
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023 1699

A Parallel Framework for Constraint-Based Bayesian

Network Learning via Markov Blanket Discovery
Ankit Srivastava , Sriram P. Chockalingam, and Srinivas Aluru , Fellow, IEEE

Abstract—Bayesian networks (BNs) are a widely used graphical
model in machine learning. As learning the structure of BNs is
NP-hard, high-performance computing methods are necessary for
constructing large-scale networks. In this article, we present a
parallel framework to scale BN structure learning algorithms to
tens of thousands of variables. Our framework is applicable to
learning algorithms that rely on the discovery of Markov blankets
(MBs) as an intermediate step. We demonstrate the applicability of
our framework by parallelizing three different algorithms: Grow-

Shrink (GS), Incremental Association MB (IAMB), and Interleaved

IAMB (Inter-IAMB). Our implementations are available as part of
an open-source software called ramBLe, and are able to construct
BNs from real data sets with tens of thousands of variables and
thousands of observations in less than a minute on 1024 cores, with
a speedup of up to 845X and 82.5% efficiency. Furthermore, we
demonstrate using simulated data sets that our proposed parallel
framework can scale to BNs of even higher dimensionality. Our
implementations were selected for the reproducibility challenge
component of the 2021 student cluster competition (SCC’21), which
tasked undergraduate teams from around the world with repro-
ducing the results that we obtained using the implementations. We
discuss details of the challenge and the results of the experiments
conducted by the top teams in the competition. The results of
these experiments indicate that our key results are reproducible,
despite the use of completely different data sets and experiment
infrastructure, and validate the scalability of our implementations.

Index Terms—Bayesian networks, constraint-based learning,
parallel machine learning, gene networks, reproducibility.

I. INTRODUCTION

B
AYESIAN networks (BNs), an important subclass of prob-

abilistic graphical models, employ directed acyclic graphs

(DAGs) to compactly represent exponential-sized joint probabil-

ity distributions over a set of random variables. Since BNs enable

probabilistic reasoning about direct and indirect interactions

between the variables of interest, they have been successfully

Manuscript received 9 October 2022; revised 18 January 2023; accepted 28
January 2023. Date of publication 13 February 2023; date of current version
5 May 2023. This research was supported in part by the National Science
Foundation under Grants OAC-1828187 and OAC-1854828. Recommended for
acceptance by Special Section SC21 Reproducibility. (Corresponding author:

Ankit Srivastava.)

Ankit Srivastava and Srinivas Aluru are with the School of Computational
Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332
USA (e-mail: asrivast@gatech.edu; aluru@cc.gatech.edu).

Sriram P. Chockalingam is with the Institute for Data Engineering and
Science, Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:
srirampc@gatech.edu).

Digital Object Identifier 10.1109/TPDS.2023.3244135

applied in a wide range of applications in the fields of med-

ical diagnosis [1], gene networks [2], [3], fMRI analysis [4],

cybersecurity [5], legal reasoning [6], forensic science [7], etc.

Furthermore, the recent focus on the need for explainability in

the decisions made by machine learning models [8] has led to a

push for the use of inherently interpretable models like BNs [9]

in hitherto unexplored areas [10].

Given a data set sampled from a joint probability distribution,

exact learning of the corresponding BN structure is NP-hard [11]

and therefore a wide range of heuristic methods have been

developed for this purpose. However, effective heuristic methods

are also compute-intensive and can only construct moderate-

scale networks sequentially, which has led to the parallelization

of BN structure learning becoming one of the major areas of

focus in BN research in recent years. Even so, the works on

the topic so far are either specific to a particular algorithm

or are application-specific. Broadly applicable parallelization

strategies that can be used for constructing large-scale networks

have remained elusive thus far.

A. Related Work

Algorithms for BN structure learning can be broadly classified

into score-based and constraint-based methods. Score-based

methods use a Bayesian metric to evaluate the fitness of a

structure given the observed data and attempt to find the highest

scoring structure out of all the valid structures. Constraint-based

approaches, on the other hand, perform repeated applications of

conditional independence (CI) tests to eliminate edges between

pairs of variables whose dependence can be explained by a

conditioning set.

Exact score-based algorithms with exponential run-time com-

plexity have been proposed to find the optimal structure for

small BNs, i.e., BNs with less than 20 variables [12], [13].

Even parallelization of these exact solutions can only construct

networks with a maximum of 37 variables [14], [15], [16].

Heuristics developed for learning BNs can be classified as

either global-search or local-to-global. Global-search methods

traverse the global space of DAGs to identify an optimal struc-

ture. Examples of such methods include score-based strategies

by [17], [18] and constraint-based approaches by [19], [20].

Local-to-global methods, on the other hand, first discover the

local neighborhood of each variable and then combine these

local neighborhoods to obtain the global structure. Multiple

local-to-global approaches have been proposed in both the

1045-9219 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 11,2024 at 16:39:57 UTC from IEEE Xplore. Restrictions apply.

1700 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

score-based [21], [22] and constraint-based [23], [24] cate-

gories. We refer the reader to [25] for a comprehensive review.

Compared to exact methods, parallelization of heuristic meth-

ods has yielded results with much better scalability. Nikolova

et al. [26] developed a parallel score-based method that can

construct a network with 500 variables in 107 seconds using

1,024 cores. Misra et al. [27] developed a similar approach that

learns genome-scale gene networks for Arabidopsis thaliana,

and can construct a 15,216 variable BN in less than 172 seconds

using 1.57 million cores of the Tianhe-2 supercomputer.

Efforts on parallelizing constraint-based methods have been

primarily focused on global-search methods, in particular on

the PC algorithm [20]. Madsen et al. [28] parallelized the PC

algorithm with a shared-memory model for which they achieve a

maximum speedup of almost 7 using 12 threads for constructing

a network with 2,371 variables. Using a similar approach for

parallelizing CI tests with a distributed-memory model, they

reported a maximum speedup of about 8 using 10 cores for the

same data set. There have been multiple efforts to accelerate the

order-independent variant of the PC algorithm, referred to as the

stable-PC algorithm [29]. Le et al. [30] proposed the parallel-PC

algorithm for the purpose and reported a maximum speedup of

12 using 14 cores for learning a network with 2,810 variables.

Schmidt et al. [31] and Zarebavani et al. [32] have proposed

strategies for accelerating the stable-PC algorithm using GPUs.

However, all of the proposed parallelization strategies are spe-

cific to either the PC or the stable-PC algorithm and are not

applicable to other constraint-based methods.

One of the earliest attempts at parallelizing local-to-global

Constraint-based algorithms was by Nikolova et al. [33],

who focused on parallelizing the MMHC algorithm [34] and

the PCMB algorithm [35]. They reported near perfect scaling

for learning neighborhoods of 1,000 variables on up to 512

cores. However, as the authors observed, their approach does

not scale when the number of variables or the number of ob-

servations are increased. This is because their approach assigns

all the computations for determining the local neighborhood

of a variable to the same processor. Due to the differences in

the computation requirements across variable neighborhoods,

such a static assignment of variables to processors leads to load

imbalance.

Multiple open-source packages for learning BNs have been

developed. The most prominent and well-maintained among

them include bnlearn [36], Tetrad [37], and pcalg [38]. How-

ever, these implementations are either completely sequential

(e.g., pcalg) or support only limited intra-node level parallelism

(e.g., Tetrad). Recently, bnlearn added support for parallelizing

structure-learning algorithms [39], using a parallelization strat-

egy similar to the one used in [33] and therefore suffers from

the same drawbacks as discussed earlier.

B. Contributions

In this paper, we present a parallel framework to scale BN

structure learning algorithms to tens of thousands of variables.

Our framework is applicable to local-to-global constraint-based

structure learning algorithms that rely on the discovery of

Markov blankets (MBs) as an intermediate step. We identify

common components of these algorithms and develop parallel

algorithms for each of these components. Subsequently, we

demonstrate the applicability of our framework by using it to

develop parallel versions of three different algorithms: the Grow-

Shrink (GS) algorithm [23], the Incremental Association MB

(IAMB) algorithm [24], and the Interleaved IAMB (Inter-IAMB)

algorithm [24]. We also introduce different algorithmic tech-

niques that improve run-time performance of these algorithms

both sequentially and in parallel, such as optimizations for CI

testing and load balancing.

We demonstrate the scalability of these algorithms using real

data sets to learn genome-scale gene networks for the organisms

Saccharomyces cerevisiae and Arabidopsis thaliana – networks

with tens of thousands of variables from thousands of observa-

tions. The experiments show that our optimized implementations

of the three algorithms achieve significant sequential speedup

over the popular bnlearn package in learning these networks.

Further, our proposed parallel versions of these algorithms are

able to learn the networks in less than a minute on 1024 cores,

compared to almost 14 hours required by our sequential im-

plementation and close to 24 hours required by bnlearn. Using

simulated data sets, we show that our algorithms are scalable

to learning networks with even larger number of variables and

can reduce the time required for the purpose from more than 25

hours sequentially to less than two minutes on 1,024 cores.

Using the proposed framework, our implementations of the

three algorithms are able to achieve a speedup of up to 845X

corresponding to a strong scaling efficiency of 82.5% on 1024

cores. Even though we demonstrate the utility of our framework

in constructing gene networks, the experiments on simulated

data sets show that our framework can enable learning of

higher-dimensional BNs at scale in other application areas, e.g.,

fMRI analysis [4], and potentially enable their adoption in other

fields where the time required for learning large-scale BNs has

heretofore been a deterrent.

II. BACKGROUND

A BN is a graphical representation of a joint probability distri-

bution of a set of n random variables X = {X1, X2, . . . , Xn},

denoted by the pair (G, P), where G is a DAG of n vertices

corresponding to each variable in X and P (X) is the joint prob-

ability distribution that decomposes into conditional probability

distributions as follows:

P (X1, . . . , Xn) =
∏

i

P (Xi|R(Xi)),

where R(Xi) denotes the set of parents of Xi in G. We use

upper-case alphabets (e.g., X,Xi, Y) to represent random vari-

ables and calligraphic upper-case alphabets (e.g., X ,R,S) to

represent sets of random variables. The values that a random

variable can take are represented using lower-case letters (e.g.,

a, b, c). A BN satisfies the faithfulness condition if G entails all

and only the CIs present inP (X). We assume faithfulness in this

paper and refer the reader to [40] for details on faithfulness and

entailed CIs. Fig. 1 shows an example BN for the six variables

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 11,2024 at 16:39:57 UTC from IEEE Xplore. Restrictions apply.

SRIVASTAVA et al.: PARALLEL FRAMEWORK FOR CONSTRAINT-BASED BAYESIAN NETWORK LEARNING 1701

Fig. 1. An example BN for a set of six random variables, X = {S, T,W,

X, Y,Z}. The probability distribution P (X) decomposes as
P (S)P (Y)P (T |Y)P (W |T)P (Z|{S, T})P (X|{Y,Z}).

{S,W, T,X, Y, Z}. The directed arrows in the BN represent

parent-child relationships, e.g., R(T) is {Y } and T is present

in both R(W) and R(Z) in the BN shown in Fig. 1.

We represent CI between two random variablesX andY given

a third variable Z as I(X,Y |Z) and conditional dependence as

¬I(X,Y |Z). Given a set of observations, tests for conditional

independence can be conducted using different statistical tests

for discrete and continuous variables. For discrete variables,

the most common method of determining I(X,Y |Z) is by

computing the G2 statistic [41] as follows:

G2 = 2
∑

c∈Z

∑

a∈X

∑

b∈Y

sabc ln
sabcsc

sacsbc
, (1)

where sc is the number of observations in which Y = c, sac is

the number of observations in which X = a and Z = c, sabc
is the number of observations in which X = a, Y = b, and

Z = c, etc. Under the null hypothesis that the CI holds, the

G2 statistic is asymptotically distributed as chi-squared with

the degrees of freedom computed as (rX − 1) · (rY − 1) · rZ
where rX is the arity of the variable X , i.e., the number of

different values that X can take, etc. The p-value of the G2 test

is computed as the probability that the G2 statistic was drawn

from the chi-squared distribution. If the p-value is lower than a

significance threshold, denoted by α, the null hypothesis is re-

jected and ¬I(X,Y |Z) is determined to be true. Lower p-value

indicates stronger dependence and therefore we use the additive

inverse of p-value for quantifying the strength of association

between the variables, represented by Assoc(X,Y |Z). We also

use the I(·, ·|·), ¬I(·, ·|·), and Assoc(·, ·|·) notations for sets of

variables.

The set of parents and children of a variable T in a BN,

represented by PC(T), consists of variables that are dependent

onT given any conditioning set not containing the two variables,

i.e., X ∈ PC(T) if and only if ¬I(X,T |S)∀S ⊆ X \ {X,T}.

For example, in the BN shown in Fig. 1, PC(T) is {Y, Z,W}.

The MB of a variable T is defined as a set of variables, denoted

by MB(T), that renders T independent of other variables,

i.e., I(X,T |MB(T))∀X ∈ X \ (MB(T) ∪ {T}). Assuming

faithfulness, MB(T) is made up of the variables in PC(T)
and the parents of the children of T . In the example BN from

Fig. 1, MB(T) is PC(T) ∪ {S} = {Y, Z,W, S}. Note that

under the faithfulness assumption, MB implies a symmetric

relation similar to PC, i.e., if X ∈ MB(T) then T ∈ MB(X).

In this paper, we focus on the local-to-global constraint-based

methods for constructing BNs, which learn the PC set for every

variable separately and then combine them to get the complete

network. These algorithms belong to one of the following two

subclasses: blanket learning or direct learning. Blanket learning

algorithms identify the MB for each variable as a first step

and then identify the subset of variables in the MB which

also belong to the PC, e.g., GS, IAMB, Inter-IAMB, etc. Direct

learning algorithms, on the other hand, construct the PC set for

every variable without any intermediate steps, e.g., MMPC [34],

HITON-PC [42], etc. In both types of learning, the skeleton

of the BN (i.e., an undirected representation of the DAG) is

constructed first, followed by the orientation of the edges. Since

the skeleton constructed for real data sets is very sparse and

the edge orientation algorithm is linear in the number of edges,

a miniscule portion of the total run-time (less than 0.01%) is

spent in directing the edges. Accordingly, we do not focus on

developing a parallel method for this step.

III. PARALLEL ALGORITHM

We propose a parallel framework which enables users to de-

velop and implement an efficient parallel version of any blanket

learning strategy for constructing BNs. First, we introduce the

notations used and state the key assumptions in Section III-A.

In Section III-B, we describe the sequential version of blanket

discovery algorithms. Then, we discuss the components of our

proposed parallel framework in Section III-C. Finally, using

these components we present parallel versions of three blanket

learning algorithms – GS, IAMB, and Inter-IAMB in Section II-

I-D.

A. Assumptions and Notations

Similar to the other MB construction algorithms, we assume

an ordering of the input variables in X , i.e., X1 < X2 < . . . <
Xn. We also assume, similar to other parallel algorithms, that

the input dataset D with m observations for n variables is

available locally on all the processors. For the computations

of the run-time complexity, we make the standard assumption

that conducting CI tests and computing Assoc(·) values takes

constant time. In order to model the communication time re-

quirements of the proposed parallel algorithms, we assume a

parallel distributed system with p processors that requires τ
time units to setup communication between processors and µ
time units per word to send a message from one processor to

another.

In our framework, the key data structure that we use is a list

of tuples, referred to as c-scores. Elements of c-scores are of

the form 〈X,Y, θXY 〉, where X and Y are variables and θXY

is a numeric value. At any point during the execution of the

algorithms, if 〈X,Y, θXY 〉 is an element in c-scores, then the

variable Y is a potential candidate for addition to the MB set of

the target variable X , i.e., MB(X). The third element, θXY , is

the score for adding Y to MB(X) and is used to select the best

candidate for every target variable. For the algorithms presented

in this paper, we use the associativity of a target X and the

candidate Y given the current MB of the X as the score, i.e.,

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 11,2024 at 16:39:57 UTC from IEEE Xplore. Restrictions apply.

1702 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

θXY = Assoc(X,Y |MB(X)). Apart from the c-scores list,

we also maintain a list, denoted as variables, that contains all

the variables for which the MB sets are to be computed.

In order to construct the BN skeleton, blanket learning algo-

rithms need to identify the MB sets for all the variables. Ac-

cordingly, we initialize the variables list with all the variables

in X . Since MB discovery generally starts with empty MB sets,

MB(T) is initialized to ∅ ∀T ∈ variables. We initialize the

c-scores list with a tuple each for all the possible candidates for

all the variables in X and set all the scores to zero, i.e., the list is

initialized with elements from the set {〈X,Y, 0〉|X ∈ X , Y ∈
X \ ({X} ∪MB(X))}. At the beginning of the algorithm,

there is a tuple in c-scores corresponding to each of the n2 − n
ordered variable pairs. Furthermore, the tuples in the c-scores
list are initialized in the ascending order of the first variable and

then of the second variable. Therefore, all the tuples with the

candidate variables corresponding to the same target variable

are arranged in a contiguous manner in the list.

When executing the algorithms on p processors, the c-scores
list is initialized in a similar fashion but is block distributed

among all the processors. The corresponding list on the proces-

sor j is denoted by c-scoresj and its size is bounded by 	n2−n
p

.

The list variablesj is initialized with all the variables for which

the processor j computes the MB sets, i.e., it includes all the

elements from the set {X|〈X,Y, θXY 〉 ∈ c-scoresj}. Since the

c-scores list is ordered such that tuples with the same first

variable are contiguous, the size of variablesj is bounded by

O(n
p
). In the distributed setting, MB(T) is initialized on every

processor for all T ∈ variablesj . Note that, for two different

processors i and j and some variable T , both variablesi and

variablesj may contain T . In such cases, both processors i and

j compute MB(T).

B. Algorithm

Prior to describing the components of the proposed parallel

framework, we briefly outline how the algorithms of interest

proceed on a single processor. BN learning via MB discovery,

in general, is comprised of four phases – Grow, Shrink, Symmetry

Correction, and Construct PC from MB. During the Grow

phase, the MB for a variable T is grown by adding a variable

to MB(T) from among the available candidates. In the Shrink

phase, one or more variables are removed from MB(T) if they

are independent of T given the other variables in the current

MB set. After identifying the candidate MB sets for all the

variables in one or more Grow and Shrink iterations, Symmetry

Correction is performed to obtain symmetrically consistent MB

sets. Finally, for learning the skeleton of BN using the MBs, the

algorithms Construct PC from MB for every variable, i.e., a

variable X in MB(T) is included in PC(T) if no subset of

MB(T), with the exclusion of X (or alternatively MB(X)
with the exclusion of T) can render X and T conditionally

independent.

We now describe in detail the GS, IAMB, and Inter-IAMB

algorithms in terms of the c-scores and variables lists, de-

fined and initialized as per Section III-A. In a Grow phase

iteration, scores are first updated for all the tuples in the

current c-scores list. This is accomplished by updating θXY

with Assoc(T, Y |MB(X)) for all 〈T, Y, θTY 〉 ∈ c-scores.

Then, using the updated scores, a candidate is selected for every

variable. More specifically, the Grow phase in the IAMB and the

Inter-IAMB algorithms picks the candidate with the maximum

score, i.e., the tuple 〈T,Z, θTZ〉 is picked for T if

〈T,Z, θTZ〉 = argmax
〈T,Y,θTY 〉∈c-scores

θTY . (2)

The GS algorithm, on the other hand, picks for a variable T the

first candidate that shows dependency with T . As mentioned

in Section II, we use the additive inverse of p-value of the

G2 test I(T,X|MB(T)) as Assoc(T, Y |MB(T)). Therefore,

candidate selection for GS can be accomplished by identifying

the first tuple with a score greater than the additive inverse of the

significance threshold (−α), i.e., a tuple 〈T,Z, θTZ〉 is selected

for T if

〈T,Z, θTZ〉 is first entry in c-scores s.t. θTY ≥ −α. (3)

In both the cases, if such a tuple is found, then Z is added to

MB(T) and 〈T,Z, θTZ〉 is removed from the c-scores list.

During the Shrink phase, we examine all the MB sets and

remove a variable X from MB(T) if I(T,X|MB(T) \ {X})
holds. Blanket learning algorithms differ on how Grow and

Shrink phases are iterated. Both GS and IAMB execute multiple

iterations of Grow phase followed by a single Shrink phase,

whereas the Inter-IAMB algorithm alternates between Grow and

Shrink phases until all the MB sets stop changing.

After the one or more iterations of Grow and Shrink phases,

MB construction proceeds to Symmetry Correction, in which

we verify whether T ∈ MB(Y) ⇐⇒ Y ∈ MB(T) and when

this assertion fails for a pair (T, Y), we remove the offending

variables from the respective MB sets. Finally, the PC sets are

learned by verifying CI for every subset of MB, after which the

DAG is obtained by orienting the undirected edges added from

the PC sets.

C. Parallel Framework Components

We now discuss the key components of our proposed frame-

work – parallel algorithms for all the four steps described in

Section III-B. We designed these components using common

parallel primitives such as all-reduce, scan, shift permu-

tations, and parallel sorting.

1) Grow Phase: Our parallel algorithm for Grow phase is

based on the following two key insights: (i) The MB sets for

all the variables are required for constructing the skeleton.

Further, for addition to the MB set of a variable, all the other

variable are considered a candidate. Therefore, we consider all

the variable pairs in parallel, using the distributed c-scores
list. (ii) The time taken in conducting a CI test (or computing

Assoc(·)) is proportional to the size of the conditioning set.

Therefore, we designed this component such that the CI tests

(and Assoc(·) computations) with the same conditioning set

sizes are conducted in parallel.

The pseudo-code for our parallel Grow phase is shown in

Algorithm 1. As discussed in Section III-B, the MB construction

algorithms use different heuristics to select the next variable

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 11,2024 at 16:39:57 UTC from IEEE Xplore. Restrictions apply.

SRIVASTAVA et al.: PARALLEL FRAMEWORK FOR CONSTRAINT-BASED BAYESIAN NETWORK LEARNING 1703

Algorithm 1: Parallel Grow Phase.

to be added to the current MB set. In order to accommodate

these differences, our proposed Grow algorithmic component

requires two functions as arguments: APPLY-HEURISTIC and

REDUCE-HEURISTIC. The function APPLY-HEURISTIC accepts a

slice of the c-scores list corresponding to a variable T such that

it contains 〈T,X, θTX〉 for all the candidates X , and returns the

candidate most suitable for addition to MB(T). For example,

the APPLY-HEURISTIC selects a candidate as per (2) for the

IAMB and the Inter-IAMB algorithms and as per (3) for the GS

algorithm. The REDUCE-HEURISTIC function accumulates the

variable selection results from all the processors to identify for

each variable T , the best candidate to be added to its MB(T).
In Algorithm 1, the local c-scores list is updated with the

computed Assoc values first (lines 3–5), which takesO(n
2

p
) time

(assuming that Assoc computations take constant time). The

selection heuristic is then applied for each variable (lines 7–

9) followed by the accumulation of results across processors

(line 10). The run-time of these operations depends on the

heuristic used by the specific algorithm. For most MB algo-

rithms, including GS, IAMB, and Inter-IAMB, two segmented

parallel scan operations are sufficient for accumulating the

results from all the processors because the underlying operators

are associative. Note that these parallel scan operations exploit

the contiguous presence of all the tuples 〈T, Y, θTY 〉 corre-

sponding to a target variable T in c-scores. Therefore, APPLY-

HEURISTICand REDUCE-HEURISTICtake O(n
2

p
+ log p) time for

computation andO((τ + µ) log p) time for communication. The

MB sets updated are local to the processor and therefore the

number of MB sets updated in a processor is bounded by

O(n
p
). Finally, we add the selected variables to the MB sets and

update c-scores (lines 11–15), bounded byO(n
p
). Therefore, the

Grow phase algorithmic component takes O(n
2

p
+ log p) time

for growing all theMB sets by one variable. The only collective

Algorithm 2: Parallel Shrink Phase.

Algorithm 3: Parallel Symmetry Correction.

communication in this component is for reducing the heuris-

tic computations across the processors, which takes O((τ +
µ) log p) time.

2) Shrink Phase: Our proposed parallel component for

Shrink phase is shown in Algorithm 2. Here, the only task is

to remove those variables in MB which are independent given

the rest of the MB, which is accomplished by a loop over all the

MB sets (lines 3–6). The run-time for the parallel Shrink phase

is proportional to the size of the MB sets for all the variables on

the processor, which is bounded by n×O(n
p
) = O(n

2

p
). This

component requires no communications.

3) Symmetry Correction: The proposed parallel component

for checking the symmetry of the MB sets, shown in Algo-

rithm 3, is based on the method developed by [33]. It proceeds

by creating sc-pairs, a list of ordered tuples for every member

of MB set (lines 3–10) followed by parallel sorting to identify

the asymmetric MB members (lines 11–12). The MB sets

are then updated to reflect the symmetry correction (lines 13–

16). The time to construct sc-pairs, remove unique tuples,

and update MB sets is bounded by O(n
2

p
). Parallel sorting

can be accomplished by any comparison based sort such as

parallel bitonic sort, which takes O(n
2

p
log n2

p
+ n2

p
log2 p) and

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 11,2024 at 16:39:57 UTC from IEEE Xplore. Restrictions apply.

1704 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Algorithm 4: Parallel Construct PC from MB.

O(τ log2 p+ µn2

p
log2 p) time for computation and communi-

cation respectively. Collective communication is also required

during the removal of the unique tuples to identify tuple pairs

that cross processor boundary. This is accomplished by a pair

of shift permutations that take O(τ + µ) time. To summarize,

the run-time of this component is dominated by the run-time of

parallel sort which takesO(n
2

p
log n2

p
+ n2

p
log2 p) computation

time and O(τ log2 p+ µn2

p
log2 p) communication time.

4) Construct PC From MB: Our parallel algorithm to con-

struct the skeleton of the BN from the MB sets is shown in

Algorithm 4. This component tries to identify a conditioning set

for each element Y in MB(X), that can render X conditionally

independent from Y (lines 3–10). If no such conditioning set

can be identified for the pair X,Y , the algorithm inserts 〈X,Y 〉
into neighbors, a distributed list of tuples (line 10). Note that

this component requires the MB sets of both X and Y and

therefore the complete MB sets should be made available on

all the processors before GET-PC is called. In the worst case,

this component has a run-time complexity of O(n
2

p
2r), where

r = maxX∈X |MB(X)|. Since the maximum value of r is low

for real networks (less than 6 in our experiments), the corre-

sponding exponential term can be considered constant. Hence,

this phase takes the least significant time of all the four phases in

practice (less than 0.1%). This component requires no collective

communications.

D. Parallel BN Construction

Using the four algorithmic components discussed in Sec-

tion III-C, many blanket learning algorithms can be imple-

mented. Here, we present efficient parallel versions of the fol-

lowing three algorithms: GS, IAMB, and Inter-IAMB. The GS

algorithm as well as the IAMB algorithm can be implemented

using the parallel skeleton construction algorithm presented in

Algorithm 5. As discussed in Section III-B, the only distinction

between the GS algorithm and the IAMB algorithm is how the

next variable is selected in the Grow phase and this differ-

ence can be abstracted using the APPLY-HEURISTICand REDUCE-

HEURISTICfunctions. Given these algorithm-specific functions

(defined as per (2) and (3)), the proposed parallel versions

Algorithm 5: Parallel Skeleton Algorithm.

Algorithm 6: Grow - Shrink Loop for Inter-IAMB.

of both these algorithms proceed the same way. The requisite

distributed lists and variables are initialized first (lines 3–4),

following which these algorithms execute the GROW-PHASEin

a loop until convergence (lines 5–7). After SHRINK-PHASEand

SYMMETRY-CORRECTION(lines 8–9), there is a synchronization

step for collecting the MB(·) for all the variables on all the

processors (line 10). Finally, GET-PCis called to construct the

skeleton for the BN in parallel (line 11).

Summing up the run-times of the four components, the com-

putational run-time complexity of Algorithm 5 is

O

(

n2

p

(

log2 p+ log
n

p
+ k + 2r

)

+ k log p

)

.

where r = maxX∈X |MB(X)| and k is the number of times the

algorithm executes the Grow component.

Apart from the communication costs incurred by the four

components, Algorithm 5 also requires collective communica-

tions for (i) identifying if any of the MB sets changed during

a Grow iteration, and (ii) synchronization of the MB sets.

Using a bit set representation of the MB sets, both of these

operations can be performed using all-reduce, which takes

O((τ + µ log log n) log p) time. Hence, the communication run-

time of this algorithm is

O

(

τ
(

log2 p+k log p
)

+µ

(

n2

p
log2 p+ k log p log log n

))

.

The parallel version of the Inter-IAMB BN skeleton construc-

tion requires only a minor change from Algorithm 5. The modi-

fications, highlighted in Algorithm 6, are the introduction of the

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 11,2024 at 16:39:57 UTC from IEEE Xplore. Restrictions apply.

SRIVASTAVA et al.: PARALLEL FRAMEWORK FOR CONSTRAINT-BASED BAYESIAN NETWORK LEARNING 1705

Shrink phase in the MB update loop (line 7) and the removal

of it from outside the loop (line 9). Since the Shrink phase takes

O(n
2

p
) time with no communication, the time complexity of the

modified algorithm remains the same as that of Algorithm 5.

IV. IMPLEMENTATION

We implemented our framework using C++ and MPI con-

forming to the C++14 and MPI 3.1 standards, respectively. Our

implementations are available as part of an open-source software

called ramBLe [43].

A. Sequential Implementation

Bnlearn [36] is a popular R package that supports a wide range

of score-based and constraint-based algorithms for learning

BNs, including the three algorithms that we focus on. The pack-

age has been used in multiple recent studies for the construction

and analysis of BNs [44], [45], [46], [47]. Even though the

top-level logic for most of the algorithms supported by bnlearn is

implemented using R, the computationally intensive tasks such

as the computations for conducting the CI tests are implemented

in C. Hence, in spite of interfacing with an interpreted language,

bnlearn is able to achieve performance comparable to that of a

compiled language.

Our implementations differ from bnlearn’s implementations

because of the ambiguity in the specification of the GS algo-

rithm and the choice of internal data structures. For efficiency

purposes, we used different data structures than the ones used

by bnlearn for some of the underlying tasks. For example,

bnlearn uses arrays for storing the indices of the variables in

a set. But, we use bit sets which enables us to use SIMD

instructions for some set operations and also reduce the message

sizes during communication. This modification, however, may

alter the order in which the variables are considered by the

algorithms in some cases. Since CI testing using real data sets

is imperfect and any errors in the CI tests may change the

behavior of the constraint-based algorithms, the BNs learned

by such algorithms are known to be sensitive to the ordering

of the variables [29], [41], [48]. In order to ensure that our

choices for efficiency do not affect the accuracy of the learned

network, we validate our implementations against bnlearn in

Section V-B. Our experiments show that these choices help us

achieve considerable speedup over bnlearn without significantly

impacting the learned network structure.

B. Statistic Computation Strategies

In our earlier discussion on the proposed parallel BN algo-

rithms, we used the standard assumption that CI tests can be

conducted in O(1) time. However, prior studies have estimated

that more than 90% of the time in constraint-based learning is

spent in aggregating counts from observation data for the CI

tests [49]. Correspondingly, we observed that computing the

G2 statistic took between 94% and 99% of the total run-time

for learning the network sequentially in our experiments in

Section V. Therefore, both efficiently conducting the CI tests

as well as reducing the number of CI tests are essential for good

run-time performance of the learning algorithms in practice.

1) Counting Strategies: In order to conduct the CI test

I(X,Y |Z), using the G2 statistic (1), the count of the num-

ber of observations sabc, sac, sbc, and sc corresponding to each

combination of X = a, Y = b, and Z = c is required. In BN

structure learning implementations, two types of approaches

have been used to compute these counts. The most common

approach, also used by bnlearn, is to compute the counts when

they are required, either by scanning the complete data set to

fill up contingency tables or using advanced strategies based

on bit maps or radix sort [27], [49]. An alternate approach is

to pre-process the data set and create an index data structure,

e.g., a hash table or an ADtree [50], which can be used to

retrieve the counts in almost constant time during learning.

As discussed by [49], the latter category of approaches require

significant pre-processing time which can not be amortized by

the corresponding gains during the learning of sparse networks.

Thus, we focused on the approaches in the former category and

implemented the contingency table based approach as well as the

two other strategies from the SABNAtk library [49]. We observed

that the contingency table based approach outperformed the

other two approaches for the data sets that we experimented with.

Consequently, we report the run-times using the contingency

table based approach in Section V. Nevertheless, our framework

can be easily extended to use other counting strategies.

2) Optimizing the GS Algorithm: We reduced the number

of Assoc(·) computations in our implementation of the GS

algorithm based on the observation that, in each iteration of

the Grow phase, the update of the c-scores list for a target

variable X can be terminated as soon as the first score θXY

which is greater than or equal to−α is computed. This is because

the corresponding candidate Y will be the one picked by the

algorithm for addition to MB(X) in that iteration, as per (3).

Using this optimization, we are able to reduce the sequential

run-time of our implementation of the GS algorithm, as shown

in Section V-B. Notice that this optimization is useful even in a

parallel implementation, when the c-scores list corresponding

to a target X may be distributed across multiple processors.

However, since the score updates happen concurrently on all

the processors, a processor j will stop the updates for X only

after finding the first viable candidate for X in its local list

c-scoresj . Therefore, if a suitable candidate for X exists on

a processor i < j, then extra work is done on the processor j as

compared to the sequential execution. We discuss the effect of

this optimization on the scaling performance of the GS algorithm

in Section V-D.

C. Load Balancing

Construction of a BN in parallel starts with a block distribution

of the list of candidate tuples, c-scores, to all the processors. In

every iteration of the Grow phase, one tuple is selected for every

variable and removed from the c-scores list. Furthermore, if the

MB of a variable stops changing, then all the candidate tuples

corresponding to that variable are removed from the list as well.

After a few iterations, these removals can lead to a disparity

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 11,2024 at 16:39:57 UTC from IEEE Xplore. Restrictions apply.

1706 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

between the size of the c-scores list across the processors. Since

the time taken by a processor in an iteration of the Grow phase is

proportional to the size of the c-scores list on that processor, the

run-time of an iteration is determined by the the processor with

the maximum number of tuples. This load imbalance between

processors can, therefore, increase the total time required for

learning the MB sets, which accounts for more than 99% of the

total run-time for learning the network.

We mitigate the load imbalance problem by a stable block

redistribution of the remaining candidate tuples at the end of

an iteration. Specifically, we use an MPI_Alltoallv call to

redistribute the remaining elements of the c-scores list so that

it is block distributed while maintaining the original order of

the tuples. However, since redistribution is expensive and adds

to the total run-time, we redistribute only if the imbalance is

severe. For determining the severity, we compute the imbalance

at the end of every iteration as the ratio of the maximum size of

the list on any processor to the minimum size of the list on any

processor, i.e.,

Imbalance =
max0≤j<p |c-scoresj |

min0≤j<p |c-scoresj |
. (4)

We use this metric because both the maximum as well as

the minimum load are vital in quantifying the load imbalance

and the higher the difference between the two the higher the

imbalance. In our implementation, redistribution is done if the

computed imbalance is greater than a user-specified threshold.

We observed that setting this threshold to 2.0 resulted in optimal

performance for every combination of data sets and number of

processors in our experiments in Section V. Therefore, we use it

as the default value for the threshold in our framework. We study

the load imbalance and its effect on the total run-time further in

Section V-C.

V. EXPERIMENTS AND RESULTS

We performed our experiments on Georgia Tech’s 484-node

Hive cluster, where each node has a 2.7 GHz 24-core Intel Xeon

6226 processor and a minimum of 192 GB of main memory.

The nodes run RHEL 7.6 operating system and are connected

via EDR (100 Gbps) InfiniBand. For the scalability experiments,

we used a maximum of 64 nodes on this cluster. We compiled

the source code, implemented with C++14 and MPI, using

gcc v9.2.0 with -O3 -march=native optimization flags

and MVAPICH2 v2.3.3 implementation of MPI. We report the

run-times measured by assigning 16 MPI processes per node

and averaging the run-times over 5 different runs. Similar scaling

pattern is observed when all the cores of a node, i.e., 24 processes

per node, are used.

In our experiments, we observed that the first calls to

the MPI all-to-all collectives took significantly longer

time than the subsequent calls. Therefore, we warm up both

MPI_Alltoall and MPI_Alltoallv by calling them with

one byte on each processor. The time taken by the warm-up phase

increases from 0.6 seconds for 32 processes to 5.8 seconds for

512 processes and is not included in the reported run-times. The

TABLE I
BENCHMARK DATA SETS

warm-up takes negligible time when all the processes are within

a node and, also, with 1024 processes.

A. Data Sets

The goal in designing our framework is to enable paralleliza-

tion of BN structure learning algorithms that are constraint-

based and use MB discovery as an intermediary step. The

framework is agnostic to the underlying application area. To

demonstrate performance and scalability, we chose the con-

struction of gene networks – a rich application area that has

Big Data sets and the need for constructing large-scale net-

works. BN learning algorithms have been successfully used in

recovering gene networks from gene expression data sets [3].

In this application, the genes are modeled as random variables

which correspond to the nodes of a BN and the edges of the

BN correspond to the biological interactions between the genes.

In our experiments, we consider the genome-scale version of

this problem, i.e., learning networks with tens of thousands of

genes using thousands of gene expression studies. We used three

real gene expression data sets of different sizes, summarized in

Table I.

D1 is a data set generated from the organism Saccharomyces

cerevisiae, a species of yeast involved in baking and brewing.

Tchourine et al. [51] created this data set of 2,577 observations

each for 5,716 genes by combining data from multiple RNA-seq

expression studies. The data sets D2 and D3 contain expression

profiles for Arabidopsis thaliana, a model organism in plant

biology with more than 23,000 genes. These data sets are

constructed by collecting over 18,000 microarray images from

public databases (ArrayExpress and GEO), and pre-processing

them using standard microarray data analysis workflows for

quality control and normalization. In order to study process-

specific phenomena, it is necessary for plant biologists to consult

multiple gene networks generated from many process-specific

data sets. D2 is a subset of D3, manually curated by a domain

specialist and includes only those microarray experiments that

were designed to study the development process in A. thaliana.

D2 and D3 contain 5,102 and 16,838 observations for 18,373 and

18,380 genes, respectively. We used the method recommended

by Friedman et al. [2] for discretizing the data sets.

In order to study the scalability of our implementations on

data sets with larger number of variables, we generated three

simulated data sets with n = 30, 000 and m = 10, 000 using

the pcalg [38] software as follows. First, we construct three

random DAGs with 30,000 variables of increasing edge density

by specifying edge addition probability of 5× 10−5, 1× 10−4,

and 5× 10−4. Then, we use the dependency structure specified

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 11,2024 at 16:39:57 UTC from IEEE Xplore. Restrictions apply.

SRIVASTAVA et al.: PARALLEL FRAMEWORK FOR CONSTRAINT-BASED BAYESIAN NETWORK LEARNING 1707

TABLE II
COMPARISON OF THE TIME TAKEN BY BNLEARN AND OUR SEQUENTIAL

IMPLEMENTATIONS IN CONSTRUCTING THE BNS FOR THE BENCHMARK DATA

SETS, MEASURED IN SECONDS, AND THE CORRESPONDING SPEEDUP

by the three DAGs to sample 10,000 observations for all the

variables. Finally, we discretize the data sets as described above.

We refer to the three simulated data sets so obtained as S1, S2,

and S3, respectively. All the data sets are stored in plain text

format on a GPFS storage which is accessible from all the nodes

on the cluster. We used a significance threshold (α) of 0.05 for

learning BNs in all our experiments.

B. Comparison With Bnlearn

We used bnlearn v4.5 with R v3.6.0 for the experiments

reported in this section.

1) Sequential Comparison: We compare in Table II the run-

time of bnlearn with that of our optimized sequential imple-

mentation, described in Section IV-A, for learning the network

from the benchmark data sets using the three algorithms. The

run-times for both bnlearn and our method are proportional to

the size of the data sets, with D1 taking the shortest time and D3

taking the longest. We also observed that the implementation of

bnlearn for the GS algorithm is almost an order of magnitude

slower than that of the other two algorithms. This is because

bnlearn implements the variable selection for the GS algorithm

using expensive loops in R. Consequently, our implementation

of the GS algorithm is 36.3X faster than bnlearn for learning

the network for the D1 data set. Further, bnlearn is not able to

finish learning the network when using the GS algorithm for

the two bigger data sets even after running for the cutoff time

period of four days. For both the IAMB and the Inter-IAMB

algorithms, our sequential implementation outperforms bnlearn

with a speedup of 1.6–2.8X for the benchmark data sets. Note

that our implementation of the GS algorithm is 2–3X faster than

the other two algorithms because of the optimization discussed

in Section IV-B2.

We validated the networks learned by our implementations

against those learned by bnlearn for the data set D1 using the

three algorithms. During the validation process, we discovered

a bug in the Construct PC from MB phase of the bnlearn

implementation. It was caused by an erroneous assumption in

the implementation that if there is only one element in the MB
set of a variable then it must be in the PC set of that variable.

This bug was acknowledged as such by the package’s maintainer

(personal communication, March 4, 2020). We fixed this bug in

bnlearn and used the networks learned using this modified ver-

sion for the purpose of the validation. For all the three algorithms,

the networks learned using our implementations recall more than

99.84% of the edges present in the networks learned using the

corresponding implementations from bnlearn with more than

99.92% precision, i.e., our implementations learn more than

99.84% of the edges in the networks learned by bnlearn with

less than 0.08% additional edges.

2) Parallel Scalability of Bnlearn: As we discussed in Sec-

tion I-A, most parallelization strategies for BN learning focus on

either score-based or global-search constraint-based methods.

Among the software for BN structure learning that we surveyed,

bnlearn is the only one that supports learning BNs on multiple

cores using the three algorithms that we focus on. It uses the

parallel library of the core R distribution for parallelizing the

structure learning using a master-worker paradigm on the speci-

fied cores [39]. Since bnlearn is the only other available parallel

implementation of the three algorithms under consideration, we

evaluate its parallel scalability as a baseline for our method.

We use the three algorithms implemented in bnlearn for learn-

ing the BNs from the benchmark data sets using an increasing

number of cores and measure their self-speedup, i.e., speedup

compared to the sequential run-time of the bnlearn implementa-

tion. When using 2 cores, the IAMB algorithm shows a speedup

of 1.8X, 1.3X, and 1.6X for D1, D2, and D3 respectively.

bnlearn shows further improvement when using 16 cores with

an observed speedup of 6.3X, 2.0X, and 3.4X. However, the

speedup starts flattening when using cores on multiple nodes.

For example, when using 64 cores on four nodes, the observed

speedup is 7.7X, 2.1X, and 3.9X – a marginal improvement

over the speedup using 16 cores. Speedup for the other two al-

gorithms showed a similar pattern of diminishing returns. Since

bnlearn’s parallel scalability deteriorates significantly with in-

creasing number of cores, we do not explore its performance

further here. The scalability of our implementations, presented

in Section V-D, outperforms bnlearn by a significant margin.

C. Effect of Load Balancing

In order to understand the extent of load imbalance during the

parallel execution of the three algorithms, we learned BNs from

data set D2 using the algorithms, without the application of load

balancing strategies discussed in Section IV-C, and recorded

the imbalance (as per (4)) at the end of each iteration. We

observe that the imbalance during execution on less than 16

cores stays close to 1. However, the imbalance increases when

the algorithms are executed on larger number of cores with more

and more processes left without any work as the algorithms

progress. Further, the imbalance increases with an increase in

the number of iterations of the algorithm. For example, the IAMB

algorithm runs for 5 iterations for the data set and shows a final

imbalance of 15.6 when run on 512 cores while the GS and the

Inter-IAMB algorithms show a final imbalance tending to ∞,

both of which take 7 iterations for completion.

The percentage reduction in the run-time for learning

the network from D2 data set, with the application of the

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 11,2024 at 16:39:57 UTC from IEEE Xplore. Restrictions apply.

1708 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

TABLE III
TIME TAKEN IN LEARNING THE BNS FOR THE BENCHMARK DATA SETS USING THE THREE ALGORITHMS ON DIFFERENT NUMBER OF

CORES, MEASURED IN SECONDS

Fig. 2. Plot of percentage reduction in the run-time, as a result of load
balancing, of the three algorithms used for learning BN from data set D2 on
different number of cores.

redistribution strategy and using the three algorithms for differ-

ent number of cores, is shown in Fig. 2. When running on fewer

cores, we observe almost no improvement in run-time with load

balancing because the observed imbalance is small. Even when

the imbalance is high, the time taken in measuring the imbalance

and redistributing may be more than the corresponding gains. In

such cases, we observe that the run-time increases marginally

when load balancing is enabled, with the highest observed

increase of just 0.6% when using the Inter-IAMB algorithm on

16 cores. However, when running on larger number of cores, all

the algorithms show significant reduction in the run-times with

the GS algorithm showing close to 40% improvement on 1,024

cores. Since the optimization for the GS algorithm, discussed

in Section IV-B2, enables faster candidate selection for many

variables, the algorithm benefits more from a better spread of

the work load through an evenly distributed c-scores list. This

is the reason we observe a significantly higher improvement

in the case of the GS algorithm, as compared to the other two

algorithms.

D. Scalability of Our Framework

Our procedure to read an input data set in parallel is as

follows. First, the rows of the data set are block distributed to

all the MPI processes. Then, the processes concurrently read

the discretized data from their assigned rows. Finally, the read

data is collected on all the processes to get the complete data

set using MPI_Allgatherv. Once the BN is constructed, the

corresponding network is written in graphviz [52] format. In

our experiments, we observed that reading the data sets takes in

the range of 0.6− 3.7 seconds for D1, 3.9− 23.5 seconds for

D2, 12.0− 77.3 seconds for D3, and 9.4− 76.2 seconds for the

simulated data sets. Writing out the learned network takes less

than 0.3 seconds in all the cases. For scalability discussions, we

report only the time taken for constructing the BN by the parallel

algorithm implementation and not for the I/O.

1) Strong Scaling for Benchmark Data Sets: We conducted

strong scaling experiments for all the three algorithms using

the benchmark data sets by repeatedly doubling the number of

cores from 1 to 1,024. Table III shows the average run-times for

all the combinations of the algorithms, cores, and data sets. To

better understand the performance of our implementations, we

computed strong scaling speedup and efficiency as follows:

Speedup =
T1

Tp

& Efficiency (%) =
T1

p · Tp

× 100,

where p is the number of cores used, T1 is the run-time of the

best sequential algorithm, and Tp is the run-time when using p
cores. The strong scaling speedup of the three algorithms for the

benchmark data sets as the number of cores used is increased

are plotted in the first row of Fig. 3 and the corresponding plots

of efficiency are shown in the second row. Note that a perfect

parallel implementation would achieve linear speedup and 100%

efficiency.

As can be observed from the figure, our implementations

of all the three algorithms show near-linear scaling on up to

1,024 cores for the two larger data sets (D2 and D3), while the

scaling tapers off on more than 256 cores for the smaller data

set (D1). The poor scaling for D1 on larger number of cores can

be explained by the lower total work required for learning the

BN from this data set, as demonstrated by the corresponding

run-time of less than 3.4 seconds for all the algorithms on 256

cores and above. The IAMB and the Inter-IAMB algorithms

achieve a strong scaling efficiency of more than 75% when run

on up to 1,024 cores for data sets D2 and D3.

The lower efficiency of GS is because the optimization dis-

cussed in Section IV-B2 reduces the total work required by

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 11,2024 at 16:39:57 UTC from IEEE Xplore. Restrictions apply.

SRIVASTAVA et al.: PARALLEL FRAMEWORK FOR CONSTRAINT-BASED BAYESIAN NETWORK LEARNING 1709

Fig. 3. Plots of strong scaling speedup and efficiency of the three algorithms in constructing the BNs for the benchmark data sets as a function of the number of
cores.

Fig. 4. Plot of fraction of total run-time spent in communication by the three
algorithms used for learning the BN from D2 data set.

the algorithm. On larger number of cores, this reduction in

total work leads to lower computation load per processor, as

compared to the other two algorithms, and therefore the run-time

of the GS algorithm is dominated by communication time. For

instance, the fraction of the total run-time spent by the three

algorithms in communication while learning BNs from D2 is

shown in Fig. 4. These plots demonstrate a markedly higher

communication overhead for the GS algorithm when running on

larger number of cores. However, despite the lower efficiency,

the optimization helps the GS algorithm achieve a speedup of

up to 1.6X over the IAMB and the Inter-IAMB on 1024 cores.

Our implementations of the three algorithms are able to learn

BNs from the benchmark data sets in less than a minute on 1,024

cores, with a maximum speedup of 844.8X and a corresponding

82.5% scaling efficiency. To demonstrate that our algorithms

scale to well beyond 1024 cores, we ran them using 1408 cores

with 22 cores per node over the 64 nodes available. With 1,408

cores, the run-times of the GS, the IAMB and the Inter-IAMB

algorithms for data set D3 are 38.4, 45.5, and 47.0 seconds,

respectively. Even with an increase in the number of cores used

per node, these run-times correspond to an additional speedup of

54X, 180X, and 212X compared to the speedup obtained using

1,024 cores while incurring less than 10% loss in strong scaling

efficiency.

2) Strong Scaling for Simulated Data Sets: For learning

BNs from the simulated data sets with even larger number of

variables, all the three algorithms show near-linear scaling. In

particular, scalability of the GS algorithm improves significantly

compared to the benchmark data sets. Our optimized sequential

implementation of GS learns the network for S1, S2, and S3

in 9.7, 13.0, and 20.8 hours, respectively. Using our parallel

implementation on 1024 cores, the corresponding run-times are

52.0, 74.0, and 105.6 seconds. Strong scaling efficiency of the

the GS algorithm for the simulated data sets is plotted in Fig. 5.

The considerable increase in efficiency when compared to what

is observed for the benchmark data sets (Fig. 3) is in line with

our discussion on the efficiency of the algorithm in the previous

section. Since there is more total work required for learning

networks from the simulated data sets, the computation load

per processor of the algorithm is high even when running on

1,024 cores. Correspondingly, the fraction of run-time spent by

the algorithm in communication for these data sets on 1,024

cores is between 38.3% and 44.3%, which is almost half of

that observed for the benchmark data sets. Further, the average

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 11,2024 at 16:39:57 UTC from IEEE Xplore. Restrictions apply.

1710 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Fig. 5. Plot of strong scaling efficiency of the GS algorithm in constructing
the BNs for the simulated data sets.

size of MBs learned by the GS algorithm, as measured after the

Grow phase, increases from 3.83 for S1 to 6.07 for S3. Therefore,

fewer variable pairs are eliminated from c-scores list during the

execution of the algorithm for S3 as compared to S1, resulting

in higher total work which enables better scaling efficiency of

the algorithm for S3 on 1,024 cores.

Our parallel implementations are able to reduce the time

required for learning BNs from more than a day for a sequential

run to less than two minutes using 1,024 cores. The sequential

run-times of the IAMB algorithm for S1, S2, and S3 are 13.4,

16.4, and 24.7 hours and the run-times on 1,024 cores are 58.5,

73.5, and 105.3 seconds, respectively. Similarly, the sequential

run-time of the Inter-IAMB algorithm for the three data sets are

13.8, 16.9, and 25.6 hours while the run-times on 1024 cores

are 59.7, 75.7, and 120.0 seconds. Both IAMB and Inter-IAMB

show more than 75% strong scaling efficiency on 1,024 cores

for learning BNs and a maximum observed speedup of 845X

corresponding to scaling efficiency of 82.5%.

3) Weak Scaling: We performed weak scaling experiments

with data set D2 using the same set of cores as the strong scaling

experiments. For the runs using 1,024 cores, we use the complete

D2 data set. When using p cores (where p < 1024), we learn

the BN for a subset of np variables from the complete data set

(where np < n) such that n2

p/p remains the same (to keep the

work load per core approximately the same regardless of the

number of cores used). We compute the weak scaling efficiency

as T1

Tp
× 100, where T1 is the run-time of the best sequential

algorithm for learning the BN from n1 variables and Tp is the

run-time of the parallel implementation in learning the BN from

np variables using p cores. The plots of weak scaling efficiency

of the three algorithms are shown in Fig. 6. The degradation

in scaling efficiency for the three different algorithms is in line

with the communication intensity of the respective algorithms

(Fig. 4), which suggests that communication overhead is the

limiting factor for weak scaling.

VI. REPRODUCIBILITY

Reproducibility of results is vital in any scientific field that re-

lies on experiments. With the aim of promoting reproducibility in

Fig. 6. Plot of weak scaling efficiency of the three algorithms, measured for
data set D2.

the field of high-performance computing, the International Con-

ference for High Performance Computing, Networking, Storage

and Analysis, also known more widely as the Supercomputing

Conference Series (SC) has included a reproducibility challenge

as part of the student cluster competition (SCC) since 2016 [53].

The challenge tasks teams of undergraduate students with re-

producing the results of a paper from the previous year’s SC

conference. We are honored that, based on its Artifact Descriptor

(AD) and its suitability to the SCC, our paper from SC 2020 [54]

was selected for the reproducibility challenge component of the

2021 SCC (SCC21) [55].

Ten teams, each consisting of six undergraduate students,

an advisor, and vendor partners, were selected to participate

in SCC21. These teams utilized infrastructure provided by the

Oracle Cloud for the reproducibility challenge in SCC21. We

provide more details about the infrastructure used by the teams

in Section VI-A. In order to keep the competition unbiased, new

data sets were created and used for the challenge, as described in

Section VI-B. The teams were tasked with using the challenge

data sets to reproduce the results from the original paper. The

critiques of the four top performing teams on the reproducibility

challenge have been included as part of this special edition. The

top teams, in alphabetical order, are from Peking University [56],

ShanghaiTech University [57], Tsinghua University [58], and

UC San Diego [59]. We discuss the results presented in these

critiques in Section VI-C.

A. Infrastructure

1) Hardware Resources: Traditionally, SCC teams are ex-

pected to build their own clusters during the competition and then

complete the reproducibility challenge on these custom-built

clusters. However, during 2020 and 2021, the competition was

forced to be completely virtual due to the COVID-19 pandemic.

As a result, the reproducibility challenge was conducted using

cloud resources for these two years. During SCC21, teams were

provided access to the infrastructure sponsored by the Oracle

Cloud for the reproducibility challenge.

In the interest of fairness, all the teams had access to

an identical cloud compute cluster. Each cluster consisted of

an 8-core VM.Optimized3.Flex login node and four 36-core

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 11,2024 at 16:39:57 UTC from IEEE Xplore. Restrictions apply.

SRIVASTAVA et al.: PARALLEL FRAMEWORK FOR CONSTRAINT-BASED BAYESIAN NETWORK LEARNING 1711

TABLE IV
COMPARISON OF THE HARDWARE RESOURCES USED FOR THE ORIGINAL

EXPERIMENTS WITH THAT USED FOR THE REPRODUCIBILITY EXPERIMENTS

BM.Optimized3.36 compute nodes, where all the nodes had a

3.0 GHz Intel Xeon 6354 processor and the compute nodes

had 512 GB of main memory. The clusters also had access to

GPU nodes that were not used for the reproducibility challenge.

The compute nodes were connected by Remote Direct Memory

Access over Converged Ethernet (RoCE) v2 with a maximum

network bandwidth of 100 Gbps. Each cluster also had 1 TB

of NFS storage that was accessible from all the nodes in the

cluster. The differences between the hardware resources used for

the original experiments and those used for the reproducibility

experiments are summarized in Table IV.

2) Software Setup: All the CPU nodes on the cloud ran Ora-

cle Linux 7.9. The teams were expected to install other software

and libraries as per their requirements. While the team from

Peking University built the required libraries from source, the

other teams utilized package managers, such as spack (used by

the teams from ShanghaiTech University and UC San Diego) and

nix (used by the Tsinghua University team), for the purpose. All

these teams used different versions of gcc as the C++ compiler,

in combination with three different MPI implementations: the

teams from Peking University and UC San Diego used MVA-

PICH2, the team from Tsinghua University used OpenMPI, and

HPC-X was used by the team from ShanghaiTech University.

There were also minor differences in the version of Boost C++

Library [60], as well as that of the build tool – SCons [61].

The differences in the software setup used for the original

experiments with that used by the four teams are summarized in

Table V.

Details about the setup of the four teams can be found in the

corresponding critiques, where the teams have also documented

their efforts to compile the application for optimal performance

on the cloud. For example, the team from Tsinghua University

reported trying out different MPI implementations and choosing

the one with the lowest bandwidth and latency on OSU bench-

marks, while the team from ShanghaiTech University reported

experimenting with different MPI compiler flags. Some teams

also reported the challenges that they faced during this process,

e.g., the team from UC San Diego reported having to install

a specific version of Slurm to work with MVAPICH, and the

team from ShanghaiTech University reported that the application

failed to compile with the Intel C++ compiler. In spite of these

challenges, all the top teams were able to build versions of

applications that seemed to show similar scalability as the one

used for the original experiments.

B. Challenge Data Sets

In collaboration with the SCC21 reproducibility challenge

committee, we chose the same application area for the challenge

as the one described in Section V-A – construction of gene

networks. The importance of this application area has grown

even more during the COVID-19 pandemic. This is because

understanding the widely varying genetic response to the novel

coronavirus SARS-CoV-2 in humans is critical to developing

vaccines and treatments for the disease. Further, multiple recent

studies have created COVID-19 related data sets and made

them available online. One such study was done by Ziegler

et al. [62] that obtained upper respiratory tract swabs from 58

individuals. Then, they sequenced all the cells recovered from

the swabs, using single-cell RNA-sequencing, to get 32,871

gene expression values from 32,588 cells. We used the data set

from [62] to generate three different data sets for the challenge

as described below.

First, we divided all the cells into three categories, using the

World Health Organization (WHO) categorization of individuals

that they were obtained from [63]: 23 individuals who had tested

negative for COVID-19, 14 individuals who had tested positive

and showed mild symptoms (WHO classification of 1− 5), and

21 individuals who had tested positive and exhibited severe

symptoms (WHO classification of 6− 8). Then, we further

refined the three data sets so obtained by only retaining genes

and cells with at least one non-zero value to get the final data sets

that were used for the challenge. These data sets are described

in Table VI.

The smallest data set, C1, was provided to the teams two

weeks ahead of the competition for testing purposes. The two

bigger data sets, C2 and C3, were used as the challenge data

sets and were made available to the teams at the beginning of

the competition. Notice that, both C2 and C3 are bigger than

all the data sets that we used to obtain the results presented in

Section V, including the bigger simulated data sets (S1, S2, and

S3).

C. Experiments and Results

The problem statement, defined by the reproducibility chal-

lenge committee, asked the SCC21 teams to use data sets C2 and

C3 to reproduce the following results presented in Section V:

1) Perform a strong scaling study (similar to Section V-D1).
� Create a table with the strong scaling run-times of the

three algorithms (similar to Table III).
� Generate strong scaling plots for the three algorithms

(similar to Fig. 3). Also generate a communication

overhead plot for the three algorithms using data set

C2 (similar to Fig. 4).

2) Perform a weak scaling study (similar to Section V-D3).
� Generate weak scaling efficiency plots for the three

algorithms using data set C2 (similar to Fig. 6).

The teams had access to the cloud compute clusters for a

48-hour period during SCC21 to conduct these experiments.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 11,2024 at 16:39:57 UTC from IEEE Xplore. Restrictions apply.

1712 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

TABLE V
COMPARISON OF THE SOFTWARE SETUP USED FOR THE ORIGINAL EXPERIMENTS WITH THAT USED FOR THE REPRODUCIBILITY

EXPERIMENTS BY THE FOUR TEAMS

TABLE VI
REPRODUCIBILITY CHALLENGE DATA SETS

Due to the limited time they had to run all the experiments,

the teams came up with different strategies to ensure that they

were able to finish them in time. This included running multiple

experiments in parallel to maximally utilize the resources that

were allocated to each team. These strategies enabled three out

of the four teams to obtain results from at least one run for

all the experiments. The only exception was the team from

UC San Diego that encountered OS/Slurm errors for a few

runs on 64 and 128 cores [59]. They attributed these errors to

memory constraints of the cluster. However, since the other three

teams used exactly the same hardware resources and did not

observe this behavior, we believe that these errors may have been

caused by the differences in the software setup used, potential

interference by other jobs running in parallel, or transient issues

with the resources allocated to the team. We discuss the results

of the scaling studies done by the four teams in detail below.

1) Strong Scaling Results: For the strong scaling experi-

ments, the top four teams selected the number of cores using

an approach similar to the one used for the results in Section V.

We had varied the number of cores used between 1 and 1,024,

always using power of two number of cores for our experiments.

Correspondingly, since the teams had access to 4× 36 = 144
cores, they varied the number of cores used between 1 and 128

for their results.

The reported strong scaling behavior of the three algorithms

for learning BNs from the two challenge data sets was consistent

across the four teams. Fig. 7 shows the strong scaling efficiency

observed by three of the four teams that reported run-times in

their critiques, in constructing the BNs from the two data sets.

All the teams observed greater than 70% strong scaling effi-

ciency when using IAMB and Inter-IAMB, and greater than 40%

efficiency when using GS on up to 128 cores. They also observed

lower communication overhead for IAMB and Inter-IAMB (less

than 20% when using any number of cores) as compared to that

of GS (more than 60% on 128 cores). Intriguingly, even though

the teams performed the scaling experiments using the bigger

challenge data sets, the strong scaling efficiency reported by

the teams was about the same or lower than the corresponding

efficiency that we observed on 128 cores using benchmark data

sets for all the algorithms. The reported lower efficiency is in

agreement with the higher communication overhead observed

by the teams, which may be attributed to the higher latency

of Ethernet switches used by RoCE interconnect as compared

to the lower latency dedicated Infiniband switches used by the

interconnect on Hive cluster.

Despite the lower efficiency observed by the SCC teams, the

strong scaling results of their experiments follow the general

trend that we observed when learning from the two bigger

benchmark data sets (D2 and D3) in Section V-D1. Similar to

the strong scaling speedup and efficiency shown in Fig. 3, all the

teams observed near-linear speedup when learning from C2 and

C3 using IAMB and Inter-IAMB, but lower speedup when using

GS. Further, all the teams observed a communication overhead

plot for C2 that was similar to Fig. 4, and thus attributed the

lower efficiency of GS to its higher communication overhead.

2) Weak Scaling Results: The four teams also conducted

the weak scaling experiments by varying the number of cores

between 1 and 128, similar to the strong scaling experiments.

To compute the number of variables on different number of

cores, the teams followed the same methodology that we used

for the purpose and described in Section V-D3. While the teams

from ShanghaiTech University, Peking University, and Tsinghua

University selected the first np variables to construct the data

set for learning on p < 128 cores, the team from UC San Diego

used random sampling for the purpose [59]. Consequently, the

former three teams observed very similar weak scaling behavior

with weak scaling efficiency of greater than 60% for IAMB

and Inter-IAMB, and greater than 40% for GS on all cores.

On the other hand, the UC San Diego team reported higher

scaling efficiency on all the cores: more than 80% for IAMB

and Inter-IAMB, and greater than 60% for GS. Interestingly,

they also reported the lowest efficiency for GS on 16 cores and

for IAMB and Inter-IAMB on 8 cores.

Irrespective of the aforementioned differences between the

results obtained by the four teams, the weak scaling efficiency

plots of all the teams correspond well to Fig. 6. In general, the

teams observed lower efficiency when using larger number of

cores. Further, the efficiency when using GS was lower as com-

pared to IAMB and Inter-IAMB. This further substantiates our

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 11,2024 at 16:39:57 UTC from IEEE Xplore. Restrictions apply.

SRIVASTAVA et al.: PARALLEL FRAMEWORK FOR CONSTRAINT-BASED BAYESIAN NETWORK LEARNING 1713

Fig. 7. Plots of strong scaling efficiency of the three algorithms reported by three SCC21 teams in constructing the BNs for the reproducibility challenge data
sets C2 (top row) and C3 (bottom row).

conclusion in Section V-D3, that the communication overhead

of the algorithms dictates their weak scaling efficiency.

VII. CONCLUSION AND FUTURE WORK

We presented a framework for parallelizing multiple BN

structure learning algorithms. The algorithms implemented us-

ing this framework, as part of an open-source software called

ramBLe, are able to construct genome-scale networks for two

model organisms, S. cerevisiae and A. thaliana, in less than a

minute on 1,024 cores. The scalability of our implementations of

the algorithms was independently verified by the SCC21 teams

for construction of gene networks from even larger COVID-19

data sets.

Our implementations can greatly aid biologists in their re-

search on gene networks because it can save weeks of their time

during the iterative search for the optimal parameters to construct

a BN that best approximates the biological truth. Moreover,

our parallel implementations show good scaling for learning

networks with larger number of variables from simulated data

sets and can therefore be used for other applications which

require learning high dimensional causal networks.

Directions for future research include efficiently conducting

CI tests when data sets are distributed across all processors,

balancing workloads arising from different methodologies for CI

tests (e.g., permutation tests, bootstrapping, etc.) for discrete as

well as continuous data, and extending the framework to include

other categories of BN learning algorithms.

ACKNOWLEDGMENTS

We thank Maneesha Aluru for providing customized

Arabidopsis thaliana data sets used in this work, and Tony Pan

for guidance on debugging MPI performance. We also thank

Le Mai Weakley and the other SCC21 reproducibility challenge

committee members for their help and guidance with preparing

the application for the challenge, and Junjie Li for his assistance

with replicating the original results and testing the challenge

data sets using different computation resources.

REFERENCES

[1] E. Kyrimi, S. McLachlan, K. Dube, M. R. Neves, A. Fahmi, and N. Fenton,
“A comprehensive scoping review of Bayesian networks in healthcare:
Past, present and future,” 2020, arXiv:2002.08627.

[2] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Using Bayesian
networks to analyze expression data,” J. Comput. Biol., vol. 7, no. 3/4,
pp. 601–620, 2000.

[3] S. Imoto, T. Higuchi, T. Goto, K. Tashiro, S. Kuhara, and S. Miyano,
“Combining microarrays and biological knowledge for estimating gene
networks via Bayesian networks,” J. Bioinf. Comput. Biol., vol. 2, no. 01,
pp. 77–98, 2004.

[4] J. Ramsey, M. Glymour, R. Sanchez-Romero, and C. Glymour, “A million
variables and more: The fast greedy equivalence search algorithm for
learning high-dimensional graphical causal models, with an application to
functional magnetic resonance images,” Int. J. Data Sci. Analytics, vol. 3,
no. 2, pp. 121–129, 2017.

[5] X. Sun, J. Dai, P. Liu, A. Singhal, and J. Yen, “Using Bayesian networks
for probabilistic identification of zero-day attack paths,” IEEE Trans. Inf.

Forensics Secur., vol. 13, no. 10, pp. 2506–2521, Oct. 2018.
[6] C. S. Vlek, H. Prakken, S. Renooij, and B. Verheij, “A method for

explaining Bayesian networks for legal evidence with scenarios,” Artif.

Intell. Law, vol. 24, no. 3, pp. 285–324, 2016.
[7] F. Taroni, A. Biedermann, S. Bozza, P. Garbolino, and C. Aitken, Bayesian

Networks for Probabilistic Inference and Decision Analysis in Forensic

Science. Hoboken, NJ, USA: Wiley, 2014.
[8] D. Gunning and D. W. Aha, “Darpa’s explainable artificial intelligence

program,” AI Mag., vol. 40, no. 2, pp. 44–58, 2019.
[9] C. Yuan, H. Lim, and T.-C. Lu, “Most relevant explanation in Bayesian

networks,” J. Artif. Intell. Res., vol. 42, pp. 309–352, 2011.
[10] C. Rudin, “Stop explaining black box machine learning models for high

stakes decisions and use interpretable models instead,” Nature Mach.

Intell., vol. 1, no. 5, pp. 206–215, 2019.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 11,2024 at 16:39:57 UTC from IEEE Xplore. Restrictions apply.

1714 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

[11] D. M. Chickering, D. Heckerman, and C. Meek, “Large-sample learning
of Bayesian networks is np-hard,” J. Mach. Learn. Res., vol. 5, no. Oct,
pp. 1287–1330, 2004.

[12] M. Koivisto and K. Sood, “Exact Bayesian structure discovery in Bayesian
networks,” J. Mach. Learn. Res., vol. 5, no. May, pp. 549–573, 2004.

[13] T. Silander and P. Myllymäki, “A simple approach for finding the globally
optimal Bayesian network structure,” in Proc. 22nd Conf. Uncertainty

Artif. Intell., Arlington, Virginia, USA: AUAI Press, 2006, pp. 445–452.
[14] Y. Tamada, S. Imoto, and S. Miyano, “Parallel algorithm for learning

optimal Bayesian network structure,” J. Mach. Learn. Res., vol. 12, no. Jul,
pp. 2437–2459, 2011.

[15] O. Nikolova, J. Zola, and S. Aluru, “Parallel globally optimal structure
learning of Bayesian networks,” J. Parallel Distrib. Comput., vol. 73, no. 8,
pp. 1039–1048, 2013.

[16] Y. Tamada, “Memory efficient parallel algorithm for optimal dag structure
search using direct communication,” J. Parallel Distrib. Comput., vol. 119,
pp. 27–35, 2018.

[17] G. F. Cooper and E. Herskovits, “A Bayesian method for the induction of
probabilistic networks from data,” Mach. Learn., vol. 9, no. 4, pp. 309–347,
1992.

[18] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian
networks: The combination of knowledge and statistical data,” Mach.

Learn., vol. 20, no. 3, pp. 197–243, 1995.
[19] P. Spirtes, C. Glymour, and R. Scheines, “An algorithm for fast recovery

of sparse causal graphs,” Social Sci. Comput. Rev., vol. 9, no. 1, pp. 62–72,
1991.

[20] P. Spirtes and C. Meek, “Learning Bayesian networks with discrete vari-
ables from data,” in Proc. 1st Int. Conf. Knowl. Discov. Data Mining, AAAI
Press, 1995, vol. 1, pp. 294–299.

[21] T. Niinimäki and P. Parviainen, “Local structure discovery in Bayesian
networks,” in Proc. 28th Conf. Uncertainty Artif. Intell., AUAI Press, 2012,
pp. 634–643.

[22] T. Gao, K. Fadnis, and M. Campbell, “Local-to-global Bayesian net-
work structure learning,” in Proc. 34th Int. Conf. Mach. Learn., 2017,
pp. 1193–1202.

[23] D. Margaritis and S. Thrun, “Bayesian network induction via local neigh-
borhoods,” in Proc. Adv. Neural Inf. Process. Syst., MIT Press, 2000,
pp. 505–511.

[24] I. Tsamardinos, C. F. Aliferis, A. R. Statnikov, and E. Statnikov, “Algo-
rithms for large scale Markov blanket discovery,” in Proc. FLAIRS Conf.,
AAAI Press, 2003, vol. 2, pp. 376–380.

[25] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles

and Techniques. Cambridge, MA, USA: MIT Press, 2009.
[26] O. Nikolova and S. Aluru, “Parallel Bayesian network structure learning

with application to gene networks,” in Proc. IEEE Int. Conf. High Perform.

Comput. Netw. Storage Anal., 2012, pp. 1–9.
[27] S. Misra et al., “Parallel Bayesian network structure learning for genome-

scale gene networks,” in Proc. IEEE Int. Conf. High Perform. Comput.

Netw. Storage Anal., 2014, pp. 461–472.
[28] A. L. Madsen, F. Jensen, A. Salmerón, H. Langseth, and T. D. Nielsen,

“A parallel algorithm for Bayesian network structure learning from large
data sets,” Knowl.-Based Syst., vol. 117, pp. 46–55, 2017.

[29] D. Colombo and M. H. Maathuis, “Order-independent constraint-based
causal structure learning,” J. Mach. Learn. Res., vol. 15, no. 1,
pp. 3741–3782, 2014.

[30] T. Le, T. Hoang, J. Li, L. Liu, H. Liu, and S. Hu, “A fast PC algorithm
for high dimensional causal discovery with multi-core PCs,” IEEE/ACM

Trans. Comput. Biol. Bioinf., vol. 16, no. 5, pp. 1483–1495, Sep./Oct. 2019.
[31] C. Schmidt, J. Huegle, and M. Uflacker, “Order-independent constraint-

based causal structure learning for gaussian distribution models using
GPUs,” in Proc. 30th ACM Int. Conf. Sci. Statist. Database Manage.,
2018, pp. 1–10.

[32] B. Zarebavani, F. Jafarinejad, M. Hashemi, and S. Salehkaleybar, “cuPC:
CUDA-based parallel PC algorithm for causal structure learning on
GPU,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 3, pp. 530–542,
Mar. 2020.

[33] O. Nikolova and S. Aluru, “Parallel discovery of direct causal relations and
Markov boundaries with applications to gene networks,” in Proc. IEEE Int.

Conf. Parallel Process., 2011, pp. 512–521.
[34] I. Tsamardinos, L. E. Brown, and C. F. Aliferis, “The max-min hill-

climbing Bayesian network structure learning algorithm,” Mach. Learn.,
vol. 65, no. 1, pp. 31–78, 2006.

[35] J. M. Peña, R. Nilsson, J. Björkegren, and J. Tegnér, “Towards scalable and
data efficient learning of Markov boundaries,” Int. J. Approx. Reasoning,
vol. 45, no. 2, pp. 211–232, 2007.

[36] M. Scutari, “Learning Bayesian networks with the bnlearn R package,” J.

Statist. Softw., vol. 35, no. i03, pp. 1–22, 2010.
[37] R. Scheines, P. Spirtes, C. Glymour, C. Meek, and T. Richardson, “The

tetrad project: Constraint based aids to causal model specification,” Mul-

tivariate Behav. Res., vol. 33, no. 1, pp. 65–117, 1998.
[38] M. Kalisch, M. Mächler, D. Colombo, M. H. Maathuis, and P. Bühlmann,

“Causal inference using graphical models with the R package pcalg,” J.

Statist. Softw., vol. 47, no. 11, pp. 1–26, 2012.
[39] M. Scutari, “Bayesian network constraint-based structure learning algo-

rithms: Parallel and optimized implementations in the bnlearn R package,”
J. Statist. Softw., vol. 77, no. i02, pp. 1–20 2017.

[40] R. E. Neapolitan, Learning Bayesian Networks, vol. 38. Upper Saddle
River, NJ, USA: Pearson Prentice Hall, 2004.

[41] P. Spirtes, C. N. Glymour, R. Scheines, and D. Heckerman, Causation,

Prediction, and Search. Cambridge, MA, USA: MIT Press, 2000.
[42] C. F. Aliferis, I. Tsamardinos, and A. Statnikov, “HITON: A novel Markov

blanket algorithm for optimal variable selection,” in Proc. Annu. Symp.

Amer. Med. Informat. Assoc., 2003, pp. 21–25.
[43] A. Srivastava, “ramBLe - A parallel framework for Bayesian learning,”

2020. [Online]. Available: https://github.com/asrivast28/ramBLe
[44] N. Noyes, K.-C. Cho, J. Ravel, L. J. Forney, and Z. Abdo, “Associations

between sexual habits, menstrual hygiene practices, demographics and the
vaginal microbiome as revealed by Bayesian network analysis,” PLoS One,
vol. 13, no. 1, pp. 1–25, 2018.

[45] D. V. Zhernakova et al., “Individual variations in cardiovascular-disease-
related protein levels are driven by genetics and gut microbiome,” Nature

Genet., vol. 50, no. 11, pp. 1524–1532, 2018.
[46] O. Delaneau et al., “Chromatin three-dimensional interactions mediate

genetic effects on gene expression,” Science, vol. 364, no. 6439, 2019,
Art. no. eaat8266.

[47] Z. Zheng et al., “Shared genetic control of root system architecture
between zea mays and sorghum bicolor,” Plant Physiol., vol. 182, no. 2,
pp. 977–991, 2020.

[48] A. Cano, M. Gómez-Olmedo, and S. Moral, “A score based ranking of
the edges for the PC algorithm,” in Proc. 4th Eur. Workshop Probabilistic

Graphical Models, 2008, pp. 41–48.
[49] S. Karan, M. Eichhorn, B. Hurlburt, G. Iraci, and J. Zola, “Fast counting

in machine learning applications,” in Proc. 34th Conf. Uncertainty Artif.

Intell., AUAI Press, 2018, pp. 540–549.
[50] B. S. Anderson and A. W. Moore, “ADtrees for fast counting and for fast

learning of association rules,” in Proc. 4th Int. Conf. Knowl. Discov. Data

Mining, AAAI Press, 1998, pp. 134–138.
[51] K. Tchourine, C. Vogel, and R. Bonneau, “Condition-specific modeling of

biophysical parameters advances inference of regulatory networks,” Cell

Rep., vol. 23, no. 2, pp. 376–388, 2018.
[52] E. R. Gansner and S. C. North, “An open graph visualization system and

its applications to software engineering,” Soft. Pract. Exp., vol. 30, no. 11,
pp. 1203–1233, 2000.

[53] M. A. Heroux and C. K. Garrett, “Special issue on SC16 student cluster
competition reproducibility initiative,” Parallel Comput., vol. 70, pp. 3–4,
2017.

[54] A. Srivastava, S. P. Chockalingam, and S. Aluru, “A parallel framework
for constraint-based Bayesian network learning via Markov blanket dis-
covery,” in Proc. IEEE Int. Conf. High Perform. Comput. Netw. Storage

Anal., 2020, pp. 1–15.
[55] L. M. Weakley, “SC21 student cluster reproducibility challenge

committee converges on a benchmark,” 2021. [Online]. Avail-
able: https://sc21.supercomputing.org/2021/05/24/sc21-student-cluster-
reproducibility-challenge-committee-converges-on-a-benchmark/

[56] J. Si et al., “Critique of “A parallel framework for constraint-based
Bayesian network learning via Markov blanket discovery” by SCC team
from Peking University,” IEEE Trans. Parallel Distrib. Syst., to be pub-
lished, doi: 10.1109/TPDS.2022.3206099.

[57] G. Li et al., “Critique of “A parallel framework for constraint-based
Bayesian network learning via Markov blanket discovery” by SCC team
from ShanghaiTech University,” IEEE Trans. Parallel Distrib. Syst., to be
published, doi: 10.1109/TPDS.2022.3205479.

[58] J. Cao et al., “Critique of “A parallel framework for constraint-based
Bayesian network learning via Markov blanket discovery” by SCC team
from Tsinghua University,” IEEE Trans. Parallel Distrib. Syst., to be
published, doi: 10.1109/TPDS.2022.3209723.

[59] A. Gupta et al., “Critique of: “A parallel framework for constraint-based
Bayesian network learning via Markov blanket discovery” by SCC team
from UC San Diego,” IEEE Trans. Parallel Distrib. Syst., to be published,
doi: 10.1109/TPDS.2022.3217284.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 11,2024 at 16:39:57 UTC from IEEE Xplore. Restrictions apply.

SRIVASTAVA et al.: PARALLEL FRAMEWORK FOR CONSTRAINT-BASED BAYESIAN NETWORK LEARNING 1715

[60] B. Schäling, The Boost C Libraries. Boris Schäling, XML Press, 2011.
[61] S. Knight, “Building software with scons,” Comput. Sci. Eng., vol. 7, no. 1,

pp. 79–88, 2005.
[62] C. G. Ziegler et al., “Impaired local intrinsic immunity to SARS-CoV-2

infection in severe COVID-19,” Cell, vol. 184, no. 18, pp. 4713–4733,
2021.

[63] World Health Organization, “WHO R&D blueprint: Novel coronavirus
COVID-19 therapeutic trial synopsis,” 2020. [Online]. Available: https:
//www.who.int/publications/i/item/covid-19-therapeutic-trial-synopsis

Ankit Srivastava received the bachelor’s degree
from the Indian Institute of Technology, Kanpur, and
the PhD degree from the School of Computational
Science and Engineering within the College of Com-
puting, Georgia Institute of Technology. He is a data
scientist with Microsoft. Before this, he worked as
part of the parallel computational fluid dynamics team
of ANSYS, Inc. His research interests lie in the fields
of high-performance computing, parallel algorithms,
and Bayesian networks.

Sriram P. Chockalingam is a research scientist
with the Institute for Data Engineering and Science
(IDEaS), Georgia Institute of Technology. He devel-
ops high performance computing algorithms and im-
plementations for IDEaS research efforts and collab-
orations. His research interests focus on development
of sequential and parallel algorithms for network
reverse engineering in systems biology, Bayesian net-
work structure learning and approximate sequence
matching with applications in Bioinformatics. He
has more than a decade of experience in developing

software in both industry and academia targeted towards solving data science
problems.

Srinivas Aluru (Fellow, IEEE) is executive director
of the Institute for Data Engineering and Science
(IDEaS) and professor with the School of Compu-
tational Science and Engineering, Georgia Institute
of Technology. He co-leads the NSF South Big Data
Regional Innovation Hub which nurtures Big Data
partnerships between organizations in the 16 South-
ern States and Washington D.C., and the NSF Trans-
disciplinary Research Institute for Advancing Data
Science. He conducts research in high performance
computing, large-scale data analysis, bioinformatics

and systems biology, combinatorial scientific computing, and applied algo-
rithms. He contributed to NSF and DOE led efforts for strategic development of
Big Data and exascale computing. He is a fellow of AAAS, ACM, and SIAM,
and is a recipient of the IEEE Computer Society Golden Core and Meritorious
Service awards.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 11,2024 at 16:39:57 UTC from IEEE Xplore. Restrictions apply.

