Reward Attack on Stochastic Bandits with
Non-stationary Rewards

Chenye Yang, Guanlin Liu and Lifeng Lai

Abstract—In this paper, we investigate rewards attacks on
stochastic multi-armed bandit algorithms with non-stationary
environment. The attacker’s goal is to force the victim algorithm
to choose a suboptimal arm most of the time while incurring a
small attack cost. Three main attack scenarios are considered:
easy attack scenario, general attack scenario, and general attack
scenario with limited information of victim algorithm. These
scenarios have different assumptions about the environment and
accessible information. We propose three attack strategies, one
for each considered scenario, and prove that they are successful
in terms of expected target arm selection and attack cost. The
simulation results validate our theoretical analysis.

Index Terms—bandit, non-stationary reward, attack cost

I. INTRODUCTION

Multi-armed bandit (MAB) problems is a class of sequential
decision-making problems that have wide range of appli-
cations. This class of problems model the scenario where
an agent algorithm must choose between multiple arms to
maximize its cumulative reward. They have been applied to
various fields, including online advertisement (optimizing ad
selection), healthcare (personalized treatment strategies), and
recommender systems (improving personalized recommenda-
tions). Existing works [1]-[3] have identified potential security
issues of existing MAB algorithms. In particular, these work
show that an attacker can force existing MAB algorithms
to take unwanted actions, e.g., choose a suboptimal target
arm, and may lead to severe real-world consequences (unfair
business competition, health threats etc.).

Prior works investigate two attack methods: manipulate the
reward signal [1] [2] or manipulate the action signal [4] [3].
Most of these existing work focused on the traditional station-
ary random rewards setting, in which the distribution of reward
of each arm does not change over time. Some [2] studied the
adversarial setting, in which the reward given by the environ-
ment can be arbitrarily chosen. It is important to note that
in many real-world applications, the reward distribution may
change over time, but with a specific restriction on the extent
of changes. For example, the best product recommendation
may vary when the user’s interest slightly changes. In this case,
it is more appropriate to model the problem as stochastic multi-
armed bandit with non-stationary rewards [5]. In this paper, we
study the reward attack on non-stationary MAB algorithms in
the non-stationary reward setting with restriction on the extent
of changes.

C. Yang, G. Liu and L. Lai are with the Department of Electrical and
Computer Engineering, University of California, Davis, CA. This work was
supported by the National Science Foundation under Grants ECCS-2000415
and CCF-2232907. Email:{cyyyang,glnliu,Iflai } @ucdavis.edu.

The non-stationary reward structure will introduce addi-
tional challenges on both algorithm side and attacker side.
In addition to the exploitation and exploration trade-off, the
algorithm also needs to handle trade-off between ‘remember-
ing’ and ‘forgetting’ since the estimation of expected rewards
is based on past rewards observations, and will have larger
overall regret since the best arm is always changing. At the
same time, this also creates additional challenges for the attack
design as well, as it costs more for the attacker to perform a
successful attack, since every time when the victim algorithm
‘forgets’ history it tends to ‘explore’ all possible arms instead
of ‘exploit’ the target arm. To our knowledge, this is the
first work to successfully attack those specifically designed
non-stationary MAB algorithm with a variation budget, which
models the temporal uncertainty and changes in the non-
stationary reward environment.

In this paper, three attack scenarios targeting non-stationary
MAB algorithm are considered: easy attack scenario, general
attack scenario, and general attack scenario with limited in-
formation of victim algorithm. The first scenario has the most
strict restriction on the environment side, which asks for non-
zero reward for the target arm. The second scenario relaxes the
assumption on the environment side, but requires the attacker
to know more detailed behavior of the victim algorithm. The
third scenario further relaxes the additional requirement on the
attacker side, and limits the attacker’s knowledge to the victim
algorithm. For each scenario, we propose the corresponding
attack strategy and prove them to be successful.

The remainder of the paper is organized as follows. In
Section II, we introduce the problem formulation for victim
algorithm, environment, and attacker. In Section III, we model
three attack scenarios and propose the attack strategies for each
scenario. In Section IV, we provide theoretical analysis on the
performance of the proposed attack strategies. In Section V,
we validate our theoretical analysis with simulation results.
Finally, we conclude the paper in Section VL.

II. PROBLEM FORMULATION
A. Multi-armed bandit problem

Let K = {1,2,...,K} be the set of arms to be pulled
(decisions to be made), T = {1,2,...,T} be the sequence of
decision steps for the decision maker (agent). The agent pulls
an arm a; € K at step ¢t € T and receives a reward X;(a;)
which is generated by the environment. X;(a;) € [0,1] is a
random variable with expectation E [X;(a;)]. The goal of the
agent is to maximize the total expected reward over a long
time, while balancing exploration and exploitation.

B. Non-stationary environment

In many practical cases, the reward distributions of the arms
in an MAB problem may change over time. In the existing
works, there are two popular approaches to model the chang-
ing environment: adversarial environment and non-stationary
environment. The adversarial environment allows the reward
distribution to be arbitrarily chosen by the environment. The
downside of this model is that it does not restrict the extent
of changes and thus not capture the temporal uncertainty of
the reward distribution. Another category is the non-stationary
environment which allows the reward distribution to change
over time, but also models the temporal uncertainty in the
following two ways: allow a finite number of changes in the
expected reward [6], or allow a bounded total variation of
expected reward over the relevant time [5]. In this paper, we
will perform attack within the non-stationary environment with
a bounded total variation of the expected rewards.

Denote uf = E[X;(a;)] : a; = k and pf = maxpexc{ul},
where E is taken with respect to reward X (a;) at step ¢. In
this paper, we focus on the non-stationary environment with
a bounded total variation of the expected rewards E [X;(a+)]:

T-1
> sup |uf — pfy| < Vi,
i1 keK

where Vr is the variation budget for the entire horizon 7' of
the problem. We define the temporal uncertainty set as the set
of reward sequences that are subject to the variation budget
Vr over the set of step epochs {1,...,T}:

T-1
VY= {,u e [0, 1% Zsip“zf —pi| < VT}.
t=1 "

Note that V7 = 0 corresponds to the stationary environment
while Vo = O(T) corresponds to the adversarial environ-
ment [7].

C. MAB algorithm performance

The performance of a multi-armed bandit algorithm is
measured by its regret. For these adversarial bandit problems,
the regret R7 is defined against a static oracle, which is the
best arm in hindsight over the whole horizon [7] [2]:

T
Z Xy (at)] ,
t=1

where the E™ is taken with respect to the noisy rewards and
policy’s actions.

One may use adaptive algorithms such as Exponential-
weight algorithm for Exploration and Exploitation (Exp3) to
handle adversarial environments. The static oracle regret of
Exp3 is O(v/KTlog K) [8].

In the non-stationary setting, the regret of the algorithm
over the entire horizon is defined as the worst case difference
between the expected performance of pulling at each epoch t
the arm which has the highest expected reward at epoch ¢ and

T
Ry = maXZXt(a) - E"
t=1

the expected performance under policy 7, which is also known
as the regret measured against the dynamic oracle [5] [7]:

£}

t=1

T
R (V,T):sup{zu;_w

reV =1

D. Non-stationary victim algorithm

If there is no attacker, a widely used strategy for stochastic
non-stationary MAB problem is Rexp3, Algorithm 1, proposed
in [5], which is able to handle the temporal uncertainty by
variation budget. Furthermore, it is proved that Rexp3 is
nearly minimax optimal with dynamic oracle regret of order
VTl/ 32/ 3. which is the best achievable performance under
worst-case regret.

Algorithm 1 Rexp3

1: Parameters: A learning rate 7, and a batch size Ar.
2: for Batch j =1,2,...,m = [z-] do
3: Initialization: w, , = 1,Va € K.
4: for t =(j — 1)Ar+1<t<min{jAr,T} do
5 Define 7, = (1 — 1) Zwtiuat -+ %
6: Draw a; ~ {m; 4}, and observe reward X; (at)
7: fora=1,2,...,K do
8:
Wt,q Y 7é a
Hitle = Wt,a €XP (%Xfrf(it)) , = Qg
9: end for
10 end for
11: end for

In Rexp3, to handle the non-stationary environment, the total
horizon 7T is split into many batches (71,. .., 7,,) with fixed
size Ar each (except, possibly the last batch):

Ti=A{t:(j—1)Ar +1 <t <min{jAr,T}},

Vj =1,...,m, where m = [ALT} is the number of batches.

The Exp3 algorithm will restart itself at the beginning of
each batch, to forget all its memory and handle the changing
environment, as illustrated in Figure 1.

Rexp3

Exp3 Exp3 Exp3 Exp3
Ap A Ar Ap Ap 7

1
1 Restart T

Fig. 1: Timeline of Rexp3

With the assumption that variation budget Vr is known
to algorithm, Rexp3 chooses the batch size Ap =

[(Klog K)'/3 (T/VT)Z/?’], and achieves the dynamic oracle
regret mentioned above.
Note that in the j-th batch 7}, the dynamic regret is:

£ | 3 (max (BLX (@]} ~ L%, 0D))

teT;

E. Attack the reward

In this paper, as shown in Figure 2, we consider a setup
where there is an attacker that can intercept and manipulate
the reward signal generated by the environment. We denote
the manipulated reward as X, (a¢). The attacker’s goal is
to force the agent to choose a suboptimal target arm af as
often as possible while inducing an attack cost as low as
possible. Specifically, we attack the Rexp3 algorithm in the
non-stationary reward setting with a variation budget Vr.

\ 4
| Attacker I

|__Manipulated
Reward

Action

Algorithm

Fig. 2: Reward Attack

There are two metrics to measure the performance of
attacker: expected attack cost E™[Cr], and expected number
of target arm selection E™[N7(al)]:

bl

T
E"[Cr] =E" |3 ‘Xy (ar) — X; (az)

T
E"[Nr(a®)] =E" |1 [a; = a]

The goal of attacker is to maximize the E™[N7(a')] while
incurring a small attack cost E™[Cr].

III. PROPOSED METHOD

In this paper we consider three increasingly complex scenar-
ios and propose three attack strategies, one for each considered
scenario.

A. Easy attack scenario

In this scenario, on the environment side, we assume
that there exists a constant p € (0,1] such that X;(a') €
[p,1], ¥t € T. This scenario has the most strict assumption
on the environment side, in which the target arm will always
have a non-zero reward.

In this scenario, the attacker follows the scheme in Al-
gorithm 2. If the agent algorithm chooses a non-target arm,
the attacker will reduce the reward to the minimum, i.e., O.
However, if the agent chooses the target arm, the attacker will
not manipulate the reward signal X;(a'). In other words, the
manipulated reward X, (a;) will be:

~ X; (a") a;=af
Xi(ae) = Ot() ai#qf'

Algorithm 2 Easy Attack Scenario

1: Initialize total horizon T, step t = 1
2: while ¢t < 7T do
3: Victim algorithm, e.g., Rexp3, chooses arm a;

4: Environment gives the reward X;(a;)
5: Attacker manipulates the reward:

6: if a;, = a' then

7: Xt(at) = Xt((lt)

8: else

9: Xt (at) =0

10: end if

11: Victim updates itself based on X, (a;)

12: t=t+1
13: end while

B. General attack scenario

In this scenario, there’s no constraint on the environment
side, which means that sometimes X;(a') = 0. This scenario
relaxes the assumption on the environment side. However, we
assume the attacker has information of when victim algorithm
restarts, i.e., the batch size Arp. Note that this assumption will
be removed in the next scenario.

In this scenario, the attacker follows the scheme in Algo-
rithm 3. It keeps a diminish function £**t<~! as the lower-
bound of manipulated reward for target arm, where ¢ is the
relative step in each batch and ¢ < 1 — «a. Within each
batch, if the victim algorithm chooses a non-target arm, the
attacker will reduce the reward to 0. However, if the victim
algorithm chooses the target arm, the attacker will manipulate
the reward to the maximal value between the original reward
and t®T~1. The relative step ¢ will increase along with the
absolute step ¢ € 7, but will be reset to 1 at the beginning
of a new batch. The attacker is able to restart the diminish
function simultaneously with the algorithm by the assumption
of knowing Ar. In other words, the manipulated reward
X, (ay) will be:

- max {21 X, (a ar = al
Xt(at): {0 { (t)} ai#(ﬂw

C. General attack scenario without knowing A

We now consider the scenario where there’s no constraint
on the environment side. Furthermore, the attacker does NOT
know when the algorithm restarts, i.e., the attacker does not
know the batch size Ap. This scenario further relaxes the
additional requirement on the attacker side, and limits the
attacker’s knowledge to the victim algorithm.

In this scenario, the attacker follows the scheme in Algo-
rithm 4. It also keeps a diminish function £*¢~1_ If the victim
algorithm chooses a non-target arm, the attacker will reduce
the reward to O, and reset the relative step t to 1. However,
if the victim algorithm chooses the target arm, the attacker
will manipulate the reward to the maximal value between the

Algorithm 3 General Attack Scenario

1: Initialize total horizon T’

2: Let absolute step ¢ = 1, let relative step £ = 1

3: while ¢t < T do

4: Victim algorithm, e.g., Rexp3, chooses arm ay

5 Environment gives the reward X;(a;)
6: Attacker manipulates the reward:

7: if a; = a' then

8 Xt(at) = max{f"‘*efl, Xt(at)}
9: else

10: Xt (at) =0

11: end if

12: if { < Ap then > < T — (m — 1)Ar for last batch

13 t=t+1 > continue the diminish function
14 else

15: reset £ = 1 > restart the diminish function
16: end if

17: Victim updates itself based on Xt(at)

18: t=t+1

19: end while

griginal reward and t*1t¢~1 and then increa§e the relative step
t by 1. Similarly, the manipulated reward X (a;) will be:

~ max £a+6_1, Xt(at) ay = 0,1-
Xt(at):{o { } a #a

The main difference between the attacker’s behavior in this
scenario and the previous scenario is when the attacker resets
its diminishing function. In the previous scenario, the attacker
is able to reset the diminishing function at the beginning of
each batch simultaneously with the victim algorithm by the
assumption of knowing Ap. However, in this scenario, the
attacker does not have that information, and thus will reset
the diminishing function anytime when a non-target arm is
pulled. Figure 3 illustrates how the diminish functions behave
in the two scenarios.

: \PPWH
K BRI
ANININI N J\J Q_\

(b) General attack without Ap

(a) General attack

Fig. 3: Comparisons of the diminishing functions in two
scenarios

The above strategy helps to give more reward to the target
arm when it is selected after any non-target arm selection.
There’s always a possibility for the target arm been selected
because of the “exploration” of bandit algorithm. This attack
strategy Algorithm 4 ensures that the victim algorithm receives

a larger target arm reward and thus tends to choose the
target arm with higher probability, compared with the first
two strategies Algorithm 2 and 3.

Algorithm 4 General Attack Scenario without A

1: Initialize total horizon T’

2: Let absolute step t = 1, let relative step £ = 1

3: while ¢t < 7T do

4: Victim algorithm, e.g., Rexp3, chooses arm a;

5 Environment gives the reward X;(a;)

6 Attacker manipulates the reward X, (a):

7: if the chosen arm is the target arm: a; = o' then

8 Xt (at) = max{tN‘“‘e_l, Xt (at)}

9: t=t+1 > continue the diminish function
10: else if a; # a then

11: Xt ((lt) =0

12: reset £ = 1 > restart the diminish function
13: end if

14: Victim updates itself based on X (ay)

15: t=1t+1

16: end while

IV. THEORETICAL ANALYSIS
A. Easy attack scenario

In this section, we analyze the performance of the attacker
in the easy attack scenario.

Theorem IV.1. Assume that there exists some constant p €
(0, 1] such that X;(a®) € [p,1] Vt € [T, the victim algorithm
has static oracle regret Ry = O (Aq®) for some o € [%,1)
in each batch and follows the batch strategy to handle non-
stationary reward, and the attack is performed as Algorithm 2.
Then the expected number of target arm selection and the
expected attack cost satisfies:

EWNAMHZT—%¥JAW*7
(1)
E™[Cr] < % -TAr* ™,

where M is a constant.

Theorem IV.1 reveals that in the adversarial case when
Ap =T, meaning no batch behavior and no consideration of
variation budget V., the attacker will achieve O(T'*) expected
attack cost. For example, for Exp3, when o = % the expected
attack cost is O(V/T).

In the non-stationary cases, if the victim algorithm sets

B
batch size as Ar = B(VTTT> , where 8 € [0,1], and B is

a constant independent of 7', Vp and [, the expected attack
cost E™ [Cr] will be:

E~™ [CT] =0 <VTﬂ(1—a)T1—B(1—a)))

When the variation budget Vr is sublinear in T, i.e., Vp =
O(T") where v € (0,1), the expected attack cost E™[Cr] will
be:

E™ [Cr] = O (T1*(1*7)5(1*a)) :

which is sublinear in 7. Meanwhile, the target arm selection
E™ [NT (aT)} will increase almost linear in 7T'.

B. General attack scenario

In this section, we analyze the performance of the attacker
in the general attack scenario.

Theorem IV.2. Assume that the reward X.(a;) € [0, 1], the
victim algorithm has static oracle regret Rp = O (Ap®) for
some o € [%, 1) in each batch and follows the batch strategy to
handle non-stationary reward, and the attack is performed as
Algorithm 3. Then the expected number of target arm selection
and the expected attack cost satisfies:

B [N (o)

>T — <2MTATE + TATC‘6> ,
o+ €)
E™[C7]
—€ 2 —a—e¢ 2 a+e—1
<2MTA7 “+ —TAr + ——TAr ,
o+ € o+ €

where M is a constant, and ¢ < 1 — a.

Theorem IV.2 reveals that in the adversarial case when
Ar =T, meaning no batch behavior and no consideration of
variation budget V7, the attacker will achieve O (T ~¢+T7)
expected attack cost. For example, for Exp3, when o = %, the
expected attack cost is O(T"'~¢+T27¢). The € can be selected
as i to satisfy that e < 1 — a. Then, the expected attack cost
is O(T%).

In the non-stationary cases, if the victim algorithm sets
batch size as A = B VlT ﬁ, where 3 € [0,1], and B is
a constant independent of 7', Vi and 3, the expected attack
cost E™ [Cp] will be:

E™[Cp] =0 (VTeﬁTkeﬁ I VT,B(lfafe)Tlfﬁ(lfafe)) .

When the variation budget Vr is sublinear in 7T, i.e., Vp =
O(T7) where v € (0, 1), the expected attack cost E™[Cr] will
be:

E™[Cr] = O (Tl—(l—'y)e,ﬁ’ n Tl—(1_7)/5(1_a_6)) 7

which is sublinear in 7. Meanwhile, the target arm selection
E™ [NT (aT)} will increase almost linear in 7'.

C. General attack scenario without knowing A

In this section, we analyze the performance of the attacker
in the general attack scenario without knowing Arp.

Theorem IV.3. Assume that the reward X.(a;) € [0, 1], the
victim algorithm has static oracle regret Ry = O (Ap®) for
some o € [%, 1) in each batch and follows the batch strategy to
handle non-stationary reward, and the attack is performed as

Algorithm 4. Then the expected number of target arm selection
and the expected attack cost satisfies:
E™ [N7 (a')]
>T —2MTAp* 1,

E" [Cr] ®
(ZM) l—-a—ce¢
o+ €
where M is a constant, and ¢ < 1 — a.

S QMTATa—l 4 TATQ(I—(X2—1+E—()¢6

)

Theorem IV.3 reveals that in the adversarial case when
Apr = T, meaning no batch behavior and no consid-
eration of variation budget V7, the attacker will achieve
o(T>+ Tzo‘_a2+€_o‘€) expected attack cost, and the € can

be selected such that 2a— a2 +¢e—ae < 1, which is reasonable
since 20 —a? < land 1 —a € (0,1] for a € [3,1).
For example, for Exp3, when o = %, the expected attack

cost is O (T3 + T3+3¢). The ¢ can be selected as % to

satisfy that e < 1 — «. Then, the expected attack cost E™ [Cr]
will be O (T1).

In the non-stationary cases, if the victim algorithm sets
batch size as Ay = B VTTT>5, where 3 € [0,1], and B is
a constant independent of 7', Vi and 3, the expected attack
cost E™ [Cr] will be:

E™ [CT] -0 (VTﬂ(lfa)Tlfﬁ(lfa)
+VTB(172a+a27e+ae)T17ﬁ(172a+a276+a5)))

When the variation budget Vr is sublinear in 7, i.e., Vp =
O(T7) where v € (0, 1), the expected attack cost E™[Cr] will
be:

E™[Cr] = O (Tl—(l—'y)ﬂ(l—a) n Tl—(l—'y)ﬂ(l—2a+(12—e+ae))

which is sublinear in 7. Meanwhile, the target arm selection
E™ [NT (af)} will increase almost linear in 7.

D. Lower-bound of the expected attack cost

We have shown the upper-bound of the expected attack
cost and lower-bound of the expected target arm selection of
our attack strategies for three scenarios in Theorem IV.1, IV.2
and IV.3. We have proved that our attack strategies can suc-
cessfully control the victim algorithm’s behavior and induce a
small cost. In this section, we show that our attack strategies
are near optimal. In particular, we show that if an attacker
achieves T'— o(T') expected target arm selection, and it is also
victim-agnostic to non-stationary bandit algorithm that has the
batch behavior, then the attacker must induce at least expected
attack cost) (TATa_l), where A is the batch size. Here,
victim-agnostic means that the attacker does not know what
is exactly the victim algorithm, but only knows that the non-
stationary algorithm has sublinear static oracle regret in each
batch and follows the batch strategy.

Since we are looking for the victim-agnostic lower-bound,
it is sufficient to pick a particular victim non-stationary algo-
rithm that guarantees O (T*) static oracle regret in each batch,

)

under one bandit environment. Then we need to show that
any victim-agnostic attacker must induce at least some attack
cost to achieve T — o(T') expected target arm selection on
this particular victim algorithm. Specifically, we consider the
Exp3 algorithm with batch behavior, whose static oracle regret
is O(T'z) in each batch. The main result for lower-bound of
the expected attack cost is provided in Theorem IV.4.

Theorem IV.4. Assume some victim-agnostic attack algorithm
achieves E™ [Np(a')] = T — o(T) on all victim bandit
algorithms that has static oracle regret O (A1) in each
batch and follows the batch strategy to handle non-stationary
reward, where o € [%, 1). Then there exists a bandit task
such that the attacker must induce at least expected attack cost
E™ [Cr] =Q (T AT"‘_l) on some victim algorithm, where A
is the fixed batch size.

Theorem IV.4 reveals that the best achievable performance
of attacker is € (TATO“I), and our attack method is near
optimal in the easy attack scenario as Algorithm 2. For
the general scenarios as Algorithm 3 and Algorithm 4, our
methods may introduce a small additional cost depending on
the choice of parameters [and e.

V. EXPERIMENTAL DATA AND RESULTS

We consider a bandit problem environment with K = 5
arms. The target arm a! = 1. The initial expected reward is:

01, a=1
E[X:i(a)] =405, a=2,3,4.
08, a=5

The non-stationary reward structure is simulated by random
walk, which changes the expected reward at each step, and
the total variation of expected reward is bounded by Vy =
(T/K)1/ 1% The reward signal in [0, 1] given by environment
at each step t is sampled from a Beta distribution. For all three
attack scenarios, all rewards are scaled to [p, 1], where p = 0.1
in our experiment. Using the same scaled rewards for all three
cases makes it more reasonable to compare the results.

We attack the popular strategy for stochastic non-stationary
MAB problem, Rexp3 as described in Section II-D. Figure 4
shows the batch size Ap = [5(T/VT)2/ 3—‘ for different
horizon T-s in our experiments. The diminishing function
parameters are o = % and € = % Expectation is taken over 5
independent runs.

The attack result is shown in Figure 5 and 6. Scenario
1, 2 and 3 correspond to three attack scenarios: easy attack
(Algorithm 2), general attack (Algorithm 3), and general attack
without knowing Ar (Algorithm 4).

Figure 5 shows that the number of target arm selection
E™ [N7 (a')] increases significantly with attack. For example,
as shown in Table I, the percentage of target arm selection
increased from 1.2% to 69.23% in scenario 1, from 1.2% to
73.34% in scenario 2, and from 1.2% to 94.83% in scenario
3. Note that, in scenario 3, compared with scenarios 1 and 2,
the victim algorithm tends to select af more often since the

attacker gives more reward to the target arm every time after
a non-target arm is chosen. However, as shown in Figure 6,
Algorithm 4 also has disadvantage of having a larger attack
cost. In particular, the expected attack cost for 500,000 steps
are 88480.1, 77448.3 and 152052.8 for scenario 1, 2 and 3,
respectively.

TABLE I: Expected target arm pulls and percentage for
500,000 steps

With Attack Without Attack
Scenario Pulls % Pulls %
Scenario 1 | 346164.8 69.23 5994.8 1.20
Scenario 2 | 366715.8 73.34 5976.8 1.20
Scenario 3 | 474145.0 94.83 5997.4 1.20

The reason for the more target arm selection while less
attack cost in scenario 2, compared with scenario 1, is that
the attacker has a diminishing function in scenario 2. The di-
minishing function works as the lower-bound for manipulated
reward of the target arm. As a result, the victim algorithm
will receive more reward from the target arm at the beginning
of each batch, and thus tends to choose the target arm more
often. As long as the victim algorithm chooses the target arm,
and the diminishing function is less than the original reward,
which is usually the case after the first few steps in each batch,
there will be no additional attack cost.

In general, our three attack strategies are successful: the
expected attack cost, shown in Figure 6, is sublinear to 7',
when the victim algorithm is forced to select one suboptimal
arm mostly and the number of selection increases almost
linearly with 7', shown in Figure 5.

Figure 7 shows the expected attack cost in the general attack
scenario for different choice of parameter S for batch size
Ar = {5(T/VT)B—L, which is shown in Figure 8. The results
verify Theorem IV.2 that if the order of A is larger, the attack
cost will be smaller, since the power of Ar-s in Equation (2)
is negative.

Batch size information

14000
12000
10000 —

8000 -

<

6000
4000

2000

—%— Batch size Ay for scenario 1 2 3

T T T
300000 400000 500000

T

T T T
0 100000 200000

Fig. 4: Batch size A for different horizon T

Expected target arm selection E¥[N(a’)] for different 7

—e— Scenario 1 With attack Ra
—A— Scenario 1 No attack ’
400000 o~ Scenario 2 With attack .
-=—-+ Scenario 3 With attack - x
=¥~ Scenario 2 3 No attack L
300000
=
)
= 200000
100000
04 —————— X
T T T T T T
0 100000 200000 300000 400000 500000
T

Fig. 5: Target arm selection E™ [N (a')] for different horizon

Expected attack cost E*[Cy] for different 77

—e— Scenario 1 .

140000 - == Scenario 2

--—-+ Scenario 3
120000 o
100000

5 80000

60000

40000

20000 +

04

T T T
300000 400000 500000

T

T T T
0 100000 200000

Fig. 6: Attack cost E™[Cp] for different horizon T

VI. CONCLUSION

In this paper, we have proposed three reward attacks sce-
narios and corresponding attack methods for stochastic non-
stationary multi-armed bandit problem. Specifically, we have
focused on attacking the popular batched strategy for non-
stationary MAB problem, Rexp3, which inherently models the
temporal uncertainty of the non-stationary reward structure by
considering the variation budget V. We have proved that our
attack methods are successful and can force the algorithm to
pull the target arm a' almost linear in 7', while the expected
attack cost is sublinear in 7" in all three attack scenarios. The
experimental results verify our theoretical analysis. Moreover,
we have derived a lower-bound of the expected attack cost
when the attack is successful. This lower bound shows that
our attack method is near optimal in the easy attack scenario
and may introduce a small additional cost in the two general
attack scenarios.

S

Ar

(1]

[2

[

3

—_

[4

finar}

[5]

[6

=

[7

—

[8

—

Expected attack cost E™[Cr] for different T’

140000 9 —¢— Scenario 2, f = 1/2

=%~ Scenario 2, § =2/3

120000 = -+ Scenario 2, B =3/4

=~ Scenario 2, f =4/5
100000
80000
60000
40000
20000
0

T T T T T T
0 100000 200000 300000 400000 500000
T

Fig. 7: Attack cost E™[Cr] in scenario 2 for different 3

Batch size Ay for different 7

700004 ¢ B=1/2 e
B=2/3 P

60000 X B=3/4 /_/(

= B=4/5 P

Rd
50000 - x
K
Rd
7
40000 - o ix
X e
ke P
Rd
30000 - - -
20000)3822(e
><

10000 X{Exxxx

iﬁxx K=

o &
T T T T T T
0 100000 200000 300000 400000 500000
T

Fig. 8: Batch size A in scenario 2 due to different 3

REFERENCES

Kwang-Sung Jun, Lihong Li, Yuzhe Ma, and Jerry Zhu. Adversarial
attacks on stochastic bandits. In Advances in Neural Information
Processing Systems, volume 31, Montréal, Canada, December 2018.
Yuzhe Ma and Zhijin Zhou. Adversarial attacks on adversarial bandits.
arXiv preprint arXiv:2301.12595, 2023.

Guanlin Liu and Lifeng Lai. Efficient action poisoning attacks on linear
contextual bandits. arXiv preprint arXiv:2112.05367, 2021.

Guanlin Liu and Lifeng Lai. Action-manipulation attacks against stochas-
tic bandits: Attacks and defense. IEEE Transactions on Signal Processing,
68:5152-5165, 2020.

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic multi-armed-
bandit problem with non-stationary rewards. In Advances in Neural
Information Processing Systems, volume 27, Montréal, Canada, December
2014.

Aurélien Garivier and Eric Moulines. On upper-confidence bound
policies for switching bandit problems. In Proceedings of International
Conference on Algorithmic Learning Theory, pages 174-188, Espoo,
Finland, October 2011.

Ningyuan Chen and Shuoguang Yang. Bridging adversarial and nonsta-
tionary multi-armed bandit. arXiv preprint arXiv:2201.01628, 2022.
Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire.
The nonstochastic multiarmed bandit problem. SIAM Journal on Com-
puting, 32(1):48-77, 2002.

	Introduction
	Problem Formulation
	Multi-armed bandit problem
	Non-stationary environment
	MAB algorithm performance
	Non-stationary victim algorithm
	Attack the reward

	Proposed method
	Easy attack scenario
	General attack scenario
	General attack scenario without knowing T

	Theoretical analysis
	Easy attack scenario
	General attack scenario
	General attack scenario without knowing T
	Lower-bound of the expected attack cost

	Experimental data and results
	Conclusion
	References

