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Abstract

Motivation: Gene network reconstruction from gene expression profiles is a compute- and data-intensive problem. Numerous methods based
on diverse approaches including mutual information, random forests, Bayesian networks, correlation measures, as well as their transforms and
filters such as data processing inequality, have been proposed. However, an effective gene network reconstruction method that performs well in
all three aspects of computational efficiency, data size scalability, and output quality remains elusive. Simple techniques such as Pearson correla-
tion are fast to compute but ignore indirect interactions, while more robust methods such as Bayesian networks are prohibitively time consuming
to apply to tens of thousands of genes.

Results: We developed maximum capacity path (MCP) score, a novel maximum-capacity-path-based metric to quantify the relative strengths of
direct and indirect gene–gene interactions. We further present MCPNet, an efficient, parallelized gene network reconstruction software based
on MCP score, to reverse engineer networks in unsupervised and ensemble manners. Using synthetic and real Saccharomyces cervisiae data-
sets as well as real Arabidopsis thaliana datasets, we demonstrate that MCPNet produces better quality networks as measured by AUPRC, is
significantly faster than all other gene network reconstruction software, and also scales well to tens of thousands of genes and hundreds of CPU
cores. Thus, MCPNet represents a new gene network reconstruction tool that simultaneously achieves quality, performance, and scalability
requirements.

Availability and implementation: Source code freely available for download at https://doi.org/10.5281/zenodo.6499747 and https://github.com/
AluruLab/MCPNet, implemented in Cþþ and supported on Linux.

1 Introduction

Gene network inference from high-throughput gene expres-
sion data is a compute intensive task. Although several differ-
ent inference algorithms based on Bayesian networks
(Hartemink 2005), mutual information (MI) theory (Faith
et al. 2007, Aluru et al. 2013) Pearson correlation (Langfelder
and Horvath 2008), regression (Bonneau et al. 2006, Huynh-
Thu et al. 2010), and random forest (Aibar et al. 2017) have
been developed over the past two decades, scalability remains
a critical challenge when working with tens of thousands of
genes and/or observations. Aluru et al. (2022) found that 9 of
the 15 methods analysed failed to infer networks from a data-
set with �18 000 genes. Furthermore, of the six that suc-
ceeded, four required between 4 and 49days to complete. To
construct large networks with tens of thousands of genes in
reasonable time, scalable algorithms and efficient parallel
implementations are necessary. Arboreto (Moerman et al.
2019) recently introduced distributed computing capability to

construct random forest-based transcription factor (TF)-target
gene regulatory networks (GRNs); however, this is still not
scalable for large networks. TINGe (Zola et al. 2010), using a
parallel MI-based approach can construct large genome-scale
gene networks in a significantly shorter amount of time.
Past surveys conducted with established benchmark data

suggest that Bayesian and MI-based methods are among the
best performing (Marbach et al. 2012, Lachmann et al. 2016,
Aluru et al. 2022) with respect to the quality and accuracy of
inferred interactions. However, unlike Bayesian networks,
MI-based methods are more amenable to large scale network
reconstruction (Chockalingam et al. 2017). One key caveat
though is that these methods require post-processing such as
Stouffer Transform in CLR (Faith et al. 2007) or MI value fil-
tering based on P-values and data processing inequality (DPI)
measures in ARACNe-adaptive partitioning (AP) (Lachmann
et al. 2016) and TINGe. Such filtering complicates network
evaluation by standard metrics such as the area under the
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precision-recall curve (AUPRC) as it introduces discontinu-
ities in the value range. Additionally, DPI requires a user-
supplied tolerance parameter that is challenging to determine
a priori. As DPI reflects the information transmission capac-
ity, it is a special case of the maximum capacity path (MCP)
problem in graph theory, which has previously found applica-
tions in network routing (Pollack 1960), image compositing
(Fernandez et al. 1998), and metabolic pathway analysis
(Ullah et al. 2009). Formulated as such, the tolerance parame-
ter is no longer required.
In this paper, we present a novel gene network reconstruc-

tion approach based on MCP to characterize and compare in-
direct gene interactions to identify significant gene–gene
interactions or TF–target relationships without thresholding
or user-specified parameters. Our unsupervised approach
examines all indirect paths between two genes to compute the
maximum indirect interaction capacity and allows efficient in-
vestigation of paths of arbitrary lengths. Using the same
framework, we also established an ensemble method that
combines interactions from multiple path lengths using opti-
mized weights identified with partial groundtruth. We further
created an efficient parallel implementation of the algorithm,
called MCPNet, that can scale to hundreds of cores. We eval-
uated performance of our unsupervised and ensemble
approaches using MI as the direct interaction measure and
paths with length up to four for both gene–gene and TF–tar-
get interactions and demonstrate that our method delivers
higher network quality and superior computational perfor-
mance when compared to other state-of-the-art gene network
reconstruction software.

2 Materials and methods

A gene expression dataset with samples S is formulated as a
matrix P with jVj rows and jSj columns, each row corre-
sponding to expression levels for a gene, and each column
corresponding to the gene expression profile of a sample in S.
Here, we reconstruct and examine two different types of gene
networks—gene co-expression networks (GCN) and GRN.
GCN is defined as an undirected weighted graph
G ¼ hV;E;Wi, where V ¼ fv1 . . . vNg is the set of N genes,
E ¼ fðvi; vjÞjvi; vj 2 Vg is the set of edges representing inter-
acting genes, and W is a matrix of size N�N, where the entry
Wij is an edge weight that quantifies the interaction strength
of vi with vj. GRN is directed in contrast to a GCN, and can
be defined as G ¼ hU;V;E;Wi, where U ¼ fu1 . . .uMg repre-
sent the regulators, V is the set of N target genes. The edge set
is E ¼ fðui; vjÞjui 2 U; vj 2 Vg, and Wij contains the weights
corresponding to the edges in E. Since a GRN is directed, W
is rectangular.
Different simplifying mathematical models have been

adopted to compute the edge weights. Correlation measures
such as Pearson computes Wij from the expression profiles of
genes vi and vj. Correlation measures are commutative,
Wij ¼ Wji, thus the square weight matrix of GCN is symmet-
ric but may contain negative elements. In the Arboreto model
(Huynh-Thu et al. 2010), Wij indicates the degree to which
the expression of gene vi can predict vj’s gene expression, thus
GCN W is non-negative but may not be symmetric. An alter-
native to correlation is MI, where the expression profiles for
genes vi; vj 2 V, rows i and j in matrix P are modeled as ran-
dom variables Xi and Xj, from which MI is estimated. Since
MI is non-negative and commutative, GCN W is symmetric

and positive semi-definite. As these measures compute pair-
wise interaction strengths, the weight matrix W of a GRN can
be computed element-wise in the same way asW for a GCN.
Our proposed method transforms the input edge weight

matrixW to produce a new MCP score that accounts for indi-
rect interaction strengths and can leverage different interac-
tion strength measures while preserving the directionality of
the measures. In this paper, MI is used to demonstrate the per-
formance of our proposed method, though our method is ag-
nostic of the semantics of the W matrix or its symmetry and
thus is suited for both undirected GCN and directed GRN re-
construction. For W with negative values, our proposed
method can use the magnitude, i.e. absolute value, of the in-
teraction strength instead.

2.1 MCP score

We define an indirect interaction between two genes as one
that is mediated through one or more intermediary genes and
can be modeled as a length-L path ðvs; . . . ; vir ; . . . ; vtÞ in G,
where vs and vt are source and target genes, vir is an interme-
diary gene in V indexed by ir 2 f1 . . . jVjg, and r 2
f1 . . .L� 1g indicates position along the path. Indirect bio-
logical interactions are well-known in eukaryotic organ-
isms—e.g. the gene networks of biochemical, cellular, and
signal transduction pathways where a change in the structure
or function of a gene/protein can have indirect effects on path-
way genes that are not adjacent to each other through regula-
tory positive or negative feedback (Harris and Levine 2005,
Lu et al. 2007, Mitrophanov and Groisman 2008, Itzhack
et al. 2013, Vermeirssen et al. 2014, Rittschof and Robinson
2016, Cowen et al. 2017). Reconstructing the network from
gene expression profiles is guided by two goals: identifying
strong direct interactions between gene pairs, and simplifying
the network by removing direct interactions made redundant
by strong indirect interactions. Our proposed method seeks to
accomplish both by first identifying the strongest indirect
interactions between two genes, then compare it to the direct
interaction strength.
The maximum indirect interaction strength is determined

by solving the MCP problem. Figure 1 illustrates different
length-2 and length-3 paths between genes vs and vt as dashed
lines and their direct interactions as solid lines. For each path,
the minimum edge weight is its maximum capacity. Among
all the possible length-L paths between vs and vt in G, the
MCP is the path with the highest minimum edge weight. We
use g

L
st to denote the capacity of such a path between vs and

vt, and refer to it as L-path Capacity or Path Capacity.
Formally,

Figure 1. Computing g
2
st and g

3
st in a network requires exploring different

paths with one and two intermediate vertices, respectively, as shown
above.
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g
L
st ¼ max

i1;...; iL�12f1...jVjg
ðminðWsi1 ;Wi1i2 ; . . . ;WiL�1tÞÞ (1)

The maximum operation finds a combination of indices
i1; . . . ; iL�1 with the maximum path capacity, with each in-
dex having range f1 . . . jVjg. Multiple indices may refer to the
same gene, thus forming a cycle in the L-path, representing,
e.g. feedback loops for gene regulation. In subsequent sec-
tions, the range f1 . . . jVjg for the indices is implied in the
maximum operation.
Once computed, gLst is compared to the direct interaction

strength Wst. We define the L-path MCP score between the
genes vs and vt, denoted as qlst, as the following ratio:

q
L
st ¼ Wst=g

L
st (2)

We use both the terms L-path MCP Score and MCP Score to
refer to q

L
st . The output of our proposed method is denoted

RL, a matrix of all the qLst’s for every pair of s and t. As a ratio
of the edge weight to the path capacity, we expect qLst to be an
indicator of the interaction strength of genes vs and vt while
factoring in the effect of other interactions in the L-neighbor-
hood of vs and vt. Strong direct interactions relative to indirect
ones suggest that the edge should be kept in the network. We
note that the DPI-based approach used by ARACNe-AP and
TINGe can be modeled as a specialization of the L-path MCP
score, as shown in Supplementary Section S1.1. Whereas
ARACNe-AP and TINGe uses a DPI threshold to filter the
MI matrix thus removing edges representing weak direct
interactions compared to their indirect counterparts, our
approach quantifies the relative strengths of the direct and in-
direct interactions and allows for post-processing according
to application needs, e.g. thresholding to retain relatively
strong direct interactions by examining the precision-recall
curve.

2.2 MCP score algorithm

The 2-path capacity g
2
st ¼ maxiðminðWsi;WitÞÞ can be com-

puted explicitly by enumerating all possible length-2 paths be-
tween vs and vt. Algorithm 1 shows the pseudo-code for this
approach. The 2-path MCP score defined in Section 2.1, q2st,

can be calculated for the complete network directly by first
computing g

2
st for a pair of genes via Algorithm 1, iterating

over the two gene expression profiles in OðjVjÞ time. The al-
gorithm has a run-time complexity of OðjVj3Þ as it iterates
over all elements of a jVj � jVj matrix (Algorithm 2).
Algorithm 2 applies for L-path MCP scores for any arbi-

trary L. Naive extension of Algorithm 1 to longer range

interactions is exponential in computational complexity, how-
ever, as an increase of L by 1 increases computation by jVj-
fold. For an indirect interaction of length L, the naive gLst com-
putation complexity is OðjVjL�1Þ, leading to OðjVjlþ1Þ to
compute the scores for all gene–gene pairs.
Pollack (1960) showed that the maximum capacity g

L
st of

all length-L paths between two vertices in a graph can be
computed efficiently via recursive path bisection. Formally,

g
L
st ¼ max

ih
ðminðghsih ; g

L�h
iht

ÞÞ (3)

where h ¼ bL=2c. The length-2 realization, g2st, forms the base
case for the recursion. This partitioning leverages the associative
properties of the maximum and minimum operations. Let csih ¼
minðWsi1 ; . . . ;Wih�1ihÞ and ciht ¼ minðWihihþ1

; . . . ;WiL�1tÞ.
Equation (1) can then be rewritten as

g
L
st ¼ maxi1;...;iL�1

ðminðcsih ; cihtÞÞ
¼ maxihðmaxi1;...;ih�1

ðmaxihþ1;...;iL�1
ðminðcsih ; cihtÞÞÞÞ

An L-path does not require unique genes on the path. This
implies that csih does not depend on ihþ1 . . . iL�1, and csih is ef-
fectively a constant with respect to the maxihþ1;...;iL�1

ðÞ opera-
tion. Since the maximum and minimum operators are
distributive over each other with respect to a constant, i.e.
maxðminðz; xÞ;minðz; yÞÞ ¼ minðz;maxðx; yÞÞ,

g
L
st ¼ maxihðmaxi1;...;ih�1

ðminðcsih ;maxihþ1;...;iL�1
ðcihtÞÞÞÞ

¼ maxihðmaxi1;...;ih�1
ðminðcsih ; g

L�h
iht

ÞÞÞ

Similarly g
L�h
iht

is constant with respect to i1 . . . ih�1. Applying
the identity again leads to Equation (3).The recursive path bi-
section allows L-length MCP scores to be computed in
OðjVj log 2LÞ for a single gene–gene pair, and the L-path ca-
pacity for all gene pairs to be computed in OðjVj3 log 2LÞ
time. A realization of Equation (3) is shown in Algorithm 3.
For a gene pair (vs, vt), the g values for half-length indirect
interactions between vs and vt with all possible intermediary
genes vr 2 V are computed. The g value for (vs, vt) is then
computed following the MCP problem solution as the two-
path capacity case.

2.3 Parallel implementation

MCPNet pipeline consists of a sequence of functions. We first
compute the MI between pairs of genes, using the gene ex-
pression profile matrix as input. The resulting MI matrix was
then transformed to MCP score via the algorithm described in

Algorithm 2:MCP Score

Algorithm 1: Path Capacity Kernel for Path Length 2

MCPNet 3
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the sections above. Our implementations of Algorithms 1–3
are optimized and parallelized for multi-core and multi-node
systems.
First, we note that Algorithm 2 has data access pattern

identical to matrix–matrix multiplication, with Algorithm 1
replacing vector dot product as the computational kernel.
Indeed, fast matrix multiply algorithms have been applied to
the MCP problem (Vassilevska et al. 2007, Duan and Pettie
2009) to achieve sub-cubic run-time. For simplicity and ease
of parallelization, we compute each g directly in OðjVjÞ time.
In contrast to the dominant product algorithm by Vassilevska
et al. (2007) that requires random memory access, our algo-
rithm incurs only sequential memory access and therefore is
cache-friendly and can leverage hardware memory
prefetching.
Since each element can be computed independently from

the other elements of the output matrix, a simple paralleliza-
tion scheme is sufficient. The output matrix is partitioned into
8� 8 tiles and tiles are assigned to the compute nodes and
CPUs. Use of tiles improves cache reuse as the eight rows and
eight columns of the input matrices needed to compute one
tile are likely to remain in cache memory during computation.
To ensure that the required input matrix row and column

to compute one g2st value are in local memory, the MI matrix
is replicated on each compute node, and shared between cores
of the same node. The MI computation is similarly organized
across all nodes, with the gene expression profile matrix repli-
cated and the MI matrix tiles partitioned across cores. One
round of all-to-all personalized communication via message
passing interface reconstructs the MI or MCP score matrices
on all compute nodes. The input replication reduces commu-
nication during computation. The overall parallelization ap-
proach is shown in Figure 2.
Finally, the computation to produce g2st is readily vectorized

using element-wise minimum and maximum operators. For
reconstruction where the input weight matrix W is symmetric,
the MCP score matrix is symmetric as well thus half of the
computation can be avoided.

2.4 Ensemble multipath MCP scores

MCP scores as defined in Section 2.1 are for a fixed path
length. To account for indirect interactions of multiple

lengths, we consider a linear combination of the g values in
computing an ensemble DPI score:

ML
st ¼ Wst=ða2 � g

2
st þ a3 � g

3
st þ � � � þ aL � g

L
stÞ (4)

where a2, a3, . . ., aL are coefficients for the different indirect
interaction path lengths, with the standard constraint that the
weights add to 1.0.
The optimal ensemble parameters are generally challenging

to determine. We propose to use available partial groundtruth
to help optimize the ensemble parameters. For large gene net-
works, there are known and experimentally validated gene–
gene and TF–target interactions. Using the known interac-
tions as partial groundtruth for optimizing the ensemble
parameters, the proposed ensemble approach promises to im-
prove predictions of unknown interactions in the remainder
of the network.
For the ensemble multi-path MCP score, we compute a

weighted average of the 2-, 3-, and 4-path capacities by iterat-
ing over combinations of coefficients at a default interval of
0.1 for each coefficient. The AUPRC of the resulting networks
are computed based on known interactions. The coefficient
combination with the maximum AUPRC is used as the opti-
mal combination for the ensemble. The ensemble approach
allows the network inferring process to adjust to the dataset
available, the organism of interest, and the available partial
groundtruth.

3 Evaluation methodology

We evaluate performance of MCPNet using both simulated
and real datasets, and compare it with seven other popular
gene network reconstruction software—four MI-based meth-
ods [ARACNe-AP (Lachmann et al. 2016), CLR (Faith et al.
2007), MRNET(Meyer et al. 2008), TINGe (Aluru et al.
2013)], a Pearson correlation-based method (WGCNA;
Langfelder and Horvath 2008), a random forest-based
method (Arboreto; Aibar et al. 2017), and a regression-based
method (Inferelator; Bonneau et al. 2006). Arboreto and
Inferelator are ensemble methods, in contrast to the other
methods referenced above which are standalone. Each
method evaluated is executed with its default parameters, or
published parameters for the target dataset (Tchourine et al.
2018). We applied the standard statistical measure AUPRC

Figure 2. Paralellization scheme for the MCP score algorithm. The input
W matrix is replicated to all nodes and shared between cores of a node.
Each core (colored) computes some tiles (light shading in the MCP matrix)
in the MCP matrix thus the output matrix is distributed across the
compute nodes. For each MCP tile being computed (solid square with
thick border in the MCP matrix), the required rows and columns are
shaded in the W matrix according to the core color.

Algorithm 3: Recursive Path Capacity Kernel for Length L

4 Pan et al.
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for assessing the inferred networks. AUPRC is the area under
the precision-recall curve, and is recommended in cases where
there is an imbalance of positive and negative edges in the un-
derlying network (Davis and Goadrich 2006). Using AUPRC
for both ensemble optimization and final network evaluation
leads to the ensemble network having the maximal AUPRC
for the given partial groundtruth. However, when different
groundtruth are used to parameterize the AUPRC function,
the generalization performance of the MCPNet ensemble
method can be assessed as demonstrated in Section 4.4.
For in silico evaluations, we used NetBenchmark (Bellot

et al. 2015), an R Bioconductor package that internally
employs the GeneNetWeaver simulator (Schaffter et al. 2011)
to generate synthetic yeast datasets. NetBenchmark uses 5196
real interactions from the Yeast Transcriptional Regulatory
Network (Balaji et al. 2006) and employs non-linear ordinary
differential expression simulation to produce 2000 observa-
tions for 2000 genes. Noise is then injected at five different
levels in ten replicas to create 51 total datasets. The 5196 real
interactions are used as true positives in the groundtruth,
while the remaining 1 993 804 gene-pairs are considered as
true negatives. The groundtruth for the simulated, as well as
real Yeast and Arabidopsis thaliana are majority TF–target
interactions and are used for both GCN and GRN evalua-
tions. For synthetic TF–target network reconstruction, 187
TFs from Inferelator source repository (Castro et al. 2019)
were included.
To determine accuracy and scalability of gene network re-

construction with real-world data, we used gene expression
data from two different organisms—S. cerevisiae and A. thali-
ana. The S. cerevisiae (yeast) dataset is a compilation of multi-
ple yeast RNA-seq expression studies, and contains 2577
observations and 5716 genes (Tchourine et al. 2018). To de-
termine the quality of the real-world yeast networks, we
adopted the groundtruth from Castro et al. (2019), consisting
of a matrix with 97 TFs and 956 targets. The 1360 non-zero
entries are considered as true positives, while the remaining
91 372 are true negatives. Castro et al. generated the matrix
by combining TF-binding and TF-knockout data collected by
Tchourine et al. (2018) from YEASTRACT (Teixeira et al.
2006) and SGD (Costanzo et al. 2014) databases, and TF–tar-
get interactions derived from chromatin accessibility data
(Boyle et al. 2008, Buenrostro et al. 2013) and TF binding
sites (Weirauch et al. 2014) by associating TFs with the clos-
est downstream genes. For real yeast TF–target network re-
construction, the 563 TFs from the Inferelator source
repository (Castro et al. 2019) were included.
The A. thaliana microarray data was downloaded from

public repositories (Aluru et al. 2022), and processed accord-
ing to (Chockalingam et al. 2016). Data from six different tis-
sues/conditions with varying sizes of gene expression datasets
(Table 1) were used for gene network reconstruction.
Microarray data was used as it was readily available from our
previous studies, and it demonstrated the applicability of the
MCPNet methods to both RNAseq and microarray data.
Arabidopsis thaliana network(s) were evaluated using interac-
tions from the following two known networks as ground-
truth: (i) Arabidopsis Transcriptional Regulatory Map
(ATRM) constructed from a priori biological knowledge by
Jin et al. (2015), which includes 1359 TF–target interactions;
(ii) 295 highest confidence TF–target interactions with scores
greater than 9.5 selected from the 6863N-response dynamic
factor graph (DFG) network edges identified in Brooks et al.

(2019, Supplementary File 10). These 6863 edges are them-
selves considered high confidence by Brooks et al., as they
were selected from the network generated by DFG with time-
series nitrogen-treatment response data (Marbach et al. 2012)
based on the 71 836 validated TF–target interactions from
TARGET assays. This approach of incorporating high-
confidence computed interactions have been used previously
to validate gene networks (Vermeirssen et al. 2014, Castro
et al. 2019). The interactions from these two given networks
can be considered as positives, i.e. interactions that are
expected to be highly weighted edges in any predicted net-
work. For true negatives, we used a set of 4347 interaction
pairs between chloroplast-encoded and mitochondria-
encoded genes (Aluru et al. 2022) given the unlikelihood of a
direct transcriptional interaction occurring between such
genes in A. thaliana tissues (Woodson and Chory 2008). For
A. thaliana TF–target network reconstruction, 2015 TFs from
Chen et al. (2017) were included.
All software were run on a computing cluster with each

node having two 2.7GHz 12-Core Intel Xeon Gold 6226
Processor processors and 256 GB of main memory and run-
ning RedHat Enterprise Linux (RHEL) 7.0 operating system.
For the simulated and Saccharomyces cervisiae RNA-seq
datasets, all 24 cores of a node were used for software that
could be run with multiple cores. For example, Arboreto,
WGCNA, TINGE, Inferelator, and MCPNet are capable of
using all the cores in a node. For A. thaliana datasets, we used
up to eight nodes and all of the 192 cores distributed across
these eight nodes for Arboreto, TINGE and MCPNet, which
are capable of using multiple distributed cores. While
Inferelator is also capable of utilizing multiple shared cores, it
was not used in this case due to extremely long run-times.
Scripts used for the evaluations presented here can be accessed
at https://doi.org/10.5281/zenodo.6499756.

4 Results

The proposed MCPNet method takes as input correlation
measures, which for the purpose of evaluation presented here
are the MI values between pairs of gene expression profiles.
We evaluated three common methods for estimating MI val-
ues from observed data and chose adaptive partitioning (AP)
with rank transform for its accuracy and speed (see
Supplementary Section S1.2). We use our implementation of
the AP MI estimation algorithm based on the hybrid multi-
thread, multi-node parallelization approach in Section 2.3.
The existing tools utilized their respective built-in MI algo-
rithms where applicable.
The unsupervised MCP score has a single parameter, path

length L. Empirical testing with simulated Yeast data showed
that the network quality reached maximum at L¼ 4 and

Table 1. Arabidopsis thaliana microarray datasets.a

Tissue/condition No. CEL files No. genes

Seed 787 19 120
Flower 920 17 608
Hormone 1708 17 753
Seedling (1 week) 2822 16 298
Leaf 3564 16 887
Development 5102 18 373

a The number of CEL files and genes remaining shown are after data
normalization and filtering.
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improvements diminished beyond 4 (Supplementary Section
S1.2). Subsequent evaluations of MCPNet, including the en-
semble multipath scores, were conducted with L of 2, 3, and
4. The ensemble method optimizes the multipath score via a
global coefficient search at a regular interval, which is a user-
adjustable parameter. We used 0.1 as the search interval as it
represents a good balance between search quality and compu-
tation time.

4.1 Evaluation using simulated yeast expression
data

We begin by evaluating the effect of noise in the gene expres-
sion profile data on GCN quality. Simulated yeast datasets
were generated with varying noise levels using the
NetBenchmark package.
For each of the datasets MCPNet generates three different

sets of networks: (i) L-path MCP score networks (i.e. MCP
score matricesR2;R3, andR4 from Section 2.1); (ii) ensemble
networks constructed using ensemble method discussed in
Section 2.4 [i.e. M4 matrix in Equation (4)] constructed as
the weighted combination of R2; R3, and R4 matrices; and
(iii) Stouffer-transformed ensemble network, where Stouffer’s
Z-transform is applied to each of the M4 matrices and the
AUPRC for the best combination is reported as M4

Z. This is
similar to post-MI processing in CLR (Faith et al. 2007) to re-
duce background contribution to the score.
Table 2 shows the average AUPRC for networks con-

structed by MCPNet and other network construction meth-
ods. Results for all of the simulated data instances are given in
Supplementary Table S2. The rows R2; R3, and R4 are net-
works constructed using the path scores [Equation (2)] with
path lengths of 2, 3, and 4, respectively. Note that for M4

and M4
Z networks, the average AUPRCs for the best combi-

nation is reported.
As expected, the AUPRC values, and hence the network

performance, decreases with increasing noise levels. Our
results also show that ensemble MCP Score achieves the best
performance for low and moderately noisy datasets when
compared to all the other gene network reconstruction meth-
ods. At noise levels higher than 50%, MCPNet is the second
best performing method. The selection of best coefficients for
each of the L-path capacities (i.e. R2; R3, and R4) results in
an improvement over the individual MCP score networks. By
exploiting known interaction information from user supplied
partial groundtruth, the ensemble approach is able to identify
the best combination for each of the noise levels. Thus,
MCPNet’s ensemble method is able to adjust to the unique
data and noise characteristics of each dataset through fine
tuning of its coefficients.

4.2 Evaluation with real gene expression datasets

We next evaluated performance of MCPNet using real-world
data from two different organisms—yeast (S. cervisiae) and
A. thaliana. For GCNs inferred from the real yeast data, our
results show that Arboreto is the highest performing method
followed by M4

Z (Table 3). For this dataset, all methods
showed low AUPRC scores, and the absolute AUPRC differ-
ences between Arboreto and M4

Z can be considered marginal.
The improvement of M4

Z over M4 and the relatively high
AUPRC for CLR suggest that Stouffer transformation as a
post-processing step is beneficial for this particular dataset.
While Arboreto achieved the best network quality, it does so
in �29 h and 7 GB of memory using 24 CPU cores whereas

MCPNet completed the computation in 38 s and less than
half of the memory. The quality and run-time balance com-
pared to existing tools strongly favors MCPNet for its ability
to reverse-engineer a good-quality network in reasonable
time. An interesting observation is the uniformly low AUPRC
values when compared to those in Section 4.1, and A. thali-
ana. The same observation can be seen in Castro et al. (2019)
which suggest this maybe inherent in the expression profile
data or the groundtruth.
Arabidopsis thaliana networks were constructed using data

from the Development category (Table 1) containing the larg-
est number of microarray datasets. Data were processed both
on one node and eight distributed nodes for all network infer-
ence methods, with the exception of Inferelator which does
not support multi-node execution and whose run-time for the
development dataset is expected to exceed the cluster’s job

Table 3. Evaluation of MCPNet’s performance with S. cerevisiae data.a

Method AUPRC Time (s) Memory (GB) speedup

1C 24C 1C 24C

ARACNe-AP 0.0152 103 186 8981 81.16c 11.5
CLR 0.0296 1093 d 1.33 d N/A
MRNET 0.0220 945 d 2.40 d N/A
TINGe 0.0173 910 38 1.08 3.87 23.9
WGCNA 0.0191 116 122 3.63c 0.95
R2 0.0223 401 23 1.29 2.49 17.8
R3 0.0234 442 25 1.92 3.36 17.7
R4 0.0240 422 25 1.78 3.22 16.9
M4 0.0244 506 35 2.02 2.99 14.5
M4

Z 0.0329 540 38 e e 14.2
Arboreto 0.0423 f 104 662 f 7.14 N/A
Inferelator 0.0221 f 40 218 f 56.31 N/A

a C denotes cores.
b The best and second best scoring network by AUPRC are boldfaced

and underlined, respectively. Coefficients for the best M4 andM4
Z networks

are (0.7, 0.0, 0.0, 0.3) and (0.875, 0.0, 0.0, 0.125), respectively.
c ARACNe-AP has identical memory usage for 1C and 24C, as does

WGCNA.
d CLR and MRNET are not run using 24 cores as they do not support

multi-threading.
e M4 andM4

Z are computed together in the same pass and share
memory usage.

f Arboreto and Inferelator are expected to exceed run-time limit for
single-core run.

Table 2. Performance assessment of different gene network

reconstruction methods on simulated yeast data with noise levels ranging

from 0 to 1.a

Method 0 0.2 0.25 0.5 0.75 1.0

ARACNe-AP 0.3503 0.1829 0.1814 0.0818 0.0349 0.0170
CLR 0.1523 0.1368 0.1365 0.1193 0.1035 0.0886
MRNET 0.2711 0.2257 0.2323 0.1819 0.1363 0.1075
TINGe 0.3488 0.2478 0.2482 0.1539 0.1007 0.0666
WGCNA 0.0549 0.0545 0.0551 0.0544 0.0523 0.0496
R2 0.3373 0.1133 0.1157 0.0615 0.0358 0.0223
R3 0.3690 0.2575 0.2579 0.1679 0.1029 0.0619
R4 0.3938 0.2840 0.2839 0.1959 0.1306 0.0875
M4 0.4198 0.2975 0.2983 0.2035 0.1337 0.0889
M4

Z 0.2924 0.1380 0.1399 0.1008 0.0778 0.0576
Arboreto 0.1932 0.1669 0.1637 0.1349 0.1106 0.0902
Inferelator 0.2150 0.1849 0.1763 0.1161 0.0838 0.0638

a Numbers indicate average AUPRC values over ten sampling runs. The
best performing networks are highlighted in bold, and the second best is
underlined. Coefficients for the best performing M4 andM4

Z networks vary
for each randomly sampled network.
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scheduler time limit. Table 4 shows that for the A. thaliana
dataset,R4 andM4 produced the best results when compared
to all other methods. Importantly, all the MCPNet algorithm
variants (R2; R3, and R4) and ensemble methods (M4; M4

z )
outperformed all existing network inference methods in terms
of AUPRC. With the large A. thaliana data, MCPNet’s per-
formance advantage over existing tools is even more evident.
The two tools with the next best AUPRC values, CLR and
Arboreto, required 18.5 h using 1 CPU core and 44.1 h and
437 GB of memory using eight nodes, respectively, while
MCPNet completed the computation in <10min on one node
and 84 s on eight nodes with moderate per node memory
footprints.
Finally, we evaluate the proposed methods using six A.

thaliana datasets of different tissues and experimental condi-
tions, each with differing number of samples and genes (see
Table 1). Table 5 shows the AUPRC and run-times for the
multipath ensemble MCP score network (M4) and the next
best results amongst ARACNe-AP, CLR, MRNET, TINGe,
WGCNA, and Arboreto. Complete Results for all the meth-
ods are given in Supplementary Table S3. For all of the data-
sets analysed, MCPNet M4 shows higher or equivalent
AUPRC values while the next best AUPRC is achieved by
CLR, MRNET, or Arboreto depending on the datasets, while
being consistently faster by up to three orders of magnitude.
MCPNet consistently produces networks that are amongst

the highest in quality as assessed by AUPRC and fastest in
performance by orders of magnitude (see Supplementary
Section S1.3 for a more in-depth computational performance
discussion). Our results show that dataset characteristics can
significantly influence the quality of the reconstructed net-
work. The coefficients of the weighted average of L-path ca-
pacities for the best performing M4 and M4

z networks also
varied by dataset as noted in Tables 3 and 4. The optimiza-
tion approach therefore is well-suited for the ensemble meth-
ods as it adjusts automatically to data characteristics. In
addition, since MCPNet is capable of efficiently generating
multiple networks in one run (R2; R3; R4; M4, and M4

z ),

the user can efficiently choose and further evaluate the net-
works with an appropriately chosen, biologically relevant
downstream metric.

4.3 GRNs with synthetic and real yeast data sets

In this section, we evaluate MCPNet for the task of recon-
structing GRNs, namely to compute the maximum path ca-
pacities between TFs and their target genes. By the definition
of indirect interactions in Section 2.1, indirect TF–target inter-
action path may be modeled as a combinatorial sequence of
TF–TF, TF–gene, and gene–gene interactions. For this evalua-
tion, we focus on the mathematical path model consisting of a
sequence of TF–TF interactions followed by one TF–target
interactions as a simplification, similar to ARACNe-AP’s DPI
modeling for length 2 indirect interactions. We note that an
alternative simplification, TF–target gene. . .gene–gene, is triv-
ially contained in the GCN output matrix.
GRNs were reconstructed MCPNet, ARACNe-AP,

Arboreto, and Inferelator using real yeast and noise-free simu-
lated datasets. CLR, MRNET, TINGe, and WGCNA were
not included as they do not support GRN inferencing.
Arabidopsis thaliana is not used for the evaluation as its true
negative groundtruth do not involve the genomic TFs, thus
precluding evaluation by AUPRC.
Table 6 shows the qualities of the reconstructed GCNs and

GRNs. All of the reconstructed TF–target GRNs have signifi-
cantly higher AUPRC than their GCN counterparts. MCPNet
methods, M4 and M4

Z particularly, outperformed existing
methods for both GCN and GRN reconstructions using simu-
lated datasets. For the real yeast dataset, MCPNet’s M4

Z

method is second only to Arboreto in network quality, reflect-
ing the same trend as for the GCN reconstruction. The high
AUPRC values suggest that the mathematical formulation
and algorithm implementation of MCPNet is well suited for
both GCN and GRN inference.

4.4 Ensemble optimization with partial ground
truths

The MCPNet ensemble method optimizes the coefficients of
g
2
s;t; g

3
s;t; g

4
s;t to maximize the AUPRC given available partial

groundtruth and gene expression data as input. The M4

results in Table 2 were generated by optimizing the ensemble
network AUPRC using the full groundtruth. For real-world

Table 5. AUPRC and run-time of M4 and the next best results for

networks constructed for different A. thaliana tissue datasets using eight

24-core nodes.

Mil. Elem. AUPRC Run-time (s)

Tissue Input Network MCPNet 2nd

Best

MCPNet 2nd

best

Seed 15.0 365.6 0.4373 0.4285b 62 11 298
Flower 16.2 310.0 0.5024 0.4289c 52 11 830
Hormone 30.3 314.5 0.4709 0.4256d 52 26 798
Seedling (1 week) 46.0 265.6 0.5227 0.4424c 59 22 336
Leaf 60.2 285.2 0.6205 0.4529b 53 39 202
Development 93.7 337.6 0.6414 0.4937d 84 158 900

a The software that produced the next best AUPRC are noted as
footnotes. The first two columns report the input and output matrix sizes as
millions of elements.

b CLR.
c MRNET.
d Arboreto.

Table 4. Performance assessment of MCPNet using large-scale A.

thaliana data.a

Method AUPRC Time (s) Memory (GB) Speedup

1N 8N 1N 8N�

ARACNe-AP 0.4068 1 028 618 c 82.41 c N/A
CLR 0.4858 66 476d c 8.94 c N/A
MRNET 0.4385 25 714d c 11.67 c N/A
TINGe 0.3987 17 473 2229 4.84 19.04 7.84
WGCNA 0.4399 671 c 49.80 c N/A
R2 0.6208 352 51 24.08 104.77 6.90
R3 0.6386 465 70 33.06 148.99 6.64
R4 0.6413 431 63 31.62 147.53 6.84
M4 0.6414 574 84 29.11 137.52 6.83
M4

Z 0.5921 600 87 e e 6.90
Arboreto 0.4937 f 158 900 f 437.11 N/A

a N denotes nodes.
b Coefficients for the best M4 and M4

Z networks are ð0:2; 0:2; 0:2; 0:4Þ
and ð0:0; 1:0;0:0;0:0Þ, respectively.

Total memory usage for eight nodes is reported.
c ARACNe-AP, CLR, MRNET, and WGCNA do not support multiple

nodes.
d CLR and MRNET do not support multi-threading so the experiments

used only 1 core of the node.
e M4 and M4

Z are computed together in the same pass and share
memory usage.

f Arboreto is expected to exceed run-time limit for single-node run.
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data, often only partial groundtruth is available, and the size
and membership of the partial groundtruth affect network
quality.
To assess the impact of the partial groundtruth, we divide

the full yeast groundtruth randomly into training and testing
sets, and use the training set to optimize for an ensemble net-
work from the noise-free simulated yeast gene expression
data. The ensemble network is then evaluated using the test
set and the full groundtruth. As the AUPRC is parameterized
with different groundtruth, effectively the AUPRC functions
for optimization and final network evaluation are distinct and
independent. This process is repeated 100 times to character-
ize the distribution of the AUPRC values and the robustness
of the ensemble algorithm with varying groundtruth. We eval-
uated training–testing split proportions of 0.5%, 1%, 2%,
5%, and 10% of the full groundtruth. The yeast groundtruth

contain 92 732 gene–gene interactions, representing 0.57%
of all possible gene–gene interactions between 5716 yeast
genes.
Figure 3 shows the distributions of the AUPRC values for

each training–testing splits and full groundtruth. As expected,
smaller training sets produced greater AUPRC value disper-
sion, as the ensemble network optimization relies on fewer
groundtruth elements, and AUPRC computation is more
influenced by variations in the gene–gene or TF–target
interactions.
In all GCN cases, the AUPRC values are tight in dispersion,

with standard deviations for the test AUPRCs being 0.0118,
0.0045, 0.0040, 0.0023, and 0.0026 for the 0.5–10% train-
ing–testing splits, respectively. Even for networks generated
from only 0.5% of the full set, the AUPRC distribution lies
completely above the ARACNe-AP’s AUPRC value of 0.3503
and nearly all aboveR4’s AUPRC of 0.3938, and the majority
of the networks have AUPRC more than 0.4. The means,
0.4135, 0.4169, 0.4173, 0.4184, and 0.4201, are remarkably
close to the 0.4198 AUPRC of the network optimized with
the full groundtruth, despite the networks being generated us-
ing small training sets. The similarity of the AUPRC distribu-
tions between test sets and full groundtruth reflects the fact
that the test sets are 90–99.5% identical.
For the GRN cases, the AUPRC values are significantly

higher than their GCN counterparts, likely due to better cu-
rated groundtruth. The AUPRC distribution standard devia-
tion tightens (0.0088, 0.0063, 0.0050, 0.0036, 0.0036) as the
size of training set increases. Similarly, the mean AUPRCs
(0.4979, 0.4999, 0.5025, 0.5054, 0.5070) for the training–
testing splits are higher than that of R4, 0.4988, and con-
verges to the AUPRC of the ensemble network optimized us-
ing the full TF-only groundtruth, 0.5069, even when training
set represents a small fraction of the already small set of TF-

Figure 3. The distributions of AUPRC values for the ensemble GCNs (left) and GRNs (right) produced from training sets randomly selected from the full
and TF-only groundtruth, respectively. The horizontal axes show the percentages of the full or TF-only groundtruth used as training set. Each violin plot
shows the AUPRCs evaluated against the test set (left half of violin), and the full groundtruth (right half of violin). The solid green, dashed blue, and dotted
red lines show the AUPRC values of the ensemble networks generated from the full or TF-only groundtruth, the R4 network, and ARACNe-AP,
respectively.

Table 6. Evaluation of MCPNet’s performance in reconstructing TF–target

GCN and GRN using simulated and real-world S. cerevisiae data on 24

cores.a

Method Simulated Real-world Yeast

GCN

AUPRC

GRN

AUPRC

GCN

AUPRC

GRN

AUPRC

ARACNe-AP 0.3503 0.3667 0.0152 0.0183
R2 0.3373 0.3646 0.0223 0.0315
R3 0.3690 0.4003 0.0234 0.0281
R4 0.3938 0.4988 0.0240 0.0277
M4 0.4198 0.5069 0.0244 0.0317
M4

Z 0.2924 0.4545 0.0329 0.0355
Arboreto 0.1932 0.3348 0.0423 0.0385
Inferelator 0.2150 0.3413 0.0221 0.0285

a The best and second best scoring network by AUPRC are boldfaced
and underlined, respectively.
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only groundtruth. Regardless of the training set split, how-

ever, MCPNet’s ensemble network outperforms ARACNe-AP

significantly.
These results suggest that even when the ensemble network

is optimized using a small partial groundtruth set, with high

probability it will be of higher quality than the R4 network.

Furthermore, a small partial groundtruth, even at 1% of full

groundtruth, will on average produce a network with similar

quality as one optimized using the full groundtruth. Finally,

the ensemble method is robust to varying make-up of the

training set, and thus the choice of ensemble weights.

5 Discussion

The efficient algorithm and parallel implementation of
MCPNet creates opportunities for data exploration and bio-

logical hypothesis testing. Its scalability to hundreds of CPU

cores enables analyses of data with sample and gene counts

that are previously prohibitive, and exploration of parameter

spaces and multiple methods at the same time, e.g. computing

length-2, -3, and -4 MCP scores, our ensemble network and
its Stouffer transform in one pass. This is useful where the in-

dividual methods are suspected to behave in a data-dependent

manner, e.g. with Stouffer transform in CLR and M4
Z for the

real yeast data, and inspecting multiple networks is desirable.

In addition, as the MCP score formulation differs from exist-

ing algorithms, MCPNet provides complementary network

that can contribute to multi-method ensemble approaches, i.e.
combining networks generated by the tools evaluated in this

work.
There are multiple aspects of the MCPNet algorithm and

implementation that deserve further exploration. An impor-

tant consideration for MCPNet development is the usability

of the software. While the evaluations in this paper utilized

nodes in a high performance cluster, the real yeast and the A.

thaliana experiments showed that commodity personal com-
puters are well suited for smaller datasets, while professional

workstations should easily exceed the requirements for proc-

essing large datasets using MCPNet. At the same time, user

friendly integration into common, existing bioinformatic pro-

gramming environments and pipelines will ease downstream

processing and biological interpretation of the reconstructed

network and promote user adoption. Memory footprint re-
duction and language binding for Python and R/Bioconductor

represent two future software engineering efforts for

MCPNet.
The MCP mathematical model underlying MCPNet is ag-

nostic of the edge weight formulation. While we focused on

MI values as edge weights, other measures such as Boolean

values and Pearson correlations may allow different network

modeling and incorporate information such as up- and down-
regulations. Our evaluations showed that MCPNet performed

well with MI of RNAseq and microarray data as averaging

improves signal to noise ratio, but such may not be the case

for single cell transcriptomic data as MI estimation with

highly sparse data may present significant challenges for

MCPNet and gene network reconstruction in general, and in-
formation regarding groundtruth for individual cell types is

still limited for validation. Single cell transcriptomic data,

promises to allow cell-type specific GCNs and GRNs, thus

MCPNet applicability to such data is of significant interest.

6 Conclusion

In this paper, we present a new method MCPNet for GCN
and GRN reconstruction that utilizes a novel edge scoring
metric, the MCP score, based on the MCP problem in net-
work and graph analysis. MCP score characterizes indirect
gene–gene and regulator–target interactions to identify signifi-
cant direct interactions in an unsupervised manner and with
minimal user-specified parameters. We further present an en-
semble approach that uses partial network groundtruth to op-
timize the weighted average of MCP scores from multiple L-
paths scores, with the objective of inferring higher quality
novel interactions. The MCP score methods have been shown
to generate networks with competitive or superior AUPRC
scores on real-world S. cerevisiae and A. athaliana datasets,
while reducing run-time by several orders of magnitude rela-
tive to existing best-in-class methods.
While we have applied MCPNet for GRN and GCN recon-

struction, it operated on gene expression profile from a single
time point, thus cannot infer causality, similar to the other
existing tools evaluated in this work. As a consequence, the
predicted gene co-expressions and regulatory interactions
must be considered as candidates for further validation. With
this understanding, the combination of network quality and
computational performance suggests MCPNet to be a viable
first-choice tool for gene network reconstruction and candi-
date gene and TF–target interactions.

Supplementary data

Supplementary data is available at Bioinformatics online.
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