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A Parallel Framework for Constraint-Based Bayesian
Network Learning via Markov Blanket Discovery

Ankit Srivastava

Abstract—Bayesian networks (BNs) are a widely used graphical
model in machine learning. As learning the structure of BNs is
NP-hard, high-performance computing methods are necessary for
constructing large-scale networks. In this article, we present a
parallel framework to scale BN structure learning algorithms to
tens of thousands of variables. Our framework is applicable to
learning algorithms that rely on the discovery of Markov blankets
(MBs) as an intermediate step. We demonstrate the applicability of
our framework by parallelizing three different algorithms: Grow-
Shrink (GS), Incremental Association MB (IAMB), and Interleaved
IAMB (Inter-IAMB). Our implementations are available as part of
an open-source software called ramBLe, and are able to construct
BNs from real data sets with tens of thousands of variables and
thousands of observations in less than a minute on 1024 cores, with
a speedup of up to 845X and 82.5% efficiency. Furthermore, we
demonstrate using simulated data sets that our proposed parallel
framework can scale to BNs of even higher dimensionality. Our
implementations were selected for the reproducibility challenge
component of the 2021 student cluster competition (SCC’21), which
tasked undergraduate teams from around the world with repro-
ducing the results that we obtained using the implementations. We
discuss details of the challenge and the results of the experiments
conducted by the top teams in the competition. The results of
these experiments indicate that our key results are reproducible,
despite the use of completely different data sets and experiment
infrastructure, and validate the scalability of our implementations.

Index Terms—Bayesian networks, constraint-based learning,
parallel machine learning, gene networks, reproducibility.

1. INTRODUCTION

AYESIAN networks (BNs), an important subclass of prob-
B abilistic graphical models, employ directed acyclic graphs
(DAGS) to compactly represent exponential-sized joint probabil-
ity distributions over a set of random variables. Since BNs enable
probabilistic reasoning about direct and indirect interactions
between the variables of interest, they have been successfully

Manuscript received 9 October 2022; revised 18 January 2023; accepted 28
January 2023. Date of publication 13 February 2023; date of current version
5 May 2023. This research was supported in part by the National Science
Foundation under Grants OAC-1828187 and OAC-1854828. Recommended for
acceptance by Special Section SC21 Reproducibility. (Corresponding author:
Ankit Srivastava.)

Ankit Srivastava and Srinivas Aluru are with the School of Computational
Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332
USA (e-mail: asrivast@gatech.edu; aluru@cc.gatech.edu).

Sriram P. Chockalingam is with the Institute for Data Engineering and
Science, Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:
srirampc @gatech.edu).

Digital Object Identifier 10.1109/TPDS.2023.3244135

, Sriram P. Chockalingam, and Srinivas Aluru

, Fellow, IEEE

applied in a wide range of applications in the fields of med-
ical diagnosis [1], gene networks [2], [3], fMRI analysis [4],
cybersecurity [5], legal reasoning [6], forensic science [7], etc.
Furthermore, the recent focus on the need for explainability in
the decisions made by machine learning models [8] has led to a
push for the use of inherently interpretable models like BNs [9]
in hitherto unexplored areas [10].

Given a data set sampled from a joint probability distribution,
exact learning of the corresponding BN structure is NP-hard [11]
and therefore a wide range of heuristic methods have been
developed for this purpose. However, effective heuristic methods
are also compute-intensive and can only construct moderate-
scale networks sequentially, which has led to the parallelization
of BN structure learning becoming one of the major areas of
focus in BN research in recent years. Even so, the works on
the topic so far are either specific to a particular algorithm
or are application-specific. Broadly applicable parallelization
strategies that can be used for constructing large-scale networks
have remained elusive thus far.

A. Related Work

Algorithms for BN structure learning can be broadly classified
into score-based and constraint-based methods. Score-based
methods use a Bayesian metric to evaluate the fitness of a
structure given the observed data and attempt to find the highest
scoring structure out of all the valid structures. Constraint-based
approaches, on the other hand, perform repeated applications of
conditional independence (CI) tests to eliminate edges between
pairs of variables whose dependence can be explained by a
conditioning set.

Exact score-based algorithms with exponential run-time com-
plexity have been proposed to find the optimal structure for
small BNs, i.e., BNs with less than 20 variables [12], [13].
Even parallelization of these exact solutions can only construct
networks with a maximum of 37 variables [14], [15], [16].

Heuristics developed for learning BNs can be classified as
either global-search or local-to-global. Global-search methods
traverse the global space of DAGs to identify an optimal struc-
ture. Examples of such methods include score-based strategies
by [17], [18] and constraint-based approaches by [19], [20].
Local-to-global methods, on the other hand, first discover the
local neighborhood of each variable and then combine these
local neighborhoods to obtain the global structure. Multiple
local-to-global approaches have been proposed in both the
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score-based [21], [22] and constraint-based [23], [24] cate-
gories. We refer the reader to [25] for a comprehensive review.

Compared to exact methods, parallelization of heuristic meth-
ods has yielded results with much better scalability. Nikolova
et al. [26] developed a parallel score-based method that can
construct a network with 500 variables in 107 seconds using
1,024 cores. Misra et al. [27] developed a similar approach that
learns genome-scale gene networks for Arabidopsis thaliana,
and can construct a 15,216 variable BN in less than 172 seconds
using 1.57 million cores of the Tianhe-2 supercomputer.

Efforts on parallelizing constraint-based methods have been
primarily focused on global-search methods, in particular on
the PC algorithm [20]. Madsen et al. [28] parallelized the PC
algorithm with a shared-memory model for which they achieve a
maximum speedup of almost 7 using 12 threads for constructing
a network with 2,371 variables. Using a similar approach for
parallelizing CI tests with a distributed-memory model, they
reported a maximum speedup of about 8 using 10 cores for the
same data set. There have been multiple efforts to accelerate the
order-independent variant of the PC algorithm, referred to as the
stable-PC algorithm [29]. Le etal. [30] proposed the parallel-PC
algorithm for the purpose and reported a maximum speedup of
12 using 14 cores for learning a network with 2,810 variables.
Schmidt et al. [31] and Zarebavani et al. [32] have proposed
strategies for accelerating the stable-PC algorithm using GPUs.
However, all of the proposed parallelization strategies are spe-
cific to either the PC or the stable-PC algorithm and are not
applicable to other constraint-based methods.

One of the earliest attempts at parallelizing local-to-global

Constraint-based algorithms was by Nikolova et al. [33],
who focused on parallelizing the MMHC algorithm [34] and
the PCMB algorithm [35]. They reported near perfect scaling
for learning neighborhoods of 1,000 variables on up to 512
cores. However, as the authors observed, their approach does
not scale when the number of variables or the number of ob-
servations are increased. This is because their approach assigns
all the computations for determining the local neighborhood
of a variable to the same processor. Due to the differences in
the computation requirements across variable neighborhoods,
such a static assignment of variables to processors leads to load
imbalance.

Multiple open-source packages for learning BNs have been
developed. The most prominent and well-maintained among
them include bnlearn [36], Tetrad [37], and pcalg [38]. How-
ever, these implementations are either completely sequential
(e.g., pcalg) or support only limited intra-node level parallelism
(e.g., Tetrad). Recently, bnlearn added support for parallelizing
structure-learning algorithms [39], using a parallelization strat-
egy similar to the one used in [33] and therefore suffers from
the same drawbacks as discussed earlier.

B. Contributions

In this paper, we present a parallel framework to scale BN
structure learning algorithms to tens of thousands of variables.
Our framework is applicable to local-to-global constraint-based
structure learning algorithms that rely on the discovery of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Markov blankets (MBs) as an intermediate step. We identify
common components of these algorithms and develop parallel
algorithms for each of these components. Subsequently, we
demonstrate the applicability of our framework by using it to
develop parallel versions of three different algorithms: the Grow-
Shrink (GS) algorithm [23], the Incremental Association MB
(IAMB) algorithm [24], and the Interleaved IAMB (Inter-IAMB)
algorithm [24]. We also introduce different algorithmic tech-
niques that improve run-time performance of these algorithms
both sequentially and in parallel, such as optimizations for CI
testing and load balancing.

We demonstrate the scalability of these algorithms using real
data sets to learn genome-scale gene networks for the organisms
Saccharomyces cerevisiae and Arabidopsis thaliana — networks
with tens of thousands of variables from thousands of observa-
tions. The experiments show that our optimized implementations
of the three algorithms achieve significant sequential speedup
over the popular bnlearn package in learning these networks.
Further, our proposed parallel versions of these algorithms are
able to learn the networks in less than a minute on 1024 cores,
compared to almost 14 hours required by our sequential im-
plementation and close to 24 hours required by bnlearn. Using
simulated data sets, we show that our algorithms are scalable
to learning networks with even larger number of variables and
can reduce the time required for the purpose from more than 25
hours sequentially to less than two minutes on 1,024 cores.

Using the proposed framework, our implementations of the
three algorithms are able to achieve a speedup of up to 845X
corresponding to a strong scaling efficiency of 82.5% on 1024
cores. Even though we demonstrate the utility of our framework
in constructing gene networks, the experiments on simulated
data sets show that our framework can enable learning of
higher-dimensional BNs at scale in other application areas, e.g.,
fMRI analysis [4], and potentially enable their adoption in other
fields where the time required for learning large-scale BNs has
heretofore been a deterrent.

II. BACKGROUND

A BNis a graphical representation of a joint probability distri-
bution of a set of n random variables X = { X1, Xo,..., X,,},
denoted by the pair (G, P), where G is a DAG of n vertices
corresponding to each variable in X’ and P(X’) is the joint prob-
ability distribution that decomposes into conditional probability
distributions as follows:

P(X1,...,X,) = HP(XAR(Xi)),

where R(X;) denotes the set of parents of X; in G. We use
upper-case alphabets (e.g., X, X;,Y) to represent random vari-
ables and calligraphic upper-case alphabets (e.g., X, R,S) to
represent sets of random variables. The values that a random
variable can take are represented using lower-case letters (e.g.,
a, b, c). A BN satisfies the faithfulness condition if G entails all
and only the CIs present in P(X"). We assume faithfulness in this
paper and refer the reader to [40] for details on faithfulness and
entailed CIs. Fig. 1 shows an example BN for the six variables
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Fig. 1. An example BN for a set of six random variables, X = {S, T, W,
X,Y,Z}. The probability distribution P(X) decomposes as
PS)PY)P(TIY)PWI|T)P(ZI{S, THP(X{Y, Z}).

{S,W, T, X,Y, Z}. The directed arrows in the BN represent
parent-child relationships, e.g., R(T") is {Y'} and T is present
in both R(W) and R(Z) in the BN shown in Fig. 1.

We represent CI between two random variables X and Y given
a third variable Z as I(X,Y'|Z) and conditional dependence as
—I(X,Y|Z). Given a set of observations, tests for conditional
independence can be conducted using different statistical tests
for discrete and continuous variables. For discrete variables,
the most common method of determining I(X,Y|Z) is by
computing the G? statistic [41] as follows:

@ =233 3 supeIn 1)

SacS
ceZ acX beY acSbe

where s, is the number of observations in which Y = ¢, s, is
the number of observations in which X = a and Z = ¢, Sgpc
is the number of observations in which X =a, Y = b, and
7 = ¢, etc. Under the null hypothesis that the CI holds, the
G? statistic is asymptotically distributed as chi-squared with
the degrees of freedom computed as (rx — 1) (ry — 1) -ry
where rx is the arity of the variable X, i.e., the number of
different values that X can take, etc. The p-value of the G? test
is computed as the probability that the G2 statistic was drawn
from the chi-squared distribution. If the p-value is lower than a
significance threshold, denoted by «, the null hypothesis is re-
jected and I (X, Y| Z) is determined to be true. Lower p-value
indicates stronger dependence and therefore we use the additive
inverse of p-value for quantifying the strength of association
between the variables, represented by Assoc(X,Y|Z). We also
use the I(-,-|-), =I(-,|-), and Assoc(-,-|-) notations for sets of
variables.

The set of parents and children of a variable 7" in a BN,
represented by PC(T"), consists of variables that are dependent
on T given any conditioning set not containing the two variables,
ie., X € PC(T) if and only if -I(X,T|S)VS C X\ {X,T}.
For example, in the BN shown in Fig. 1, PC(T) is {Y, Z, W }.
The MB of a variable T is defined as a set of variables, denoted
by MB(T), that renders 7' independent of other variables,
ie., I(X,TIMB(T))VX € X\ (MB(T)U{T}). Assuming
faithfulness, MB(T) is made up of the variables in PC(T)
and the parents of the children of 7. In the example BN from
Fig. 1, MB(T) is PC(T)U{S} ={Y,Z, W, S}. Note that
under the faithfulness assumption, MB implies a symmetric
relation similar to PC, i.e., if X € MB(T') then T € MB(X).
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In this paper, we focus on the local-to-global constraint-based
methods for constructing BNs, which learn the PC set for every
variable separately and then combine them to get the complete
network. These algorithms belong to one of the following two
subclasses: blanket learning or direct learning. Blanket learning
algorithms identify the MB for each variable as a first step
and then identify the subset of variables in the MB which
also belong to the PC, e.g., GS, IAMB, Inter-IAMB, etc. Direct
learning algorithms, on the other hand, construct the PC set for
every variable without any intermediate steps, e.g., MMPC [34],
HITON-PC [42], etc. In both types of learning, the skeleton
of the BN (i.e., an undirected representation of the DAG) is
constructed first, followed by the orientation of the edges. Since
the skeleton constructed for real data sets is very sparse and
the edge orientation algorithm is linear in the number of edges,
a miniscule portion of the total run-time (less than 0.01%) is
spent in directing the edges. Accordingly, we do not focus on
developing a parallel method for this step.

III. PARALLEL ALGORITHM

We propose a parallel framework which enables users to de-
velop and implement an efficient parallel version of any blanket
learning strategy for constructing BNs. First, we introduce the
notations used and state the key assumptions in Section III-A.
In Section III-B, we describe the sequential version of blanket
discovery algorithms. Then, we discuss the components of our
proposed parallel framework in Section III-C. Finally, using
these components we present parallel versions of three blanket
learning algorithms — GS, IAMB, and Inter-IAMB in Section II-
I-D.

A. Assumptions and Notations

Similar to the other M B construction algorithms, we assume
an ordering of the input variables in X, i.e., X1 < Xo < ... <
X,,. We also assume, similar to other parallel algorithms, that
the input dataset D with m observations for n variables is
available locally on all the processors. For the computations
of the run-time complexity, we make the standard assumption
that conducting CI tests and computing Assoc(-) values takes
constant time. In order to model the communication time re-
quirements of the proposed parallel algorithms, we assume a
parallel distributed system with p processors that requires 7
time units to setup communication between processors and
time units per word to send a message from one processor to
another.

In our framework, the key data structure that we use is a list
of tuples, referred to as c-scores. Elements of c-scores are of
the form (X,Y,6xy), where X and Y are variables and 6 xy
is a numeric value. At any point during the execution of the
algorithms, if (XY, fxy) is an element in c-scores, then the
variable Y is a potential candidate for addition to the MB set of
the target variable X, i.e., MB(X). The third element, 6 xy, is
the score for adding Y to MB(X) and is used to select the best
candidate for every target variable. For the algorithms presented
in this paper, we use the associativity of a target X and the
candidate Y given the current MB of the X as the score, i.e.,
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Oxy = Assoc(X,Y|MB(X)). Apart from the c-scores list,
we also maintain a list, denoted as variables, that contains all
the variables for which the MB sets are to be computed.

In order to construct the BN skeleton, blanket learning algo-
rithms need to identify the MB sets for all the variables. Ac-
cordingly, we initialize the variables list with all the variables
in X. Since MB discovery generally starts with empty MB sets,
MDB(T) is initialized to () VI' € variables. We initialize the
c-scores list with a tuple each for all the possible candidates for
all the variables in X’ and set all the scores to zero, i.e., the list is
initialized with elements from the set {(X,Y,0)|X € X, Y €
X\ {X}TUMB(X))}. At the beginning of the algorithm,
there is a tuple in c-scores corresponding to each of the n? — n
ordered variable pairs. Furthermore, the tuples in the c-scores
list are initialized in the ascending order of the first variable and
then of the second variable. Therefore, all the tuples with the
candidate variables corresponding to the same target variable
are arranged in a contiguous manner in the list.

When executing the algorithms on p processors, the c-scores
list is initialized in a similar fashion but is block distributed
among all the processors. The corresponding list on the proces-
sor j is denoted by c-scores; and its size is bounded by (”2’”] .
The list variables; is initialized with all the variables for which
the processor j computes the MB sets, i.e., it includes all the
elements from the set { X |(X,Y, 0xy) € c-scores;}. Since the
c-scores list is ordered such that tuples with the same first
variable are contiguous, the size of variables; is bounded by
O(3). In the distributed setting, MB(T') is initialized on every
processor for all T' € variables;. Note that, for two different
processors ¢ and j and some variable 7', both variables; and
variables; may contain T'. In such cases, both processors 7 and
j compute MB(T).

B. Algorithm

Prior to describing the components of the proposed parallel
framework, we briefly outline how the algorithms of interest
proceed on a single processor. BN learning via MB discovery,
in general, is comprised of four phases — Grow, Shrink, Symmetry
Correction, and Construct PC from MJB. During the Grow
phase, the MB for a variable 7" is grown by adding a variable
to MB(T') from among the available candidates. In the Shrink
phase, one or more variables are removed from MB(T) if they
are independent of 7' given the other variables in the current
MB set. After identifying the candidate MB sets for all the
variables in one or more Grow and Shrink iterations, Symmetry
Correction is performed to obtain symmetrically consistent MB
sets. Finally, for learning the skeleton of BN using the MBs, the
algorithms Construct PC from MB for every variable, i.e., a
variable X in MB(T) is included in PC(T) if no subset of
MB(T), with the exclusion of X (or alternatively MB(X)
with the exclusion of 7T") can render X and 7' conditionally
independent.

We now describe in detail the GS, IAMB, and Inter-IAMB
algorithms in terms of the c-scores and wvariables lists, de-
fined and initialized as per Section III-A. In a Grow phase
iteration, scores are first updated for all the tuples in the
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current c-scores list. This is accomplished by updating 6 xy
with Assoc(T,Y|MB(X)) for all (T.Y,0py) € c-scores.
Then, using the updated scores, a candidate is selected for every
variable. More specifically, the Grow phase in the JAMB and the
Inter-IAMB algorithms picks the candidate with the maximum
score, i.e., the tuple (T, Z, O1) is picked for T" if

(T, Z,0rz7) = Ory. ()

arg max

(T,Y,0ry )ec-scores
The GS algorithm, on the other hand, picks for a variable 7" the
first candidate that shows dependency with 7. As mentioned
in Section II, we use the additive inverse of p-value of the
G? test I(T, X|MB(T)) as Assoc(T,Y | MB(T)). Therefore,
candidate selection for GS can be accomplished by identifying
the first tuple with a score greater than the additive inverse of the
significance threshold (—«), i.e., a tuple (T, Z, O z) is selected
for T' if

(T, Z,077) is first entry in c-scores s.t. Oy > —a.  (3)

In both the cases, if such a tuple is found, then Z is added to
MB(T) and (T, Z, 01 z) is removed from the c-scores list.

During the Shrink phase, we examine all the M sets and
remove a variable X from MB(T) if I(T, X|MB(T) \ {X})
holds. Blanket learning algorithms differ on how Grow and
Shrink phases are iterated. Both GS and JAMB execute multiple
iterations of Grow phase followed by a single Shrink phase,
whereas the Inter-IAMB algorithm alternates between Grow and
Shrink phases until all the M B sets stop changing.

After the one or more iterations of Grow and Shrink phases,
MB construction proceeds to Symmetry Correction, in which
we verify whether T' € MB(Y) <= Y € MB(T) and when
this assertion fails for a pair (7',Y"), we remove the offending
variables from the respective M B sets. Finally, the PC sets are
learned by verifying CI for every subset of M5, after which the
DAG is obtained by orienting the undirected edges added from
the PC sets.

C. Parallel Framework Components

We now discuss the key components of our proposed frame-
work — parallel algorithms for all the four steps described in
Section III-B. We designed these components using common
parallel primitives such as all-reduce, scan, shift permu-
tations, and parallel sorting.

1) Grow Phase: Our parallel algorithm for Grow phase is
based on the following two key insights: (i) The MB sets for
all the variables are required for constructing the skeleton.
Further, for addition to the MB set of a variable, all the other
variable are considered a candidate. Therefore, we consider all
the variable pairs in parallel, using the distributed c-scores
list. (ii) The time taken in conducting a CI test (or computing
Assoc(+)) is proportional to the size of the conditioning set.
Therefore, we designed this component such that the CI tests
(and Assoc(-) computations) with the same conditioning set
sizes are conducted in parallel.

The pseudo-code for our parallel Grow phase is shown in
Algorithm 1. As discussed in Section I1I-B, the MB construction
algorithms use different heuristics to select the next variable
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Algorithm 1: Parallel Grow Phase.

Algorithm 2: Parallel Shrink Phase.

1 function GROW-PHASE():
Input: D, c-scores, variables, current MB(-) sets,
APPLY-HEURISTIC, REDUCE-HEURISTIC
Output: Updated MB(-) sets
parallel j = processor’s rank do
for (T,Y') € c-pairs; do
Ory « Assoc(T,Y|MB(T),D)
Add/Update (T,Y,0ry) to c-scores;
g-select; (T') < nil, VT € variables;
for T' € variables; do
ts < (T, X,0rx) € c-scoresj,¥YX € X
g-select;(T) <~ APPLY-HEURISTIC (¢s)

g ok W N

© ® N o

10 REDUCE-HEURISTIC (c-scores, g-select)
1 for T' € variables; do

12 Z < g-select;(T)

13 if ~I(T, Z|MB(T), D) then

14 L MB(T) + MB(T)Uu{Z}

15 Remove (T, Z,07z) from c-scores;

to be added to the current MB set. In order to accommodate
these differences, our proposed Grow algorithmic component
requires two functions as arguments: APPLY-HEURISTIC and
REDUCE-HEURISTIC. The function APPLY-HEURISTIC accepts a
slice of the c-scores list corresponding to a variable 7" such that
it contains (T, X, 07 x ) for all the candidates X, and returns the
candidate most suitable for addition to MB(T'). For example,
the APPLY-HEURISTIC selects a candidate as per (2) for the
IAMB and the Inter-IAMB algorithms and as per (3) for the GS
algorithm. The REDUCE-HEURISTIC function accumulates the
variable selection results from all the processors to identify for
each variable 7', the best candidate to be added to its MB(T).
In Algorithm 1, the local c-scores list is updated with the
computed Assoc values first (lines 3—5), which takes O(%) time
(assuming that Assoc computations take constant time). The
selection heuristic is then applied for each variable (lines 7—
9) followed by the accumulation of results across processors
(line 10). The run-time of these operations depends on the
heuristic used by the specific algorithm. For most MB algo-
rithms, including GS, IAMB, and Inter-IAMB, two segmented
parallel scan operations are sufficient for accumulating the
results from all the processors because the underlying operators
are associative. Note that these parallel scan operations exploit
the contiguous presence of all the tuples (7,Y,0ry) corre-
sponding to a target variable 7" in c-scores. Therefore, APPLY-
HEURISTICand REDUCE-HEURISTICtake O("Tf + log p) time for
computation and O((7 + p) log p) time for communication. The
M sets updated are local to the processor and therefore the
number of MB sets updated in a processor is bounded by
O(3). Finally, we add the selected variables to the M1 sets and
update c-scores (lines 11-15), bounded by O( % ). Therefore, the
Grow phase algorithmic component takes O(”j + logp) time
for growing all the M 3 sets by one variable. The only collective

1 function SHRINK-PHASE():
Input: D, variables, current MB(-) sets
Output: Updated MB(-) sets
parallel j = processor’s rank do
for T' € variables; do
for Z € MB(T) do
L if (T, ZIMB(T)\ {Z},D) then

o w1 o W N

| MB(T) — MB(T)\ {Z}

Algorithm 3: Parallel Symmetry Correction.

1 function SYMMETRY-CORRECTION():
Input: variables, asymmetric MB(-) sets
Output: Symmetry corrected MB(-) sets
parallel j = processor’s rank do
sc-pairs; < empty list of variable pairs
for X € variables; do
if j = 0or X & variables;_; then
forY € MB(X) do
if X <Y then
| Insert (X,Y) into sc-pairs,
else
| Insert (Y, X) into sc-pairs

© N9 & G R W N

=
o

1 Parallel sort sc-pairs, first by X then by Y’
12 Remove all unique (X,Y) from sc-pairs
13 Reset all MB(-) sets to ()

14 for (X,Y) € sc-pairs; do

15 MB(X) +~ MB(X)u{Y}

16 L MB(Y) +~ MB(Y)Uu{X}

communication in this component is for reducing the heuris-
tic computations across the processors, which takes O((7 +
1) log p) time.

2) Shrink Phase: Our proposed parallel component for
Shrink phase is shown in Algorithm 2. Here, the only task is
to remove those variables in M B which are independent given
the rest of the M B, which is accomplished by a loop over all the
MB sets (lines 3—6). The run-time for the parallel Shrink phase
is proportional to the size of the M sets for all the variables on
the processor, which is bounded by n x O() = O(%)' This
component requires no communications.

3) Symmetry Correction: The proposed parallel component
for checking the symmetry of the MB sets, shown in Algo-
rithm 3, is based on the method developed by [33]. It proceeds
by creating sc-pairs, a list of ordered tuples for every member
of MB set (lines 3—10) followed by parallel sorting to identify
the asymmetric MB members (lines 11-12). The MB sets
are then updated to reflect the symmetry correction (lines 13—
16). The time to construct sc-pairs, remove unique tuples,
and update MB sets is bounded by O(%)' Parallel sorting
can be accomplished by any comparison based sort such as
parallel bitonic sort, which takes O("?f log % + ”Tf log” p) and
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Algorithm 4: Parallel Construct PC from MB.

Algorithm 5: Parallel Skeleton Algorithm.

1 function GET-PC():

Input: D, variables, complete MB sets, neighbors
Output: Updated neighbors representing PC sets

2 parallel j = processor’s rank do

3 for X € variables; do

4 forY € MB(X) do

5 if [MB(X)| < |MB(Y)| then

6 | B+ MB(X)\{Y}

7 else

8 | B+ MB(Y)\{X}

9 if -I(X,Y|S,D)VS C B then

10 | Insert (X,Y) into neighbors

O(rlog? p + M"Tf log? p) time for computation and communi-
cation respectively. Collective communication is also required
during the removal of the unique tuples to identify tuple pairs
that cross processor boundary. This is accomplished by a pair
of shift permutations that take O(7 + ) time. To summarize,
the run-time of this component is dominated by the run-time of
parallel sort which takes O(”Tf log ”Tf + "Tf log? p) computation

time and O(7 log® p + /1,% log? p) communication time.

4) Construct PC From MB: Our parallel algorithm to con-
struct the skeleton of the BN from the MB sets is shown in
Algorithm 4. This component tries to identify a conditioning set
for each element Y in MB(X), that can render X conditionally
independent from Y (lines 3—10). If no such conditioning set
can be identified for the pair X, Y, the algorithm inserts (X, Y")
into neighbors, a distributed list of tuples (line 10). Note that
this component requires the M B sets of both X and Y and
therefore the complete M sets should be made available on
all the processors before GET-PC is called. In the worst case,
this component has a run-time complexity of O(%ZT), where
r = maxxey |[MB(X)]|. Since the maximum value of 7 is low
for real networks (less than 6 in our experiments), the corre-
sponding exponential term can be considered constant. Hence,
this phase takes the least significant time of all the four phases in
practice (less than 0.1%). This component requires no collective
communications.

D. Parallel BN Construction

Using the four algorithmic components discussed in Sec-
tion III-C, many blanket learning algorithms can be imple-
mented. Here, we present efficient parallel versions of the fol-
lowing three algorithms: GS, IAMB, and Inter-IAMB. The GS
algorithm as well as the JAMB algorithm can be implemented
using the parallel skeleton construction algorithm presented in
Algorithm 5. As discussed in Section III-B, the only distinction
between the GS algorithm and the JAMB algorithm is how the
next variable is selected in the Grow phase and this differ-
ence can be abstracted using the APPLY-HEURISTICand REDUCE-
HEURISTICfunctions. Given these algorithm-specific functions
(defined as per (2) and (3)), the proposed parallel versions

1 function CONSTRUCT-SKELETON-GSIAMB():

Input: D, APPLY-HEURISTIC,
REDUCE-HEURISTIC

Output: PC(T) sets forall T' € X

2 parallel j = processor’s rank do

3 Initialize c-scores;, variables;, MB(-) as
described in Section 3.1

4 Initialize neighbors as empty list of tuples

5 repeat

6 GROW-PHASE(D, c-scores, variables,

MB, APPLY-HEURISTIC,
REDUCE-HEURISTIC)

7 until no MB changes on any of the processors
8 SHRINK-PHASE(D, variables, MB)

9 SYMMETRY-CORRECTION (variables, M)

10 Synchronize MB(-) across all the processors
11 GET-PC(D, variables, MB, neighbors)

Algorithm 6: Grow - Shrink Loop for Inter-IAMB.

5 repeat // Grow-Shrink loop

6 GROW-PHASE(D, c-scores, variables, MB,
APPLY-HEURISTIC, REDUCE-HEURISTIC)

7 + SHRINK-PHASE(D, variables, MB)

8 until no MB(X) changes on any of the processors

9 - SHRINK-PHASE(D, variables, MB)

of both these algorithms proceed the same way. The requisite
distributed lists and variables are initialized first (lines 3-4),
following which these algorithms execute the GROW-PHASEin
a loop until convergence (lines 5-7). After SHRINK-PHASEand
SYMMETRY-CORRECTION(lines 8-9), there is a synchronization
step for collecting the MB(-) for all the variables on all the
processors (line 10). Finally, GET-PCis called to construct the
skeleton for the BN in parallel (line 11).

Summing up the run-times of the four components, the com-
putational run-time complexity of Algorithm 5 is

n? n
(0] (p (10g2p+logp+k+2r> —|—klogp> .

where r = max xcy |MB(X)|and & is the number of times the
algorithm executes the Grow component.

Apart from the communication costs incurred by the four
components, Algorithm 5 also requires collective communica-
tions for (i) identifying if any of the M B sets changed during
a Grow iteration, and (ii) synchronization of the MB sets.
Using a bit set representation of the M sets, both of these
operations can be performed using all-reduce, which takes
O((7 + ploglogn) log p) time. Hence, the communication run-
time of this algorithm is

2
0 (7' (log® p+klog p) +p <T; log? p + klog ploglog n)) .

The parallel version of the Inter-IAMB BN skeleton construc-
tion requires only a minor change from Algorithm 5. The modi-
fications, highlighted in Algorithm 6, are the introduction of the
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Shrink phase in the M3 update loop (line 7) and the removal
of it from outside the loop (line 9). Since the Shrink phase takes
O(”—Q) time with no communication, the time complexity of the
modified algorithm remains the same as that of Algorithm 5.

IV. IMPLEMENTATION

We implemented our framework using C++ and MPI con-
forming to the C++ /4 and MPI 3.1 standards, respectively. Our
implementations are available as part of an open-source software
called ramBLe [43].

A. Sequential Implementation

Bnlearn [36] is apopular R package that supports a wide range
of score-based and constraint-based algorithms for learning
BN, including the three algorithms that we focus on. The pack-
age has been used in multiple recent studies for the construction
and analysis of BNs [44], [45], [46], [47]. Even though the
top-level logic for most of the algorithms supported by bnlearn is
implemented using R, the computationally intensive tasks such
as the computations for conducting the CI tests are implemented
in C. Hence, in spite of interfacing with an interpreted language,
bnlearn is able to achieve performance comparable to that of a
compiled language.

Our implementations differ from bnlearn’s implementations
because of the ambiguity in the specification of the GS algo-
rithm and the choice of internal data structures. For efficiency
purposes, we used different data structures than the ones used
by bnlearn for some of the underlying tasks. For example,
bnlearn uses arrays for storing the indices of the variables in
a set. But, we use bit sets which enables us to use SIMD
instructions for some set operations and also reduce the message
sizes during communication. This modification, however, may
alter the order in which the variables are considered by the
algorithms in some cases. Since CI testing using real data sets
is imperfect and any errors in the CI tests may change the
behavior of the constraint-based algorithms, the BNs learned
by such algorithms are known to be sensitive to the ordering
of the variables [29], [41], [48]. In order to ensure that our
choices for efficiency do not affect the accuracy of the learned
network, we validate our implementations against bnlearn in
Section V-B. Our experiments show that these choices help us
achieve considerable speedup over bnlearn without significantly
impacting the learned network structure.

B. Statistic Computation Strategies

In our earlier discussion on the proposed parallel BN algo-
rithms, we used the standard assumption that CI tests can be
conducted in O(1) time. However, prior studies have estimated
that more than 90% of the time in constraint-based learning is
spent in aggregating counts from observation data for the CI
tests [49]. Correspondingly, we observed that computing the
G? statistic took between 94% and 99% of the total run-time
for learning the network sequentially in our experiments in
Section V. Therefore, both efficiently conducting the CI tests
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as well as reducing the number of CI tests are essential for good
run-time performance of the learning algorithms in practice.

1) Counting Strategies: In order to conduct the CI test
I(X,Y|Z), using the G? statistic (1), the count of the num-
ber of observations Sqpc, Sac, She, and s, corresponding to each
combination of X =a, Y =0, and Z = c is required. In BN
structure learning implementations, two types of approaches
have been used to compute these counts. The most common
approach, also used by bnlearn, is to compute the counts when
they are required, either by scanning the complete data set to
fill up contingency tables or using advanced strategies based
on bit maps or radix sort [27], [49]. An alternate approach is
to pre-process the data set and create an index data structure,
e.g., a hash table or an ADtree [50], which can be used to
retrieve the counts in almost constant time during learning.
As discussed by [49], the latter category of approaches require
significant pre-processing time which can not be amortized by
the corresponding gains during the learning of sparse networks.
Thus, we focused on the approaches in the former category and
implemented the contingency table based approach as well as the
two other strategies from the SABNAtk library [49]. We observed
that the contingency table based approach outperformed the
other two approaches for the data sets that we experimented with.
Consequently, we report the run-times using the contingency
table based approach in Section V. Nevertheless, our framework
can be easily extended to use other counting strategies.

2) Optimizing the GS Algorithm: We reduced the number
of Assoc(-) computations in our implementation of the GS
algorithm based on the observation that, in each iteration of
the Grow phase, the update of the c-scores list for a target
variable X can be terminated as soon as the first score 0xy
which is greater than or equal to —« is computed. This is because
the corresponding candidate Y will be the one picked by the
algorithm for addition to MB(X) in that iteration, as per (3).
Using this optimization, we are able to reduce the sequential
run-time of our implementation of the GS algorithm, as shown
in Section V-B. Notice that this optimization is useful even in a
parallel implementation, when the c-scores list corresponding
to a target X may be distributed across multiple processors.
However, since the score updates happen concurrently on all
the processors, a processor j will stop the updates for X only
after finding the first viable candidate for X in its local list
c-scores;. Therefore, if a suitable candidate for X exists on
a processor ¢ < j, then extra work is done on the processor j as
compared to the sequential execution. We discuss the effect of
this optimization on the scaling performance of the GS algorithm
in Section V-D.

C. Load Balancing

Construction of a BN in parallel starts with a block distribution
of the list of candidate tuples, c-scores, to all the processors. In
every iteration of the Grow phase, one tuple is selected for every
variable and removed from the c¢-scores list. Furthermore, if the
MB of a variable stops changing, then all the candidate tuples
corresponding to that variable are removed from the list as well.
After a few iterations, these removals can lead to a disparity
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between the size of the c-scores list across the processors. Since
the time taken by a processor in an iteration of the Grow phase is
proportional to the size of the c-scores list on that processor, the
run-time of an iteration is determined by the the processor with
the maximum number of tuples. This load imbalance between
processors can, therefore, increase the total time required for
learning the M B sets, which accounts for more than 99% of the
total run-time for learning the network.

We mitigate the load imbalance problem by a stable block
redistribution of the remaining candidate tuples at the end of
an iteration. Specifically, we use an MPT_Alltoallv call to
redistribute the remaining elements of the c-scores list so that
it is block distributed while maintaining the original order of
the tuples. However, since redistribution is expensive and adds
to the total run-time, we redistribute only if the imbalance is
severe. For determining the severity, we compute the imbalance
at the end of every iteration as the ratio of the maximum size of
the list on any processor to the minimum size of the list on any
processor, i.e.,

maxo<j<p |c-scores;
Imbalance = =I=P | J|

“

ming<;<, |c-scores;|

We use this metric because both the maximum as well as
the minimum load are vital in quantifying the load imbalance
and the higher the difference between the two the higher the
imbalance. In our implementation, redistribution is done if the
computed imbalance is greater than a user-specified threshold.
We observed that setting this threshold to 2.0 resulted in optimal
performance for every combination of data sets and number of
processors in our experiments in Section V. Therefore, we use it
as the default value for the threshold in our framework. We study
the load imbalance and its effect on the total run-time further in
Section V-C.

V. EXPERIMENTS AND RESULTS

We performed our experiments on Georgia Tech’s 484-node
Hive cluster, where each node has a 2.7 GHz 24-core Intel Xeon
6226 processor and a minimum of 192 GB of main memory.
The nodes run RHEL 7.6 operating system and are connected
via EDR (100 Gbps) InfiniBand. For the scalability experiments,
we used a maximum of 64 nodes on this cluster. We compiled
the source code, implemented with C++14 and MPI, using
gcee v9.2.0 with -03 -march=native optimization flags
and MVAPICH?2 v2.3.3 implementation of MPI. We report the
run-times measured by assigning 16 MPI processes per node
and averaging the run-times over 5 different runs. Similar scaling
pattern is observed when all the cores of anode, i.e., 24 processes
per node, are used.

In our experiments, we observed that the first calls to
the MPI all-to-all collectives took significantly longer
time than the subsequent calls. Therefore, we warm up both
MPI_Alltoall and MPI_Alltoallv by calling them with
one byte on each processor. The time taken by the warm-up phase
increases from 0.6 seconds for 32 processes to 5.8 seconds for
512 processes and is not included in the reported run-times. The
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TABLE I
BENCHMARK DATA SETS

. Genes  Observations
Name  Organism
(n) (m)
D1 S. cerevisiae 5,716 2,577
D2 A. thaliana 18,373 5,102
D3 A. thaliana 18,380 16,838

warm-up takes negligible time when all the processes are within
a node and, also, with 1024 processes.

A. Data Sets

The goal in designing our framework is to enable paralleliza-
tion of BN structure learning algorithms that are constraint-
based and use MB discovery as an intermediary step. The
framework is agnostic to the underlying application area. To
demonstrate performance and scalability, we chose the con-
struction of gene networks — a rich application area that has
Big Data sets and the need for constructing large-scale net-
works. BN learning algorithms have been successfully used in
recovering gene networks from gene expression data sets [3].
In this application, the genes are modeled as random variables
which correspond to the nodes of a BN and the edges of the
BN correspond to the biological interactions between the genes.
In our experiments, we consider the genome-scale version of
this problem, i.e., learning networks with tens of thousands of
genes using thousands of gene expression studies. We used three
real gene expression data sets of different sizes, summarized in
Table I.

D1 is a data set generated from the organism Saccharomyces
cerevisiae, a species of yeast involved in baking and brewing.
Tchourine et al. [51] created this data set of 2,577 observations
each for 5,716 genes by combining data from multiple RNA-seq
expression studies. The data sets D2 and D3 contain expression
profiles for Arabidopsis thaliana, a model organism in plant
biology with more than 23,000 genes. These data sets are
constructed by collecting over 18,000 microarray images from
public databases (ArrayExpress and GEO), and pre-processing
them using standard microarray data analysis workflows for
quality control and normalization. In order to study process-
specific phenomena, itis necessary for plant biologists to consult
multiple gene networks generated from many process-specific
data sets. D2 is a subset of D3, manually curated by a domain
specialist and includes only those microarray experiments that
were designed to study the development process in A. thaliana.
D2 and D3 contain 5,102 and 16,838 observations for 18,373 and
18,380 genes, respectively. We used the method recommended
by Friedman et al. [2] for discretizing the data sets.

In order to study the scalability of our implementations on
data sets with larger number of variables, we generated three
simulated data sets with n = 30,000 and m = 10,000 using
the pcalg [38] software as follows. First, we construct three
random DAGs with 30,000 variables of increasing edge density
by specifying edge addition probability of 5 x 107°, 1 x 1074,
and 5 x 10~%. Then, we use the dependency structure specified
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TABLE I
COMPARISON OF THE TIME TAKEN BY BNLEARN AND OUR SEQUENTIAL
IMPLEMENTATIONS IN CONSTRUCTING THE BNS FOR THE BENCHMARK DATA
SETS, MEASURED IN SECONDS, AND THE CORRESPONDING SPEEDUP

Algorithm | Data set Run-time (s) Speedup
bnlearn Ours
D1 8720.0 240.1 36.3
GS D2 X 6760.3 N/A
D3 X 18695.0 N/A
D1 975.9 624.6 1.6
IAMB D2 40605.7 14 529.8 2.8
D3 84403.1  46603.2 1.8
D1 992.0 624.1 1.6
Inter-IAMB | D2 40819.0  14559.0 2.8
D3 89839.7 484424 1.9

The symbol x indicates that the run did not finish in four days.

by the three DAGs to sample 10,000 observations for all the
variables. Finally, we discretize the data sets as described above.
We refer to the three simulated data sets so obtained as S/, S2,
and S3, respectively. All the data sets are stored in plain text
format on a GPFS storage which is accessible from all the nodes
on the cluster. We used a significance threshold («) of 0.05 for
learning BN in all our experiments.

B. Comparison With Bnlearn

We used bnlearn v4.5 with R v3.6.0 for the experiments
reported in this section.

1) Sequential Comparison: We compare in Table II the run-
time of bnlearn with that of our optimized sequential imple-
mentation, described in Section IV-A, for learning the network
from the benchmark data sets using the three algorithms. The
run-times for both bnlearn and our method are proportional to
the size of the data sets, with D/ taking the shortest time and D3
taking the longest. We also observed that the implementation of
bnlearn for the GS algorithm is almost an order of magnitude
slower than that of the other two algorithms. This is because
bnlearn implements the variable selection for the GS algorithm
using expensive loops in R. Consequently, our implementation
of the GS algorithm is 36.3X faster than bnlearn for learning
the network for the DI data set. Further, bnlearn is not able to
finish learning the network when using the GS algorithm for
the two bigger data sets even after running for the cutoff time
period of four days. For both the JAMB and the Inter-IAMB
algorithms, our sequential implementation outperforms bnlearn
with a speedup of 1.6-2.8X for the benchmark data sets. Note
that our implementation of the G algorithm is 2-3X faster than
the other two algorithms because of the optimization discussed
in Section IV-B2.

We validated the networks learned by our implementations
against those learned by bnlearn for the data set D/ using the
three algorithms. During the validation process, we discovered
a bug in the Construct PC from M phase of the bnlearn
implementation. It was caused by an erroneous assumption in
the implementation that if there is only one element in the M3
set of a variable then it must be in the PC set of that variable.
This bug was acknowledged as such by the package’s maintainer
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(personal communication, March 4, 2020). We fixed this bug in
bnlearn and used the networks learned using this modified ver-
sion for the purpose of the validation. For all the three algorithms,
the networks learned using our implementations recall more than
99.84% of the edges present in the networks learned using the
corresponding implementations from bnlearn with more than
99.92% precision, i.e., our implementations learn more than
99.84% of the edges in the networks learned by bnlearn with
less than 0.08% additional edges.

2) Parallel Scalability of Bnlearn: As we discussed in Sec-
tion I-A, most parallelization strategies for BN learning focus on
either score-based or global-search constraint-based methods.
Among the software for BN structure learning that we surveyed,
bnlearn is the only one that supports learning BNs on multiple
cores using the three algorithms that we focus on. It uses the
parallel library of the core R distribution for parallelizing the
structure learning using a master-worker paradigm on the speci-
fied cores [39]. Since bnlearn is the only other available parallel
implementation of the three algorithms under consideration, we
evaluate its parallel scalability as a baseline for our method.

We use the three algorithms implemented in bnlearn for learn-
ing the BNs from the benchmark data sets using an increasing
number of cores and measure their self-speedup, i.e., speedup
compared to the sequential run-time of the bnlearn implementa-
tion. When using 2 cores, the JAMB algorithm shows a speedup
of 1.8X, 1.3X, and 1.6X for DI, D2, and D3 respectively.
bnlearn shows further improvement when using 16 cores with
an observed speedup of 6.3X, 2.0X, and 3.4X. However, the
speedup starts flattening when using cores on multiple nodes.
For example, when using 64 cores on four nodes, the observed
speedup is 7.7X, 2.1X, and 3.9X — a marginal improvement
over the speedup using 16 cores. Speedup for the other two al-
gorithms showed a similar pattern of diminishing returns. Since
bnlearn’s parallel scalability deteriorates significantly with in-
creasing number of cores, we do not explore its performance
further here. The scalability of our implementations, presented
in Section V-D, outperforms bnlearn by a significant margin.

C. Effect of Load Balancing

In order to understand the extent of load imbalance during the
parallel execution of the three algorithms, we learned BNs from
data set D2 using the algorithms, without the application of load
balancing strategies discussed in Section IV-C, and recorded
the imbalance (as per (4)) at the end of each iteration. We
observe that the imbalance during execution on less than 16
cores stays close to 1. However, the imbalance increases when
the algorithms are executed on larger number of cores with more
and more processes left without any work as the algorithms
progress. Further, the imbalance increases with an increase in
the number of iterations of the algorithm. For example, the JAMB
algorithm runs for 5 iterations for the data set and shows a final
imbalance of 15.6 when run on 512 cores while the GS and the
Inter-IAMB algorithms show a final imbalance tending to oo,
both of which take 7 iterations for completion.

The percentage reduction in the run-time for learning
the network from D2 data set, with the application of the
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TABLE III
TIME TAKEN IN LEARNING THE BNS FOR THE BENCHMARK DATA SETS USING THE THREE ALGORITHMS ON DIFFERENT NUMBER OF
CORES, MEASURED IN SECONDS

Number of GS IAMB Inter-IAMB
Cores D1 D2 D3 D1 D2 D3 D1 D2 D3
1 2401 67603 18695.0 624.6 14529.8 46603.2 624.1 14559.0 484424
2 133.7 36157 10123.7 330.1 77029 246773 333.2 76914 25616.2
4 71.0  1900.0 5299.5 170.5 39573 12626.3 172.2 3932.8 131825
8 39.0 10434 2930.5 88.6 2053.3 6609.3 89.9 2067.5 6955.0
16 20.7 538.5 1526.7 452 1046.1 3358.6 459 1061.5 3498.6
32 11.5 295.3 839.3 23.0 529.8 1716.4 234 533.3 1802.3
64 6.1 146.5 412.5 11.9 260.6 841.8 12.1 262.4 867.3
128 3.4 83.3 242.6 6.2 130.9 426.3 6.4 1324 445.2
256 2.1 44.6 134.5 3.2 66.5 209.7 3.4 66.9 221.2
512 1.5 24.7 76.3 1.8 34.0 106.6 2.0 34.9 113.1
1024 15 14.1 43.1 14 17.7 55.2 2.3 18.8 59.1
40 data is collected on all the processes to get the complete data
o GS setusing MPI_Allgatherv. Once the BN is constructed, the
& IAMB corresponding network is written in graphviz [52] format. In
30 | | & Inter-IAMB ponding grapiviz '

20

10 4

Run-time reduction (%)

T T T T 1
16 32 64 128 256 5121024

1 2 4 8
Number of cores

Fig. 2. Plot of percentage reduction in the run-time, as a result of load
balancing, of the three algorithms used for learning BN from data set D2 on
different number of cores.

redistribution strategy and using the three algorithms for differ-
ent number of cores, is shown in Fig. 2. When running on fewer
cores, we observe almost no improvement in run-time with load
balancing because the observed imbalance is small. Even when
the imbalance is high, the time taken in measuring the imbalance
and redistributing may be more than the corresponding gains. In
such cases, we observe that the run-time increases marginally
when load balancing is enabled, with the highest observed
increase of just 0.6% when using the Inter-IAMB algorithm on
16 cores. However, when running on larger number of cores, all
the algorithms show significant reduction in the run-times with
the GS algorithm showing close to 40% improvement on 1,024
cores. Since the optimization for the GS algorithm, discussed
in Section IV-B2, enables faster candidate selection for many
variables, the algorithm benefits more from a better spread of
the work load through an evenly distributed c-scores list. This
is the reason we observe a significantly higher improvement
in the case of the GS algorithm, as compared to the other two
algorithms.

D. Scalability of Our Framework

Our procedure to read an input data set in parallel is as
follows. First, the rows of the data set are block distributed to
all the MPI processes. Then, the processes concurrently read
the discretized data from their assigned rows. Finally, the read

our experiments, we observed that reading the data sets takes in
the range of 0.6 — 3.7 seconds for D1, 3.9 — 23.5 seconds for
D2,12.0 — 77.3 seconds for D3, and 9.4 — 76.2 seconds for the
simulated data sets. Writing out the learned network takes less
than 0.3 seconds in all the cases. For scalability discussions, we
report only the time taken for constructing the BN by the parallel
algorithm implementation and not for the I/O.

1) Strong Scaling for Benchmark Data Sets: We conducted
strong scaling experiments for all the three algorithms using
the benchmark data sets by repeatedly doubling the number of
cores from 1 to 1,024. Table III shows the average run-times for
all the combinations of the algorithms, cores, and data sets. To
better understand the performance of our implementations, we
computed strong scaling speedup and efficiency as follows:

T T
Speedup = ?1 & Efficiency (%) = 1T x 100,

p p-ip

where p is the number of cores used, 7} is the run-time of the
best sequential algorithm, and T, is the run-time when using p
cores. The strong scaling speedup of the three algorithms for the
benchmark data sets as the number of cores used is increased
are plotted in the first row of Fig. 3 and the corresponding plots
of efficiency are shown in the second row. Note that a perfect
parallel implementation would achieve linear speedup and 100%
efficiency.

As can be observed from the figure, our implementations
of all the three algorithms show near-linear scaling on up to
1,024 cores for the two larger data sets (D2 and D3), while the
scaling tapers off on more than 256 cores for the smaller data
set (DI). The poor scaling for DI on larger number of cores can
be explained by the lower total work required for learning the
BN from this data set, as demonstrated by the corresponding
run-time of less than 3.4 seconds for all the algorithms on 256
cores and above. The JAMB and the Inter-IAMB algorithms
achieve a strong scaling efficiency of more than 75% when run
on up to 1,024 cores for data sets D2 and D3.

The lower efficiency of GS is because the optimization dis-
cussed in Section IV-B2 reduces the total work required by
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Fig. 4. Plot of fraction of total run-time spent in communication by the three

algorithms used for learning the BN from D2 data set.

the algorithm. On larger number of cores, this reduction in
total work leads to lower computation load per processor, as
compared to the other two algorithms, and therefore the run-time
of the GS algorithm is dominated by communication time. For
instance, the fraction of the total run-time spent by the three
algorithms in communication while learning BNs from D2 is
shown in Fig. 4. These plots demonstrate a markedly higher
communication overhead for the GS algorithm when running on
larger number of cores. However, despite the lower efficiency,
the optimization helps the GS algorithm achieve a speedup of
up to 1.6X over the JAMB and the Inter-IAMB on 1024 cores.
Our implementations of the three algorithms are able to learn
BNs from the benchmark data sets in less than a minute on 1,024
cores, with a maximum speedup of 844.8X and a corresponding

Plots of strong scaling speedup and efficiency of the three algorithms in constructing the BNs for the benchmark data sets as a function of the number of

82.5% scaling efficiency. To demonstrate that our algorithms
scale to well beyond 1024 cores, we ran them using 1408 cores
with 22 cores per node over the 64 nodes available. With 1,408
cores, the run-times of the GS, the IJAMB and the Inter-IAMB
algorithms for data set D3 are 38.4, 45.5, and 47.0 seconds,
respectively. Even with an increase in the number of cores used
per node, these run-times correspond to an additional speedup of
54X, 180X, and 212X compared to the speedup obtained using
1,024 cores while incurring less than 10% loss in strong scaling
efficiency.

2) Strong Scaling for Simulated Data Sets: For learning
BNs from the simulated data sets with even larger number of
variables, all the three algorithms show near-linear scaling. In
particular, scalability of the GS algorithm improves significantly
compared to the benchmark data sets. Our optimized sequential
implementation of GS learns the network for S7, S2, and S3
in 9.7, 13.0, and 20.8 hours, respectively. Using our parallel
implementation on 1024 cores, the corresponding run-times are
52.0, 74.0, and 105.6 seconds. Strong scaling efficiency of the
the GS algorithm for the simulated data sets is plotted in Fig. 5.
The considerable increase in efficiency when compared to what
is observed for the benchmark data sets (Fig. 3) is in line with
our discussion on the efficiency of the algorithm in the previous
section. Since there is more total work required for learning
networks from the simulated data sets, the computation load
per processor of the algorithm is high even when running on
1,024 cores. Correspondingly, the fraction of run-time spent by
the algorithm in communication for these data sets on 1,024
cores is between 38.3% and 44.3%, which is almost half of
that observed for the benchmark data sets. Further, the average
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Fig. 5. Plot of strong scaling efficiency of the GS algorithm in constructing
the BNs for the simulated data sets.

size of MBs learned by the GS algorithm, as measured after the
Grow phase, increases from 3.83 for S/ to 6.07 for S3. Therefore,
fewer variable pairs are eliminated from c-scores list during the
execution of the algorithm for S3 as compared to S/, resulting
in higher total work which enables better scaling efficiency of
the algorithm for S3 on 1,024 cores.

Our parallel implementations are able to reduce the time
required for learning BNs from more than a day for a sequential
run to less than two minutes using 1,024 cores. The sequential
run-times of the JAMB algorithm for S/, S2, and S3 are 13.4,
16.4, and 24.7 hours and the run-times on 1,024 cores are 58.5,
73.5, and 105.3 seconds, respectively. Similarly, the sequential
run-time of the Infer-IAMB algorithm for the three data sets are
13.8, 16.9, and 25.6 hours while the run-times on 1024 cores
are 59.7, 75.7, and 120.0 seconds. Both /JAMB and Inter-IAMB
show more than 75% strong scaling efficiency on 1,024 cores
for learning BNs and a maximum observed speedup of 845X
corresponding to scaling efficiency of 82.5%.

3) Weak Scaling: We performed weak scaling experiments
with data set D2 using the same set of cores as the strong scaling
experiments. For the runs using 1,024 cores, we use the complete
D2 data set. When using p cores (where p < 1024), we learn
the BN for a subset of n,, variables from the complete data set
(where n, < n) such that nf, /p remains the same (to keep the
work load per core approximately the same regardless of the
number of cores used). We compute the weak scaling efficiency
as % x 100, where T} is the run-time of the best sequential
algoﬁithm for learning the BN from 7n; variables and 7}, is the
run-time of the parallel implementation in learning the BN from
n,, variables using p cores. The plots of weak scaling efficiency
of the three algorithms are shown in Fig. 6. The degradation
in scaling efficiency for the three different algorithms is in line
with the communication intensity of the respective algorithms
(Fig. 4), which suggests that communication overhead is the
limiting factor for weak scaling.

VI. REPRODUCIBILITY

Reproducibility of results is vital in any scientific field that re-
lies on experiments. With the aim of promoting reproducibility in
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Fig. 6. Plot of weak scaling efficiency of the three algorithms, measured for
data set D2.

the field of high-performance computing, the International Con-
ference for High Performance Computing, Networking, Storage
and Analysis, also known more widely as the Supercomputing
Conference Series (SC) has included a reproducibility challenge
as part of the student cluster competition (SCC) since 2016 [53].
The challenge tasks teams of undergraduate students with re-
producing the results of a paper from the previous year’s SC
conference. We are honored that, based on its Artifact Descriptor
(AD) and its suitability to the SCC, our paper from SC 2020 [54]
was selected for the reproducibility challenge component of the
2021 SCC (SCC21) [55].

Ten teams, each consisting of six undergraduate students,
an advisor, and vendor partners, were selected to participate
in SCC21. These teams utilized infrastructure provided by the
Oracle Cloud for the reproducibility challenge in SCC21. We
provide more details about the infrastructure used by the teams
in Section VI-A. In order to keep the competition unbiased, new
data sets were created and used for the challenge, as described in
Section VI-B. The teams were tasked with using the challenge
data sets to reproduce the results from the original paper. The
critiques of the four top performing teams on the reproducibility
challenge have been included as part of this special edition. The
top teams, in alphabetical order, are from Peking University [56],
ShanghaiTech University [57], Tsinghua University [58], and
UC San Diego [59]. We discuss the results presented in these
critiques in Section VI-C.

A. Infrastructure

1) Hardware Resources: Traditionally, SCC teams are ex-
pected to build their own clusters during the competition and then
complete the reproducibility challenge on these custom-built
clusters. However, during 2020 and 2021, the competition was
forced to be completely virtual due to the COVID-19 pandemic.
As a result, the reproducibility challenge was conducted using
cloud resources for these two years. During SCC21, teams were
provided access to the infrastructure sponsored by the Oracle
Cloud for the reproducibility challenge.

In the interest of fairness, all the teams had access to
an identical cloud compute cluster. Each cluster consisted of
an 8-core VM.Optimized3.Flex login node and four 36-core
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TABLE IV
COMPARISON OF THE HARDWARE RESOURCES USED FOR THE ORIGINAL
EXPERIMENTS WITH THAT USED FOR THE REPRODUCIBILITY EXPERIMENTS

Original Reproducibility
Experiments Experiments
Computation Resources
Processor Name  Intel Xeon 6226  Intel Xeon 6354
Processor Speed 2.7 GHz 3.0 GHz
Number of Cores 24 36
Memory Per Node > 192 GB 512 GB
Number of Nodes 64 4
Total Number of Cores 64 x 24 4 x 36
Network Resources
Interconnect  EDR InfiniBand RoCE v2
Network Bandwidth < 100 Gbps < 100 Gbps

BM.Optimized3.36 compute nodes, where all the nodes had a
3.0 GHz Intel Xeon 6354 processor and the compute nodes
had 512 GB of main memory. The clusters also had access to
GPU nodes that were not used for the reproducibility challenge.
The compute nodes were connected by Remote Direct Memory
Access over Converged Ethernet (RoCE) v2 with a maximum
network bandwidth of 100 Gbps. Each cluster also had 1 TB
of NFS storage that was accessible from all the nodes in the
cluster. The differences between the hardware resources used for
the original experiments and those used for the reproducibility
experiments are summarized in Table I'V.

2) Software Setup: All the CPU nodes on the cloud ran Ora-
cle Linux 7.9. The teams were expected to install other software
and libraries as per their requirements. While the team from
Peking University built the required libraries from source, the
other teams utilized package managers, such as spack (used by
the teams from ShanghaiTech University and UC San Diego) and
nix (used by the Tsinghua University team), for the purpose. All
these teams used different versions of gcc as the C++ compiler,
in combination with three different MPI implementations: the
teams from Peking University and UC San Diego used MVA-
PICH?2, the team from Tsinghua University used OpenMPI, and
HPC-X was used by the team from ShanghaiTech University.
There were also minor differences in the version of Boost C++
Library [60], as well as that of the build tool — SCons [61].
The differences in the software setup used for the original
experiments with that used by the four teams are summarized in
Table V.

Details about the setup of the four teams can be found in the
corresponding critiques, where the teams have also documented
their efforts to compile the application for optimal performance
on the cloud. For example, the team from Tsinghua University
reported trying out different MPI implementations and choosing
the one with the lowest bandwidth and latency on OSU bench-
marks, while the team from ShanghaiTech University reported
experimenting with different MPI compiler flags. Some teams
also reported the challenges that they faced during this process,
e.g., the team from UC San Diego reported having to install
a specific version of Slurm to work with MVAPICH, and the
team from ShanghaiTech University reported that the application
failed to compile with the Intel C++ compiler. In spite of these
challenges, all the top teams were able to build versions of
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applications that seemed to show similar scalability as the one
used for the original experiments.

B. Challenge Data Sets

In collaboration with the SCC21 reproducibility challenge
committee, we chose the same application area for the challenge
as the one described in Section V-A — construction of gene
networks. The importance of this application area has grown
even more during the COVID-19 pandemic. This is because
understanding the widely varying genetic response to the novel
coronavirus SARS-CoV-2 in humans is critical to developing
vaccines and treatments for the disease. Further, multiple recent
studies have created COVID-19 related data sets and made
them available online. One such study was done by Ziegler
et al. [62] that obtained upper respiratory tract swabs from 58
individuals. Then, they sequenced all the cells recovered from
the swabs, using single-cell RNA-sequencing, to get 32,871
gene expression values from 32,588 cells. We used the data set
from [62] to generate three different data sets for the challenge
as described below.

First, we divided all the cells into three categories, using the
World Health Organization (WHO) categorization of individuals
that they were obtained from [63]: 23 individuals who had tested
negative for COVID-19, 14 individuals who had tested positive
and showed mild symptoms (WHO classification of 1 — 5), and
21 individuals who had tested positive and exhibited severe
symptoms (WHO classification of 6 — 8). Then, we further
refined the three data sets so obtained by only retaining genes
and cells with at least one non-zero value to get the final data sets
that were used for the challenge. These data sets are described
in Table VL.

The smallest data set, CI, was provided to the teams two
weeks ahead of the competition for testing purposes. The two
bigger data sets, C2 and C3, were used as the challenge data
sets and were made available to the teams at the beginning of
the competition. Notice that, both C2 and C3 are bigger than
all the data sets that we used to obtain the results presented in
Section V, including the bigger simulated data sets (S/, S2, and
S3).

C. Experiments and Results

The problem statement, defined by the reproducibility chal-
lenge committee, asked the SCC21 teams to use data sets C2 and
C3 to reproduce the following results presented in Section V:

1) Perform a strong scaling study (similar to Section V-D1).

e Create a table with the strong scaling run-times of the
three algorithms (similar to Table III).

e Generate strong scaling plots for the three algorithms
(similar to Fig. 3). Also generate a communication
overhead plot for the three algorithms using data set
C2 (similar to Fig. 4).

2) Perform a weak scaling study (similar to Section V-D3).

e Generate weak scaling efficiency plots for the three
algorithms using data set C2 (similar to Fig. 6).

The teams had access to the cloud compute clusters for a
48-hour period during SCC21 to conduct these experiments.
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TABLE V
COMPARISON OF THE SOFTWARE SETUP USED FOR THE ORIGINAL EXPERIMENTS WITH THAT USED FOR THE REPRODUCIBILITY
EXPERIMENTS BY THE FOUR TEAMS

Reproducibility Experiments

Original
Experiments Peking ShanghaiTech Tsinghua ucC
University University University San Diego
Operating System RHEL 7.6 Oracle Linux 7.9
Package Manager spack None spack nix spack
C++ Compiler gcc v9.2.0 gcc v9.3.0 gec v9.2.0 gcc v10.3.0 gcc v9.2.0
MPI Implementation MVAPICH v2.3.3 MVAPICH v2.3.3 HPC-X©v2.81  OpenMPIv4.1.1 MVAPICH v2.3.6
Boost Library v1.70.0 v1.70.0 v1.70.0 v1.69.0 v1.77.0
SCons v3.1.2 v4.2.0 Unknown v4.1.0 v4.2.0
TABLE VI

REPRODUCIBILITY CHALLENGE DATA SETS

Name COVID-19 Symptoms Genes Cells
Test ymp (n) (m)

C1 +ve mild 29,150 5,164
C2 -ve none 30,307 11,180
C3 +ve severe 30,604 12,909

Due to the limited time they had to run all the experiments,
the teams came up with different strategies to ensure that they
were able to finish them in time. This included running multiple
experiments in parallel to maximally utilize the resources that
were allocated to each team. These strategies enabled three out
of the four teams to obtain results from at least one run for
all the experiments. The only exception was the team from
UC San Diego that encountered OS/Slurm errors for a few
runs on 64 and 128 cores [59]. They attributed these errors to
memory constraints of the cluster. However, since the other three
teams used exactly the same hardware resources and did not
observe this behavior, we believe that these errors may have been
caused by the differences in the software setup used, potential
interference by other jobs running in parallel, or transient issues
with the resources allocated to the team. We discuss the results
of the scaling studies done by the four teams in detail below.

1) Strong Scaling Results: For the strong scaling experi-
ments, the top four teams selected the number of cores using
an approach similar to the one used for the results in Section V.
We had varied the number of cores used between 1 and 1,024,
always using power of two number of cores for our experiments.
Correspondingly, since the teams had access to 4 x 36 = 144
cores, they varied the number of cores used between 1 and 128
for their results.

The reported strong scaling behavior of the three algorithms
for learning BNs from the two challenge data sets was consistent
across the four teams. Fig. 7 shows the strong scaling efficiency
observed by three of the four teams that reported run-times in
their critiques, in constructing the BNs from the two data sets.
All the teams observed greater than 70% strong scaling effi-
ciency when using JAMB and Inter-IAMB, and greater than 40%
efficiency when using GS on up to 128 cores. They also observed
lower communication overhead for JAMB and Inter-IAMB (less
than 20% when using any number of cores) as compared to that
of GS (more than 60% on 128 cores). Intriguingly, even though

the teams performed the scaling experiments using the bigger
challenge data sets, the strong scaling efficiency reported by
the teams was about the same or lower than the corresponding
efficiency that we observed on 128 cores using benchmark data
sets for all the algorithms. The reported lower efficiency is in
agreement with the higher communication overhead observed
by the teams, which may be attributed to the higher latency
of Ethernet switches used by RoCE interconnect as compared
to the lower latency dedicated Infiniband switches used by the
interconnect on Hive cluster.

Despite the lower efficiency observed by the SCC teams, the
strong scaling results of their experiments follow the general
trend that we observed when learning from the two bigger
benchmark data sets (D2 and D3) in Section V-D1. Similar to
the strong scaling speedup and efficiency shown in Fig. 3, all the
teams observed near-linear speedup when learning from C2 and
C3 using IAMB and Inter-IAMB, but lower speedup when using
GS. Further, all the teams observed a communication overhead
plot for C2 that was similar to Fig. 4, and thus attributed the
lower efficiency of GS to its higher communication overhead.

2) Weak Scaling Results: The four teams also conducted
the weak scaling experiments by varying the number of cores
between 1 and 128, similar to the strong scaling experiments.
To compute the number of variables on different number of
cores, the teams followed the same methodology that we used
for the purpose and described in Section V-D3. While the teams
from ShanghaiTech University, Peking University, and Tsinghua
University selected the first n,, variables to construct the data
set for learning on p < 128 cores, the team from UC San Diego
used random sampling for the purpose [59]. Consequently, the
former three teams observed very similar weak scaling behavior
with weak scaling efficiency of greater than 60% for IAMB
and Inter-IAMB, and greater than 40% for GS on all cores.
On the other hand, the UC San Diego team reported higher
scaling efficiency on all the cores: more than 80% for IAMB
and Inter-IAMB, and greater than 60% for GS. Interestingly,
they also reported the lowest efficiency for GS on 16 cores and
for IAMB and Inter-TAMB on 8§ cores.

Irrespective of the aforementioned differences between the
results obtained by the four teams, the weak scaling efficiency
plots of all the teams correspond well to Fig. 6. In general, the
teams observed lower efficiency when using larger number of
cores. Further, the efficiency when using GS was lower as com-
pared to JAMB and Inter-IAMB. This further substantiates our

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 11,2024 at 16:39:57 UTC from IEEE Xplore. Restrictions apply.



SRIVASTAVA et al.: PARALLEL FRAMEWORK FOR CONSTRAINT-BASED BAYESIAN NETWORK LEARNING

IAMB

Inter-IAMB

1713

S
g L L
9
=
g
g S -
= -o- Peking University -o- Peking University -0 Peking University

20| -m- Tsinghua University | || -® Tsinghua University | | |-® Tsinghua University |

—4- UC San Diego ~4- UC San Diego ~4- UC San Diego
0 T T T T T T T T T T T T T T T T T T

2 4 8 16 32 64 128

2 4 8 16 32

1 2 4 8 16 32

64 128

S
>
9
=
g
=
H -o- Peking University -o— Peking University -0 Peking University
20| -m- Tsinghua University | || -® Tsinghua University | || ® Tsinghua University |
—4- UC San Diego ~4- UC San Diego ~4- UC San Diego
0 T T T T T T T T T T T T T T T T T

Fig. 7.

2 4 8 16 32 64 128

sets C2 (top row) and C3 (bottom row).

T
2 4 8 16 32
Number of cores

64

128

1 2 4 8 16 32

64 128

Plots of strong scaling efficiency of the three algorithms reported by three SCC21 teams in constructing the BNs for the reproducibility challenge data

conclusion in Section V-D3, that the communication overhead
of the algorithms dictates their weak scaling efficiency.

VII. CONCLUSION AND FUTURE WORK

We presented a framework for parallelizing multiple BN
structure learning algorithms. The algorithms implemented us-
ing this framework, as part of an open-source software called
ramBLe, are able to construct genome-scale networks for two
model organisms, S. cerevisiae and A. thaliana, in less than a
minute on 1,024 cores. The scalability of our implementations of
the algorithms was independently verified by the SCC21 teams
for construction of gene networks from even larger COVID-19
data sets.

Our implementations can greatly aid biologists in their re-
search on gene networks because it can save weeks of their time
during the iterative search for the optimal parameters to construct
a BN that best approximates the biological truth. Moreover,
our parallel implementations show good scaling for learning
networks with larger number of variables from simulated data
sets and can therefore be used for other applications which
require learning high dimensional causal networks.

Directions for future research include efficiently conducting
CI tests when data sets are distributed across all processors,
balancing workloads arising from different methodologies for CI
tests (e.g., permutation tests, bootstrapping, etc.) for discrete as
well as continuous data, and extending the framework to include
other categories of BN learning algorithms.
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