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We introduce the ozone group of a noncommutative algebra A, defined as the group of

automorphisms of A, which fix every element of its center. In order to initiate the study

of ozone groups, we study polynomial identity (PI) skew polynomial rings, which have

long proved to be a fertile testing ground in noncommutative algebra. Using the ozone

group and other invariants defined herein, we give explicit conditions for the center of a

PI skew polynomial ring to be Gorenstein (resp. regular) in low dimension.

Introduction

The centers of polynomial identity (PI) Artin–Schelter regular algebras of global dimen-

sion three, including the skew polynomial rings of three variables, have been studied by

Artin [1] and Mori [27] from the point of view of noncommutative projective geometry.

A motivation of this paper is to study the center of a PI skew polynomial ring of any

number of variables from an algebraic point of view.

One of our aims is to search for new invariants that control the structure of a PI

skew polynomial ring and its center, as well as the interplay between them. For example,

are there combinatorial invariants that are closely related to the Calabi–Yau property of

a PI skew polynomial ring or the Gorenstein property of its center? In our results below,
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5690 K. Chan et al.

we provide several invariants that provide an affirmative answer to this question (e.g.,

pgS in Theorem 0.10 or the element ojS pgS in Theorem 0.11).

We start with a more general class of algebras, as we hope that some of the

ideas in this paper will work more generally. Throughout, let k denote a base field with

char k = 0. Let A be a noetherian PI Artin–Schelter regular algebra with center Z. The first

combinatorial/algebraic invariant we introduce is the following, which will be studied

in more detail in [9].

Definition 0.1 ([9]). The ozone group of A is

Oz(A) := AutZ-alg(A).

The observant reader will notice a similarity between the ozone group and the

Galois group of a field extension E ⊂ F. The classical Galois group Gal(F/E) is not an

ozone group, per se, as the ozone group of any commutative ring is trivial. However, both

Galois groups and ozone groups involve automorphisms of an overstructure, which fix a

central substructure. This relationship will be considered further in [9].

By [9], the order of the ozone group satisfies the following condition:

1 ≤ | Oz(A)| ≤ rk(AZ).

It is quite surprising that the skew polynomial rings play a role at one of the extreme

cases of the above inequalities and that they can, in fact, be characterized in terms of

properties of the ozone group [Lemma 0.2].

Let p := (pij) ∈ Mn(k) be a multiplicatively antisymmetric matrix. The skew

polynomial ring

Sp := kp[x1, . . . , xn]

is the k-algebra generated by {x1, . . . , xn} and subject to relations

xjxi = pijxixj for all 1 ≤ i, j ≤ n.

By [13, Theorem 2], the parameter p, up to a permutation of {1, . . . , n}, is an algebra

invariant of Sp. It is easy to see that Sp is PI (i.e., Sp satisfies a polynomial identity)

if and only if each pij is a root of unity and this is the setting we consider in this paper.
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Ozone Groups of Skew Polynomial Rings 5691

Skew polynomial rings have been studied extensively and their ring theoretic

properties are well-understood. In particular, Sp is an Artin–Schelter regular algebra of

global and Gelfand–Kirillov dimension n. Skew polynomial rings provide a good set of

examples to test theories related to Artin–Schelter regular algebras in general.

However, there are still unsolved questions concerning skew polynomial rings.

For example, when p �= 1 is a root of unity, it is unknown if kp[x1, x2, x3] is cancellative

[28, Question 0.8] and it is not clear how to describe its full automorphism group. In the

current paper, we pay more attention to some homological questions.

Lemma 0.2 ([9]). Suppose k is algebraically closed. Let A be a noetherian PI Artin–

Schelter regular algebra generated in degree 1. Then A is isomorphic to a skew poly-

nomial ring if and only if Oz(A) is abelian and | Oz(A)| = rk(AZ).

We note that the hypothesis on k is not necessary for the forward direction in

Lemma 0.2.

For most of the results in this paper, we will assume the following hypothesis.

Hypothesis 0.3. Let S = Sp = kp[x1, . . . , xn] be a PI skew polynomial ring with deg(xi) =
1 for all i, and let Z = ZSp denote the center of S. Let ξ be a primitive �th root of unity

such that pij = ξbij for some integer bij. By convention, we choose the bij such that bii = 0

and bji = −bij for all i and j. We assume that � is minimal and that � > 1 (which is

equivalent to the noncommutativity of S). Hence, gcd(bij, �)1≤i,j≤n = 1. Implicitly, we fix

a set of generators {x1, . . . , xn}.
We let Z denote Z/�Z and let a (where a ∈ Z, Zn, or Mn(Z)) denote the image of a

modulo �. Let B = (bij), so B and B are n × n skew-symmetric matrices.

Let φi denote the automorphism of S given by conjugation by xi, that is,

φi(f ) = x−1
i fxi for all f ∈ S,

and let O be the subgroup of Autgr(S) generated by {φ1, . . . , φn}.

It turns out that O is the ozone group Oz(S) [9]. For each fixed i, we have φi(xs) =
ξbisxs = pisxs for all s and the order of φi is

o(φi) = �/ gcd{b1i, . . . , bni, �}.

It is easy to see that the center of Sp is

ZSp = SO
p .
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5692 K. Chan et al.

Hence, we are able to use tools of noncommutative invariant theory to reveal properties

of the center ZSp.

In general, it is difficult to discern properties of Sp simply by examining its

parameters p := (pij). However, in low-dimension (n ≤ 4), many such properties can

be worked out explicitly. In particular, we are interested in studying the center ZSp in

terms of p.

Note that most of the questions we consider are easily addressed in the case

n = 2. For a large part of this paper, we focus on the cases n = 3 and n = 4. We notice

that there are some similarities and differences between the cases of n being odd or even.

In some cases, we are able to say something about the case of higher n, and we hope that

some of the ideas and results presented here can be extended to general n.

Several of our results make use of the Pfaffian of the matrix B associated to Sp,

which we denote by pf(B). The Pfaffian was introduced by Cayley [6], based on earlier

work of Jacobi [15]. In particular, for even n, Cayley showed that the Pfaffian of a skew-

symmetric matrix is
√

det(B). When n is odd, every n × n matrix has Pfaffian 0. Now

suppose n is even and let A = (aij) be a skew symmetric n × n matrix. Denote by Aîĵ the

submatrix of A obtained by deleting both the ith row and column and the jth row and

column. The Pfaffian of A may be computed as

pf(A) =
n∑

k=2

(−1)ka1k pf(A1̂k̂).

Next we define a few more combinatorial invariants. For the remainder of this

introduction, we assume Hypothesis 0.3. In particular, we assume S = Sp is a PI skew

polynomial ring with center Z = ZSp. Define

fi = gcd{di | ∃ d1, . . . , d̂i, . . . , dn with xd1
1 · · · xdi

i · · · xdn
n ∈ Z}. (E0.3.1)

By Proposition 1.8(2), the set of integers {f1, . . . , fn} with multiplicities is an algebra

invariant of S.

In this paper, we would like to show that {f1, . . . , fn} also play an essential role in

several properties of the algebra Sp. They have been used to control the automorphism

group of S. For example, if fi ≥ 2 for all i, then every automorphism of S is affine and

every locally nilpotent derivation of S is zero [7, Theorem 3]. So, these numbers deserve

further attention. It would be nice to have a simple formula for fi in terms of {pij}.
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Ozone Groups of Skew Polynomial Rings 5693

Now we define the “ozone” version of three invariants studied in [21]. The ozone

Jacobian of S is defined to be

ojS :=
n∏

i=1

xfi−1
i , (E0.3.2)

the ozone arrangement of S is defined to be

oaS :=
∏
fi>1

xi, (E0.3.3)

and the ozone discriminant of S is defined to be

odS :=
∏
fi>1

xfi
i = ojS oaS. (E0.3.4)

All three of these definitions depend on the chosen generating set {x1, . . . , xn}. However,

by Proposition 1.8(1), up to an element of k×, ojS, oaS, and odS are algebra invariants of Sp.

We also consider the product of generators of S, which is defined to be

pgS :=
n∏

i=1

xi.

Note that pgS is not an algebra invariant.

We now summarize our main results and the structure of this paper. In Section 1,

we recall some basic definitions. In Section 2, we work out some basic facts concerning

the reflections in O. In Sections 3, 4, and 5, the main results are proven. More details on

those sections are given below. We think the results are inspiring, though the proofs are

not difficult. At the end, in Section 6, we list some questions and give some examples.

0.1 Auslander’s Theorem and smallness

In [2], Auslander proved that for V a finite-dimensional k-space, A = k[V], and G a finite

subgroup of GL(V), the map

A#G → EndAG(A) (E0.3.5)

a#g �→
(

A → A

b �→ ag(b)

)

is an isomorphism if and only if G is small (contains no pseudo-reflections). This map

may be defined for any algebra A and any finite subgroup G of Aut(A), though in general

it may not be injective or surjective. We say Auslander’s Theorem holds for the pair (A, G)

(or (A, G) satisfies Auslander’s Theorem) if (E0.3.5) is an isomorphism.
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5694 K. Chan et al.

Auslander’s Theorem is a critical component in the study of the McKay corre-

spondence, and has been studied in the noncommutative setting [10, 11, 14, 31]. Bao, He,

and the fourth author introduced the notion of pertinency in [3, 4]. As above, let A be an

algebra and G a finite subgroup of Aut(A). Then the pertinency of the G action on A is

defined to be

p(A, G) = GKdim(A) − GKdim
(

A#G

(fG)

)
, (E0.3.6)

where fG = ∑
g∈G 1#g ∈ A#G.

In Section 3, we study Auslander’s Theorem for the pair (S, O). There is a notion of

a reflection in the noncommutative setting related to the trace series of a graded algebra

[Definition 2.1(1)]. However, for the skew polynomial rings S, a diagonal automorphism g

is a reflection if and only if it is a classical pseudo-reflection when restricted to
⊕n

i=1 kxi

[Example 2.2].

Theorem 0.4. Assume Hypothesis 0.3. The following are equivalent.

(1) Auslander’s Theorem holds for (S, O).

(2) The pertinency satisfies p(S, O) ≥ 2.

(3) The O-action is small in the sense of Definition 2.1(3).

(4) The O-action is small in the classical sense, that is, it contains no pseudo-

reflection when restricted to
⊕n

i=1 kxi.

(5) The only Artin–Schelter regular algebra T satisfying Z ⊆ T ⊆ S is T = S.

(6) The ozone Jacobian ojS = 1, namely, fi = 1 for all i.

(7) For each i, there is an element of the form xa1
1 · · · xi · · · xan

n in Z.

Part (6) of the above theorem shows that ojS (or the set {f1, . . . , fn}) serves as an

invariant that can be used to determine whether Auslander’s Theorem holds for (S, O).

For small n, we have the following result in terms of the matrix B = (bij).

Theorem 0.5. Assume Hypothesis 0.3.

(1) Let n = 2. Then (S, O) does not satisfy Auslander’s Theorem.

(2) Let n = 3. Then (S, O) satisfies Auslander’s Theorem if and only if gcd(bij, �) =
1 for each i �= j.

(3) Let n = 4. Then (S, O) satisfies Auslander’s Theorem if and only if

• pf(B) ≡ 0 (mod �), and

• there does not exist an index j and an integer k such that kbij ≡ 0

(mod �) for all but one i.
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Ozone Groups of Skew Polynomial Rings 5695

0.2 Regular center

In Section 4, we consider the question of when Z := ZSp is regular, that is, under what con-

ditions is Z a polynomial ring. Again, in the case n = 2, this is clear (see Theorem 0.7(1)).

For the next theorem, we refer to Definition 1.6 for the notation jS,O and aS,O.

Theorem 0.6. Assume Hypothesis 0.3. The following are equivalent.

(1) Z is regular.

(2) Z = k[xw1
1 , · · · , xwn

n ] for some wi ≥ 1.

(3) Z = k[xf1
1 , · · · , xfn

n ].

(4) S is a free module over Z.

(5) O is a reflection group.

(6) |O| = �n∏n
s=1 gcd{b1s,b2s,··· ,bns,�} .

(7) |O| = ∏n
i=1 fi.

(8) O ∼= ∏n
s=1〈φs〉.

(9) xfi
i ∈ Z for all i.

When Z is regular, then ojS is equal to jS,O and oaS is equal to aS,O.

For small n, we have the following theorem in terms of the parameters p or the

matrix B. This result makes use of the Smith normal form of the matrix B.

Theorem 0.7. Assume Hypothesis 0.3.

(1) Let n = 2. Then Z = k[x�
1, x�

2] so Z is regular.

(2) Let n = 3. Then Z is regular if and only if the orders of {pij}i<j are pairwise

coprime.

(3) Let n = 4. Then Z is regular if and only if the orders of {qij}i<j are pairwise

coprime, where the qij are defined in Corollary 4.8.

Remark 0.8. In the case where � | pf(B), we have qij = pij, so the conditions for Z to be

regular for n = 3 and 4 look similar.

For arbitrary n, we have the following interesting partial result. Let o(pij) denote

the order of the root of unity pij.

Theorem 0.9. Assume Hypothesis 0.3. Suppose the orders {o(pij)}i<j are pairwise

coprime. Then Z is regular. As a consequence,
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5696 K. Chan et al.

(1) fi = ∏
j o(pij) = ∏

j �=i o(pij) for all i.

(2) |O| = �2.

Using the above theorem, one can easily construct many examples of skew

polynomial rings with regular centers. We are not aware of any analogous result for

other families of Artin–Schelter regular algebras.

0.3 Gorenstein center

In Section 5, we study the question of when Z := ZSp is Gorenstein. By a theorem of

Watanabe [29, Theorem 1], the invariant ring of k[x1, . . . , xn] by a finite linear group K

is Gorenstein when K ⊆ SLn(k). There is a suitable replacement for the group SLn(k)

in the noncommutative setting using the homological determinant hdet : K → k×, as

introduced by Jorgensen and the fourth author [16]. We refer to that reference for the

full generalization, as computing hdet in the case of the elements of Oz(S) acting on S is

relatively trivial [Example 1.4].

Theorem 0.10. Assume Hypothesis 0.3. The following are equivalent.

(1) S is Calabi–Yau (see Definition 1.2).

(2) The O-action on S has trivial homological determinant.

(3)
∏n

s=1 pis = 1 for all i = 1, . . . , n.

(4) pgS ∈ Z.

As a consequence, if one of the above holds, then Z is Gorenstein and all

statements in Theorems 0.4 and 0.11 hold.

When the O-action has trivial homological determinant, then Z is Gorenstein [16,

Theorem 3.3]. More generally, we let H denote the subgroup of O generated by reflections.

Then O/H acts on SH . By [19, Theorem 0.2], Z = SO is Gorenstein if and only if the O/H-

action has trivial homological determinant. By a result of Kirkman and the fourth author

[21, Theorem 2.4], we can show that Z is Gorenstein if and only if the ozone Jacobian ojS

is equal to the Jacobian jS,O defined in [21, Definition 0.3] (also see Definition 1.6). We

summarize these results as follows.

Theorem 0.11. Assume Hypothesis 0.3 and let H denote the subgroup of O generated

by reflections. The following are equivalent.

(1) Z is Gorenstein.

(2) The O/H-action on SH has trivial homological determinant.
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Ozone Groups of Skew Polynomial Rings 5697

(3) φi(ojS pgS) = ojS pgS, or
∏n

s=1 pfs
is = 1 for all i.

(4) ojS pgS ∈ Z.

By the above theorem, the centrality of ojSpgS serves an indicator for Z being

Gorenstein. Similarly, by Theorem 0.10, the centrality of pgS serves as an indicator for

S being Calabi–Yau. Using Theorems 0.4, 0.6, 0.10, and 0.11, one can easily show the

following.

Corollary 0.12. Assume Hypothesis 0.3. Then the following hold.

(1) S is Calabi–Yau if and only if Z is Gorenstein and Auslander’s Theorem holds

for (S, O).

(2) If S is Calabi–Yau, then Z is not regular.

It is natural to ask if there are similar results for other classes of Artin–

Schelter regular algebras. For example, if A is a noetherian graded down-up algebra with

parameters (α, β), then there is a canonical element b ∈ A such that A is Calabi–Yau if

and only if b ∈ Z(A) [Proposition 6.3]. It would be interesting to know if b can be defined

homologically.

For small n, we are able to give conditions that are equivalent to the Gorenstein-

ness of Z in terms of parameters p or the matrix B.

Theorem 0.13. Assume Hypothesis 0.3.

(1) Let n = 2. Then Z = k[x�
1, x�

2] so Z is Gorenstein.

(2) Let n = 3. For each 1 ≤ i, j ≤ 3, let b′
ij = gcd(bij, �). Then Z is Gorenstein if

and only if

B(b′
23, b′

13, b′
12)T = 0

in Z
3
.

(3) Let n = 4. Then Z is Gorenstein if and only if

�

gcd(pf(B), �)
B(v1, v2, v3, v4)T = 0

in Z
4

where vi = gcd(�, {bjk | j, k �= i}) for i = 1, . . . , 4.
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5698 K. Chan et al.

0.4 Graded isolated singularities

By Remark 3.7, under Hypothesis 0.3, Z is regular or does not have isolated singularities.

1 Preliminaries

In this section, we review some concepts that will be used throughout the paper. Some

of the definitions can be found in the survey paper of Kirkman [22].

Definition 1.1. A connected graded algebra A is called Artin–Schelter Gorenstein (or AS

Gorenstein, for short) if A has injective dimension d < ∞ on the left and on the right,

and

Exti
A(Ak, AA) ∼= Exti

A(kA, AA) ∼= δidk(l),

where δid is the Kronecker-delta. If in addition A has finite global dimension and

finite Gelfand–Krillov dimension (GKdim), then A is called Artin–Schelter regular (or AS

regular, for short) of dimension d.

For an algebra A, the enveloping algebra of A is Ae = A ⊗ Aop. If σ is an

automorphism of A, then σA is the Ae-module that, as a k-vector space, is just A, but

where the natural action is twisted by σ on the left: that is,

(a ⊗ b) · c = σ(a)cb

for all a ⊗ b ∈ Ae and c ∈ A.

Definition 1.2. Suppose A is AS regular of dimension d. Then there is a graded algebra

automorphism μ of A, called the Nakayama automorphism, such that

Extd
Ae(A, Ae) ∼= μA.

When μ = Id, then we say that A is Calabi–Yau.

Next we recall the trace series and homological determinant.

Definition 1.3. Let A be a connected graded algebra with Aj denoting the the homoge-

neous part of A of degree j. The trace series of a graded algebra automorphism σ of A is
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Ozone Groups of Skew Polynomial Rings 5699

defined to be

TrA(σ , t) :=
∞∑

j=0

(tr(σ |Aj
))tj,

where tr(σ |Aj
) is the usual trace of the k-linear map σ restricted to Aj.

When σ is the identity, we recover the Hilbert series of A, namely, TrA(Id, t) =
hA(t). If A is AS regular, then hA(t) = 1/r(t) where r(t) is an integral polynomial of degree

l ≥ d := gldim A and r(t) = 1 + r1t + · · · + rl−1tl−1 + rlt
l where rl = (−1)d. For every

graded algebra automorphism σ of A, TrA(σ , t) must be equal to 1/q(t) where q(t) =
1 + q1t + · · · + ql−1tl−1 + qlt

l. By [16, Lemma 2.6], the homological determinant of σ is

defined to be

hdet(σ ) = (−1)dql = rlql. (E1.3.1)

One nice property of homological determinant is that the map

hdet : Autgr(A) → k×

is a group homomorphism [16, Proposition 2.5]. When we consider a finite group G acting

on A, we say that the G-action has trivial homological determinant if hdet(G) = 1.

Example 1.4. Let A be the weighted skew polynomial ring Sp with deg(xi) > 0 for all i.

Let σ be a diagonal automorphism of A determined by

σ(xi) = aixi

for all i, where ai ∈ k×. Such an automorphism is also denoted by diag(ai). It is easy to

see that the trace series of σ is

TrA(σ , t) =
n∏

i=1

(1 − ait
deg(xi))−1.

By (E1.3.1), the homological determinant of σ is

hdet(σ ) =
n∏

i=1

ai. (E1.4.1)
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5700 K. Chan et al.

Another way of expressing the hdet is

σ

(
n∏

i=1

xi

)
= hdet(σ )

(
n∏

i=1

xi

)
. (E1.4.2)

Note that in this example, hdet(σ ) is the determinant of the matrix diag(ai). In general

this is not true, see [22, Example 1.8(2)].

Lemma 1.5. Assume Hypothesis 0.3.

(1) For all i, hdet φi = ∏n
s=1 pis.

(2) O has trivial homological determinant if and only if
∏n

s=1 pis = 1 for all i.

(3) If n = 3, then O has trivial homological determinant if and only if there exists

a root of unity p such that

(pij) =

⎛⎜⎜⎝
1 p p−1

p−1 1 p

p p−1 1

⎞⎟⎟⎠ .

(4) If n = 4, then O has trivial homological determinant if and only if there exist

roots of unity p, q, r such that

(pij) =

⎛⎜⎜⎜⎜⎝
1 q p p−1q−1

q−1 1 r qr−1

p−1 r−1 1 pr

pq q−1r p−1r−1 1

⎞⎟⎟⎟⎟⎠ .

Proof. Part (1) follows directly from (E1.4.1). Parts (2), (3), and (4) now follow from (1).�

The notions of the Jacobian and reflection arrangement of a finite group

action on an AS regular algebra were introduced in [21, Definition 0.3]. We will

soon consider diagonal actions on Sp after the definition (e.g., G is a subgroup

of O).

Definition 1.6 ([21, Definition 0.3]). Let A be a noetherian AS regular algebra and G is a

finite subgroup of Autgr(A).

(1) Let Ahdet−1 := {x ∈ A | σ(x) = (hdet(σ ))−1x, ∀ σ ∈ G}. If Ahdet−1 is a free

AG-module of rank one on both sides generated by an element, denoted by

jA,G, then jA,G is called the Jacobian of the G-action. By [21, Theorem 2.4], the

Jacobian jA,G exists if and only if AG is AS Gorenstein.
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Ozone Groups of Skew Polynomial Rings 5701

(2) Let Ahdet := {x ∈ A | σ(x) = hdet(σ )x, ∀ σ ∈ G}. If Ahdet is a free AG-module of

rank one on both sides generated by an element, denoted by aA,G, then aA,G is

called the reflection arrangement of the G-action. By [21, Theorem 0.2], the

reflection arrangement aA,G exists if AG is AS regular.

Lemma 1.7. Assume Hypothesis 0.3 and let G be a finite subgroup of diagonal automor-

phisms of S. Then pgS := ∏n
i=1 xi is an element in Shdet. As a consequence, if aS,G exists,

then it is a factor of pgS.

Proof. The main assertion follows from (E1.4.2). The consequence is clear. �

Recall that ojS, oaS, and odS are defined (E0.3.2)–(E0.3.4).

Proposition 1.8. Assume Hypothesis 0.3.

(1) Up to nonzero scalars, ojS, oaS, and odS are algebra invariants of S. Namely,

they are independent of the chosen generating set {x1, . . . , xn}.
(2) The set {f1, . . . , fn} with multiplicities is an algebra invariant of S.

Proof. (1) We use the notation introduced in [7] without giving detailed definitions. For

each s ∈ {1, . . . , n}, let Ts be the set defined as before [7, Lemma 2.9] and let dw(S/Z) be the

discriminant of S over its center Z introduced in [7, Definition 1.2(3)] where w = rk(SZ).

It follows from [7, Lemma 2.9(2)] that fs > 1 if and only if Ts is empty. Combined with [7,

Theorem 2.11(2)], we obtain that fs > 1 if and only if xs divides dw(S/Z), In other words,

dw(S/Z) =
k×

∏
i,fi>1 xλi

i for some λi ≥ 1. By definition, dw(S/Z) is an algebra invariant of

A up to a nonzero scalar [7].

Since S is Nn-graded, the prime decomposition of xλi
i is unique and {xi | fi > 1} is

a complete list of prime factors of dw(S/Z). Therefore, the list I := {k×xi | fi > 1} (after

adding nonzero scalars) is an algebra invariant of S. As a consequence, oaS is an algebra

invariant.

Note that, for each k×xi ∈ I,

fi = gcd{d | xd
i a ∈ Z for some a ∈ S with xi � a}.

This implies that the set {k×xfi
i | fi > 1} is also an algebra invariant of S. As a consequence,

odS is an algebra invariant of S.

Since ojS = odS(oaS)−1, ojS is an algebra invariant.

(2) By part (1), the set {fi | fi > 1} is an algebra invariant of S. Since {f1, . . . , fn} =
{fi | fi > 1} ∪ {1, . . . , 1} considered as a set with multiplicities, the assertion follows. �
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5702 K. Chan et al.

2 Reflections and Reflection Groups

Throughout this section, we assume Hypothesis 0.3. Recall that a linear automorphism g

of a finite-dimensional vector space V is a pseudo-reflection if g fixes a codimension one

subspace. In the noncommutative case, we need to use the trace series [Definition 1.3] to

define a reflection.

Definition 2.1 ([18, Definition 1.4]). Let A be an AS regular algebra of Gelfand–Kirillov

dimension n.

(1) We call a graded algebra automorphism σ of A a reflection of A if σ �= Id has

finite order and the trace series of σ has the form

TrA(σ , t) = 1

(1 − t)n−1q(t)
where q(1) �= 1.

(2) A finite subgroup G ⊆ Autgr(A) is called a reflection group if it is generated

by reflections.

(3) A finite subgroup G ⊆ Autgr(A) is called small if it does not contain any

reflections.

Example 2.2. Let S = Sp with deg(xi) = 1 for all i and let σ = diag(ai), ai ∈ k×, as in

Example 1.4. By that example, the trace series of σ is

TrS(σ , t) =
n∏

i=1

(1 − ait)
−1.

Hence, σ is a reflection if and only if ai = 1 for all i but one. Therefore, σ is a reflection

if and only if σ |S1
is a pseudo-reflection. As a consequence, O is small in the sense of

Definition 2.1(3) if and only if O is small in the classical sense.

One noncommutative version of the Shephard–Todd–Chevalley theorem is the

following.

Theorem 2.3 ([20, Theorem 5.5]). Let S = Sp and let G be a finite group of graded algebra

automorphisms of S. Then SG has finite global dimension if and only if G is generated by

reflections of S (in this case, SG is again a skew polynomial ring with weighted grading).

In this paper, we will only apply this theorem when every element of G is a

diagonal automorphism of S. In fact, we will only consider the case when G is a subgroup

of Oz(S). We now introduce the notion of an ozone subring.
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Ozone Groups of Skew Polynomial Rings 5703

Definition 2.4. Let A be a noetherian PI AS regular algebra with center Z.

(1) A subring R of A is called ozone if R is AS regular and Z ⊆ R ⊆ A.

(2) The set of all ozone subrings of A is denoted by 
Z(A).

(3) If R is a minimal element in 
Z(A) via inclusion, then R is called a mozone

subring of A.

Note that A itself is an ozone subring of A, so 
Z(A) is not empty. If Z is AS regular

(i.e., a commutative polynomial ring) or if A = Z is itself commutative, then Z is the unique

mozone subring of A. Assume Hypothesis 0.3 and let H be the subgroup of O := Oz(S)

that is generated by reflections. Let B := SH . By Theorem 2.3, B is a skew polynomial ring

(and hence an ozone subring of S). We will show that B is a mozone subring of S. (See also

Question 6.2(6).)

Proposition 2.5. Assume Hypothesis 0.3. Let H be the subgroup of O generated by

reflections in O. Then SH is a mozone subring of S.

Proof. Since H fixes SH , there is an induced action of O/H on SH . By the proof of [19,

Proposition 4.12], this action is small in the sense of Definition 2.1(3). Hence, by [3,

Theorem 5.5], we therefore have that SH#(O/H) ∼= EndSO(SH) (which is analogous to a

weighted version of Theorem 0.4).

Now suppose for contradiction that there is an AS regular algebra R such that

Z ⊆ R � SH . By [18, Lemma 1.10(b)], SH is a graded free module over R. Hence, we can

write SH = R ⊕ R(−d1) ⊕ · · · ⊕ R(−dn) for some integers di, at least one of which is

positive. Then EndSO(SH) contains elements of negative degree, which contradicts that it

is isomorphic to SH#(O/H). �

Recall from (E0.3.1) that

fi = gcd{di | ∃ d1, . . . , d̂i, . . . , dn with xd1
1 · · · xdi

i · · · xdn
n ∈ Z}.

Let M be the subring of S generated by {xf1
1 , . . . , xfn

n }. It is straightforward to verify that

M ∈ 
Z(S).

Proposition 2.6. Assume Hypothesis 0.3. Let H be the subgroup of O generated by

reflections in O.
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5704 K. Chan et al.

(1) The subgroup H is isomorphic to
∏n

i=1〈ri〉 where ri is a diagonal automor-

phism of S determined by

ri : xj �→
⎧⎨⎩xj j �= i

cixi j = i

for some root of unity ci.

(2) For each i, let wi be the order of ci given in part (1). For each i, j, define qij =
p

wiwj

ij and let q = (qij). Then SH = kq[xw1
1 , . . . , xwn

n ].

(3) For each i, wi = fi.

(4) fi = min{di > 0 | ∃ d1, . . . , d̂i, . . . , dn with xd1
1 · · · xdi

i · · · xdn
n ∈ Z}.

Proof. (1) Let Hi be the subgroup of H that is generated by reflections r of the form

r(xj) =
⎧⎨⎩xj j �= i

αixi j = i

for some αi ∈ k. Since every element in O is a diagonal automorphism, by Example 2.2,

every reflection is of the form of r given above. Since H is generated by reflections in O,

H is generated by the union of the Hi. It is clear that the product
∏n

i=1 Hi is a subgroup

of H. Thus H = ∏n
i=1 Hi. Note that each Hi is a finite subgroup of k×, whence it is cyclic.

Therefore, each Hi is of the form 〈ri〉 where ri is a diagonal reflection automorphism of S.

The assertion follows.

(2) It is clear that SH ⊇ kq[xw1
1 , . . . , xwn

n ]. Since S is Zn-graded and H consists of Zn-

graded algebra automorphisms of S, SH is Zn-graded. So to prove SH ⊆ kq[xw1
1 , . . . , xwn

n ],

we only need to consider monomials in SH . Suppose that f := xv1
1 · · · xvn

n is an element of

SH . Since f = ri(f ) = cvi
i f for all i, we see that wi | vi. The assertion follows.

(3) By part (2) and the fact that H ⊆ O, we have

Z = SO ⊆ SH = kq[xw1
1 , . . . , xwn

n ].

Therefore, every monomial in Z is a product of xw1
1 , . . . , xwn

n . By definition, wi | fi for all i.

Next we show that fi | wi. Let c′
i be a primitive fith root of unity. By the definition of the

fi, we obtain that Z is a subring of M ′ := k(q′
ij)

[xf1
1 , . . . , xfn

n ] where q′
ij = p

fifj

ij . Let r′
i be the

diagonal automorphism of S determined by

xj �→
⎧⎨⎩xj j �= i

c′
ixi j = i.
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Ozone Groups of Skew Polynomial Rings 5705

It is clear that r′
i preserves M ′ and hence Z so r′

i ∈ O. Since r′
i is a reflection, therefore

r′
i ∈ H and consequently, xwi

i = r′
i(x

wi
i ) = (c′

i)
wixwi

i . This implies that (c′
i)

wi = 1 or fi | wi

as required.

(4) By definition, fi is given by (E0.3.1). For each i, there are finitely many central

elements, say z(1), . . . , z(s), defined by

z(j) := x
dj

1
1 · · · x

dj
i

i · · · xdj
n

n ∈ Z

such that fi = gcd{d1
i , · · · , ds

i }. Write fi = ∑s
j=1 cjd

j
i. Choose an integer α such that c′

j :=
cj + α� > 0 for all j. Then fi =

(∑s
j=1 c′

jd
j
i

)
− β� for some β and, up to a scalar, we have

∏
j

z(j)c′
j = x

d′
1

1 · · · xfi
i · · · x

d′
n

n xβ�

i ∈ Z.

This implies that x
d′

1
1 · · · xfi

i · · · x
d′

n
n ∈ Z. The claim follows. �

Theorem 2.7. Assume Hypothesis 0.3. If Z is Gorenstein, then ojS is equal to the

Jacobian jS,O.

Proof. Let H be the subgroup of O generated by reflections in O. By Proposition 2.6(2,3),

SH = k[xf1
1 , · · · , xfn

n ]. Then

S =
⊕

0≤si≤fi−1

xs1
1 · · · xsn

n SH . (E2.7.1)

Since pgS ∈ ShdetO
(see (E1.4.2)) and since the H-action on χ := ∏n

i=1 xfi
i is trivial, ojS =

χ(pgS)−1 ∈ Shdet−1
H

. The decomposition (E2.7.1) shows that Shdet−1
H

= ojSSH or equivalently,

ojS is jS,H . Therefore, Shdet−1
O

⊆ Shdet−1
H

= ojSSH .

We claim that ojS ∈ Shdet−1
O

. To see that we note that ojS = χ(pgS)−1. For every

g ∈ O, let g be the induced algebra automorphism of SH . Since Z = (SH)O/H is Gorenstein,

then the O/H-action on SH has trivial homological determinant by [19, Theorem 0.2].

Since SH is a skew polynomial ring and g is a diagonal action, O/H-action having trivial

homological determinant implies that

g(χ) = g

(
n∏

i=1

xfi
i

)
=

n∏
i=1

xfi
i = χ ,
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5706 K. Chan et al.

see (E1.4.2). Hence,

g(ojS) = g(χpg−1
S ) = g(χ)(g(pgS))−1 = χ hdet−1(g)(pgS)−1 = hdet−1(g)ojS.

This implies that ojS ∈ Shdet−1
O

. Then it is easy to check that Shdet−1
O

= ojSSO. In other

words, ojS = jS,O. �

Proposition 2.6, and part (4) in particular, make computing the fi straightforward

in small dimension, as demonstrated by the following result.

Lemma 2.8. Assume Hypothesis 0.3 and let n = 3. Then=10

f1 = gcd(b23, �), f2 = gcd(b13, �), f3 = gcd(b12, �).

Proof. We prove the first equality, as the others are similar. First note that xb23
1 x�−b13

2 xb12
3 ∈

Z, and so f1 | b23.

Since x� ∈ Z, then f1 | �, so f1 | gcd(b23, �). On the other hand, there exists a =
xu1

1 xu2
2 xu3

3 ∈ Z with u1 = f1 by Proposition 2.6(4). By considering [x2, a] = [x3, a] = 0, we

have

b23u3 ≡ b12u1 mod �

b23u2 ≡ −b13u1 mod �.

Hence, if d | b23 and d | �, then d | b12u1 and d | b13u1. But since d | b23u1 and

gcd(b23, b12, b13) = 1, then d | u1. Thus, d | f1, so gcd(b23, �) | f1. �

For i = 1, 2, 3, set

gi = o(φi) = �

gcd(bij, bik, �)
with {i, j, k} = {1, 2, 3}.

Then it follows from Lemma 2.8 that

gi = �

gcd(fj, fk, �)
with {i, j, k} = {1, 2, 3}.

Write g = (g1, g2, g3) and f = (f1, f2, f3). By Theorem 0.6, Z is regular if and only if g = f.

3 Auslander’s Theorem

Throughout this section, we assume Hypothesis 0.3. In this section, we seek to

understand when the Auslander map

S#O → EndSO(S)
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Ozone Groups of Skew Polynomial Rings 5707

is an isomorphism. Recall, from Definition 2.1, that a finite subgroup G ⊆ Autgr(A)

is called small if it does not contain any reflections. By Example 2.2, when A = Sp,

G is small if and only if G, considered as a subgroup of GL(
⊕n

i=1 kxi), is small in the

classical sense.

Proof of Theorem 0.4. (1) ⇔ (2): By [4, Theorem 0.3], the Auslander map is an isomor-

phism for the pair (S, O) if and only if p(S, O) ≥ 2.

(1) ⇔ (3) ⇔ (4): Since each φi is a diagonal automorphism, by [3, Theorem 5.5],

the Auslander map is an isomorphism for the pair (S, O) if and only if O is small in the

classical sense, that is, if and only if O, when restricted to
⊕n

i=1 kxi, contains no pseudo-

reflections of
⊕n

i=1 kxi.

(3) ⇔ (5): If O is small, then, by Proposition 2.5, we have that S is the unique

mozone subring of S. Conversely, if O is not small, then let H ≤ O be the non-trivial

subgroup of reflections. By Proposition 2.6, SH � S is a mozone subring of S, and hence

S is not a mozone subring.

(3) ⇔ (6): By Proposition 2.6(2,3), SH = k[xf1
1 , · · · , xfn

n ]. Hence, H = {1} if and only

if fi = 1 for all i.

(6) ⇔ (7): This follows from Proposition 2.6(4). �

For the rest of the section, we consider the cases of small n. In the n = 2 case,

with S = kp[x1, x2] for p �= 1, we have SO = k[x�
1, x�

2] where � is the order of the root of unity

p. Consequently, S is free over SO. It follows that EndSO(S) has negative degree maps and

so the Auslander map S#O → EndSO(S) is not an isomorphism. Next we consider n = 3

and 4.

Let g = φ
u1
1 · · · φun

n ∈ O and write u = (ui) for the (column) vector with components

ui. For a vector x, we use xT to denote its transpose. The restriction of g to S1 is given

by the diagonal matrix diag(ξvi) where (vi)
T = vT = uTB, viewing v and u as elements

of Z
n

. It is clear that g is a pseudo-reflection if v = λei for some nonzero λ ∈ Z and

some 1 ≤ i ≤ n. We can therefore express the condition of O being small in terms of

nonexistence of solutions of some linear equations over Z. Namely, O having no pseudo-

reflections is equivalent to the equation uTB = λeT
i having no solution for any nonzero

λ ∈ Z. Taking transposes, this is equivalent to the equation

By = λei, (E3.0.1)

having no solutions y ∈ Z
n

for any nonzero λ ∈ Z and any 1 ≤ i ≤ n.

The next lemma allows us to reduce to the case that no xi is central.
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5708 K. Chan et al.

Lemma 3.1. Suppose x1 is central (equivalently, φ1 = id). Let R be the subalgebra of S

generated by x2, . . . , xn, and let O′ = 〈φi

∣∣
R | i = 2, . . . , n〉. Then p(R, O′) = p(S, O) so (S, O)

satisfies Auslander’s Theorem if and only if (R, O′) does.

Proof. Since O acts trivially on x1, by (E0.3.6), we have

p(S, O) = GKdim(S) − GKdim(S#O/(fO))

= GKdim(R[x1]) − GKdim(R[x1]#O/(fO))

= (GKdim(R) + 1) − GKdim((R#O′/(fO′))[x1])

= (GKdim(R) + 1) − (GKdim(R#O′/(fO′)) + 1)

= GKdim(R) − GKdim(R#O′/(fO′))

= p(R, O′).
�

We begin by considering the case n = 3. For a root of unity p, let o(p) denote its

order.

Proposition 3.2. Assume Hypothesis 0.3 with n = 3. Then (S, O) satisfies Auslander’s

Theorem if and only if each pij is a primitive �th root of unity for all i �= j.

Proof. By Lemma 3.1, we may assume that no φi = Id.

Assume O is small so that no power of the φi are reflections. Note that φ
o(p12)

1 =
diag(1, 1, po(p12)

13 ). By hypothesis, this implies that o(p13) divides o(p12). Using the same

logic on the other φi gives o(p12) = o(p13) = o(p23). That is, each of the pij is a primitive

�th root of unity.

Conversely, assume that each of the pij is a primitive �th root of unity and so

gcd(bij, �) = 1 for each bij. We wish to show that equation (E3.0.1) has no solutions. Now

we compute

By = B

⎡⎢⎢⎣
y1

y2

y3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
y2b12 + y3b13

−y1b12 + y3b23

−y1b13 − y2b23

⎤⎥⎥⎦ .

Without loss of generality, suppose that the first two entries of By are equal to 0. Then

b12(y1b13 + y2b23) = b13(y1b12) + b23(y2b12)

= b13(y3b23) − b23(y3b13) = 0

and hence By = 0. Therefore, equation (E3.0.1) has no solutions and so O is small. �
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Ozone Groups of Skew Polynomial Rings 5709

Example 3.3. As a consequence of the proof of Proposition 3.2, when n = 3, if no power

of any φi is a reflection, then O is small. By contrast, in the n = 4 case, it is possible for

O to contain a reflection even if no power of any φi is a reflection.

Let ξ be a primitive sixth root of unity and set

p12 = p13 = p23 = ξ

p14 = p24 = p34 = −1.

Then

φ1 = diag(1, ξ , ξ , −1) φ2 = diag(ξ−1, 1, ξ , −1)

φ3 = diag(ξ−1, ξ−1, 1, −1) φ4 = diag(−1, −1, −1, 1).

(Here we consider the map φi as a matrix form when restricted to the degree 1 part of S.)

So no power of any φi is a reflection. However,

ψ = φ1φ2φ3 = diag(ξ−2, 1, ξ2, −1)

and so ψ3 = diag(1, 1, 1, −1). That is, ψ3 is a reflection. By an easy computation, fi = 2

for all i = 1, 2, 3, 4. As a consequence,

x2
1x2

2x2
3x2

4 = (ojS)2 = (oaS)2 = (pgS)2 = odS

up to nonzero scalars. Using the results stated in the introduction, we have

(1) (S, O) does not satisfy Auslander’s Theorem as f1 �= 1 [Theorem 0.4(6)],

(2) S is not Calabi–Yau as pgS �∈ Z [Theorem 0.10(4)], and

(3) Z is not Gorenstein as ojS pgS �∈ Z [Theorem 0.11(4)].

We will shortly give necessary and sufficient conditions on the entries bij of B

for O to be small when n = 4. The following result gives a necessary condition for any n,

and is of independent interest.

Proposition 3.4. Assume Hypothesis 0.3. If O is small, then � | pf(B).

Proof. When n is odd, pf(B) = 0, and so the statement is vacuously true. Now suppose

n is even. We will prove the contrapositive: if pf(B) �= 0 in Z, then O contains a reflection.

Recall the adjugate matrix adj(B) is defined by the property

adj(B)B = B adj(B) = det(B)I.
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5710 K. Chan et al.

There is a Pfaffian version of this for skew symmetric B (with n even), defined by

Padj(B)B = B Padj(B) = pf(B)I

[5, Corollary 1, page 46]. If pf(B) �≡ 0 (mod �), we can use the above to solve the equation

By = pf(B)ei. For any i,

y = Padj(B)ei.

By the discussion preceding equation (E3.0.1), this produces a reflection in O. �

Proposition 3.5. Assume Hypothesis 0.3 and let n = 4. Then O is small if and only if

the following two conditions hold:

(1) pf(B) ≡ 0 (mod �) and

(2) there does not exist an index j and an integer k such that kbij ≡ 0 (mod �)

for all but one i.

Proof. As discussed at the beginning of this section, the smallness of O is equivalent to

equation (E3.0.1) having no solutions.

The previous proposition shows that if O is small, then pf(B) ≡ 0 (mod �), so

condition (1) holds. Further, if there did exist an index i and an integer k such that kbij ≡ 0

(mod �) for all but one j, then B(kej) = kbijei, and so we have a solution to (E3.0.1). Hence,

if O is small then conditions (1) and (2) hold.

Conversely, suppose that conditions (1) and (2) hold. We wish to show that (E3.0.1)

does not have any solutions. Without loss of generality, suppose to the contrary that there

is a solution, say u, when i = 4, so that λe4 = Bu. Multiplying both sides by Padj(B) gives

λPadj(B)e4 = Padj(B)Bu = pf(B)Iu = 0.

Using [5, Definition 1, page 46], one easily computes that

λPadj(B)e4 = λ(−b23, b13, −b12, 0)t.

Now since b12λ ≡ b13λ ≡ 0 (mod �), condition (2) implies that b14λ ≡ 0 (mod �).

Similarly, since b12λ ≡ b23λ ≡ 0 (mod �), then b24λ ≡ 0 (mod �). And since b14λ ≡ b24λ ≡
0 (mod �), then b34λ ≡ 0 (mod �). But since λ �= 0, this implies that gcd(bij, �) �= 1, which

is a contradiction. �

Now we are ready to prove Theorem 0.5.
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Ozone Groups of Skew Polynomial Rings 5711

Proof of Theorem 0.5. Note that the case n = 2 is trivial. The case n = 3 follows from

Proposition 3.2 while the n = 4 case follows from Proposition 3.5. �

Remark 3.6. We remark that condition (2) in Proposition 3.5 is equivalent to the

condition that for all 1 ≤ i ≤ 4, no φk
i is a reflection. Hence, in both the cases n = 3

and n = 4, the smallness of O is equivalent to the Pfaffian being 0 (which is automatic

when n = 3) and no power of a generator φi being a reflection. In Example 3.3, the Pfaffian

of B was nonzero.

Remark 3.7. Let R be an AS regular algebra satisfying gldim(R) ≥ 2 and G a finite sub-

group of Autgr(R). We say RG has graded isolated singularities if

p(R, G) = GKdim(R).

Consider the case that R = Sp on n variables and G = O as above. By [3, Lemma

5.4], it suffices to compute p(A, G) where A = k[x1, . . . , xn]. But in this setting, p(A, G) = n

is equivalent to G acting freely on A1\{0} (see the references given in [11, page 4320]). It

is clear that this fails since, for example, φi(xi) = xi, Hence, choosing any nontrivial φi

(one of which must exist if R is noncommutative), shows that G does not act freely on

A1. Thus ZSp does not have isolated singularities.

On the other hand, there are other AS regular algebras A such that Z(A) has an

isolated singularity [9].

4 Regular Center

Throughout this section, we assume Hypothesis 0.3. We consider the question of

determining when the center of S is regular (equivalently, Z is a polynomial ring).

Recall that B is the matrix obtained from B by reduction mod �. Let K denote

the kernel of B and K be its inverse image in Zn. For i = 1, . . . , n, denote by Ki ⊆ Z the

projection of K onto its ith component. If p is a prime number, then let Z(p) denote the

localization of Z at the prime ideal (p). If M is a Z-module and m ∈ M, we use the notation

m ⊗ 1 to denote the image of m in M ⊗ Z(p).

Lemma 4.1. Assume Hypothesis 0.3.

(1) Let xu1
1 · · · xun

n be a monomial in S. Write u = (u1, . . . , un)T and xu :=
xu1

1 · · · xun
n . Then xu is central if and only if u ∈ K.

(2) We have Z = k[xf1
1 , . . . , xfn

n ] if and only if fiei ∈ K for each i = 1, . . . , n.

Equivalently, fiei ⊗ 1 ∈ K ⊗ Z(p) for every prime p | � and i = 1, . . . , n.
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5712 K. Chan et al.

Proof. (1) For any 1 ≤ i ≤ n we have

xi

(
xu1

1 · · · xun
n

) = ξbi1u1+···+binun
(
xu1

1 · · · xun
n

)
xi

= ξ (Bu)i
(
xu1

1 · · · xun
n

)
xi.

Hence, xu is central if and only if ξ (Bu)i = 1 for all i if and only if u ∈ K.

(2) By part (1) and definition, fi = gcd(Ki). If fiei ∈ K, then by part (1), we have

xfi
i ∈ Z. Suppose that xu ∈ Z, or equivalently, u ∈ K. Then by the definition of fi (see

(E0.3.1)), there exist integers ai such that fiai = ui, so that (xf1
1 )a1 · · · (xfn

n )an = xu. Hence,

Z ⊆ k[xf1
1 , . . . , xfn

n ]. The converse is clear. �

Proof of Theorem 0.6. (1) ⇔ (5): This is [20, Theorem 5.5].

(1) ⇔ (4): This follows from [18, Lemma 1.10].

(5) ⇒ (3): By the proof of Proposition 2.6, when O = H, Z = SO = SH is the subring

of the form k[xf1
1 , · · · , xfn

n ].

(3) ⇒ (2) ⇒ (1): These implications are clear.

(3) ⇔ (7): Since O is generated by {φi}n
i=1, it is preserved under base field extension.

Further both assertions in (7) and (3) are preserved under base field extension. So we can

assume that k is algebraically closed, whence we can use Lemma 0.2. Given (3), it is

easy to see that rk(SZ) = ∏n
i=1 fi, and this is the order of O by Lemma 0.2. Conversely,

Z ⊆ k[xf1
1 , · · · , xfn

n ] := B ⊆ S by definition. Then rk(SB) rk(BZ) = rk(SZ) = |O| where the last

equation is Lemma 0.2. Further, O acts on B with Z = BO. Hence, Z is a direct summand of

B (see [18, Lemma 1.11] and [26, Corollary 1.12]). Since rk(SB) = ∏n
i=1 fi, then |O| = ∏n

i=1 fi

implies that rk(BZ) = 1 or equivalently, Z = B = k[xf1
1 , · · · , xfn

n ].

(3) ⇒ (6): Since O is generated by {φ1, · · · , φn}, there is a surjective map
∏n

s=1〈φs〉 →
O and consequently,

|O| ≤ �n∏n
s=1 gcd{b1s, b2s, · · · , bns, �}

.

Similar to the argument in (3) ⇔ (7), we can assume that k is algebraically closed.

Again by Lemma 0.2, |O| = rk(SZ) = ∏n
i=1 fi. Since xfi

i ∈ Z, pfi
is = 1 after applying φs to xfi

i .

Equivalently, bisfi is divisible by �. Then

gcd{bi1, · · · , bin, �}fi = gcd{bi1fi, · · · , binfi, �fi} = �a

for some integer a. Therefore, fi ≥ �
gcd{bi1,··· ,bin,�} . Thus,

|O| ≥ �n∏n
i=1 gcd{bi1, · · · , bin, �} .

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/7/5689/7310897 by U
niversity of W

ashington Law
 School - G

allagher Law
 Library user on 11 M

ay 2024



Ozone Groups of Skew Polynomial Rings 5713

This proves equality. In fact, we also obtain that

fi = �

gcd{bi1, · · · , bin, �} . (E4.1.1)

(6) ⇔ (8): Since the order of φi is �
gcd{bi1,··· ,bin,�} , (6) implies that the surjective map

O → ∏n
i=1〈φi〉 is bijective. The converse is similar.

(6) ⇒ (2): Let wi = �
gcd{bi1,··· ,bin,�} . Then wibis is divisible by �. This implies that

xwi
i ∈ Z for all i. Let C = k[xw1

1 , · · · , xwn
n ]. So rk(SC) = �n∏n

i=1 gcd{bi1,··· ,bin,�} , which is equal to

|O|. Since rk(SZ) = |O|, we obtain that rk(ZC) = 1. Since Z is Cohen–Macaulay [16, Lemma

3.1], then C = Z.

(9) ⇔ (3): This is Lemma 4.1(2).

When Z is regular, it is Gorenstein. By Theorem 2.7, ojS is equal to jS,O. By a

decomposition like (E2.7.1), one sees that oaS is equal to aS,O. �

Remark 4.2. We now describe an idea (or rather an algorithm) for testing regularity

and Gorensteinness of Z that works for any n. We divide it into several steps.

(1) Recall that if M is any matrix over a PID, then there exists a diagonal matrix

D and invertible matrices L, R such that D = LMR. The matrix D is the Smith

normal form of M. We will apply this to the matrix B.

(2) By definition, K is the preimage of K where K is the kernel of the map LB :

Z
n → Z

n
(as a left multiplication by the matrix B). We also use B to denote

this (right) Z-module endomorphism LB if no confusion occurs. By definition

there is a short exact sequence

0 → �(Zn) → K → K → 0.

As a consequence, K contains �ei for each i. We may consider {�ei}n
i=1 as

a subset of a generating set of K. If necessary, we also view B as the

composition map Zn → Z
n LB−→ Z

n
. In this setting, K is the kernel of B.

(3) Since Z is integrally closed and K is finitely generated, the conditions in

Lemma 4.1(2) can be checked locally (at prime p for all p | �), and to do this

it is convenient to have a generating set for K(p) := K ⊗ Z(p). To this end, we

compute the kernel of the map B(p) := B ⊗ Z(p) for each prime p | �, in other

words, we produce a generating set for K(p), which can be glued together to

get a generating set for K.

(4) Recall that for an integer m and a prime p, νp(m) denotes the maximal integer

a such that pa | m. Recall from Hypothesis 0.3 that B = (bij)i,j is an n × n
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5714 K. Chan et al.

skew symmetric matrix over Z. We further introduce some notations: fix a

prime p dividing � and let

N = νp(�), αij = min{N, νp(bij)}, and α = min{N, νp(pf(B))}. (E4.2.1)

(5) For each p | �,Z⊗Z(p)
∼= Z/(pN) and K(p) is the kernel of the left multiplication

map

B(p) : Zn
(p) → (Z/(pN))n.

(6) By part (2), for each p | �, pNei ∈ K(p). So we are interested in other generators

in K(p). In other words, we are interested in generators of K(p).

(7) Given the Smith normal form D = LBR for B, the equation B(p)u = 0 is

equivalent to Bu ≡ 0 (mod pN) and is equivalent to Dv ≡ 0 (mod pN) where

v = R−1u. Hence, to compute the kernel of B(p), we compute the kernel of

D mod pN (or equivalently, the kernel of the map D(p)) and apply R to the

generators to obtain a set of generators {u1, . . . , ur} for the kernel of B(p). If

we let fp,j = gcd1≤i≤r((ui)j) (computed in Z(p)), then fp,j is of the form pau

where a is a nonnegative integer and u is a unit in Z(p). So we can write

fp,j = pa, which is called the standard form of fp,j. Using the standard forms,

one sees that fj is the lcm of the fp,j as p runs over the prime divisors of �.

Since fp,j = fj in Z(p), we will also use fj for fp,j in the middle of the proofs.

(8) By Lemma 4.1 (resp. Lemma 5.1 in the next section), to determine if the center

Z is regular (resp. Gorenstein), it is enough check whether fiei ∈ K (resp.

(f1, . . . , fn)T ∈ K).

(9) For the argument below, we will fix a prime divisor p of �. Throughout the

rest of this section, we will use the convention introduced in this remark.

Using the “algorithm” discussed above, we give explicit conditions equivalent to

the regularity of Z in terms of the parameters bij in the cases n = 3 and n = 4.

Proposition 4.3. Assume Hypothesis 0.3 and retain the convention introduced in

(E4.2.1). Assume, without loss of generality, that α12 = min{αij} = 0.

(1) If n = 3, then K(p) is generated as a Z(p)-module by pNei for i = 1, 2 and

1

b12

⎡⎢⎢⎣
b23

−b13

b12

⎤⎥⎥⎦ .
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Ozone Groups of Skew Polynomial Rings 5715

(2) If n = 4, then K(p) is generated as a Z(p)-module by pNei for i = 1, 2 and

pN−α

⎡⎢⎢⎢⎢⎣
b23/b12

−b13/b12

1

0

⎤⎥⎥⎥⎥⎦ , pN−α

⎡⎢⎢⎢⎢⎣
b24/b12

−b14/b12

0

1

⎤⎥⎥⎥⎥⎦ .

Proof. (1) Let n = 3. The Smith normal form D = LBR of B over the ring Z(p) is

D =

⎡⎢⎢⎣
b12 0 0

0 −b12 0

0 0 0

⎤⎥⎥⎦ , L =

⎡⎢⎢⎣
1 0 0

0 1 0

b23/b12 −b13/b12 1

⎤⎥⎥⎦ , R =

⎡⎢⎢⎣
0 1 b23/b12

1 0 −b13/b12

0 0 1

⎤⎥⎥⎦ .

Applying the argument in Remark 4.2(7), the kernel of D(p) is generated, as a Z(p)-module,

by pNe1, pNe2, e3. Applying R to these gives the stated generators.

(2) Let n = 4. The Smith normal form of B is given by

D =

⎡⎢⎢⎢⎢⎣
b12 0 0 0

0 −b12 0 0

0 0 1
b12

pf(B) 0

0 0 0 − 1
b12

pf(B)

⎤⎥⎥⎥⎥⎦ ,

L = 1

b12

⎡⎢⎢⎢⎢⎣
b12 0 0 0

0 b12 0 0

b23 −b13 b12 0

b24 −b14 0 b12

⎤⎥⎥⎥⎥⎦ ,

R = 1

b12

⎡⎢⎢⎢⎢⎣
0 b12 b24 b23

b12 0 −b14 −b13

0 0 0 b12

0 0 b12 0

⎤⎥⎥⎥⎥⎦ .

Using similar reasoning as above, the kernel of D(p) is generated by pNe1, pNe2, pN−αe3,

pN−αe4. Again, applying R to these gives the stated generators. �

We will write fiei for fiei ⊗ 1 ∈ K(p) := K ⊗ Z(p) if no confusion occurs.

Proposition 4.4. Keep the assumptions of Proposition 4.3. If n = 3, then fiei ∈ K(p) for

all i = 1, 2, 3 if and only if α23 = α13 = N.
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5716 K. Chan et al.

Proof. Using the generators of K(p) from Proposition 4.3 and the definition of fi (cf.

(E0.3.1)), we have, up to units in Z(p),

f1 = b23/b12, f2 = b13/b12, f3 = 1. (E4.4.1)

(Strictly speaking these should be fp,1, fp,2, and fp,3, respectively.) Suppose fiei ∈ K(p) for

all i. In particular, for i = 3, there exists λ1, λ2, λ3 ∈ Z(p) such that⎡⎢⎢⎣
λ1pN

0

0

⎤⎥⎥⎦ +

⎡⎢⎢⎣
0

λ2pN

0

⎤⎥⎥⎦ +

⎡⎢⎢⎣
λ3b23/b12

−λ3b13/b12

λ3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0

0

1

⎤⎥⎥⎦ .

Hence, λ3 = 1. The first component gives λ1 = −b23p−N/b12, so νp(λ1) = α23 − N and a

necessary and sufficient condition for λ1 ∈ Z(p) is α23 = N. Similarly, we get α13 = N, and

this proves the forward implication. The converse is clear. �

Proposition 4.5. Keep the assumptions of Proposition 4.3. If n = 4, then fiei ∈ K(p) for

all i = 1, . . . , 4 if and only if

αij ≥ α (E4.5.1)

for (i, j) = (1, 3), (1, 4), (2, 3), (2, 4).

Proof. Using the generators of K ⊗Z(p) from Proposition 4.3 and the definition of fi, we

have

f1 = gcd
(

pN , pN−α b23

b12
, pN−α b24

b12

)
= gcd

(
pN−α b23

b12
, pN−α b24

b12

)
(E4.5.2)

f2 = gcd
(

pN , pN−α b13

b12
, pN−α b14

b12

)
= gcd

(
pN−α b13

b12
, pN−α b14

b12

)
f3 = f4 = pN−α.

Suppose fiei ∈ K(p) for all i. In particular, for i = 3, there exists λ1, . . . , λ4 ∈ Z(p) such that

⎡⎢⎢⎢⎢⎣
λ1pN

λ2pN

0

0

⎤⎥⎥⎥⎥⎦ + pN−α

⎡⎢⎢⎢⎢⎣
λ3b23/b12

−λ3b13/b12

λ3

0

⎤⎥⎥⎥⎥⎦ + pN−α

⎡⎢⎢⎢⎢⎣
λ4b24/b12

−λ4b14/b12

0

λ4

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0

0

pN−α

0

⎤⎥⎥⎥⎥⎦ .

Hence, λ4 = 0 and λ3 = 1. The first component gives λ1 = −p−αb23/b12, so νp(λ1) =
−α+α23. So λ1 ∈ Z(p) if and only if α23 ≥ α. The same argument on the second component
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Ozone Groups of Skew Polynomial Rings 5717

gives α13 ≥ α. We can perform the same calculations for i = 4 to obtain α14 ≥ α and

α24 ≥ α.

Conversely, assume the inequalities (E4.5.1) hold. Then N ≤ N−α+αij so f1 = f2 =
pN . Hence, fiei ∈ K(p) for i = 1, 2. Next, we take the third generator of K(p) (cf. Proposition

4.3) and subtract from it multiples of the first two

f3e3 = pN−α

⎡⎢⎢⎢⎢⎣
b23/b12

−b13/b12

1

0

⎤⎥⎥⎥⎥⎦ − β1pNe1 + β2pNe2,

where β1 = p−αb23/b12 and β2 = p−αb13/b12. The inequalities (E4.5.1) can be rearranged

so that αij − α ≥ 0. The left-hand side of this inequality is νp(βk) for appropriate i, j, k.

Hence β1, β2 ∈ Z(p), so f3e3 ∈ K(p). Similar computations with the fourth generator of K

yield f4e4 ∈ K(p). This completes the proof. �

Next, we globalize the above results that are local at p. First, we need a technical

lemma.

Lemma 4.6. Let r1, . . . , rk be roots of unity with orders o1, . . . , ok. Let s = o1 · · · ok and

ζ be a primitive s-th root of unity. Then the orders are pairwise coprime if and only if

there exist integers n1, . . . , nk such that gcd(ni, s) = 1 and

ri = ζnio1···ôi···ok

Proof. We prove the forward direction only, since the reverse implication is immediate.

Since ri has order oi, it is a primitive oi-th root of unity. Now ζ o1···ôi···ok is also a primitive

oi-th root of unity, so there exists an integer mi, such that mi and oi are coprime, and

ri = ζmisi ,

where si = o1 · · · ôi · · · ok. The integers mi and s may not be coprime, but we can choose an

integer j such that ni := mi + joi and s are coprime. Firstly, since oi and si are coprime, we

have
{
mi + joi

}si
j=0 = Z/siZ as sets. Hence, there exists an integer j such that ni is coprime

to si. But mi and oi are assumed to be coprime, so ni and oi are coprime, which means ni

and s are coprime. Finally,

ζnisi = ζ (mi+joi)si = ζmisi+js = ζmisi = ri,

and we are done. �
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5718 K. Chan et al.

Corollary 4.7. Assume Hypothesis 0.3 and let n = 3. Then, Z is regular if and only if

the orders of p12, p13 and p23 are pairwise coprime. Equivalently, there exist pairwise

coprime integers a, b, c ≥ 1 such that p12 = ξab, p13 = ξacn0 and p23 = ξbcm0 where ξ is a

primitive �th root of unity with � = abc and n0, m0 are coprime to �.

Proof. For each prime p dividing �, we have νp(o(pij)) = N − αij. The orders of {pij}i<j

being pairwise coprime is equivalent to at least two of {αij}i<j being equal to N. By

Proposition 4.4 and Lemma 4.1, this occurs if and only if Z regular. The last statement

follows from Lemma 4.6. �

Corollary 4.8. Assume Hypothesis 0.3 and let n = 4. Let ρ = gcd(�, pf(B)), cij =
gcd(bij, ρ), ω be a primitive ρth root of unity, and qij = ωcij . Then Z is regular if and only

if the orders of {qij}i<j are pairwise coprime. Equivalently, there exist pairwise coprime

integers oij ≥ 1 such that

qij = ωnijôij ,

where (nij, ρ) = 1 and
∏

i<j oij = ρ and ôij = ρ/oij.

Proof. We first show that the conditions on αij in Proposition 4.5 imply that α34 ≥ α as

well. Rearranging the equation for the Pfaffian gives

b12b34 = pf(B) + b13b24 − b14b23.

Taking p-valuations and noting that α12 = 0 gives the inequality.

Let p be a prime factor of ρ. Then νp(o(qij)) = νp(ρ)−νp(cij). We also have νp(ρ) = α

and νp(cij) = min{αij, α}. Proposition 4.5 and Lemma 4.1 say that Z is regular if and only if

αij ≥ α for (i, j) �= (1, 2). These conditions imply νp(o(qij)) = 0 except (i, j) = (1, 2). Hence,

o(qij) are pairwise coprime.

Conversely, we get that νp(o(qij)) = 0 for all (i, j) �= (1, 2). This means min{αij, α} =
α implying αij ≥ α for such (i, j).

The last statement follows from Lemma 4.6. �

We finish this section with the proofs of Theorems 0.7 and 0.9.

Proof of Theorem 0.7. In the n = 2 case, Z = k[x�
1, x�

2] so the result is clear. The result

in the n = 3 case follows from Corollary 4.7, while the result in the n = 4 case is due to

Corollary 4.8. �
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Ozone Groups of Skew Polynomial Rings 5719

Proof of Theorem 0.9. If the orders of {pij}i<j are pairwise coprime, then for any prime

p | �, the matrix B(p) has rank 2. In particular, B(p) is similar to the block diagonal matrix

formed from [
0 b

−b 0

]

and a zero matrix of the appropriate dimension. Hence, K(p) is generated by pN−νp(b)e1,

pN−νp(b)e2 and e3, . . . , en. This shows that νp(fi) = N − νp(b) for i = 1, 2 and νp(fj) = 0 for

j = 3, . . . , n. The result follows from Lemma 4.1(2).

Part (1) of the consequence follows from (E4.1.1). By definition, � = ∏
i<j o(pij).

Then part (2) of the consequence follows from part (1) and Theorem 0.6(7). �

5 Gorenstein Center

Throughout this section, we assume Hypothesis 0.3. Here we study the question of when

the center of S is Gorenstein.

Proof of Theorem 0.11. (1) ⇔ (2): This is [19, Theorem 0.2].

(2) ⇔ (3): Let φi denote the image of φi in O/H. Since SH = k[xf1
1 , · · · , xfn

n ] (see the

proof of Proposition 2.6) and φi ∈ O/H acts on SH as a diagonal map for each i, (E1.4.2)

implies that

hdetO/H(φi) = φi(x
f1
1 · · · xfn

n )(xf1
1 · · · xfn

n )−1 =
n∏

s=1

pfs
is .

Since ojspgs = xf1
1 · · · xfn

n , we see that (2) ⇔ (3).

(3) ⇔ (4): This is clear as an element f ∈ Z if and only if φi(f ) = f for all i. �

Next we prove Theorem 0.10.

Proof of Theorem 0.10. (2) ⇔ (3): This is Lemma 1.5(2).

(1) ⇔ (3): The Nakayama automorphism μ of S follows from [24, Proposition 4.1],

and it is easy to show that (3) holds if and only if μ = id. Equivalently, S is Calabi–Yau.

(3) ⇔ (4): This follows by an easy computation.

Suppose that O-action has trivial homological determinant. By [31, Theorem

1.21], Auslander’s Theorem holds for (S, O). Hence, all statements in Theorem 0.4 hold.

Since Auslander’s Theorem holds for (S, O), H is trivial. Then Theorem 0.11(2) holds.

Hence, all statements in Theorem 0.11 hold. �
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Theorem 0.11(3) gives us necessary and sufficient conditions for Z = SO to be

Gorenstein. It is more convenient for us to express the condition in terms of the matrix B.

Lemma 5.1 (≡Theorem 0.11(3)). Assume Hypothesis 0.3. The center Z of S is Gorenstein

if and only if the following equation holds in Z
n

:

B(f1, . . . , fn)T = 0.

We already computed the {fi} for n = 3, 4 in the previous section, so we are ready

to prove Theorem 0.13.

Proof of Theorem 0.13. (1) The result for n = 2 is well-known.

(2) The result for n = 3 is immediate from Lemma 2.8.

(3) Let v = �/ gcd(pf(B), �)(v1, . . . , v4)T . The image of this vector in (Z(p))
4 is a unit

multiple of

pN−α

⎡⎢⎢⎢⎢⎣
gcd(b23, b24, b34)

gcd(b13, b14, b34)

gcd(b12, b14, b24)

gcd(b12, b13, b23)

⎤⎥⎥⎥⎥⎦ .

After relabelling if necessary, we can assume b12 is a unit. The equation

b12b34 = pf(B) + b13b24 − b14b23

shows that α34 ≥ α, which means we can drop b34 from the arguments in the first two

gcds above. Comparing with (E4.5.2) shows that the ith component of v has the same

p-valuation as fi. This holds for all prime factors p of � so we are done. �

We end this section by discussing some examples and showcase the subtleties

in the results above. We remark that for a commutative ring, the following set of

implications hold:

regular ⇒ hypersurface ring ⇒ complete intersection ⇒ Gorenstein.

In this paper, we have focused on the regular and Gorenstein properties of the center

of Sp, but it would be interesting to determine conditions equivalent to the center of Sp

being a hypersurface ring or a complete intersection. Recall that Z is a (commutative)

hypersurface ring if Z ∼= k[x1, . . . , xn]/(f ) for some homogeneous polynomial f . In this

case, the Hilbert series satisfies hZ(t) = p(t)/q(t) where p(t) is a cyclotomic polynomial.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/7/5689/7310897 by U
niversity of W

ashington Law
 School - G

allagher Law
 Library user on 11 M

ay 2024



Ozone Groups of Skew Polynomial Rings 5721

Example 5.2. Set n = 3.

(1) By Theorem 0.10, if S is Calabi-Yau, then

Z = k[x�
1, x�

2, x�
3, x1x2x3]/(x�

1x�
2x�

3 − (x1x2x3)�)

is a hypersurface ring.

(2) Let � > 1 and consider the following B matrix:

B =

⎛⎜⎜⎝
0 0 1

0 0 −1

−1 1 0

⎞⎟⎟⎠ .

By Lemma 2.8 and the subsequent discussion, f = (1, 1, �) and g = (�, �, �). It follows that

Z is generated by {x�, y�, z�, xy} and so

Z ∼= k[y1, y2, y3, y4]/(y�
4 − y1y2).

Thus, Z is a hypersurface ring that is not Calabi–Yau.

(3) Let � = 24 and consider the following matrix:

Bk =

⎛⎜⎜⎝
0 4 6

−4 0 k

−6 −k 0

⎞⎟⎟⎠ ,

where k = 3 or 9. In either case, Lemma 2.8 gives f = (3, 6, 4) and g = (12, 24, 8). By

Lemma 5.1, S is Gorenstein when k = 9 and non-Gorenstein when k = 3. Suppose k = 9,

then Z is generated by x12
1 , x24

2 , x8
3, and x3

1x6
2x4

3. One checks that the Hilbert series of Z is

hZ(t) = p(t)

q(t)
= 1 + t13 + t18 + t31

(1 − t12)(1 − t24)(1 − t8)
.

It is clear that p(t) is not cyclotomic, and thus Z is not a hypersurface ring.

6 Questions and Comments

In this section, we list some questions and comments related to the theorems given in this

paper. Much of this paper has been devoted to the study of the algebras Sp. In addition to

classifying those Sp such that ZSp is regular or Gorenstein for n ≥ 5, one could consider

the following problems.
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Question 6.1.

(1) What conditions on the PI skew polynomial ring Sp are equivalent to the

center ZSp being a hypersurface ring or a complete intersection ring?

(2) Let Sp be the skew polynomial ring in n variables. By Remark 3.7, 0 <

p(Sp, O) < n. For each 0 < i < n, can we find some skew polynomial ring

S such that p(S, O) = i?

(3) (Ken Goodearl) The matrix B controls the PI degree of S [12]. Is there a direct

computation of PI degree from the parameters bij? Is the PI degree related to

the other invariants in this paper?

(4) (Colin Ingalls) In cases that the center ZSp is not Gorenstein, under what

conditions on Sp is it Q-Gorenstein (see [8])?

(5) The classification of skew polynomial rings up to isomorphism is known

(see [13]). Two skew polynomial rings are birationally equivalent if their

associated quotient division rings are isomorphic. What is the classification

of skew polynomial rings up to birational equivalence?

As we have mentioned, the algebras Sp are viewed as a good testing ground for

many problems in noncommutative invariant theory. It would be interesting to study the

problems in this paper more generally.

Question 6.2. Let A be a noetherian PI AS regular algebra.

(1) Is there is a version of Corollary 0.12(1) or (2) for A?

(2) Does (1) ⇔ (3) in Theorem 0.10 hold for A? Namely, is it true that the

homological determinant of Oz(A) is trivial if and only if A is Calabi–Yau?

(3) Can we define invariants ojA, oaA, and odA such that they generalize ojS, oaS,

and odS and control properties of A and its center?

(4) For the skew polynomial ring Sp, the ozone group O acts on Sp such that ZSp =
SO

p . Is there a semisimple Hopf algebra H acting on A such that Z(A) = AH?

(5) Suppose A is generated in degree 1 and suppose that the center of A is

k[c1, · · · , cn] where deg ci > 1 for every i. Does it hold that Aut(A) is affine?

(5) Related to this is the notion of LND-rigidity. Let LND(A) denote the inter-

section of all kernels of locally nilpotent derivations of A. Under the above

hypotheses, does it hold that LND(A) = {0}. We note that both of these hold

when A is a skew polynomial ring.

(6) Is there a unique mozone subring of A? That is, does 
Z(A) have a minimum

element?
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Question 6.2(4) would be especially interesting in the case when A is a (PI)

Sklyanin algebra.

One source of interesting examples that may be useful for studying some of the

above questions are graded noetherian down-up algebras.

Let α, β ∈ k with β �= 0. A noetherian graded down-up algebra A = A(α, β) is

generated as an algebra by x and y and subject to the relations

x2y − αxyx − βyx2 = 0 = xy2 − αyxy − βy2x.

It is well-known that A is AS regular, but is not isomorphic to any Sp. The group of

graded algebra automorphisms of A was computed by Kirkman and Kuzmanovich [17,

Proposition 1.1]. If β �= ±1, then every graded algebra automorphism of A is diagonal.

By [25, (1.5.6)], the Nakayama automorphism of A is determined by

μ : x �→ −βx, y �→ −β−1y.

Let ω1 and ω2 be the roots of the characteristic equation

w2 − αw − β = 0

and let �i = xy − ωiyx for i = 1, 2. It is easy to see that for {i, j} = {1, 2} we have

x�i = ωj�ix, ωjy�i = �iy.

Note that A is PI if and only if both ω1 and ω2 are roots of unity.

Let

b := �1�2.

If σ ∈ Autgr(A) is diagonal, then hdet(σ ) =
(
det σ |A1

)2
[17, Theorem 1.5]. Using this fact,

one can easily check that

σ(b) = hdet(σ )b. (E6.2.1)

This equation should be compared with (E1.4.2).

Proposition 6.3. Let A = A(α, β) be a PI noetherian graded down-up algebra. Then A is

Calabi–Yau if and only if b ∈ Z(A).

Proof. Recall that A is Calabi–Yau if and only if the Nakayama automorphism μ of A is

the identity, if and only if β = −1, if and only if ω1ω2 = 1, if and only if �1�2 ∈ Z(A) by

computation. �
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It is easy to show, using these generating sets for Z(A) given in [23, 30], that

Z(A) is regular when (α, β) = (0, 1). We conjecture that this is the only case that Z(A) is

regular.

Question 6.4. Suppose A = A(α, β) be a PI noetherian graded down up algebra. For what

parameters (α, β) is Z(A) regular (resp. Gorenstein)?

The following should be compared with Theorem 0.11.

Proposition 6.5. Let H be a finite subgroup of Autgr(A) consisting of diagonal automor-

phisms. The following are equivalent.

(1) The H-action on A has trivial homological determinant.

(2) AH is Gorenstein.

(3) b ∈ AH .

Proof. (1) ⇔ (2): By [18, Proposition 6.4], H does not contain any reflections. By [19,

Corollary 4.11], AH is Gorenstein if and only if hdetH is trivial.

(1) ⇔ (3): By (E6.2.1), hdetH is trivial if and only if g(b) = b for all g ∈ H, if and

only if b ∈ AH . �

The following should be compared with Theorem 0.11.

Corollary 6.6. The following are equivalent.

(1) AO is Gorenstein where O = Oz(A).

(2) b ∈ AO.

Proof. By [9], the ozone group O consists of diagonal automorphisms. The assertion

follows from Proposition 6.5 by setting H = O. �

Question 6.7. Since Z ⊆ AO, then clearly b ∈ Z implies that b ∈ AO. Does the opposite

implication hold?
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