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We introduce the ozone group of a noncommutative algebra A, defined as the group of
automorphisms of A, which fix every element of its center. In order to initiate the study
of ozone groups, we study polynomial identity (PI) skew polynomial rings, which have
long proved to be a fertile testing ground in noncommutative algebra. Using the ozone
group and other invariants defined herein, we give explicit conditions for the center of a

PI skew polynomial ring to be Gorenstein (resp. regular) in low dimension.

Introduction

The centers of polynomial identity (PI) Artin—Schelter regular algebras of global dimen-
sion three, including the skew polynomial rings of three variables, have been studied by
Artin [1] and Mori [27] from the point of view of noncommutative projective geometry.
A motivation of this paper is to study the center of a PI skew polynomial ring of any
number of variables from an algebraic point of view.

One of our aims is to search for new invariants that control the structure of a PI
skew polynomial ring and its center, as well as the interplay between them. For example,
are there combinatorial invariants that are closely related to the Calabi—Yau property of

a PI skew polynomial ring or the Gorenstein property of its center? In our results below,
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we provide several invariants that provide an affirmative answer to this question (e.g.,
pgs in Theorem 0.10 or the element ojg pgg in Theorem 0.11).

We start with a more general class of algebras, as we hope that some of the
ideas in this paper will work more generally. Throughout, let k denote a base field with
chark = 0.Let A be a noetherian PI Artin—Schelter regular algebra with center Z. The first
combinatorial/algebraic invariant we introduce is the following, which will be studied

in more detail in [9].

Definition 0.1 ([9]). The ozone group of A is
0z(A) = Auty 1, (A).

The observant reader will notice a similarity between the ozone group and the
Galois group of a field extension E C F. The classical Galois group Gal(F/E) is not an
ozone group, per se, as the ozone group of any commutative ring is trivial. However, both
Galois groups and ozone groups involve automorphisms of an overstructure, which fix a
central substructure. This relationship will be considered further in [9].

By [9], the order of the ozone group satisfies the following condition:
1 <|0z(A)| < rk(Ay).

It is quite surprising that the skew polynomial rings play a role at one of the extreme
cases of the above inequalities and that they can, in fact, be characterized in terms of
properties of the ozone group [Lemma 0.2].

Let p := (p;) € M,(k) be a multiplicatively antisymmetric matrix. The skew

polynomial ring
Sp = ]kp[Xl, . |
is the k-algebra generated by {x;,...,x,,} and subject to relations

XiX; = DiiX;X; foralll <i,j<n.
By [13, Theorem 2], the parameter p, up to a permutation of {1,...,n}, is an algebra
invariant of S,. It is easy to see that Sp is PI (i.e., S, satisfies a polynomial identity)

if and only if each p;; is a root of unity and this is the setting we consider in this paper.
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Skew polynomial rings have been studied extensively and their ring theoretic
properties are well-understood. In particular, Sy is an Artin-Schelter regular algebra of
global and Gelfand—Kirillov dimension n. Skew polynomial rings provide a good set of
examples to test theories related to Artin—Schelter regular algebras in general.

However, there are still unsolved questions concerning skew polynomial rings.
For example, when p # 1 is a root of unity, it is unknown if ]kp[Xl,Xz,XS] is cancellative
[28, Question 0.8] and it is not clear how to describe its full automorphism group. In the

current paper, we pay more attention to some homological questions.

Lemma 0.2 ([9]). Suppose k is algebraically closed. Let A be a noetherian PI Artin-
Schelter regular algebra generated in degree 1. Then A is isomorphic to a skew poly-

nomial ring if and only if Oz(A) is abelian and | 0z(4)| = rk(4,).

We note that the hypothesis on k is not necessary for the forward direction in
Lemma 0.2.

For most of the results in this paper, we will assume the following hypothesis.

Hypothesis 0.3. LetS = Sp =kplx;, ..., x,] be a PI skew polynomial ring with deg(x;) =
1 for all i, and let Z = ZS,, denote the center of S. Let § be a primitive £th root of unity
such that p;; = g% for some integer b;;. By convention, we choose the b;; such that b; = 0
and b;; = —b;; for all i and j. We assume that ¢ is minimal and that £ > 1 (which is

equivalent to the noncommutativity of S). Hence, gcd(by;, £); < j<,, = 1. Implicitly, we fix

ijr
a set of generators {x;,...,x,}.

We let Z denote Z/¢Z and let a (where a € Z, Z", or M,,(Z)) denote the image of a
modulo ¢. Let B = (bij), so B and B are n x n skew-symmetric matrices.

Let ¢; denote the automorphism of S given by conjugation by x;, that is,
o;(f) = X;lei forallf €S,
and let O be the subgroup of Aut,,(S) generated by {¢,, ..., ¢,}.

It turns out that O is the ozone group Oz(S) [9]. For each fixed i, we have ¢;(x,) =

gbisx, = p;.x, for all s and the order of ¢; is
o(¢;) = £/ gecd{by;, ..., by €}
It is easy to see that the center of S} is

_ cO
28, = Sp.
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Hence, we are able to use tools of noncommutative invariant theory to reveal properties
of the center ZS,,.

In general, it is difficult to discern properties of Sp simply by examining its
parameters p := (p;). However, in low-dimension (n < 4), many such properties can
be worked out explicitly. In particular, we are interested in studying the center ZS; in
terms of p.

Note that most of the questions we consider are easily addressed in the case
n = 2. For a large part of this paper, we focus on the cases n = 3 and n = 4. We notice
that there are some similarities and differences between the cases of n being odd or even.
In some cases, we are able to say something about the case of higher n, and we hope that
some of the ideas and results presented here can be extended to general n.

Several of our results make use of the Pfaffian of the matrix B associated to Sy,
which we denote by pf(B). The Pfaffian was introduced by Cayley [6], based on earlier
work of Jacobi [15]. In particular, for even n, Cayley showed that the Pfaffian of a skew-
symmetric matrix is 4/det(B). When n is odd, every n x n matrix has Pfaffian 0. Now
suppose n is even and let A = (a;;) be a skew symmetric n x n matrix. Denote by A;JA. the
submatrix of A obtained by deleting both the ith row and column and the jth row and

column. The Pfaffian of A may be computed as

n

pf(A) = D (~D¥a,; pf(4;p).
k=2

Next we define a few more combinatorial invariants. For the remainder of this
introduction, we assume Hypothesis 0.3. In particular, we assume S = S is a PI skew

polynomial ring with center Z = ZS,. Define

f,=ged(d; |3dy,...,dy ..., d, withx® ... x% ... xI e 7). (E0.3.1)

By Proposition 1.8(2), the set of integers {f,...,f,} with multiplicities is an algebra
invariant of S.

In this paper, we would like to show that {f;,...,f,} also play an essential role in

several properties of the algebra S,. They have been used to control the automorphism
group of S. For example, if §; > 2 for all i, then every automorphism of S is affine and
every locally nilpotent derivation of S is zero [7, Theorem 3]. So, these numbers deserve

further attention. It would be nice to have a simple formula for f; in terms of {p;;}.
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Now we define the “ozone” version of three invariants studied in [21]. The ozone
Jacobian of S is defined to be

n
ojs =[]}, (E0.3.2)
i=1

the ozone arrangement of S is defined to be

oag := H X;, (E0.3.3)
fi>1

and the ozone discriminant of S is defined to be

0dg := [ xI' = ojg oa. (£0.3.4)
fi>1
All three of these definitions depend on the chosen generating set {x;,...,x,}. However,

by Proposition 1.8(1), up to an element of k*, 0jg, 0oag, and 0dg are algebra invariants of Sp.

We also consider the product of generators of S, which is defined to be

n
pgg == HXi-
i=1

Note that pgg is not an algebra invariant.

We now summarize our main results and the structure of this paper. In Section 1,
we recall some basic definitions. In Section 2, we work out some basic facts concerning
the reflections in O. In Sections 3, 4, and 5, the main results are proven. More details on
those sections are given below. We think the results are inspiring, though the proofs are

not difficult. At the end, in Section 6, we list some questions and give some examples.

0.1 Auslander’s Theorem and smallness

In [2], Auslander proved that for V a finite-dimensional k-space, A = k[V], and G a finite
subgroup of GL(V), the map

A#G — End,c(4) (E0.3.5)

A — A
a#g —
(b — ag(b))

is an isomorphism if and only if G is small (contains no pseudo-reflections). This map
may be defined for any algebra A and any finite subgroup G of Aut(4), though in general
it may not be injective or surjective. We say Auslander’s Theorem holds for the pair (4, G)

(or (A4, G) satisfies Auslander’s Theorem) if (E0.3.5) is an isomorphism.
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Auslander’s Theorem is a critical component in the study of the McKay corre-
spondence, and has been studied in the noncommutative setting [10, 11, 14, 31]. Bao, He,
and the fourth author introduced the notion of pertinency in [3, 4]. As above, let A be an
algebra and G a finite subgroup of Aut(A4). Then the pertinency of the G action on A is
defined to be

p(4,G) = GKdim(A) — GKdim (ﬁ) , (E0.3.6)
o)
where f = 2 o 1#g € A#G.
In Section 3, we study Auslander’s Theorem for the pair (S, O). There is a notion of
a reflection in the noncommutative setting related to the trace series of a graded algebra
[Definition 2.1(1)]. However, for the skew polynomial rings S, a diagonal automorphism g
is a reflection if and only if it is a classical pseudo-reflection when restricted to ;" kx;

[Example 2.2].

Theorem 0.4. Assume Hypothesis 0.3. The following are equivalent.

(1) Auslander’'s Theorem holds for (S, O).

(2) The pertinency satisfies p(S, 0) > 2.

(3) The O-action is small in the sense of Definition 2.1(3).

(4) The O-action is small in the classical sense, that is, it contains no pseudo-
reflection when restricted to @} kx;.

(6) The only Artin-Schelter regular algebra T satisfyingZc T C Sis T = S.

(6) The ozone Jacobian ojg = 1, namely, f; = 1 for all i.

(7) For each i, there is an element of the form x{' - x; - xp" in Z.

Part (6) of the above theorem shows that ojs (or the set {f;,...,f,}) serves as an
invariant that can be used to determine whether Auslander’s Theorem holds for (S, O).

For small n, we have the following result in terms of the matrix B = (bij).

Theorem 0.5. Assume Hypothesis 0.3.

(1) Let n = 2. Then (S, O) does not satisfy Auslander’s Theorem.

(2) Letn = 3.Then (S, O) satisfies Auslander’s Theorem if and only if gcd(b
1 for each i #j.

(3) Let n = 4. Then (S, O) satisfies Auslander’s Theorem if and only if

ijlz) =

e pf(B) =0 (mod ¢), and
* there does not exist an index j and an integer k such that kb;; = 0

(mod ¢) for all but one i.
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0.2 Regular center

In Section 4, we consider the question of when Z := ZSp is regular, that is, under what con-
ditions is Z a polynomial ring. Again, in the case n = 2, this is clear (see Theorem 0.7(1)).

For the next theorem, we refer to Definition 1.6 for the notation jg , and ag (.

Theorem 0.6. Assume Hypothesis 0.3. The following are equivalent.

(1) Zis regular.

(2) Z=klx;"", -+, xn"] for some w; > 1.
(3) Z=Kkix]',- x.

(4) Sis afree module over Z.
(5) O is a reflection group.

) 101= =, gcd{blir,leS,m,bns,(}'
(7) 101 =1L Fi-

8) 0= 5 (0s).

(9) lei € Z for all i.

When Z is regular, then ojg is equal to j5 , and oag is equal to ag (.

For small n, we have the following theorem in terms of the parameters p or the

matrix B. This result makes use of the Smith normal form of the matrix B.

Theorem 0.7. Assume Hypothesis 0.3.

(1) Letn=2.ThenZ= k[xf,xé] so Z is regular.

(2) Let n = 3. Then Z is regular if and only if the orders of {p;};_; are pairwise

i<j
coprime.

(3) Let n = 4. Then Z is regular if and only if the orders of {q;j}i; are pairwise

i<j

coprime, where the g;; are defined in Corollary 4.8.

Remark 0.8. In the case where ¢ | pf(B), we have g;; = p;;, so the conditions for Z to be

regular for n = 3 and 4 look similar.

For arbitrary n, we have the following interesting partial result. Let o(p;;) denote

the order of the root of unity p;.

Theorem 0.9. Assume Hypothesis 0.3. Suppose the orders {o(p;p}i-; are pairwise

i<j

coprime. Then Z is regular. As a consequence,
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5696 K. Chan et al.

(1) §; =Iljo;) = [1jx; op;) for alli.
(2) |0| = ¢2.

Using the above theorem, one can easily construct many examples of skew
polynomial rings with regular centers. We are not aware of any analogous result for

other families of Artin-Schelter regular algebras.

0.3 Gorenstein center

In Section 5, we study the question of when Z := ZS, is Gorenstein. By a theorem of
Watanabe [29, Theorem 1], the invariant ring of klx,,...,x,] by a finite linear group K
is Gorenstein when K < SL, (k). There is a suitable replacement for the group SL,, (k)
in the noncommutative setting using the homological determinant hdet : K — k*, as
introduced by Jorgensen and the fourth author [16]. We refer to that reference for the
full generalization, as computing hdet in the case of the elements of Oz(S) acting on S is

relatively trivial [Example 1.4].

Theorem 0.10. Assume Hypothesis 0.3. The following are equivalent.

(1) Sis Calabi—Yau (see Definition 1.2).

(2) The O-action on S has trivial homological determinant.

) [li,pi=1foralli=1,...,n.

(4) pggeZ.

As a consequence, if one of the above holds, then Z is Gorenstein and all

statements in Theorems 0.4 and 0.11 hold.

When the O-action has trivial homological determinant, then Z is Gorenstein [16,
Theorem 3.3]. More generally, we let H denote the subgroup of O generated by reflections.
Then O/H acts on S¥. By [19, Theorem 0.2], Z = S is Gorenstein if and only if the O/H-
action has trivial homological determinant. By a result of Kirkman and the fourth author
[21, Theorem 2.4], we can show that Z is Gorenstein if and only if the ozone Jacobian ojg
is equal to the Jacobian jg o defined in [21, Definition 0.3] (also see Definition 1.6). We

summarize these results as follows.

Theorem 0.11. Assume Hypothesis 0.3 and let H denote the subgroup of O generated
by reflections. The following are equivalent.
(1) Zis Gorenstein.

(2) The O/H-action on S¥ has trivial homological determinant.
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(3)  ¢;(0js Pus) = 0js Pas, or [, pls = 1 for all i,
(4) ojgpgs € Z.

By the above theorem, the centrality of ojspgg serves an indicator for Z being
Gorenstein. Similarly, by Theorem 0.10, the centrality of pgg serves as an indicator for
S being Calabi-Yau. Using Theorems 0.4, 0.6, 0.10, and 0.11, one can easily show the

following.

Corollary 0.12. Assume Hypothesis 0.3. Then the following hold.

(1) Sis Calabi-Yau if and only if Z is Gorenstein and Auslander’s Theorem holds
for (S, 0).
(2) If Sis Calabi-Yau, then Z is not regular.

It is natural to ask if there are similar results for other classes of Artin-
Schelter regular algebras. For example, if A is a noetherian graded down-up algebra with
parameters («, 8), then there is a canonical element b € A such that A is Calabi-Yau if
and only if b € Z(A) [Proposition 6.3]. It would be interesting to know if b can be defined
homologically.

For small n, we are able to give conditions that are equivalent to the Gorenstein-

ness of Z in terms of parameters p or the matrix B.

Theorem 0.13. Assume Hypothesis 0.3.

(1) Letn = 2. Then Z = klx!, x}] so Z is Gorenstein.

(2) Letn = 3.Foreach 1 < i,j < 3,let b, = gcd(b;;, £). Then Z is Gorenstein if
ij g

ijr
and only if

ﬁ(b/zsr /13, /12)T =0

. =3
inZ .

(3) Letn = 4. Then Z is Gorenstein if and only if

4

— By, v,, v, v) =0
ged(pf(B), ) 1A

in Z* where v; = gcd(ﬁ,{bjk lj, k#1}) fori=1,...,4.
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0.4 Graded isolated singularities

By Remark 3.7, under Hypothesis 0.3, Z is regular or does not have isolated singularities.

1 Preliminaries

In this section, we review some concepts that will be used throughout the paper. Some

of the definitions can be found in the survey paper of Kirkman [22].

Definition 1.1. A connected graded algebra A is called Artin-Schelter Gorenstein (or AS
Gorenstein, for short) if A has injective dimension d < oo on the left and on the right,

and
Extl (4k, 4A) = Extl (ky, Ay) = 8, 5k(D),

where §;; is the Kronecker-delta. If in addition A has finite global dimension and
finite Gelfand—Krillov dimension (GKdim), then A is called Artin—Schelter regular (or AS

regular, for short) of dimension d.

For an algebra A, the enveloping algebra of A is A® = A ® A°P. If ¢ is an
automorphism of A, then °A is the A®-module that, as a k-vector space, is just 4, but

where the natural action is twisted by o on the left: that is,
(@a®b)-c=o(a)h
foralla®b € A® and c € A.

Definition 1.2. Suppose A is AS regular of dimension d. Then there is a graded algebra

automorphism u of A, called the Nakayama automorphism, such that
Extd.(4,A°) = MA.
When = Id, then we say that A is Calabi-Yau.

Next we recall the trace series and homological determinant.

Definition 1.3. Let A be a connected graded algebra with A; denoting the the homoge-

neous part of A of degree j. The trace series of a graded algebra automorphism o of A is
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defined to be

Tr, (o, t) := Z(tr(o|Aj))tj,
j=0

where tr(o|, ) is the usual trace of the k-linear map o restricted to A;.
J

When o is the identity, we recover the Hilbert series of A, namely, Tr,(Id,t) =
h,(t).If A is AS regular, then h, (t) = 1/r(t) where r(¢) is an integral polynomial of degree
[ >d:=gldimAandr(t) =1+rt+---+ r[_lt[_1 + r[t[ where r; = (—=1)%. For every
graded algebra automorphism o of A, Tr,(c,t) must be equal to 1/q(t) where q(t) =
1+ qt+---+q_,t" ! + qt'. By [16, Lemma 2.6], the homological determinant of o is
defined to be

hdet(o) = (-1)%q, = r(q,. (E1.3.1)
One nice property of homological determinant is that the map
hdet : Aut,.(4) — k>

is a group homomorphism [16, Proposition 2.5]. When we consider a finite group G acting

on A, we say that the G-action has trivial homological determinant if hdet(G) = 1.

Example 1.4. Let A be the weighted skew polynomial ring Sp with deg(x;) > 0 for all i.

Let o be a diagonal automorphism of A determined by

for all i, where a; € k*. Such an automorphism is also denoted by diag(a;). It is easy to

see that the trace series of o is

n
Tr(o,t) = H(l — q;tde8x)=1,
i=1

By (E1.3.1), the homological determinant of o is

hdet(o) = [ ] a;. (E1.4.1)
i=1
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5700 K. Chan et al.

Another way of expressing the hdet is

o (H xi) = hdet(o) (H Xi). (E1.4.2)

i=1 i=1
Note that in this example, hdet(c) is the determinant of the matrix diag(a;). In general

this is not true, see [22, Example 1.8(2)].

Lemma 1.5. Assume Hypothesis 0.3.
(1) For all i, hdet¢; = [y Djs-

(2) O has trivial homological determinant if and only if [, p;; = 1 for all i.
(3) Ifn = 3,then O has trivial homological determinant if and only if there exists

a root of unity p such that
pp=|pt 1 p

(4) If n =4, then O has trivial homological determinant if and only if there exist

roots of unity p, g, r such that

—-1,-1

1 q p b q
-1 -1
q r qr
(i) =
1) p—l T'_l 1 pr

rq q'r pirt 1

Proof. Part (1) follows directly from (E1.4.1). Parts (2), (3), and (4) now follow from (1).H

The notions of the Jacobian and reflection arrangement of a finite group
action on an AS regular algebra were introduced in [21, Definition 0.3]. We will
soon consider diagonal actions on S, after the definition (e.g., G is a subgroup
of 0).

Definition 1.6 ([21, Definition 0.3]). Let A be a noetherian AS regular algebra and G is a
finite subgroup of Aut,.(4).

(1) Let A1 = {x € A | o(x) = (hdet(c))"'x, ¥ 0 € G}. If A} 4,1 is a free

AG-module of rank one on both sides generated by an element, denoted by

jarthenj, ¢ is called the Jacobian of the G-action. By [21, Theorem 2.4], the

Jacobian j, . exists if and only if A® is AS Gorenstein.
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(2) LetApge :={x € A|o(x) =hdet(o)x, Vo € G).If Ap 4, is a free A°-module of
rank one on both sides generated by an element, denoted by a4 ¢, then a, ; is
called the reflection arrangement of the G-action. By [21, Theorem 0.2], the

reflection arrangement a,  exists if A® is AS regular.

Lemma 1.7. Assume Hypothesis 0.3 and let G be a finite subgroup of diagonal automor-
phisms of S. Then pgg := [[IL, X; is an element in Sy 4. As a consequence, if ag ; exists,

then it is a factor of pgg.
Proof. The main assertion follows from (E1.4.2). The consequence is clear. |
Recall that ojg, oag, and 0dg are defined (E0.3.2)-(E0.3.4).

Proposition 1.8. Assume Hypothesis 0.3.

(1) Up to nonzero scalars, ojg, oag, and odg are algebra invariants of S. Namely,
they are independent of the chosen generating set {x;,...,x,}.

(2) The set {f;,...,f,} with multiplicities is an algebra invariant of S.

Proof. (1) We use the notation introduced in [7] without giving detailed definitions. For
eachs e {1,...,n},let T, be the set defined as before [7, Lemma 2.9] and let d,(S/Z) be the
discriminant of S over its center Z introduced in [7, Definition 1.2(3)] where w = rk(S,).
It follows from [7, Lemma 2.9(2)] that f, > 1 if and only if T, is empty. Combined with [7,
Theorem 2.11(2)], we obtain that §; > 1 if and only if x, divides d,,(S/Z), In other words,
dy, (S/2) =px 1,21 X?i for some A; > 1. By definition, d,,(S/Z) is an algebra invariant of
A up to a nonzero scalar [7].

Since S is N"-graded, the prime decomposition of X?i is unique and {x; | f; > 1} is
a complete list of prime factors of d,,(S/Z). Therefore, the list I := {k*x; | f; > 1} (after
adding nonzero scalars) is an algebra invariant of S. As a consequence, oag is an algebra
invariant.

Note that, for each k*x; € I,
f; = ged{d | Xfla € Z for some a € S with x; { a}.

This implies that the set {]k.Xle" | f; > 1} is also an algebra invariant of S. As a consequence,
00g is an algebra invariant of S.

Since ojg = 00g(0oag) !, 0jg is an algebra invariant.

(2) By part (1), the set {f; | f; > 1} is an algebra invariant of S. Since {f;,...,f,} =

{f; | f; > 1}U{1,...,1} considered as a set with multiplicities, the assertion follows. H
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2 Reflections and Reflection Groups

Throughout this section, we assume Hypothesis 0.3. Recall that a linear automorphism g
of a finite-dimensional vector space V is a pseudo-reflection if g fixes a codimension one
subspace. In the noncommutative case, we need to use the trace series [Definition 1.3] to

define a reflection.

Definition 2.1 ([18, Definition 1.4]). Let A be an AS regular algebra of Gelfand—Kirillov

dimension n.

(1) We call a graded algebra automorphism o of A a reflection of A if o # Id has
finite order and the trace series of o has the form
1

Tale D) = T 1q0

where g(1) # 1.

(2) A finite subgroup G C Aut,.(4) is called a reflection group if it is generated
by reflections.
(3) A finite subgroup G C Autg (4) is called small if it does not contain any

reflections.

Example 2.2. Let S = Sp with deg(x;) = 1 for all i and let 0 = diag(a;), a; € k*, as in
Example 1.4. By that example, the trace series of o is
n
Trg(o, t) = H(l —a;it) L.
i=1
Hence, o is a reflection if and only if a@; = 1 for all i but one. Therefore, o is a reflection
if and only if o|g is a pseudo-reflection. As a consequence, O is small in the sense of

Definition 2.1(3) if and only if O is small in the classical sense.

One noncommutative version of the Shephard-Todd-Chevalley theorem is the

following.

Theorem 2.3 ([20, Theorem 5.5]). Let S = S, and let G be a finite group of graded algebra
automorphisms of S. Then S® has finite global dimension if and only if G is generated by

reflections of S (in this case, S¢ is again a skew polynomial ring with weighted grading).

In this paper, we will only apply this theorem when every element of G is a
diagonal automorphism of S. In fact, we will only consider the case when G is a subgroup

of 0z(S). We now introduce the notion of an ozone subring.
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Definition 2.4. Let A be a noetherian PI AS regular algebra with center Z.

(1) A subring R of A is called ozone if R is AS regular and Z C R C A.
(2) The set of all ozone subrings of A is denoted by ®,(A).
(3) If R is a minimal element in ®,(A) via inclusion, then R is called a mozone

subring of A.

Note that A itself is an ozone subring of A, so ®,(A) is not empty. If Z is AS regular
(i.e.,a commutative polynomial ring) orif A = Zis itself commutative, then Z is the unique
mozone subring of A. Assume Hypothesis 0.3 and let H be the subgroup of O := 0z(S)
that is generated by reflections. Let B := S¥. By Theorem 2.3, B is a skew polynomial ring
(and hence an ozone subring of S). We will show that B is a mozone subring of S. (See also
Question 6.2(6).)

Proposition 2.5. Assume Hypothesis 0.3. Let H be the subgroup of O generated by

reflections in O. Then S¥ is a mozone subring of S.

Proof. Since H fixes S¥, there is an induced action of O/H on S¥. By the proof of [19,
Proposition 4.12], this action is small in the sense of Definition 2.1(3). Hence, by [3,
Theorem 5.5], we therefore have that SE#(0/H) = Endg(S¥) (which is analogous to a
weighted version of Theorem 0.4).

Now suppose for contradiction that there is an AS regular algebra R such that
Z € R C S”. By [18, Lemma 1.10(b)], S is a graded free module over R. Hence, we can
write S = R @ R(—d;) ® --- @ R(—d,,) for some integers d;, at least one of which is
positive. Then Endgo (S¥) contains elements of negative degree, which contradicts that it
is isomorphic to ST#(0/H). [ |

Recall from (E0.3.1) that

f,=ged(d; |3d,y,...,d;...,d, withx® ...x% ... x%n c 7},

1

Let M be the subring of S generated by {X{l e ,XL"}. It is straightforward to verify that
M € ©,(S).

Proposition 2.6. Assume Hypothesis 0.3. Let H be the subgroup of O generated by

reflections in O.
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(1) The subgroup H is isomorphic to []iL,(r;) where r; is a diagonal automor-
phism of S determined by
x;  J#L
r; Xj = ) )
cx; j=1
for some root of unity c;.
(2) For each i, let w; be the order of c; given in part (1). For each i, j, define qi; =
p;/iwj and let q = (q;j). Then S¥ =k [x]", ..., x3"].
(3) Foreachi, w; =f;.
@) §;=min{d;>0(3d,,...,d, ..., d, withx¥...x%.

d
;o xn" € Z)

Proof. (1) Let H; be the subgroup of H that is generated by reflections r of the form

r(x;) = K J i l
ox; j=1
for some «; € k. Since every element in O is a diagonal automorphism, by Example 2.2,
every reflection is of the form of r given above. Since H is generated by reflections in O,
H is generated by the union of the H;. It is clear that the product [[/-, H; is a subgroup
of H. Thus H = [[IX, H;. Note that each H; is a finite subgroup of k*, whence it is cyclic.
Therefore, each H; is of the form (r;) where r; is a diagonal reflection automorphism of S.
The assertion follows.
(2) It is clear that SH D kq[x‘l”l, ..., Xy "].Since Sis Z"-graded and H consists of Z"-
graded algebra automorphisms of S, S is Z"-graded. So to prove S C ]kqlx‘l”1 o xa 7,
we only need to consider monomials in S7. Suppose that f := x;' -+ -xp" is an element of
SH.Since f = r;(f) = ¢]'f for all i, we see that w; | v;. The assertion follows.
(3) By part (2) and the fact that H C O, we have

Z:SO gSH:kq[X‘l/Vl,...,XrV;'/n].

Therefore, every monomial in Z is a product of x,", ..., x, ". By definition, w; | §; for all i.
Next we show that f; | w;. Let ¢, be a primitive f;th root of unity. By the definition of the
f;, we obtain that Z is a subring of M’ := k(q4.)[xil, . ,X,fl"] where q;.j = p;i.fj. Let r; be the
ij

diagonal automorphism of S determined by

x;p  J#IL

, .
cx; j=1.
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It is clear that rg preserves M’ and hence Z so r;. € 0. Since rg is a reflection, therefore
wi Wiy g w; . . . P . .
r; € H and consequently, x; ' = ri(x; ') = (c))"ix; '. This implies that (c))"i =1 or f; | w;
as required.
(4) By definition, f; is given by (E0.3.1). For each i, there are finitely many central
elements, say z(1),...,z(s), defined by

. & & 4
zG)=x" %, xg" €Z

such that f; = ged{d},--- ,dj}. Write f; = Zj':l cdeL:. Choose an integer o such that CJ/. =
cj+al>0 for all j. Then §; = (st'zl cJ’d]l) — B¢ for some B and, up to a scalar, we have

i i

.C. d, ; d,
HZ(])CJ =x' --~Xfl~-~XnnX/.% A
J

A . d; ; 4 .
This implies that x; ' -- -lel .- -x;f" € Z. The claim follows. ]
Theorem 2.7. Assume Hypothesis 0.3. If Z is Gorenstein, then ojg is equal to the

Jacobian jg 4.

Proof. Let H be the subgroup of O generated by reflections in O. By Proposition 2.6(2,3),
SH = k[x{‘,--~ ,XL"]. Then

S= @ x---xpst (E2.7.1)

OSSiSfifl

Since pgs € Spget, (see (E1.4.2)) and since the H-action on x := H?lelfi is trivial, ojg =
x(pgs) ! € Spget;!- The decomposition (E2.7.1) shows that Spaet;! = 0jsSH or equivalently,
0js 18 jgpr- Therefore, S goi-1 © Spgert = 0jgSH.

We claim that ojg € Shdetal. To see that we note that ojg = x(pgg)~'. For every
g € 0,let g be the induced algebra automorphism of S¥. Since Z = (S7)9/H is Gorenstein,
then the O/H-action on S¥ has trivial homological determinant by [19, Theorem 0.2].
Since S¥ is a skew polynomial ring and g is a diagonal action, O/H-action having trivial

homological determinant implies that

n n
i=1 i=1
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see (E1.4.2). Hence,

9(0jg) = 9(xpash) = g(x)(g(pgs)) ' = x hdet 1 (g)(pgg) ! = hdet ' (g)ojs.

This implies that ojg € Shdetal. Then it is easy to check that Shdetal = 0jgSY. In other

words, ojg = jg o- |

Proposition 2.6, and part (4) in particular, make computing the f; straightforward

in small dimension, as demonstrated by the following result.

Lemma 2.8. Assume Hypothesis 0.3 and let n = 3. Then=10

fi = gcd(bys, ), f, =ged(by3,0), f3 = ged(byy, 0).

Proof. We prove the first equality, as the others are similar. First note that Xll’

23X£*b13X§12 c
Z,and so f; | bys.

Since x¢ € Z, then fi | £,s0f; | ged(bys, £). On the other hand, there exists a =
x]"x,%x3° € Z with u; = f, by Proposition 2.6(4). By considering [x,, al = [x3,al = 0, we

have
bysug =bj,u; mod £

Hence, if d | byy and d | ¢, then d | b;,u, and d | bj3u,. But since d | bysu; and
gcd(byg, by, b13) =1,then d | u;. Thus, d | f;, so gcd(byg, €) | f;. |

Fori=1,2,3, set

g9 = O(¢i) = with {i/j/ k} = {11 2r3}

£
Then it follows from Lemma 2.8 that

£
 ged (i e ©

Write g = (9;,92,93) and § = (f;, f2, f3). By Theorem 0.6, Z is regular if and only if g = f.

g with {i,j, k} = {1,2,3}.

3 Auslander’s Theorem

Throughout this section, we assume Hypothesis 0.3. In this section, we seek to

understand when the Auslander map

S#0 — Endgo(S)
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is an isomorphism. Recall, from Definition 2.1, that a finite subgroup G < Autgr(A)
is called small if it does not contain any reflections. By Example 2.2, when A = S,
G is small if and only if G, considered as a subgroup of GL(P., kx;), is small in the

classical sense.

Proof of Theorem 0.4. (1) < (2): By [4, Theorem 0.3], the Auslander map is an isomor-
phism for the pair (S, O) if and only if p(S, 0) > 2.

(1) & (3) & (4): Since each ¢; is a diagonal automorphism, by [3, Theorem 5.5],
the Auslander map is an isomorphism for the pair (S, O) if and only if O is small in the
classical sense, that is, if and only if O, when restricted to EB?:I kx;, contains no pseudo-
reflections of @} kx;.

(8) & (5): If O is small, then, by Proposition 2.5, we have that S is the unique
mozone subring of S. Conversely, if O is not small, then let H < O be the non-trivial
subgroup of reflections. By Proposition 2.6, S¥ C S is a mozone subring of S, and hence
S is not a mozone subring.

(3) & (6): By Proposition 2.6(2,3), S7 = ]k[X{l, “e ,XL”]. Hence, H = {1} if and only
if f; = 1 for all i.

(6) < (7): This follows from Proposition 2.6(4). [ |

For the rest of the section, we consider the cases of small n. In the n = 2 case,
with § = k,[x,, x,] for p # 1, we have SO = klx%, x5 where ¢ is the order of the root of unity
p. Consequently, S is free over S°. It follows that Endgo(S) has negative degree maps and
so the Auslander map S#O — Endgo(S) is not an isomorphism. Next we consider n = 3
and 4.

Letg = ¢i“ -+~ ¢n" € Oand write u = (u;) for the (column) vector with components
u;. For a vector x, we use x” to denote its transpose. The restriction of g to S; is given
by the diagonal matrix diag(¢"/) where (v;)T = vI = u’B, viewing v and u as elements
of Z". It is clear that g is a pseudo-reflection if v = Ae; for some nonzero A € Z and
some 1 < i < n. We can therefore express the condition of O being small in terms of
nonexistence of solutions of some linear equations over Z. Namely, O having no pseudo-
reflections is equivalent to the equation u’B = AeiT having no solution for any nonzero

A € Z. Taking transposes, this is equivalent to the equation
By = e, (E3.0.1)

having no solutions y € 7" for any nonzero A € Zand any 1 <i < n.

The next lemma allows us to reduce to the case that no x; is central.
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Lemma 3.1. Suppose x; is central (equivalently, ¢; = id). Let R be the subalgebra of S
generated by x,,...,x,,and let 0’ = (¢i|R |i=2,...,n). Then p(R,0) = p(S, 0) so (S, 0)

satisfies Auslander’'s Theorem if and only if (R, O) does.

Proof. Since O acts trivially on x;, by (E0.3.6), we have
p(S, 0) = GKdim(S) — GKdim(S#0/(f,))
= GKdim(RI[x,]) — GKdim(RIx,1#0/(f,))
= (GKdim(R) + 1) — GKdim((R#0'/ (fp)[x])
= (GKdim(R) + 1) — (GKdim(R#0'/(fy)) + 1)
= GKdim(R) — GKdim(R#0'/(f,))

=p(R, 0.
p( ) -
We begin by considering the case n = 3. For a root of unity p, let o(p) denote its

order.

Proposition 3.2. Assume Hypothesis 0.3 with n = 3. Then (S, O) satisfies Auslander’s

Theorem if and only if each p;; is a primitive £th root of unity for all i # .

Proof. By Lemma 3.1, we may assume that no ¢; = Id.

Assume O is small so that no power of the ¢; are reflections. Note that ¢‘1)(p12) =
diag(1, l,p(l)ép”)). By hypothesis, this implies that o(p;3) divides o(p;,). Using the same
logic on the other ¢; gives o(p;,) = o(p;3) = 0(p,3). That is, each of the p;; is a primitive
¢th root of unity.

Conversely, assume that each of the pjj is a primitive £th root of unity and so

ged(d;j, £) = 1 for each b;;. We wish to show that equation (E3.0.1) has no solutions. Now
we compute
71 Y2b12 + ¥3bi3
By =B |y, | = | —v1b12 +¥3ba3
Y3 —¥1b13 — V2b3

Without loss of generality, suppose that the first two entries of By are equal to 0. Then
b12(y1b13 +¥2bg3) = b13(y1D12) + by3(v2by2)
= by3(y3by3) — by3(y3by3) =0

and hence By = 0. Therefore, equation (E3.0.1) has no solutions and so O is small. |
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Example 3.3. As a consequence of the proof of Proposition 3.2, when n = 3, if no power
of any ¢, is a reflection, then O is small. By contrast, in the n = 4 case, it is possible for
O to contain a reflection even if no power of any ¢, is a reflection.
Let £ be a primitive sixth root of unity and set
Pio =P13 =Pz =§
D14 = P24 =P34 = —1.

Then

¢, = diag(1,£,&,—1) ¢, = diag(¢ ', 1,£,-1)
¢ = diag(~ 1,71, 1,-1) ¢, = diag(-1,-1,-1,1).

(Here we consider the map ¢; as a matrix form when restricted to the degree 1 part of S.)

So no power of any ¢; is a reflection. However,

Y = ¢19,05 = diag(6 7%, 1,62, —1)

and so 23 = diag(l,1,1,—1). That is, ¥° is a reflection. By an easy computation, f; = 2
g Y Y p i

foralli=1,2,3,4. As a consequence,

x3x3x2x% = (0g)% = (0ug)? = (pgg)? = o0y

up to nonzero scalars. Using the results stated in the introduction, we have

(1) (S,0) does not satisfy Auslander’s Theorem as f; # 1 [Theorem 0.4(6)],
(2) Sisnot Calabi-Yau as pgg ¢ Z [Theorem 0.10(4)], and
(3) Zis not Gorenstein as ojg pgs ¢ Z [Theorem 0.11(4)].

We will shortly give necessary and sufficient conditions on the entries b;; of B
for O to be small when n = 4. The following result gives a necessary condition for any n,

and is of independent interest.
Proposition 3.4. Assume Hypothesis 0.3. If O is small, then ¢ | pf(B).

Proof. When n is odd, pf(B) = 0, and so the statement is vacuously true. Now suppose
n is even. We will prove the contrapositive: if pf(B) # 0 in Z, then O contains a reflection.

Recall the adjugate matrix adj(B) is defined by the property

adj(B)B = Badj(B) = det(B)I.
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There is a Pfaffian version of this for skew symmetric B (with n even), defined by
Padj(B)B = B Padj(B) = pf(B)I

[5, Corollary 1, page 46]. If pf(B) # 0 (mod ¢), we can use the above to solve the equation
By = pf(B)e,. For any i,

y = Padj(B)e;.

By the discussion preceding equation (E3.0.1), this produces a reflection in O. ]

Proposition 3.5. Assume Hypothesis 0.3 and let n = 4. Then O is small if and only if
the following two conditions hold:

(1) pf(B) =0 (mod ¢) and

(2) there does not exist an index j and an integer k such that kbij = 0 (mod ¢)

for all but one i.

Proof. As discussed at the beginning of this section, the smallness of O is equivalent to
equation (E3.0.1) having no solutions.

The previous proposition shows that if O is small, then pf(B) = 0 (mod ¢), so
condition (1) holds. Further, if there did exist an index i and an integer k such that kb;; = 0
(mod ¢) for all but one j, then B(kej) = kbijei, and so we have a solution to (E3.0.1). Hence,
if O is small then conditions (1) and (2) hold.

Conversely, suppose that conditions (1) and (2) hold. We wish to show that (E3.0.1)
does not have any solutions. Without loss of generality, suppose to the contrary that there

is a solution, say u, when i = 4, so that Ae, = Bu. Multiplying both sides by Padj(B) gives

APadj(B)e, = Padj(B)Bu = pf(B)Iu = 0.

Using [5, Definition 1, page 46], one easily computes that

Now since b;,A = by3A = 0 (mod ¢), condition (2) implies that b;,A = 0 (mod ¢).
Similarly, since b;,A = byzA = 0 (mod ¢), then byyA =0 (mod ¢). And since bj4A = byyr =
0 (mod ¢), then byyA = 0 (mod ¢). But since A # 0, this implies that gcd(bij,ﬂ) # 1, which

is a contradiction. [ ]

Now we are ready to prove Theorem 0.5.
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Proof of Theorem 0.5. Note that the case n = 2 is trivial. The case n = 3 follows from

Proposition 3.2 while the n = 4 case follows from Proposition 3.5. |

Remark 3.6. We remark that condition (2) in Proposition 3.5 is equivalent to the
condition that for all 1 < i < 4, no (;5;‘ is a reflection. Hence, in both the cases n = 3
and n = 4, the smallness of O is equivalent to the Pfaffian being O (which is automatic
when n = 3) and no power of a generator ¢; being a reflection. In Example 3.3, the Pfaffian

of B was nonzero.

Remark 3.7. Let R be an AS regular algebra satisfying gldim(R) > 2 and G a finite sub-
group of Aut,(R). We say RG¢ has graded isolated singularities if
P(R, G) = GKdim(R).

Consider the case that R = S, on n variables and G = O as above. By [3, Lemma
5.4], it suffices to compute p(4, G) where A = klx;, ..., x,]. But in this setting, p(4,G) =n
is equivalent to G acting freely on A,\{0} (see the references given in [11, page 4320]). It
is clear that this fails since, for example, ¢;(x;) = x;, Hence, choosing any nontrivial ¢;
(one of which must exist if R is noncommutative), shows that G does not act freely on
A,. Thus ZS, does not have isolated singularities.

On the other hand, there are other AS regular algebras A such that Z(4) has an
isolated singularity [9].

4 Regular Center

Throughout this section, we assume Hypothesis 0.3. We consider the question of
determining when the center of S is regular (equivalently, Z is a polynomial ring).
Recall that B is the matrix obtained from B by reduction mod ¢. Let K denote
the kernel of B and K be its inverse image in Z". For i = 1,...,n, denote by K; C Z the
projection of K onto its ith component. If p is a prime number, then let Z,, denote the
localization of Z at the prime ideal (p).If M is a Z-module and m € M, we use the notation

m ® 1 to denote the image of m in M ® Z,.

Lemma 4.1. Assume Hypothesis 0.3.
(1) Let x;'---x;," be a monomial in S. Write u = (u;,...,u,)? and x* =
x)1- -xy". Then x" is central if and only if u € K.
(2) We have Z = lk[X{l,...,Xf{‘] if and only if f;e; € K foreach i = 1,...,n.
Equivalently, f;e; ® 1 € K ® Z,, for every primep [ andi=1,...,n.
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Proof. (1) Forany 1 <i < n we have

X (i) = g it (1)

= %'(Bu)i (Xll41 .. .X;;L"n) X;.

Hence, x" is central if and only if £®Wi = 1 for all i if and only if u € K.

(2) By part (1) and definition, f; = gcd(X;). If f;e; € K, then by part (1), we have
le" € Z. Suppose that x" € Z, or equivalently, u € K. Then by the definition of f; (see
(E0.3.1)), there exist integers a; such that f;a; = u;, so that (Xi‘)“1 -+ (xIman = Y, Hence,

Z C ]14{[){11 A ,XL"]. The converse is clear. |

Proof of Theorem 0.6. (1) < (5): This is [20, Theorem 5.5].

(1) & (4): This follows from [18, Lemma 1.10].

(5) = (3): By the proof of Proposition 2.6, when O = H, Z = S? = S¥ is the subring
of the form ]k[XIl et ,XL"].

(3) = (2) = (1): These implications are clear.

(3) & (7): Since O is generated by {¢;}I |, it is preserved under base field extension.
Further both assertions in (7) and (3) are preserved under base field extension. So we can
assume that k is algebraically closed, whence we can use Lemma 0.2. Given (3), it is
easy to see that rk(S,) = []iL; f;, and this is the order of O by Lemma 0.2. Conversely,
Z C k[X{l R ,XI{‘] := B C S by definition. Then rk(Sp) rk(B;) = rk(S;) = |O| where the last
equation is Lemma 0.2. Further, O acts on B with Z = BO. Hence, Z is a direct summand of
B (see [18, Lemma 1.11] and [26, Corollary 1.12]). Since rk(Sg) = [[iL; f;, then |O] = []X, |;
implies that rk(B,) = 1 or equivalently, Z =B = ]k[X{l, p ,XL"].

(3) = (6): Since O is generated by {¢;, - - - , ¢,,}, there is a surjective map [];_; (¢;) —
O and consequently,

gn
0] < =% .
[Ts—; ged{bys bog, - -+ by, £}

Similar to the argument in (3) < (7), we can assume that k is algebraically closed.
fi

i-

Again by Lemma 0.2, |0| = rk(S,) = [[1L, f;- Since Xl.ci 4 pf; =1 after applying ¢, to x
Equivalently, b, f; is divisible by ¢. Then

ged{b;y, -+ by, U}y = ged{by ;. -+ by i £} = La
for some integer a. Therefore, §; > m. Thus,

n
0= — : .
[1i=; gedibyy, -+ by, €}
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This proves equality. In fact, we also obtain that

L

= E4.1.1
ged{b;;,---,b ( )

fi o

in’

(6) < (8): Since the order of ¢; is W (6) implies that the surjective map

e ibin £
0 — [1iL,(¢;) is bijective. The converse is similar.

1~1s
x;.”i e Zforalli.Let C = ]k[x‘l”l, <o, xn™]. So rk(S;) = T gcd{‘;;:l,---,bin,é} , which is equal to
|O|. Since rk(S;) = |0|, we obtain that rk(Z;) = 1. Since Z is Cohen-Macaulay [16, Lemma
3.1], then C = Z.
(9) < (3): This is Lemma 4.1(2).

When Z is regular, it is Gorenstein. By Theorem 2.7, 0j5 is equal to js . By a

(6) = (2): Let w; = m. Then w;b, is divisible by £. This implies that

decomposition like (E2.7.1), one sees that oag is equal to ag . u

Remark 4.2. We now describe an idea (or rather an algorithm) for testing regularity

and Gorensteinness of Z that works for any n. We divide it into several steps.

(1) Recall that if M is any matrix over a PID, then there exists a diagonal matrix
D and invertible matrices L, R such that D = LMR. The matrix D is the Smith
normal form of M. We will apply this to the matrix B.

(2) By definition, K is the preimage of K where K is the kernel of the map Lz :
7" — 7" (as a left multiplication by the matrix B). We also use B to denote
this (right) Z-module endomorphism Lz if no confusion occurs. By definition

there is a short exact sequence
0> 4¢Z" > K—>K—0.

As a consequence, K contains fe; for each i. We may consider {(e;}!! ; as
a subset of a generating set of K. If necessary, we also view B as the
composition map Z" — Z" 15, 7" In this setting, K is the kernel of B.

(3) Since Z is integrally closed and K is finitely generated, the conditions in
Lemma 4.1(2) can be checked locally (at prime p for all p | ¢), and to do this
it is convenient to have a generating set for K, := K ® Zy,. To this end, we
compute the kernel of the map B, := B ® Z,, for each prime p | ¢, in other
words, we produce a generating set for K, which can be glued together to
get a generating set for K.

(4) Recall that for an integer m and a prime p, v,(m) denotes the maximal integer

a such that p% | m. Recall from Hypothesis 0.3 that B = (bij)i,j isann xn
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skew symmetric matrix over Z. We further introduce some notations: fix a

prime p dividing ¢ and let

N =v,(0), aij:min{N,vp(bij)}, and a:min{N,vp(pf(B))}. (E4.2.1)

(5) Foreachp |, Z@Z(p) = 7/(") and K ) is the kernel of the left multiplication

map
By, : 2, — (Z/@" )"

(6) By part (2),foreachp | ¢,p"e; € K ,)- So we are interested in other generators
in K(p). In other words, we are interested in generators of K @)

(7) Given the Smith normal form D = LBR for B, the equation B(p)u = 0 is
equivalent to Bu = 0 (mod p") and is equivalent to Dv = 0 (mod p") where
v = R~ 'u. Hence, to compute the kernel of E(p), we compute the kernel of
D mod p" (or equivalently, the kernel of the map 5@)) and apply R to the
generators to obtain a set of generators {u,,...,u,} for the kernel of B(p). If
we let f,; = ged;_;,((0;);) (computed in Z,), then f, ; is of the form p®u
where a is a nonnegative integer and u is a unit in Z,. So we can write
fp; = p® which is called the standard form of §, ;. Using the standard forms,
one sees that j; is the lcm of the §, ; as p runs over the prime divisors of ¢.
Since f, ; = f; in Z,, we will also use §; for j, ; in the middle of the proofs.

(8) By Lemma4.1 (resp. Lemma 5.1 in the next section), to determine if the center
Z is regular (resp. Gorenstein), it is enough check whether f;e; € K (resp.
Frr-- )T € K.

(9) For the argument below, we will fix a prime divisor p of ¢. Throughout the

rest of this section, we will use the convention introduced in this remark.

Using the “algorithm” discussed above, we give explicit conditions equivalent to

the regularity of Z in terms of the parameters b;; in the cases n =3 and n = 4.

Proposition 4.3. Assume Hypothesis 0.3 and retain the convention introduced in

(E4.2.1). Assume, without loss of generality, that o;, = min{e;;} = 0.

(1) If n =3, then K, is generated as a Z,-module by pVe; fori=1,2 and

b
1 ;3
b12 13
b1,
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(2) If n =4, then K, is generated as a Z,,-module by pVe; fori=1,2 and

b23/b12 b24/b12

pra _b13/b12 N—« _b14/b12
1 ' 0
0 1

Proof. (1) Let n = 3. The Smith normal form D = LBR of B over the ring Z,, is

by, 0 0 1 0 0 0 1 by/by,
D=|0 -b, 0|, L= 0 1 0|, R=|1 0 =by3/by,
0O 0 0 bys/by, —bya/byy 1 00 1

Applying the argument in Remark 4.2(7), the kernel of D(p) is generated, as a Z(p) -module,
by pYe,, pVe,, e;. Applying R to these gives the stated generators.
(2) Let n = 4. The Smith normal form of B is given by

by, O 0 0
0 -b 0 0
D— 12 1 ,
0 0 Epf® 0
1
0 O 0 — 5 pf(B)
(b, O 0 0
,_ 1|0 b, 0 0 ,
bia |byy —biz b, O
by —byy 0 by
[0 b, by by
R L by 0 —byy —by3
bl o 0 0 by
0 0 b, O

Using similar reasoning as above, the kernel of D, is generated by p"e;, p"e,, p" *e;,

pY~%e,. Again, applying R to these gives the stated generators. |

We will write f;e; for f;e; ® 1 € K, := K ® Zp, if no confusion occurs.

Proposition 4.4. Keep the assumptions of Proposition 4.3. If n = 3, then f;e; € K for
alli=1,2,3if and only if ay3 = a;3 = N.
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Proof. Using the generators of K, from Proposition 4.3 and the definition of f; (cf.
(E0.3.1)), we have, up to units in Z g

(Strictly speaking these should be f, ., f, », and f, 3, respectively.) Suppose f;e; € Ky, for
all i. In particular, for i = 3, there exists A;, 1,5, A5 € Z(p) such that

ApY 0 A3by3/byy 0
0 0 As 1
Hence, A; = 1. The first component gives A; = —b,3p~"/b,,, so vp(A1) = ay3 —N and a

necessary and sufficient condition for A, € Z,, is a,3 = N. Similarly, we get «;3 = IV, and

this proves the forward implication. The converse is clear. |
Proposition 4.5. Keep the assumptions of Proposition 4.3. If n = 4, then j;e; € K, for
alli=1,...,4if and only if

Qo > o (E4.5.1)
for (i,j) = (1,3),(1,4),(2,3),(2,4).

Proof. Using the generators of K ® Z;, from Proposition 4.3 and the definition of f;, we

have

f, = ged (p”,pN‘“%,p""“Zﬁ) = ged (p”‘“zﬁ,plv‘“%) (E4.5.2)
12 12 12 1

2
f, = ged (lepN—a%,pN—a bﬁ) = gcd (pN—a bﬂle—a %)
12 12

S

fa=fa= pN_a~

Suppose f;e; € Ko for all i. In particular, for i = 3, there exists A;,..., A4 € Z(p) such that

ap" A3b23/b1y h4boq /by, 0
AopN N_o | ~*3b13/b12 N_o | —Pabra/biz| | O
+p +p - N—o
0 Az 0 p
0 0 Ay 0
Hence, 1, = 0 and A3 = 1. The first component gives 1; = —p~%b,3/b;5, 50 v, (A;) =

—a+ay3.50 Ay € Z,, if and only if ay3 > «. The same argument on the second component
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gives a;3 > «. We can perform the same calculations for i = 4 to obtain «;; > « and
Ogy > 0.

Conversely, assume the inequalities (E4.5.1) hold. Then N < N—a+a;;s0f, =, =
p". Hence, f;e; € K, fori=1,2. Next, we take the third generator of K, (cf. Proposition

4.3) and subtract from it multiples of the first two

by3/b1y

N-o | ~D13/b12
1
0

fs€3 =p - ﬁleel + ,3sz82,

where 8, = p~®by3/b;, and B, = p~®b,3/b;,. The inequalities (E4.5.1) can be rearranged
so that o;; —« > 0. The left-hand side of this inequality is v,(B) for appropriate i,j, k.
Hence By, B, € Zp), SO fs€3 € K5,). Similar computations with the fourth generator of K

yield f,e, € K,). This completes the proof. u

Next, we globalize the above results that are local at p. First, we need a technical

lemma.

Lemma 4.6. Letr,...,r; be roots of unity with orders o;,...,0;. Let s = 0, ---0; and
¢ be a primitive s-th root of unity. Then the orders are pairwise coprime if and only if

there exist integers n, ..., n; such that gcd(n;,s) =1 and
ri — é.niolmf)i-nok
Proof. We prove the forward direction only, since the reverse implication is immediate.

Since r; has order o;, it is a primitive o;-th root of unity. Now ¢°1%% is also a primitive

0;-th root of unity, so there exists an integer m;, such that m; and o; are coprime, and
m;s;
rl = é‘ 1 L'

where s; =0, ---0; - - - 0. The integers m; and s may not be coprime, but we can choose an
integer j such that n; := m;+jo,; and s are coprime. Firstly, since o0; and s; are coprime, we
. Si _ . . . . .
have {m; —i—]Oi}j:O = Z/s;Z as sets. Hence, there exists an integer j such that n; is coprime
to s;. But m; and o; are assumed to be coprime, so n; and o; are coprime, which means n;

and s are coprime. Finally,

oS = é—(miﬂoi)si — ;-misi"‘js =M=,

and we are done. [ |
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Corollary 4.7. Assume Hypothesis 0.3 and let n = 3. Then, Z is regular if and only if
the orders of p,,, p;53 and p,; are pairwise coprime. Equivalently, there exist pairwise
coprime integers a, b, ¢ > 1 such that p,, = €%, p;; = £%¢™ and p,, = £P¢™0 where £ is a
primitive £th root of unity with ¢ = abc and n,, m; are coprime to £.

Proof. For each prime p dividing ¢, we have v, (0(p;)) = N — a;;. The orders of {p;;};_;

being pairwise coprime is equivalent to at least two of {« being equal to N. By

g
jli<j
Proposition 4.4 and Lemma 4.1, this occurs if and only if Z regular. The last statement

follows from Lemma 4.6. |

Corollary 4.8. Assume Hypothesis 0.3 and let n = 4. Let p = gcd(¢,pf(B)), ¢;; =
gcd(bij, 0),  be a primitive pth root of unity, and q;; = @i, Then Z is regular if and only
if the orders of {g;;};_; are pairwise coprime. Equivalently, there exist pairwise coprime
integers 05> 1 such that

q;j = 0",

where (nl],p) =1 and Hl<] Oij =p and 61] = ,O/Oij.

Proof. We first show that the conditions on «;; in Proposition 4.5 imply that ag, > o as

well. Rearranging the equation for the Pfaffian gives
byyb3y = PE(B) + b13byg — D1gbys.

Taking p-valuations and noting that «;, = 0 gives the inequality.
Let p be a prime factor of p. Then vy (0(g;) = vp(p)—vp(cyy). We also have v (p) =«

and vp(cyj) = min{a;;, o). Proposition 4.5 and Lemma 4.1 say that Z is regular if and only if

ijr
a;; = o for (i,) # (1,2). These conditions imply v, (0(g;;)) = 0 except (i,j) = (1,2). Hence,

o(g;;) are pairwise coprime.

Conversely, we get that vy (0(g;) =0 for all (i,j) # (1, 2). This means min{aij, a} =
o implying o;; > « for such (i, ).
The last statement follows from Lemma 4.6. [ |

We finish this section with the proofs of Theorems 0.7 and 0.9.

Proof of Theorem 0.7. Inthen = 2 case, Z = ]k[xf,xﬁ] so the result is clear. The result
in the n = 3 case follows from Corollary 4.7, while the result in the n = 4 case is due to
Corollary 4.8. |
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Proof of Theorem 0.9. If the orders of {p;; are pairwise coprime, then for any prime

}i<j
p | £, the matrix E(p) has rank 2. In particular, F(p) is similar to the block diagonal matrix

5

and a zero matrix of the appropriate dimension. Hence, K, is generated by pN —Up(b)91,
p"~»®e, and e,, ..., e,. This shows that vp(F) = N — vy (b) for i = 1,2 and v, (f;) = 0 for

formed from

j=3,...,n. The result follows from Lemma 4.1(2).
Part (1) of the consequence follows from (E4.1.1). By definition, £ = Hi<j o(p;))-
Then part (2) of the consequence follows from part (1) and Theorem 0.6(7). |

5 Gorenstein Center

Throughout this section, we assume Hypothesis 0.3. Here we study the question of when

the center of S is Gorenstein.

Proof of Theorem 0.11. (1) < (2): This is [19, Theorem 0.2].

(2) & (3): Let ¢; denote the image of ¢; in O/H. Since S¥ = k[xi‘,m ,XL"] (see the
proof of Proposition 2.6) and ¢; € O/H acts on S as a diagonal map for each i, (E1.4.2)
implies that

n
hdetO/H(qTi) = gi(xil ...len)(xil ...len)fl — lef;
s=1

Since oj pg, = Xil XIL" we see that (2) < (3).
(3) < (4): This is clear as an element f € Z if and only if ¢;(f) = f for all i. |

Next we prove Theorem 0.10.

Proof of Theorem 0.10. (2) < (3): This is Lemma 1.5(2).

(1) & (3): The Nakayama automorphism u of S follows from [24, Proposition 4.1],
and it is easy to show that (3) holds if and only if 4 = id. Equivalently, S is Calabi-Yau.

(3) < (4): This follows by an easy computation.

Suppose that O-action has trivial homological determinant. By [31, Theorem
1.21], Auslander’'s Theorem holds for (S, O). Hence, all statements in Theorem 0.4 hold.
Since Auslander’s Theorem holds for (S, 0), H is trivial. Then Theorem 0.11(2) holds.

Hence, all statements in Theorem 0.11 hold. [ |
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Theorem 0.11(3) gives us necessary and sufficient conditions for Z = S° to be

Gorenstein. It is more convenient for us to express the condition in terms of the matrix B.

Lemma 5.1 (=Theorem 0.11(3)). Assume Hypothesis 0.3. The center Z of S is Gorenstein

if and only if the following equation holds in Z:

B, ....f)" =0.

We already computed the {f;} for n = 3,4 in the previous section, so we are ready

to prove Theorem 0.13.

Proof of Theorem 0.13. (1) The result for n = 2 is well-known.
(2) The result for n = 3 is immediate from Lemma 2.8.
(3) Let v = £/ gcd(pf(B), O)(vy, ... ,v4)T. The image of this vector in (Z(p))4 is a unit

multiple of

gcd(bys, bys bsy)
N_o | 86A(b13, b1y, b3y)
gcd(by2, b4, bag)
gcd(byg, by3,by3)

After relabelling if necessary, we can assume b, is a unit. The equation
by3b3q = PE(B) + b13byy — b1abys

shows that oy, > «, which means we can drop b;, from the arguments in the first two
gcds above. Comparing with (E4.5.2) shows that the ith component of v has the same

p-valuation as f;. This holds for all prime factors p of £ so we are done. |

We end this section by discussing some examples and showcase the subtleties
in the results above. We remark that for a commutative ring, the following set of

implications hold:
regular = hypersurface ring = complete intersection = Gorenstein.

In this paper, we have focused on the regular and Gorenstein properties of the center
of S, but it would be interesting to determine conditions equivalent to the center of S,
being a hypersurface ring or a complete intersection. Recall that Z is a (commutative)
hypersurface ring if Z = klx,,...,x,l/(f) for some homogeneous polynomial f. In this

case, the Hilbert series satisfies h,(t) = p(t)/q(t) where p(t) is a cyclotomic polynomial.
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Example 5.2. Setn = 3.
(1) By Theorem 0.10, if S is Calabi-Yau, then

¢
Z = klxt, x5, x5, x,x,%5)/ (x} x5%5 — (x,%,%3))

is a hypersurface ring.

(2) Let ¢ > 1 and consider the following B matrix:

0 0 1
B=]10 0 -1
-1 1 O

By Lemma 2.8 and the subsequent discussion, f = (1,1, ¢) and g = (¢, ¢, £). It follows that
Z is generated by {x!, y*, z*, xy} and so

Z=Kly,,v5 V3. Val/ Vs — V1V2)-

Thus, Z is a hypersurface ring that is not Calabi-Yau.

(3) Let £ = 24 and consider the following matrix:

0 4 6
Bk= —4 0 k1.,
-6 -k O

where k = 3 or 9. In either case, Lemma 2.8 gives f = (3,6,4) and g = (12,24, 8). By
Lemma 5.1, S is Gorenstein when k = 9 and non-Gorenstein when k = 3. Suppose k = 9,

then Z is generated by X1 ,X§4, X3, and X1X2X3 One checks that the Hilbert series of Z is

p@® 1+t 4+t 4%
q@®) — 1= - 2HA - 8)

hz(t) =
It is clear that p(t) is not cyclotomic, and thus Z is not a hypersurface ring.

6 Questions and Comments

In this section, we list some questions and comments related to the theorems given in this
paper. Much of this paper has been devoted to the study of the algebras Sj,. In addition to
classifying those S, such that ZSj, is regular or Gorenstein for n > 5, one could consider

the following problems.
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Question 6.1.

(1)

(2)

(3)

(4)

(5)

What conditions on the PI skew polynomial ring S, are equivalent to the
center ZS, being a hypersurface ring or a complete intersection ring?

Let S, be the skew polynomial ring in n variables. By Remark 3.7, 0 <
P(Sp, 0) < n.For each 0 < i < n, can we find some skew polynomial ring
S such that p(S, 0) = i?

(Ken Goodearl) The matrix B controls the PI degree of S [12]. Is there a direct
computation of PI degree from the parameters b;;? Is the PI degree related to
the other invariants in this paper?

(Colin Ingalls) In cases that the center ZSp is not Gorenstein, under what
conditions on Sp is it Q-Gorenstein (see [8])?

The classification of skew polynomial rings up to isomorphism is known
(see [13]). Two skew polynomial rings are birationally equivalent if their
associated quotient division rings are isomorphic. What is the classification

of skew polynomial rings up to birational equivalence?

As we have mentioned, the algebras S;, are viewed as a good testing ground for

many problems in noncommutative invariant theory. It would be interesting to study the

problems in this paper more generally.

Question 6.2. Let A be a noetherian PI AS regular algebra.

(1)
(2)

(3)

(4)

(5)

(5)

(6)

Is there is a version of Corollary 0.12(1) or (2) for A?

Does (1) < (3) in Theorem 0.10 hold for A? Namely, is it true that the
homological determinant of Oz(A) is trivial if and only if A is Calabi-Yau?
Can we define invariants oj4, oay, and 004 such that they generalize ojg, oag,
and 005 and control properties of A and its center?

For the skew polynomial ring Spr the ozone group O acts on Sp such that ZSy, =
Sg .Is there a semisimple Hopf algebra H acting on A such that Z(A) = A7?
Suppose A is generated in degree 1 and suppose that the center of A is
kicy,--- ,c,]l where degc; > 1 for every i. Does it hold that Aut(4) is affine?
Related to this is the notion of LND-rigidity. Let LND(A) denote the inter-
section of all kernels of locally nilpotent derivations of A. Under the above
hypotheses, does it hold that LND(A) = {0}. We note that both of these hold
when A is a skew polynomial ring.

Is there a unique mozone subring of A? That is, does ¢,(A) have a minimum

element?
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Question 6.2(4) would be especially interesting in the case when A is a (PI)
Sklyanin algebra.

One source of interesting examples that may be useful for studying some of the
above questions are graded noetherian down-up algebras.

Let o, 8 € k with 8 # 0. A noetherian graded down-up algebra A = A(«, 8) is

generated as an algebra by x and y and subject to the relations
X2y — AXyX — ,BYXZ =0= Xy2 — AyxXy — ,BYZX.

It is well-known that A is AS regular, but is not isomorphic to any S;. The group of
graded algebra automorphisms of A was computed by Kirkman and Kuzmanovich [17,
Proposition 1.1]. If 8 # +1, then every graded algebra automorphism of A is diagonal.
By [25, (1.5.6)], the Nakayama automorphism of A is determined by

w:x— —px, ym— —,Bfly.
Let w; and w, be the roots of the characteristic equation
w? —aw — B=0
and let Q; = xy — w;yx for i = 1, 2. It is easy to see that for {i,j} = {1, 2} we have
xQ; = w2ix, w0y =Q;y.

Note that A is PI if and only if both w; and w, are roots of unity.
Let

2
Ifo € Autgr(A) is diagonal, then hdet(o) = (deto|Al) [17, Theorem 1.5]. Using this fact,
one can easily check that

o (b) = hdet(o)b. (E6.2.1)
This equation should be compared with (E1.4.2).

Proposition 6.3. Let A = A(«, 8) be a PI noetherian graded down-up algebra. Then A is
Calabi-Yau if and only if b € Z(A).

Proof. Recall that A is Calabi-Yau if and only if the Nakayama automorphism u of A is
the identity, if and only if § = —1, if and only if w0, = 1, if and only if Q,Q, € Z(A) by

computation. |
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It is easy to show, using these generating sets for Z(A) given in [23, 30], that
Z(A) is regular when («, 8) = (0, 1). We conjecture that this is the only case that Z(4) is

regular.

Question 6.4. Suppose A = A(w, B) be a PInoetherian graded down up algebra. For what

parameters («, 8) is Z(A) regular (resp. Gorenstein)?
The following should be compared with Theorem 0.11.

Proposition 6.5. Let H be a finite subgroup of Aut, (4) consisting of diagonal automor-
phisms. The following are equivalent.
(1) The H-action on A has trivial homological determinant.

(2) A is Gorenstein.
(3) be A

Proof. (1) < (2): By [18, Proposition 6.4], H does not contain any reflections. By [19,
Corollary 4.11], A# is Gorenstein if and only if hdety is trivial.

(1) & (3): By (E6.2.1), hdety is trivial if and only if g(b) = b for all g € H, if and
only if b € AF. [ ]

The following should be compared with Theorem 0.11.

Corollary 6.6. The following are equivalent.

(1) A9 is Gorenstein where O = 0z(A).
(2) beA°.

Proof. By [9], the ozone group O consists of diagonal automorphisms. The assertion

follows from Proposition 6.5 by setting H = O. ]

Question 6.7. Since Z € A9, then clearly b € Z implies that b € A°. Does the opposite

implication hold?
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