

Reaction calorimetry and structural crystal properties of non-ideal binary rhabdophane solid solutions ($\text{Ce}_{1-x}\text{REE}_x\text{PO}_4 \cdot n\text{H}_2\text{O}$)

Alexander P. Gysi^{*a,b}, Nicole C. Hurtig^b, Hannah Juan Han^a, Emma C. Kindall^c, Xiaofeng Guo^c, Dmitrii A. Kulik^d, George Dan Miron^d

^a New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA

^b Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA

^c Department of Chemistry, Washington State University, Pullman, WA 99164, USA

^d Paul Scherrer Institute, Laboratory for Waste Management, Villigen PSI 5232,

13 Switzerland

14

* Corresponding author: e-mail, alexander.gysi@nmt.edu

Tel: +1 575-835-5754

To be submitted to GCA, for the Special Issue “Hydrothermal Geochemistry and Beyond: A Tribute to Terry M. Seward”

REVISION 1

28 Keywords: rhabdophane; calorimetry; thermodynamics; Raman spectroscopy; X-ray
29 diffraction

30 **Abstract**

31 Rhabdophane is a hydrous phosphate that commonly replaces monazite as a weathering product
32 in critical mineral deposits during the alteration of rare earth elements (REE) bearing
33 carbonatites and alkaline igneous complexes. It is an important host to the light (L)REE (i.e., La
34 to Gd) but the stability and structure of binary solid solutions between the Ce and the other
35 LREE endmembers have not yet been determined experimentally. Here we present room
36 temperature calorimetric experiments that were used to measure the enthalpy of precipitation of
37 rhabdophane ($\text{Ce}_{1-x}\text{REE}_x\text{PO}_4 \cdot n\text{H}_2\text{O}$; REE= La, Pr, Nd, Sm, Eu, and Gd). The solids were
38 characterized using X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and
39 the role of water in the rhabdophane structure was further determined using thermogravimetric
40 analysis coupled with differential scanning calorimetry. The calorimetric experiments indicate a
41 non-ideal behavior for all of the binary solid solutions investigated with an excess enthalpy of
42 mixing (ΔH^{ex}) described by a 2- to 3-term Guggenheim parameters equation. The solid solutions
43 were categorized into three groups: 1) binary Ce-La and Ce-Pr which display positive ΔH^{ex}
44 values with a slight asymmetry; 2) binary Ce-Nd and Ce-Sm which display negative ΔH^{ex} values
45 with a nearly symmetric shape; 3) Ce-Eu and Ce-Gd which display both negative and positive
46 ΔH^{ex} values with nearly symmetric shape. The excess Gibbs energy (ΔG^{ex}) of the solid solutions
47 was further investigated using a thermodynamic analysis approach of aqueous-solid solution
48 equilibria and the optimization programs GEMS and GEMSFITS. The resulting ΔG^{ex} values
49 combined with the calorimetric ΔH^{ex} values indicate that there is likely an excess entropy
50 contribution implying important short-range structural modifications in the solid solutions
51 dependent on the deviation of the REE ionic radii from the size of Ce^{3+} . These observations

52 corroborate with the trends in the Raman ν_1 stretching bands of the PO_4 -site. The excess molar
53 volumes determined from X-ray diffraction analysis further indicate an overall asymmetric
54 behavior in all of the studied binary solid solutions, which becomes increasingly important from
55 La to Gd. The pronounced short-range order-disorder occurring in groups 2 and 3 solid solutions
56 mimics some of the behavior observed from previous studies in anhydrous monazite solid
57 solutions. This study highlights the potential to use the chemistry and the structural modifications
58 of rhabdophane as potential indicators of formation conditions in geologic systems and permits
59 improving our modeling capabilities of REE partitioning in critical minerals systems.

60

61

62 **1. INTRODUCTION**

63 Monazite is the monoclinic ($P2_1/n$) anhydrous form of the REE phosphates and a major host to
64 the light (L)REE in natural systems including La to Gd (Ni et al., 1995). Experimental studies
65 have convincingly shown that the solubility of REE is however controlled by the mineral
66 rhabdophane at temperatures below ~ 100 °C (Du Fou de Kerdaniel et al., 2007; Gausse et al.,
67 2016; Ochiai and Utsunomiya, 2017; Arinicheva et al., 2018). The latter is a metastable hydrated
68 REE phosphate ($REEPO_4 \cdot 0.667H_2O$) with a monoclinic ($C2$) structure (Mesbah et al., 2014;
69 Rafiuddin and Grosvenor, 2016). Rhabdophane is commonly found as an alteration product of
70 monazite associated to surface weathering of carbonatites, which can lead to important
71 secondary REE enrichment such as in the Bear Lodge REE deposit (Andersen et al., 2016, 2017;
72 Hutchinson et al., 2022). Low temperature fluid-mediated dissolution and re-precipitation
73 processes have also important implications for resetting monazite ages (Berger et al., 2008;
74 Williams et al., 2011; Seydoux-Guillaume et al., 2012). Furthermore, the low solubility of REE
75 phosphates (e.g. Byrne and Kim, 1993; Gausse et al., 2016), makes them ideal solids for
76 immobilizing actinides associated to radioactive wastes (Du Fou de Kerdaniel et al., 2007;
77 Dacheux et al., 2013). A prerequisite to model the stability of these REE phosphates is however
78 knowledge of their thermodynamic properties. Particularly, the REE phosphates form solid
79 solutions in natural systems, which can potentially be linked to physicochemical conditions
80 prevailing during their genesis in fluid-rock systems.

81 The solubility of both, monazite and rhabdophane, have been determined as a function of
82 temperature for all of the endmembers (e.g. Poitrasson et al., 2004; Cetiner et al., 2005; Gausse
83 et al., 2016; Gysi et al., 2018; Van Hoozen et al., 2020), and their thermodynamic properties have

84 been determined using calorimetry including enthalpy, entropy, and heat capacity (e.g. Ushakov
85 et al., 2001; Thiriet et al., 2004, 2005; Popa and Konings, 2006; Gavrichev et al., 2008, 2009,
86 2015, 2016; Shelyug et al., 2018). Only a few experimental studies have investigated the mixing
87 and structural properties of monazite for binary solid solutions involving La, Nd, Eu, and Gd
88 (e.g. Geisler et al., 2016; Hirsch et al., 2017; Neumeier et al., 2017; Huittinen et al., 2017;
89 Schlenz et al., 2019), which generally exhibit a non-ideal solid solution behavior that tends to
90 become more pronounced with increased differences ionic radii of the substituting REE. In
91 contrast, the properties of rhabdophane solid solutions, particularly those involving the Ce
92 endmembers, are still unknown. The latter are important because they control the mobility of the
93 LREE in natural systems according to the common occurrences of Ce-rich rhabdophane
94 (Andersen et al., 2017; Ichimura et al., 2020; Giovannini et al., 2021; Cook et al., 2023). An
95 interesting observation made in the experimental study by Liu et al. (2022) is the apparent
96 influence of the hydrated/non-hydrated sites of the rhabdophane structure on the incorporation of
97 Nd^{3+} into rhabdophane-(Ce), which has not yet been explored extensively. Previous experimental
98 work on rhabdophane solid solutions has been largely focused on the incorporation of actinides
99 in the rhabdophane structure (Qin et al., 2017; Huittinen et al., 2018) and optical/microstructural
100 and thermal properties of a few mixed rhabdophane compositions (Colomer et al., 2018; Liu et
101 al., 2022). Therefore, there is need to determine the thermodynamic properties of solid solutions,
102 particularly for the binary system involving the Ce-rich rhabdophane compositional endmember
103 prevalent in natural systems.

104 In this study, room temperature calorimetric experiments are presented for the
105 determination of the enthalpy of precipitation of the entire LREE binary rhabdophane solid

106 solution series ($\text{Ce}_{1-x}\text{REE}_x\text{PO}_4 \cdot n\text{H}_2\text{O}$ (REE = La, Pr, Nd, Sm, Eu, Gd). These experiments are
107 used to explore the hypothesis that the rhabdophane solid solutions display a non-ideal solid
108 solution controlled by the ionic radii of the REE, similar to the behavior of the anhydrous REE
109 phosphates. The enthalpies of precipitation are used to retrieve the excess enthalpy mixing for
110 these rhabdophane solid solutions and the precipitated solids were further characterized using
111 powder X-ray diffraction, Raman spectroscopy, thermogravimetric analysis and differential
112 scanning calorimetry. These methods allow determining the unit cell parameters of rhabdophane,
113 their water contents, and their non-ideal solid solution behavior (i.e., excess volume of mixing
114 and molecular vibrational properties). The experimental investigation was further complemented
115 by a thermodynamic analysis using aqueous-solid solution equilibria modeling and
116 thermodynamic parameter optimizations using GEMS and GEMSFITS (Kulik et al., 2013;
117 Miron et al., 2015), for deriving the excess Gibbs energy of mixing. These combined approaches
118 were used to derive a thermodynamic solid solution model of the full binary rhabdophane solid
119 solution series.

120

121 **2. METHODS**

122 **2.1. Materials**

123 Two types of stock solutions were prepared for the rhabdophane precipitation experiments. Rare
124 earth elements (i.e., La, Ce, Nd, Pr, Eu, and Gd) bearing stock solutions were prepared by
125 dissolving solid REE nitrates (Alfa Aesar, 99.99 to 99.999 % purity) into Milli-Q water (18.2
126 $\text{M}\Omega\cdot\text{cm}$) to reach a concentration of ~ 250 mmol/kg REE. The phosphate-bearing solutions (~ 40
127 mmol/kg P) were prepared by dissolving solid $\text{NH}_4\text{H}_2\text{PO}_4$ (Acros Organics Chemicals, 99.999 %

128 purity, trace metal basis) into Milli-Q water. Blank solutions for sample dilutions and element
129 analysis were prepared by adding nitric acid (Fisher Scientific, trace element grade) into Milli-Q
130 water to reach a matrix concentration of 2% HNO_3 . Stock solutions of 0.1 M hydrochloric acid
131 (Inorganic Venture, NIST traceable) and TRIS powder (Sigma-Aldrich, 99.9 % purity) were used
132 for standardizing the calorimeter.

133

134 **2.2. Experimental methods**

135 *2.2.1. Reaction calorimetry*

136 Calorimetric experiments were conducted at room temperature (20.0 ± 1.0 °C) using a Parr 6755
137 reaction calorimeter equipped with a Parr 6772 high-precision thermometer. The calorimeter
138 consists of a silver-lined Dewar flask, a glass reaction cell with a Teflon dish and a stirring and
139 an opening mechanisms. This calorimetric method allows for mixing of two aqueous solutions
140 brought close to thermal equilibrium and was adapted here based on the carbonate solid solutions
141 precipitation study by Katsikopoulos et al. (2009). Here, the precipitation of REE phosphates
142 was induced by mixing the REE-bearing nitrate with the phosphate-bearing stock solution
143 according to the following reaction,

144

146

147 The calorimeter was first standardized each day by dissolving 0.50 g of TRIS buffer into 100 g
148 of 0.1 M HCl solution to determine its heat content. A typical REE phosphate precipitation
149 experiment consists of first loading separately the glass cell with 2 g of the ~250 mmol/kg

150 dissolved REE-bearing nitrate stock solution and loading of the Deware flask with 100 g of the
151 ~40 mmol/kg phosphate-bearing stock solution. For endmember rhabdophane synthesis
152 experiments, only a single REE nitrate solution (i.e., La, Ce, Nd, Pr, Eu, or Gd) was added to the
153 cell; for binary solid solution synthesis experiments, the REE stock solutions of individual
154 endmembers were added in varying mole fraction proportions in each experiment. The
155 experimental run IDs indicate the mixing proportions of these starting solutions, which are also
156 close to the measured compositions of the synthesized solids (Table 1).

157 At the beginning of an experiment, the calorimeter is first assembled and the closed glass
158 cell is brought in thermal equilibrium for ~4 h with the solution in the Deware flask. After
159 thermal equilibration, the cell is stirred and the calorimeter equilibrated for ~10 min before the
160 glass cell is opened to allow mixing of the REE-bearing nitrate and the phosphate-bearing
161 solutions which results in instantaneous precipitation of rhabdophane. The measured temperature
162 difference and standardized heat content of the calorimeters are used to determine the enthalpy of
163 precipitation ($\Delta H_{\text{ppt ss}}$) at room temperature; the mole amounts of precipitates are determined from
164 the difference in REE concentrations measured in the starting REE stock solutions and the final
165 REE concentrations of the reacted and filtered experimental solutions. Each experiment was
166 carried out in duplicates to quadruples with the same endmember proportions to determine
167 the experimental uncertainty. Solids were collected by filtration of the experimental solutions
168 through a 0.45 μm membrane filter using a vacuum pump and then oven-dried overnight at ~60–
169 75 °C. These low temperatures are used to avoid any significant dehydration of structural water,
170 which was observed to occur above 100–250 °C (Shelyug et al., 2018). The dried solids were
171 then stored in a desiccator before further characterization. The solution compositions were

172 determined at the end of each experiment by filtering fluid aliquots through a 0.22 um filter
173 followed by acidification with nitric acid, and if necessary, further dilution with a 2% HNO₃
174 blank solution.

175

176 *2.2.2. Thermogravimetric analysis coupled with differential scanning calorimetry*

177 Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were performed
178 using a Setaram SetSYS calorimeter. The TGA-DSC was conducted from 28 to 700 °C with a
179 heating rate of 5 °C/min under a flowing N₂ atmosphere of 20 mL/min. The temperature and
180 sensitivity of the instrument were calibrated by heating repeatedly indium, tin, lead, zinc, and
181 aluminum across their fusion point at the temperature change rates of 5, 10, 15, and 20 °C/min.
182 The calibration and methodology which are detailed above is described in more detail in
183 previous reports (Strzelecki et al., 2022a; Goncharov et al., 2022). The DSC data was fit to a
184 spline interpolation baseline. For dehydration enthalpy calculations, integrations of DSC data
185 were performed over the time ranging corresponding to 50–150 °C for the first dehydration and
186 150–300 °C for the second dehydration step. These temperature ranges are similar to previously
187 established ranges for the two-step dehydration process for rhabdophane endmembers between
188 25 and 500 °C (Mesbah et al., 2014).

189

190 **2.3. Analytical methods**

191 The REE concentrations of the starting stock solutions and filtered experimental solutions were
192 analyzed using an Agilent 5900 inductively coupled plasma optical emission spectrophotometer
193 (ICP-OES) with axial viewing mode and an Agilent 7500 quadrupole ICP mass spectrometer

194 (ICP-MS), respectively, at the Analytical Geochemistry Laboratory in the New Mexico Bureau
195 of Geology and Mineral Resources, New Mexico Institute of Mining and Technology. The ICP-
196 MS is equipped with an in-line He collision cell to reduce REE oxide formation. Both, samples
197 and standards were diluted and prepared using a 2% nitric acid (Fisher Scientific, trace metal
198 grade) blank solution. The instrumental drift was monitored using an in-line internal indium
199 standard spike (Inorganic Ventures, NIST traceable). External calibration standards were
200 prepared using serial dilutions from a multi-element REE standard solution (Inorganic Ventures,
201 NIST traceable, CMS-1, 10 ± 0.04 ppm), with four to seven calibration points in a concentration
202 range from 50 ppb to 5 ppm for ICP-OES measurements, and a concentration range from 0.01 to
203 50 ppb for ICP-MS analysis. The analytical precision of ICP-OES analysis based on repeated 50
204 ppb standard analysis is better than 2 % in the considered concentration range. The detection
205 limits for REE measured using ICP-OES is 5 ppb based on 5σ (standard deviation of the mean)
206 of multiple blank analyses. The analytical precision of REE standard analysis using ICP-MS
207 analysis is better than 2 % based on repeated standard analysis of a 5 ppb REE check standards.
208 The detection limits of ICP-MS analysis range is 5 ppt REE based on 5σ of multiple blank
209 analyses with a limit of quantification of ~8 ppt based on 10σ of multiple blank analyses. The
210 REE concentrations of the reacted experimental solutions range between 0.1 to 10 ppb with
211 analytical precisions ranging between 1 to 3 % in this concentration range based repeated
212 standard analysis.

213 Powder X-ray diffraction (XRD) analyses were conducted using a Panalytical X'Pert Pro
214 diffractometer and Cu-K α radiation with scanning 2θ angles ranging between 5 to 70° in 0.02°
215 steps. Powdered samples were dry pressed and mounted on amorphous silica plates with

216 randomly oriented crystals. The Rietveld refinement software MAUD (Lutterotti et al., 1999)
217 was used for refining the unit cell parameters of rhabdophane endmembers and solid solutions.
218 The initial crystal structure and lattice parameter of rhabdophane was adopted from the
219 monoclinic *C2* structure of rhabdophane-(Sm) determined by Mesbah et al. (2014). This allowed
220 determining first the crystal lattice parameters for the endmembers synthesized in our study and
221 also determine peak broadening (i.e., due to small crystallite sizes) and shifts in 2θ angles and
222 other parameters before refining the lattice parameters of the binary solid solutions. An example
223 of refined parameters for rhabdophane-(Sm) and more details about the method are given in the
224 Supplementary Material.

225 The mole fraction REE in the rhabdophane precipitates was determined using an Hitachi
226 S-3200N scanning electron microscope equipped with a Thermo Fisher Noran System 6 energy
227 dispersive spectrometer (EDS). The samples were mounted on carbon tape and carbon coated.
228 An acceleration voltage of 15.0 kV with a working distance of 15 mm was used perform EDS
229 analysis. Several points across multiple grains were measured to detect any heterogeneity, and
230 SEM images were inspected for morphology, crystallinity, and sizes of mineral aggregates.

231 Raman spectroscopy was performed on a Horiba LabRAM HR Evolution confocal
232 microscope equipped with a 533 nm excitation Nd:YAG laser and a motorized XYZ stage.
233 Analyses of the rhabdophane water peak were performed using a 50x LWD objective (NA =0.5;
234 WD = 10.6 mm) and a 600 grooves/mm grating with a spectral resolution of 1.5 cm^{-1} . Spectra
235 were collected at 10% laser power, 20 s exposition time and 5 accumulations. Analyses of
236 vibrational phosphate stretching (ν_1 , ν_3) bands were performed using a 1800 grooves/mm grating
237 with a spectral resolution better than 0.5 cm^{-1} . Spectra were collected at 25% laser power, 100 s

238 exposition time and 5 accumulations. The instrument was calibrated using a first-order Si line at
239 520.7 cm⁻¹ (silicon wafer). The Raman spectra were de-convoluted using Fityk 1.3.1 (Wojdyr,
240 2010).

241

242 **2.4. Experimental data treatment**

243 The excess volume of mixing (ΔV^{ex}) was determined for each rhabdophane solid solution by
244 measuring their unit cell parameters using powder XRD, and is derived according to:

245

$$246 \Delta V^{ex} = V_{ss} - V_{mm} \quad (2)$$

247

248 where V_{ss} is the molar volume (in cm³/mol) of a binary solid solution and V_{mm} is the molar
249 volume of an ideal mechanical mixture. The latter can be calculated from the molar volumes of
250 the rhabdophane endmembers ($V_{rhabdophane}$),

251

$$252 \Delta V_{mm} = (1-x) V_{rhabdophane-(Ce)} + x V_{rhabdophane-(REE)} \quad (3)$$

253

254 where x is the mole fraction REE (La, Pr, Nd, Sm, Eu, and Gd) in the binary (Ce_{1-x}REE_x)PO₄·nH₂O rhabdophane solid solution.

256 The excess enthalpy of mixing (ΔH^{ex}) of the binary rhabdophane solid solutions were
257 determined from calorimetric measurements according to:

258

$$259 \Delta H^{ex} = \Delta H^{ppt}_{ss} - \Delta H^{ppt}_{mm} \quad (4)$$

260

261 where $\Delta H_{\text{ss}}^{\text{ppt}}$ corresponds to the measured enthalpy of precipitation of the rhabdophane solid
262 solution (i.e. using a mixture of two REE-bearing nitrate solutions in the calorimeter cell);
263 $\Delta H_{\text{mm}}^{\text{ppt}}$ corresponds to the precipitation enthalpy of a mechanical mixture of pure rhabdophane
264 endmembers (i.e. using a single REE-bearing nitrate solutions in the calorimeter cell). The latter
265 can easily be determined for each mechanical mixture composition from the measured
266 precipitation enthalpies of each rhabdophane endmember ($\Delta H_{\text{rhabdophane}}^{\text{ppt}}$),

267

268
$$\Delta H_{\text{mm}}^{\text{ppt}} = (1-x) \Delta H_{\text{rhabdophane-(Ce)}}^{\text{ppt}} + x \Delta H_{\text{rhabdophane-(REE)}}^{\text{ppt}} \quad (5)$$

269

270 The method employed here is similar to the one presented by Katsikopoulos et al. (2009), which
271 doesn't require determining the heat of dilution in order to derive the enthalpy of mixing from
272 the calorimetric experiments. The heat of dilution is, within experimental uncertainty, the same
273 in all of the experiments and can be considered negligible because: 1) the proportions of REE-
274 bearing nitrate solutions (i.e., 2 ml in the cell) to phosphate-bearing stock solutions (i.e., 100 ml
275 in the Deware flask) remain the same in all of the experiments; 2) the heat of dilution cancels out
276 in the derivation of ΔH^{ex} according to Eq. 4, which however, necessitates measuring the
277 $\Delta H_{\text{rhabdophane}}^{\text{ppt}}$ values for all of the rhabdophane endmembers of interest.

278

279 **2.5. Thermodynamic modeling**

280 *2.5.1. Aqueous-solid solution equilibrium calculations*

281 Aqueous speciation and activities of solid solution endmembers were determined in the
282 experimental aqueous-solid solution (Aq–SS) system using the GEMS code package (Kulik et
283 al., 2013) v. 3.9.6 and the MINES thermodynamic database (Gysi et al., 2023). The
284 thermodynamic properties used include data for aqueous species from Supcrt92, slop98.dat
285 (Shock and Helgeson, 1988; Haas et al., 1995; Shock et al., 1997), data for REE oxides and
286 hydroxides (Diakonov et al., 1998; Konings et al., 2014; Navrotsky et al., 2015), monazite and
287 xenotime (Gysi et al., 2015, 2018; Van Hoozen et al., 2020; Gysi and Harlov, 2021), which were
288 augmented in this study with data for rhabdophane from the solubility study by Gausse et al.
289 (2016) and the calorimetric, thermogravimetry, and XRD study by Shelyug et al. (2018). These
290 datasets are summarized and reviewed in details in the study by Pan et al. (2024).

291 The Gibbs Energy Minimization approach (GEM) was used for thermodynamic
292 calculations because it offers a straightforward way to solve Aq–SS equilibria from given input
293 bulk chemical composition, pressure and temperature including for highly non-ideal solid
294 solutions (Kulik, 2006; Kulik et al., 2010). Furthermore, the GEMS code package includes a
295 process-path simulator with a graphical output option to construct Lippmann diagrams (Kulik et
296 al., 2010). These diagrams were constructed in the present study to assess solutus and solidus
297 curves (Prieto, 2009) for evaluating the Aq–SS equilibrium of the binary rhabdophane solid
298 solutions precipitated in the experiments.

299 The TSolMod library (Wagner et al., 2012) implemented in the GEMS code package was
300 used for all of the activity model calculations. The properties of H₂O were calculated from the
301 IAPS-84 equation of state (Kestin et al., 1984). The activity of charged aqueous species was
302 calculated using the extended Debye-Hückel equation (Robinson and Stokes, 1968) and activity

303 coefficients for neutral species were set to unity. The solid solution activity model was chosen
304 based on the best fits to the results from the calorimetric experiments. For a non-ideal subregular
305 (asymmetric) solid solution model, the binary Redlich-Kister solid solution model can be used
306 based on the Guggenheim function (Prieto, 2009), given by:

307

308
$$\Delta G^{\text{ex}} = RTx(1-x)[a_0 + a_1(2x-1) + a_2(2x-1)^2] \quad (6)$$

309

310 where ΔG^{ex} is the excess Gibbs energy of mixing; a_0 , a_1 , and a_2 are the dimensionless
311 Guggenheim coefficients or interaction parameters (derived from the experimental data in this
312 study); R is the ideal gas constant; T the temperature in Kelvin. The activity coefficients (γ_i) for
313 two endmembers (where $i = 1$ and 2 , the index of each endmember) in a binary solid solutions are
314 calculated according to:

315

316
$$\ln \gamma_1 = x_2^2 [a_0 - a_1(3x_1 - x_2) + a_2(x_1 - x_2)(5x_1 - x_2)] \quad (7)$$

317

318
$$\ln \gamma_2 = x_1^2 [a_0 + a_1(3x_2 - x_1) + a_2(x_2 - x_1)(5x_2 - x_1)] \quad (8)$$

319

320 *2.5.2. Thermodynamic parameter optimizations*

321 The standard molar Gibbs energies of formation from the elements ($\Delta_f G^\circ$) of rhabdophane
322 endmembers and the binary solid solution interaction parameters were optimized at 25 °C and 1
323 bar using the GEMSFITS code (Miron et al., 2015). These optimizations are carried out using the
324 composition of the experimental aqueous solutions (i.e., molality of dissolved elements) and the

325 compositions of the rhabdophane solid solutions (i.e., mole fraction REE in the solid solution)
326 precipitated in the calorimeter. The optimizations involve first calculation of chemical
327 equilibrium in each system using the GEM approach, followed by optimization of the parameters
328 (ΔG° and a_0-a_2 in Eqs. 6-8) in order to match the calculated and measured compositions of the
329 aqueous and solid solutions. The GEM approach for chemical equilibrium, aqueous speciation
330 and solid solutions model calculations described above are implemented in the GEMS code
331 package (Kulik et al., 2013) and the TSolMod library (Wagner et al., 2012), which are both also
332 used in the program GEMSFITS (Miron et al., 2015). The starting values for the rhabdophane
333 endmembers thermodynamic properties were taken from the solubility experiments by Gausse et
334 al. (2016) and the interaction parameters derived in the present experimental study.

335

336 **3. EXPERIMENTAL RESULTS**

337 **3.1. Powder XRD**

338 *3.1.1. Characterization of synthetic rhabdophane powder homogeneity and refined unit cell
339 parameters*

340 The synthetic rhabdophane endmembers and binary solid solutions all display relatively broad
341 but distinct and systematic XRD peaks consistent with crystalline rhabdophane powders (Figs. 1-
342 3). The broadness of these peaks is typical for solids synthesized at room temperature, which can
343 result from compositional heterogeneity and small crystallite sizes (e.g. Katsikopoulos et al.,
344 2009). Compositional variations measured in SEM-EDS multiple point analysis indicate 1σ
345 values of the average with compositional variations of less than 1 % (Table 1), even in powders
346 from separate replicate precipitation experiments with the same starting solutions. The size of the

347 crystals are generally <1 μm and form 100s of nanometers in size aggregates with no discernible
348 secondary REE phase observed in SEM imaging (Supplementary Material) or detected using
349 XRD (Figs. 1-3). These observations indicate that the rhabdophane precipitates are homogeneous
350 at the micron scale. Any heterogeneity (i.e. compositional or crystallinity/amorphous grain) is
351 therefore likely minor and at the nanometer scale and difficult to characterize.

352 Figure 1 shows a comparison of the X-ray diffractograms between the different
353 rhabdophane-(La) to -(Gd) endmembers. Major reflections are observed at Miller indices of (51-
354 1) and (711) with a clear shift to higher 2θ angles with decreased ionic radius of the REE
355 considered (i.e., 1.216 \AA for La and 1.107 \AA for Gd in 9-fold coordination; Shannon, 1976). The
356 lattice parameters of the synthetic rhabdophane endmembers were refined using the monoclinic
357 ($C2$) structure (Mesbah et al., 2014; Rafiuddin and Grosvenor, 2016; Shelyug et al., 2018).
358 Figure 2 shows that the a , b , and c crystal lattice parameters all display a clear linear relationship
359 with increased ionic radius of the REE. Comparison with the rhabdophane crystal lattice
360 parameters refined in the studies by Mesbah et al. (2014), Ochiai and Utsunomiya (2017), and
361 Shelyug et al. (2018) indicates an overall good agreement with our data. The refined a -axis
362 matches these studies well, whereas the refined b - and c -axes are slightly lower or higher by
363 $\sim 0.10\text{--}0.20$ \AA in our study, respectively. The best fit to all diffractograms could only be achieved
364 with these lattice parameters to yield reasonable refined β angles ranging between 115.5° to
365 115.9° for both the refined endmembers and the solid solutions (Table 1). Using these refined
366 lattice parameters, the calculated unit cell volumes (V_{cell}) indicate a systematic and linear increase
367 with increased ionic radii of the REE (Fig. 2d). Rhabdophane endmembers with larger ionic radii
368 (i.e., La, Ce, Pr, and Nd) display refined V_{cell} values that are distinctly smaller in comparison to

369 unit cell volumes determined in other studies (Mesbah et al., 2014; Ochiai and Utsunomiya,
370 2017; Shelyug et al., 2018). In contrast, refined V_{cell} values of rhabdophane endmembers with
371 smaller ionic radii (i.e., Sm, Eu, and Gd) closely match these other studies.

372 A possible explanation for the observed differences could be the effects of experimental
373 crystal growth conditions (i.e., pH, solution saturation, equilibration time, temperature, etc.)
374 which can potentially affect the crystallinity, crystallite sizes, structure, and the water contents of
375 these hydrated REE phosphates (Ochiai and Utsunomiya, 2017; Liu et al., 2022). The
376 homogeneity of the solid solutions can be further verified using the Full Half Width Maxima
377 (FHWM) or XRD peak broadness of the solid solutions which should lie within those of their
378 endmember compositions (Katsikopoulos et al., 2009). The fitted peak shifts and FHWM of the
379 main XRD reflections (Figs. 1 and 3) for Ce-Nd and Ce-Gd rhabdophane indicate systematic and
380 close to linear trends between solid solutions and endmembers (Supplementary Material). These
381 trends are interpreted to indicate a lack of major chemical or structural heterogeneity in the
382 synthesized powders. The relatively broad peaks and FHWM generally between 1.0–1.6,
383 indicates very small crystallite sizes, and result from the poor crystallinity of the solids
384 synthesized at ambient conditions. The measured XRD peak positions are comparable but
385 display broader peaks in comparison to rhabdophane synthesized at high temperature and
386 crystallized for several days by Liu et al. (2022); their study reports crystal sizes of over 200 nm
387 using transmission electron microscopy. Surface properties are however unlikely to control the
388 trends observed for the retrieved lattice parameters. Particularly, because these surface effects
389 result in more significant XRD peak loss and become important for crystallite sizes of less than
390 10 nm which are usually accompanied by excess water adsorbed on the surface (Majzlan et al.,

391 2003; Mazeina and Navrotsky, 2005). The Raman and TGA/DSC data presented further below
392 indicate that water is structural in the synthesized rhabdophane in our study. Therefore, both the
393 trends observed in the refined diffractograms (Fig. 1) and refined unit cell parameters (Fig. 2)
394 suggest that the solids synthesized in our calorimetric experiments are homogeneous and large
395 enough to further evaluate the systematics of their solid solutions.

396 X-ray diffractograms for the Ce-Nd and Ce-Gd binary rhabdophane solid solutions
397 precipitated in the calorimetry experiments are shown in Figure 3. The diffractograms for Ce-Nd
398 indicate a slight shift in 2θ angles with addition of Nd in the solid solution for reflections on the
399 Miller indices (51-1), (-222), and (711) (Fig. 3a). The solid solutions with mole fraction
400 compositions close to the Ce endmember ($x_{\text{Nd}} = 0.10, 0.25$, and 0.35) display a slight shift to
401 lower 2θ angles, whereas the intermediate solid solution ($x_{\text{Nd}} = 0.65$) is close to the Ce
402 endmember and the solid solutions closer to the Nd endmember ($x_{\text{Nd}} = 0.75$ and 0.90) are shifted
403 to slightly higher 2θ angles. The diffractograms for the Ce-Gd solid solution (Fig. 3b) display a
404 similar but more pronounced shift in 2θ angles with a shift to lower angles for solid solution
405 compositions closer to the rhabdophane-(Ce) endmember ($x_{\text{Gd}} = 0.10, 0.25$, and 0.35), and a shift
406 to higher angles for solid solution compositions closer to the rhabdophane-(Gd) endmember (x_{Gd}
407 = $0.65, 0.75$, and 0.90).

408

409 *3.1.2. Molar volume (V_{ss}) and excess volume of mixing (ΔV^{ex}) of binary solid solutions*

410 The trends in the X-ray diffractograms presented above are also in line with the molar volumes
411 of the solid solutions and their excess volumes of mixing (Figs. 4 and 5). This is illustrated by
412 the systematic increase in asymmetry with increased differences in ionic radii between Ce and

413 the other REE in the solid solution. The V_{ss} values determined from the refined crystal unit cell
414 parameters (Table 1) deviate from the ideal mixing line for almost all binary rhabdophane solid
415 solutions except the Ce-Pr solid solution series which plots closest to this line (Fig. 4). This
416 indicates that the solid solutions display generally a non-ideal volume of mixing, which was
417 further quantified according to Eqs. 2 and 3 using the refined unit cell volumes in Table 1.

418 Figure 5 shows the excess volume of mixing as a function of mole fraction REE in the
419 solid solution. All the binary solid solutions display positive ΔV^{ex} values up to $\sim 0.4\text{--}0.7 \text{ cm}^3\cdot\text{mol}^{-1}$.
420 The solid solutions showing closest behavior to a symmetric excess volume of mixing are the
421 Ce-La, Ce-Pr, and Ce-Nd binaries, whereas the solid solutions with larger differences in ionic
422 radii including Ce-Sm, Ce-Eu, and Ce-Gd display larger asymmetries. The ΔV^{ex} values of binary
423 rhabdophane solid solutions were fitted using a Guggenheim function according to:

424

425
$$\Delta V^{\text{ex}} = RT x(1-x)[a_0 + a_1(2x-1) + a_2(2x-1)^2] \quad (9)$$

426

427 where x is the mole fraction REE in the binary Ce-REE rhabdophane solid solution; a_0 , a_1 , and a_2
428 are the Guggenheim coefficients; R is the ideal gas constant; T the temperature in Kelvin. Several
429 different models were tested including a regular model (where a_1 and $a_2 = 0$), and subregular
430 asymmetric models with two and three coefficients. Table 2 summarizes all of the fitted
431 coefficients and the corresponding R^2 values for each fit. Figure 5 shows that the best fit to the
432 experimental data was achieved using the subregular 3-coefficients Guggenheim model with R^2
433 values of 0.94–0.99 for the Ce-La, Ce-Pr, and Ce-Nd solid solutions and lower R^2 values of
434 0.86–0.87 for the Ce-Sm, Ce-Eu, and Ce-Gd solid solutions. Using more than three coefficients

435 resulted in unrealistic curve shapes indicating over fitting of the data. Therefore, we recommend
436 the fitted values from the subregular 3-coefficients Guggenheim model in Table 2 for modeling
437 the ΔV^{ex} of binary rhabdophane solid solutions. The shapes of the peaks observed in a ΔV^{ex} vs.
438 x_{REE} diagram (Fig. 5) indicate that the REE with ionic radius closest to Ce (i.e., La, Pr and Nd)
439 form solid solutions closest to a regular solid solution with slight asymmetry. The latter becomes
440 more pronounced in solid solutions where Ce is substituted with REE of decreasing ionic radius
441 (i.e., Sm, Eu, and Gd).

442

443 **3.2. Reaction calorimetry**

444 *3.2.1. Precipitation of REE*

445 The amount of rhabdophane precipitated in each solution calorimetric experiments was
446 calculated based on the measured REE concentrations in the stock solutions and the quenched
447 experimental solutions after rhabdophane precipitation (Table 3). Figure 6 shows a systematic
448 linear relationship between the amount of REE precipitated vs. x_{REE} and also a dependence on the
449 ion size difference between Ce and the substituting REE. The only solid solutions showing a
450 slight positive slope is the Ce-La rhabdophane solid solution (Fig. 6a). The precipitation behavior
451 between Ce-Pr and Ce-Nd rhabdophane solid solutions is almost similar with a small decrease
452 (~0.05–0.04 mmol) in REE precipitated with increased amounts of the substituting REE (Fig.
453 6b-c). In contrast, the amount of precipitated rhabdophane decreases more significantly (by ~0.8
454 mmol) for the Ce-Sm, Ce-Eu, and Ce-Gd solid solutions with increased amounts of the
455 substituting REE (Fig. 6d-f).

456

457 3.2.2. *Excess enthalpy of mixing (ΔH^{ex})*

458 The measured enthalpies of precipitation are listed in Table 3 and show average uncertainties of
459 0.5 kJ/mol based on replicate experiments. The excess enthalpy of mixing was calculated from
460 the enthalpy of precipitation according to Eqs. 4 and 5 and using the experimental data listed in
461 Table 3. Figure 7 shows that the experimental data for the Ce-La and Ce-Pr rhabdophane solid
462 solutions display both positive ΔH^{ex} values of up to \sim 2 kJ/mol. In contrast, the experimental data
463 for the Ce-Nd and Ce-Sm rhabdophane solid solutions display negative ΔH^{ex} values of \sim 1–2
464 kJ/mol. The experimental data for the Ce-Eu and Ce-Gd rhabdophane solid solutions both
465 display an asymmetry with small negative ΔH^{ex} values close to the endmember compositions and
466 positive ΔH^{ex} values for intermediate compositions. The ΔH^{ex} values for all of these binary
467 rhabdophane solid solutions were fitted using a Guggenheim function according to:

468

469 $\Delta H^{\text{ex}} = RTx(1-x)[a_0 + a_1(2x-1) + a_2(2x-1)^2]$ (10)

470

471 where x is the mole fraction REE in the binary Ce-REE rhabdophane solid solution; a_0 , a_1 , and a_2
472 are the dimensionless Guggenheim coefficients; R is the ideal gas constant; T the temperature in
473 Kelvin. Similar to the fits for the molar volume, several different models were tested including a
474 regular model (where a_1 and $a_2 = 0$) and asymmetric models with 2- (i.e., subregular) and 3-
475 coefficients, respectively. Table 4 summarizes all the fitted coefficients and the corresponding R^2
476 of the fits. The best fit to the experimental data for rhabdophane with larger REE was a
477 subregular 2-coefficients model with R^2 values of 0.45–0.82 for Ce-La and Ce-Pr solid solutions
478 (Fig. 7a-b). For the rhabdophane solid solutions with smaller REE, the best fit to the

479 experimental data was a subregular 3-coefficients Guggenheim model with R^2 values of
480 0.40–0.75 for the Ce-Nd, Ce-Sm, Ce-Eu and Ce-Gd solid solutions (Fig. 7c-f). Using more than
481 3 coefficients resulted in unrealistic curve shapes for the Ce-La and Ce-Pr binary due to data
482 over fitting. Therefore, we recommend using the subregular 2-coefficients model for the Ce-La
483 and Ce-Pr binary solid solutions, and the subregular 3-coefficients model for the other solid
484 solutions for calculating their excess enthalpy of mixing from Table 4.

485

486 **3.3. TGA-DSC analysis**

487 The weight loss and enthalpies for the first (ΔH_{dehy1}) and second (ΔH_{dehy2}) steps of the dehydration
488 process are given in Table 5. The combined enthalpy values for the whole dehydration process
489 sum to higher values than demonstrated in previous work (Shelyug et al., 2018). Previous work
490 established a trend of increasing dehydration temperature with ionic radius (Shelyug et al.,
491 2018), which can also be observed in the TG data for the Ce-Nd and Ce-Gd series shown in
492 Figure 8; the temperature associated with each dehydration step decreased with increased Ce
493 content of the solid solution. The TG-DSC data for the Ce-Gd series are shown in Figure 8b. The
494 water contents for Ce-Nd and Ce-Gd series are both ~1 mol H₂O (Table 5), which are consistent
495 with previous studies where water contents were reported to range from 0.5 to ~2 mol H₂O
496 (Anfimova, et al. 2014; Ochiai and Utsunomiya, 2017; Shelyug et al., 2018). Due to the low
497 temperature condition for rhabdophane crystallization, additional water seen in some of the other
498 studies may relate to the formation of amorphous phases that are usually hydrated (or
499 hydroxylated) but not detected via XRD analysis.

500

501 **3.4. Raman spectroscopy**

502 Measured Raman spectra show that the peak center of the symmetric stretching vibrational band
503 of the phosphate tetrahedron ($\nu_1\text{-PO}_4$) is shifted from 970.1 cm^{-1} in monazite-(Ce) to 977.2 cm^{-1}
504 in rhabdophane-(Ce) and that the asymmetric stretching vibration ($\nu_3\text{-PO}_4$) shifts from 1055 cm^{-1}
505 to 1085 cm^{-1} , respectively (Fig. 9a; Table 6). For reference 970 cm^{-1} was measured in Silva et al.
506 (2006) and 972 cm^{-1} in Errandonea et al. (2018) for monazite-(Ce), respectively. Peaks are
507 considerably broader in rhabdophane and $\nu_1\text{-PO}_4$ is de-convoluted by three overlapping
508 subpeaks, whereas in monazite the peaks are narrow and can be de-convoluted by only one peak.
509 The $\nu_1\text{-PO}_4$ subpeaks at higher wavenumbers in rhabdophane increase linearly with decreasing
510 ionic radii in endmembers (Fig. 9b) and solid solutions and range from 977.2 cm^{-1} for the Ce to
511 992.4 cm^{-1} for Gd endmembers (Fig.10). This shift is related to the changes in vibrational
512 energies of the PO_4 tetrahedron due to decreasing ionic radius and higher atomic number in the
513 Gd endmember compared to lighter REE such as La and Ce. The rhabdophane-(Ce), -(Nd) and -
514 (Gd) endmembers (Clavier et al, 2018; Liu et al., 2022) were previously measured using Raman
515 spectroscopy showing a peak position of the main $\nu_1\text{-PO}_4$ peak overlapping with the linear trends
516 and endmembers in this study (Fig. 9b).

517 The full width at half maximum (FWHM) of the $\nu_1\text{-PO}_4$ peak shows a considerable
518 broadening from rhabdophane-(Ce) at 5.73 cm^{-1} to rhabdophane-(Nd) and -(Eu) at 10.70 cm^{-1}
519 and 10.60 cm^{-1} and to rhabdophane-(Gd) at 8.32 cm^{-1} (Table 6; Fig. 10). An excess peak
520 broadening (Δ_{FWHM}) was calculated to assess the relative departure of the FWHM values of the
521 solid solutions from a linear interpolation between FWHM values of the endmembers (Fig. 10).
522 The Δ_{FWHM} values of the Ce-Pr solid solutions remain roughly constant at $5.45 \pm 0.18\text{ cm}^{-1}$

523 showing minimal deviations from the linear trend between the two endmembers (Fig. 10b). In
524 contrast, the Δ_{FWHM} values of the Ce-Nd solid solutions start displaying minor positive deviation
525 from a linear fit close to the endmembers and a negative deviation at mole fraction x_{Nd} of ~ 0.5
526 for the intermediate solid solution compositions (Fig. 10d). The Ce-Eu and Ce-Gd solid solutions
527 show large positive Δ_{FWHM} values, indicating departure from an ideal solid solution, and display
528 peak asymmetries occurring close to the Ce-rich rhabdophane compositional endmember (Fig.
529 10f, h).

530 The vibrational stretching bands for water in rhabdophane endmembers show the typical
531 range from 2800 to 3700 cm^{-1} (Fig. 9c). The normalized water peak intensities are similar for
532 rhabdophane-(La) and -(Ce), with a slight decrease in peak intensities for the rhabdophane-(Pr)
533 and stronger decrease in peak intensities for the rhabdophane-(Nd) and -(Gd) endmembers. This
534 trend corroborates with the lower water contents measured in rhabdophane containing the REE
535 with smaller ionic radius as confirmed by TGA-DSC analysis (i.e., Ce, Nd>Gd; Table 5). Raman
536 spectra for rhabdophane-(Nd), -(Sm), -(Eu) and -(Gd) endmembers are affected by fluorescence
537 (Fig. 9c). The Raman band for water can be fitted by three subpeaks corresponding to network
538 water ($\sim 3280 \text{ cm}^{-1}$), intermediate ($\sim 3460 \text{ cm}^{-1}$) and strong OH bonds ($\sim 3580 \text{ cm}^{-1}$) (Kolesov,
539 2006; Sun, 2009; Knight et al. 2019). The Raman water bands measured by Clavier et al. (2018)
540 for rhabdophane-(Gd) agrees with our study with peaks observed at 3330, 3470 and 3540 cm^{-1} ,
541 showing a prominent intermediate peak (peak 2) and a minor network water (peak 1). The
542 Raman water subpeak area percent for network water ($\nu_1\text{-H}_2\text{O}$ peak 1) systematically decreases
543 from 75 to 40 % and for intermediate water $\nu_1\text{-H}_2\text{O}$ peak 2) increases from 19 to 45 % with
544 decreasing ionic radii of the REE (Fig. 9d). This trend indicates that water molecules become

545 more constrained (Knight et al., 2018) due to the smaller unit cell volumes from La to Gd, which
546 we interpret to represent structural water as opposed to adsorbed water on the surface.

547

548 **4. DISCUSSION AND THERMODYNAMIC DATA EVALUATION**

549 **4.1. Derivation of ΔG^{ex} from calorimetry data**

550 *4.1.1. Assumption of random mixing and distinction of different solid solution groups*

551 As a first approximation we assume that the rhabdophane solid solutions are controlled by
552 random mixing with the absence of any non-configurational entropy contributions. Their excess
553 entropy (ΔS^{ex}) is then equal to zero and the excess Gibbs energy (ΔG^{ex}) is equal to the excess
554 enthalpy. This assumption permits making use of the interaction coefficients derived from the
555 fitted ΔH^{ex} values from the experimental data (Eq. 10, Table 4) to derive the ΔG^{ex} values of each
556 solid solution. The Gibbs energy of mixing (ΔG^{mix}) can then be derived according to the relation:

557

$$558 \Delta G^{\text{ex}} = \Delta G^{\text{mix}} - \Delta G^{\text{mix, ideal}} \quad (11)$$

559

560 where $\Delta G^{\text{mix, ideal}}$ represents the ideal Gibbs energy of mixing, which is calculated from the
561 configurational entropy ($\Delta S^{\text{mix, ideal}}$),

562

$$563 \Delta G^{\text{mix, ideal}} = -T\Delta S^{\text{mix, ideal}} = RT(x_1 \ln x_1 + x_2 \ln x_2) \quad (12)$$

564

565 where R is the ideal gas constant; T is the temperature in Kelvin; x_1 and x_2 are the mole fractions
566 of each endmember in a binary solid solution series. As shown in Figure 11a-b, the data can be

567 subdivided into three groups: 1) solid solutions with ΔG^{ex} values >0 across the compositional
568 range, resulting in $\Delta G^{\text{mix}} <0$ for compositions close to the Ce endmembers, and $\Delta G^{\text{mix}} >0$ for
569 intermediate compositions (if $\Delta G^{\text{ex}} + \Delta G^{\text{mix,ideal}} > 0$); 2) solid solutions with ΔG^{ex} values <0
570 resulting in $\Delta G^{\text{mix}} <0$ across the entire compositional range; 3) solid solutions with ΔG^{ex} values
571 <0 close the endmember compositions and values >0 for intermediate compositions, resulting in
572 $\Delta G^{\text{mix}} <0$ across the entire compositional range with two minima close to the endmember
573 compositions.

574 Group 1 solid solutions include the Ce-La and Ce-Pr binary rhabdophane solid solutions
575 with a slight asymmetry and lower ΔG^{mix} towards the Ce endmember. This is in line with ΔH^{ex}
576 values >0 (Fig. 7) indicative of a slight tendency towards unmixing with an asymmetric
577 miscibility gap displaying two binodal minima defined at x_{REE} of $\sim 0.15\text{--}0.35$ and x_{REE} of
578 $\sim 0.95\text{--}0.98$ (Fig. 11b). This should result in the formation of a Ce-rich binary solid solution
579 phase and a phase close to rhabdophane-(La) and -(Pr) endmember compositions. The behavior
580 of these solid solutions and the observed wide miscibility gap are somewhat similar as observed
581 in the study by Katsikopoulos et al. (2009) for the calcite-kutnahorite solid solution series. The
582 observed miscibility gap was called “metastable” due to assumption that the phase behavior
583 observed in their experiments (i.e., synthesis of complete solid solution series and ΔH^{ex} values
584 >0) is due to random ordering. However, the Mn endmember also exists as an ordered
585 endmember with the potential of ordering and unmixing effects (Katsikopoulos et al., 2009).
586 Similarly, in our experiments the observed complete solid solution series in the precipitation
587 experiments are indicative of possible metastable conditions at room temperature, in which,
588 unmixing and/or ordering could both be inhibited for these solid solutions due to instantaneous

589 precipitation of disordered rhabdophane solid solutions at supersaturation. Typically, such solid
590 solutions are controlled by the size of the substituting ion which creates a larger strain on the
591 crystallographic site the larger deviation from the ideal ionic size. Mesbah et al. (2014) suggests
592 that the monoclinic rhabdophane-(Sm) endmember has Sm^{3+} occurring 1/3 in the 8-fold
593 coordination and 2/3 in the 9-fold coordination. This is in line with the average ionic size of La^{3+}
594 of 1.183 Å (1.116 Å in 8-fold and 1.216 Å in 9-fold) being closer to the average ionic radius of
595 Ce^{3+} of 1.178 Å (1.143 Å in 8-fold and 1.196 Å in 9-fold) in comparison to Pr^{3+} with an average
596 ionic size of 1.161 Å (1.126 in 8-fold and 1.179 Å in 9-fold). This results in smaller excess Gibbs
597 energy for the Ce-La binary over the Ce-Pr binary solid solution. The lower ΔG^{mix} values for the
598 Ce-La binary rhabdophane solid solution therefore indicates a lower strain and larger
599 compositional field where the solid solution composition is more stable than an equivalent
600 mechanical mixture of the endmembers.

601 Group 2 includes the Ce-Sm and Ce-Nd binary rhabdophane solid solutions. In contrast
602 to group 1, these solid solutions display negative ΔH^{ex} values (Fig. 7), which indicates the
603 possible ordering in the structure of these rhabdophane solid solutions. Hence, ΔG^{ex} may be
604 expected to differ from ΔH^{ex} (i.e., $\Delta S^{\text{ex}} \neq 0$), in which randomness cannot be assumed perfect
605 (Prieto, 2009). The observed negative ΔG^{mix} values in the entire compositional range of these
606 solid solutions (Fig. 11b) and the almost symmetric shape of the Ce-Sm binary indicates a lack of
607 miscibility gap. In contrast, the binary Ce-Nd solid solutions display a slight convex upward
608 trend for intermediate compositions. The latter indicate the possible presence of order-disorder
609 effects for x_{REE} values between ~0.2 and 0.8. Particularly, the ΔH^{ex} function curve (and also ΔG^{ex} ,
610 see further below) is flattened in the middle of the composition interval which indicates the

611 presence of short-range ordering (SRO), i.e. a tendency to form nm-sized local clusters
612 (Vinograd and Winkler, 2010).

613 Group 3 solid solutions include Ce-Eu and Ce-Gd binary rhabdophane solid solutions,
614 which are both likely to display stronger SRO effects than group 2 solid solutions. The latter is
615 due to the larger differences in ionic radii of the substituting REE and possibly due to the water
616 contents and molecule types incorporated into the rhabdophane structure. These observations
617 corroborate with the observed ΔV^{ex} values from XRD (Fig. 5) displaying an asymmetry and the
618 FWHM of the ν_1 Raman spectra (Fig. 10) indicating an increase in asymmetry of the phosphate
619 bond stretching modes when comparing Pr and Nd with the Eu and Gd binary solid solution
620 series. The ΔG^{mix} values of group 3 solid solution series display two minima defined at x_{REE} of
621 $\sim 0.15\text{--}0.2$ and $\sim 0.85\text{--}0.9$ that can be caused by SRO effects with a relatively strong lattice strain
622 elevating the ΔH^{ex} function up at intermediate compositions (Fig. 7e,f).

623 In summary, the observations above indicate groups 2 and 3 rhabdophane solid solutions
624 have a non-negligible excess entropy contribution due to SRO effects, whereas group 1 indicates
625 negligible SRO effects and only a slight tendency for unmixing. Further inspecting the trends
626 derived from water chemistry (Fig. 6), reveals that there is no observable anomaly in the amount
627 of solid solution precipitated as a function of solid solution composition for any of the binary
628 solid solutions studied. This indicates that unmixing of two phases in the experimental run
629 products are unlikely to occur, which corroborates with the sharp XRD peak shifts (Fig. 3) and
630 the systematic Raman spectra observed in these solid solutions (Figs. 9 and 10).

631

632 *4.1.2. Estimation of excess entropy (ΔS^{ex}) from XRD molar volume data*

633 The excess Gibbs energy of rhabdophane solid solutions can be further evaluated assuming that
634 ΔS^{ex} is not equal to zero and therefore including possible order-disorder effects in the solid
635 solutions. The excess Gibbs energy can then be calculated from the calorimetric ΔH^{ex} data (Table
636 3) and ΔS^{ex} according to:

637

638
$$\Delta G^{\text{ex}} = \Delta H^{\text{ex}} - T\Delta S^{\text{ex}} \quad (13)$$

639

640 where ΔS^{ex} can be retrieved from knowledge of the entropy of mixing (ΔS^{mix}) and the ideal
641 entropy of mixing ($\Delta S^{\text{mix,ideal}}$, i.e. configurational entropy, assuming total disorder and random
642 mixing in the structure),

643

644
$$\Delta S^{\text{ex}} = \Delta S^{\text{mix}} - \Delta S^{\text{mix,ideal}} \quad (14)$$

645

646 Here the configurational entropy term ($\Delta S^{\text{mix,ideal}}$) was calculated based on the Boltzmann
647 equation and the excess entropy of mixing, attributed from the vibrational entropy term
648 ($\Delta S^{\text{mix,vib}}$), can be estimated based on an empirical relation between the standard absolute entropy
649 ($S^{\circ}_{298\text{K}}$) and molar volume (V_m) of a compound (Jenkins and Glasser, 2003; Glasser, 2011;
650 Strzelecki et al., 2022a). Typically, these equations are used to calculate $S^{\circ}_{298\text{K}}$ for minerals (Guo
651 et al., 2016; Strzelecki et al., 2020, 2022b; Goncharov et al., 2022). A revised linear equation was
652 presented by Strzelecki et al. (2022a) for phosphate minerals based on the approach presented by
653 Jenkins and Glasser (2003): $S^{\circ}_{298\text{K}} = k \cdot (V_m) + c$, where coefficient k is $2.46 \pm 0.03 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ and
654 c is $5.79 \pm 7.03 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, and V_m ($\text{cm}^3 \cdot \text{mol}^{-1}$) is derived from the XRD data in the present study

655 (Table 1). The obtained $\Delta S^{\text{mix,vib}}$ values (Table S1) reflect the change in the vibrational entropy
656 based on the volumetric change of the unit cell, which is expected to be small, ranging from 0.1
657 to $1.7 \pm 2.4 \text{ J}\cdot\text{mol}^{-1}\cdot\text{K}^{-1}$ (Fig. 12a). Using this approach, the calculated $\Delta S^{\text{mix,ideal}}$ dominates the total
658 entropy of mixing ΔS^{mix} contributing 2.3 to $5.8 \text{ J}\cdot\text{mol}^{-1}\cdot\text{K}^{-1}$ (Fig. 12b).

659 A comparison of ΔG^{ex} values derived in Figures 11a-b and Figure 11c-d shows the effect
660 of using the excess entropy derived above. The excess entropy results in an overall decrease in
661 calculated ΔG^{ex} values and thus more negative calculated ΔG^{mix} values. Nevertheless, the trends
662 observed for the three different solid solution groups distinguished above remain similar.

663

664 **4.2. Aqueous solution-solid solution (Aq-SS) equilibria calculations**

665 *4.2.1. Derivation of ΔG^{ex} from GEMSFITS optimizations and fitting of solid solution interaction
666 parameters*

667 In contrast to the two other approaches presented in section 4.1., the calculated ΔG^{ex} and ΔG^{mix}
668 values based on solubility calculations and GEMSFITS optimizations display much smaller
669 deviations from ideal mixing and only a slight asymmetry (Fig. 11e-f). The latter is more
670 pronounced in group 2 (Ce-Nd and Ce-Sm binary) and group 3 (Ce-Eu and Ce-Gd binary) solid
671 solutions with ΔG^{ex} values close to 0 (i.e., close to an equivalent mechanical mixture) and ΔG^{mix}
672 values displaying a symmetric shape for the Ce-La and Ce-Sm binary and a slight asymmetry at
673 x_{REE} values of 0.6–0.7 for all of the other binary solid solutions (Fig. 11f). The optimized
674 interaction parameters for the excess Gibbs energy of each binary solid solutions (a_0 - a_2 based on
675 Eqs. 6-8) and the optimized standard Gibbs energy of formation ($\Delta_f G^\circ$) derived for each
676 endmembers are listed in Table 7.

677 The calculated negative ΔG^{mix} values (Fig. 11f) suggest stabilization across the entire
678 binary compositional range, whereas the lack of minima suggests a lack of
679 unmixing/immiscibility. These results are in line with the observed near stoichiometric
680 composition of the synthesized solid solutions with respect to the initial REE compositions
681 added to the experimental solutions (Table 3). The difference between the ΔG^{mix} values
682 calculated from the Aq-SS approach (Fig. 11f) versus the two other approaches (Fig. 11b,d)
683 further indicates that the excess enthalpy derived from calorimetry is not the only contribution to
684 the excess Gibbs energy. Therefore, the shapes of the ΔG^{ex} and ΔG^{mix} curves derived from the Aq-
685 SS approach must likely be compensated by non-ideal entropy contributions (ΔS^{ex} and ΔS^{mix}).
686 The latter were calculated by combining the optimized ΔG^{ex} values from Table 7 with the
687 measured calorimetric ΔH^{ex} values from Table 4 according to Eqs. 13 and 14.

688 Figure 12 shows that the resulting excess entropy contributions are indeed quite larger for
689 the Aq-SS approach versus those derived from a simple linear correlation based on XRD
690 volumetric data. The entropy of mixing values are generally all positive and display an almost
691 symmetric shape for both approaches. However, the ΔS^{mix} derived from the Aq-SS approach
692 yields more information due to the higher ΔS^{ex} contribution vs. the configurational entropy
693 resulting in a corresponding separation into the three solid solution groups (Fig. 12c,d). The
694 lowest ΔS^{mix} values determined from the Aq-SS equilibria approach are found for the Ce-La and
695 Ce-Pr binaries (group 1) with slight asymmetric peak shapes. The Ce-Nd and Ce-Sm binaries
696 (group 2) display a positive symmetric shape, with the Ce-Nd binary starting to show a slight
697 convex downward inflection. The latter becomes more pronounced for the Ce-Eu and Ce-Gd
698 binaries (group 3) both displaying a minimum at a x_{REE} composition of ~0.55 indicating SRO

699 effects for this solid solution group. These SRO effects are consistent with the measured Raman
700 $\nu_1\text{-PO}_4$ stretching bands for group 3 solid solutions with FWHM values departing from ideal
701 behavior (Fig. 10f,h). A similar SRO effect is described in Vinograd and Winkler (2010) and in
702 Kulik et al. (2010) based on atomistic simulations for the excess enthalpy and entropy of
703 different types of solid solutions, which display such a convex depression controlled by local
704 ordering with decreased temperature.

705 In conclusion, the optimized ΔG^{ex} values derived from the Aq-SS approach (Fig. 11e)
706 result in calculated non-ideal entropy contribution that support the measured calorimetric excess
707 enthalpy of mixing (Fig. 7) and the three groups distinguished for the rhabdophane solid
708 solutions presented in this study. Therefore, the ΔG^{ex} values calculated from Table 7 are
709 recommended to simulate the stability and compositions of these rhabdophane solid solutions,
710 together with the calorimetric data derived in this study (Table 4). Particularly, because the
711 resulting ΔG^{mix} values (Fig. 11f) result in the stabilization across each of the binary solid solution
712 series corroborating with the measured compositions of the synthesized solid solutions in the
713 experiments (Table 3).

714

715 4.2.2. *Lippmann solubility diagrams*

716 Lippmann diagrams are useful to further interpret the partitioning behavior of two elements
717 (cations or anions) A and B in (A,B)C series between an aqueous solution and a binary solid
718 solution, and determine potential miscibility gaps, departure from stoichiometric saturation, etc.
719 In the binary rhabdophane solid solution system, the classic Lippmann total solubility product
720 (e.g. Prieto, 2009) is described by:

721

722 $\sum \Pi = \{\text{PO}_4^{3-}\}(\{\text{REE}^{3+}\} + \{\text{Ce}^{3+}\})$ (15)

723

724 where the braces indicate the ion activities in aqueous solution; for the pure endmembers, this
725 represents the equilibrium solubility product. The variation of $\log \sum \Pi$ values are plotted as an
726 ordinate simultaneously against an abscissa of the solid solution mole fraction x_{REE} (“solidus”
727 curve) and against an abscissa of the aqueous ion activity mole fraction x_{REE}^{3+} (“solutus” curve),

729 $x_{\text{REE}}^{3+} = \{\text{REE}^{3+}\}/(\{\text{REE}^{3+}\} + \{\text{Ce}^{3+}\})$ (16)

731 A horizontal line crossing the solidus and the solutus defines the composition of a solid solution
732 in equilibrium with an aqueous solution. A large difference in composition between solidus and
733 solutus points corresponds to a strong partitioning of an ion between a solid and an aqueous
734 phase. The advantage of the ion-activity Lippmann solubility product is that it permits also to
735 inspect the solubility product K_{SP}° for the end member compositions. However, such $\sum \Pi$ diagram
736 has a drawback because it requires first to convert the measured total dissolved concentrations of
737 REE and P into ion activities, which needs aqueous speciation equilibria calculations for each
738 experimental system. A more convenient way to illustrate the solutus curve consists of using the
739 total aqueous element concentration [] (molality or molarity) scale, which is expressed as a total
740 dissolved element (TE) scale solutus curve:

741

742 $\log_{10} \sum \Pi_{\text{TE}} = \log_{10} [\text{P}] - \log_{10} ([\text{REE}] + [\text{Ce}])$ (17)

743 $x_{\text{REE,TEeq}} = [\text{REE}] / ([\text{REE}] + [\text{Ce}])$ (18)

744

745 Such Lippmann diagrams are directly computable in GEMS (Kulik et al., 2010) and retain the
746 overall shape and topology of the classic Lippmann diagrams which are just shifted up along the
747 ordinate axis. The experimentally measured solubility data in co-existing aqueous and solid
748 solutions can then directly be plotted over the modeled curves (Fig. 13).

749 Figure 13 shows the Lippmann diagrams
750 constructed using the optimized solid solution interaction parameters from the Aq-SS equilibria
751 calculations. Comparison between the computed solutus curves and the experimental aqueous
752 solution REE compositions indicates that the experimental data are reproduced fairly well from
753 the optimized parameters listed in Table 7. However, the relative y-axis position of the calculated
754 solidus/solutus curves strongly depends on: 1) the retrieved standard Gibbs energy of formation
755 of the endmembers; and 2) the uncertainties of the solubility data. The average optimized ΔfG
756 value for rhabdophane-(Ce) is -2,002 with a standard deviation of ± 1 kJ/mol (Table 7). While
757 this uncertainty is relatively small, it is capable of slightly shifting the computed solutus and
758 solidus curves relative to the experimental data on the y-axis. This explains some of the observed
759 discrepancies between the the computed curves (e.g. Ce-Pr and Ce-Nd binaries) and the
760 experimental data which are difficult to resolve because all of the solid solutions include the
761 rhabdophane-(Ce) compositional endmember. The optimized ΔfG values of rhabdophane
762 endmembers in Table 7 indicate a systematic increase by 8 to 15 kJ/mol in comparison to the
763 initial values derived from the solubility experiments by Gausse et al. (2016). For comparison,
764 the reported uncertainties by Gausse et al. (2016) are quite large for Gibbs energies derived from
765 their solubility products and range from 3 to 10 kJ/mol.

766 The resulting computed solidus/solutus curves in the Lippmann diagrams (Fig. 13)
767 indicate a systematic Ce enrichment in the solid solutions relative to the aqueous solution which
768 is enriched in the substituting REE. Groups 1 and 2 solid solutions (i.e., Ce-La, Ce-Pr, Ce-Nd,
769 and Ce-Sm binaries) display an almost full overlap between solutus and solvus curves, implying
770 that the aqueous solution and solid solution display similar REE composition (i.e., stoichiometric
771 saturation). The Ce-Pr binary displays a peritectic at x_{REE} of ~0.4 and the Ce-Nd binary displays
772 an eutectic point at x_{REE} of ~0.85 indicating a potential miscibility gap. Comparison between the
773 Ce-Sm, Ce-Eu, and Ce-Gd binary solid solutions (Fig. 13d-f) indicates an increased gap between
774 solidus and solutus curves. These solid solutions display therefore a preference for the formation
775 of a Ce-rich solid solution with increased differences between the ionic radius Ce and the
776 substituting REE from Sm to Gd.

777

778 **4.3. Comparison to other rhabdophane studies and controls on crystal structure distortion**

779 Only a few studies have investigated the properties of binary rhabdophane solid solutions, and to
780 our knowledge, our study is the first to determine the thermodynamic properties of such solid
781 solutions. Previous experimental work on rhabdophane largely focused on the incorporation of
782 actinides in the rhabdophane structure (Qin et al., 2017; Huittinen et al., 2018) and
783 optical/microstructural and thermal properties of mixed compositions (Buissette et al., 2004;
784 Colomer et al., 2018; Liu et al., 2022).

785 In the study by Liu et al. (2022), the effects of ion concentrations and pH were studied to
786 investigate the precipitation of Ce-Nd rhabdophane solid solutions from acidic solutions. Density
787 functional theory calculations combined with XRD, Raman and other mineral characterization

788 methods (i.e., SEM, TEM, and XPS) indicate that Nd is preferentially incorporated in non-
789 hydrated sites with the presence of lattice distortion along the crystallographic *b*-axis (Liu et al.,
790 2022). These observations corroborate with the solid solution grouping in our study and the
791 prevalence of SRO effects displayed by the strong anomalies in the retrieved ΔH^{ex} and ΔS^{ex}
792 functions for group 3 solid solutions (Ce-Eu and Ce-Gd binaries) and a smaller anomaly for the
793 Ce-Nd binary (Figs. 7 and 12). The distortion on the phosphate tetrahedron depends on the size of
794 the substituting REE, which is reflected by the Raman shifts on the symmetric $\nu_1\text{-PO}_4$ vibrational
795 bands that linearly increase from Ce to Nd, and becomes more pronounced for Ce-Eu and Ce-Gd
796 binaries (Fig. 10c,e,g). The ΔV^{ex} functions derived in our study further indicate an asymmetry in
797 the crystal structure that increases with larger differences in ionic radii of the substituting REE
798 (Fig. 5).

799 Further inspection of the X-ray diffractograms by Liu et al. (2022) indicates the formation
800 of single-phase Ce-Nd rhabdophane solid solutions in agreement with our observations.
801 Rhabdophane powders synthesized in our study display however broader peaks and some peak
802 shifts to lower 2θ angles for intermediate Ce-Nd binary compositions (Fig. 3a); our solid
803 solutions also display more water content (Table 5, i.e. up to ~ 1 mol instead of 0.667) and
804 display generally a smaller unit cell volume. The sharper X-ray diffractogram peaks and closer to
805 ideal water contents in the study by Liu et al. (2022) might be explained by their synthesis
806 method which was conducted at higher temperature and for longer time periods (i.e., 90 °C and
807 up to 12 days). In our study, the solids synthesized are likely dominated by nucleation due to
808 high supersaturation and the instantaneous precipitation in the calorimeter with reactions
809 occurring at room temperature. Therefore, the binary rhabdophane solid solutions are also

810 affected by aging and pH of the solution, which explains the high variability in structural
811 properties of rhabdophane synthesized at various conditions as noted by Ochiai and Utsunomiya
812 (2017) for endmember rhabdophane synthesis.

813 Huittinen et al. (2018) studied the incorporation of Cm^{3+} into a La-Gd rhabdophane solid
814 solution using extended X-ray absorption fine-structure spectroscopy (EXAFS) and time-
815 resolved laser-induced fluorescence spectroscopy (TRLFS). Similar to Liu et al. (2022), their
816 study points to the importance of the hydrated vs. non-hydrated site configuration for ion
817 substitution in the rhabdophane structure with a particular preference of Cm^{3+} substitution in the
818 non-hydrated site (Huittinen et al., 2018). Their study further points out that 2/3 of the
819 rhabdophane lattice sites are associated with water and therefore a preferential substitution on the
820 non-hydrated site, which is somewhat indicative of local order-disorder in the crystal structure.
821 These observations are in line with the SRO that becomes prevalent in group 3 solid solutions
822 identified in our study.

823

824 **4.4. Comparison to studies on monazite and controls of REE incorporation in non-ideal
825 REE phosphate solid solutions**

826 The thermodynamic mixing and structural properties of anhydrous monazite solid solutions have
827 been investigated by several studies, including binary solid solutions involving La, Nd, Eu, and
828 Gd (Popa et al., 2007; Li et al., 2014; Geisler et al., 2016; Hirsch et al., 2017; Neumeier et al.,
829 2017; Huittinen et al., 2017; Schlenz et al., 2019). Based on these previous studies, there seems
830 to be a growing consensus that the REE phosphates exhibit a slight non-ideal solid solution
831 behavior that tends to become more pronounced with larger differences in the ionic radius of the

832 the substituting REE. Despite the anhydrous nature of these solid solutions, the following
833 comparisons can be made with the rhabdophane solid solutions for enthalpy, volume, and
834 structural properties.

835 Geisler et al. (2016) studied the structural changes in binary La-Eu monazite solid
836 solutions using XRD and IR/Raman spectroscopy. In their study, they observed an excess molar
837 volume (up to $\sim 0.8 \text{ \AA}^3$) and systematic shifts in Raman vibrational frequencies related to a
838 structural distortion in the solid solutions (Geisler et al., 2016). Their XRD data (ΔV^{ex} vs. x_{Eu}
839 diagram) indicate a slight asymmetry close to the monazite-(La) endmember which was fit to a
840 regular solid solution model. This asymmetry is more prevalent in our study for the rhabdophane
841 Ce-Eu solid solution (Fig. 5) but the overall higher excess volume for the endmember with the
842 larger ionic radius (i.e., La and Ce over Eu) seems to prevail in both types of REE phosphate
843 solid solutions.

844 Huittinen et al. (2017) characterized a series of Eu^{3+} doped La-Gd monazite solid
845 solutions using Raman spectroscopy and TRLFS. Their results indicate a linear relationship
846 between vibrational normal modes (ν_1 - ν_4) and a broadening of Raman bands (i.e., FWHM of ν_1 ,
847 ν_3 , ν_4) from the pure rhabdophane-(La) and -(Gd) endmembers to intermediate solid solutions
848 (Huittinen et al., 2017). A similar relationship was observed in the Raman spectra from the
849 rhabdophane solid solutions synthesized in our study (Figs. 9 and 10). The study by Huittinen et
850 al. (2017) further concludes that a large contraction or distortion of the LnO_9 polyhedron results
851 in a slight compression of the PO_4 tetrahedron and a loss of SRO around the LnO_9 polyhedron.
852 Similarly, the rhabdophane Ce-Eu and Ce-Gd solid solutions also display SRO effects as
853 deduced based on our calorimetric study (Figs. 7 and 12). These SRO effects can also be

854 recognized in the study by Popa et al. (2007), where the excess enthalpy was determined using
855 drop calorimetry at 1000 K for a series of binary monazite La-Nd, La-Eu, and La-Gd solid
856 solutions. All of these solid solutions display a slight non-ideal excess enthalpy (~2-4 kJ/mol)
857 which becomes more significant with decreased temperature. Some deviations in excess enthalpy
858 data can be seen in comparison to the fitted regular model by Popa et al. (2007). Although these
859 deviations are within their experimental uncertainty, it is interesting to note that for example the
860 binary La-Gd monazite solid solution displays similar double peak inflections as observed in our
861 calorimetric study (Fig. 7). It should be noted that enthalpies in their study do not strictly refer to
862 the enthalpy of mixing, and therefore only a qualitative comparisons can be made to their data.
863 Nevertheless, closer inspection of the oxide melt calorimetric data derived by Neumeier et al.
864 (2017) suggests that binary monazite La-Eu and La-Gd solid solutions can be fit to a regular
865 solid solution model, although these data show as well some deviations from this model which
866 are difficult to resolve within experimental uncertainty of their method. Further comparison to
867 the oxide melt solution calorimetric data by Schlenz et al. (2019) indicates that the enthalpy of
868 mixing of binary La-Nd monazite solid solutions displays a strong asymmetry (i.e, with a
869 maxima at $x_{\text{Nd}} = 0.3$) that were fit to a subregular solid solution model. Their Raman spectra
870 indicate disturbances of local SRO reflected by an increase in the FWHM of the $\nu_1\text{-PO}_4$
871 stretching band as observed in our study for binary rhabdophane solid solutions (Fig. 10d,f,h).
872

873 **5. CONCLUSIONS**

874 The thermodynamic and structural properties of binary rhabdophane solid solutions were
875 investigated using calorimetry, TGA-DSC, Raman and XRD. The measured excess enthalpies

876 and volumes as well as the derived Gibbs energy functions indicate a non-ideal behavior for all
877 the studied solid solutions which can be fit to an asymmetric Guggenheim function (Tables 2, 4,
878 and 7).

879 Three major groups of solid solutions with different mixing behavior were distinguished
880 here for the first time, including group 1) Ce-La and Ce-Pr binaries, group 2) Ce-Nd and Ce-Sm
881 binaries, and group 3) Ce-Eu and Ce-Gd binaries, respectively. Several competing mechanisms
882 were recognized to affect their measured enthalpies (Fig 7): i) departure of the ionic radius size
883 of the substituting REE³⁺ from Ce³⁺; ii) miscibility gaps or tendency for unmixing; iii) short-
884 range ordering effects. Group 1 displays ΔH^{ex} values >0 which indicates a tendency towards
885 unmixing, whereas groups 2 and 3 solid solutions display ΔH^{ex} values <0 which indicates a
886 tendency of SRO most pronounced for Ce-Eu and Ce-Gd binary solid solutions (Fig. 7).

887 The Aq-SS approach was used to optimize the standard Gibbs energy of formation of the
888 compositional endmembers, their interaction parameters, and also to derive the ΔG^{ex} and ΔG^{mix}
889 functions for each solid solutions (Fig. 11e,f). These results are consistent with the precipitation
890 of the full compositional solid solution range studied in the experiments and the REE aqueous
891 solution chemistry. The solids synthesized in the calorimetric experiments are likely
892 homogeneous solid solutions with a lack of any indication of unmixing based on the observed
893 single peaks in X-ray diffractograms (Fig. 3) and the linear relationships between $v_1\text{-PO}_4$ Raman
894 bands and x_{REE} (Fig. 10). The precipitation behavior of these solid solutions (Fig. 6) displays a
895 clear systematic from La to Gd, with a general preference of Ce incorporation in the solid
896 solution over the smaller and heavier REE (i.e., Nd to Gd).

897 The non-ideal solid solution behavior and short-range ordering has been previously
898 recognized in REE phosphates due to the preferential incorporation of the substituting REE on
899 the non-hydrous LnO_9 -site of rhabdophane (Huittinen et al., 2018; Li et al., 2022). The non-ideal
900 solid solution characteristics and similarities in short-range ordering and lattice strain has also
901 been observed in monazite solid solutions (Geisler et al., 2016; Huittinen et al., 2017; Neumeier
902 et al., 2017; Schlenz et al., 2019).

903 The ΔH^{ex} and ΔV^{ex} functions for rhabdophane (Figs. 5 and 7) derived in our experimental
904 study are very systematic and display intriguing structural and energetics in the rhabdophane
905 structure than need to be further investigated using molecular dynamic simulations and EXAFS
906 to better understand the local structural changes observed from Raman, XRD, and reflected in
907 the calorimetric experiments. The data generated in this study comprise the first thermodynamic
908 dataset on binary Ce-REE rhabdophane solid solutions, and therefore provides an important
909 fundamental framework to simulate their stability and control on REE partitioning in natural
910 systems. This work also has important implications in the study of immobilization of actinides in
911 radioactive waste repositories.

912

913

914 **ACKNOWLEDGMENTS**

915 This project was supported by the National Science Foundation (NSF) grant EAR-2032761 to
916 AG. This project also benefited from NSF-MRI grant EAR-2117061 to N.H. and A.G, which was
917 used to acquire the Raman instrument. The TGA-DSC analyses were supported through NSF
918 grant EAR-2149848 to XG. We would like to thank B. Frey from the Analytical Geochemistry

919 Laboratory in the New Mexico Bureau of Geology and Mineral Resources for assistance on ICP-
920 OES and ICP-MS instruments, and research assistants M. Payne and R. Heath who contributed
921 to the experimental data acquisition. We are honored to contribute to this special GCA issue
922 dedicated to Terry M. Seward. AG: “Terry has influenced my career path several decades ago as
923 an undergraduate/graduate student at ETH Zurich and well beyond. I am grateful to have met
924 Terry who introduced me to aqueous geochemistry, my PhD advisor Andri, and who was also the
925 impetus for my interest in hydrothermal geochemistry. Terry’s research always was an inspiration
926 on my scientific journey”. We are grateful for the careful comments and suggestions from two
927 anonymous reviewers, and we would like to thank Executive Editor Jeffrey Catalano and Guest
928 Editor Kono Lemke for handling this manuscript.

929

930 **APPENDIX A. SUPPLEMENTARY MATERIAL**

931 Supplementary Tables include the calculated entropy of mixing from section 4.1.2. (Table S1),
932 the calculated ΔG^{ex} and ΔG^{mix} (Tables S2), and the calculated ΔS^{ex} and ΔS^{mix} (Table S3).
933 Additional XRD refinement and FWHM can be found in Tables S4 and S5, and Figure S1-S2,
934 and SEM images in Figure S3.

935

936 **DATA AVAILABILITY**

937 Data are available through Mendeley Data (doi: 10.17632/47zptxbnd4.1) at
938 <https://data.mendeley.com/datasets/47zptxbnd4/1>

939

940

941 **REFERENCES**

Andersen A. K., Clark J. G., Larson P. B. and Donovan J. J. (2017) REE fractionation, mineral speciation, and supergene enrichment of the Bear Lodge carbonatites, Wyoming, USA. *Ore Geol. Rev.* 89, 780–807.

Andersen A. K., Clark J. G., Larson P. B. and Neill O. K. (2016) Mineral chemistry and petrogenesis of a HFSE(+HREE) occurrence, peripheral to carbonatites of the Bear Lodge alkaline complex, Wyoming. *Am. Mineral.* 101, 1604–1623.

Anfimova T., Li Q., Jensen J. O. and Bjerrum N. J. (2014) Thermal stability and proton conductivity of rare earth orthophosphate hydrates. *Int. J. Electrochem. Sci.* 9, 2285–2300.

Arinicheva Y., Gausse C., Neumeier S., Brandt F., Rozov K., Szenknect S., Dacheux N., Bosbach D. and Deissmann G. (2018) Influence of temperature on the dissolution kinetics of synthetic LaPO₄-monazite in acidic media between 50 and 130 °C. *J. Nucl. Mater.* 509, 488–495.

Berger A., Gnos E., Janots E., Fernandez A. and Giese J. (2008) Formation and composition of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: Implications for geochronology and low-temperature processes. *Chem. Geol.* 254, 238–248.

Buissette V., Moreau M., Gacoin T., Boilot J.P., Chane-Ching J.Y. and Le Mercier T. (2004) Colloidal synthesis of luminescent rhabdophane LaPO₄:Ln³⁺ · x H₂O (Ln = Ce, Tb, Eu; x ≈ 0.7) nanocrystals. *Chem. Mater.* 16, 3767–3773.

Byrne R. H. and Kim K.-H. (1993) Rare earth precipitation and coprecipitation behavior: The limiting role of PO₄³⁻ on dissolved rare earth concentrations in seawater. *Geochimica et Cosmochimica Acta* 57, 519–526.

Cetiner Z. S., Wood S. A. and Gammons C. H. (2005) The aqueous geochemistry of the rare earth elements. part XIV. the solubility of rare earth element phosphates from 23 to 150 °C. *Chem. Geol.* 217, 147–169.

Clavier N., Mesbah A., Szenknect S. and Dacheux N. (2018) Monazite, rhabdophane, xenotime & churchite: vibrational spectroscopy of gadolinium phosphate polymorphs. *Spectrochim. Acta. A. Mol. Biomol. Spectrosc.* 205, 85–94.

Colomer M. T., Zur L., Ferrari M. and Ortiz A. L. (2018) Structural-microstructural characterization and optical properties of Eu³⁺,Tb³⁺-codoped LaPO₄·nH₂O and LaPO₄ nanorods hydrothermally synthesized with microwaves. *Ceram. Intern.* 44, 11993–12001.

Cook N. J., Ciobanu C. L., Wade B. P., Gilbert S. E. and Alford R. (2023) Mineralogy and distribution of REE in oxidised ores of the Mount Weld Laterite Deposit, Western Australia. *Minerals* 13, 656.

Dacheux N., Clavier N. and Podor R. (2013) Versatile monazite: resolving geological records and solving challenges in materials science. monazite as a promising long-term radioactive waste matrix: benefits of high-structural flexibility and chemical durability. *Am. Mineral.* 98, 833–847.

Diakonov I. I., Ragnarsdottir K. V. and Tagirov B. R. (1998) Standard thermodynamic properties and heat capacity equations of rare earth hydroxides:: II. Ce(III)-, Pr-, Sm-, Eu(III)-, Gd-, Tb-, Dy-, Ho-, Er-, Tm-, Yb-, and Y-hydroxides. comparison of thermochemical and solubility data. *Chem. Geol.* 151, 327–347.

Du Fou de Kerdaniel E., Clavier N., Dacheux N., Terra O. and Podor R. (2007) Actinide solubility-controlling phases during the dissolution of phosphate ceramics. *J. Nucl. Mater.* 362, 451–458.

Errandonea D., Gomis O., Rodríguez-Hernández P., Muñoz A., Ruiz-Fuertes J., Gupta M., Achary S. N., Hirsch A., Manjon F. J., Peters L., Roth G., Tyagi A. K. and Bettinelli M.

(2018) High-pressure structural and vibrational properties of monazite-type BiPO_4 , LaPO_4 , CePO_4 , and PrPO_4 . *J. Phys.: Condens. Matter* 30, 065401.

Gausse C., Szenknect S., Qin D. W., Mesbah A., Clavier N., Neumeier S., Bosbach D. and Dacheux N. (2016) Determination of the solubility of rhabdophanes $\text{LnPO}_4 \cdot 0.667\text{H}_2\text{O}$ ($\text{Ln} = \text{La to Dy}$). *Eur. J. Inorg. Chem.* 2016, 4615–4630.

Gavrichev K. S., Gurevich V. M., Ryumin M. A., Tyurin A. V. and Komissarova L. N. (2016) Low-temperature heat capacity and thermodynamic properties of PrPO_4 . *Geochem. Int.* 54, 362–368.

Gavrichev K. S., Gurevich V. M., Ryumin M. A., Tyurin A. V. and Komissarova L. N. (2015) Heat capacity and thermodynamic functions of SmPO_4 at 10–1600 K. *Geochem. Int.* 53, 607–616.

Gavrichev K. S., Ryumin M. A., Tyurin A. V., Gurevich V. M. and Komissarova L. N. (2008) Refined heat capacity of LaPO_4 in the temperature range 0–1600 K. *Thermochim. Acta* 474, 47–51.

Gavrichev K. S., Ryumin M. A., Tyurin A. V., Gurevich V. M. and Komissarova L. N. (2009) The heat capacity and thermodynamic functions of EuPO_4 over the temperature range 0–1600 K. *Russ. J. Phys. Chem.* 83, 901–906.

Geisler T., Popa K. and Konings R. J. M. (2016) Evidence for lattice strain and non-ideal behavior in the $(\text{La}_{1-x}\text{Eu}_x)\text{PO}_4$ solid solution from X-ray diffraction and vibrational spectroscopy. *Front. Earth Sci.* 4.

Giovannini A. L., Bastos Neto A. C., Porto C. G., Takehara L., Pereira V. P. and Bidone M. H. (2021) REE mineralization (primary, supergene and sedimentary) associated to the Morro dos Seis Lagos Nb (REE, Ti) deposit (Amazonas, Brazil). *Ore Geol. Rev.* 137, 104308.

Glasser L. (2011) Thermodynamics of condensed phases: formula unit volume, V_m , and the determination of the number of formula units, Z , in a crystallographic unit cell. *J. Chem. Educ.* 88, 581–585.

Goncharov V. G., Nisbet H., Strzelecki A., Benmore C. J., Migdisov A. A., Xu H. and Guo X. (2022) Energetics of hydroxylbastnäsite solid solutions, $\text{La}_{1-x}\text{Nd}_x\text{CO}_3\text{OH}$. *Geochim. Cosmochim. Acta* 330, 47–66.

Guo X., Szenknect S., Mesbah A., Clavier N., Poinssot C., Wu D., Xu H., Dacheux N., Ewing R. C. and Navrotsky A. (2016) Energetics of a uranothorite ($\text{Th}_{1-x}\text{U}_x\text{SiO}_4$) solid solution. *Chem. Mater.* 28, 7117–7124.

Gysi A. P. and Harlov D. (2021) Hydrothermal solubility of TbPO_4 , HoPO_4 , TmPO_4 , and LuPO_4 xenotime endmembers at pH of 2 and temperatures between 100 and 250 °C. *Chem. Geol.* 567, 120072.

Gysi A. P., Harlov D. and Miron G. D. (2018) The solubility of monazite (CePO_4), SmPO_4 , and GdPO_4 in aqueous solutions from 100 to 250 °C. *Geochim. Cosmochim. Acta* 242, 143–164.

Gysi A. P., Hurtig N. C., Pan R., Miron G. D. and Kulik D. A. (2023) MINES thermodynamic database, In: New Mexico Bureau of Geology and Mineral Resources, version 23.

Gysi A. P., Williams-Jones A. E. and Harlov D. (2015) The solubility of xenotime-(Y) and other HREE phosphates (DyPO_4 , ErPO_4 and YbPO_4) in aqueous solutions from 100 to 250 °C and p_{sat} . *Chem. Geol.* 401, 83–95.

Haas J. R., Shock E. L. and Sassani D. C. (1995) Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. *Geochim. Cosmochim. Acta* 59, 4329–4350.

Hirsch A., Kegler P., Alencar I., Ruiz-Fuertes J., Shelyug A., Peters L., Schreinemachers C., Neumann A., Neumeier S., Liermann H.-P., Navrotsky A. and Roth G. (2017) Structural, vibrational, and thermochemical properties of the monazite-type solid solution $\text{La}_{1-x}\text{Pr}_x\text{PO}_4$. *J. Solid State Chem.* 245, 82–88.

Huittinen N., Arinicheva Y., Kowalski P. M., Vinograd V. L., Neumeier S. and Bosbach D. (2017) Probing structural homogeneity of $\text{La}_{1-x}\text{Gd}_x\text{PO}_4$ monazite-type solid solutions by combined spectroscopic and computational studies. *J. Nucl. Mater.* 486, 148–157.

Huittinen N., Scheinost A. C., Ji Y., Kowalski P. M., Arinicheva Y., Wilden A., Neumeier S. and Stumpf T. (2018) A spectroscopic and computational study of Cm^{3+} incorporation in lanthanide phosphate rhabdophane ($\text{LnPO}_4 \cdot 0.67\text{H}_2\text{O}$) and monazite (LnPO_4). *Inorg. Chem.* 57, 6252–6265.

Hutchinson M., Slezak P., Wendlandt R. and Hitzman M. (2022) Rare earth element enrichment in the weathering profile of the Bull Hill carbonatite at Bear Lodge, Wyoming, USA. *Econ. Geol.* 117, 813–831.

Ichimura K., Sanematsu K., Kon Y., Takagi T. and Murakami T. (2020) REE redistributions during granite weathering: Implications for Ce anomaly as a proxy for paleoredox states. *Am. Mineral.* 105, 848–859.

Jenkins H. D. B. and Glasser L. (2003) Standard absolute entropy, S°_{298} , values from volume or density. 1. Inorganic Materials. *Inorg. Chem.* 42, 8702–8708.

Katsikopoulos D., Fernández-González Á. and Prieto M. (2009) Precipitation and mixing properties of the “disordered” $(\text{Mn},\text{Ca})\text{CO}_3$ solid solution. *Geochim. Cosmochim. Acta* 73, 6147–6161.

Kestin J., Sengers J. V., Kamgar-Parsi B. and Sengers J. M. H. L. (1984) Thermophysical properties of fluid H_2O . *J. Phys. Chem. Ref. Data* 13, 175–183.

Knight, A.W., Kalugin, N.G., Coker, E. and Ilegem A.G. (2019) Water properties under nanoscale confinement. *Sci. Rep.* 9, 8246 .

Kolesov B. (2006) Raman investigation of H₂O molecule and hydroxyl groups in the channels of hemimorphite. *Am. Min.* 91, 1355–1362.

Konings R. J. M., Beneš O., Kovács A., Manara D., Sedmidubský D., Gorokhov L., Iorish V. S., Yungman V., Shenyavskaya E. and Osina E. (2014) The thermodynamic properties of the *f*-elements and their compounds. Part 2. the lanthanide and actinide oxides. *J. Phys. Chem. Ref. Data* 43, 013101.

Kulik D. A. (2006) Dual-thermodynamic estimation of stoichiometry and stability of solid solution end members in aqueous-solid solution systems. *Chem. Geol.* 225, 189–212.

Kulik D. A., Vinograd V. L., Paulsen N. and Winkler B. (2010) (Ca,Sr)CO₃ aqueous-solid solution systems: from atomistic simulations to thermodynamic modelling. *Phys. Chem. Earth* 35, 217–232.

Kulik D. A., Wagner T., Dmytrieva S. V., Kosakowski G., Hingerl F. F., Chudnenko K. V. and Berner U. R. (2013) GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. *Comput Geosci.* 17, 1–24.

Li Y., Piotr M. K., Blanca-Romero A., Vinograd V. and Bosbach D. (2014) *Ab initio* calculation of excess properties of La_{1-x}(Ln,An)_xPO₄ Solid Solutions. *J. Solid State Chem.* 220, 137–41.

Liu H., Zhao X., Teng Y., Li Y., Zheng X., Wang S., Wu L., Panda P. K. and Ahuja R. (2022) Investigation of Nd³⁺ incorporation in Ce-rhabdophane: insight from structural flexibility and occupation mechanism. *J. Am. Ceram. Soc.* 105, 4974–4985.

Lutterotti L., Matthies S. and Wenk H. R. (1999) MAUD: a friendly Java program for material analysis using diffraction. *Int. U. Crystallogr. Comm. Powder Diffraction Newsletter* 21, 14–15.

Majzlan J., Grevel K.-D. and Navrotsky A. (2003) Thermodynamics of Fe oxides: Part II. Enthalpies of formation and relative stability of goethite (α -FeOOH), lepidocrocite (γ -FeOOH), and maghemite (γ -Fe₂O₃). *Am. Min.* 88, 855–859.

Mazeina L. and Navrotsky A. (2005) Surface enthalpy of goethite. *Clays and Clay Min.* 53, 113–122.

Mesbah A., Clavier N., Elkaim E., Gausse C., Kacem I. B., Szenknect S. and Dacheux N. (2014) Monoclinic form of the rhabdophane compounds: REEPO₄·0.667H₂O. *Cryst. Growth Des.* 14, 5090–5098.

Miron G. D., Kulik D. A., Dmytrieva S. V. and Wagner T. (2015) GEMSFITS: code package for optimization of geochemical model parameters and inverse modeling. *Appl. Geochem.* 55, 28–45.

Navrotsky A., Lee W., Mielewczyk-Gryn A., Ushakov S. V., Anderko A., Wu H. and Riman R. E. (2015) Thermodynamics of solid phases containing rare earth oxides. *J. Chem. Thermodyn.* 88, 126–141.

Neumeier S., Kegler P., Arinicheva Y., Shelyug A., Kowalski P. M., Schreinemachers C., Navrotsky A. and Bosbach D. (2017) Thermochemistry of La_{1-x}Ln_xPO₄-monazites (Ln=Gd, Eu). *J. Chem. Thermodyn.* 105, 396–403.

Ni Y., Hughes J. M. and Mariano A. N. (1995) Crystal chemistry of the monazite and xenotime structures. *Am. Mineral.* 80, 21–26.

Ochiai A. and Utsunomiya S. (2017) Crystal chemistry and stability of hydrated rare-rarth phosphates formed at room temperature. *Minerals* 7, 84.

Pan R., Gysi A. P., Miron G. D. and Zhu C. (2024) Optimized thermodynamic properties of REE aqueous species (REE³⁺ and REEOH²⁺) and experimental database for modeling the solubility of REE phosphate minerals (monazite, xenotime, and rhabdophane) from 25 to 300 °C. *Chem. Geol.* 643, 121817.

Poirrasson F., Oelkers E., Schott J. and Montel J.M. (2004) Experimental determination of synthetic NdPO₄ monazite end-member solubility in water from 21 °C to 300 °C: implications for rare earth element mobility in crustal fluids. *Geochim. Cosmochim. Acta* 68, 2207–2221.

Popa K. and Konings R. J. M. (2006) High-temperature heat capacities of EuPO₄ and SmPO₄ synthetic monazites. *Thermochim. Acta* 445, 49–52.

Popa K., Konings R. J. M. and Geisler T. (2007) High-temperature calorimetry of (La_{1-x}Ln_x)PO₄ solid solutions. *J. Chem. Thermodyn.* 39, 236–239.

Prieto M. (2009) Thermodynamics of solid solution-aqueous solution systems. *Rev. Mineral. Geochem.* 70, 47–85.

Qin D., Mesbah A., Gausse C., Szenknect S., Dacheux N. and Clavier N. (2017) Incorporation of thorium in the rhabdophane structure: synthesis and characterization of Pr_{1-2x}Ca_xTh_xPO₄ ·nH₂O solid solutions. *J. Nucl. Mater.* 492, 88–96.

Rafiuddin M. R. and Grosvenor A. P. (2016) A structural investigation of hydrous and anhydrous rare-earth phosphates. *Inorg. Chem.* 55, 9685–9695.

Robinson R. A. and Stokes R. H. (1968) *Electrolyte Solutions*, 2nd ed. Butterworths, London.

Schlenz H., Dellen J., Kegler P., Gatzen C., Schreinemachers C., Shelyug A., Klinkenberg M., Navrotsky A. and Bosbach D. (2019) Structural and thermodynamic mixing properties of La_{1-x}Nd_xPO₄ monazite-type solid solutions. *J. Solid State Chem.* 270, 470–478.

Seydoux-Guillaume A.M., Montel J.M., Bingen B., Bosse V., De Parseval P., Paquette J.L., Janots E. and Wirth R. (2012) Low-temperature alteration of monazite: fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers. *Chem. Geol.* 330–331, 140–158.

Shannon R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. *Acta Cryst. A*32, 751–767.

Shelyug A., Mesbah A., Szenknect S., Clavier N., Dacheux N. and Navrotsky A. (2018) Thermodynamics and stability of rhabdophanes, hydrated rare earth phosphates $\text{REPO}_4 \cdot n \text{H}_2\text{O}$. *Front. Chem.* 6, 604.

Shock E. L. and Helgeson H. C. (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 °C. *Geochim. Cosmochim. Acta* 52, 2009–2036.

Shock E. L., Sassani D. C., Willis M. and Sverjensky D. A. (1997) Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. *Geochim. Cosmochim. Acta* 61, 907–950.

Silva E. N., Ayala A. P., Guedes I., Paschoal C. W. A., Moreira R. L., Loong C.K. and Boatner L. A. (2006) Vibrational spectra of monazite-type rare-earth orthophosphates. *Opt. Mater.* 29, 224–230.

Strzelecki A. C., Kriegsman K., Estevenon P., Goncharov V., Bai J., Szenknect S., Mesbah A., Wu D., McCloy J. S., Dacheux N. and Guo X. (2020) High-temperature thermodynamics of cerium silicates, $\text{A-Ce}_2\text{Si}_2\text{O}_7$, and $\text{Ce}_{4.67}(\text{SiO}_4)_3\text{O}$. *ACS Earth Space Chem.* 4, 2129–2143.

Strzelecki A. C., Reece M., Zhao X., Yu W., Benmore C., Ren Y., Alcorn C., Migdisov A., Xu H. and Guo X. (2022a) Crystal chemistry and thermodynamics of HREE (Er, Yb) mixing in a xenotime solid solution. *ACS Earth Space Chem.* 6, 1375–1389.

Strzelecki A. C., Ren Y., Chong S., Riley B. J., Xu H., McCloy J. S. and Guo X. (2022b) Structure and thermodynamics of calcium rare earth silicate oxyapatites, $\text{Ca}_2\text{RE}_8(\text{SiO}_4)_6\text{O}_2$ (RE = Pr, Tb, Ho, Tm). *Phys. Chem. Miner.* 49, 13.

Sun Q. (2009) The Raman OH stretching bands of liquid water. *Vib. Spec.* 51, 213–217.

Thiriet C., Konings R. J. M., Javorský P., Magnani N., and F. Wastin (2005) The low temperature heat capacity of LaPO_4 and GdPO_4 , the thermodynamic functions of the monazite-type LnPO_4 series. *J. Chem. Thermodyn.* 37, 131–139.

Thiriet C., Konings R. J. M., Javorský P. and Wastin F. (2004) The heat capacity of cerium orthophosphate CePO_4 , the synthetic analogue of monazite. *Phys. Chem. Miner.* 31, 347–352.

Ushakov S. V., Helean K. B., Navrotsky A. and Boatner L. A. (2001) Thermochemistry of rare-earth orthophosphates. *J. Mater. Res.* 16, 2623–2633.

Van Hoozen C. J., Gysi A. P. and Harlov D. E. (2020) The solubility of monazite (LaPO_4 , PrPO_4 , NdPO_4 , and EuPO_4) endmembers in aqueous solutions from 100 to 250 °C. *Geochim. Cosmochim. Acta* 280, 302–316.

Vinograd V. and Winkler B. (2010) An efficient cluster expansion method for binary solid solutions: application to the halite-sylvite, $\text{NaCl}-\text{KCl}$, system. *Rev. Mineral. Geochem.* 71, 413–436.

Wagner T., Kulik D. A., Hingerl F. F. and Dmytrievava S. V. (2012) GEM-SELEKTOR geochemical modeling package: TSolMod library and data interface for multicomponent phase models. *Can. Mineral.* 50, 1173–1195.

Williams M. L., Jercinovic M. J., Harlov D. E., Budzyń B. and Hetherington C. J. (2011) Resetting monazite ages during fluid-related alteration. *Chem. Geol.* 283, 218–225.

Wojdyr M. (2010) Fityk: a general-purpose peak fitting program. *J. Appl. Cryst.* 43, 1126–1128.

942 **FIGURE CAPTIONS**

943 **Figure 1.** X-ray diffractograms of rhabdophane endmembers $\text{REEPO}_4 \cdot n\text{H}_2\text{O}$ (REE= La, Ce, Pr,
944 Nd, Sm, Eu, and Gd) precipitated during the calorimetric experiments showing a comparison

945 between modeled (Rietveld refinement) and measured XRD spectra indexed for the monoclinic
946 *C*2 structure. Numbers in brackets are the Miller indices for major XRD reflections. The
947 comparison indicates a (51-1) and (711) peak shift towards higher 2θ angles and an increase in (-
948 222) and (-111) peaks sharpness from La to Gd.

949

950 **Figure 2.** Lattice parameters of rhabdophane endmembers precipitated in this study refined in
951 the monoclinic *C*2 crystal structure and comparison to other studies (Mesbah et al., 2014; Ochiai
952 and Utsunomiya, 2017; Shelyug et al., 2018). The unit cell parameters include (a-c) the *a*, *b*, and
953 *c* crystallographic axes and (d) the calculated unit cell molar volumes (V_{cell} in \AA^3). The values of
954 the refined lattice parameters are listed in Table 1.

955

956 **Figure 3.** X-ray diffractograms of (a) Ce-Nd and (b) Ce-Gd binary rhabdophane solid solutions
957 precipitated in the calorimetric experiments showing a comparison between modeled (Rietveld
958 refinement) and measured XRD spectra indexed for the *C*2 crystal structure. Numbers in
959 brackets are the Miller indices for major XRD reflections. Numbers on the right side indicate the
960 compositions of the REE solid solutions (Table 1). The comparison indicates peak shifts between
961 endmembers and solid solution compositions.

962

963 **Figure 4.** Molar volume of binary rhabdophane solid solutions (V_{ss}) as a function of mole
964 fraction REE (x) in $\text{Ce}_{1-x}\text{REE}_x\text{PO}_4 \cdot n\text{H}_2\text{O}$ (REE= La, Pr, Nd, Sm, Eu, Gd).

965

966 **Figure 5.** Excess volume of mixing (ΔV^{ex}) of binary rhabdophane solid solutions as a function of
967 mole fraction REE (x_{REE}) in $\text{Ce}_{1-x}\text{REE}_x\text{PO}_4 \cdot n\text{H}_2\text{O}$ (REE= La, Pr, Nd, Sm, Eu, Gd). The
968 experimental data are listed in Table 1 and the fits in Table 2.

969

970 **Figure 6.** Amount of REE phosphates precipitated (in mmol) as a function of mole fraction REE
971 (x_{REE}) in $\text{Ce}_{1-x}\text{REE}_x\text{PO}_4 \cdot n\text{H}_2\text{O}$ (REE= La, Pr, Nd, Sm, Eu, Gd), determined from REE measured
972 in the starting and final experimental solutions (Table 3).

973

974 **Figure 7.** Excess enthalpies of mixing (ΔH^{ex} in kJ/mol) as a function of mole fraction REE (x_{REE})
975 in $\text{Ce}_{1-x}\text{REE}_x\text{PO}_4 \cdot n\text{H}_2\text{O}$ (REE= La, Pr, Nd, Sm, Eu, Gd) binary solid solution series determined
976 using calorimetry. The error bars denote the standard deviations based on duplicate to
977 quadruplicate experiments. The experimental data are listed in Table 3 and the fits in Table 4.

978

979 **Figure 8.** TGA-DSC analysis of binary (a) Ce-Nd and (b) Ce-Gd solid solutions from 30–500
980 °C. Integration bounds for enthalpy dehydration steps calculations are marked by the blue dashed
981 lines. The integrated enthalpy and water contents are listed in Table 5.

982

983 **Figure 9.** Raman spectra of: (a) symmetric (ν_1) and asymmetric (ν_3) vibrational phosphate
984 stretching bands for monazite-(Ce) and rhabdophane-(Ce) endmembers; (b) peak center shift of
985 the two main subpeaks of $\nu_1\text{-PO}_4$ in rhabdophane endmembers and solid solutions with
986 decreasing ionic radii; (c) the vibrational stretching band for water in rhabdophane endmembers;
987 (d) water subpeak area 2 ($\nu_1\text{-H}_2\text{O}$ at 3458 cm^{-1}) increasing with decreasing ionic radii. White

988 squares in (c) correspond to the Ce, Nd and Gd endmembers measured in previous studies
989 (Clavier et al., 2018; Liu et al., 2022).

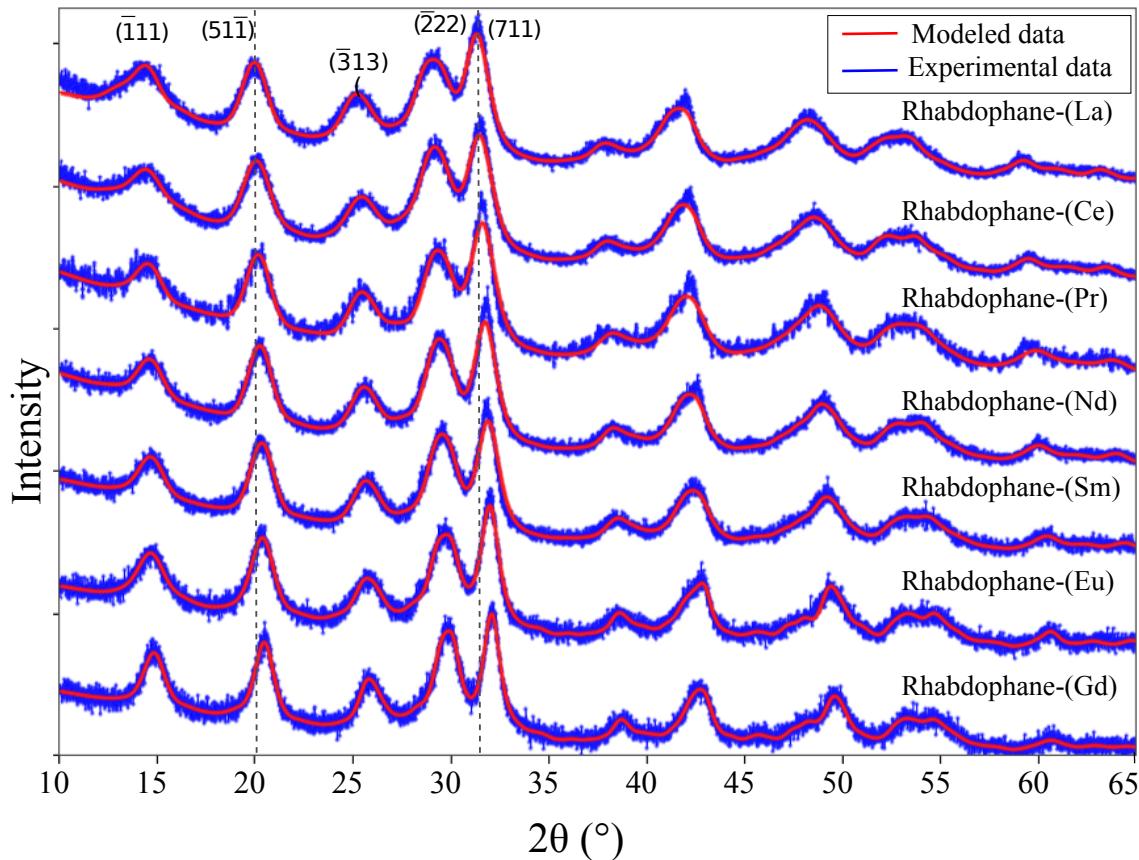
990

991 **Figure 10.** Raman spectra of symmetric vibrational phosphate stretching band shifts (ν_1 -PO₄)
992 and full width at half maxima (FWHM) for binary (a,b) Ce-Pr, (c,d) Ce-Nd, (e,f) Ce-Eu and (g,h)
993 Ce-Gd rhabdophane solid solutions. The Δ_{FWHM} values show the departure of FWHM for solid
994 solutions from a linear interpolation between endmembers indicating non-ideal solid solution
995 behavior due to short-range ordering.

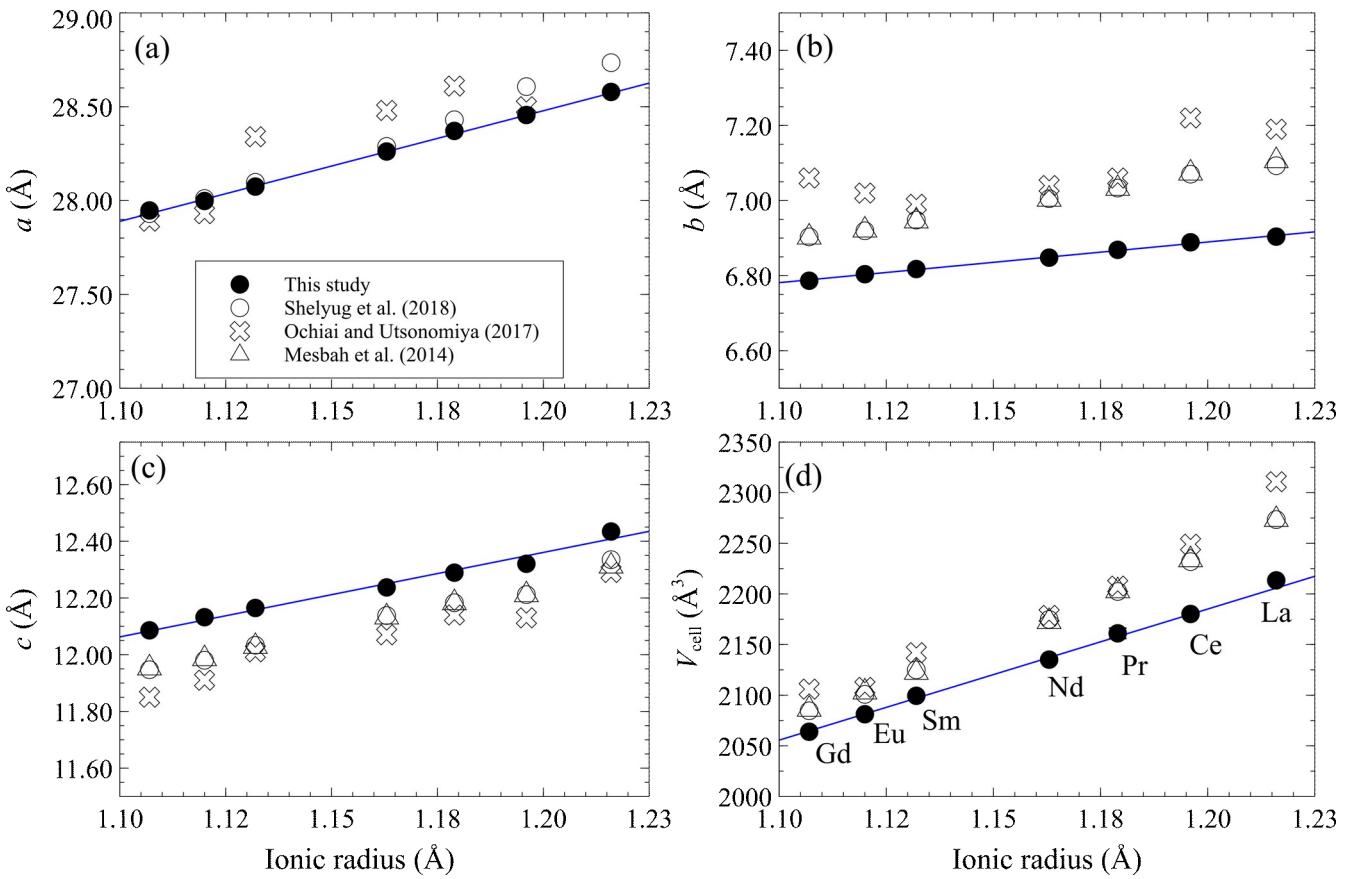
996

997 **Figure 11.** Excess Gibbs energy (ΔG^{ex}) and Gibbs energy of mixing (ΔG^{mix}) as a function of
998 mole fraction REE (x_{REE}) in the rhabdophane solid solutions determined using three different
999 approaches: (a-b) assuming disordering and random mixing with $\Delta G^{\text{ex}}=\Delta H^{\text{ex}}$ and $S^{\text{ex}}=0$ (section
1000 4.1.1.); (c-d) assuming $S^{\text{ex}}\neq0$, with entropy determined from molar volume data (section 4.1.2.);
1001 (e-f) ΔG^{ex} calculated from thermodynamic optimizations of solubility data using GEMSFITS and
1002 Aq-SS equilibria calculations (section 4.2.1.). Calculated Gibbs energy values are listed in the
1003 Supplementary Material Table S2.

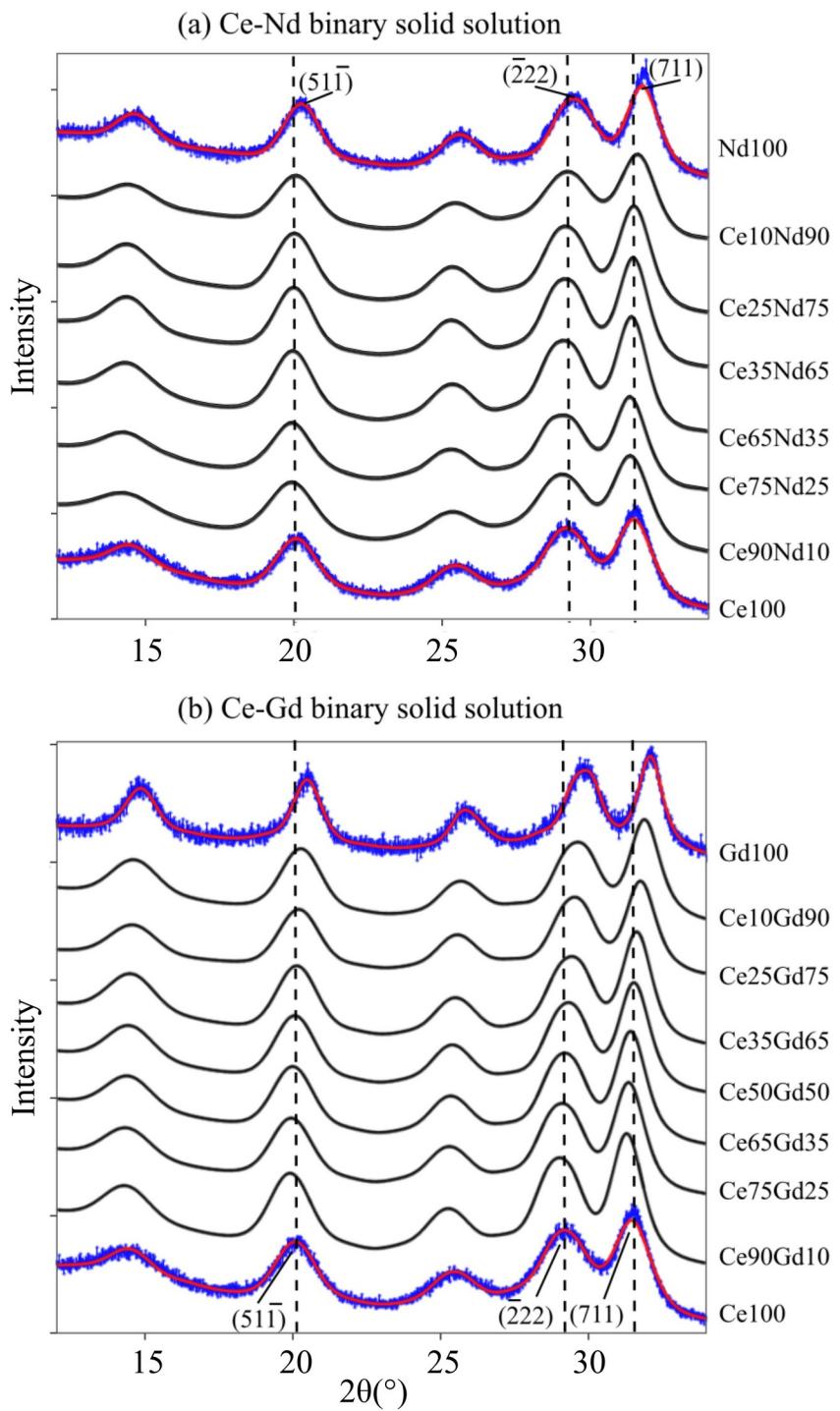
1004

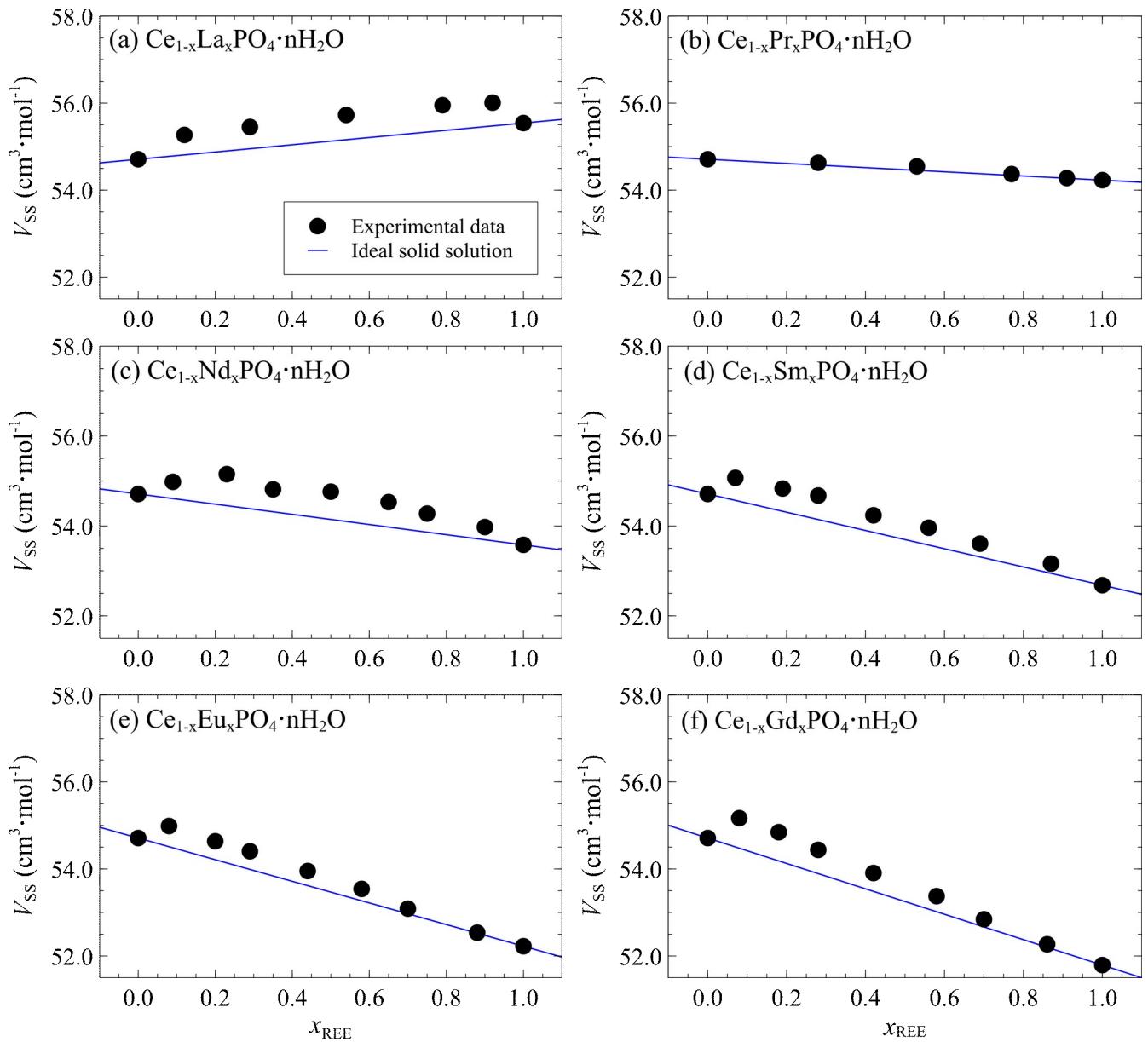

1005 **Figure 12.** Excess entropy (ΔS^{ex}) and entropy of mixing (ΔS^{mix}) as a function of mole fraction
1006 REE (x_{REE}) in the rhabdophane solid solutions determined using two different approaches: (a-b)
1007 from XRD molar volume data (section 4.1.2.); (c-d) calculated using Eqs. 13 and 14 and the
1008 ΔG^{ex} calculated from thermodynamic optimizations of solubility data using GEMSFITS and Aq-

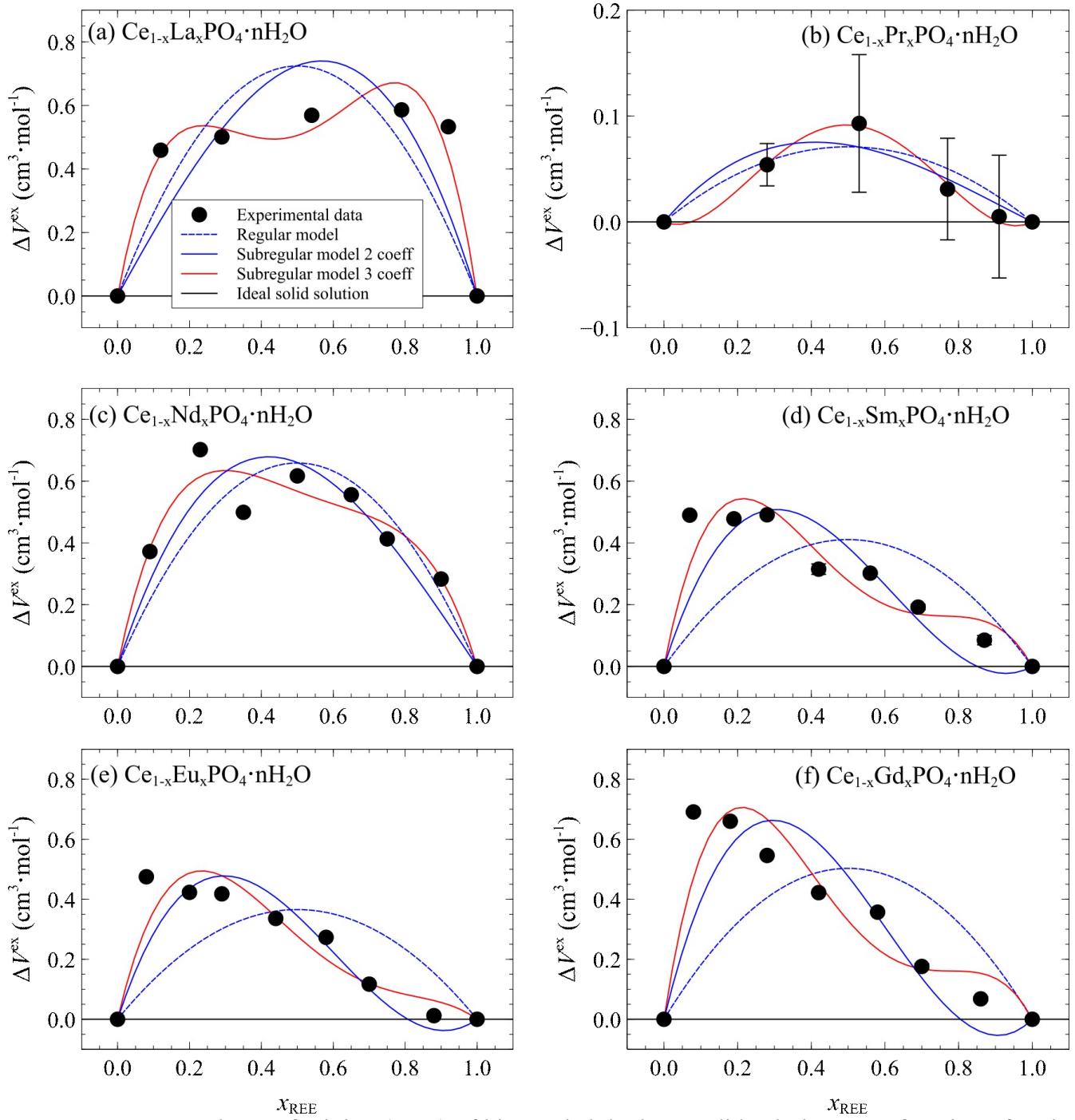
1009 SS equilibria calculations (section 4.2.1.). Calculated entropy values are listed in the
1010 Supplementary Material Tables S1 and S3.

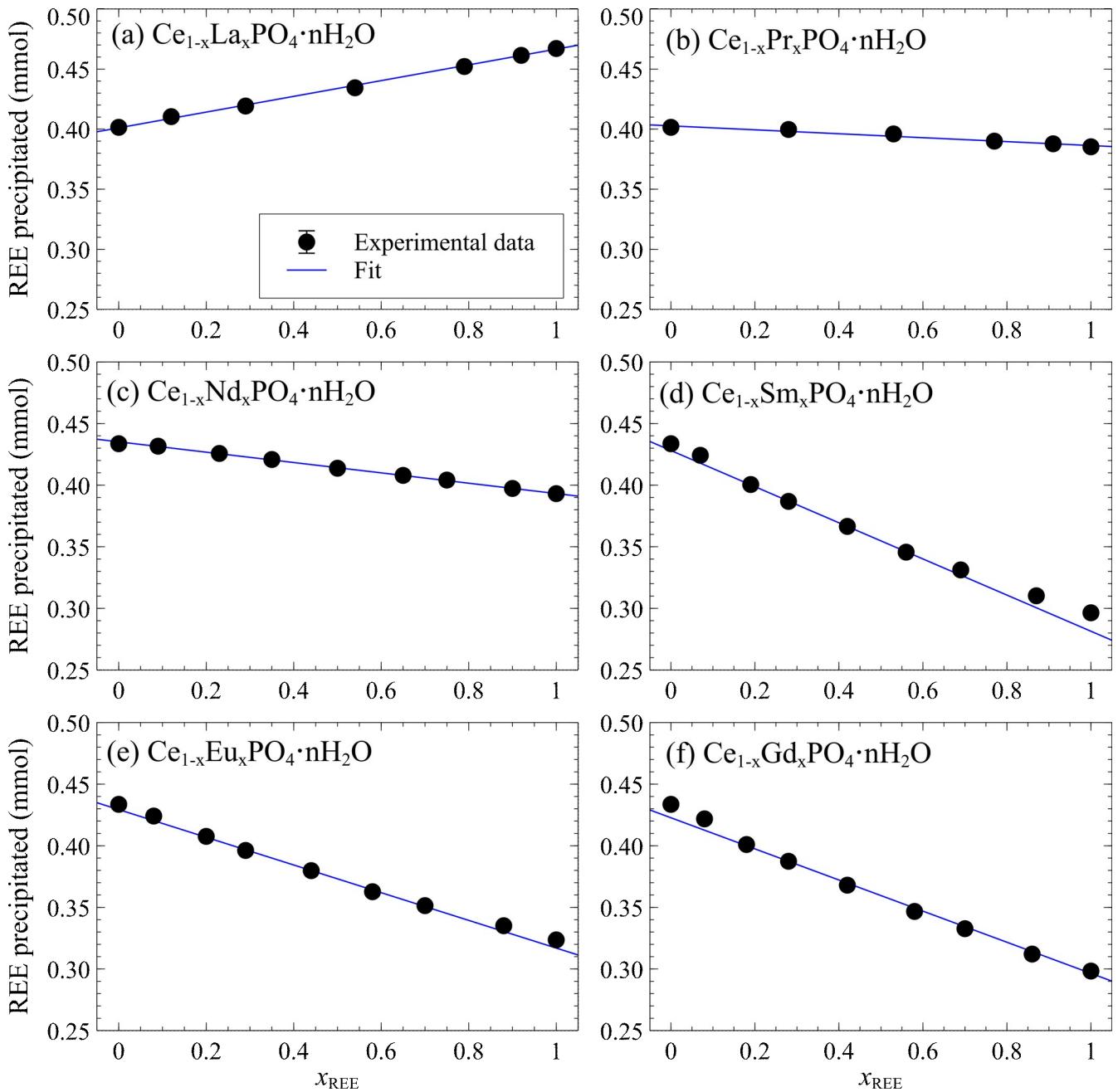

1011

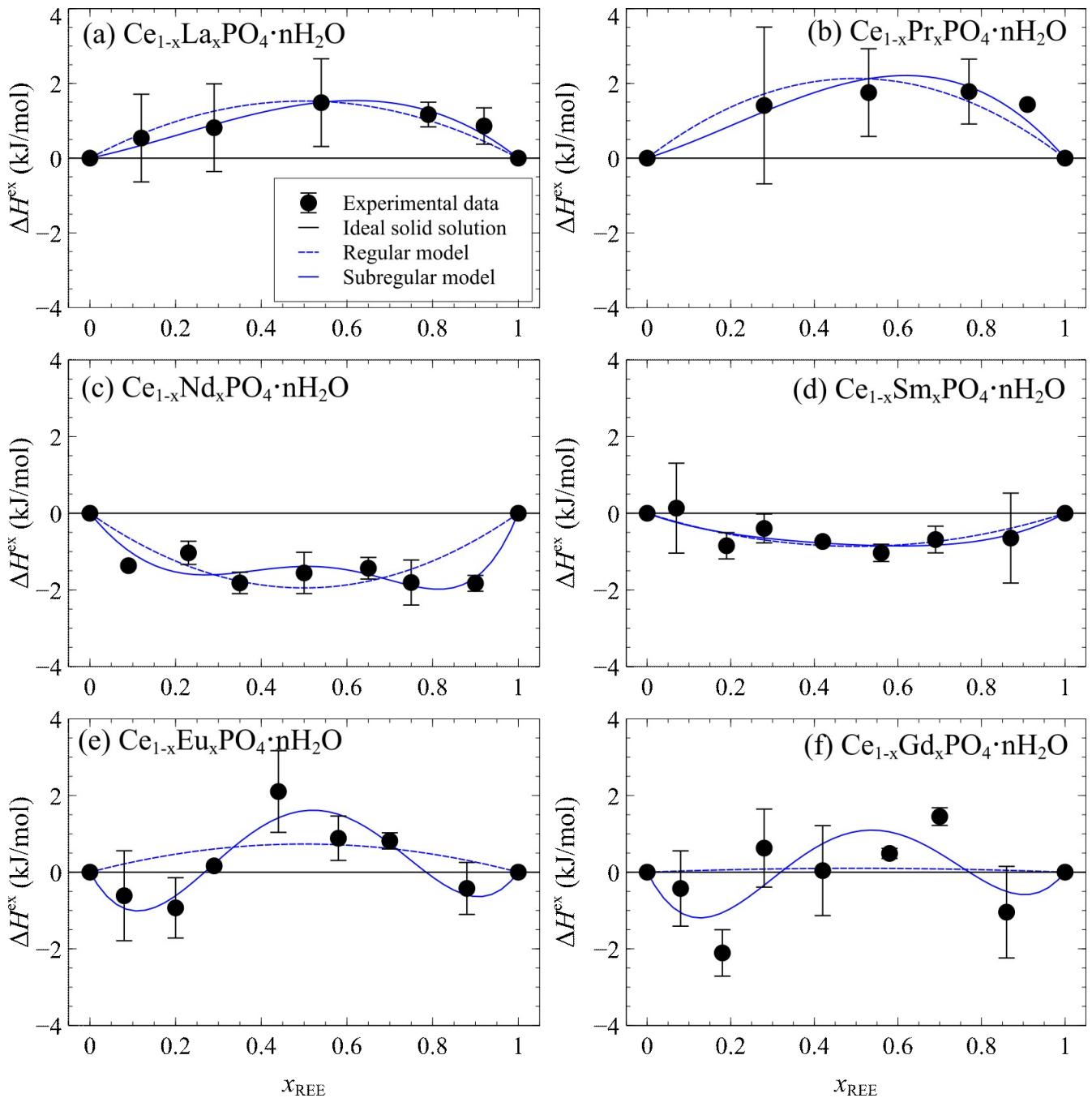
1012 **Figure 13.** Lippmann diagrams (Eqs. 15-18) showing the logarithm of the total dissolved
1013 element (TE) solubility product ($\Sigma\Pi$) as a function of mole fraction REE (x_{REE}) in the
1014 rhabdophane solid solutions. These diagrams were constructed using the GEMS code package
1015 (Kulik et al., 2013) process simulator and thermodynamic properties optimized using
1016 GEMSFITS (Miron et al., 2015) with parameters listed in Table 7. The computed “Solutus”
1017 curve indicates the REE composition of the aqueous solution and the “Solidus” curve the
1018 composition of the conjugate solid solution. The experimental data represent the REE
1019 concentrations measured in the experimental aqueous solutions.

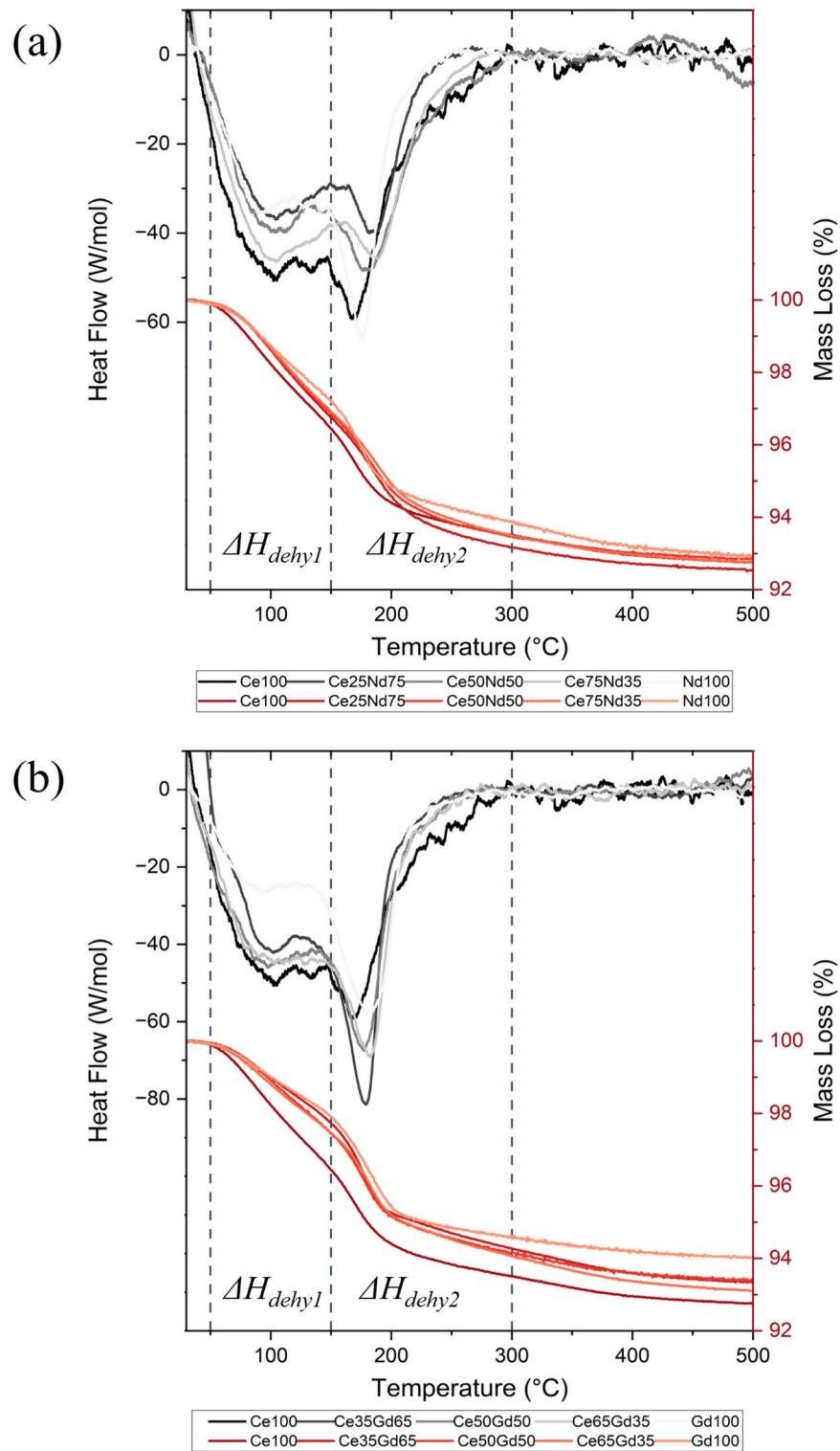

FIGURES

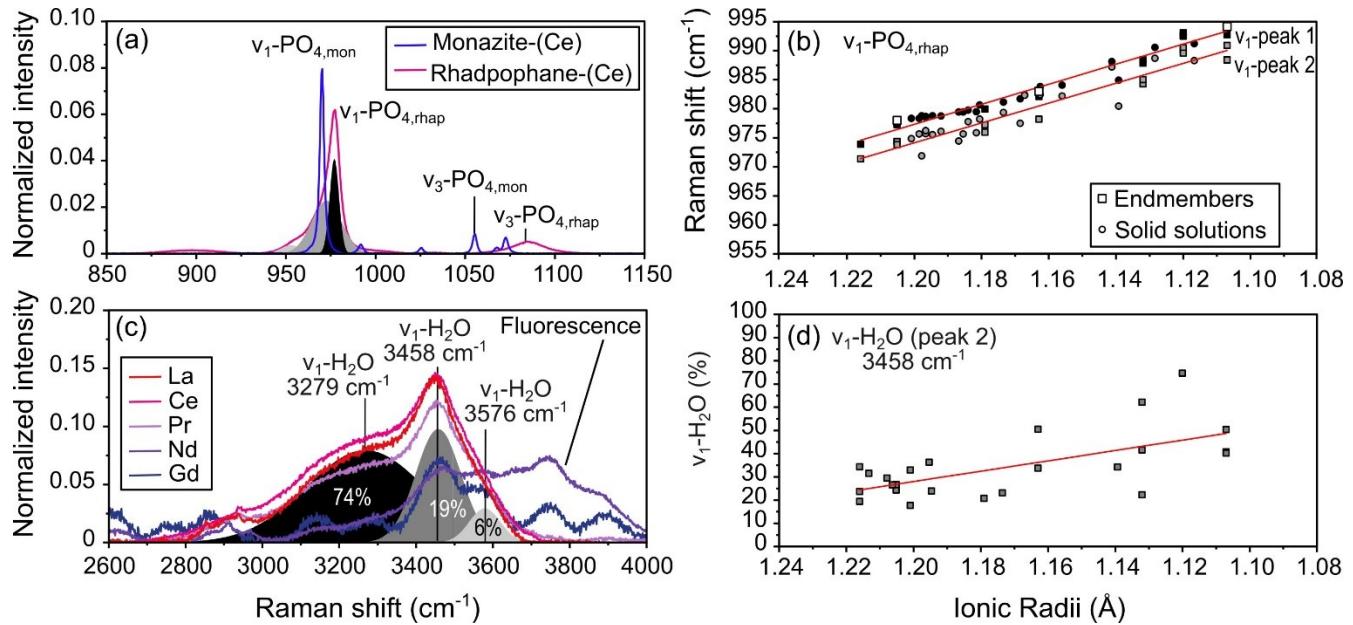

Figure 1. X-ray diffractograms of rhabdophane endmembers $\text{REEPO}_4 \cdot n\text{H}_2\text{O}$ (REE= La, Ce, Pr, Nd, Sm, Eu, and Gd) precipitated during the calorimetric experiments showing a comparison between modeled (Rietveld refinement) and measured XRD spectra indexed for the monoclinic $C2$ structure. Numbers in brackets are the Miller indices for major XRD reflections. The comparison indicates a (51-1) and (711) peak shift towards higher 2θ angles and an increase in (-222) and (-111) peaks sharpness from La to Gd.

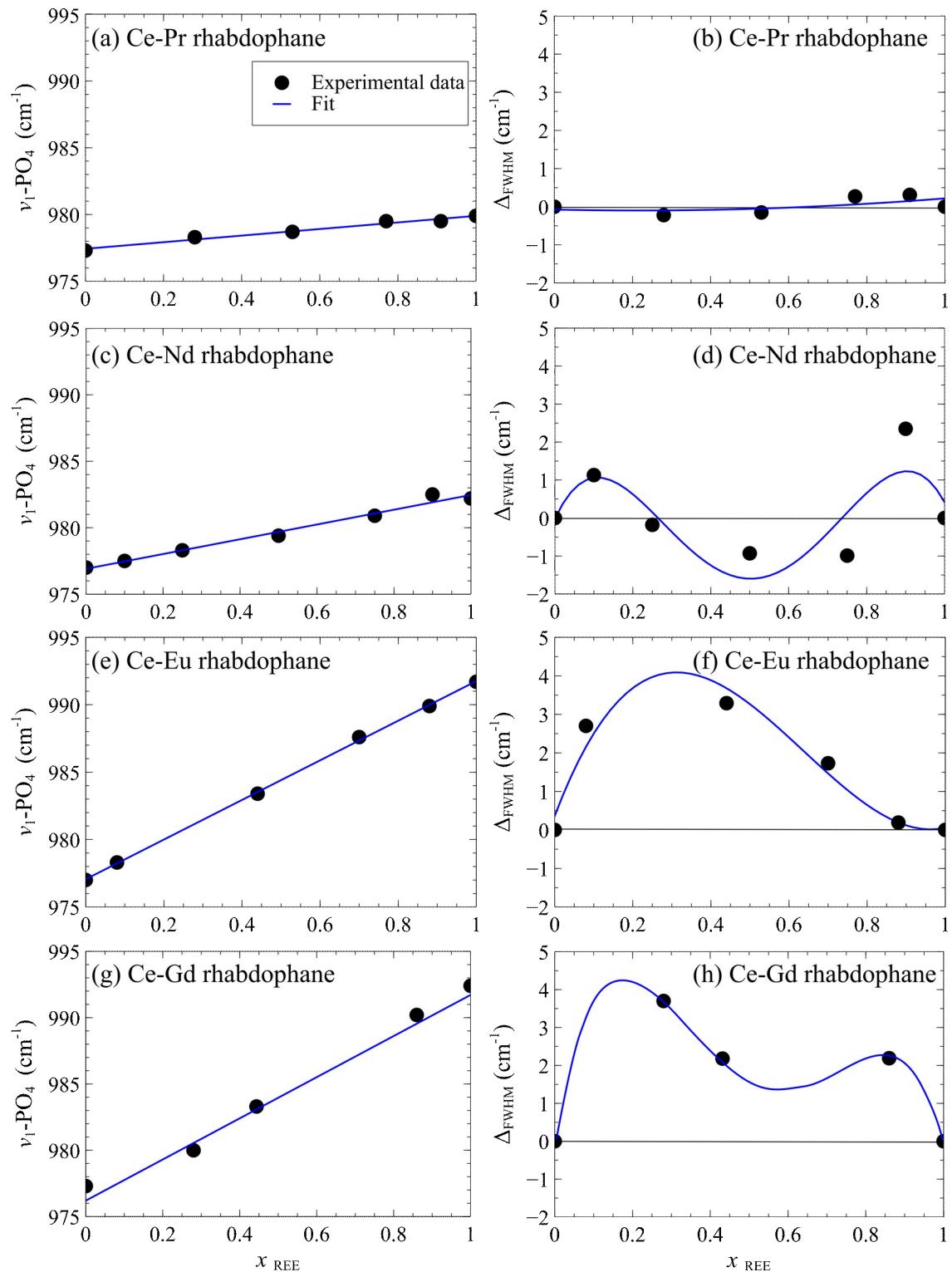

Figure 2. Lattice parameters of rhabdophane endmembers precipitated in this study refined in the monoclinic $C2$ crystal structure and comparison to other studies (Mesbah et al., 2014; Ochiai and Utsunomiya, 2017; Shelyug et al., 2018). The unit cell parameters include (a-c) the a , b , and c crystallographic axes and (d) the calculated unit cell molar volumes (V_{cell} in Å). The values of the refined lattice parameters are listed in Table 1.

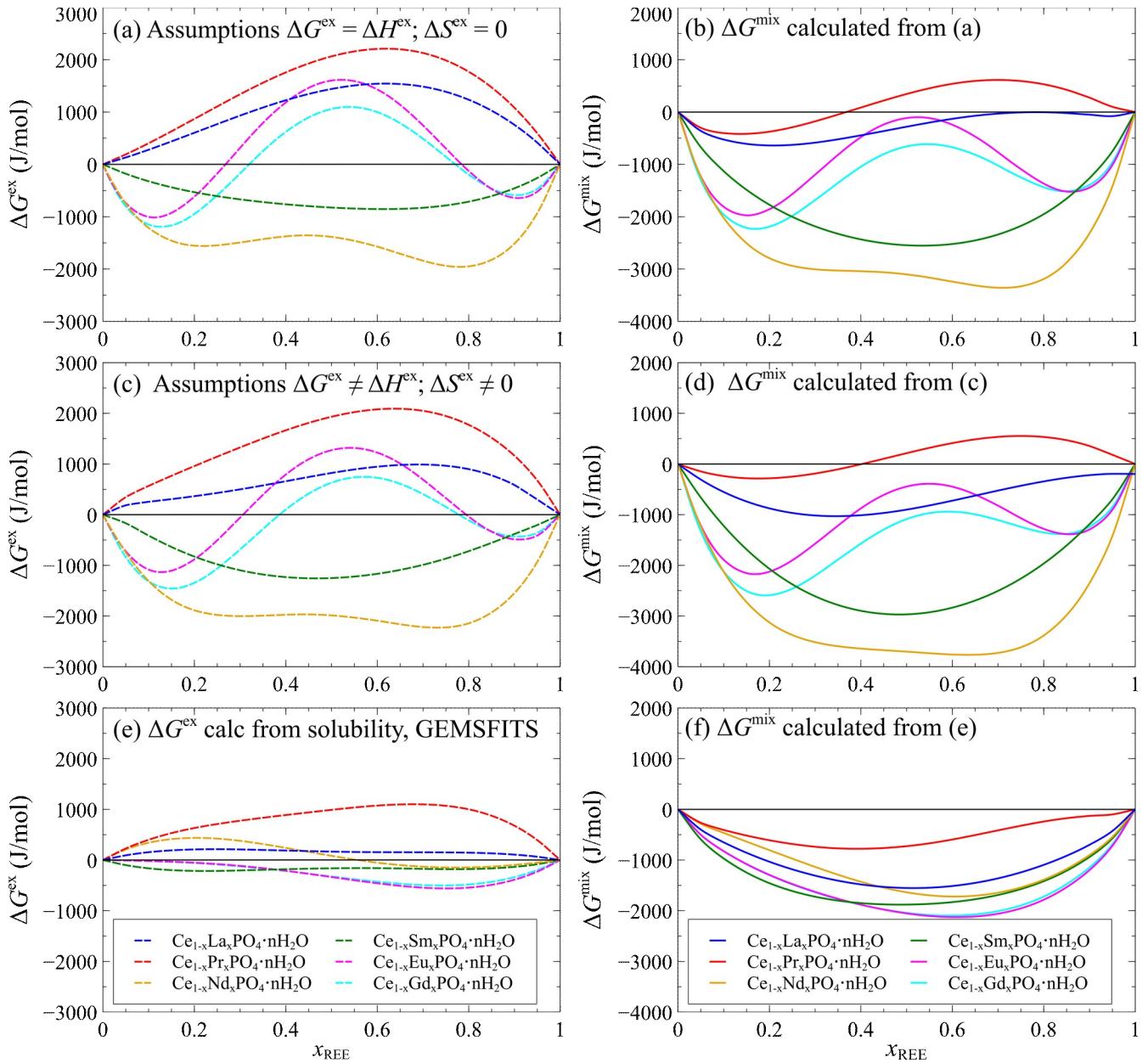

Figure 3. X-ray diffractograms of (a) Ce-Nd and (b) Ce-Gd binary rhabdophane solid solutions precipitated in the calorimetric experiments showing a comparison between modeled (Rietveld refinement) and measured XRD spectra indexed for the *C2* crystal structure. Numbers in brackets are the Miller indices for major XRD reflections. Numbers on the right side indicate the compositions of the REE solid solutions (Table 1). The comparison indicates peak shifts between endmembers and solid solution compositions.

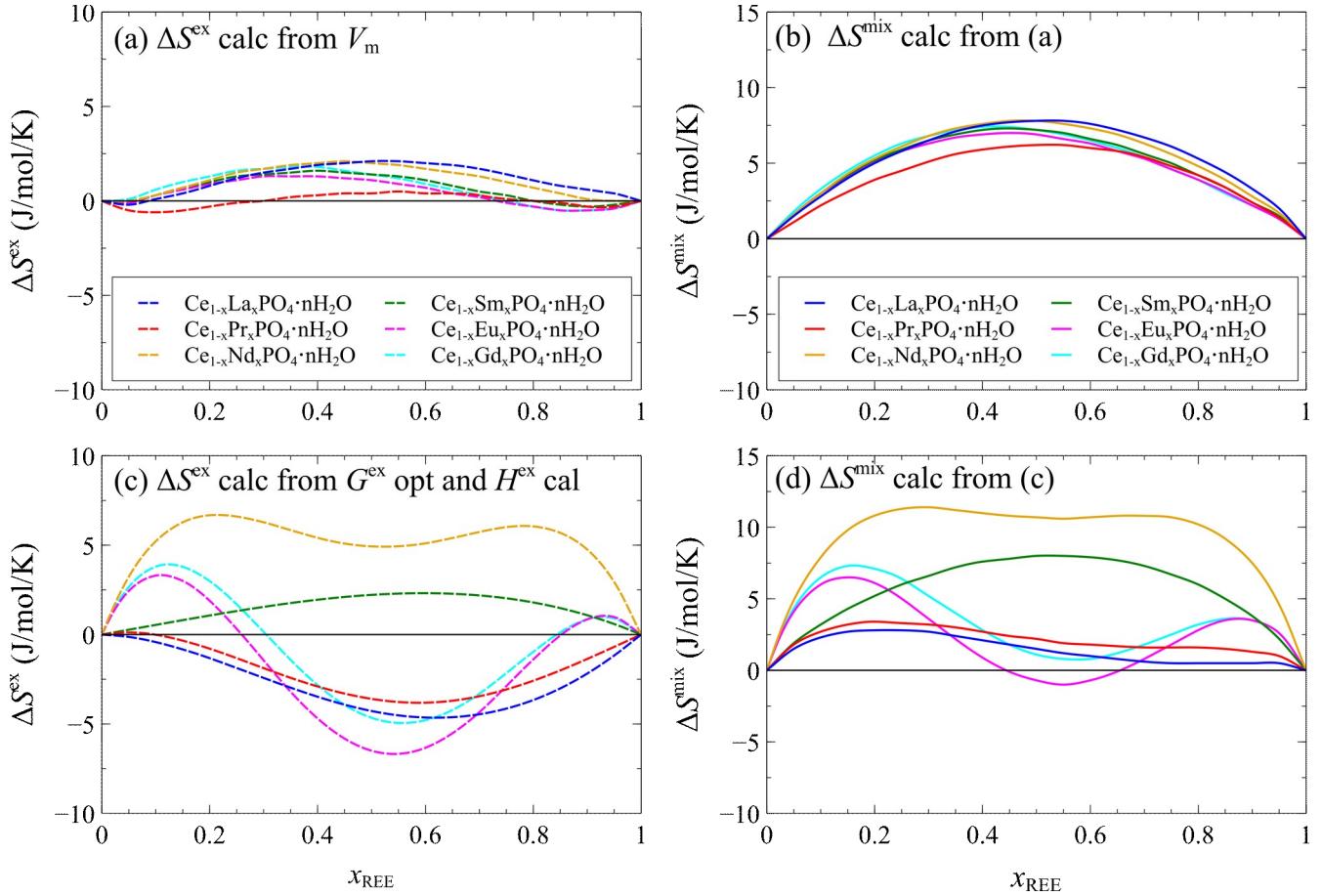

Figure 4. Molar volume of binary rhabdophane solid solutions (V_{ss}) as a function of mole fraction REE (x) in $\text{Ce}_{1-x}\text{REE}_x\text{PO}_4 \cdot n\text{H}_2\text{O}$ (REE= La, Pr, Nd, Sm, Eu, Gd).


Figure 5. Excess volume of mixing (ΔV^{ex}) of binary rhabdophane solid solutions as a function of mole fraction REE (x_{REE}) in $\text{Ce}_{1-x}\text{REE}_x\text{PO}_4 \cdot n\text{H}_2\text{O}$ (REE= La, Pr, Nd, Sm, Eu, Gd). The experimental data are listed in Table 1 and the fits in Table 2.


Figure 6. Amount of REE phosphates precipitated (in mmol) as a function of mole fraction REE (x_{REE}) in $\text{Ce}_{1-x}\text{REExPO}_4 \cdot n\text{H}_2\text{O}$ (REE = La, Pr, Nd, Sm, Eu, Gd), determined from REE measured in the starting and final experimental solutions (Table 3).


Figure 7. Excess enthalpies of mixing (ΔH^{ex} in kJ/mol) as a function of mole fraction REE (x_{REE}) in $\text{Ce}_{1-x}\text{REE}_x\text{PO}_4 \cdot n\text{H}_2\text{O}$ (REE= La, Pr, Nd, Sm, Eu, Gd) binary solid solution series determined using calorimetry. The error bars denote the standard deviations based on duplicate to quadruplicate experiments. The experimental data are listed in Table 3 and the fits in Table 4.


Figure 8. TGA-DSC analysis of binary (a) Ce-Nd and (b) Ce-Gd solid solutions from 30–500 °C. Integration bounds for enthalpy dehydration steps calculations are marked by the blue dashed lines. The integrated enthalpy and water contents are listed in Table 5.


Figure 9. Raman spectra of: (a) symmetric (ν_1) and asymmetric (ν_3) vibrational phosphate stretching bands for monazite-(Ce) and rhabdophane-(Ce) endmembers; (b) peak center shift of the two main subpeaks of ν_1 -PO₄ in rhabdophane endmembers and solid solutions with decreasing ionic radii; (c) the vibrational stretching band for water in rhabdophane endmembers; (d) water subpeak area 2 (ν_1 -H₂O at 3458 cm^{-1}) increasing with decreasing ionic radii. White squares in (c) correspond to the Ce, Nd and Gd endmembers measured in previous studies (Clavier et al., 2018; Liu et al., 2022).

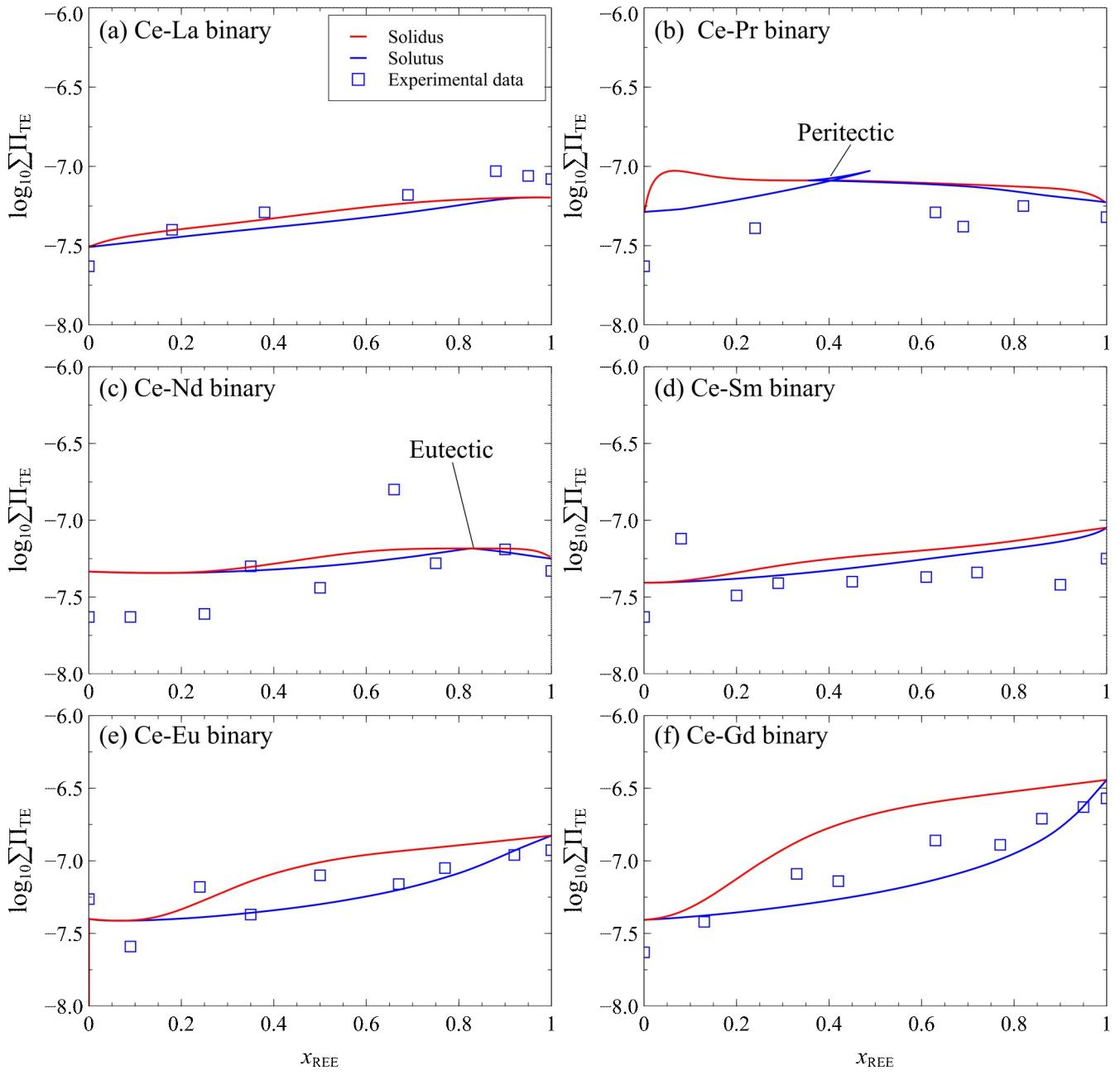

Figure 10. Raman spectra of symmetric vibrational phosphate stretching band shifts ($\nu_1\text{-PO}_4$) and full width at half maxima (FWHM) for binary (a,b) Ce-Pr, (c,d) Ce-Nd, (e,f) Ce-Eu and (g,h) Ce-Gd rhabdophane solid solutions. The Δ_{FWHM} values show the departure of FWHM for solid solutions from a linear interpolation between endmembers indicating non-ideal solid solution behavior due to short-range ordering.

Figure 11. Excess Gibbs energy (ΔG^{ex}) and Gibbs energy of mixing (ΔG^{mix}) as a function of mole fraction REE (x_{REE}) in the rhabdophane solid solutions determined using three different approaches: (a-b) assuming disordering and random mixing with $\Delta G^{\text{ex}}=\Delta H^{\text{ex}}$ and $S^{\text{ex}}=0$ (section 4.1.1.); (c-d) assuming $S^{\text{ex}}\neq 0$, with entropy determined from molar volume data (section 4.1.2.); (e-f) ΔG^{ex} calculated from thermodynamic optimizations of solubility data using GEMSFITS and Aq-SS equilibria calculations (section 4.2.1.). Calculated Gibbs energy values are listed in the Supplementary Material Table S2.

Figure 12. Excess entropy (ΔS^{ex}) and entropy of mixing (ΔS^{mix}) as a function of mole fraction REE (x_{REE}) in the rhabdophane solid solutions determined using two different approaches: (a-b) from XRD molar volume data (section 4.1.2.); (c-d) calculated using Eqs. 13 and 14 and the ΔG^{ex} calculated from thermodynamic optimizations of solubility data using GEMSFITS and Aq-SS equilibria calculations (section 4.2.1.). Calculated entropy values are listed in the Supplementary Material Tables S1 and S3.

Figure 13. Lippmann diagrams (Eqs. 15-18) showing the logarithm of the total dissolved element (TE) solubility product ($\Sigma \Pi$) as a function of mole fraction REE (x_{REE}) in the rhabdophane solid solutions. These diagrams were constructed using the GEMS code package (Kulik et al., 2013) process simulator and thermodynamic properties optimized using GEMSFITS (Miron et al., 2015) with parameters listed in Table 7. The computed “Solutus” curve indicates the REE composition of the aqueous solution and the “Solidus” curve the composition of the conjugate solid solution. The experimental data represent the REE concentrations measured in the experimental aqueous solutions.

Table 1. Refined crystal unit cell parameters (a , b , c , and β) of rhabdophane endmembers and binary solid solutions ($\text{Ce}_1\text{xREE}_x\text{PO}_4\text{·}n\text{H}_2\text{O}$, where x is the mole fraction REE (La, Pr, Nd, Sm, Eu, and Gd) in the solid solution. The molar volumes, V_{ss} for solid solutions and V_{cell} for endmembers (in $\text{cm}^3\text{·mol}^{-1}$) were calculated based on 24 formula units and the excess molar volume of mixing (ΔV^{ex}) was determined according to Eq. 2.

Ce90Sm10	0.07	0.93	28.605	0.009	6.888	0.002	12.387	0.003	115.96	0.03	2194	2	55.07	0.04	0.490	0.002
Ce75Sm25	0.19	0.81	28.527	0.008	6.892	0.001	12.345	0.003	115.81	0.02	2185	1	54.83	0.03	0.478	0.004
Ce65Sm35	0.28	0.72	28.511	0.009	6.882	0.002	12.336	0.003	115.83	0.03	2179	1	54.68	0.04	0.491	0.004
Ce50Sm50	0.42	0.58	28.412	0.011	6.876	0.002	12.286	0.004	115.77	0.03	2161	2	54.24	0.05	0.315	0.017
Ce35Sm65	0.56	0.44	28.374	0.007	6.859	0.001	12.280	0.003	115.86	0.02	2150	1	53.96	0.03	0.302	0.004
Ce25Sm75	0.69	0.31	28.296	0.008	6.846	0.002	12.243	0.003	115.73	0.02	2136	1	53.61	0.03	0.192	0.009
Ce10Sm90	0.87	0.13	28.168	0.009	6.835	0.002	12.190	0.003	115.49	0.03	2118	1	53.16	0.04	0.085	0.015
<i>Ce-Eu binary</i>																
Ce90Eu10	0.08	0.92	28.545	0.008	6.904	0.001	12.355	0.003	115.85	0.02	2191	1	54.99	0.03	0.475	0.004
Ce75Eu25	0.20	0.80	28.475	0.000	6.876	0.002	12.342	0.003	115.71	0.03	2177	1	54.64	0.04	0.423	0.001
Ce65Eu35	0.29	0.71	28.490	0.010	6.870	0.002	12.317	0.003	115.92	0.03	2168	2	54.41	0.04	0.418	0.004
Ce50Eu50	0.44	0.56	28.337	0.005	6.867	0.002	12.260	0.003	115.69	0.01	2150	1	53.95	0.02	0.336	0.015
Ce35Eu65	0.58	0.42	28.325	0.007	6.841	0.001	12.227	0.003	115.76	0.02	2134	1	53.54	0.03	0.273	0.009
Ce25Eu75	0.70	0.30	28.199	0.010	6.835	0.002	12.183	0.003	115.71	0.03	2116	2	53.09	0.04	0.117	0.007
Ce10Eu90	0.88	0.12	28.101	0.011	6.810	0.002	12.141	0.004	115.70	0.04	2094	2	52.53	0.05	0.012	0.013
<i>Ce-Gd binary</i>																
Ce90Gd10	0.08	0.92	28.585	0.008	6.899	0.001	12.386	0.003	115.83	0.02	2198	1	55.17	0.03	0.691	0.006
Ce75Gd25	0.18	0.82	28.543	0.009	6.887	0.002	12.358	0.003	115.89	0.03	2186	2	54.84	0.04	0.660	0.001
Ce65Gd35	0.28	0.72	28.470	0.009	6.876	0.002	12.312	0.003	115.83	0.03	2169	1	54.44	0.04	0.546	0.003
Ce50Gd50	0.42	0.58	28.370	0.010	6.857	0.002	12.269	0.003	115.84	0.03	2148	2	53.91	0.04	0.422	0.002
Ce35Gd65	0.58	0.42	28.278	0.009	6.827	0.002	12.238	0.003	115.81	0.03	2127	2	53.37	0.04	0.357	0.003
Ce25Gd75	0.70	0.30	28.154	0.012	6.819	0.002	12.176	0.004	115.74	0.04	2106	2	52.84	0.05	0.176	0.009
Ce10Gd90	0.86	0.14	28.063	0.012	6.785	0.002	12.152	0.004	115.82	0.04	2083	2	52.27	0.05	0.068	0.007

Table 2. Fitted coefficients (a_0-a_3 , in cm^3/J) for the Guggenheim function (Eq. 9) relating excess molar volume of mixing (ΔV^{ex}) and mole fraction REE (x). The R^2 linear regression coefficients indicate that the asymmetric 3-term Guggenheim function most accurately reproduces the experimental ΔV^{ex} values derived in this study.

Rhabdophane binary	1-coeff		2-coeff		3-coeff				R^2
	$a_0 \times 10^3$	R^2	$a_0 \times 10^3$	$a_1 \times 10^3$	R^2	$a_0 \times 10^3$	$a_1 \times 10^3$	$a_2 \times 10^3$	
Ce-La	1.17	0.59	1.17	0.34	0.64	0.82	0.29	1.92	0.95
Ce-Pr	0.11	0.83	0.12	-0.05	0.87	0.15	-0.01	-0.21	0.99
Ce-Nd	1.06	0.80	1.07	-0.36	0.86	0.92	-0.36	1.01	0.94
Ce-Sm	0.66	0.16	0.62	-0.89	0.68	0.45	-0.80	1.22	0.87
Ce-Eu	0.59	0.20	0.56	-0.91	0.79	0.45	-0.85	0.76	0.86
Ce-Gd	0.81	0.07	0.77	-1.26	0.69	0.53	-1.14	1.56	0.86

Table 3. Dissolved REE and P concentrations (in mmol/kg and $\mu\text{mol/kg}$) before (initial) and after precipitation (final) of rhabdophane measured in the experimental aqueous solutions using ICP-OES and ICP-MS. Enthalpy of precipitation (ΔH^{ppt}) and excess enthalpy of mixing (ΔH^{ex}) were measured at room temperature and 1 bar using calorimetry. The amount of rhabdophane precipitated (REE_{ppt}) was calculated from initial/final REE concentrations in the fluid. The mole fractions (x) of REE corresponds to the composition of the precipitated binary rhabdophane solid solutions ($\text{Ce}_x\text{REE}_{1-x}\text{PO}_4 \cdot n\text{H}_2\text{O}$).

Run ID	x	$1-x$	$\text{Ce}_{\text{initial}}$ (mmol/kg)	Ce_{final} ($\mu\text{mol/kg}$)	$\text{REE}_{\text{initial}}$ (mmol/kg)	$\text{REE}_{\text{final}}$ ($\mu\text{mol/kg}$)	$\text{P}_{\text{initial}}$ (mmol/kg)	${}^{\text{a}}\text{P}_{\text{final,calc}}$ (mmol/kg)	REE_{ppt} (mmol)	ΔH_{ppt} (kJ/mol)	$1\sigma^{\text{b}}$	ΔH^{ex} (kJ/mol)	$1\sigma^{\text{b}}$
Endmembers													
La100	1.00	-	-	-	4.58	2.16	42.86	38.28	0.467	34.59	-	-	-
Ce100	-	1.00	4.25	0.61	-	-	42.86	38.61	0.434	33.20	0.11	-	-
Pr100	1.00	-	-	-	3.78	1.23	43.12	39.34	0.385	36.87	-	-	-
Nd100	1.00	-	-	-	3.86	1.36	38.03	34.18	0.393	38.76	0.93	-	-
Sm100	1.00	-	-	-	2.91	1.40	43.32	40.42	0.296	38.95	-	-	-
Eu100	1.00	-	-	-	3.18	2.81	44.56	41.38	0.324	36.83	0.90	-	-
Gd100	1.00	-	-	-	2.93	6.68	43.05	40.12	0.298	44.13	0.85	-	-
<i>Ce-La binary</i>													
Ce90La10	0.12	0.88	3.54	0.83	0.48	0.19	42.86	38.84	0.410	33.90	-	0.54	-
Ce75La25	0.29	0.71	2.95	0.82	1.16	0.51	42.86	38.75	0.419	34.41	-	0.81	-
Ce50La50	0.54	0.46	1.98	0.53	2.28	1.17	43.12	38.86	0.434	35.43	-	1.48	-
Ce25La75	0.79	0.21	0.99	0.30	3.44	2.09	43.12	38.69	0.452	35.46	0.33	1.17	0.33
Ce10La90	0.92	0.08	0.39	0.12	4.13	2.13	43.12	38.60	0.461	35.34	0.49	0.86	0.49
<i>Ce-Pr binary</i>													
Ce75Pr25	0.28	0.72	2.95	0.33	0.97	0.74	43.11	39.19	0.400	35.62	2.10	1.41	2.10
Ce50Pr50	0.53	0.47	1.98	0.79	1.90	0.25	43.29	39.41	0.396	36.91	-	1.76	-
Ce25Pr75	0.77	0.23	0.99	0.47	2.84	0.82	43.30	39.48	0.390	37.82	0.87	1.78	0.87
Ce10Pr90	0.91	0.09	0.40	0.26	3.41	1.17	43.30	39.50	0.388	37.98	0.01	1.44	0.01
<i>Ce-Nd binary</i>													
Ce90Nd10	0.09	0.91	3.84	0.63	0.39	0.07	38.03	33.80	0.432	32.33	0.06	-1.37	0.06
Ce75Nd25	0.23	0.77	3.20	0.55	0.97	0.18	38.03	33.86	0.426	33.45	0.30	-1.03	0.30
Ce65Nd35	0.35	0.65	2.77	0.85	1.35	0.45	43.19	39.07	0.421	33.33	0.28	-1.82	0.28
Ce50Nd50	0.50	0.50	2.13	0.47	1.93	0.46	43.05	38.99	0.414	34.43	0.54	-1.56	0.54
Ce35Nd65	0.65	0.35	1.50	1.40	2.51	2.67	43.19	39.19	0.408	35.38	0.28	-1.43	0.28
Ce25Nd75	0.75	0.25	1.07	0.33	2.89	1.00	43.11	39.15	0.404	35.57	0.59	-1.81	0.59
Ce10Nd90	0.90	0.10	0.43	0.16	3.47	1.47	43.11	39.21	0.397	36.38	0.21	-1.83	0.21
<i>Ce-Sm binary</i>													
Ce90Sm10	0.07	0.93	3.84	1.82	0.29	0.15	43.08	38.93	0.424	33.73	-	0.13	-

Ce75Sm25	0.19	0.81	3.20	0.66	0.73	0.16	43.32	39.40	0.400	33.44	0.34	-0.85	0.34
Ce65Sm35	0.28	0.72	2.78	0.70	1.02	0.28	43.08	39.29	0.387	34.41	0.38	-0.40	0.38
Ce50Sm50	0.42	0.58	2.14	0.55	1.45	0.46	42.48	38.89	0.366	34.88	0.02	-0.74	0.02
Ce35Sm65	0.56	0.44	1.50	0.41	1.89	0.65	43.08	39.69	0.346	35.38	0.23	-1.03	0.23
Ce25Sm75	0.69	0.31	1.07	0.32	2.18	0.84	42.48	39.23	0.331	36.48	0.35	-0.69	0.35
Ce10Sm90b	0.87	0.13	0.42	0.10	2.62	0.86	42.48	39.44	0.310	37.55	-	-0.65	-
<i>Ce-Eu binary</i>													
Ce90Eu10	0.08	0.92	3.84	0.61	0.32	0.06	43.08	38.93	0.424	32.87	-	-0.62	-
Ce75Eu25	0.20	0.80	3.20	1.24	0.79	0.40	44.55	40.56	0.408	32.99	0.79	-0.93	0.79
Ce65Eu35	0.29	0.71	2.78	0.70	1.11	0.38	43.19	39.31	0.396	34.42	0.00	0.16	0.00
Ce50Eu50	0.44	0.56	2.13	0.99	1.59	1.00	43.22	39.50	0.380	36.90	1.07	2.10	1.07
Ce35Eu65	0.58	0.42	1.49	0.58	2.06	1.16	43.19	39.64	0.363	36.19	0.58	0.88	0.58
Ce25Eu75	0.70	0.30	1.07	0.52	2.38	1.73	43.11	39.66	0.351	36.56	0.21	0.82	0.21
Ce10Eu90	0.88	0.12	0.43	0.24	2.86	2.54	43.11	39.82	0.335	35.97	0.68	-0.42	0.68
<i>Ce-Gd binary</i>													
Ce90Gd10	0.08	0.92	3.84	0.84	0.29	0.13	43.08	38.95	0.422	33.36	0.57	-0.43	0.98
Ce75Gd25	0.18	0.82	3.20	1.40	0.73	0.68	43.05	39.12	0.401	33.06	0.60	-2.11	0.60
Ce65Gd35	0.28	0.72	2.77	1.07	1.03	0.76	43.19	39.39	0.387	36.89	1.02	0.63	1.02
Ce50Gd50	0.42	0.58	2.13	1.27	1.48	2.17	43.34	39.73	0.368	37.83	-	0.04	-
Ce35Gd65	0.58	0.42	1.50	0.73	1.91	2.51	43.19	39.79	0.347	40.03	0.13	0.49	0.13
Ce25Gd75	0.70	0.30	1.07	0.70	2.20	4.21	43.34	40.08	0.333	42.30	0.23	1.45	0.23
Ce10Gd90	0.86	0.14	0.43	0.27	2.64	5.60	43.34	40.28	0.312	41.55	1.20	-1.04	1.20

^aCalculated from amounts of REE precipitated and initial P concentrations.

^b Standard deviation calculated based on duplicates to quadrupletes experiments.

Table 4. Fitted coefficients (a_0 - a_3) for the Guggenheim function relating excess enthalpy of mixing (ΔH^{ex}) and mole fraction REE according to Eq. 10.

rhabdophane binary	1-coeff		2-coeff		3-coeff				R ²
	$a_0 \times 10^3$	R ²	$a_0 \times 10^3$	$a_1 \times 10^3$	R ²	$a_0 \times 10^3$	$a_1 \times 10^3$	$a_2 \times 10^3$	
Ce-La	2.47	0.68	2.32	1.33	0.82	-	-	-	-
Ce-Pr	3.44	0.36	3.33	1.90	0.45	-	-	-	-
Ce-Nd	-3.14	0.41	-3.14	-0.78	0.44	-2.23	-0.84	-6.05	0.75
Ce-Sm	-1.39	0.58	-1.41	-0.30	0.59	-1.33	-0.38	-0.65	0.60
Ce-Eu	1.19	0.19	1.23	1.43	0.25	2.59	1.03	-9.79	0.70
Ce-Gd	0.16	-0.01	0.20	2.38	0.12	1.71	1.58	-8.76	0.40

Table 5. Results from the TGA-DSC experiments between 25 and 500 °C showing a comparison of the first (ΔH_{dehy1}), second (ΔH_{dehy2}), and overall (ΔH_{dehy}) dehydration enthalpies and atom per formula units rhabdophane (apfu) of H₂O derived from the dehydration reactions. Water contents from this study and literature values for end-member Ce, Nd, and Gd rhabdophanes are also listed.

Run ID	(this study)				[Sh18] ¹		[Och17] ²	[Anf14] ³
	ΔH_{dehy1} (kJ/mol H ₂ O)	ΔH_{dehy2} (kJ/mol H ₂ O)	ΔH_{dehy} (kJ/mol H ₂ O)	nH ₂ O (apfu)	ΔH_{dehy} (kJ/mol)	nH ₂ O (apfu)	nH ₂ O (apfu)	nH ₂ O (apfu)
Ce100	103.1	101.7	96.5	0.96	68.3	0.73	1.71	-
Nd100	92.5	63.5	73.6	0.96	67.2	0.75	1.76	1.20
Gd100	91.4	72.8	95.6	0.85	86.1	0.53	1.96	0.80
Ce25Nd75	76.4	51.0	58.6	1.01	-	-	-	-
Ce50Nd50	86.8	84.4	91.9	0.96	-	-	-	-
Ce75Nd35	105.4	74.7	84.8	0.97	-	-	-	-
Ce35Gd65	122.0	79.1	100.0	0.93	-	-	-	-
Ce50Gd50	127.7	83.0	97.2	1.09	-	-	-	-
Ce65Gd35	132.8	86.4	104.3	0.95	-	-	-	-

¹Shelyug et al. (2018); ²Ochiai et al. (2017); ³Anfimova et al. (2014).

Table 6. Raman spectroscopy of rhabdophane solid solutions showing the peak centers and the full width half maximum (FWHM) of the symmetrical ν_1 stretching vibration band of the PO_4 tetrahedron.

Solid solution	x_{REE}	$\nu_1\text{-PO}_4$ cm^{-1}	\pm	FWHM- ν_1 cm^{-1}	\pm	^a FWHM _{calc} cm^{-1}	^b Δ_{FWHM} cm^{-1}
Ce-Pr binary	0	977.3	0.5	5.59	0.27	5.59	0
	0.28	978.3	0.5	5.28	0.27	5.50	-0.22
	0.53	978.7	0.5	5.28	0.27	5.43	-0.15
	0.77	979.5	0.5	5.63	0.27	5.36	0.27
	0.91	979.5	0.5	5.62	0.27	5.31	0.31
	1	979.9	0.5	5.29	0.27	5.29	0
Ce-Nd binary	0	977.0	0.5	6.17	0.27	6.17	0
	0.10	977.5	0.5	7.75	0.27	6.62	1.13
	0.25	978.3	0.5	7.12	0.27	7.30	-0.18
	0.50	979.4	0.5	7.49	0.27	8.43	-0.93
	0.75	980.9	0.5	8.56	0.27	9.56	-0.99
	0.90	982.5	0.5	12.6	0.27	10.23	2.35
	1	982.2	0.5	10.7	0.27	10.68	0
Ce-Eu binary	0	977.0	0.5	6.13	0.27	6.13	0
	0.08	978.3	0.5	9.18	0.27	6.48	2.70
	0.44	983.4	0.5	11.4	0.27	8.08	3.29
	0.70	987.6	0.5	11.0	0.27	9.23	1.73
	0.88	989.9	0.5	10.2	0.27	10.03	0.19
	1	991.7	0.5	10.6	0.27	10.57	0
Ce-Gd binary	0	977.3	0.5	5.92	0.27	5.92	0
	0.28	980.0	0.5	10.3	0.27	6.59	3.70
	0.42	983.3	0.5	9.11	0.27	6.93	2.18
	0.86	990.2	0.5	10.2	0.27	7.99	2.19
	1	992.4	0.5	8.32	0.27	8.32	0

^aCalculated from linear interpolation of rhabdophane endmember FWHM- ν_1 values.

^bDifference calculated by subtracting FWHM_{calc} values from measured rhabdophane solid solution FWHM values.

Table 7. Optimized standard Gibbs energy of formation (ΔfG_{opt}) of rhabdophane endmembers and binary solid solution interaction coefficients using a 3-term Guggenheim function (a_0 , a_1 , and a_2) for determination of the excess Gibbs energy (ΔG^{ex}) according to Eq. 6 and activity coefficients according to Eqs. 7 and 8.

	^a $\Delta fG^{\text{o}}_{\text{initial}}$ (J/mol)	^b \pm (J/mol)	$\Delta fG^{\text{o}}_{\text{opt}}$ (J/mol)	^c \pm (J/mol)	^d Δ (J/mol)	a_0	^c \pm	a_1	^c \pm	a_2	^c \pm
rhabdophane-(Ce)	-2,012,495	5,000	-2,001,517	504	10,978	-0.54	0.41	-1.03	0.56	-0.58	0.97
rhabdophane-(Eu)	-1,867,033	10,000	-1,854,966	409	12,067						
rhabdophane-(Ce)	-2,012,495	5,000	-2,000,871	572	11,624	-0.52	0.46	-0.89	0.66	-0.43	0.86
rhabdophane-(Gd)	-1,951,506	2,000	-1,936,636	424	14,869						
rhabdophane-(Ce)	-2,012,495	5,000	-2,002,766	588	9,729	0.13	0.55	-1.23	0.78	0.65	1.38
rhabdophane-(Nd)	-2,012,677	3,000	-2,000,783	531	11,894						
rhabdophane-(Ce)	-2,012,495	5,000	-2,004,023	121	8,472	1.60	0.21	0.78	0.28	1.28	0.55
rhabdophane-(Pr)	-2,013,411	5,000	-2,000,317	141	13,093						
rhabdophane-(Ce)	-2,012,495	5,000	-2,002,253	355	10,243	-0.26	0.38	0.08	0.51	-0.64	0.04
rhabdophane-(Sm)	-1,979,169	7,000	-1,966,614	336	12,555						
rhabdophane-(Ce)	-2,012,495	5,000	-2,003,183	207	9,313	0.27	0.15	-0.13	0.19	0.50	0.38
rhabdophane-(La)	-2,037,235	3,000	-2,028,839	104	8,396						

^aInitial standard Gibbs energy of formation ($\Delta fG_{\text{initial}}$) of rhabdophane calculated based on the rhabdophane solubility products ($\log K_{\text{sp}}$) derived in the solubility study from Gausse et al. (2016) and internally consistent with the aqueous REE³⁺, PO₄³⁻ and H₂O(aq) species implemented in the MINES thermodynamic database (Gysi et al., 2023). These values are also consistent within those reported by Shelyug et al. (2018).

^bUncertainties reported by Gausse et al. (2016) for Gibbs energies of rhabdophane dissolution based on $\log K_{\text{sp}}$ values reported from the solubility experiments.

^cCalculated uncertainties of the optimizations based on 200 Monte Carlo simulations in GEMSFITS (Miron et al., 2015).

^dDifference between $\Delta fG_{\text{initial}}$ and ΔfG_{opt} .

SUPPLEMENTARY MATERIAL

Reaction calorimetry and structural crystal properties of non-ideal binary rhabdophane solid solutions ($\text{Ce}_{1-x}\text{REE}_x\text{PO}_4 \cdot n\text{H}_2\text{O}$)

Alexander P. Gysi^{*a,b}, Nicole C. Hurtig^b, Hannah Juan Han^a, Emma C. Kindall^c, Xiaofeng Guo^c, Dmitrii A. Kulik^d, George Dan Miron^d

^a New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA

^b Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA

^c Department of Chemistry, Washington State University, Pullman, WA 99164, USA

^d Paul Scherrer Institute, Laboratory for Waste Management, Villigen PSI 5232, Switzerland

REVISION 1

* Corresponding author: e-mail, alexander.gysi@nmt.edu
Tel: +1 575-835-5754

To be submitted to GCA, for the Special Issue “Hydrothermal Geochemistry and Beyond: A Tribute to Terry M. Seward”

Table S1. Estimated excess entropy based on XRD data from the vibrational entropy term ($\Delta S^{\text{mix,vib}}$) and calculated configurational entropy term ($\Delta S^{\text{mix,ideal}}$). The entropy of mixing (ΔS^{mix}) was calculated according to Eq. 14 and other terms are described in section 4.1.2.

Run ID	x	1- x	$\Delta S^{\text{mix,vib}}$ J mol ⁻¹ K ⁻¹	\pm	$\Delta S^{\text{mix, ideal}}$ J mol ⁻¹ K ⁻¹	ΔS^{mix} J mol ⁻¹ K ⁻¹
<i>Ce-La binary</i>						
Ce10La90	0.92	0.08	1.31	2.34	2.29	3.60
Ce25La75	0.79	0.21	1.44	2.34	4.30	5.74
Ce50La50	0.54	0.46	1.40	2.34	5.74	7.14
Ce75La25	0.29	0.71	1.24	2.35	4.98	6.22
Ce90La10	0.12	0.88	1.13	2.35	3.06	4.19
<i>Ce-Pr binary</i>						
Ce75Pr25	0.28	0.72	0.13	2.32	4.90	5.04
Ce50Pr50	0.53	0.47	0.23	2.31	5.74	5.97
Ce25Pr75	0.77	0.23	0.08	2.31	4.45	4.53
Ce10Pr90	0.91	0.09	0.01	2.30	2.52	2.53
<i>Ce-Nd binary</i>						
Ce90Nd10	0.09	0.91	0.92	2.32	2.52	3.43
Ce75Nd25	0.23	0.77	1.73	2.33	4.48	6.21
Ce65Nd35	0.35	0.65	1.23	2.32	5.38	6.61
Ce35Nd65	0.65	0.35	1.37	2.30	5.38	6.75
Ce25Nd75	0.75	0.25	1.02	2.29	4.68	5.69
Ce10Nd90	0.90	0.10	0.70	2.28	2.70	3.40
<i>Ce-Sm binary</i>						
Ce90Sm10	0.07	0.93	1.23	2.33	2.11	3.34
Ce75Sm25	0.19	0.81	1.25	2.32	4.04	5.29
Ce65Sm35	0.28	0.72	1.31	2.31	4.93	6.24
Ce50Sm50	0.42	0.58	0.93	2.29	5.66	6.59
Ce35Sm65	0.56	0.44	0.95	2.28	5.70	6.65
Ce25Sm75	0.69	0.31	0.73	2.27	5.15	5.87
Ce10Sm90	0.87	0.13	0.53	2.25	3.21	3.74
<i>Ce-Eu binary</i>						
Ce90Eu10	0.08	0.92	1.17	2.32	2.32	3.49
Ce75Eu25	0.20	0.80	1.04	2.31	4.16	5.20
Ce65Eu35	0.29	0.71	1.03	2.30	5.01	6.03
Ce50Eu50	0.44	0.56	0.83	2.28	5.70	6.53
Ce35Eu65	0.58	0.42	0.67	2.27	5.66	6.33
Ce25Eu75	0.70	0.30	0.29	2.25	5.08	5.37
Ce10Eu90	0.88	0.12	0.03	2.23	3.05	3.08
<i>Ce-Gd binary</i>						
Ce90Gd10	0.08	0.92	1.70	2.33	2.32	4.02
Ce75Gd25	0.18	0.82	1.62	2.31	3.92	5.54
Ce65Gd35	0.28	0.72	1.34	2.30	4.93	6.27
Ce50Gd50	0.42	0.58	1.04	2.28	5.66	6.70
Ce35Gd65	0.58	0.42	0.88	2.26	5.66	6.53
Ce25Gd75	0.70	0.30	0.43	2.24	5.08	5.51
Ce10Gd90	0.86	0.14	0.17	2.22	3.37	3.54

Table S2. Calculated excess Gibbs energy (ΔG^{ex}) and Gibbs energy of mixing (ΔG^{mix}) based on the three approaches presented in sections 4.1. and 4.2. with curves shown in Figure 11.

1) $\Delta G^{\text{ex}} = \Delta H^{\text{ex}}$												
x_{REE}	$\Delta G^{\text{ex}}_{\text{Ce-La}}$ (J/mol)	$\Delta G^{\text{ex}}_{\text{Ce-Pr}}$ (J/mol)	$\Delta G^{\text{ex}}_{\text{Ce-Nd}}$ (J/mol)	$\Delta G^{\text{ex}}_{\text{Ce-Sm}}$ (J/mol)	$\Delta G^{\text{ex}}_{\text{Ce-Eu}}$ (J/mol)	$\Delta G^{\text{ex}}_{\text{Ce-Gd}}$ (J/mol)	$\Delta G^{\text{mix}}_{\text{Ce-La}}$ (J/mol)	$\Delta G^{\text{mix}}_{\text{Ce-Pr}}$ (J/mol)	$\Delta G^{\text{mix}}_{\text{Ce-Nd}}$ (J/mol)	$\Delta G^{\text{mix}}_{\text{Ce-Sm}}$ (J/mol)	$\Delta G^{\text{mix}}_{\text{Ce-Eu}}$ (J/mol)	$\Delta G^{\text{mix}}_{\text{Ce-Gd}}$ (J/mol)
0.00	0	0	0	0	0	0	0	0	0	0	0	0
0.05	132	191	-752	-179	-738	-802	-360	-301	-1244	-671	-1230	-1294
0.10	280	404	-1214	-323	-1004	-1151	-525	-402	-2020	-1129	-1810	-1957
0.15	439	632	-1459	-438	-926	-1166	-608	-416	-2507	-1486	-1974	-2213
0.20	604	869	-1552	-531	-617	-948	-636	-372	-2792	-1772	-1857	-2189
0.25	770	1106	-1548	-607	-174	-590	-624	-288	-2942	-2001	-1568	-1984
0.30	931	1338	-1493	-669	318	-168	-583	-176	-3007	-2183	-1197	-1682
0.35	1084	1557	-1426	-720	789	254	-521	-48	-3031	-2325	-816	-1351
0.40	1223	1755	-1374	-763	1184	622	-445	87	-3042	-2431	-484	-1046
0.45	1343	1927	-1356	-798	1465	900	-363	221	-3062	-2503	-241	-806
0.50	1439	2064	-1384	-825	1604	1061	-279	346	-3103	-2543	-114	-657
0.55	1506	2160	-1459	-844	1591	1094	-200	454	-3165	-2550	-115	-612
0.60	1539	2207	-1572	-852	1429	998	-129	539	-3241	-2521	-239	-670
0.65	1534	2200	-1708	-848	1136	789	-71	595	-3313	-2452	-469	-816
0.70	1486	2129	-1841	-826	746	491	-29	615	-3355	-2340	-769	-1023
0.75	1388	1990	-1936	-782	304	145	-6	596	-3330	-2176	-1090	-1249
0.80	1237	1773	-1949	-711	-127	-196	-3	533	-3190	-1951	-1368	-1436
0.85	1028	1473	-1828	-605	-471	-466	-20	425	-2876	-1653	-1519	-1514
0.90	755	1082	-1512	-457	-638	-587	-50	276	-2318	-1263	-1443	-1393
0.95	414	594	-929	-259	-520	-467	-78	101	-1421	-751	-1013	-959
1.00	0	0	0	0	0	0	0	0	0	0	0	0
2) $\Delta S^{\text{ex}} \text{ calc from XRD data}$												
x_{REE}	$\Delta G^{\text{ex}}_{\text{Ce-La}}$ (J/mol)	$\Delta G^{\text{ex}}_{\text{Ce-Pr}}$ (J/mol)	$\Delta G^{\text{ex}}_{\text{Ce-Nd}}$ (J/mol)	$\Delta G^{\text{ex}}_{\text{Ce-Sm}}$ (J/mol)	$\Delta G^{\text{ex}}_{\text{Ce-Eu}}$ (J/mol)	$\Delta G^{\text{ex}}_{\text{Ce-Gd}}$ (J/mol)	$\Delta G^{\text{mix}}_{\text{Ce-La}}$ (J/mol)	$\Delta G^{\text{mix}}_{\text{Ce-Pr}}$ (J/mol)	$\Delta G^{\text{mix}}_{\text{Ce-Nd}}$ (J/mol)	$\Delta G^{\text{mix}}_{\text{Ce-Sm}}$ (J/mol)	$\Delta G^{\text{mix}}_{\text{Ce-Eu}}$ (J/mol)	$\Delta G^{\text{mix}}_{\text{Ce-Gd}}$ (J/mol)
0.00	0	0	0	0	0	0	0	0	0	0	0	0
0.05	185	346	-742	-169	-723	-836	-307	-146	-1234	-661	-1215	-1328

0.10	254	568	-1312	-413	-1084	-1317	-552	-238	-2118	-1219	-1889	-2123
0.15	307	767	-1679	-638	-1105	-1458	-740	-281	-2727	-1685	-2153	-2506
0.20	363	958	-1886	-827	-882	-1345	-877	-282	-3127	-2068	-2123	-2586
0.25	427	1145	-1981	-980	-506	-1063	-967	-249	-3375	-2374	-1900	-2457
0.30	498	1327	-2005	-1097	-58	-686	-1016	-187	-3519	-2611	-1573	-2201
0.35	577	1502	-1993	-1180	392	-281	-1028	-103	-3598	-2785	-1212	-1886
0.40	659	1664	-1975	-1231	790	98	-1009	-4	-3643	-2900	-878	-1570
0.45	742	1809	-1968	-1254	1093	412	-964	103	-3674	-2960	-612	-1294
0.50	820	1930	-1985	-1250	1273	630	-898	212	-3703	-2968	-445	-1088
0.55	890	2022	-2028	-1220	1316	737	-815	316	-3734	-2926	-389	-969
0.60	946	2077	-2092	-1166	1222	727	-722	409	-3760	-2835	-446	-941
0.65	981	2089	-2162	-1089	1005	611	-623	484	-3767	-2694	-600	-994
0.70	990	2048	-2215	-990	692	409	-524	534	-3730	-2504	-822	-1106
0.75	965	1947	-2222	-867	326	153	-429	553	-3616	-2261	-1068	-1241
0.80	897	1774	-2144	-723	-39	-111	-343	534	-3384	-1964	-1280	-1351
0.85	776	1518	-1934	-559	-336	-327	-272	470	-2982	-1607	-1383	-1375
0.90	585	1161	-1545	-381	-486	-431	-220	355	-2351	-1187	-1292	-1237
0.95	298	674	-929	-204	-411	-359	-194	182	-1421	-696	-903	-851
1.00	0	0	0	0	0	0	-197	-197	-197	-197	-197	-197

3) ΔG^{ex} calc
Aq-SS
equilibria

x_{REE}	$\Delta G^{\text{ex}}_{\text{Ce-La}}$	$\Delta G^{\text{ex}}_{\text{Ce-Pr}}$	$\Delta G^{\text{ex}}_{\text{Ce-Nd}}$	$\Delta G^{\text{ex}}_{\text{Ce-Sm}}$	$\Delta G^{\text{ex}}_{\text{Ce-Eu}}$	$\Delta G^{\text{ex}}_{\text{Ce-Gd}}$	$\Delta G^{\text{mix}}_{\text{Ce-La}}$	$\Delta G^{\text{mix}}_{\text{Ce-Pr}}$	$\Delta G^{\text{mix}}_{\text{Ce-Nd}}$	$\Delta G^{\text{mix}}_{\text{Ce-Sm}}$	$\Delta G^{\text{mix}}_{\text{Ce-Eu}}$	$\Delta G^{\text{mix}}_{\text{Ce-Gd}}$
	(J/mol)	(J/mol)	(J/mol)	(J/mol)	(J/mol)	(J/mol)						
0.00	0	0	0	0	0	0	0	0	0	0	0	0
0.05	93	228	208	-100	-10	-9	-399	-264	-284	-592	-502	-501
0.10	155	400	341	-164	-19	-20	-651	-406	-464	-969	-825	-826
0.15	191	531	414	-199	-33	-36	-857	-517	-634	-1247	-1080	-1083
0.20	209	631	437	-213	-52	-58	-1031	-609	-803	-1454	-1292	-1298
0.25	213	711	422	-214	-79	-87	-1180	-683	-972	-1608	-1473	-1481
0.30	209	776	378	-205	-115	-123	-1305	-738	-1136	-1720	-1629	-1637
0.35	199	834	315	-193	-160	-167	-1406	-771	-1290	-1798	-1765	-1771
0.40	187	888	240	-180	-212	-216	-1481	-780	-1428	-1848	-1881	-1884
0.45	176	940	160	-168	-272	-269	-1530	-766	-1545	-1874	-1977	-1975
0.50	166	990	82	-161	-335	-324	-1552	-728	-1636	-1879	-2053	-2043
0.55	159	1035	10	-159	-398	-378	-1547	-670	-1696	-1864	-2104	-2084
0.60	155	1073	-52	-160	-458	-428	-1513	-595	-1720	-1829	-2126	-2096

Table S3. Calculated excess entropy (ΔS^{ex}) and entropy of mixing (ΔS^{mix}) based on the two approaches presented in sections 4.1.2. and 4.2.1. with curves shown in Figure 12.

0.05	-0.2	-0.5	0.0	0.0	-0.1	0.1	1.5	1.1	1.6	1.6	1.6	1.8
0.10	0.1	-0.6	0.3	0.3	0.3	0.6	2.8	2.2	3.0	3.0	3.0	3.3
0.15	0.4	-0.5	0.7	0.7	0.6	1.0	4.0	3.1	4.3	4.2	4.1	4.5
0.20	0.8	-0.3	1.1	1.0	0.9	1.3	5.0	3.9	5.3	5.2	5.1	5.5
0.25	1.2	-0.1	1.5	1.3	1.1	1.6	5.8	4.5	6.1	5.9	5.8	6.3
0.30	1.5	0.0	1.7	1.4	1.3	1.7	6.5	5.1	6.8	6.5	6.3	6.8
0.35	1.7	0.2	1.9	1.5	1.3	1.8	7.1	5.6	7.3	6.9	6.7	7.2
0.40	1.9	0.3	2.0	1.6	1.3	1.8	7.5	5.9	7.6	7.2	6.9	7.4
0.45	2.0	0.4	2.1	1.5	1.2	1.6	7.7	6.1	7.8	7.3	7.0	7.4
0.50	2.1	0.4	2.0	1.4	1.1	1.4	7.8	6.2	7.8	7.2	6.9	7.2
0.55	2.1	0.5	1.9	1.3	0.9	1.2	7.8	6.2	7.6	7.0	6.6	6.9
0.60	2.0	0.4	1.7	1.1	0.7	0.9	7.6	6.0	7.3	6.6	6.3	6.5
0.65	1.9	0.4	1.5	0.8	0.4	0.6	7.2	5.8	6.9	6.2	5.8	6.0
0.70	1.7	0.3	1.3	0.5	0.2	0.3	6.7	5.4	6.3	5.6	5.3	5.4
0.75	1.4	0.1	1.0	0.3	-0.1	0.0	6.1	4.8	5.6	5.0	4.6	4.6
0.80	1.1	0.0	0.7	0.0	-0.3	-0.3	5.3	4.2	4.8	4.2	3.9	3.9
0.85	0.8	-0.1	0.4	-0.2	-0.5	-0.5	4.4	3.4	3.9	3.4	3.1	3.0
0.90	0.6	-0.3	0.1	-0.3	-0.5	-0.5	3.3	2.4	2.8	2.4	2.2	2.2
0.95	0.4	-0.3	0.0	-0.2	-0.4	-0.4	2.0	1.4	1.7	1.5	1.3	1.3
1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.0

3) ΔG^{ex}
 calc from
 Aq-SS
 equilibria

x_{REE}	$\Delta S^{\text{ex}}_{\text{Ce-La}}$	$\Delta S^{\text{ex}}_{\text{Ce-Pr}}$	$\Delta S^{\text{ex}}_{\text{Ce-Nd}}$	$\Delta S^{\text{ex}}_{\text{Ce-Sm}}$	$\Delta S^{\text{ex}}_{\text{Ce-Eu}}$	$\Delta S^{\text{ex}}_{\text{Ce-Gd}}$	$\Delta S^{\text{mix}}_{\text{Ce-La}}$	$\Delta S^{\text{mix}}_{\text{Ce-Pr}}$	$\Delta S^{\text{mix}}_{\text{Ce-Nd}}$	$\Delta S^{\text{mix}}_{\text{Ce-Sm}}$	$\Delta S^{\text{mix}}_{\text{Ce-Eu}}$	$\Delta S^{\text{mix}}_{\text{Ce-Gd}}$	
	J mol ⁻¹ K ⁻¹	J mol ⁻¹ K ⁻¹	J mol ⁻¹ K ⁻¹	J mol ⁻¹ K ⁻¹	J mol ⁻¹ K ⁻¹	J mol ⁻¹ K ⁻¹							
0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.05	-0.1	0.1	3.2	0.3	2.4	2.7	1.5	1.8	4.9	1.9	4.1	4.3	
0.10	-0.4	0.0	5.2	0.5	3.3	3.8	2.3	2.7	7.9	3.2	6.0	6.5	
0.15	-0.8	-0.3	6.3	0.8	3.0	3.8	2.7	3.2	9.8	4.3	6.5	7.3	
0.20	-1.3	-0.8	6.7	1.1	1.9	3.0	2.8	3.4	10.8	5.2	6.1	7.1	
0.25	-1.9	-1.3	6.6	1.3	0.3	1.7	2.8	3.3	11.3	6.0	5.0	6.4	
0.30	-2.4	-1.9	6.3	1.6	-1.5	0.1	2.7	3.2	11.4	6.6	3.6	5.2	
0.35	-3.0	-2.4	5.8	1.8	-3.2	-1.4	2.4	3.0	11.2	7.2	2.2	4.0	
0.40	-3.5	-2.9	5.4	2.0	-4.7	-2.8	2.1	2.7	11.0	7.6	0.9	2.8	
0.45	-3.9	-3.3	5.1	2.1	-5.8	-3.9	1.8	2.4	10.8	7.8	-0.1	1.8	
0.50	-4.3	-3.6	4.9	2.2	-6.5	-4.6	1.5	2.2	10.7	8.0	-0.7	1.1	

XRD Rietveld refinement

The initial crystal structure and lattice parameter of rhabdophane was adopted from the monoclinic *C2* structure of rhabdophane-(Sm) determined by Mesbah et al. (2014). This allowed determining first the crystal lattice parameters for the endmembers synthesized in our study and also determine peak broadening (i.e., due to small crystallite sizes) and shifts in 2θ angles and other parameters in MAUD (Lutterotti et al., 1999) before refining the lattice parameters of the binary solid solutions. A typical refinement in MAUD using the wizard consists of background and scale parameters, basic phase parameters, microstructure parameters, and crystal structure parameters. An example of structure refinement output for rhabdophane-(Sm) is shown in Fig. S1 with parameters listed in Table S4. The refined .cif file can be found in the accompanying Mendeley Data repository link.

Table S4. Crystal data and structure refinement parameters for rhabdophane-(Sm).

	(This study)	Mesbah et al. (2014)
formula	$\text{SmPO}_4 \cdot n\text{H}_2\text{O}^1$	$\text{SmPO}_4 \cdot 0.667\text{H}_2\text{O}$
T (K)	room	293
system	monoclinic	monoclinic
space group	<i>C2</i>	<i>C2</i>
<i>a</i> (Å)	28.085(5)	28.0904(1)
<i>b</i> (Å)	6.829(1)	6.9466(1)
<i>c</i> (Å)	12.155(2)	12.0304(1)
β (°)	115.44(1)	115.23(1)
<i>V</i> (Å ³)	2105(1)	2123.4(4)
Density (g/cm ³)	4.846	4.8
<i>Z</i>	24	24
<i>B</i> _{iso}	0.008	0.00818
<i>R</i> _p	0.062	0.068
<i>R</i> _{wp}	0.042	0.091
<i>R</i> _{Bragg}	0.074	0.041

¹Based on measured TGA-DSC data for Ce, Nd, and Gd rhabdophane endmembers (Table 5), *n* = 0.85-0.96. For the refinement a value of 0.667 was taken as standard for each rhabdophane.

Table S5. Fitted powder XRD data showing shifts of peak positions and FWHM for the 711 reflection in Ce-Nd rhabdophane and Ce-Gd rhabdophane endmembers and solid solutions.

x_{REE}	Peak center (2θ)					FWHM					
	peak1	peak2	peak3	peak4	peak5	peak1	peak2	peak3	peak4	peak5	
CePO4b	0.00	14.35	19.98	25.52	29.01	31.43	2.472	1.694	2.342	2.273	1.561
CePO4a	0.00	14.36	20.00	25.52	29.03	31.42	2.491	1.690	2.425	2.154	1.517
Ce90Nd10a	0.09	14.42	19.97	25.57	29.02	31.46	2.468	1.797	2.481	2.226	1.633
Ce75Nd25a	0.23	14.40	20.03	25.52	29.08	31.46	2.372	1.719	2.591	2.105	1.522
Ce65Nd35a	0.35	14.49	20.03	25.51	29.14	31.50	2.241	1.684	2.269	2.077	1.316
Ce35Nd65a	0.65	14.50	20.12	25.54	29.24	31.60	2.236	1.644	2.337	2.032	1.255
Ce25Nd75a	0.75	14.48	20.12	25.60	29.24	31.65	2.459	1.704	2.273	2.141	1.411
Ce10Nd90b	0.90	14.56	20.10	25.66	29.24	31.70	2.644	1.839	2.339	2.250	1.537
NdPO4b	1.00	14.56	20.20	25.69	29.35	31.76	2.039	1.600	2.185	2.165	1.400
NdPO4a	1.00	14.60	20.14	25.64	29.32	31.72	2.387	1.723	2.053	2.061	1.315
Ce90Gd10	0.08	14.42	20.02	25.51	29.10	31.45	2.567	1.659	2.272	2.046	1.319
Ce75Gd25	0.18	14.54	20.10	25.58	29.23	31.58	2.257	1.593	2.093	2.063	1.295
Ce65Gd35	0.28	14.56	20.09	25.57	29.27	31.59	2.154	1.570	1.951	2.017	1.256
Ce50Gd50	0.42	14.59	20.18	25.62	29.40	31.70	1.927	1.515	2.108	2.043	1.215
Ce35Gd65	0.58	14.65	20.23	25.66	29.46	31.76	2.022	1.549	2.009	1.994	1.186
Ce25Gd75	0.70	14.67	20.31	25.76	29.61	31.91	2.012	1.590	2.097	1.965	1.098
Ce10Gd90	0.86	14.75	20.38	25.93	29.70	32.05	2.155	1.729	2.632	2.028	1.268
GdPO4b	1.00	14.80	20.39	25.97	29.72	32.05	1.465	1.306	2.046	1.951	1.172

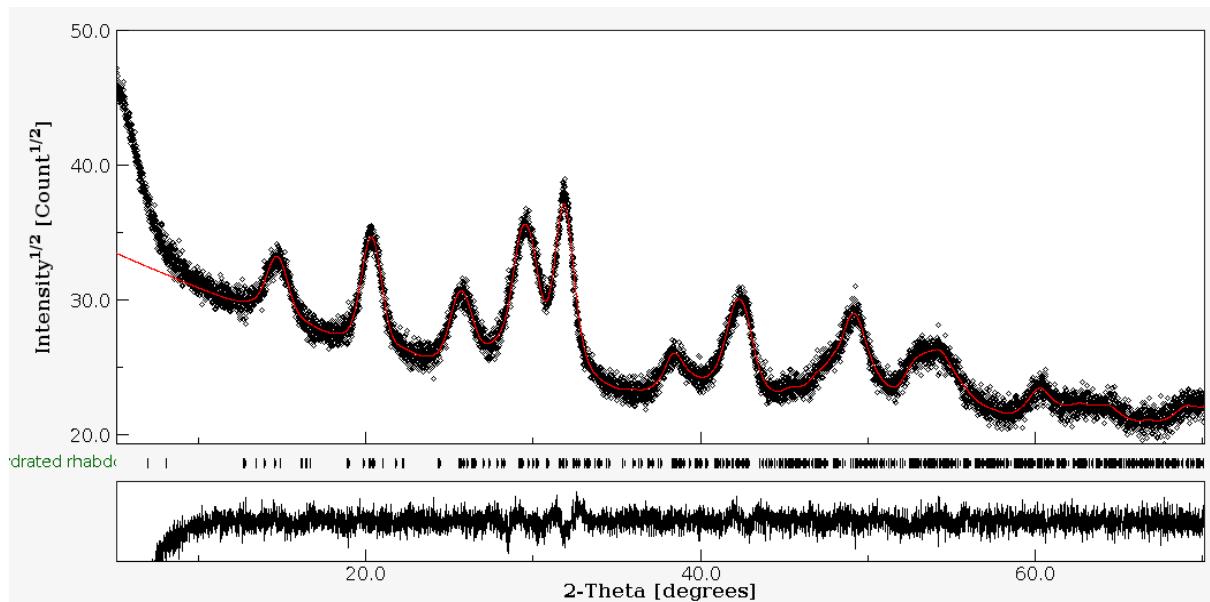


Figure S1. Example of Rietveld refinement output using Maud showing the observed, calculated, and residuals for rhabdophane-(Sm). The structure refinement and crystal structure data are listed in Table S4.

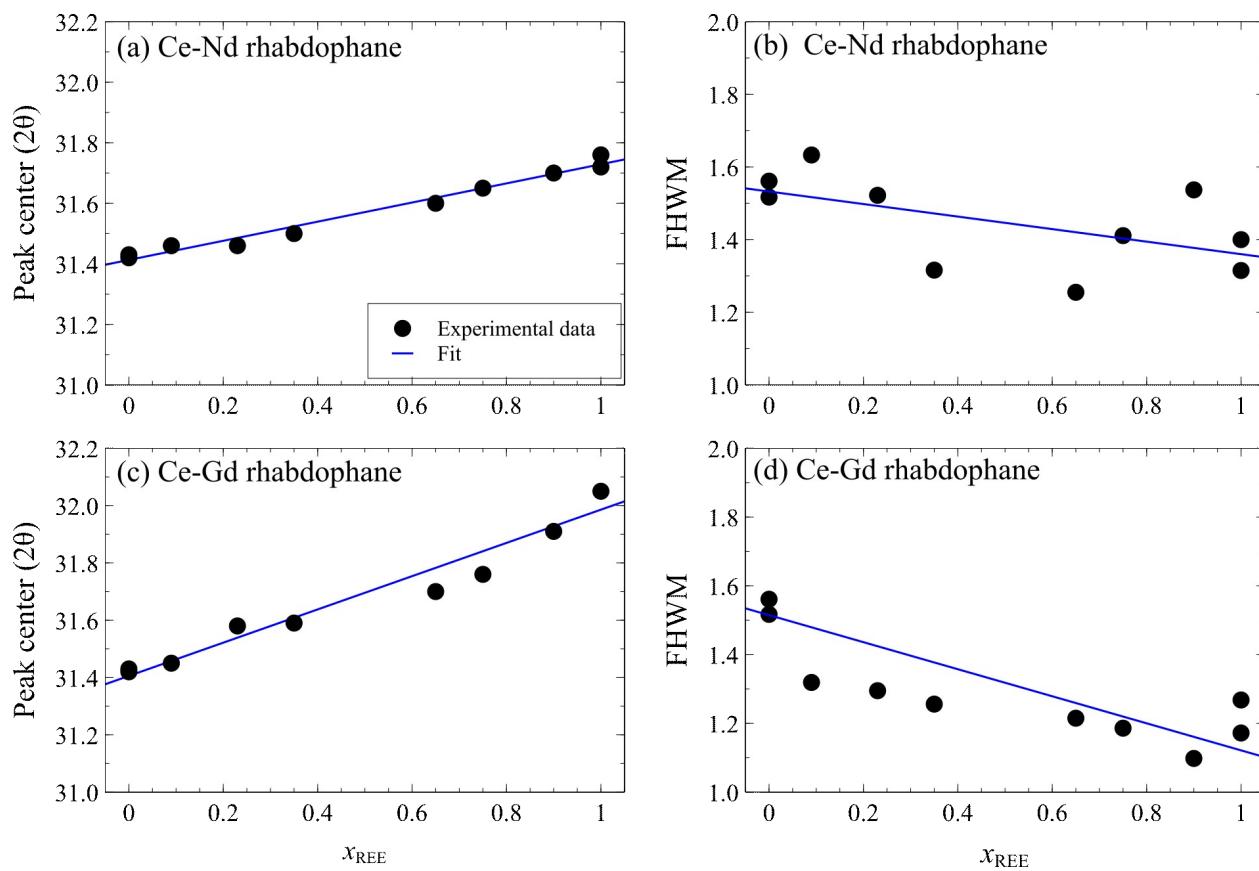


Figure S2. Fitted powder XRD spectra showing the shift of peak positions and FWHM for the 711 reflection (Fig. 3) for (a-b) Ce-Nd rhabdophane, and (c-d) Ce-Gd rhabdophane endmembers and solid solutions.

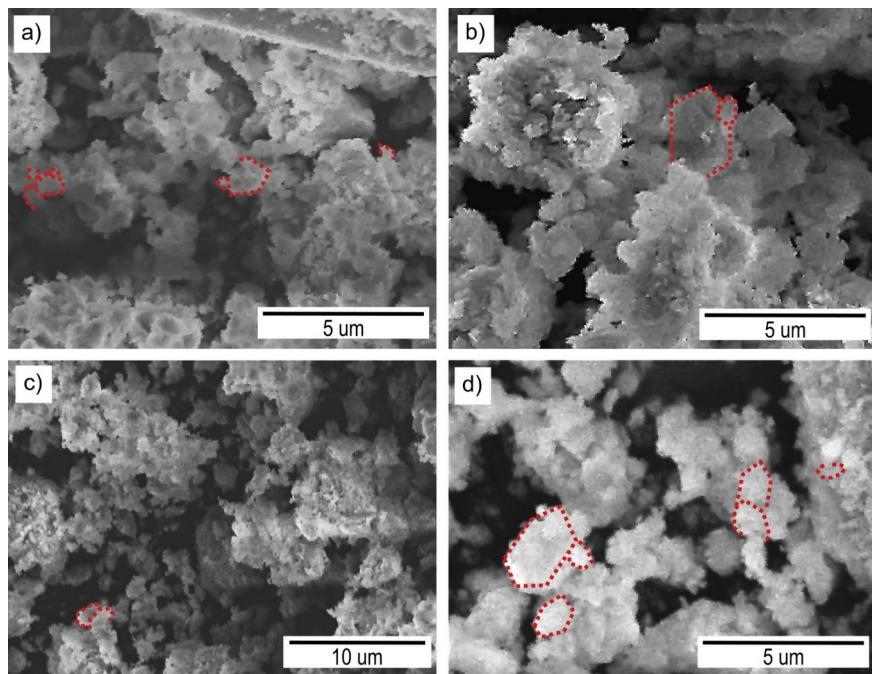


Figure S3. Scanning electron microscope images of Ce-Pr rhabdophane endmembers and solid solutions. a) Rhabdophane-(Ce) and (b) rhabdophane-(Pr) endmembers and (c-d) $\text{Ce}_{0.5}\text{Pr}_{0.5}\text{PO}_4 \cdot 0.667\text{H}_2\text{O}$ solid solutions showing that some of the larger grains are ~ 1 μm in size showing a monoclinic shape and smaller grain aggregates of 100s of nm in size.