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A Comparison of State-of-the-Art Methods

ABSTRACT

Monitoring the health of lithium-ion batteries’ internal components as they age is
crucial for optimizing cell design and usage control strategies. However, quantify-
ing component-level degradation typically involves aging many cells and destruc-
tively analyzing them throughout the aging test, limiting the scope of quantifiable
degradation to the test conditions and duration. Fortunately, recent advances in
physics-informed machine learning (PIML) for modeling and predicting the bat-
tery state of health demonstrate the feasibility of building models to predict the
long-term degradation of a lithium-ion battery cell’s major components using only
short-term aging test data by leveraging physics. In this paper, we present four ap-
proaches for building physics-informed machine learning models and comprehen-
sively compare them, considering accuracy, complexity, ease-of-implementation,
and their ability to extrapolate to untested conditions. We delve into the details
of each physics-informed machine learning method, providing insights specific to
implementing them on small battery aging datasets. Our study utilizes long-term
cycle aging data from 24 implantable-grade lithium-ion cells subjected to varying
temperatures and C-rates over four years. This paper aims to facilitate the selec-
tion of an appropriate physics-informed machine learning method for predicting
long-term degradation in lithium-ion batteries, using short-term aging data while
also providing insights about when to choose which method for general predictive
purposes.

Keywords: Lithium-ion battery, Degradation diagnostics, Half-cell model, Physics-informed ma-
chine learning, Comparative study

1 Introduction

Monitoring the health of lithium-ion batteries over their lifetime is important for ensuring the safety
and reliability of the electric vehicles and portable electronics they power. Common battery health
indicators like remaining capacity and direct-current internal resistance (DCIR) can be directly
measured through complete diagnostic cycles at low rates (capacity) or hybrid pulse-power char-
acterization (HPPC) tests (resistance) [1]. However, in online applications, battery capacity must
be estimated because completing a full discharge cycle would significantly interrupt system opera-
tion. Battery capacity and resistance can be predicted online using reduced order algebraic models
[2, 3, 4], state observer algorithms (like the extended Kalman filter and particle filters [5, 6, 7, 8])
coupled with physics-based battery models like equivalent circuit models [9, 10, 11] and electro-
chemical models [12, 13, 14], and machine learning methods [15, 16, 17, 18, 19, 20, 21]. In cases
where limited data are available, machine learning models have still been demonstrated to accu-
rately predict battery capacity and resistance using temperature data [22] and partial charging data
[23, 24, 25, 26, 27]. Machine learning methods, such as linear regression [15, 24], support vector
machines [15], random forest regression [27], neural networks [15, 19, 20, 21, 26], and Gaussian
process regression (GPR) or kriging [17, 18, 25], have been successfully applied to estimate the
capacity of batteries. These methods train a machine learning model to learn the correlation be-
tween features extracted from cell measurements (voltage, current, temperature) and the cells state
of health (SOH). However, none of these methods provide insight into the health of a cell’s inter-
nal components, which is important for understanding the source of capacity loss and resistance
increase in a cell. In real-world scenarios, battery aging occurs under wide ranges of use condi-
tions and cases, often causing cell capacity and resistance to vary non-monotonically over a cell’s
lifetime [28]. This highlights that, even with similar capacity loss, the level of internal damage and
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dominant degradation mechanisms vary with operating conditions [29, 30]. To properly quantify
cell health, more insight into the health of a cell’s major internal components is required.
Three commonly reported degradation modes help to elucidate the root cause of cell capacity
loss and resistance increase: they are loss of active materials on the positive and negative elec-
trodes, abbreviated as LAMPE and LAMNE, respectively, and loss of lithium inventory, LLI
[30, 31, 32, 33, 34, 35]. The first two modes, LAMPE and LAMNE, describe the loss of active
electrode materials, both lithiated and delithiated. Some of the causes for the loss of active ma-
terials on the positive and negative electrodes include harsh operating conditions, such as high
current, which causes the electrodes to swell and crack. Other mechanisms by which the positive
and negative electrodes degrade include structural disordering, gas formation, and the dissolution
of metal ions into the electrolyte [31]. On the other hand, the LLI degradation mode is used to
track the remaining usable lithium inventory and is closely coupled with cell capacity. The growth
of a solid-electrolyte interphase (SEI) layer is one major contributor to LLI [36]. Additionally,
other lithium-consuming side reactions occur during normal cell cycling, further decreasing the
lithium inventory. For example, reactions between lithium ions and impurities in the electrolyte
or electrode materials can lead to the formation of solid compounds that consume lithium ions,
causing a reduction in available lithium. Together, LAMPE, LAMNE, and LLI help better explain
the component-level causes for cell-level capacity loss and resistance increase.
Generally, these three degradation modes can be experimentally verified by destructively analyzing
the cell components. The loss of active electrode materials, both LAMPE and LAMNE, can be
quantified by measuring the remaining capacity of the aged electrode materials, typically achieved
by cycling half-cells built using the aged electrodes. Measuring the LLI is more subjective since
it depends on the upper voltage limit the cell is run at. To measure the LLI capacity, the aged
full-cell can be cycled to the maximum upper voltage limit which is typically beyond the real use-
case upper voltage limit. However, doing so can significantly damage the cathode material, and is
therefore typically only done once the cell has been retired from operation. While these methods
for quantifying the state of each degradation mode are certainly effective, they are not preferred
because they require retiring the cell from the field and destroying it in the process [37]. There
is a great need to develop non-destructive degradation diagnostics methods that can be used to
accurately quantify the state of the LAMPE, LAMNE, and LLI degradation modes online during
standard cell operation.
Several non-destructive methods for estimating the state of each degradation mode have been pro-
posed in the past. Han et al. utilized membership functions to quantify the areas under peak
locations on the dQ/dV (V ) curve and linked them to LLI and LAMNE degradation modes [33].
Birkl et al. developed a diagnostic algorithm to determine the degradation modes and verified
its accuracy by reconstructing the pseudo-OCV curve of coin cells with known levels of degrada-
tion [31]. Tian et al. introduced a technique for estimating electrode aging parameters, essentially
quantifying the corresponding degradation modes, by selectively sampling segments of daily charg-
ing profiles and inputting them directly into a convolution neural network [35]. Another popular
approach to estimating the state of degradation modes is by simulating them using physical cell
models. For example, an electrochemical model can be built to approximate the voltage response
of the cell by incorporating parameters such as active material and binder mass, particle size, elec-
trode thickness, current collector thickness, etc. [38, 39, 40, 41, 42]. Once the model is constructed,
the values of the parameters can be changed to alter the model’s output such that it matches the
voltage data measured from an aged cell, effectively simulating the loss of active materials and
lithium inventory. However, aside from being computationally intensive, a significant challenge
lies in connecting these physics-based models to real-world aging phenomena, particularly in iden-
tifying the state of degradation modes based on standard aging data, such as voltage and capacity
measurements obtained from reference performance tests (RPTs).
Recent advances in the field of physics-informed machine learning (PIML), particularly physics-
informed neural networks (PINNs), have demonstrated significant potential in bridging the gap be-
tween physics-based models and data-driven techniques. PIML combines the strengths of physics-
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based models and machine learning algorithms to enhance generalization and extrapolation capa-
bilities, even when data is limited. By integrating the principles of physics with the flexibility
and scalability of machine learning, PIML approaches offer the advantage of accurately capturing
complex physical phenomena with less computational complexity. In a comprehensive overview,
Karniadakis et al. highlight the potential applications of PINNs across various scientific domains
[43]. PINNs leverage the power of neural networks to incorporate physical principles and con-
straints directly into the learning process, enabling more precise predictions while maintaining
computational efficiency[44].
In the realm of battery applications, a study by Storey et al. explored different architectures
for combining physics-based and machine learning models to predict battery health [45]. The
study highlights potential architectures for combining these models while discussing the associ-
ated limitations. However, these methods have not been widely adopted by battery researchers.
In a recent study, Huang et al. [46] proposed a new deep learning architecture, termed model
integrated neural network, which combines a recurrent neural network and residual neural net-
work. This model architecture was designed to incorporate physics-based equations of Newman’s
pseudo-two-dimensional (P2D) model into the recurrent units and compute the residuals of the
partial differential equations (PDEs) in an unsupervised manner through the residual connections.
They benchmarked their proposed deep learning model against a few other models consisting of a
physics-based P2D model solved by an implicit differential-algebraic solver, a purely data-driven
deep neural networks model, a PINN model, and a data-driven reduced-order model. In the work
by Wen et al. [47], a PINN framework was employed to estimate the rate of capacity degradation
with respect to the cycle number and the current SOH of a cell being monitored. An empirical
capacity degradation model, which was an improved version of Pierre Verhulst’s logistic differen-
tial equation [48], was utilized to capture the capacity degradation trend of a battery cell. They
used a PINN architecture to fuse the prior information from the empirical model, formulated as
PDEs, which took as input features with strong correlations with capacity extracted from the ex-
perimental data. Two examples of these input features are peaks of dQ/dV (V ) curves and charge
time during the constant current charging step. Xue et al. [49] proposed a PINN model to enhance
the computational efficiency over a single-particle model while maintaining accuracy under high
C-rates. First, they employed this single-particle model to compute the distribution of lithium-ion
concentration in the electrolyte given an applied current, disregarding the electrolyte dynamics.
Then, the obtained results were used to train a PINN model. This PINN model incorporates a PDE
solver in its loss function to solve the one-dimensional diffusion equation. The proposed model
could approximate the in-electrolyte distributions of lithium-ion concentration and potential more
accurately than the traditional neural network and faster than the single-particle model solved with
traditional numerical methods under dynamic charging conditions. Hofmann et al. [50] developed
what they called “a sequential PINN” that combined simulation data generated by a P2D model
with experimental data from laboratory measurements and vehicle field data to train a neural net-
work for SOH estimation. For the sake of consistency, we classify their PIML approach as data
augmentation. When designing the input to the neural network, they utilized time-series signals
such as voltage, current, temperature, SOC, and additional internal states from the simulation data
(i.e., lithium-ion concentration and potential of the electrodes and electrolyte). Through feature
engineering, they calculated various scalar and vectorized features for each time series signal. The
final input is represented as a three-dimensional dataframe, encompassing both scalar and vector-
ized features. To standardize the size of input signals from diverse data sources, a binary decision
feature was added, informing the network about data availability. The trained PINN model was
evaluated against test datasets from simulation, laboratory, and field sources. The reported per-
formance indicated the highest accuracy for the model when assessed on the simulation data and
the lowest on the vehicle field data. In a recent attempt to apply the PINN model for degradation
diagnostics by Navidi et al. [51], they imposed half-cell model constraints on the predicted pa-
rameters of a shallow neural network. This was achieved by minimizing the difference between
an experimentally measured dQ/dV (V ) curve and the corresponding generated curve from the
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half-cell model within the loss function. The proposed approach was evaluated using aging data
from a long-term (3.5 years) cycling experiment on 16 implantable-grade lithium-ion cells.
The most common approach in the literature is to use physics-based models to generate training
data for machine learning models. A few studies have employed equivalent circuit and electro-
chemical models to generate training data for deep neural networks, enabling the prediction of
terminal voltage, temperature, and state of charge [52, 53, 54]. However, this approach has limita-
tions in terms of model predictive accuracy, computational efficiency, and generalizability. These
limitations arise from the fact that the neural network lacks information about the discrepancies
between the physical model and the actual internal state of the battery. Moreover, none of the
studies have specifically addressed the problem of degradation diagnostics, except for Thelen et
al., who developed a lightweight PIML model to estimate cell degradation modes without relying
on late-life aging data [30]. By training the model with physics-based simulation data, they re-
duced estimation errors significantly. However, this approach requires a prior understanding of the
model’s inference space, which limits its ability to extrapolate to new conditions.
In this paper, we propose two PIML approaches, namely PINN and co-kriging, specifically de-
signed for diagnosing cell degradation in the late aging stage without relying on late-life aging data
for training. To evaluate the effectiveness of these methods, we conduct a comparative study that
compares the proposed approaches to two other state-of-the-art PIML techniques: data augmenta-
tion and delta learning (more specifically, delta learning with the elastic net). Notably, co-kriging
also falls within the broader category of delta learning. We compare the performance of each PIML
method using battery aging data obtained from a long-term (> 4 years) cycling experiment involv-
ing 24 implantable-grade lithium-ion cells. The motivation behind this study stems from the need
to comprehensively compare different PIML methods for battery degradation diagnostics. While
PIML approaches have shown promise in enhancing prediction accuracy and generalizability in
battery capacity estimation, a thorough investigation and comparison of their performance on bat-
tery degradation diagnostics is still lacking in the literature. By comparing PINN, co-kriging, delta
learning, and data augmentation techniques, we aim to provide valuable insights into the strengths
and limitations of each method. Additionally, we seek to identify the key factors that influence
their performance, such as the availability of late-life aging data, the complexity of degradation
processes, and the suitability of different machine learning algorithms for deployment in various
situations. By addressing these objectives, our study contributes to the understanding and advance-
ment of PIML methods for degradation diagnostics and general prediction tasks.

2 Dataset Description

The battery aging dataset used in this work consists of 24 implantable-grade lithium-cobalt-
oxide/graphite (LCO) cells tested in groups of four cells under six different operating conditions.
The testing conditions of each group are outlined in Table 1. All cells are charged at C/3 to
the upper voltage cutoffs, followed by constant voltage charging until the current is below C/50.
Then, the cells are discharged with constant current to the lower voltage limit at 3.4 V. The ag-
ing tests were run for nearly five years in temperature-controlled thermal chambers. The capacity
trajectories for this dataset can be seen in Fig. 1. An RPT was performed every 2 weeks during
the first 3 months and every 4 weeks thereafter. to check the cells’ capacity under a common
discharge rate and obtain data for half-cell model analysis and SoH estimation. During RPT, a
common procedure has been applied across all groups. First, cells are charged to 4.075 V using
a constant-current-constant-voltage protocol with a constant current at C/3 and a constant-voltage
cutoff current at C/50. Second, a constant-current discharge step and a constant-current charge
step, both at C/50 and followed by a half-hour rest, are applied to obtain data at a slow rate. Third,
cells are discharged to 3.4 V at C/10, with a one-hour rest for every 10% decrease in the state of
charge. The temperature of thermal chambers is adjusted to 40 °C before every RPT.
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Table 1: Summary of Aging Test Conditions

Group Charge rate Discharge rate Temperature Upper voltage cutoff No. of cells

G1 C/3 C/24 37 °C 4.075 V 4
G2 C/3 C/24 55 °C 4.075 V 4
G3 C/3 C/3 37 °C 4.075 V 4
G4 C/3 C/3 55 °C 4.075 V 4
G5 C/3 C/10 37 °C 4.075 V 4
G6 C/3 C/24 37 °C 4.175 V 4

a b

Figure 1: Overview of capacity fade curves for cells cycled under two distinct temperatures: a.
37 °C; b. 55 °C. The discharge rate for each group of cells appears in the legend in parentheses (·).

3 Half-Cell Model

The half-cell model is a non-destructive method for quantifying three dominant degradation modes
in a lithium-ion battery (i.e., LAMPE, LAMNE, and LLI) by reconstructing a pseudo-OCV curve
of the cell [30, 31]. The full-cell OCV curve is obtained by taking the potential difference between
the positive and negative electrode OCV curves over the full-cell operating voltage range. At low
rates (≪ C/10), kinetic and thermal effects during charge and discharge have minimal impact on
the measured OCV of the cell, making it possible to closely model full-cell OCV as the potential
difference between the two individual positive and negative electrode half-cells [31, 32, 55, 56].
The remaining active mass on the positive electrode (mp) and the negative electrode (mn) define the
width of the positive and negative electrode’s QV curves, respectively (Fig. 2a). The remaining
capacity of the electrodes is obtained by multiplying the specific capacity (qp and qn) with the
remaining active mass (Qp = mpqp and Qn = mnqn). Then, the relative horizontal positions
of these two half-cell curves are adjusted with respect to the left endpoint of the full-cell curve
(QC = 0) by two slippage parameters, δp and δn (Fig. 2b). The reconstructed full-cell curve is
obtained by limiting the voltage range of the full-cell curve to the usable voltage window (i.e., 3.4
V to 4.075 V for RPTs). With that, we can also calculate the remaining usable capacity of the
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Figure 2: Overview of the half-cell model parameters. a. remaining active masses; b. slippage
parameters; c. derived degradation parameters.

cell (QC) and the lithium inventory indicator (LII), graphically shown in Fig. 2c. LII can be
calculated mathematically as LII = Qp − (δp − δn).

3.1 Degradation Mode Quantification Using the Half-Cell Model

The half-cell model is employed to quantify the true values of each degradation mode over the life
of the cell. This is accomplished by manually fitting the half-cell model parameters (i.e., mp, mn,
δp, and δn) to the measured C/50 voltage curves obtained from each RPT. Half-cell data from fresh
electrodes was collected at C/50 to match the C-rate used in the RPT of the full-cell aging test.
As the cell undergoes degradation, the widths of the positive and negative electrodes’ QV curves,
reflecting the remaining active mass on the electrodes (mp andmn), decrease. Simultaneously, the
relative horizontal positions of the half-cell curves in relation to the left endpoint of the full-cell
curve (defined by two slippage parameters, δp and δn) also change due to the stoichiometric off-
set and loss of lithium inventory (LLI). Consequently, the four parameters of the half-cell model,
mp, mn, δp and δn, influence the lengths and shapes of the two half-cell curves in specific ways,
as illustrated in Fig. 2 and experimentally validated in [31]. Thus, adjusting these parameters al-
lows us to simulate a pseudo-OCV full-cell curve that agrees well with an experimental full-cell
curve. To make the fitting process more accurate in reflecting the underlying cell dynamics, we
also considered the fitting of width and horizontal position (corresponding tomn and δn) and mag-
nitude (corresponding to mp and δp) of certain features (e.g., peaks) on the differential voltage
curves (dV/dQ(Q)) [30, 51, 56]. Manual fitting was often preferred to strike a balance between
achieving a lower fitting error and leveraging the known physical meanings of certain features on
the dV/dQ(Q) curve, compared to automatic fitting [56]. However, this manual process is neither
efficient nor practical for deployment in use cases where human intervention is not feasible (e.g.,
online health diagnostics inside a battery management system onboard an electric vehicle). To over-
come these challenges and automate the process of degradation mode quantification, we proposed
a PIML framework by leveraging both data-driven machine learning and physics-based model-
ing (i.e., leveraging the half-cell model used in several earlier studies on degradation diagnostics
[30, 51, 56]). Furthermore, a few cells (full-cells) were removed during the aging tests to fabri-
cate aged positive and negative half-cells whose capacity was measured through charge/discharge
cycling. This effort was made to experimentally estimate the true active mass in the electrodes of
each aged full-cell, serving as an experimental validation of the parameter estimates from half-cell
model fitting [56]. For groups G1 and G3, cells C1 and C2 were removed for analysis at day 573,
and for groups G2 and G4, cells C3 and C4 were removed at day 484. These cells were disas-
sembled, and half-cells were fabricated from their aged electrodes. The aged half-cells were then
cycled, and the measured capacities were used to confirm the loss of active materials.
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Figure 3: Simulated incremental capacity curves from the half-cell model with: a. one degradation
mode; b. two degradation modes.

Lithium-ion battery degradation is complex, and rarely is a single degradation mode responsible
for the observed capacity fade. Researchers have long used incremental capacity analysis (ICA)
and differential voltage analysis (DVA) to qualitatively assess cell degradation and identify proba-
ble degradation modes. Both ICA and DVA are useful for visualizing degradation by tracking the
changes in magnitude and location of peaks and valleys that correspond to Li phase changes inside
the cell. Shown in Fig. 3a, we use the half-cell model to simulate full-cell OCV and plot the in-
cremental capacity curves (dQ/dV (V )) corresponding to a 20% loss in a single degradation mode.
The loss of active materials (LAMPE and LAMNE) causes changes in the magnitude and width
of the peaks in the incremental capacity curves while a loss of lithium inventory LLI primarily
decreases the magnitude of the peaks. Additionally, another set of simulations is run to visualize
the effect of two simultaneous degradation modes on the shape of the incremental capacity curve.
Shown in Fig. 3b, a loss of either active material combined with a loss of lithium inventory signifi-
cantly reduces the magnitude of the peaks in the incremental capacity curve, especially the larger
peak around 3.8 V.

3.2 Simulating Aging Data Using the Half-Cell Model

The second way we leverage the half-cell model is for simulating cell degradation. Just as we were
able to show how each degradation parameter affects a cell’s incremental capacity curve in Fig. 3,
we can generate many different combinations of degradation parameters and their corresponding
capacity-voltage curves. Many thousands of different input-output data pairs can be simulated and
used for training machine learning models. Specifically, simulation is performed by selecting a
wide range of half-cell model parameters and simulating the full-cellQ(V ) and dQ/dV (V ) curves
with respect to different degradation parameters from the half-cell model.

4 Problem Definition

Existing approaches to estimating the degradation modes present in a battery cell have a few lim-
itations that make them impractical for deployment in the field. They generally use expensive-
to-evaluate physical battery models [57, 58] or require collecting long-term aging test data
[33, 59, 60], the latter of which makes deploying the methods extremely time and cost-intensive.
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Figure 4: An overview of degradation diagnostics using PIML techniques

Initial research by Thelen et al. showed that lightweight machine learning models could be trained
to predict late-life degradation modes without using long-term aging data from experimental tests
[30]. The models learned from a combination of experimental data and physics-based simulation
data to estimate cell capacity and three degradation modes. In this work, we further investigate
this line of research and comprehensively study new state-of-the-art physics-informed machine
learning (PIML) methods for degradation diagnostics.
We explore the integration of physics into lightweight machine learning models through four
unique approaches. Specifically, we train physics-informed machine learning models to estimate
cell capacity and the state of three primary degradation modes (LAMPE, LAMNE, and LLI) using
the measured incremental capacity curve dQ/dV (V ) as input data. Using the differential capac-
ity curve as input is common practice and eliminates the need for manual feature selection and
enhances the applicability of the models and methods to other battery chemistries. The primary
focus of this research is to conduct a comparative analysis of four distinct methods that incorporate
physics-based knowledge into machine learning models. We aim to identify the most effective
approach in terms of model accuracy and performance, ultimately providing insight into the op-
timal integration of physics concepts into machine learning frameworks for battery degradation
diagnostics.
We study the degradation diagnostics problem using a framework inspired by Thelen et al. This
framework leverages both early-life experimental data and simulation data from a half-cell model
to construct the training dataset for our PIML methods. The process involves fine-tuning four ad-
justable parameters (mp,mn, δp, δn) in the half-cell model to match the reconstructed pseudo-OCV
curves with those obtained from RPTs. This yields the dQ/dV (V ) curves, their corresponding fit-
ted half-cell model parameters, and four health parameters (cell’s capacity (Q) and degradation
parameters (mp, mn, and LII)) for both the early-life and late-life stages of the aging tests. The
early-life experimental data serve as the training set, while the late-life experimental data act as the
testing set for our models. We employ the half-cell model to simulate data points on the dQ/dV (V )
curves, along with their corresponding health parameters, for both the medium and late-life stages
of each cell. These simulated data points are then incorporated into the training process alongside
experimental data. The PIML methods are then trained on both the early-life experimental data
and the simulated data to predict the capacity and degradation parameters for the late-life stage. Fi-
nally, we evaluate the performance of our models using late-life experimental data. Fig. 4 provides
an overview of the framework.
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Figure 5: Overview of physics-informed machine learning (PIML) techniques adopted in this com-
parative study

5 Physics-Informed Machine Learning (PIML) Techniques

The following sections highlight the key characteristics of the four PIML techniques employed in
our study. These PIML methods are (1) physics-informed neural networks (PINN), (2) data aug-
mentation, (3) delta learning with kriging (a.k.a., multi-fidelity co-kriging), and (4) delta learning
with the elastic net. Fig. 5 provides a visual representation of these methods. A common objective
among these techniques is to utilize simulation data from the late-life stage, thereby simplifying
the task of extrapolating beyond the early-life experimental data toward late-life regions for the
machine learning model.

5.1 Physics-Informed Neural Network (PINN)

Physics-informed neural networks (PINNs) offer the advantage of fully integrating the problem’s
physics into their loss function, thereby enhancing generalization performance through the uti-
lization of data and mathematical operators based on underlying physical principles [43]. In our
implementation, we leverage the underlying physics of the half-cell model discussed in Sec. 3 to
guide the training of a neural network. This enables the network to learn the relationship between
the input (a dQ/dV (V ) curve) and the health parameters (Q, mp, mn, and LII) throughout the
battery’s lifetime. As illustrated in Fig. 5(a), the late-life simulation data, which includes data
points corresponding to the highest 20% degradation in health parameters, is combined with the
early-life experimental data to train the PINN model. This approach ensures that heavily-aged
dQ/dV (V ) curves in the late-life region, along with their corresponding health parameters, are in-
corporated into the training process. To improve cell degradation estimation accuracy, particularly
during the late-aging stage, we incorporate knowledge of the relationship between health parame-
ters and dQ/dV (V ) into the model by introducing two physics-informed loss terms in addition to
the standard data-driven loss. Specifically, to harness the known physics embedded in the half-cell
model within the PINN model, we adopt a two-step process of first predicting the half-cell model
parameters and then mapping them into the capacity and a degradation parameter, as shown in Fig.
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6(b), rather than directly predicting the health parameters, as implemented in a baseline neural
network (depicted in Fig. 6(a)).

• Initially, a shallow neural network predicts the half-cell model parameters (mp, mn, δp,
and δn) for a given measurement of the dQ/dV (V ) curve from a fresh/aged full-cell. This
neural network handles the reverse process of half-cell modeling, where the half-cell model
parameters are estimated by matching the model-simulated and experimentally measured
full-cell QV curves. This model fitting process using the physics-based half-cell model
is slow and computationally demanding due to its iterative nature, prompting us to train a
neural network to perform it more efficiently.

• Then, to translate these predicted half-cell model parameters into the battery capacity (Q)
and the lithium inventory indicator (LII), we integrate a surrogate of the half-cell model
(fhc) into the loss function. In defining the physics-informed loss terms, we leverage the
forward mapping of the physics-based half-cell model, which proves to be straightforward
and fast.

As depicted in Fig. 6, a shallow network is utilized to establish a mapping of the 100 points
on the early-life experimental and late-life simulation curves of dQ/dV (V ) to the four half-cell
model parameters (δp, δn,mp,mn). The standard data-driven loss is calculated using the predicted
half-cell model parameters and their corresponding true values obtained from early-life experi-
mental and late-life simulated data. Let y = [mp,mn, δp, δn]

T be the vector of true values and
ŷ = [m̂p, m̂n, δ̂p, δ̂n]

T be the vector of predicted parameters. The MSE over both the early-life
experimental points and late-life simulated points can be calculated as:

L1 = LMSE(ŷ,y) =
1

Nexp +Nsim

(
Nexp∑
i=1

∥yi − ŷi∥2 +
Nsim∑
j=1

∥yj − ŷj∥2
)

(1)

where Nexp and Nsim denote the numbers of data points for the early-life experimental points and
late-life simulated points, respectively; yi and ŷi represent the true and predicted parameter vectors
for the i-th early-life point; and yj and ŷj represent the j-th element of the true health parameters
vector and predicted vector for the late-life points.
Within the loss function, a half-cell surrogate model, denoted as fhc, is integrated to establish a
mapping between the predicted half-cell model parameters and the battery capacity (Q) and the
lithium inventory indicator (LII). This integration ensures that the values of battery capacity and
lithium inventory remain consistent with the physics-based half-cell model by verifying that the
network-predicted half-cell model parameters lead to simulated curves with endpoints that closely
match those of the true fitted curves. Consequently, a second loss term is generated to measure
the difference between the capacity(Q̂) and ˆLII degradation parameter obtained by passing the
predicted half-cell model parameters from the network into the half-cell surrogate model and the
true ones. Let U = [Q,LII ]T be the vector of true values and Û = [Q̂, ˆLII]T be the vector of
outputs from the half-cell surrogate. The L2 loss can be calculated as:

L2 = LMSE(Û,U) =
1

N

N∑
k=1

∥Ûk −Uk∥2 (2)

where N = Nexp +Nsim represents the total number of data points corresponding to the early-life
experimental and late-life simulated measurements. Here, Ûk and Uk represent the k-th element
of the predicted and true parameters vector, respectively. The use of a half-cell surrogate model
prevents any disruption in the gradient computation process that would occur if the half-cell model
were directly used within the loss function. This ensures that the predicted parameters remain
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Figure 6: An overview of the architectures of a baseline neural network (a) and PINN (b) for
battery degradation diagnostics depicting data-driven and physics-informed loss terms

connected to the computational graph in each epoch, enabling the computation of the gradient of
the network output with respect to the inputs.
Another valuable piece of information that can be integrated into the physics-based loss function
is the difference between the peak positions (voltages) observed in the simulated and experimental
dQ/dV (V ) curves. Typically, two main peaks can be observed on the dQ/dV (V ) curve. The first
peak at the lower voltage corresponds to the intercalation of lithium ions into the electrode material
during discharge. As lithium ions are released from the anode during discharge, they intercalate
into the cathode’s active material, leading to an increase in capacity. The second peak corresponds
to the electrochemical reactions occurring at the cathode, such as the deintercalation of lithium
ions from the cathode material. The shape, intensity, and position of these peaks provide valuable
insights into the electrochemical behavior and performance of the battery [61]. As we have con-
strained two of the parameters in the loss function (Q and LII), we also aim to constrain the other
two predicted parameters, which are the positive and negative active masses (mp and mn). Since
the phase transition peaks in the dQ/dV (V ) curve are sensitive to the values of mp and mn [56],
by constraining the position of these peaks in the loss function, we can ensure that the resulting
active mass parameters are consistent with the half-cell model constraints. To incorporate this in-
formation, we introduce an additional loss term that calculates the difference between the positions
of the two major peaks in the experimental dQ/dV (V ) curves and their corresponding simulated

11



Physics-Informed Machine Learning for Battery Degradation Diagnostics: A Comparison of State-of-the-Art
Methods

counterparts. To achieve this, we extend the half-cell surrogate model to map the predicted half-
cell model parameters (δp, δn,mp,mn) by the network to the positions of the two major peaks in
the dQ/dV (V ) curves. A peak detection algorithm is employed, utilizing criteria such as promi-
nence, distance, height, and width, to identify the major peaks on the curves. The identified peaks
are then sorted in descending order based on their corresponding y-values, and the first two peaks
are selected for comparison. Let V̂sim

peak = [V sim
peak1

, V sim
peak2

]T represent the vector of peak positions
on the simulated dQ/dV (V ) curve, and Vexp

peak = [V exp
peak1

, V exp
peak2

]T represent the vector of actual
peak positions corresponding to the training set. The loss function LMSE is utilized to measure the
mean squared error between these vectors, yielding the loss term L3:

L3 = LMSE(V̂
sim
peak,V

exp
peak) =

1

2

(
∥V̂sim

peak1
−Vexp

peak1
∥2 + ∥V̂sim

peak2
−Vexp

peak2
∥2
)

(3)

Finally, to ensure that the resulting loss terms are on the same scale, we compute a weighted
summation of these terms, as depicted in Fig. 6.

Ltotal = L1 + λ1L2 + λ2L3 (4)

where λ1, and λ2 are positive scalar values that control the relative weight of each physics-informed
loss term, and they are empirically determined. The weighted summation ensures that the different
loss terms contribute proportionally to the overall loss function, allowing for a balanced optimiza-
tion process. The custom total loss term directly reflects the higher-level objective we want the
model to minimize, rather than relying solely on the loss between the true and predicted values of
the network. Essentially, the training process involves updating the network weights in a manner
that minimizes the customized total loss term value computed in each iteration.

5.2 Data Augmentation

Data augmentation is a technique used to enhance the accuracy of machine learning models by
expanding the training data. One approach involves leveraging a simple and efficient physics-based
simulation model to generate additional input/output samples that closely resemble the original
dataset. Augmenting samples into the training data increases the dataset’s size and diversity, which
enables the model to learn from a wider range of examples [62].
In this study, we enhance the training dataset by incorporating simulation data from the half-cell
model, initially comprising only early-life battery degradation data from the cycling experiment.
The simulation data is sampled from the entire design space of health parameters, including data
from the late-life stage. This augmented dataset provides more information about the future degra-
dation path of the experimental cells than what can be learned solely from the early-life experimen-
tal data. Consequently, it facilitates a more accurate estimation of late-life health parameters. For
a visual representation of this approach, refer to Fig. 5 (c). It is worth noting that the augmentation
process can be implemented in different ways, depending on the specific selection of simulated
degradation data to be combined with the early-life experimental data. One approach is to add
simulation data points that are filtered to include only the highest degradation values for each of
the health parameters: Q, mp, mn, and LII . By focusing on these higher degradation levels, the
augmented dataset may offer additional insights into the extreme trends and behavior exhibited by
the battery cells.

5.3 Delta Learning

Delta learning is a technique where a secondary model is trained to correct the errors or biases
of a primary model. The secondary model, known as the delta model or correction model, is
specifically designed to account for discrepancies between the predictions of the primary model
and the observed experimental data. By incorporating the learned corrections from the delta model,
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the accuracy and performance of the primary model can be improved [36]. In this study, as depicted
in Fig. 5 (b, c), we implement delta learning using two different machine learning methods: GPR,
also known as kriging, which leads to the formulation of multi-fidelity co-kriging, and the elastic
net, which corresponds to a conventional form of delta learning. The key difference between
these two delta learning approaches lies in the unique probabilistic formulation of co-kriging for
computing the posterior distribution or final prediction, in contrast to the deterministic formulation
of the elastic net.

5.3.1 Delta Learning with Kriging (a.k.a Multi-Fidelity Co-Kriging)

GPR, also known as kriging, is a probabilistic machine learning method used to estimate an un-
known mapping function f(·). It samples a random realization of this function from a Gaussian
process, representing a distribution over a collection of functions. A Gaussian process is defined
by its mean function, µ(·), and covariance function (kernel), k(·, ·). The mean function captures
the expected value or general trend of the data being modeled, while the kernel describes the co-
variance between the function outputs at two different inputs. In GPR, a Gaussian process prior
is assumed on the underlying mapping function, f(·), using a prior covariance function. This co-
variance function incorporates hyperparameters and a mean function, which can be chosen based
on existing knowledge or assumptions. Various types of kernels, such as linear, quadratic, or gen-
eral basis functions, can be considered, depending on the prior understanding of the problem. An
example of a common kernel function is provided in Eq. (5) which is used in this study as well.
It incorporates both distance-based and smoothness-based components to capture the underlying
patterns in the data.

kMatern(x,x
′) = σ2

(
1 +

√
2ν

ρ
∥x− x′∥

)
exp

(
−
√
2ν

ρ
∥x− x′∥

)
(5)

where σ2 represents the variance, controlling the overall variability of the Gaussian process. The
parameter ν determines the smoothness of the function, with half-integer values (e.g., 1/2, 3/2, 5/2)
providing a flexible and smooth representation of the data. The length scale parameter ρ determines
the range over which the correlation between data points decreases. Smaller values of ρ result in
a more localized correlation, while larger values yield a smoother and more global correlation.
The term ∥x − x′∥ denotes the Euclidean distance between data points x and x′. The exponential
function exp(·) attenuates the correlation as the distance between data points increases.
Several methods based on Gaussian processes have been developed to combine information from
models with different levels of fidelity, depending on the complexity of the relationships between
these fidelities. In the field of engineering design, a commonly used approach is co-kriging, which
combines multiple models providing different levels of accuracy or fidelity. It assumes a linear
relationship between these models, allowing for the integration of their predictions. Building upon
the two-level multi-fidelity modeling proposed in [63], we consider high-fidelity data (i.e., early-
life experimental data) denoted as YH = (y

(1)
H , ...,y

(NH)
H )T at locations XH = (x

(1)
H , ...,x

(NH)
H )T,

and low-fidelity data (i.e., simulation data spanning the entire lifetime of the battery cells) denoted
as YL = (y

(1)
L , ...,y

(NL)
L )T at locations XL = (x

(1)
L , ...,x

(NL)
L )T. Here, y(i)

H ,y
(i)
L ∈ R4 (since we are

predicting cell’s capacity and three degradation parameters), and x(i)
H ,x

(i)
L ∈ Rd, where d represents

the number of points on the input dQ/dV (V ) curve. By concatenating the data from both fidelities,
i.e., X = {XH,XL} and Y = {YH,YL}, we can construct a multivariate Gaussian process using
co-kriging based on the auto-regressive model [64].

fH(x) = ρfL(x) + f∆(x), (6)

where x represents the input vector at which the prediction is made, fL(x) and fH(x) are the
low-fidelity and high-fidelity Gaussian processes that model the simulation and experimental data,
respectively. f∆(x) is a Gaussian process that captures the difference between fH(x) and ρfL(x),
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and ρ is a regression parameter. In this approach, it is assumed that:

Cov{fH(x), fL(x′)|fL(x)} = 0, ∀x ̸= x′,x,x′ ∈ Rd, (7)

To implement this formulation, as illustrated in Fig. 5 (b), we first train a GPR model to
construct the fL(·) using the dataset {XL,YL}. Next, we calculate the discrepancy matrix
Y∆ = YH − ρfL(XH), where fL(XH) represents the mean values of fL(·) at the corresponding
locations common to those ofXH. Finally, we train another GPR model to obtain f∆(·) by training
it on the dataset {XH,Y∆}. The final high-fidelity prediction at a new location x∗, i.e., a vector of
input points on a dQ/dV (V ) curve, consists of a posterior distribution ŷ(x∗) ∼ N (µ̂(x∗), ŝ

2(x∗)),
with posterior mean and variance given by the following equations [65].

µ̂(x∗) = ρµ̂L(x∗) + µ̂∆(x∗) + c∆(x∗)C∆(XH,XH)
−1(Y∆ − µ̂∆(XH)), (8)

ŝ2(x∗) = ρ2σ2
L(x∗) + σ2

∆(x∗)− c(x∗)
TC−1c(x∗), (9)

where µ̂L(x∗) is obtained based on fL(·), and µ̂∆(XH) = (µ̂
(1)
∆ , ..., µ̂

(NH)
∆ )T and C∆(XH,XH) is

obtained based on constructed f∆(·). Also, σ2
L(x∗) = kL(x∗,x∗), and σ2

∆(x∗) = k∆(x∗,x∗), and
the vector of covariances (c) for a given input x∗, is expressed by Eq. (10).

c(x∗) =

[
ρcL(x∗)
cH(x∗)

]
=

[[
ρkL(x∗,x

(1)
L ), . . . , ρkL(x∗,x

(NL)
L )

]T[
kH(x∗,x

(1)
H ), . . . , kH(x∗,x

(NH)
L )

]T
]
, (10)

where kH(x,x
′
) = ρ2kL(x,x

′
)+k∆(x,x

′
) [66] and c∆ is obtained as c∆(x∗) = cH(x∗)−ρ2cL(x∗).

Additionally, the covariance matrix representing the covariances across all observations is denoted
as C and is defined by Eq. (11).

C =

[
CL(XL,XL) ρCL(XL,XH)
ρCL(XH,XL) ρ2CL(XH,XH) +C∆(XH,XH)

]
, (11)

where CL represents the covariance matrix based on the kernel of fL(·), and C∆ represents the
covariance matrix based on the kernel of f∆(·), we can identify their hyperparameters, along with
ρ, by assuming parameterized forms for these kernels. This identification process is achieved
through the maximization of the log-marginal likelihood term shown in Eq. (12).

lnL = −1

2
(Y − µ)TC−1(Y − µ)− 1

2
ln |C| − NH +NL

2
ln(2π). (12)

The steps of the implemented algorithm are summarized in Algorithm 1.
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Algorithm 1 Two-fidelity co-kriging algorithm
Step 1: Use a GPR model trained on simulation data generated from the half-cell model
across the entire design space of health parameters to construct fL(·) and compute µ̂L(XL) =

(µ̂
(1)
L , ..., µ̂

(NL)
L )T and CL(XL,XL).

Step 2: Use fL(·) to estimate ŷH at locations corresponding to XH: fL(XH).
Step 3: Calculate the discrepancy matrix as follows: Y∆ = YH− µ̂L(XH). This is based on the
reasoning that µ̂L(XH) is the most probable observation of the Gaussian process fL(·).
Step 4: Choose a specific kernel function k∆(·, ·) (Matern kernel in this work), and train
a GPR model using the dataset {XH,Y∆} to construct f∆(·). Then compute µ̂∆(XH) =

(µ̂
(1)
∆ , ..., µ̂

(NH)
∆ )T and C∆(XH,XH).

Step 5: The posterior mean and variance for any given input, x∗, are computed by Eq. (8) and
Eq. (9), respectively.

5.3.2 Delta Learning with Elastic Net

In another implementation of delta learning (see Fig. 5 (d)), we employ a simple elastic net model
trained on simulation data to estimate the health parameters of cells in the late-life stage. However,
since the simulation data does not precisely reflect the heavily aged dQ/dV (V ) curves observed
in the experimental tests, the estimation model alone may produce inaccurate predictions. To
overcome this limitation, we introduce a corrector elastic net model which is trained using early-
life degradation data, and its purpose is to capture the "delta" or prediction bias of the first model for
the light-degradation region. This learned bias can be extended to effectively correct the outputs in
the late-life stage. During the training phase, the corrector model leverages the available early-life
experimental data to learn the prediction bias of the estimation model. In the testing phase, both the
estimation model and the corrector model work in conjunction. The final prediction is generated by
combining the output of the estimation model with the correction provided by the corrector model.
It is worth noting that the implementation structures of delta learning and co-kriging are quite
similar in this study. The main difference lies in the choice of estimation and corrector models.
In co-kriging, we utilized two GPR models, whereas in delta learning, we employed two elastic
net models. Broadly speaking, we can consider the co-kriging implementation in this study as a
special case of delta learning.

6 Results

In this section, we present a detailed comparative analysis of four PIML methods for battery cell
degradation diagnostics. Our goal is to assess each model’s performance in comparison to its
data-driven baseline and explore specific analyses for the novel approaches, PINN and co-kriging.
We start by evaluating the overall performance of each PIML model relative to its data-driven
counterpart, providing insights into their predictive accuracy. We also investigate the impact of
varying training sample sizes on performance and assess the extrapolation capabilities of PINN
and co-kriging. Finally, we conduct sensitivity analysis by investigating the effects of changing
model parameters and structure. Through this analysis, we offer a comprehensive view of the
strengths and limitations of each PIML method in battery cell degradation diagnostics.

6.1 Training and Test Setup

To assess the effectiveness of the PIML techniques, we trained each model using the initial 10 char-
acterization points, representing approximately seven months of experimental aging data. Subse-
quently, we compared the performance of each PIMLmodel with its respective data-driven baseline
counterpart, which was solely trained on early-life experimental data points. The key distinction
between the PIML methods and their baseline counterparts lies in how they integrate the late-life

15



Physics-Informed Machine Learning for Battery Degradation Diagnostics: A Comparison of State-of-the-Art
Methods

Figure 7: Training and test setup for PIML approaches

simulation data into the training process. These methods use different approaches to incorporate
this data, aiming to achieve improved extrapolation performance in the late-life stage. The general
setup for train/test split is shown in the Fig. 7.
To comprehensively evaluate the performance of the PIMLmodels, we conducted a four-fold cross-
validation study. This approach ensures that the entire experimental dataset, comprising 24 cells,
is thoroughly assessed while considering potential variations across different subsets of the data.
In our study, we divided the dataset into four mutually exclusive folds, with each fold including
one battery cell from each group in the test set. Table 2 summarizes the numbers of training and
test points for each fold.

Table 2: Numbers of training points in 4-fold cross-validation

Method Fold Training Points Testing Points

PINN 1,2 212 200
3,4 212 192

Data Augmentation 1,2 212 200
3,4 212 192

Delta Learning 1,2 964 200
3,4 964 192

Baseline Methods 1,2 180 200
3,4 180 192

In the following subsections, we provide details about the parameter settings implemented in the
training process for PINN and co-kriging, two newly proposed approaches.
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6.1.1 PINN

We opted for a simplified neural network architecture in our PINN approach, comprising two
hidden layers. This choice reflects our emphasis on simplicity and considers the size limitation of
the available data, which makes a complex neural network susceptible to overfitting. By employing
a simpler network architecture with fewer parameters, we intentionally limit the model’s ability
to memorize noise present in the data, thereby promoting improved generalization. To further
mitigate the risk of overfitting, we implemented an early stopping mechanism. This mechanism
involved monitoring the validation loss during training and terminating the training process when
the validation loss started to increase. Additionally, we incorporated cross-validation techniques
and integrated simulated data from the late-life stage into the training process. These strategies
collectively contribute to enhancing the generalization capability of the PINN model and serve
as effective safeguards against overfitting, differentiating it from a conventional neural network
model. During model training, we utilized the Adam optimization algorithm to iteratively update
network weights. The rectified linear unit (ReLU) function was used as the activation function
throughout the training process, defined as:

ReLU(x) = max(0, x) (13)

The hyperparameters of the network are summarized in Table 3.

Table 3: Neural network hyperparameters

Hyperparameter Value

Number hidden of layers 2
Max epoch 1000-2000

Number of hidden neurons 60
Learning rate 0.005-0.01
Mini-batch size 200

Trainable parameters 2240

In the testing phase, the trained network operates independently, removing the need for the physics-
informed loss function. When combined with the half-cell model, the trained network assesses
degradation levels at various stages of cell life. Essentially, the trained network takes over the
manual half-cell fitting process by predicting the half-cell model parameters.

6.1.2 Co-Kriging

Training a kriging (GPR) model with a specific kernel involves determining several parameters
to effectively capture the underlying patterns in the data. The Matern kernel, which is used in
this study, is a versatile kernel function that can be adjusted with a few hyperparameters to fit the
characteristics of the data. The key parameters that should be determined when training a GPR
model with a Matern kernel are summarized in the Table 4.

Table 4: Key parameters for training GPR models with Matern kernel for each fold

Parameter Estimation Model Correction Model

Length scale (l) 5258.770 1.000
Nugget variance (σ2) 0.015 0.006-0.008
Smoothness parameter (ν) 3/2 3/2

17



Physics-Informed Machine Learning for Battery Degradation Diagnostics: A Comparison of State-of-the-Art
Methods

Figure 8: Overall performance comparisons between PIML models and purely data-driven base-
lines

6.2 Error Metrics

For each fold, we calculated an average test error of each individual PIML model for each of the
four health parameters (Q, mp, mn, and LII). These errors measured the average differences
between the predicted parameter values and the corresponding ground truth values, which were
the degradation parameters obtained by fitting the half-cell model to experimental full-cell curves
(see Sec. 3.1). We computed a normalized average of the individual health parameter test errors
across the four folds using the following root mean squared percentage error (RMSPE) formula:

RMSPEt =

√√√√ 1∑4
k=1 Nk

4∑
k=1

Nk∑
i=1

(
ŷti − yti

yti

)2

× 100% (14)

Here, Nk represents the number of test samples, and the subscript t denotes the t-th degradation
parameter. ŷti and yti correspond to the predicted value and true value, respectively, for the t-th
health parameter at the i-th test point. Note that a recent study on degradation diagnostics directly
relevant to this work used “RMSE%" in place of “RMSPE" [30].

6.3 Overall Performance Comparison

The results, illustrating the average test errors for individual health parameters, can be found in Fig.
8. As depicted in Fig. 8, all the PIML methods exhibited improved error rates compared to their
data-driven counterparts. It is noteworthy that the degradation trends of the negative and positive
active mass parameters (mp andmn) were generally more complex and challenging to predict com-
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pared to the capacity and lithium inventory. The degradation of electrode active materials involves
intricate physical and chemical processes, such as solid-state diffusion, phase transformations, and
mechanical stresses. These processes interact in a highly nonlinear and complex manner, making
it challenging to model and predict their combined effects accurately. Despite these inherent dif-
ficulties, the PIML methods demonstrated a high level of accuracy in predicting these parameters.
This highlights the effectiveness of the PIML approaches in capturing the underlying degradation
patterns and enhancing the prediction capabilities for the more intricate parameters.
Specifically, the average test error of the PINN demonstrated a remarkable improvement compared
to its baseline neural network model with the same network structure. The baseline neural net-
work displayed a broader range of errors, implying a higher degree of variability in its predictions’
behavior across different runs. It’s important to note that the increased width of the error bars re-
flects greater variability in performance across different training runs, rather than solely indicating
elevated predictive uncertainty within the trained models. In contrast, the PINN consistently deliv-
ered improved performance in each fold with a smaller range of errors across multiple runs. The
superior performance of the PINN compared to the baseline neural network can be attributed to the
PINN’s enhanced extrapolation capability, as showcased in Fig. 10, stemming from two key fac-
tors. First, the PINN leveraged a concept known as observational bias, as discussed in the research
by Pateras et al. [67]. This means that during the learning (model training) process, a deliberate
physical bias was introduced. This bias can be implemented through the use of physics-informed
data structures, in the context of either simulation or observation. This was achieved by incorporat-
ing simulated late-life stage degradation data alongside early-life experimental data during training.
This approach minimized a sampling error, providing a more comprehensive representation of the
underlying data distribution. In contrast, the baseline neural network relied solely on early-life
experimental data. Second, the PINN adopted an inductive bias [67] approach by integrating the
half-cell model within its loss function (Fig. 6(b)). This integration allowed the PINN to predict
the half-cell model parameters rather than directly predicting the health parameters. This inter-
mediate prediction step ensured the alignment of the final predicted health parameters with the
constraints imposed by the half-cell model. These constraints were incorporated by passing the
network-predicted parameters to the half-cell model and introducing two physics-informed loss
terms to the loss function. These terms were minimized through the training process. In contrast,
the baseline neural network predicted health parameters directly from early-life experimental data
without imposing the constraints informed by the physics-based half-cell model, as shown in Fig.
6(a). To ensure a fair comparison, we performed ten cross-validation runs for each model and
computed the mean and standard deviation of the RMSPE across these runs. Additionally, while
training these models, we regularly assessed their performance using a validation dataset, which
is a distinct subset of the training dataset, including data that the model hasn’t encountered dur-
ing its training phase. An early stopping mechanism was also integrated into the training process.
Particularly, if the validation loss fails to exhibit improvement over a specified number of epochs
(50 in this case), we halt the training prematurely. This strategy aims to prevent the model from
memorizing noise inherent in the training data. By doing so, we ensure that the model version used
for evaluation possesses stronger generalization capabilities.
Regarding co-kriging, we observed significant improvements in the error rates for the positive ac-
tive mass (mp) and capacity (Q) parameters. Additionally, the error rates for the negative active
mass and lithium inventory parameters were also lower compared to the purely data-driven GPR
(kriging) baseline model. It is important to note that the GPR baseline model was trained exclu-
sively on the early-life experimental data and did not incorporate the simulation data from the
half-cell model.
We benchmarked data augmentation and delta learning techniques against a simple elastic net
model (baseline), trained using only the early-life experimental data. Notably, data augmentation
exhibited superior performance to delta learning when trained on data encompassing the entire sim-
ulated parameter range, which includes both medium and high-degradation regions. Specifically,
the data augmentation technique showed substantial improvement, particularly for the positive ac-
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tive mass parameter (mp), compared to the baseline elastic net model. On the other hand, the
error rates for the other three parameters were relatively close for both delta learning and data
augmentation.
In the evaluation of baseline models, the elastic net outperformed both the regular neural network
and GPR (kriging) model in terms of overall accuracy. The baseline neural network exhibited the
lowest overall accuracy, which was somewhat expected given the limited amount of training data
available for network training. Notably, the baseline kriging model demonstrated excellent pre-
dictive capabilities, particularly in estimating capacity (Q) and lithium inventory (LII). However,
when it came to predicting the active mass parameters (mp andmn), the elastic net emerged as the
most accurate baseline model.

6.4 Performance under Different Training Sample Sizes

Here, we examined the effect of including a different number of early-life experimental data points
(nexp) in the training process on the performance and error rates of PIML models. To carry out
this analysis, we kept the test set fixed, following the same methodology as before. In each fold,
the test set consisted of the cell from each group corresponding to that fold. However, we varied
the number of experimental characterization points in the training set; specifically, we explored
training scenarios involving 5, 10, and 15 data points per training cell. This range of scenarios
resulted in a total training point count varying from 90 to 270 across different iterations. To provide
context, the number of data points per cell corresponds to different durations of cycle aging data.
With 5 data points per training cell, we consider 3 months of cycle aging data. With 10 data
points per training cell, we extend the duration to 8 months, and with 15 data points per training
cell, we utilize 12 months of cycling data. These variations allow us to investigate the impact of
including different amounts of early-life data on the model’s performance. The comparative results
of this analysis are summarized in Fig. 9(a) for PIML methods considered. By examining the
relationship between training sample size and model performance, we can determine the optimal
amount of early-life data necessary for achieving accurate predictions and minimizing errors in
PIML models.
As depicted in Fig. 9(a), the performance of the PINN model shows a relatively consistent per-
formance with slight improvements as more early-life experimental data points are included in
the training process. This could be attributed to the utilization of late-stage simulation data in the
training process, as well as the inclusion of constraints on the predicted half-cell model parameters
within the loss function. In contrast, co-kriging exhibits a noticeable improvement in performance
when transitioning from nexp = 90 to nexp = 180 training points. However, the performance
gains become less prominent when further increasing the number of points from nexp = 180 to
nexp = 270. This suggests that the additional training points beyond nexp = 180 benefit less
on enhancing the performance of the co-kriging model. We also observe similar trends for delta
learning and data augmentation techniques, where utilizing nexp = 180 characterization points
from early-life experiments leads to decreased error for health parameters compared to using only
5 characterization points from each cell (nexp = 90). Notably, the average results obtained with
nexp = 180 training points are comparable to those achieved when considering a greater number
of training points. These findings align with the patterns observed in the PINN and co-kriging
models, reinforcing the notion that an initial increase in training sample size can yield substan-
tial improvements in model performance. This suggests that the additional information provided
by nexp = 180 early-life experimental data points (8 months of cycle aging data) is sufficient to
capture key degradation patterns and reduce the prediction error for health parameters. However,
adding more high-fidelity experimental data beyond a certain point does not significantly impact
the model’s performance. This can be attributed to the fact that the models have already been
informed with the physics of late-life stages through the half-cell model. As a result, the incorpora-
tion of additional training points may not provide substantial new insights or improve the models’
predictions.
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Figure 9: Impact of training sample size on the performance of a. PIMLmodels b. baseline models
(nexp represents the total number of experimental data points)
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The baseline model results are shown in Fig. 9(b). When the number of experimental training
points increased from 5 to 15 per cell, we observed a consistent trend of accuracy improvement.
The neural network and elastic net baseline models both show significant improvement with this
training size increase from nexp = 90 to nexp = 180 data points. However, further increasing to
a total of nexp = 270 experimental training points did not significantly reduce the error rates. In
contrast, the baseline kriging model maintained consistent accuracy, regardless of the number of
experimental training data points.

6.5 Extrapolation Performance

In this section, we delve into the extrapolation performance of the proposed PIML models and
highlight the enhanced accuracy achieved by incorporating a physics-based half-cell model during
the training process, specifically for the late-life stage. We conduct an analysis focusing on two
novel approaches, namely PINN and co-kriging, for degradation diagnostics. To accomplish this,
we compare the extrapolation performance of these methods to the purely data-driven counterpart
models for a given test cell, considering two different conditions.
As mentioned in Sec. 5.1, we reinforce the underlying mapping between the dQ/dV (V ) curves
and true health parameters into the PINN by adding the input data from the high-degradation
region. Additionally, we constrain the predicted half-cell model parameters using a half-cell surro-
gate model. Furthermore, in the loss function, we perform peak difference minimization between
the resulting dQ/dV (V ) curves obtained from the predicted half-cell model parameters and the ex-
perimental ones from the training set. To showcase the effect of incorporating these enhancements
into the baseline model, we compare the extrapolation error of a specific test cell (G2C2) with a
C/24 discharge rate and a temperature of 55◦C. We analyze the extrapolation error in the degrada-
tion parameters space for both the physics-informed and regular neural networks. The results are
visualized in Fig. 10, where the bubble size represents the overall error, given by:

C1 + C2 ×RMSE([m̂p, m̂n, ˆLII]T, [mp,mn, LII ]
T) (15)

Here, C1 and C2 are constants, and the root mean squared error (RMSE), denoted as RMSE, is
computed based on the three degradation parameters: mp, mn, and LII . Based on the analysis,
it is evident that as the degree of cell degradation increases, the extrapolation error of the regular
neural network increases significantly compared to the physics-informed approach, particularly in
the medium and late-life stages. This observation demonstrates the effectiveness of incorporating
late-life stage degradation trends by augmenting the neural network with high degradation simu-
lation data and imposing constraints to ensure consistency with the physics-based half-cell model
during the training process. This integration enables the physics-informed network to capture and
generalize the degradation patterns more accurately, leading to improved predictions even in the
presence of severe degradation.
To gain a better understanding of the extrapolation error, we visualize the predicted trajectory of
each health parameter against its true trajectory obtained from the half-cell fitting process. The
detailed results of trajectory predictions by the considered PIML methods for all cells can be
found in the Appendix. Here, we focus on presenting the results for G3C3, a test cell with a higher
discharge rate of C/3 and a temperature of 37◦C. Fig. 11 illustrates the predicted trajectory of
the four health parameters using both the PINN and co-kriging models compared to their baseline
data-driven models. The predicted trajectory of the health parameters by these models exhibits
significant improvement in tracking the true fitted values, particularly in the case of the positive
and negative active mass parameters (mp and mn), when compared to the baseline models. While
the trajectory prediction for the parametersQ and LII also shows improvement, it is relatively less
pronounced compared to the other two parameters. This indicates that incorporating trends from
the high-degradation region and constraining machine learning models with our physics-based
half-cell model is likely to improve the extrapolation of diagnosed degradation trends in the late-
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Figure 10: Extrapolation error comparison for purely data-driven and physics-informed neural
networks

life stage, especially when dealing with more intricate patterns, such as those observed in mp and
mn.

Figure 11: Trajectory prediction comparison between purely data-driven and physics-informed
machine learning models

6.6 Sensitivity Analysis

In this section, we perform an analysis on the sensitivity of two novel approaches, PINN and
co-kriging, proposed in this study for degradation diagnostics. We aim to examine the impact of
modifying their structure or parameters on the diagnostics error rate specifically during the late-life
stage. For the PINN model, we focus on adjusting the weights assigned to each of the three loss
terms incorporated in the physics-informed loss function. As for the co-kriging model, we assess
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the consequences of altering the kernel functions utilized for estimating and correcting within each
kriging model.

6.6.1 PINN

6.6.1.1 Effect of Loss Terms

As described in Sec. 5.1, our implementation of the PINN incorporates three distinct loss
terms. The first term, denoted as (L1), quantifies the disparity between the network’s predictions
of the half-cell model parameters and the actual fitted data. Additionally, we utilize two physics-
informed loss terms. The second term (L2) arises from inputting the network’s predictions into
the half-cell model and ensuring that the obtained health parameters conform to the model’s con-
straints. The third term (L3) considers the constraints on the peak positions of dQ/dV (V ) curves
resulting from the half-cell model. These loss terms collectively contribute to the comprehensive
training of our PINN model.
To evaluate the sensitivity of the PINN model’s performance to each of these terms, we assess the
ratio of their weights (wi) in computing the total loss relative to the summation of all weights (ri).
This can be expressed as:

ri =
wi∑3
k=1 wk

, (i = 1, 2, 3) (16)

This ratio provides insight into the contribution and importance of each loss term in the overall
training process of the PINN model. Initially, to ensure uniform scaling and equal impact of each
loss term on the total loss, we assume a ratio of ri = 1/3 ≈ 0.33 for each of the weights. In Fig.
12, we plot the average prediction error rates for different values of this ratio corresponding to each
loss term.

Figure 12: Sensitivity of prediction error rate of PINN model to each loss term

Five different ratios ranging from 0 to 1 are examined, as shown in Fig. 12. For each value
of each ratio (ri) considered, we modify one weight (wi) while keeping the other two weights
constant, contributing equally to the total loss. In cases where each loss term is considered alone
(ri = 1 for a specific loss term), the error rates tend to be higher. Notably, the first point in each
subplot corresponds to the scenario where the specified loss term is not considered at all. The
second point represents an equal weight assignment (ri = 1/3 ≈ 0.33) to all loss terms in the
loss function. The third and fourth points correspond to ri = 1/2 = 0.5 and ri = 2/3 ≈ 0.66,
respectively. Remarkably, combining the three loss terms (represented by the three middle points
in the subplots) results in lower overall error rates. For diagnosingQ,mn, and LII , assigning equal
weights to the loss terms yields the minimum error rates. However, in the case of mp diagnosis,
increasing the ratio of the first and second loss terms between 0.5 and 1 can lead to more accurate
results. These findings highlight the sensitivity of the PINN model’s performance to the selection
and weighting of different loss terms, emphasizing the importance of careful consideration when
designing the loss function for specific degradation diagnostics tasks.
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6.6.1.2 Effect of Loss Function vs. Augmentation

We conduct a sensitivity analysis to understand the specific impacts of two factors in en-
hancing the performance of the PINN model; the customized loss function and the augmentation
of the training dataset. As mentioned in Sec. 5.1, the augmentation of the training dataset for the
PINN model aimed to maintain consistency with other PIML approaches, ensuring a fair compar-
ison. Additionally, this augmentation was intended to inform the PINN model about degradation
trends in the late-life stage of the cells. While the simulation training data is generated from the
same physical model, the primary enhancement in prediction accuracy stems from incorporating
a customized loss function. To better demonstrate the contribution of each physics-informed
technique, both the baseline neural network model and the PINN model were trained on only
early-life experimental data, as well as on the augmented dataset that included the highest 20%
degradation from the simulation data, consistent with the settings for PINN model training. Ten
repeated training runs were conducted under each training setup, and the RMSPE results averaged
over these two runs are presented in Fig. 13.
Two observations can be made from this figure. First, training the baseline model with the aug-
mented dataset showed only marginal accuracy improvement in predicting health parameters, sug-
gesting that the augmentation alone did not significantly enhance accuracy (Baseline NN vs. Base-
line NN + Augmentation). Second, utilizing only early-life experimental data to train a PINN
model (i.e., excluding the physics-based simulation data from the training set) resulted in only
marginal increases in error rates (PINN vs. PINN + Augmentation).
These comparison results suggest that augmenting a training dataset with simulation data from the
half-cell model and incorporating this model in the loss function do not yield the same effect in
improving the ability of a neural network model to extrapolate. We can say, at least empirically
from Fig. 13, that improved extrapolation capability can be mainly attributed to customizing the
loss function with known physics.

Figure 13: Sensitivity of the PINN model to augmentation and the physics-informed loss function
and sensitivity of the baseline NN model to augmentation

6.6.2 Co-Kriging

As outlined in Sec. 5.3.1, the co-kriging approach allows for the consideration of various types
of kernel functions in each kriging model, depending on prior knowledge and understanding of
the problem. The kernel function plays a crucial role in determining the correlation between data
points and influences the accuracy of interpolation and extrapolation at unobserved locations. Dif-

25



Physics-Informed Machine Learning for Battery Degradation Diagnostics: A Comparison of State-of-the-Art
Methods

ferent kernel functions possess distinct properties and assumptions. Here, we examine the impact
of selecting different kernel functions on the prediction accuracy of the co-kriging approach in
the context of degradation diagnostics. By evaluating the use of various kernels, we gain insights
into the performance and effectiveness of the co-kriging method. The results of employing differ-
ent kernel functions are presented and summarized in Fig. 14. This analysis allows us to assess
the influence of kernel selection on the overall predictive capabilities of the co-kriging approach,
aiding in the determination of the most appropriate kernel function for our specific degradation
diagnostics problem. A detailed description of the tested kernel functions is provided in the 8.

Figure 14: Sensitivity of prediction error rate of co-kriging model to different kernel functions

As shown in Fig. 14, the co-kriging approach using the Matern32 kernel function for each kriging
model exhibits the lowest average error rates across all predicted health parameters. The Matern32
kernel is a well-suited option for certain data types due to its moderate smoothness and flexibility. It
effectively models functions with a moderate level of smoothness while accommodating variability
and irregular patterns commonly found in real-world data.
Belonging to the Matern family of kernels, the Matern32 kernel offers a range of smoothness op-
tions. With a smoothness parameter of 3/2, it strikes a balance between the extremely smooth
RBF kernel (with a smoothness parameter of∞) and the more oscillatory Matern52 kernel (with a
smoothness parameter of 5/2). This moderate level of smoothness allows the model to capture vari-
ations and fluctuations in the data without overly constraining it. Consequently, the Matern32 ker-
nel provides the necessary flexibility to accommodate different patterns and irregularities present
in the data, making it a suitable choice for achieving accurate predictions. However, it is impor-
tant to note that the polynomial kernel outperforms the Matern32 kernel in predicting mn. The
Matern32 kernel’s moderate smoothness assumption may not be ideal for data exhibiting stronger
non-linearities, as observed in the degradation patterns of the negative electrode. On the other
hand, the polynomial kernel offers the flexibility to represent more complex functions with higher-
order polynomials and does not impose any smoothness constraint. This characteristic makes it
well-suited for capturing more intricate variations and non-linear relationships in the data, making
it a better choice for accurately modeling the mn parameter.
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Overall, choosing the right kernel for kriging and co-kriging depends on understanding the data’s
smoothness, trends, and noise levels. For smoother data, the RBF or Matern32 kernels are suitable,
while non-linear patterns are better captured by the Matern52 or polynomial kernels. Evaluating
different kernels, considering data complexity, incorporating domain knowledge, and performing
cross-validation are vital for achieving accurate predictions while maintaining model interpretabil-
ity and alignment with the underlying phenomenon.

7 Discussion

7.1 Qualitative Analysis of PIML Techniques

Selecting the appropriate PIML method for diagnosing battery degradation and general predictive
purposes depends on several critical factors. These include the availability of data, the complexity
of the specified process, and the desired level of accuracy and interpretability of the obtained results
[43, 68, 69]. Each PIML approach discussed in this study has its strengths and limitations, arising
from their distinct approaches to integrating physics-based knowledge and data-driven techniques.
A qualitative comparison of PIML methods is presented in Table 5. In the subsequent paragraphs,
we delve into the specific factors that have been evaluated in Table 5 for each PIML method.

Table 5: A qualitative comparison of state-of-the-art PIML approaches covered in this study

Quantity of Interest PINN Co-Kriging Delta Learning with Enet Data Augmentation
Model Flexibility High Medium Medium Medium
Data Requirements Low Medium-low Medium-low Medium
Ease of Implementation Low Medium High High
Computational Cost Low Low Low Low
Generalization Capability High Medium Medium Medium
Interpretability High Medium-low Medium-low Low
Prediction Accuracy High High High High
Uncertainty Quantification Capability Medium-low High Low Low
Scalability to Large Applications High High High High
Applicability to Different Problem Types Medium-low Medium-low Medium High

7.1.1 Model Flexibility

Model flexibility is a key consideration in PIML methods, and it refers to the capability of each
method to adapt to various types of physical models. PINNs, in this context, demonstrate a high
degree of flexibility due to their ability to directly incorporate complex physics-based mappings
and equations, including PDEs, into their loss function during the training process. A multitude of
extensions for PINNs have been explored in the literature, encompassing areas such as energy con-
servation laws [70], finite element method [71] and stochastic and fractional PDEs for multi-scale
problems [72, 73]. This distinctive capability empowers PINNs to adeptly capture intricate phys-
ical relationships, thus reducing the reliance on solely simulated physics-based data. Conversely,
other PIML techniques considered here, may require synthetic simulation data as an integral part
of their training process. This dependence on simulated data can potentially impose limitations,
particularly when confronted with highly complex equations characteristic of inverse and ill-posed
problems [43].

7.1.2 Data Requirements

The data requirements for each PIML method are vital considerations, including factors such as
the quantity of data needed, data quality, and the availability of high-fidelity data for calibration
or validation. These requirements vary among the methods, necessitating a comprehensive under-
standing of their effective implementation in practical applications. For PINNs, the amount of
data required depends on the depth of the neural network used. Shallow neural networks, as em-
ployed in this study, may not demand an excessively large dataset for training. However, a notable
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strength of PINNs is their ability to achieve high accuracies even with limited amounts of data [44].
This characteristic makes PINNs particularly valuable in situations where data availability is lim-
ited, providing a significant advantage over other methods. In contrast, delta learning, as a hybrid
multi-fidelity model, relies heavily on high-fidelity data, which might be scarce compared to the
more easily accessible low-fidelity data points [45]. To address this challenge, the delta learning
approach introduces a corrector model to refine estimations based on low-fidelity data, making it
more feasible to achieve accurate results even with limited high-fidelity data. Careful selection and
filtering of the high-fidelity data are crucial in ensuring its effectiveness in enhancing the overall
model accuracy [65]. Data augmentation, on the other hand, relies on low-fidelity synthetic data
generated from a physics-based model. The success of data augmentation largely hinges on the rel-
evance and diversity of the synthetic data points used [68, 74]. Therefore, meticulous consideration
in generating synthetic data is vital to achieve meaningful and reliable results.

7.1.3 Ease of Implementation

Ease of implementation is another factor when selecting a PIML method for a specific problem
[68, 69]. Some PIML approaches offer straightforward algorithms or readily available libraries,
which significantly simplifies their implementation process. In this context, both delta learning
and data augmentation can be easily applied using the readily available machine learning packages
in Python and MATLAB [45]. However, PINNs present a relatively more challenging implemen-
tation compared to delta learning and data augmentation. Customizing the loss function in a way
that incorporates the physics-based constraints on the network outputs and ensuring consistency
for gradient computation requires careful attention. Furthermore, co-kriging demands more con-
sideration towards hyperparameter tuning and kernel selection [65], compared to delta learning
(when using simpler models like the elastic net), and data augmentation.

7.1.4 Computational Cost

The main challenges of using PIML for online prediction are the cost and time required for train-
ing and inference processes [69]. Computational cost is inherently intertwined with complexity of
the physics-based model and the machine learning model [45]. In the context of the study, where
online estimation applications are targeted, all the considered methods have been specifically de-
signed and implemented with computational efficiency in mind.

7.1.5 Scalability to Large Applications

Scalability assesses the ability of each method to scale with increasing data sizes and problem
complexities. The ability to scale effectively is particularly important for real-world applications,
where datasets can be vast, and the problems may involve intricate physical processes. The PIML
methods demonstrated the capability to effectively handle larger dataset sizes and more complex
problem scenarios within the context of this study, as well as for other problem domains [75].
However, when dealing with larger-sized problems, careful considerations and customizations are
required to ensure optimal performance. Scaling to larger datasets and more complex problems
may involve adjustments in computational resources, algorithmic optimizations, or fine-tuning of
hyperparameters. It should be noted that among the considered methods here, data augmentation
emerges as a relatively more straightforward approach to scale from small-scale problems to larger
ones [76]. The inherent advantage of data augmentation lies in its ability to utilize expanded
dataset, allowing for seamless extensions to larger datasets without significant constraints on data
availability.

7.1.6 Generalization Capability

Generalization capability is another crucial factor that investigates how well each method can gen-
eralize to unseen data or different operating conditions while considering issues such as overfitting.
In this regard, PINNs exhibit superior performance compared to other PIML methods. Unlike
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other methods that rely solely on generated physics-based data for training, PINNs can directly
incorporate physics-based constraints into the loss function, enhancing their ability to generalize
to unseen data and different operating conditions [69, 77].In contrast, delta learning and data aug-
mentation depend on specific data trends during training, leading to relatively lower generalization
capabilities.

7.1.7 Interpretability

Interpretability examines how well each method allows for interpretability and physical insights.
Some methods provide explicit representations of the underlying physical processes, while others
may have more black-box nature [78]. PINNs excel in this regard, as the physics-based constraints
are explicitly incorporated into the loss function, enabling clear mathematical descriptions of their
influence on the model outputs [69]. On the other hand, data augmentation may lack the same
level of interpretability since its reliance on synthetic data may not directly reveal the underlying
relationships between inputs and outputs.

7.1.8 Prediction Accuracy

Traditional machine learning methods often lack the ability to extrapolate, which can be solved by
the PIML methods [79]. Prediction accuracy evaluates the predictive performance of each PIML
method on both training and test datasets, which, as discussed extensively in this study, all the
PIML methods showed promising results.

7.1.9 Applicability to Different Problem Types

Applicability to different problem types assesses whether each method is well-suited to specific
problem types or domains. In this regard, PINNs can be more challenging to apply in some cases,
as the explicit definition of physics-based mapping functions between inputs and outputs may not
be readily available [43]. However, PINNs become a viable option when generating training data
from physics-based models is more difficult than incorporating equations into the loss function
and training process. Similarly, co-kriging faces challenges when defining correlations between
different fidelity levels of data is not straightforward [80]. Conversely, delta learning, in general,
exhibits adaptability to different problem structures by selecting appropriate regression models,
making it applicable to various scenarios. On the other hand, data augmentation stands out as
the most versatile approach across various fields and applications. Its ability to use synthetic
simulation data from physics-based models for training purposes makes it a straightforward and
effective choice [68].

7.1.10 Uncertainty Quantification Capability

Lastly, uncertainty quantification examines whether each method provides a means to quantify un-
certainties in predictions. In the case of PINNs, as they are not inherently probabilistic, methods
like ensembles [81], quantile regression [82], and Bayesian neural networks [83, 84] should be con-
sidered to quantify uncertainty. Each of these techniques offers a unique perspective on capturing
and expressing uncertainties inherent in predictive modeling, particularly in scenarios involving
short-term data. Ensembles involve training multiple models independently and aggregating their
predictions. Quantile regression is a technique that enables the estimation of different quantiles
of the predictive distribution. In the context of PINNs, quantile regression allows for modeling a
range of possible outcomes and their associated uncertainties. Bayesian neural networks present
another avenue for incorporating uncertainty into PINNs. Unlike conventional neural networks,
Bayesian neural networks treat model parameters as probability distributions. This probabilistic
approach allows for the modeling of parameter uncertainty, offering a more nuanced representation
of the model’s predictions. On the other hand, co-kriging is a powerful approach to uncertainty
quantification. It naturally accounts for uncertainty by modeling correlations and providing pre-
diction variances [85]. Co-kriging explicitly models the covariance structure between different
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variables, capturing the correlation between their variations. The incorporation of a well-defined
covariance structure enables co-kriging to effectively propagate uncertainties across variables [84].
For delta learning and data augmentation with elastic net model, while they may not inherently
provide uncertainty estimates, it is possible to introduce uncertainty quantification methods such
as Bayesian [86] and bootstrap methods [87] to enhance the prediction reliability and quantify
uncertainties.
In summary, making informed decisions based on these factors and considerations is required
to effectively apply PIML methods in different scenarios. In addition, ongoing research and ad-
vancements in various PIML methods continue to expand their applicability and improve their
performance, making it important to stay updated with the latest developments in the field.

7.2 Method Selection Guidelines

PIML techniques are primarily applied to address and solve physics or engineering problems in sit-
uations where acquiring data and formulating tasks can be particularly challenging for researchers
who lack domain knowledge and experience. Moreover, current research heavily depends on
domain-specific datasets, complicating the identification of best practices for specific problems.
Here, we will succinctly summarize the conclusions drawn from our comprehensive study and the
reviewed literature, offering insights into when to choose each PIML technique.

7.2.1 PINN

PINNs excel in situations where the underlying physics of the problem can be represented by a
set of differentiable mapping functions. Although PINNs can achieve high accuracy with a lim-
ited amount of high-fidelity data, it is important to note that implementing this method requires
more intricacy compared to other PIML approaches in terms of both mathematics and program-
ming resources [69]. Creating a loss function that incorporates physics-informed terms with a
closely matched convergence rate, while also ensuring that the neural network’s computational
graph is interconnected to facilitate gradient calculations for outputs with respect to inputs, can be
a challenging task [88]. Therefore, careful consideration and expertise are needed to effectively
employ PINNs for a given problem. However, once implemented, PINNs tend to generalize well
to new, unseen data and are less prone to overfitting. In the specific case of degradation diagnostics
for lithium-ion batteries, the prediction results of the PINN model for health parameters at a late-
life stage show a significant improvement compared to the purely data-driven counterpart. When
compared to other PIML approaches presented, the PINN methodology demonstrated superior ac-
curacy and consistency in predicting more intricate degradation trends, specifically in the loss of
positive and negative active mass (mp and mn).

7.2.2 Delta Learning

Delta learning offers ease of implementation and flexibility by allowing the selection of any re-
gression machine learning model as the estimator and corrector models. This adaptability makes it
an attractive option, especially when the physical model is not explicitly known, but limited high-
fidelity data is available through experiments. It’s crucial to select and evaluate machine learning
models carefully to ensure accuracy and reliability in the delta learning approach. To achieve op-
timal results, diverse sampling of high-fidelity points across the entire design space is important,
particularly for accurate extrapolation.

7.2.2.1 Delta Learning with Elastic Net Regression

For cases where predicted trends are not overly intricate, opting for simpler models like
elastic net can be advantageous. Elastic net effectively captures underlying patterns and provides
accurate predictions. This is particularly valuable when prioritizing ease of implementation and
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time efficiency. In the specific study’s case of predicting capacity (Q) and lithium inventory
indicator (LII), the elastic net model showed good performance. The choice of elastic net is also
suitable due to the small size of the training data, which reduces the risk of overfitting associated
with more complex models [30].

7.2.2.2 Delta Learning with Kriging (Co-Kriging)

Incorporating kriging (GPR) models introduces a powerful approach known as co-kriging,
which is effective in modeling multi-fidelity data problems. Co-kriging leverages correlated
fidelity data to fill in missing values and estimate uncertainties in predicted values. It facilitates
the quantification of result reliability. The co-kriging method is particularly useful for predicting
capacity (Q) and lithium inventory indicator (LII), as observed in this study. The capacity predic-
tion using co-kriging exhibited a near-zero error rate, showcasing its high accuracy. Additionally,
co-kriging showed a significant improvement in predicting the positive active mass parameter
(mp).

7.2.3 Data Augmentation

In situations where the underlying physical model or correlations between different fidelity sources
of data are not well understood or difficult to formulate explicitly, data augmentation offers a data-
driven framework to improve model performance. By generating additional training samples, data
augmentation caters to various cost considerations based on available resources. This approach
is commonly used alongside deep learning models, enabling them to effectively capture complex
non-linear relationships, as extensively documented in the literature. However, even with a simple
elastic net model, data augmentation has demonstrated effectiveness, as evidenced in the case of
this study. The method’s ease of implementation and computational efficiency makes it particularly
advantageous for rapid prototyping and large-scale applications.

8 Conclusion

In this study, we introduced two PIML approaches: PINN and co-kriging. These approaches were
designed for diagnosing cell degradation without depending on late-life aging data. Through a
comparative analysis, we evaluated these methods alongside delta learning and data augmentation.
We used battery aging data from a long-term cycling experiment for this evaluation. The compara-
tive results highlighted the superior performance of the PIML approaches compared to their purely
data-driven baseline models. This performance improvement was especially notable in terms of ex-
trapolation during the late-life stage of degradation. Additionally, we conducted a sensitivity anal-
ysis to gain deeper insights into implementing the two new approaches: PINN and co-kriging. We
also engaged in a detailed discussion of the advantages and limitations of each method, grounded
in the context of battery degradation diagnostics and existing literature. Furthermore, we provided
guidance on when to choose a specific PIML method based on the insights gathered. This study
contributes valuable knowledge to the realm of battery degradation diagnostics and PIML method
selection.
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Appendix

A1. Degradation quantification using a half-cell model

In a half-cell model, the pseudo-full-cell OCV curve can be constructed and mathematically ex-
pressed as follows,

Vc(Q)|Q=Qc = Vp(qp)|qp=Q−δp
mp

− Vn(qn)|qn=Q−δn
mn

where Vc(Q) is the pseudo-full-cell OCV curve, Qc refers to the cell capacity at different states
of charge, V (q) is a half-cell curve with specific capacity q (mAh/g), m is the active mass (g),
and δ is the half-cell curve slippage (mAh). The subscripts p and n correspond to the positive and
negative electrodes (PE and NE). The two slippage parameters, δp and δn, quantify the horizontal
distance of the left endpoint of the positive and negative half-cell curves to Qc = 0.
Then, the differential voltage curve (dV/dQ(Q)) of a half-cell model can be derived as follows,

dVc

dQ
(Q)|Q=Qc =

1

mp

Vp(qp)

dqp
|
qp=

Q−δp
mp

− 1

mn

dVn(qn)

dqn
|qn=Q−δn

mn

In this work, we follow a manual approach, presented in [30], to fit a half-cell model to cells by
adjusting four half-cell parameters (mp,mn, δp, and δn). This manual process focuses on: 1. align-
ing peaks from the reconstructed dV/dQ(Q) curves to the peaks from experimental dV/dQ(Q)
curves; 2. matching the reconstructed OCV curves to experimental QV curves, which considers
both the endpoint locations and the overall shape. First,mn and δn are adjusted to match the peaks
on dV/dQ(Q) curves since the negative electrodes contribute major peaks in the OCV. After tun-
ing the half-cell curve of the negative electrode, mp and δp are used to adjust peak magnitudes
on dV/dQ(Q) curves and line up the endpoints of QV curves. This fitting process is repeated to
fine-tune the fitting results to match the fitted curves as much as possible.

A2. Automatic Fitting vs. Manual Fitting

Here, we conducted a comparative analysis between manual and automatic approaches for fitting
the half-cell model to justify the necessity of the development of the PIML methods using the man-
ual fitting approach. We compared the positive and negative positive mass estimates by manual
fitting, as outlined in Sec. 3, with half-cell parameter estimates by nonlinear optimization using
the original half-cell potential data (i.e., automatic fitting). This comparison additionally included
the PINN model, trained on parameter estimates by the manual fitting approach. It was performed
on two cells destructively analyzed after certain aging periods as an experimental validation of pos-
itive and negative active mass estimations. Automatic fitting employed a bi-objective loss function
to match the endpoints of the simulated and experimental voltage vs. capacity (QV ) curves and im-
prove the overall agreement between these two curves by minimizing an RMSE loss. Experimental
validation initially involved recovering and treating two samples from each working electrode of
the two selected cells. Then, each sample was coupled with lithium metal to build coin half-cells.
These coin half-cells were cycled at a slow rate to obtain their capacity. Finally, the full cells re-
maining positive and negative active mass was calculated based on the nominal specific capacity
and area ratio [56]. The comparison results are depicted in Fig. 15, revealing certain limitations of
nonlinear optimization (automatic fitting).

• First, the optimization problem for automatic fitting has multiple local minima, leading to
run-to-run variability in optimal active mass parameters depending on the initial guess. We
illustrated this variability by presenting the mean and error bars (spread) derived from five
optimization runs, each starting at a different initial guess.

• Second, manual fitting considers phase transitions by matching characteristic features (e.g.,
the position and height of a peak) of simulated and experimental dQ/dV (V ) curves. How-
ever, incorporating feature matching into nonlinear optimization could be challenging due
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to the need to automatically extract features and track the trend of how each half-cell model
parameter evolves.

• Third, even if such optimization were feasible, its implementation on a battery manage-
ment system would be impractical due to the extensive tuning required. The use of an
optimization strategy reliant on iterative tuning for feature matching is likely to surpass the
time constraints imposed by real-time battery management requirements. Moreover, the
challenge of tuning the system to generate reliable initial parameter estimates for diverse
operating conditions introduces an additional layer of complexity.

In contrast, building machine learning models for degradation diagnostics reduces the time cost
associated with manual fitting and, mostly importantly, automates health parameter estimation by
taking a measured dQ/dV (V ) curve as the model input, running a forward pass of the model, and
producing an estimate of the health parameters as the output. This automated process is particularly
suitable for on-board battery management system applications where extensive tuning is infeasible.
Additionally, the comparison results in Fig. 15 show that active mass estimates by the machine
learning method (i.e., PINN) align well with those by manual fitting; the former offers the addi-
tional benefits of reduced time cost and automation. Both methods generally agreed better with ex-
perimental validation than automatic fitting. In conclusion, our machine learning approach strikes
a practical balance between accuracy and feasibility for real-world applications.

A3. Kernel functions in GPR (kriging)

Linear kernel

The linear kernel models a linear relationship between input data points. Let x and x′ be two input
feature vectors. The linear kernel function, denoted as klinear(x,x′), is defined as the dot product
of the two feature vectors:

klinear(x,x
′) = xTx′

Radial basis function (RBF) kernel

The RBF kernel, also known as the squared exponential kernel, captures smooth, non-linear re-
lationships between data points.It measures the similarity between two data points based on the
distance between them in the feature space. It assigns higher similarity (covariance) to data points
that are closer to each other and lower similarity to data points that are farther apart. The RBF
kernel is commonly used when the assumption of smoothness and stationarity is reasonable in the
data.

kRBF(x,x
′) = exp

(
−∥x− x′∥2

2σ2

)
where σ is the kernel bandwidth or length scale parameter. It determines the "width" of the kernel
and controls the smoothness of the resulting function.

Exponential kernel

The exponential kernel is similar to the RBF kernel and also captures smooth, non-linear relation-
ships. However, it tends to have a faster decay, making it more suitable for cases where data points
are expected to be less correlated as the distance between them increases.

kexp(x,x
′) = exp

(
−∥x− x′∥

2σ

)
Rational quadratic kernel

The rational quadratic kernel is a smooth non-linear kernel with a tunable parameter α. It can
capture a wide range of smoothness levels in the data and can be useful when the underlying
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Figure 15: Comparison of active mass estimates by PINN, manual and automatic fitting, and ex-
perimental validation for two selected cells

relationship is not strictly linear or purely smooth.

kRQ(x,x
′) =

(
1 +

∥x− x′∥2

2ασ2

)−α

The value of α controls the balance between the linear and non-linear components of the kernel.
When α is large, the RQ kernel behaves more like the RBF kernel, emphasizing non-linear patterns.
On the other hand, when α is close to zero, the RQ kernel behaves more like the linear kernel,
capturing linear relationships in the data.
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Polynomial kernel

The polynomial kernel models polynomial relationships between data points. It can be useful when
the relationship between the inputs is known to be polynomial in nature. It is a generalization of
the linear kernel and can capture various degrees of polynomial relationships between data points.

kpoly(x,x
′) = (xTx′ + c)d

where d is the degree of the polynomial, and c is an optional constant term that can be included to
control the bias of the polynomial expansion.

Matérn 3/2 kernel

The Matern kernel family in GPR modeling includes two specific variants known as Matern32
and Matern52 kernels. Both kernels are characterized by their ability to model different levels
of smoothness in the data, making them useful in various applications. The Matérn 3/2 kernel is
used to model data with sharp changes and smoothness. It is commonly used when the data is
expected to have abrupt variations, but some level of smoothness is also present, making it suitable
for modeling real-world data with moderate roughness. It is also computationally efficient and
suitable for datasets with a moderate number of data points.

kMat32(x,x
′) =

(
1 +

√
3∥x− x′∥

σ

)
exp

(
−
√
3∥x− x′∥

σ

)
where ρ is the length scale parameter.

Matérn 5/2 kernel

The Matern52 kernel is another member of the Matern family, with a smoothness parameter of
ν = 5/2 (differentiable twice). It is smoother than the Matern32 kernel and can effectively model
data with higher roughness or irregularity.

kMat52(x,x
′) =

(
1 +

√
5∥x− x′∥

σ
+

5∥x− x′∥2

3σ2

)
exp

(
−
√
5∥x− x′∥

σ

)
where ρ is the length scale parameter.

A4. Trajectory prediction results

Here, we present the trajectory prediction results for all the test cells across six groups. The plots
display the predicted health parameters generated by each of the four PIML methods considered,
alongside the fitted true values.
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Figure 16: Trajectory prediction results for the first fold (first cell of each group)
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Figure 17: Trajectory prediction results for the second fold (second cell of each group)
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Figure 18: Trajectory prediction results for the third fold (third cell of each group)
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Figure 19: Trajectory prediction results for the forth fold (forth cell of each group)
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A5. Half-cell surrogate model

Figure 20: Training half-cell surrogate model

As described in Sec. 5.1, we integrate a half-cell surrogate model into the loss function of the
PINN model to ensure both differentiability and consistency of the computation graph between the
inputs and outputs. Here, we provide detailed information about how we implemented the half-cell
surrogate model for this purpose.
As depicted in Fig. 20, we initially utilize the half-cell model to obtain health parameters and
two simulated dQ/dV (V ) peak positions(voltage values) by inputting perturbed values of the half-
cell model parameters (δp, δn,mp,mn). The objective is to encompass a broader range of possible
parameters for inputting into the half-cell model. This is necessary because in the loss function,
we need to be able to map the deviated values of half-cell parameters, which are predicted by the
network, to health parameters.
The perturbed values are obtained through standard normal sampling from a 15% range of perturba-
tion for each parameter. Subsequently, we use the true values, perturbed values, and corresponding
degradation and peak position values as input and output values, respectively. Using these values,
we establish a straightforward mapping function between the half-cell model parameters and capac-
ity, lithium inventory indicator, and two dQ/dV (V ) curves peak voltage values (Q, LII , Vsim

peak1
,

Vsim
peak2

) to train a surrogate neural network (fhc) with perfect accuracy in mapping these values.
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