acquisition functions have a single hyperparameter to tune, namely 𝛿. 

The 𝛿 parameter controls the threshold of improvement, which filters out design points that don’t 

yield an improvement in lifetime greater than the current best cell plus 𝛿. The PI and EI sensitivity 

analysis results are shown in Figs. 5a and 5b. These two acquisition functions perform best with 

𝛿 greater than ~20, evident by the noticeable decrease in the average number of iterations needed 

to achieve the maximum objective value for 𝛿  values greater than 20. Surprisingly, the EI 

acquisition function responded to changes in 𝛿 in the same way the PI acquisition function did. 

This result further reinforces the notion that the probability of improvement measured in the PI 

acquisition function formulation is more important than the magnitude of improvement term in the 

EI formulation. 

The UCB acquisition function has two hyperparameters that need to be optimized, namely 𝛽0 

and 𝜖. The 𝛽0 parameter controls the initial magnitude of the threshold term, and the 𝜖 parameter 

controls the rate of decay over each iteration. Together, these parameters define the threshold as a 

function of the predicted variance. The results of the UCB hyperparameter sensitivity analysis are 

shown in Fig. 5c. The trend indicates smaller values of 𝛽0 and 𝜖 perform better. Interestingly, the 
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hyperparameter values have a noticeable impact on the performance of the UCB acquisition 

function, even though its best performance is still worse than that of PI and EI. 

 

Figure 5: Acquisition function hyperparameter sensitivity analysis results. a) the optimal PI 

hyperparameter value was selected to be 𝛿 = 30, b) the optimal EI hyperparameter value was 

also selected to be 𝛿 = 30, and c) the optimal initial values for the UCB acquisition function 

were selected to be 𝜖 = 0.1 and 𝛽0 = 1.5 where the value of 𝛽𝑘 decreases each iteration 

following the relationship: 𝛽𝑘 = 𝛽0𝜖𝑘. 

Finding the optimal values for the acquisition function hyperparameters via simulation helps 

us understand the algorithm’s true potential for rapid materials design optimization. However, 

preemptively selecting the best values for the hyperparameters using post-experiment simulation 

is infeasible in practice. To get around this, researchers have proposed using simple physics-based 

and mechanistic models to approximate the objective function for a given set of design variables. 

Then, simulation experiments, like the ones we conducted, can be run using the simplified model 

as the ground truth to understand the range of suitable hyperparameter values better. For example, 

researchers in [12] used a simplified physics-based model for acquisition function hyperparameter 

selection prior to initiating the optimization campaign. The simplified physics model approximated 

heat generation within a Li-ion battery cell as a function of the charging currents (design variables). 

The heat generation was used to compute the expected degradation in the battery cells, which could 

then be mapped to the total battery lifetime (objective function). 

Unfortunately, this approach only works well when the relationship between the design 

variables and the objective function is well understood. In our case, there is a disconnect between 

the material-level nucleation layer properties and the cell-level performance that cannot easily be 

modeled. For example, optimizing the nucleation layer for the maximum surface area does not 

guarantee long lifetime when tested in a cell. Scenarios like these, where the underlying physics 

of new materials is not yet understood, are becoming more common. Therefore, we find it essential 

to share our post-experiment hyperparameter selection results so that others in the community 

looking to implement optimization algorithms might use our results to inform their algorithm 

development.  

Further investigating the optimal hyperparameter value for the PI acquisition function reveals 

that it may be related to the cell-to-cell variance. Figure 6a shows the distribution of inter-cell 
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variance, calculated as the standard deviation of the lifetimes for cells of the same nucleation layer 

design. The mean variation in lifetime between cells of the same design is roughly 25 cycles, which 

is close to the optimal PI hyperparameter value of 𝛿 = 30 (Fig. 6b). This suggests that the optimal 

hyperparameter value is close to the inter-cell variance. In other words, the algorithm needs to be 

sure a new nucleation layer design will produce a cell with a lifetime greater than the current best 

cell, even in the presence of unavoidable cell-to-cell variation. We find this result intriguing and 

believe it would be worthwhile to further investigate the relationship between acquisition function 

hyperparameters and battery performance variability in future work. Understanding and 

quantifying the intrinsic cell-to-cell variability that arises when testing cells at identical conditions 

could help design new customized acquisition functions more suitable for optimizing battery 

materials. It is likely that optimization speeds could be further increased using custom-designed 

acquisition functions [48] or by adaptively selecting the best point among the candidates suggested 

by multiple different acquisition functions [49], [50]. 

Last, we investigate a scenario where the hyperparameter values cannot be estimated by any 

means. Figure 6c compares each acquisition function’s optimization speed using optimized and 

randomized hyperparameter values. The experiment was conducted with six initial samples and 

was repeated 100 times. The random sampling approach to design selection is used as a baseline 

for comparison. The PI and EI acquisition functions show a significant reduction in the run-to-run 

variance when using a set of optimized acquisition function hyperparameters. On the other hand, 

the UCB acquisition function shows no significant change in performance from using optimized 

hyperparameters. This is likely due to our dataset’s small size, which inherently makes sensitivity 

analysis more difficult. Furthermore, tuning the two interacting parameters in the UCB acquisition 

function is more difficult than tuning the single parameter in PI and EI, adding to the challenge. 

Using a more rigorous hyperparameter selection method, we may have been able to improve the 

results of the UCB acquisition function. However, the potential performance gain is small and 

likely not worth the effort.  
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Figure 6: (a) Histogram of cell lifetime variability for cells of the same nucleation layer design. 

The mean lifetime standard deviation is 25.42 cycles. (b) PI acquisition function hyperparameter 

sensitivity analysis results from Fig. 5, but with an added zoom window showing the trend more 

clearly. (c) Comparison between optimized and randomized acquisition function hyperparameter 

values for each of the three acquisition functions, PI, EI, and UCB. Simulations were repeatedly 

run one-hundred times using six initial samples. The random sampling approach to design 

selection is used as a baseline for comparison. 

 

Most notably, we observe that even the acquisition functions with randomized 

hyperparameters performed better than the naïve random sampling approach. This result is great 

news for others looking to implement optimization algorithms in practice, as a significant 

performance boost can likely be achieved without performing hyperparameter selection. The main 

trade-off, however, is that the results are widely varying. The performance increase over the 

random sampling approach could be as little as two times faster or as much as five times faster. So 

in any case, it is always better to try and preemptively simulate the optimization algorithm and 

select appropriate hyperparameter values in advance. 

 



19 

 

4.3. Experimental Insight for Optimized Performance 

In addition to the experimental dataset used thus far to demonstrate optimizing cells’ nucleation 

layer designs based on three parameters: carbon black concentration, CNT concentration, and 

carbon oxidation, two additional sets of sodium metal coin cells were produced to determine and 

qualify the choice and selection of the three isolated optimization parameters for use in this study. 

Details of these additional experimental tests are provided in the Supplementary Material. 

Altogether the experimental results led to a total of 177 cells with 69 different nucleation layer 

designs. Our efforts in this section focus on using this significant body of results to establish 

broader correlations that can guide us toward a better understanding of the physical mechanistic 

behavior of a good nucleation layer.  

To uncover the physical mechanisms responsible for cell performance, we turn to the dataset 

of 177 cells and examine correlations between voltage features visible in standard galvanostatic 

cycling data and cells’ lifetimes. We quantitatively evaluate the Pearson correlation coefficient ρ 

between different voltage features measured from the half-cell cycling data and a cell’s measured 

lifetime, where lifetime is a measure of cumulative loss of sodium metal based on the CE% over 

the duration of cycling until a cutoff of 50% sodium loss is reached. Hence, the best-performing 

cells with the highest CE% will lead to the longest measured lifetime. A high correlation with a 

low P-value (𝑝 ≤  0.05) means a statistically significant linear relationship between two variables. 

For example, a positive correlation indicates that cell lifetime tends to increase as the measured 

voltage feature increases. We identified six features from the galvanostatic charge-discharge 

curves that exhibit high correlations with measured lifetime. The correlation analysis results are 

presented in Fig. 7. The two features with the highest Pearson correlation coefficient pertain to the 

nucleation peak that occurs at the onset of electroplating. They are the time to nucleation, which 

is the time required to reach the minimum value of the nucleation peak, and the initial slope of the 

voltage curve, which is the slope of the galvanostatic transient from the onset of electroplating to 

the minimum point of the nucleation peak. The third best feature is the growth overpotential at 

which sodium plating occurs. Scatterplots of cell lifetime as a function of the three best features 

for all 177 cells are shown in Fig. 7a-c. The data points are colored from light to dark, representing 

performance from worst to best. We also overlay regression lines to visualize the trend in the data. 

The two best feature correlations (see Fig. 7a-b) indicate that the best-performing nucleation layer 

designs exhibit steep slopes that lead to the nucleation peak the fastest.  

Other notable features include the nucleation and growth overpotentials, the hysteresis between 

the electroplating and stripping profiles, and the voltage measured at the very end of the sodium 

plating process. Figure 7d summarizes the correlation coefficient for each feature in a tornado 

plot, where features with higher correlation coefficients are more strongly related to cell 

performance. Figure 7e visualizes all the features described in Fig. 7a-d labeled onto a slip plot, 

connecting the galvanostatic plating and stripping curves to visualize the sodium loss. In Fig. 7e, 

we refer to the cells using the abbreviations CB, CNT, and Ox, which denote the CB concentration, 

the CNT concentration, and the oxidation time, respectively. 

 At first glance of Fig. 7e, the differences between the best and worst cells in our 

optimization study are subtle. However, these two conditions provide an ideal comparison for 

mechanistic insight into the origin of the two primary parameters correlated to lifetime: time to 

nucleation peak and initial slope. The main difference between the cells is due to the significant 
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difference in CE% visualized at the end of the plating profiles in Fig. 7e. Additional differences 

are due to the less prominent features (growth and nucleation overpotential, hysteresis, and end 

discharge voltage). To better understand the role of these features, we performed additional EIS 

analysis on cells prepared with the best and worst performing nucleation layers, as this technique 

provides insight into interfaces and diffusion phenomena in the nucleation layer and how they 

evolve.  

 

 

Figure 7: Overview of the most significant correlations from examining the cycle aging data 

from 177 sodium metal half-cells with 69 nucleation layer designs. The data points are colored 

from light to dark, representing performance from worst to best. Features with higher correlation 

coefficients are more strongly related to cell performance. (a) cell lifetime plotted as a function 

the time to the nucleation peak, with a correlation of 0.661. (b) cell lifetime as a function of the 

initial slope of the voltage curve, with a correlation of -0.557. (c) cell lifetime as a function of the 

growth overpotential voltage, with a correlation of 0.250. (d) a tornado plot summarizing the 

most significant feature-lifetime correlations observed from the 177 cells. (e) the features in (d) 

are visualized on a slip plot showing the voltage profiles of the best and worst cells from the 

optimization dataset. All features are calculated as averages over the first 50 cycles. 

Figures 8a and 8c plot the EIS spectra for the best and worst half-cell nucleation layers from 

the optimization study. Initial EIS data is collected from the cell before metal plating, and 

subsequent data is measured while the cell is in the charged (stripped) state over the course of ten 

cycles. We calculate the charge transfer resistance (Rct) by fitting an equivalent circuit to the EIS 

data and use this information to evaluate the surface kinetics. For the best-performing cell, we 
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observe during the course of ten cycles, the width of the semicircle, which generally represents the 

Rct v lu , gr  u lly    r  s s to  pproxim t ly  .  Ω. In  ontr st, th  worst-performing cell 

 xhi its   s mi ir l  wi th of   out 9.  Ω  ft r th  first  y l , whi h r m ins inv ri nt in l t r 

cycles. From these EIS results, the best-performing nucleation layer involves an evolution of the 

electrode-electrolyte charge-transfer interface over the duration of 10 cycles, whereas the worst-

performing nucleation layer does not decrease beyond the 1st cycle. This indicates that interfacial 

changes occur within the first few cycles, which impact the   ll’s lif tim   n  lead to a lower 

overall resistance. This is analogous to the formation cycles of traditional host anodes such as 

graphite in Li-ion batteries, where the SEI can continue to improve in the initial few cycles in order 

to form a robust interphase [51]. Figure A4 plots the variance of the CE as a function of cycle 

number. The variance significantly decreases after 10 cycles, suggesting the interface has 

stabilized. The constant Rct value of the low-performing nucleation layer indicates a stable SEI 

film is formed in this electrolyte system in accordance with previous studies [21]. Although the 

SEI film is stable, a further evolution of the interface is associated with improved cell lifetime. 

Figure A5 in the Supplementary Material shows an additional high-performing cell with a 

decreasing Rct value over 10 cycles, further supporting this trend. 
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Figure 8: Electrochemical testing and characterization of a high-performing (CB: 0.53, CNT: 

0.16, Ox: 2h) and low-performing (CB:0.65, CNT: 0.15, Ox: 7h) nucleation layer design. (a) a 

Nyquist plots from EIS measurements on the high-performance cell after discharging to 0V and 

through 10 cycles. The inset figure shows cycles 1-10 in more detail. (b) SEM image of a 

smooth, faceted sodium deposit on the high-performance su str t  (s  l   r =  0 μm). ( ) 

Nyquist plots from the low-performance cell. The inset figure shows cycles 1-10 in more detail. 

(d) SEM image of a rough, porous deposit from the low-p rform n     ll (s  l   r =  0 μm). ( ) 

Plots of th  r  l p rt of imp   n   (Z′)  s   fun tion of th  inv rs  squ r  root of  ngul r 

fr qu n y (ω−1/2) from the Warburg region of both cells at cycle 10. (f) Nitrogen physisorption 

isotherms for CB powders oxidized for 2 and 7 hours. 
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To better understand this relationship, we carried out SEM imaging of the sodium metal 

deposits from the best and worst-performing nucleation layers (Figs. 8c-d). As expected, the planar 

deposits of sodium metal indicate that nucleation and growth occur in these samples in the kinetic 

regime [52]. However, evident differences are visible in the sodium deposits’ porosity between 

these two different cases. In the worst-performing nucleation layer, micro-scale pores are 

distributed throughout the sodium deposits. In contrast, the best-performing nucleation layers 

result in smoother sodium deposits that visibly exhibit higher volumetric density. Notably, the 

porous nature of the sodium metal in our poor-performing cell is similar to that discussed 

elsewhere in the literature for unstable sodium deposition conditions, such as high current density 

[53]. Two possible reasons for this porous morphology could be (1) diffusion limitations of sodium 

metal at the nucleation layer-electrolyte interface, or (2) the formation of large dead sodium 

deposits on the nucleation layer in the initial cycles that physically obstruct localized regions from 

nucleation and growth of sodium metal.  

To evaluate this, we first analyzed the role of diffusion since faster sodium diffusion along the 

nucleation layer could lead to more uniform metal deposition [34], [54]. We calculated diffusion 

coefficients using Huggins’ method [55] based on the slope of the impedance’s real or imaginary 

parts vs. the frequency’s inv rs  squ r  root, ω−1/2. These plots are shown in Fig. 8e, and the 

diffusion coefficient values for the high-performance and low-performance cells are 3.69 × 10-9 

and 5.28 × 10-9 cm2/s, respectively. Whereas we believe such differences in diffusion coefficient 

could be related to differences in the surface area of the carbons used in the nucleation layers, as 

shown in Fig. 8f, the measured diffusion coefficient of the worst-performing cell is higher than 

that of the best-performing cell. This elucidates that diffusion limitations are likely not associated 

with the performance differences between these two cells. Conversely, we believe these results 

can be explained through dead sodium or SEI that is formed in the first cycle on a poor nucleation 

layer.   

Based on Fig. 7, broad correlations across all of our devices with 𝑁 = 177 indicate that a 

steeper spike into the nucleation peak and less time to nucleation leads to faster sodium loss and 

degradation. This feature appears from our experiments to be the most important toward 

determining the effectiveness of a stable nucleation layer. EIS and imaging associate this to a more 

resistive interface for charge-transfer reactions and correlated increase in porosity of the sodium 

metal deposits not explained by diffusion-related effects in the two different nucleation layers (Fig. 

8). In this regard, we hypothesize that in circumstances where the two separate events of SEI 

formation on the nucleation layer and the initial nucleation of sodium metal are not temporally 

separated, the formation of significant patches of dead sodium layers can result and impede the 

stable, dense growth of sodium metal deposits. This could be associated with sodium nuclei 

formation that fractures off from the nucleation layer due to interfacial stress related to concomitant 

SEI formation on the nucleation layer. Such dead sodium deposits would produce a physical barrier 

toward the layer-by-layer growth of dense sodium metal that would explain the increased porosity 

and poorer long-term cycling behavior of our worst nucleation layers. Overall, we emphasize that 

this approach of using optimization methods to engineer complex systems such as sodium 

nucleation layers to obtain high performance, followed by using these systems to evaluate 

statistically validated design features and mechanisms represents a powerful tool for future battery 

design efforts.  
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5. Conclusion 

Bayesian optimization and similar machine learning-assisted design optimization strategies are 

promising solutions to accelerate the development of next-generation batteries. In this work, we 

demonstrated the ability to quickly optimize three related design variables of a carbon nucleation 

layer in a sodium metal half-cell. Through repeated simulation, we comprehensively evaluated the 

performance of the optimization framework and found that using the traditional PI and EI 

acquisition functions we could reach the optimal nucleation layer design five times faster than a 

random sampling approach. Additionally, when the acquisition function hyperparameters cannot 

be optimized in advance, all three of the Bayesian optimization algorithms tested still reached the 

optimal nucleation layer design roughly two times faster than a random sampling approach.  

While the Bayesian optimization algorithm used in this study shows much promise for 

accelerating battery materials development, we highlight some challenges of applying the 

algorithm in electrochemical environments. Firstly, the algorithm’s speed and efficiency decrease 

as cell-to-cell variability increases. Cell-to-cell variability typically arises from poor production 

control or inherently unstable system designs. However, we believe this could be solved by 

developing new acquisition functions more robust to noise or by testing more cells under the same 

conditions. Second, the algorithm does not work well for optimizing many (𝑛 >> 20) design 

variables, as it requires significantly more experiments to thoroughly cover the entire design space 

and collect enough data for the model to properly fit the dataset. Last, the algorithm struggles to 

correctly model design variables that are not continuously variable, as it produces large 

discontinuities in the model predictions which can cause the algorithm to get stuck during 

optimization and only focus on a smaller region of the entire design space. Design variables like 

oxidation time in air and material concentrations work better with the algorithm because they are 

continuously variable over the entire design space.  

Nonetheless, we showed that optimizing the cell-level performance by tuning the material-

level properties of a sodium nucleation layer is an effective approach to materials design. We 

further investigated the relationship between nucleation layer performance and material properties 

using traditional battery cell characterization methods to analyze the full set of 𝑁 = 177 cells. We 

find that two primary features, the slope of the nucleation peak and time until the nucleation peak 

minima in the galvanostatic profile, are highly correlated to cell performance, and indicate these 

regimes are may be responsible for the majority of dead sodium formation. EIS and imaging 

characterization correlate poorly performing samples to higher interfacial charge transfer 

resistance and greater sodium metal porosity that can be attributed to dead sodium that forms due 

to near-simultaneous SEI formation and sodium metal nucleation on the nucleation layer. The 

strategies presented in this work broadly apply to battery materials and component optimization 

and will prove crucial in accelerating the development of next-generation batteries. 
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