Haplotype-aware Variant Selection for Genome Graphs

Neda Tavakoli

Daniel Gibney

Srinivas Aluru

School of Computational Science and School of Computational Science and School of Computational Science and

Engineering, Georgia Institute of

Engineering, Georgia Institute of

Engineering, Georgia Institute of

Technology Technology Technology
Atlanta, Georgia, USA Atlanta, Georgia, USA Atlanta, Georgia, USA
neda.tavakolil@gatech.edu dgibney3@gatech.edu aluru@cc.gatech.edu

ABSTRACT

Graph-based genome representations have proven to be a powerful
tool in genomic analysis due to their ability to encode variations
found in multiple haplotypes and capture population genetic di-
versity. Such graphs also unavoidably contain paths which switch
between haplotypes (i.e., recombinant paths) and thus do not fully
match any of the constituent haplotypes. The number of such re-
combinant paths increases combinatorially with path length and
cause inefficiencies and false positives when mapping reads. In
this paper, we study the problem of finding reduced haplotype-
aware genome graphs that incorporate only a selected subset of
variants, yet contain paths corresponding to all #-long substrings
of the input haplotypes (i.e., non-recombinant paths) with at most
¢ mismatches. Solving this problem optimally, i.e., minimizing the
number of variants selected, is previously known to be NP-hard [14].
Here, we first establish several inapproximability results regarding
finding haplotype-aware reduced variation graphs of optimal size.
We then present an integer linear programming (ILP) formulation
for solving the problem, and experimentally demonstrate this is
a computationally feasible approach for real-world problems and
provides far superior reduction compared to prior approaches.

KEYWORDS

Variation graphs, variant selection, haplotype-aware, SNPs, ILP-
based optimization

ACM Reference Format:

Neda Tavakoli, Daniel Gibney, and Srinivas Aluru. 2022. Haplotype-aware
Variant Selection for Genome Graphs. In 13th ACM International Conference
on Bioinformatics, Computational Biology and Health Informatics (BCB °22),
August 7-10, 2022, Northbrook, IL, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3535508.3545556

1 INTRODUCTION

With the increasing pace of genome sequencing and applications
that involve analyzing the genomes of thousands of individuals,
there is growing realization that a linear reference genome is not
well suited for representing genetic diversity. A single reference
genome represents only a tiny fraction of human genetic variation.
Individual human genomes can contain 3.5 — 4 million SNPs or

This work is licensed under a Creative Commons Attribution International 4.0 License.

BCB °22, August 7-10, 2022, Northbrook, IL, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9386-7/22/08.
https://doi.org/10.1145/3535508.3545556

indels and approximately 2,500 significant structural variations
relative to the linear reference. This genetic diversity between in-
dividuals and sub-populations can cause reads to map incorrectly
when a single linear reference is used. To alleviate such reference
bias and improve mapping accuracy, graph-based references have
become increasingly popular in sequencing analysis. Graph-based
references, or equivalently genome graphs built for a set of ref-
erence genomes, can comprehensively catalog common genetic
variations and polymorphic haplotypes in a population, improve
the accuracy of read mapping, and be effective tools in variant call-
ing (see [3, 8, 27] for recent surveys). Representation [10, 22] and
indexing [1, 11, 13, 18, 25, 35] of genome graphs, and sequence-to-
graph alignment/mapping algorithms [5, 15, 19, 30, 31] are active
research topics.

A key drawback of graph-based references is the presence of com-
binatorially explosive recombinant paths that correspond to groups
of variants never observed in any sequenced haplotype. In fact, it
is observed that incorporating all genetic variations to create the
so called complete variation genome graph, perversely reduces the
quality of read mapping [29]. This led to recent interest in variant
selection algorithms to determine which subset of variants should
be incorporated in a graph-based reference [14, 16, 29, 36]. In [14],
Jain et al. developed a novel mathematical framework for variant
selection that is aimed at providing mathematical guarantees of
subsequent mapping accuracy. This is achieved by maximizing the
number of variants that can be safely discarded while guarantee-
ing a chosen set of sequences can be mapped within a specified
error limit. While this previous work presents several useful results
when the set of sequences is chosen to reflect fixed length paths
in complete variation graphs, the associated problems become NP-
hard when the sequences are restricted to substrings of observed
haplotypes, the so called haplotype-aware variant selection problem.

This work explores the haplotype-aware variant selection prob-
lem in the context of SNP variants, and contains the following
contributions:

(1) We establish several hardness-of-approximation results re-
garding the minimization and maximization optimization
versions of the haplotype-aware variant selection problem.
In addition we provide simple approximation algorithms.

(2) We develop an Integer Linear Programming (ILP) formula-
tion that provides optimal solutions for the haplotype-aware
variant selection problem, allowing us to take advantage
of the algorithms and software developed for this classic
optimization problem.

(3) Using Gurobi solver [12] to implement our ILP formulation,
we evaluate the achieved reduction in graph sizes and run-
time performance on human chromosome sequences and

BCB ’22, August 7-10, 2022, Northbrook, IL, USA

SNP variants from the 1000 Genomes Project [2]. Comparing
with algorithms in [14], we demonstrate significant reduc-
tion in graph sizes while retaining the ability to handle large
variation graphs.

The rest of the paper is organized as follows: Section 2 discusses
related works, including graph-based reference representations
and haplotype-aware graph simplification; Section 3 describes the
notations used throughout the paper, and provides formal defini-
tion of haplotype-aware variant selection. Section 4 provides our
hardness and inapproximability results; Section 5 presents our ILP
formulation, and corresponding algorithms; Experimental results
are presented in Section 6; and Section 7 contains conclusion and
directions for future research.

2 RELATED WORKS

Genome Graphs: Several tools have been developed recently that
construct and utilize genome graphs. Some of the most prominent
are Graphtyper [7], HISAT2 [17], and vg-toolkit [10].

Graphtyper utilizes variation graphs, and introduces algorithms
to discover and genotype sequence variants. HISAT2 first constructs
a linear graph of the reference genome, and subsequently augments
variants as alternative paths through the graph. It also constructs
a hierarchical index that consists of: (1) a global graph-FM-index
(GFM) representing the linear reference, and (2) a set of overlap-
ping local GFM indexes to collectively cover the complete variation
graph. HISAT?2 also provides a fast and sensitive graph aligner
tool based on GCSA [35] (an extension of the BWT for graphs)
and BWT. The vg-toolkit constructs genetic variation graphs by
leveraging GCS2 [33] (an extension of the BWT for population
graphs). It also provides a graph-based read aligner utilizing the
seed-and-extend strategy and pairwise sequence alignment for di-
rected acyclic graphs [20]. Vg-based read mapping can substantially
improve read mapping and the fraction of reads mapped uniquely
and correctly.

Recent works that utilize these graph representations include
work by Sherman et al. that provides a pan-genome survey for var-
ious species, from bacteria to humans [32]; work by Liu et al. that
constructs a complete high-quality pan-genome from soybean ac-
cessions that capture genomic diversity [23]; and work by Li et
al. on using the minigraph toolkit to construct a pangenome graph
to encode genomic diversity and structural variants [22]. Bestin et
al. provide a review of software tools and strategies for building
the human pangenome based on discussions by 45 scientists and
software engineers from all over the world in 2019 [24].

Haplotype-aware graph tools: Various graph-based tools that
utilize known haplotypes have been developed. CHOP augments
haplotypes into a variation graph, then converts the haplotype-
annotated population graph into a collection of sequences that cover
all the observed k-long paths in haplotypes [26]. This collection
of sequences is a compressed representation of all k-long paths
through the graph. By doing this, CHOP constrains and bounds the
search space when mapping reads. However, this haplotype-aware
graph simplification is only designed for use on values of k equal
to the length of short reads (e.g., 100 to 150), making this approach
inapplicable for long reads or paired-end reads.

Tavakoli, et al.

Siren et al. [34] developed haplotype-aware graphs by creating
GBWT indexes (scalable implementation of the PBWT [35]). This
augments haplotype information into vg-toolkit graphs and indexes
haplotype paths in genome graphs using the GBWT index. More
specifically, the augmented VG model and GBWT address a draw-
back of vg-toolkit, that paths corresponding to known haplotypes
can break into sub-paths that represent recombinant paths. Unfor-
tunately, this approach can lead to exponential growth during index
construction. Hence, better indexing strategies or graph pruning
algorithms are needed.

3 PRELIMINARIES

Let R1, Ry, ..., Ry, denote m input reference haplotype sequences,
each a string of length n over an alphabet X. We assume that one
of these, say Ry, is a special reference. A variation graph is an edge-
labeled directed multi-graph (henceforth simply called a graph)
G = (V,E,t), where V = {01, ...,0n41} is an ordered set of vertices,
E is the set of edges, and ¢ : E — X specifies edge labels. The nodes
v; € V,(1 <i < n+1) represent a coordinate axis for the variation
graph. To construct a variation graph from Ry, ..., Ry, first the
haplotype R; is used to create the linear backbone of the graph G.
This is a directed path vy, v2, . . ., vp41 With character-labeled edges
such that for 1 < i < n the edge (v;,vi3+1) is labeled with the jth
character in the sequence R;. We limit ourselves to substitution
variants, also known as Single Nucleotide Polymorphisms (SNPs),
which are bases in haplotypes differing from R; in the same position.
At coordinate i, the set of SNPs is a subset of . For each distinct
SNP variant at location i, an additional edge between vertices v;
and vj41 is created and labeled with that symbol. See Figure 1 (b)
for an example. The number of variants is the same as the number
of edges that are not part of the linear backbone. The number of
variants at coordinate i (1 < i < n) equals the out-degree of the
vertex v; minus one, and is bound by |Z| — 1.

We say that a path with edges ey, ey, .. ., e, matches the string
t(e1) o £(e2) o ... o £(ey), where o denotes concatenation. Let
Rj[i...i+a—1] denote the a long substring Rj[i]o...oR;[i+a—1]
of haplotype j. We refer to a path of length « starting at v; and not
matching Rj[i...i+a — 1] for any 1 < j < m as a recombinant
path.

One objective is to obtain a graph that maintains close approxima-
tions to paths corresponding to substrings of the input haplotypes.
This is captured by the following definition:

DEFINITION 1. A variation graphG is said to be (a, 6)p,-compatible
ifforalll1 < j <m,1<i<n-—a+]1, there exists a path starting
at v; that matches a string with Hamming distance at most § from
Rjli...i+a—1].

A second objective is to find a subgraph of G that limits the
number of recombinant paths. Formally, we call a subgraph G’
of G a reduced variation graph it G’ = (V',E’,¢'), where V' =V,
E’ C E such that E \ E” only represents variants, and for all e € E’,
t’(e) = £(e). Combining both objectives leads to the following
problem definition:

PrROBLEM 1 (HAPLOTYPE-AWARE VARIANT REDUCTION WITH REF-
ERENCE). Given a variation graph G = (V, E) and haplotype set Ry,

Haplotype-aware Variant Selection for Genome Graphs

.. .s R (with Ry serving as designated reference), compute an (a, 8)p,-
compatible reduced variation graph G’ with the minimum number
of variants.

In practice, @ should be a function of read lengths, whereas §
is determined based on sequencing errors and error-tolerance of
read-to-graph mapping algorithms.

If one is willing to relax the condition that edges corresponding
to the linear backbone constructed from R; cannot be deleted, and
only maintain that the reduced variation graph remains connected,
a slightly different problem can be formulated. Now, we let the
edges in the backbone be considered as variants as well. Then we
can define:

PROBLEM 2 (HAPLOTYPE-AWARE VARIANT REDUCTION WITHOUT
REFERENCE). Given variation graph G = (V, E) and haplotype set
Ry, ..., Rm compute an (a, &) -compatible reduced variation graph
G’ that is connected and has the minimum number of variants.

4 INAPPROXIMABILITY

In previous work, Jain et al. proved the NP-completeness of the
decision version of Problems 1 and 2 [14]. Here we will focus on the
inapproximability of Problem 1. Two natural optimization versions
of Problem 1 can be formulated based on the decision version. The
first is to minimize the number of variants kept while maintaining
that the resulting graph is («, §),-compatible, with a solution’s
value being the number of variants kept. We call this Haplotype-
Aware Variant Maintained Minimization. The second is to maximize
the number of variants removed while maintaining that the re-
sulting graph is (a, §),-compatible, with a solution’s value being
the number of variants removed. We call this Haplotype-Aware
Variant Removed Maximization. For a given instance, an optimal
solution to either clearly results in the same number of variants
maintained/removed, however, the approximation factors possible
by polynomial-time algorithms differ, assuming P # NP.

Minimization: We can utilize a close connection to the Uni-
form Hypergraph Vertex Cover and Multi-Cover problems to give
several hardness results and approximation algorithms for the min-
imization version. We first use a reduction from the k-Uniform
HyperGraph Vertex Cover problem to establish hardness results. In
this problem, one is given a hypergraph H = (V, E) where all edges
are of size k and the aim is to find a minimum subset of vertices
V’ € V such that every hyperedge includes at least one vertex in
V’. The reduction is as follows: given a hypergraph H = (V,E),
first assign the vertices in V an arbitrary ordering. Then, for each
hyperedge e; = {vj,,...,0;, } € E create a haplotype of length |V,
with 1’s in positions iy, . . ., i and 0’s elsewhere. Next, make a varia-
tion graph G, consisting of a linear backbone having |V|+1 vertices
with an edge labeled 0 and an edge labeled 1 at each coordinate.
Make the reference R; =0V, § =k — 1, and ' = V]

To see the correctness of the above reduction, note that if there
exists a vertex cover of size t in H, say v jis -+ - Uj,» We can maintain
variants labeled 1’s from positions ji, ..., j; and delete all other
variants labeled 1 from G. Since every edge in H is covered by
at least one of the vertices at these indices, every haplotype has
at least one ‘1’ variant that is preserved. Since the total number
of 1’s in each haplotype is k, at most k — 1 = § mismatches now
occur between any haplotype and G. Hence, this provides a valid

BCB ’22, August 7-10, 2022, Northbrook, IL, USA

solution with value ¢ to the Haplotype-Aware Variant Maintained
Minimization instance. Conversely, suppose there exists a solution
to the Haplotype-Aware Variant Maintained Minimization instance
where t variations are maintained. Then every haplotype has at
most § = k — 1 mismatches with G and hence at least one ‘1’ that
matches a variation in G. Therefore, taking the vertices correspond-
ing to maintained variations in G gives a set of vertices for H where
every edge has at least one vertex in the preserved set, providing
a vertex cover of size t. Since it is NP-hard to obtain an approx-
imation better than k — 1 — ¢ for k-Uniform Hypergraph Vertex
Cover problem, k > 3 [6], this approximation preserving reduction
implies that it is NP-hard to obtain a reduction better than § — ¢ for
any § > 2 and constant ¢ > 0,

THEOREM 4.1. There does not exist a polynomial-time (5§ — ¢)-
approximation algorithm for Haplotype-Aware Variant Maintained
Minimization for any § > 2 and constant € > 0 assuming P # NP.

To obtain additional inapproximability results, we observe that
the Set Cover problem with universe U and collection of sets S can
be reduced to the Hypergraph Vertex Cover problem with |S| ver-
tices and |U| hyperedges. This can then be reduced to k-Uniform
Hypergraph Vertex Cover problem by making k equal to the largest
cardinality of any existing edge, and then adding new ‘dummy’
vertices to each edge until they are all of cardinality k (the number
of edges is not changed). This creates a hypergraph with O(|U||S|)
vertices and | Y| hyperedges. Finally, we can reduce this k-Uniform
Hypergraph Vertex Cover instance to Haplotype-Aware Variant
Maintained Minimization as discussed above such that the number
of haplotypes m equals the number of hyperedges ||, and the
number of vertices in the variation graph is equal to the number
vertices in the k-uniform hypergraph plus 1, which is O(|U||S)).
All of these reductions are approximation preserving in that a size ¢
set cover is equivalent to a size t vertex cover for both hypergraphs,
and this is equivalent to ¢ variants being maintained in the variation
graph. Hence, a well-known (1 — 0(1)) log || inapproximability
result for Set Cover [9], implies that obtaining an (1 — 0(1)) log m-
approximation for Haplotype-Aware Variant Maintained Minimiza-
tion is NP-hard. Moreover, the number of vertices in our instance of
Haplotype-Aware Variant Maintained Minimization is O(|U||S]),
and since a o(log |S|)-approximation for set cover is also NP-hard',
this implies a o(log |V'|)-approximation for our problem is NP-hard
as well. These results are summarized below.

THEOREM 4.2. There does not exist a polynomial-time (1—0(1)) log m-
approximation algorithm or a polynomial-time o(log |V|) -approximation

algorithm for Haplotype-Aware Variant Maintained Minimization
assuming P # NP.

A reduction from Haplotype-Aware Variant Maintained Min-
imization to a well studied problem exists as well. Our problem
can be modeled as a version of the Multi-Covering problem. Using
the Booelean constraint matrix A described in Section 5, the prob-
lem can be rewritten as the integer linear program miny 1 - x s.t.,
Ax > A1 -651, where x; € {0, 1}. Here, unlike in Section 5, x; = 11is
interpreted as a variant i being maintained and x; = 0 is interpreted
as a variant i being removed. This is exactly a Multi-Cover instance.

!The inapproximability result in [9] holds when | S| = |2/ |®().

BCB ’22, August 7-10, 2022, Northbrook, IL, USA

For the Multi-Covering problem we can use the greedy algorithm
that starts with x as the zero vector and repeatedly makes x; = 1
for the i that maximizes the number of infeasible rows in Ax that
increase in value. It repeats this until a feasible solution is reached.
The greedy algorithm provides a logarithmic approximation [37].

THEOREM 4.3. There exists a polynomial-time O(log |'V|)- approx-
imation algorithm for Haplotype-Aware Variant Maintained Mini-
mization, where V' is the set of variants in G.

A polynomial-time approximation algorithm with approxima-
tion factor (max; 3. ; ajj —miny, 3 ; ap;+3+1) where a;; are entries
from the matrix A, is also possible [28]. In the case where all haplo-
types (besides R;) have the same number of variants in all « sized
intervals, this simplifies to a (J + 1)-approximation.

Maximization: The reduction by Jain et al. used to prove that
the decision version is NP-complete also proves that Haplotype-
Aware Variant Removed Maximization is NP-hard to approximate
within a factor of |V|1=€ for any constant ¢ > 0. This is since
it provides a reduction from the Independent Set problem on an
instance G’ = (V’,E’) to an instance G = (V,E) of Haplotype-
Aware Variant Removed Maximization such that & = |[V’| = |[V| -1
and a solution where t variants are removed yields a solution to the
Independent Set problem consisting of a ¢-sized independent set.
This, combined with the NP-hardness of finding a solution to the
Independent Set problem within an |V’|!~¢-approximation factor
of optimal [38], proves the result.

THEOREM 4.4. It is NP-hard to obtain a O(|V|'~%)-approximation
for Haplotype-Aware Variant Removed Maximization.

It should also be noted that an %—approximation can be obtained
for both the haplotype-aware and non-haplotype-aware versions
via a simple algorithm. Consider the strategy of removing all vari-
ants from coordinates that are [%] apart (i.e., [%] — 1 coordinates
between them). In particular, let potential solution i be the solution
were all variants are removed at coordinates i+ j [%] for1 <i< [%]

and 0 < j < % For every solution and any interval of size o
5

there are at most § coordinates with variants removed, hence in

that interval at most § variants removed for every haplotype. At the

same time, since these [%1 solutions partition all of the variants,
one of them must contain at least @ fraction of all the variants.
Therefore, taking the solution i that contains the most variants
overall gives us a solution with value at least %. In the cases

we studied in this work, we have § being equal t50 some relatively
small proportion of «, such as § = .01e, or § = .1a. For our experi-
ments, this approach would give approximation ratios too large to
be of interest.

THEOREM 4.5. There exists a polynomial-time % -approximation
algorithm for Haplotype-Aware Variant Removed Maximization.

5 PROPOSED ALGORITHMS

In this section, we propose ILP solutions for Problems 1 and 2.

5.1 With a designated reference

Assume that a variation graph G = (V, E,) and haplotypes Ry, . . .,
Ry, are given. Recall that R; is considered as a special reference

Tavakoli, et al.

and the path corresponding to R; in G does not contain variants.
Let V denote the list of variants. We will describe each variant in
V as the tuple (p,s) where p € {1,...,n} denotes the coordinate
of the variant and s € ¥ denotes the symbol for the variant. We
consider V as being ordered lexicographically by p then s, although
not essential for the algorithm. We also let £ C {1,...,n} denote
the list of coordinates where there exists some variant and the
coordinate is at mostn — a + 1, i.e,,

L={p|lp<n-a+1land(p,s) €V forsomes € X}.

To present the ILP formulation of the problem, we first describe
the constraint matrix A. Let A be a Boolean matrix of size ((m—1) -
|L]) % |V|. We use a;j to refer to the element of the ith row and jth
column of A. Let A be initially all 0’s. We assign to each column in
A a variant in V, and we assign to each row in A both a haplotype
and a-long span of coordinate values that begins with some p € L.
Specifically, the jth column is assigned the j** variant (p ,8;). For
row i,ifi—1=(m—1)p+r, where 0 < r < m— 1, then row i is
assigned haplotype Ry and the interval [L[p+1], L[p+1]+a—1].
The non-zero entries of A are determined as follows:

e For1<i< (m-1)|L|,findp > 0andr € [0,m — 2] such
thati—1=(m—-1)p+r;
e then for 1 < j < |V|, make a;; = 1if for (pj,s;) € V, we
have pj € [L[p+1], L[p+1] + a — 1] and Ry12[p;] = ;.
See Figure 1 (a)-(c) for an example. In practice, we can remove the
duplicate rows observed in part (c), more specifically, we removed
rows 4, 6 and 9. Note that by precomputing £, the list of haplotypes,
and the list of variants, determining whether a; j=1lora;;=0 for
a given (i, j) can be done in constant time, rather than having to
explicitly construct the matrix A.
Letting 1 be the |'V| X 1 vector consisting of all 1’s the ILP for
finding the maximum number of variants that can be removed from
G while maintaining («, §)j,-compatibility can now be stated as:

max 17x
X
st. A-x<d1l
xj € {0,1} Vie [1,|V]]

Given an optimal solution x to the above ILP, to obtain the solu-
tion to Problem 1, for every x; = 1, remove variant (p;, s;). The
remaining variants are maintained.

The reader may notice that in the ILP formulation above not
every a-sized interval is explicitly represented by the constraint
matrix. This is since it is adequate to only consider a-sized intervals
that begin at some coordinate in £. Indeed, by shifting an a-sized
interval to the left of any starting position in £, one can easily
check that the number of mismatches between any path in G and
any substring in a haplotype spanning the same indices can only
decrease or remain constant until a new variant is encountered by
the starting position of the interval.

5.2 Without a designated reference

In the case where there is no designated reference, the set of vari-
ants becomes equivalent to the set of edges. However, in order
to maintain connectivity, we only include (i, £(e)) in V for edges
e = (vj,0i4+1) € E where the out-degree of v;, denoted deg™ (i), is
greater than 1. With this new variant set V, we first construct the

Haplotype-aware Variant Selection for Genome Graphs

©
R A G i G A T © G
1

eEeeTE e Feiiee

R, A 1 C T c A T T c
(a) . :

Ry A G T T A T G : ¢
R, A =T : L oA T : T i oC

"amamaw L}

)
X Xy *6
a=36=1
R, ¥»3<s [001000] [x] [s lsz
Bop+x <6 (010100 [x2| 8] pax |1 |2
reoxm+ %<8 1100100] |wl Tls) 1| e
© g <6 |1001000| |x o 1] |x4
R, %<8 [000100| frs| |6 1] |xs
R %<5 1000100[[*] 5 1] [
%, Y <5 (000001 5
R, ¥ <85 (000010 5
&, X <6 (000001 5
C)

Figure 1: An example to illustrate the proposed ILP solution
(a) List of given haplotypes. (b) Complete variation graph for
the given haplotypes. (c) ILP formulation with constraints.
(d) Reduced variation graph using ILP. (e) Reduced variation
graph using Greedy/LP.

matrix A as above. Next, we add the following rows to A: for every
i € L we create a row. For a given i € L, take all variants in V
that are at coordinate i. For each of these variants, if the variant has
index j in V, then we put a 1 in column j. For each of these added
rows, we add a corresponding new row to the vector on the right-
hand side of the inequality and set it equal to deg*(v;) — 1. This
ensures that no more than deg* (v;) — 1 variants are removed from
any coordinate and that the resulting graph remains connected.

6 EXPERIMENTS

We developed software to implement our ILP solutions in C++ (code
available at https://github.com/NedaTavakoli/hg). We evaluate the
effectiveness of our ILP solution for Problem 1, henceforth denoted
ILP, by measuring the percentage of variants removed from the
corresponding complete variation graph. In addition to this abso-
lute performance measure, we compare ILP to the previous variant
reduction algorithms introduced in [14], a greedy algorithm, de-
noted Greedy, and LP algorithm, denoted LP. These algorithms seek
to preserve all a-long paths occurring in the complete variation
graph, subject to § or fewer mismatches. Thus, any solutions to
this problem are automatically valid (but not necessarily optimal)

BCB ’22, August 7-10, 2022, Northbrook, IL, USA

solutions to the haplotype-aware problem. This relative comparison
will reveal whether ILP targeting the hapylotype-aware problem
directly is necessary, and is also evaluated in the context of run-
time performance and memory usage of all three algorithms. For
brevity, all results are presented for Problem 1, as the same behavior
is observed for Problem 2 also. The greedy and LP solutions:
Greedy works by considering the vertices in G from left to right
and keeping count of the number of variants removed from every
a-sized interval containing the current vertex. If the budget § of
mismatches is not reached, all variants at the current vertex are
removed. LP works by recognizing that when preserving all graph
paths (haplotype as well as recombinant), optimal solutions either
remove or maintain all variants at any specific vertex. This leads to
a simpler formulation, and a totally unimodular matrix for speci-
fying constraints, allowing polynomial-time solution through LP
relaxation. See Figure 1 (d)-(e) for an illustration of the reduced
graphs resulting from ILP, LP, and Greedy.

Variation graph construction: We evaluate the algorithms using
two variation graphs. The larger of the two is constructed from
human chromosome 1 (249 Mbp) and is denoted as g_chrl_SNP.
The smaller graph is constructed from the human chromosome
22 (51 Mbp) and is denoted as g_chr22_SNP. The variations used
in the graph construction arise from a list of 5,008 haplotypes
that exist for the human genome. We built these variation graphs
corresponding to SNPs while annotating every edge with a list of
haplotypes containing that edge. We downloaded SNPs from the
1000 Genomes Project Phase 3 [2].

Our graph construction leveraged vcftools [4], and beftools [21]
to extract SNPs from the 1000 Genomes Project variant files, as
well as list of haplotypes per SNP position. Summary statistics of
these variants, and the graphs we built from them, are listed in
Table 1. We also implemented a shell script to construct haplotype-
annotated variation graphs. The code is available at https://github.
com/NedaTavakoli/havg.

Hardware and software: We used Gurobi 9.5.0 solver to solve
the ILP and LP instances. The algorithms were run on dual Intel
Xeon Gold 6226 CPUs (2.70 GHz) processors. Each contains 2x12
physical cores and 384 GB RAM. Gurobi takes advantage of multiple
cores when solving the ILP and LP instances; however, the Greedy
algorithm is sequential.

The o and § parameters: We use multiple @ and ¢ values to test
the performance of the algorithms. The values selected for « are
150 bp, 1 kbp, 5 kbp, and 10 kbp, inspired by short and long read
lengths. For §, we choose 1%, 5%, and 10% of @, rounded up to the
nearest integer.

Results: The results for graph g_chr22_SNP are shown in Table 2
and Figure 2. The results for graph g_chr1_SNP are shown in Table 3
and Figure 3. For the ILP algorithm, we report four statistics: (i)
count of variants retained, (i) run-time, (iii) peak memory usage,
and (iv) percentage of variant reduction achieved. We also compared
the percentage of variants removed using previously developed
Greedy and LP algorithms.

BCB ’22, August 7-10, 2022, Northbrook, IL, USA

Tavakoli, et al.

Table 1: Genome variation graphs used for experimental evaluation.

Graph Chr | Type of | No.of | No. of variant No. of

label variants | variants | containing loci | haplotypes
g_chr1_SNP 1 SNPs 6,234,046 6,215,039 5008
g_chr22 SNP | 22 SNPs 1,063,617 1,059,517 5008

Table 2: Results for ILP haplotype-aware algorithm and comparison with variant reduction achieved using Greedy and LP on

genome variation graph for chromosome 22.

a ‘ 19 ‘ Time (s) # Variants Retained Memory Usage (GB) Variant Reduction
ILP ILP Greedy LP

§=2 12.03 357279 3 66.41% 33.51% 33.72%
a =150 §=38 6.34 30476 3 97.13% 91.36% 91.41%
=15 3.87 3323 3 99.68% 99.35% 99.36%
§=10 10.1 385531 8 63.75% 30.56% 30.82%
a = 1000 5 =50 13.34 7176 8 99.32% 98.07% 98.10%
§ =100 13.76 956 10 99.91% 99.76% 99.77%
§=50 50.76 365598 32 65.63% 31.85% 32.12%
o = 5000 § =250 45.36 2435 32 99.77% 99.30% 99.32%
§ =500 39.05 296 29 99.97% 99.92% 99.92%
6 =100 64.87 375126 105 64.73% 32.10% 32.37%
« = 10000 § =500 54.01 1367 77 99.87% 99.52% 99.52%
B § = 1000 52.09 186 66 99.98% 99.93% 99.93%

Table 3: Results for ILP haplotype-aware algorithm and comparison with variant reduction achieved using Greedy and LP on

genome variation graph for chromosome 1.

a ‘ 1) ‘ Time (s) # Variants Retained Memory Usage (GB) Variant Reduction
ILP ILP Greedy Lp
=2 23.04 2355632 14 62.21% 36.54% 36.70%
a =150 §=8 24.65 146312 14 97.65% 94.44% 94.47%
§=15 20.06 3545 14 99.94% 99.78% 99.78%
6=10 84.09 2030326 44 67.43% 33.75% 33.94%
a = 1000 § =50 73.04 10034 42 99.84% 99.36% 99.36%
§ =100 67.06 1503 39 99.97% 99.96% 99.96%
§ =50 145.09 1930345 121 69.03% 35.24% 35.44%
a = 5000 § =250 128.01 5342 115 99.91% 99.89% 99.86%
§ =500 125.09 244 113 100.00% 99.99% 99.99%
§ =100 146.19 1783400 130 71.40% 35.49% (o)
a =10000 | & =500 138.08 2065 125 99.97% 99.91% (=)
§ =1000 136.10 164 101 100.00% 100.00% (=)

The results indicate that ILP outperforms Greedy and LP in all
experiments, as one would expect from an algorithm that guaran-
tees optimal solution. The degree of out-performance is highest
for small values of §. This is because removing variants when only
few errors are tolerated is tricky, and the optimal algorithm clearly
outshines here. For the case of § = 1%, ILP removes roughly twice
as many variants as the other two approaches. For larger § values,
most variants can be removed without loss of («, §);, compatibility.
Here, ILP shows marginal gains over the others (3-6% additional

variants removed) for « = 150, and the gains are negligible for
longer a. Both Chromosome 1 and Chromosome 22 are predomi-
nantly biallelic (only one variant in addition to the reference base at
a vertex), at 99.82% and 99.61% frequency, respectively. This favors
Greedy as it removes or retains all variants at a vertex, and lacks the
ability to select an appropriate subset of variants instead. For varia-
tion graphs with higher multi-allelic frequency, the performance
gap between ILP and Greedy would be even higher.

Haplotype-aware Variant Selection for Genome Graphs

6=10%

BCB ’22, August 7-10, 2022, Northbrook, IL, USA

a =5000

Ko} x 10° % 10° % 10°
GC) 7 NN Greedy 7
'5 P
4&3 5 B |LP Haplotype Aware ;
i
ﬂ 3 5% 10%
C
R
o | T
> 150 1000 5000 10000 0% 1% 5% 10% 0% 1% 5% 10%
a 0] 5
6=10% a=150 a=5000
10°
> 103
o 10!
€ 101
1073
107>
150 1000 5000 10000 0% 1% 5% 10% 0% 1% 5% 10%
a 0]
108 6=10% a=150 a=5000
)
2106_
5“104_
£
o 102_
2 100_
150 1000 5000 10000 0% 1% 5% 10% 0% 1% 5% 10%

a

Figure 2: Empirical evaluation of Greedy, LP, and ILP algorithms using human variation graphs g_chr1_SNP and g_chr22_SNP.
These plots illustrate number of variants retained for various choices of « and . Size of the complete variation graph (6 = 0%) is
included for comparison. The Y-axes are shown in in log-scale for the time and memory plots.

While the results are shown for wide choices of « and § to com-
prehensively reflect properties of the algorithm/implementation,
it should be kept in mind that practical use cases where only sub-
stitution errors occur typically will use small values of « and §.
Here the out-performance of ILP justifies its use. This is because
long read technologies predominantly make insertion/deletion er-
rors, and longer stretches of genome invariably contain genomic
insertions and deletions with respect to other reference haplotypes.
Because of this, a model restricted to substitutions alone has no
validity over longer lengths. The best use of such a model is to seed
an alignment using short substring matches or when matching
short reads. In both of these cases, ILP provides significantly better
variant reduction.

As for run-time, Greedy is the fastest while LP and ILP are similar
(Figures 2 and 3). Note that even though ILP edges out LP slightly
and is also able to solve larger a sizes than LP, this is primarily
because of our improved implementation in ILP to dynamically
generate the non-zero entries of the constraint matrix on demand.
Hence, both algorithms should be seen as providing similar run-
time performance. The run-time and memory requirements of ILP
allow its usage to achieve optimal variant selection in all cases
tested.

7 CONCLUSIONS AND FUTURE WORK

In this work, we investigated the haplotype-aware variant selection
problem under the Hamming distance metric. We proved several

BCB ’22, August 7-10, 2022, Northbrook, IL, USA

6=10%

x 10°

Tavakoli, et al.

a=150 a=5000

© 14 x 10° x10°
GC)] Il Greedy 60 1 35
E 12 - T | 0.08
+ 10 B [P Haplotype Aware
QL) g 40 1
}g 6 | 30 4 5% 5 10% 5% 10%
C 4 - 20
S 2. 10
Lfs i) oy y o) 0, o) o,
> 150 1000 5000 10000 0% 1% 5% 10% 0% 1% 5/0 10%
a 0]
6=10% a=150 a=5000
10°
> 103
o 10!
E 101
= 1073
-5
10 150 1000 5000 10000 0% 1% 5% 10% 0% 1% 5% 10%
a 0]
108 6=10% a=150 a=5000
)
E 106,
5‘104,
£
100

150 1000 5000 10000
a

0%

1%

5% 10% 0% 1% 5% 10%

Figure 3: Empirical evaluation of Greedy and LP algorithms using two human variation graphs g_chr1_SNP and g_chr22_SNP.
These plots demonstrate reduction achieved in graph sizes while varying « and § parameters. Size of the complete variation
graph (5 = 0%) is included for comparison. Numbers on top of bars present actual data, useful for comparison when both Greedy
and LP achieve close results. Result of LP algorithm is missing for a = 10, 000 (left-most column) because Gurobi LP solver
crashed due to insufficient memory. The Y-axes are log-scaled in the time and memory plots.

hardness-of-approximation results for the minimization and max-
imization versions of the problem and proposed approximation
algorithms. We then provided an ILP formulation of the problem
and demonstrated experimentally that this formulation is effective
in finding optimal solutions even on human chromosome scale
graphs and for a variety of sequence lengths and error percentage
thresholds. In addition to ensuring optimality, the gains compared
to other suboptimal algorithms are substantial for the realistic case
of short sequence lengths and error thresholds, more appropriate
when only substitutions are allowed. Future extensions of this work

include improving the execution of the ILP solver by developing
problem specific branch-and-cut techniques, and implementing the
logarithmic approximation algorithms presented in Section 4 and
comparing them to the existing Greedy and LP solutions described
in Section 6. We also plan to experimentally evaluate the impact of
the variant reduction obtained here on sequence-to-graph mapping
accuracy.

Finally, this work focused exclusively on the Hamming distance
version of the problem. While this constitutes a significant advance

Haplotype-aware Variant Selection for Genome Graphs

since the haplotype-aware problem is hitherto unsolved [14], gen-
eralizing it to the edit distance version is more realistic for longer
sequence lengths and particularly for long reads. This remains an
important open problem.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation
under CCF-1816027.

REFERENCES

(1]

(2]

=
X0

[10]

(1

[12

[13]

[14]

[15

[16]

[17

(18]

[19]

[20

[21]

[22

Xian Chang, Jordan Eizenga, Adam M Novak, Jouni Sirén, and Benedict Paten.
2020. Distance indexing and seed clustering in sequence graphs. Bioinformatics
36, Supplement_1 (2020), i146-i153.

1000 Genomes Project Consortium et al. 2015. A global reference for human
genetic variation. Nature 526, 7571 (2015), 68-74.

Computational Pan-Genomics Consortium. 2018. Computational pan-genomics:
status, promises and challenges. Briefings in bioinformatics 19, 1 (2018), 118-135.
Petr Danecek, Adam Auton, Goncalo Abecasis, Cornelis A Albers, Eric Banks,
Mark A DePristo, Robert E Handsaker, Gerton Lunter, Gabor T Marth, Stephen T
Sherry, et al. 2011. The variant call format and VCFtools. Bioinformatics 27, 15
(2011), 2156-2158.

Charlotte A Darby, Ravi Gaddipati, Michael C Schatz, and Ben Langmead. 2020.
Vargas: heuristic-free alignment for assessing linear and graph read aligners.
Bioinformatics 36, 12 (2020), 3712-3718.

Irit Dinur, Venkatesan Guruswami, Subhash Khot, and Oded Regev. 2005. A
New Multilayered PCP and the Hardness of Hypergraph Vertex Cover. SIAM 7.
Comput. 34, 5 (2005), 1129-1146. https://doi.org/10.1137/S0097539704443057
Hannes P Eggertsson, Hakon Jonsson, Snaedis Kristmundsdottir, Eirikur Hjar-
tarson, Birte Kehr, Gisli Masson, Florian Zink, Kristjan E Hjorleifsson, Aslaug
Jonasdottir, Adalbjorg Jonasdottir, et al. 2017. Graphtyper enables population-
scale genotyping using pangenome graphs. Nature genetics 49, 11 (2017), 1654.
Jordan M Eizenga, Adam M Novak, Jonas A Sibbesen, Simon Heumos, Ali Ghaf-
faari, Glenn Hickey, Xian Chang, Josiah D Seaman, Robin Rounthwaite, Jana
Ebler, et al. 2020. Pangenome Graphs. Annual Review of Genomics and Human
Genetics 21 (2020).

Uriel Feige. 1998. A Threshold of In n for Approximating Set Cover. J. ACM 45, 4
(1998), 634-652. https://doi.org/10.1145/285055.285059

Erik Garrison, Jouni Sirén, Adam M Novak, Glenn Hickey, Jordan M Eizenga,
Eric T Dawson, William Jones, Shilpa Garg, Charles Markello, Michael F Lin, et al.
2018. Variation graph toolkit improves read mapping by representing genetic
variation in the reference. Nature biotechnology 36, 9 (2018), 875-879.

Ali Ghaffaari and Tobias Marschall. 2019. Fully-sensitive seed finding in sequence
graphs using a hybrid index. Bioinformatics 35, 14 (2019), i81-189.

Gurobi Optimization, LLC. 2022. Gurobi Optimizer Reference Manual. https:
//www.gurobi.com

Guillaume Holley, Roland Wittler, and Jens Stoye. 2016. Bloom Filter Trie: an
alignment-free and reference-free data structure for pan-genome storage. Algo-
rithms for Molecular Biology 11, 1 (2016), 1-9.

Chirag Jain, Neda Tavakoli, and Srinivas Aluru. 2021. A variant selection frame-
work for genome graphs. Bioinformatics 37, Supplement_1 (2021), 460-1467.
Chirag Jain, Haowen Zhang, Yu Gao, and Srinivas Aluru. 2020. On the Complexity
of Sequence-to-Graph Alignment. Journal of Computational Biology 27, 4 (2020),
640-654.

Daehwan Kim, Joseph Paggi, and Steven L Salzberg. 2018. Hisat-genotype: Next
generation genomic analysis platform on a personal computer. BioRxiv (2018),
266197.

Daehwan Kim, Joseph M Paggi, Chanhee Park, Christopher Bennett, and Steven L
Salzberg. 2019. Graph-based genome alignment and genotyping with HISAT2
and HISAT-genotype. Nature biotechnology 37, 8 (2019), 907-915.

Alan Kuhnle, Taher Mun, Christina Boucher, Travis Gagie, Ben Langmead, and
Giovanni Manzini. 2020. Efficient construction of a complete index for pan-
genomics read alignment. Journal of Computational Biology 27, 4 (2020), 500-513.
Anna Kuosmanen, Topi Paavilainen, Travis Gagie, Rayan Chikhi, Alexandru
Tomescu, and Veli Makinen. 2018. Using minimum path cover to boost dynamic
programming on DAGs: co-linear chaining extended. In International Conference
on Research in Computational Molecular Biology. Springer, 105-121.
Christopher Lee, Catherine Grasso, and Mark F Sharlow. 2002. Multiple sequence
alignment using partial order graphs. Bioinformatics 18, 3 (2002), 452-464.
Heng Li. 2011. A statistical framework for SNP calling, mutation discovery, asso-
ciation mapping and population genetical parameter estimation from sequencing
data. Bioinformatics 27, 21 (2011), 2987-2993.

Heng Li, Xiaowen Feng, and Chong Chu. 2020. The design and construction of
reference pangenome graphs with minigraph. Genome Biology 21, 1 (2020), 1-19.

BCB ’22, August 7-10, 2022, Northbrook, IL, USA

[23] Yucheng Liu, Huilong Du, Pengcheng Li, Yanting Shen, Hua Peng, Shulin Liu,

Guo-An Zhou, Haikuan Zhang, Zhi Liu, Miao Shi, et al. 2020. Pan-genome of
wild and cultivated soybeans. Cell 182, 1 (2020), 162-176.

Bastien Llamas, Giuseppe Narzisi, Valerie Schneider, Peter A Audano, Evan Bieder-
stedt, Lon Blauvelt, Peter Bradbury, Xian Chang, Chen-Shan Chin, Arkarachai
Fungtammasan, et al. 2019. A strategy for building and using a human reference
pangenome. F1000Research 8, 1751 (2019), 1751.

Shoshana Marcus, Hayan Lee, and Michael C Schatz. 2014. SplitMEM: a graphical
algorithm for pan-genome analysis with suffix skips. Bioinformatics 30, 24 (2014),
3476-3483.

Tom Mokveld, Jasper Linthorst, Zaid Al-Ars, Henne Holstege, and Marcel Rein-
ders. 2020. CHOP: haplotype-aware path indexing in population graphs. Genome
biology 21, 1 (2020), 1-16.

Benedict Paten, Adam M Novak, Jordan M Eizenga, and Erik Garrison. 2017.
Genome graphs and the evolution of genome inference. Genome research 27, 5
(2017), 665-676.

David Peleg, Gideon Schechtman, and Avishai Wool. 1993. Approximating
Bounded 0-1 Integer Linear Programs. In Second Israel Symposium on Theory of
Computing Systems, ISTCS 1993, Natanya, Israel, June 7-9, 1993, Proceedings. IEEE
Computer Society, 69-77. https://doi.org/10.1109/ISTCS.1993.253482

Jacob Pritt, Nae-Chyun Chen, and Ben Langmead. 2018. FORGe: prioritizing
variants for graph genomes. Genome biology 19, 1 (2018), 1-16.

Gunnar Ratsch and Martin Vechev. 2020. AStarix: Fast and Optimal Sequence-to-
Graph Alignment. In Research in Computational Molecular Biology: 24th Annual
International Conference, RECOMB 2020, Padua, Italy, May 10-13, 2020, Proceedings,
Vol. 12074. Springer, 104.

Mikko Rautiainen and Tobias Marschall. 2020. GraphAligner: rapid and versatile
sequence-to-graph alignment. Genome Biology 21, 1 (2020), 1-28.

Rachel M Sherman and Steven L Salzberg. 2020. Pan-genomics in the human
genome era. Nature Reviews Genetics 21, 4 (2020), 243-254.

[33] Jouni Sirén. 2017. Indexing variation graphs. In 2017 Proceedings of the ninteenth

workshop on algorithm engineering and experiments (ALENEX). SIAM, 13-27.

[34] Jouni Sirén, Erik Garrison, Adam M Novak, Benedict Paten, and Richard Durbin.

2020. Haplotype-aware graph indexes. Bioinformatics 36, 2 (2020), 400-407.

[35] Jouni Sirén, Niko Valiméki, and Veli Makinen. 2014. Indexing graphs for path

queries with applications in genome research. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics 11, 2 (2014), 375-388.

Ravi Vijaya Satya, Nela Zavaljevski, and Jaques Reifman. 2012. A new strategy to
reduce allelic bias in RNA-Seq readmapping. Nucleic acids research 40, 16 (2012),
el27-e127.

Laurence A. Wolsey. 1982. An analysis of the greedy algorithm for the submodular
set covering problem. Comb. 2, 4 (1982), 385-393. https://doi.org/10.1007/
BF02579435

David Zuckerman. 2007. Linear Degree Extractors and the Inapproximability
of Max Clique and Chromatic Number. Theory Comput. 3, 1 (2007), 103-128.
https://doi.org/10.4086/toc.2007.v003a006

	Abstract
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 Inapproximability
	5 Proposed Algorithms
	5.1 With a designated reference
	5.2 Without a designated reference

	6 Experiments
	7 Conclusions and Future Work
	Acknowledgments
	References

