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ABSTRACT

Graph-based genome representations have proven to be a powerful 
tool in genomic analysis due to their ability to encode variations 
found in multiple haplotypes and capture population genetic di-
versity. Such graphs also unavoidably contain paths which switch 
between haplotypes (i.e., recombinant paths) and thus do not fully 
match any of the constituent haplotypes. The number of such re-
combinant paths increases combinatorially with path length and 
cause inefficiencies and fa lse positives when mapping reads. In 
this paper, we study the problem of finding reduced haplotype-
aware genome graphs that incorporate only a selected subset of 
variants, yet contain paths corresponding to all 𝛼-long substrings 
of the input haplotypes (i.e., non-recombinant paths) with at most 
𝛿 mismatches. Solving this problem optimally, i.e., minimizing the 
number of variants selected, is previously known to be NP-hard [14]. 
Here, we first establish several inapproximability results regarding 
finding haplotype-aware reduced variation graphs of optimal size. 
We then present an integer linear programming (ILP) formulation 
for solving the problem, and experimentally demonstrate this is 
a computationally feasible approach for real-world problems and 
provides far superior reduction compared to prior approaches.
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1 INTRODUCTION

With the increasing pace of genome sequencing and applications 
that involve analyzing the genomes of thousands of individuals, 
there is growing realization that a linear reference genome is not 
well suited for representing genetic diversity. A single reference 
genome represents only a tiny fraction of human genetic variation. 
Individual human genomes can contain 3.5 − 4 million SNPs or
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indels and approximately 2,500 significant structural variations

relative to the linear reference. This genetic diversity between in-

dividuals and sub-populations can cause reads to map incorrectly

when a single linear reference is used. To alleviate such reference

bias and improve mapping accuracy, graph-based references have

become increasingly popular in sequencing analysis. Graph-based

references, or equivalently genome graphs built for a set of ref-

erence genomes, can comprehensively catalog common genetic

variations and polymorphic haplotypes in a population, improve

the accuracy of read mapping, and be effective tools in variant call-

ing (see [3, 8, 27] for recent surveys). Representation [10, 22] and

indexing [1, 11, 13, 18, 25, 35] of genome graphs, and sequence-to-

graph alignment/mapping algorithms [5, 15, 19, 30, 31] are active

research topics.

A key drawback of graph-based references is the presence of com-

binatorially explosive recombinant paths that correspond to groups

of variants never observed in any sequenced haplotype. In fact, it

is observed that incorporating all genetic variations to create the

so called complete variation genome graph, perversely reduces the

quality of read mapping [29]. This led to recent interest in variant

selection algorithms to determine which subset of variants should

be incorporated in a graph-based reference [14, 16, 29, 36]. In [14],

Jain et al. developed a novel mathematical framework for variant

selection that is aimed at providing mathematical guarantees of

subsequent mapping accuracy. This is achieved by maximizing the

number of variants that can be safely discarded while guarantee-

ing a chosen set of sequences can be mapped within a specified

error limit. While this previous work presents several useful results

when the set of sequences is chosen to reflect fixed length paths

in complete variation graphs, the associated problems become NP-

hard when the sequences are restricted to substrings of observed

haplotypes, the so called haplotype-aware variant selection problem.

This work explores the haplotype-aware variant selection prob-

lem in the context of SNP variants, and contains the following

contributions:

(1) We establish several hardness-of-approximation results re-

garding the minimization and maximization optimization

versions of the haplotype-aware variant selection problem.

In addition we provide simple approximation algorithms.

(2) We develop an Integer Linear Programming (ILP) formula-

tion that provides optimal solutions for the haplotype-aware

variant selection problem, allowing us to take advantage

of the algorithms and software developed for this classic

optimization problem.

(3) Using Gurobi solver [12] to implement our ILP formulation,

we evaluate the achieved reduction in graph sizes and run-

time performance on human chromosome sequences and
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SNP variants from the 1000 Genomes Project [2]. Comparing

with algorithms in [14], we demonstrate significant reduc-

tion in graph sizes while retaining the ability to handle large

variation graphs.

The rest of the paper is organized as follows: Section 2 discusses

related works, including graph-based reference representations

and haplotype-aware graph simplification; Section 3 describes the

notations used throughout the paper, and provides formal defini-

tion of haplotype-aware variant selection. Section 4 provides our

hardness and inapproximability results; Section 5 presents our ILP

formulation, and corresponding algorithms; Experimental results

are presented in Section 6; and Section 7 contains conclusion and

directions for future research.

2 RELATEDWORKS

Genome Graphs: Several tools have been developed recently that

construct and utilize genome graphs. Some of the most prominent

are Graphtyper [7], HISAT2 [17], and vg-toolkit [10].

Graphtyper utilizes variation graphs, and introduces algorithms

to discover and genotype sequence variants. HISAT2 first constructs

a linear graph of the reference genome, and subsequently augments

variants as alternative paths through the graph. It also constructs

a hierarchical index that consists of: (1) a global graph-FM-index

(GFM) representing the linear reference, and (2) a set of overlap-

ping local GFM indexes to collectively cover the complete variation

graph. HISAT2 also provides a fast and sensitive graph aligner

tool based on GCSA [35] (an extension of the BWT for graphs)

and BWT. The vg-toolkit constructs genetic variation graphs by

leveraging GCS2 [33] (an extension of the BWT for population

graphs). It also provides a graph-based read aligner utilizing the

seed-and-extend strategy and pairwise sequence alignment for di-

rected acyclic graphs [20]. Vg-based read mapping can substantially

improve read mapping and the fraction of reads mapped uniquely

and correctly.

Recent works that utilize these graph representations include

work by Sherman et al. that provides a pan-genome survey for var-

ious species, from bacteria to humans [32]; work by Liu et al. that

constructs a complete high-quality pan-genome from soybean ac-

cessions that capture genomic diversity [23]; and work by Li et

al. on using the minigraph toolkit to construct a pangenome graph

to encode genomic diversity and structural variants [22]. Bestin et

al. provide a review of software tools and strategies for building

the human pangenome based on discussions by 45 scientists and

software engineers from all over the world in 2019 [24].

Haplotype-aware graph tools: Various graph-based tools that

utilize known haplotypes have been developed. CHOP augments

haplotypes into a variation graph, then converts the haplotype-

annotated population graph into a collection of sequences that cover

all the observed 𝑘-long paths in haplotypes [26]. This collection

of sequences is a compressed representation of all 𝑘-long paths

through the graph. By doing this, CHOP constrains and bounds the

search space when mapping reads. However, this haplotype-aware

graph simplification is only designed for use on values of 𝑘 equal

to the length of short reads (e.g., 100 to 150), making this approach

inapplicable for long reads or paired-end reads.

Siren et al. [34] developed haplotype-aware graphs by creating

GBWT indexes (scalable implementation of the PBWT [35]). This

augments haplotype information into vg-toolkit graphs and indexes

haplotype paths in genome graphs using the GBWT index. More

specifically, the augmented VG model and GBWT address a draw-

back of vg-toolkit, that paths corresponding to known haplotypes

can break into sub-paths that represent recombinant paths. Unfor-

tunately, this approach can lead to exponential growth during index

construction. Hence, better indexing strategies or graph pruning

algorithms are needed.

3 PRELIMINARIES

Let 𝑅1, 𝑅2, . . . , 𝑅𝑚 denote𝑚 input reference haplotype sequences,

each a string of length 𝑛 over an alphabet Σ. We assume that one

of these, say 𝑅1, is a special reference. A variation graph is an edge-

labeled directed multi-graph (henceforth simply called a graph)

𝐺 = (𝑉 , 𝐸, ℓ), where 𝑉 = {𝑣1, ..., 𝑣𝑛+1} is an ordered set of vertices,

𝐸 is the set of edges, and ℓ : 𝐸 → Σ specifies edge labels. The nodes

𝑣𝑖 ∈ 𝑉 , (1 ≤ 𝑖 ≤ 𝑛 + 1) represent a coordinate axis for the variation

graph. To construct a variation graph from 𝑅1, . . ., 𝑅𝑚 , first the

haplotype 𝑅1 is used to create the linear backbone of the graph 𝐺 .

This is a directed path 𝑣1, 𝑣2, . . ., 𝑣𝑛+1 with character-labeled edges

such that for 1 ≤ 𝑖 ≤ 𝑛 the edge (𝑣𝑖 , 𝑣𝑖+1) is labeled with the 𝑖𝑡ℎ

character in the sequence 𝑅1. We limit ourselves to substitution

variants, also known as Single Nucleotide Polymorphisms (SNPs),

which are bases in haplotypes differing from𝑅1 in the same position.

At coordinate 𝑖 , the set of SNPs is a subset of Σ. For each distinct

SNP variant at location 𝑖 , an additional edge between vertices 𝑣𝑖
and 𝑣𝑖+1 is created and labeled with that symbol. See Figure 1 (b)

for an example. The number of variants is the same as the number

of edges that are not part of the linear backbone. The number of

variants at coordinate 𝑖 (1 ≤ 𝑖 ≤ 𝑛) equals the out-degree of the

vertex 𝑣𝑖 minus one, and is bound by |Σ| − 1.

We say that a path with edges 𝑒1, 𝑒2, . . ., 𝑒𝛼 matches the string

ℓ (𝑒1) ◦ ℓ (𝑒2) ◦ . . . ◦ ℓ (𝑒𝛼 ), where ◦ denotes concatenation. Let

𝑅 𝑗 [𝑖 . . . 𝑖+𝛼−1] denote the 𝛼 long substring 𝑅 𝑗 [𝑖] ◦ . . .◦𝑅 𝑗 [𝑖+𝛼−1]

of haplotype 𝑗 . We refer to a path of length 𝛼 starting at 𝑣𝑖 and not

matching 𝑅 𝑗 [𝑖 . . . 𝑖 + 𝛼 − 1] for any 1 ≤ 𝑗 ≤ 𝑚 as a recombinant

path.

One objective is to obtain a graph thatmaintains close approxima-

tions to paths corresponding to substrings of the input haplotypes.

This is captured by the following definition:

Definition 1. Avariation graph𝐺 is said to be (𝛼, 𝛿)ℎ-compatible

if for all 1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛 − 𝛼 + 1, there exists a path starting

at 𝑣𝑖 that matches a string with Hamming distance at most 𝛿 from

𝑅 𝑗 [𝑖 . . . 𝑖 + 𝛼 − 1].

A second objective is to find a subgraph of 𝐺 that limits the

number of recombinant paths. Formally, we call a subgraph 𝐺 ′

of 𝐺 a reduced variation graph if 𝐺 ′
= (𝑉 ′, 𝐸 ′, ℓ ′), where 𝑉 ′

= 𝑉 ,

𝐸 ′ ⊆ 𝐸 such that 𝐸 \ 𝐸 ′ only represents variants, and for all 𝑒 ∈ 𝐸 ′,

ℓ ′(𝑒) = ℓ (𝑒). Combining both objectives leads to the following

problem definition:

Problem 1 (Haplotype-Aware Variant Reduction with Ref-

erence). Given a variation graph 𝐺 = (𝑉 , 𝐸) and haplotype set 𝑅1,
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. . ., 𝑅𝑚 (with 𝑅1 serving as designated reference), compute an (𝛼, 𝛿)ℎ-

compatible reduced variation graph 𝐺 ′ with the minimum number

of variants.

In practice, 𝛼 should be a function of read lengths, whereas 𝛿

is determined based on sequencing errors and error-tolerance of

read-to-graph mapping algorithms.

If one is willing to relax the condition that edges corresponding

to the linear backbone constructed from 𝑅1 cannot be deleted, and

only maintain that the reduced variation graph remains connected,

a slightly different problem can be formulated. Now, we let the

edges in the backbone be considered as variants as well. Then we

can define:

Problem 2 (Haplotype-Aware Variant Reduction without

Reference). Given variation graph 𝐺 = (𝑉 , 𝐸) and haplotype set

𝑅1, . . ., 𝑅𝑚 compute an (𝛼, 𝛿)ℎ-compatible reduced variation graph

𝐺 ′ that is connected and has the minimum number of variants.

4 INAPPROXIMABILITY

In previous work, Jain et al. proved the NP-completeness of the

decision version of Problems 1 and 2 [14]. Here we will focus on the

inapproximability of Problem 1. Two natural optimization versions

of Problem 1 can be formulated based on the decision version. The

first is to minimize the number of variants kept while maintaining

that the resulting graph is (𝛼, 𝛿)ℎ-compatible, with a solution’s

value being the number of variants kept. We call this Haplotype-

Aware Variant Maintained Minimization. The second is to maximize

the number of variants removed while maintaining that the re-

sulting graph is (𝛼, 𝛿)ℎ-compatible, with a solution’s value being

the number of variants removed. We call this Haplotype-Aware

Variant Removed Maximization. For a given instance, an optimal

solution to either clearly results in the same number of variants

maintained/removed, however, the approximation factors possible

by polynomial-time algorithms differ, assuming P ≠ NP.

Minimization: We can utilize a close connection to the Uni-

form Hypergraph Vertex Cover and Multi-Cover problems to give

several hardness results and approximation algorithms for the min-

imization version. We first use a reduction from the 𝑘-Uniform

HyperGraph Vertex Cover problem to establish hardness results. In

this problem, one is given a hypergraph 𝐻 = (𝑉 , 𝐸) where all edges

are of size 𝑘 and the aim is to find a minimum subset of vertices

𝑉 ′ ⊆ 𝑉 such that every hyperedge includes at least one vertex in

𝑉 ′. The reduction is as follows: given a hypergraph 𝐻 = (𝑉 , 𝐸),

first assign the vertices in 𝑉 an arbitrary ordering. Then, for each

hyperedge 𝑒𝑖 = {𝑣𝑖1 , . . . , 𝑣𝑖𝑘 } ∈ 𝐸 create a haplotype of length |𝑉 |,

with 1’s in positions 𝑖1, . . ., 𝑖𝑘 and 0’s elsewhere. Next, make a varia-

tion graph𝐺 , consisting of a linear backbone having |𝑉 | +1 vertices

with an edge labeled 0 and an edge labeled 1 at each coordinate.

Make the reference 𝑅1 = 0 |𝑉 | , 𝛿 = 𝑘 − 1, and 𝛼 = |𝑉 |.

To see the correctness of the above reduction, note that if there

exists a vertex cover of size 𝑡 in 𝐻 , say 𝑣 𝑗1 , . . ., 𝑣 𝑗𝑡 , we can maintain

variants labeled 1’s from positions 𝑗1, . . ., 𝑗𝑡 and delete all other

variants labeled 1 from 𝐺 . Since every edge in 𝐻 is covered by

at least one of the vertices at these indices, every haplotype has

at least one ‘1’ variant that is preserved. Since the total number

of 1’s in each haplotype is 𝑘 , at most 𝑘 − 1 = 𝛿 mismatches now

occur between any haplotype and 𝐺 . Hence, this provides a valid

solution with value 𝑡 to the Haplotype-Aware Variant Maintained

Minimization instance. Conversely, suppose there exists a solution

to the Haplotype-Aware Variant Maintained Minimization instance

where 𝑡 variations are maintained. Then every haplotype has at

most 𝛿 = 𝑘 − 1 mismatches with 𝐺 and hence at least one ‘1’ that

matches a variation in𝐺 . Therefore, taking the vertices correspond-

ing to maintained variations in𝐺 gives a set of vertices for𝐻 where

every edge has at least one vertex in the preserved set, providing

a vertex cover of size 𝑡 . Since it is NP-hard to obtain an approx-

imation better than 𝑘 − 1 − 𝜀 for 𝑘-Uniform Hypergraph Vertex

Cover problem, 𝑘 ≥ 3 [6], this approximation preserving reduction

implies that it is NP-hard to obtain a reduction better than 𝛿 − 𝜀 for

any 𝛿 ≥ 2 and constant 𝜀 > 0,

Theorem 4.1. There does not exist a polynomial-time (𝛿 − 𝜀)-

approximation algorithm for Haplotype-Aware Variant Maintained

Minimization for any 𝛿 ≥ 2 and constant 𝜀 > 0 assuming P ≠ NP.

To obtain additional inapproximability results, we observe that

the Set Cover problem with universeU and collection of sets S can

be reduced to the Hypergraph Vertex Cover problem with |S| ver-

tices and |U| hyperedges. This can then be reduced to 𝑘-Uniform

Hypergraph Vertex Cover problem by making 𝑘 equal to the largest

cardinality of any existing edge, and then adding new ‘dummy’

vertices to each edge until they are all of cardinality 𝑘 (the number

of edges is not changed). This creates a hypergraph with𝑂 ( |U||S|)

vertices and |U| hyperedges. Finally, we can reduce this 𝑘-Uniform

Hypergraph Vertex Cover instance to Haplotype-Aware Variant

Maintained Minimization as discussed above such that the number

of haplotypes 𝑚 equals the number of hyperedges |U|, and the

number of vertices in the variation graph is equal to the number

vertices in the 𝑘-uniform hypergraph plus 1, which is 𝑂 ( |U||S|).

All of these reductions are approximation preserving in that a size 𝑡

set cover is equivalent to a size 𝑡 vertex cover for both hypergraphs,

and this is equivalent to 𝑡 variants being maintained in the variation

graph. Hence, a well-known (1 − 𝑜 (1)) log |U| inapproximability

result for Set Cover [9], implies that obtaining an (1 − 𝑜 (1)) log𝑚-

approximation for Haplotype-Aware Variant Maintained Minimiza-

tion is NP-hard. Moreover, the number of vertices in our instance of

Haplotype-Aware Variant Maintained Minimization is 𝑂 ( |U||S|),

and since a 𝑜 (log |S|)-approximation for set cover is also NP-hard1,

this implies a 𝑜 (log |𝑉 |)-approximation for our problem is NP-hard

as well. These results are summarized below.

Theorem 4.2. There does not exist a polynomial-time (1−𝑜 (1)) log𝑚-

approximation algorithm or a polynomial-time𝑜 (log |𝑉 |)-approximation

algorithm for Haplotype-Aware Variant Maintained Minimization

assuming P ≠ NP.

A reduction from Haplotype-Aware Variant Maintained Min-

imization to a well studied problem exists as well. Our problem

can be modeled as a version of the Multi-Covering problem. Using

the Booelean constraint matrix 𝐴 described in Section 5, the prob-

lem can be rewritten as the integer linear program min𝑥 1 · 𝑥 s.t.,

𝐴𝑥 ≥ 𝐴1−𝛿1, where 𝑥𝑖 ∈ {0, 1}. Here, unlike in Section 5, 𝑥𝑖 = 1 is

interpreted as a variant 𝑖 being maintained and 𝑥𝑖 = 0 is interpreted

as a variant 𝑖 being removed. This is exactly a Multi-Cover instance.

1The inapproximability result in [9] holds when |S | = |U |Θ(1) .
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For the Multi-Covering problem we can use the greedy algorithm

that starts with 𝑥 as the zero vector and repeatedly makes 𝑥𝑖 = 1

for the 𝑖 that maximizes the number of infeasible rows in 𝐴𝑥 that

increase in value. It repeats this until a feasible solution is reached.

The greedy algorithm provides a logarithmic approximation [37].

Theorem 4.3. There exists a polynomial-time𝑂 (log |V|)- approx-

imation algorithm for Haplotype-Aware Variant Maintained Mini-

mization, where V is the set of variants in 𝐺 .

A polynomial-time approximation algorithm with approxima-

tion factor (max𝑖
∑

𝑗 𝑎𝑖 𝑗 −minℎ
∑

𝑗 𝑎ℎ𝑗 +𝛿 +1) where 𝑎𝑖 𝑗 are entries

from the matrix 𝐴, is also possible [28]. In the case where all haplo-

types (besides 𝑅1) have the same number of variants in all 𝛼 sized

intervals, this simplifies to a (𝛿 + 1)-approximation.

Maximization: The reduction by Jain et al. used to prove that

the decision version is NP-complete also proves that Haplotype-

Aware Variant Removed Maximization is NP-hard to approximate

within a factor of |𝑉 |1−𝜖 for any constant 𝜀 > 0. This is since

it provides a reduction from the Independent Set problem on an

instance 𝐺 ′
= (𝑉 ′, 𝐸 ′) to an instance 𝐺 = (𝑉 , 𝐸) of Haplotype-

Aware Variant Removed Maximization such that 𝛼 = |𝑉 ′ | = |𝑉 | − 1

and a solution where 𝑡 variants are removed yields a solution to the

Independent Set problem consisting of a 𝑡-sized independent set.

This, combined with the NP-hardness of finding a solution to the

Independent Set problem within an |𝑉 ′ |1−𝜀 -approximation factor

of optimal [38], proves the result.

Theorem 4.4. It is NP-hard to obtain a 𝑂 ( |𝑉 |1−𝜀 )-approximation

for Haplotype-Aware Variant Removed Maximization.

It should also be noted that an 𝛼
𝛿
-approximation can be obtained

for both the haplotype-aware and non-haplotype-aware versions

via a simple algorithm. Consider the strategy of removing all vari-

ants from coordinates that are ⌈𝛼
𝛿
⌉ apart (i.e., ⌈𝛼

𝛿
⌉ − 1 coordinates

between them). In particular, let potential solution 𝑖 be the solution

were all variants are removed at coordinates 𝑖+ 𝑗 ⌈𝛼
𝛿
⌉ for 1 ≤ 𝑖 < ⌈𝛼

𝛿
⌉

and 0 ≤ 𝑗 ≤ 𝑛−𝑖
⌈𝛼
𝛿
⌉
. For every solution and any interval of size 𝛼

there are at most 𝛿 coordinates with variants removed, hence in

that interval at most 𝛿 variants removed for every haplotype. At the

same time, since these ⌈𝛼
𝛿
⌉ solutions partition all of the variants,

one of them must contain at least 1
⌈𝛼
𝛿
⌉
fraction of all the variants.

Therefore, taking the solution 𝑖 that contains the most variants

overall gives us a solution with value at least
𝑣𝑎𝑙 (𝑂𝑃𝑇 )

⌈𝛼
𝛿
⌉

. In the cases

we studied in this work, we have 𝛿 being equal to some relatively

small proportion of 𝛼 , such as 𝛿 = .01𝛼 , or 𝛿 = .1𝛼 . For our experi-

ments, this approach would give approximation ratios too large to

be of interest.

Theorem 4.5. There exists a polynomial-time 𝛼
𝛿
-approximation

algorithm for Haplotype-Aware Variant Removed Maximization.

5 PROPOSED ALGORITHMS

In this section, we propose ILP solutions for Problems 1 and 2.

5.1 With a designated reference

Assume that a variation graph 𝐺 = (𝑉 , 𝐸, ℓ) and haplotypes 𝑅1, . . .,

𝑅𝑚 are given. Recall that 𝑅1 is considered as a special reference

and the path corresponding to 𝑅1 in 𝐺 does not contain variants.

LetV denote the list of variants. We will describe each variant in

V as the tuple (𝑝, 𝑠) where 𝑝 ∈ {1, . . . , 𝑛} denotes the coordinate

of the variant and 𝑠 ∈ Σ denotes the symbol for the variant. We

considerV as being ordered lexicographically by 𝑝 then 𝑠 , although

not essential for the algorithm. We also let L ⊆ {1, . . . , 𝑛} denote

the list of coordinates where there exists some variant and the

coordinate is at most 𝑛 − 𝛼 + 1, i.e.,

L = {𝑝 | 𝑝 ≤ 𝑛 − 𝛼 + 1 and (𝑝, 𝑠) ∈ V for some 𝑠 ∈ Σ}.

To present the ILP formulation of the problem, we first describe

the constraint matrix𝐴. Let𝐴 be a Boolean matrix of size ((𝑚− 1) ·

|L|) × |V|. We use 𝑎𝑖 𝑗 to refer to the element of the 𝑖𝑡ℎ row and 𝑗𝑡ℎ

column of 𝐴. Let 𝐴 be initially all 0’s. We assign to each column in

𝐴 a variant in V , and we assign to each row in 𝐴 both a haplotype

and 𝛼-long span of coordinate values that begins with some 𝑝 ∈ L.

Specifically, the 𝑗𝑡ℎ column is assigned the 𝑗𝑡ℎ variant (𝑝 𝑗 , 𝑠 𝑗 ). For

row 𝑖 , if 𝑖 − 1 = (𝑚 − 1)𝑝 + 𝑟 , where 0 ≤ 𝑟 < 𝑚 − 1, then row 𝑖 is

assigned haplotype 𝑅𝑟+2 and the interval [L[𝑝+1],L[𝑝+1] +𝛼−1].

The non-zero entries of 𝐴 are determined as follows:

• For 1 ≤ 𝑖 ≤ (𝑚 − 1) |L|, find 𝑝 ≥ 0 and 𝑟 ∈ [0,𝑚 − 2] such

that 𝑖 − 1 = (𝑚 − 1)𝑝 + 𝑟 ;

• then for 1 ≤ 𝑗 ≤ |V|, make 𝑎𝑖 𝑗 = 1 if for (𝑝 𝑗 , 𝑠 𝑗 ) ∈ V , we

have 𝑝 𝑗 ∈ [L[𝑝 + 1],L[𝑝 + 1] + 𝛼 − 1] and 𝑅𝑟+2 [𝑝 𝑗 ] = 𝑠 𝑗 .

See Figure 1 (a)-(c) for an example. In practice, we can remove the

duplicate rows observed in part (c), more specifically, we removed

rows 4, 6 and 9. Note that by precomputingL, the list of haplotypes,

and the list of variants, determining whether 𝑎𝑖 𝑗 = 1 or 𝑎𝑖 𝑗 = 0 for

a given (𝑖, 𝑗) can be done in constant time, rather than having to

explicitly construct the matrix 𝐴.

Letting 1 be the |V| × 1 vector consisting of all 1’s the ILP for

finding the maximum number of variants that can be removed from

𝐺 while maintaining (𝛼, 𝛿)ℎ-compatibility can now be stated as:

max
𝑥

1
𝑇 𝑥

s.t. 𝐴 · 𝑥 ≤ 𝛿1

𝑥𝑖 ∈ {0, 1} ∀𝑖 ∈ [1, |V|]

Given an optimal solution 𝑥 to the above ILP, to obtain the solu-

tion to Problem 1, for every 𝑥𝑖 = 1, remove variant (𝑝𝑖 , 𝑠𝑖 ). The

remaining variants are maintained.

The reader may notice that in the ILP formulation above not

every 𝛼-sized interval is explicitly represented by the constraint

matrix. This is since it is adequate to only consider 𝛼-sized intervals

that begin at some coordinate in L. Indeed, by shifting an 𝛼-sized

interval to the left of any starting position in L, one can easily

check that the number of mismatches between any path in 𝐺 and

any substring in a haplotype spanning the same indices can only

decrease or remain constant until a new variant is encountered by

the starting position of the interval.

5.2 Without a designated reference

In the case where there is no designated reference, the set of vari-

ants becomes equivalent to the set of edges. However, in order

to maintain connectivity, we only include (𝑖, ℓ (𝑒)) inV for edges

𝑒 = (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 where the out-degree of 𝑣𝑖 , denoted deg+ (𝑖), is

greater than 1. With this new variant set V , we first construct the



Haplotype-aware Variant Selection for Genome Graphs BCB ’22, August 7ś10, 2022, Northbrook, IL, USA

Figure 1: An example to illustrate the proposed ILP solution

(a) List of given haplotypes. (b) Complete variation graph for

the given haplotypes. (c) ILP formulation with constraints.

(d) Reduced variation graph using ILP . (e) Reduced variation

graph using Greedy/LP .

matrix 𝐴 as above. Next, we add the following rows to 𝐴: for every

𝑖 ∈ L we create a row. For a given 𝑖 ∈ L, take all variants in V

that are at coordinate 𝑖 . For each of these variants, if the variant has

index 𝑗 in V , then we put a 1 in column 𝑗 . For each of these added

rows, we add a corresponding new row to the vector on the right-

hand side of the inequality and set it equal to deg+ (𝑣𝑖 ) − 1. This

ensures that no more than deg+ (𝑣𝑖 ) − 1 variants are removed from

any coordinate and that the resulting graph remains connected.

6 EXPERIMENTS

We developed software to implement our ILP solutions in C++ (code

available at https://github.com/NedaTavakoli/hg). We evaluate the

effectiveness of our ILP solution for Problem 1, henceforth denoted

ILP , by measuring the percentage of variants removed from the

corresponding complete variation graph. In addition to this abso-

lute performance measure, we compare ILP to the previous variant

reduction algorithms introduced in [14], a greedy algorithm, de-

noted Greedy, and LP algorithm, denoted LP . These algorithms seek

to preserve all 𝛼-long paths occurring in the complete variation

graph, subject to 𝛿 or fewer mismatches. Thus, any solutions to

this problem are automatically valid (but not necessarily optimal)

solutions to the haplotype-aware problem. This relative comparison

will reveal whether ILP targeting the hapylotype-aware problem

directly is necessary, and is also evaluated in the context of run-

time performance and memory usage of all three algorithms. For

brevity, all results are presented for Problem 1, as the same behavior

is observed for Problem 2 also. The greedy and LP solutions:
Greedy works by considering the vertices in 𝐺 from left to right

and keeping count of the number of variants removed from every

𝛼-sized interval containing the current vertex. If the budget 𝛿 of

mismatches is not reached, all variants at the current vertex are

removed. LP works by recognizing that when preserving all graph

paths (haplotype as well as recombinant), optimal solutions either

remove or maintain all variants at any specific vertex. This leads to

a simpler formulation, and a totally unimodular matrix for speci-

fying constraints, allowing polynomial-time solution through LP

relaxation. See Figure 1 (d)-(e) for an illustration of the reduced

graphs resulting from ILP , LP , and Greedy.

Variation graph construction: We evaluate the algorithms using

two variation graphs. The larger of the two is constructed from

human chromosome 1 (249 Mbp) and is denoted as g_chr1_SNP.

The smaller graph is constructed from the human chromosome

22 (51Mbp) and is denoted as g_chr22_SNP. The variations used

in the graph construction arise from a list of 5, 008 haplotypes

that exist for the human genome. We built these variation graphs

corresponding to SNPs while annotating every edge with a list of

haplotypes containing that edge. We downloaded SNPs from the

1000 Genomes Project Phase 3 [2].

Our graph construction leveraged vcftools [4], and bcftools [21]

to extract SNPs from the 1000 Genomes Project variant files, as

well as list of haplotypes per SNP position. Summary statistics of

these variants, and the graphs we built from them, are listed in

Table 1. We also implemented a shell script to construct haplotype-

annotated variation graphs. The code is available at https://github.

com/NedaTavakoli/havg.

Hardware and software: We used Gurobi 9.5.0 solver to solve

the ILP and LP instances. The algorithms were run on dual Intel

Xeon Gold 6226 CPUs (2.70 GHz) processors. Each contains 2×12

physical cores and 384 GB RAM. Gurobi takes advantage of multiple

cores when solving the ILP and LP instances; however, the Greedy

algorithm is sequential.

The 𝛼 and 𝛿 parameters:We use multiple 𝛼 and 𝛿 values to test

the performance of the algorithms. The values selected for 𝛼 are

150 bp, 1 kbp, 5 kbp, and 10 kbp, inspired by short and long read

lengths. For 𝛿 , we choose 1%, 5%, and 10% of 𝛼 , rounded up to the

nearest integer.

Results: The results for graph g_chr22_SNP are shown in Table 2

and Figure 2. The results for graph g_chr1_SNP are shown in Table 3

and Figure 3. For the ILP algorithm, we report four statistics: (i)

count of variants retained, (ii) run-time, (iii) peak memory usage,

and (iv) percentage of variant reduction achieved.We also compared

the percentage of variants removed using previously developed

Greedy and LP algorithms.



BCB ’22, August 7ś10, 2022, Northbrook, IL, USA Tavakoli, et al.

Table 1: Genome variation graphs used for experimental evaluation.

Graph Chr Type of No. of No. of variant No. of

label variants variants containing loci haplotypes

g_chr1_SNP 1 SNPs 6,234,046 6,215,039 5008

g_chr22_SNP 22 SNPs 1,063,617 1,059,517 5008

Table 2: Results for ILP haplotype-aware algorithm and comparison with variant reduction achieved using Greedy and LP on

genome variation graph for chromosome 22.

𝛼 𝛿 Time (s) # Variants Retained Memory Usage (GB) Variant Reduction

ILP ILP Greedy LP

𝛼 = 150

𝛿 = 2 12.03 357279 3 66.41% 33.51% 33.72%

𝛿 = 8 6.34 30476 3 97.13% 91.36% 91.41%

𝛿 = 15 3.87 3323 3 99.68% 99.35% 99.36%

𝛼 = 1000

𝛿 = 10 10.1 385531 8 63.75% 30.56% 30.82%

𝛿 = 50 13.34 7176 8 99.32% 98.07% 98.10%

𝛿 = 100 13.76 956 10 99.91% 99.76% 99.77%

𝛼 = 5000

𝛿 = 50 50.76 365598 32 65.63% 31.85% 32.12%

𝛿 = 250 45.36 2435 32 99.77% 99.30% 99.32%

𝛿 = 500 39.05 296 29 99.97% 99.92% 99.92%

𝛼 = 10000

𝛿 = 100 64.87 375126 105 64.73% 32.10% 32.37%

𝛿 = 500 54.01 1367 77 99.87% 99.52% 99.52%

𝛿 = 1000 52.09 186 66 99.98% 99.93% 99.93%

Table 3: Results for ILP haplotype-aware algorithm and comparison with variant reduction achieved using Greedy and LP on

genome variation graph for chromosome 1.

𝛼 𝛿 Time (s) # Variants Retained Memory Usage (GB) Variant Reduction

ILP ILP Greedy LP

𝛼 = 150

𝛿 = 2 23.04 2355632 14 62.21% 36.54% 36.70%

𝛿 = 8 24.65 146312 14 97.65% 94.44% 94.47%

𝛿 = 15 20.06 3545 14 99.94% 99.78% 99.78%

𝛼 = 1000

𝛿 = 10 84.09 2030326 44 67.43% 33.75% 33.94%

𝛿 = 50 73.04 10034 42 99.84% 99.36% 99.36%

𝛿 = 100 67.06 1503 39 99.97% 99.96% 99.96%

𝛼 = 5000

𝛿 = 50 145.09 1930345 121 69.03% 35.24% 35.44%

𝛿 = 250 128.01 5342 115 99.91% 99.89% 99.86%

𝛿 = 500 125.09 244 113 100.00% 99.99% 99.99%

𝛼 = 10000

𝛿 = 100 146.19 1783400 130 71.40% 35.49% ∞

𝛿 = 500 138.08 2065 125 99.97% 99.91% ∞

𝛿 = 1000 136.10 164 101 100.00% 100.00% ∞

The results indicate that ILP outperforms Greedy and LP in all

experiments, as one would expect from an algorithm that guaran-

tees optimal solution. The degree of out-performance is highest

for small values of 𝛿 . This is because removing variants when only

few errors are tolerated is tricky, and the optimal algorithm clearly

outshines here. For the case of 𝛿 = 1%, ILP removes roughly twice

as many variants as the other two approaches. For larger 𝛿 values,

most variants can be removed without loss of (𝛼, 𝛿)ℎ compatibility.

Here, ILP shows marginal gains over the others (3-6% additional

variants removed) for 𝛼 = 150, and the gains are negligible for

longer 𝛼 . Both Chromosome 1 and Chromosome 22 are predomi-

nantly biallelic (only one variant in addition to the reference base at

a vertex), at 99.82% and 99.61% frequency, respectively. This favors

Greedy as it removes or retains all variants at a vertex, and lacks the

ability to select an appropriate subset of variants instead. For varia-

tion graphs with higher multi-allelic frequency, the performance

gap between ILP and Greedy would be even higher.
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Figure 2: Empirical evaluation of Greedy, LP , and ILP algorithms using human variation graphs g_chr1_SNP and g_chr22_SNP.

These plots illustrate number of variants retained for various choices of 𝛼 and 𝛿 . Size of the complete variation graph (𝛿 = 0%) is

included for comparison. The Y-axes are shown in in log-scale for the time and memory plots.

While the results are shown for wide choices of 𝛼 and 𝛿 to com-

prehensively reflect properties of the algorithm/implementation,

it should be kept in mind that practical use cases where only sub-

stitution errors occur typically will use small values of 𝛼 and 𝛿 .

Here the out-performance of ILP justifies its use. This is because

long read technologies predominantly make insertion/deletion er-

rors, and longer stretches of genome invariably contain genomic

insertions and deletions with respect to other reference haplotypes.

Because of this, a model restricted to substitutions alone has no

validity over longer lengths. The best use of such a model is to seed

an alignment using short substring matches or when matching

short reads. In both of these cases, ILP provides significantly better

variant reduction.

As for run-time,Greedy is the fastest while LP and ILP are similar

(Figures 2 and 3). Note that even though ILP edges out LP slightly

and is also able to solve larger 𝛼 sizes than LP, this is primarily

because of our improved implementation in ILP to dynamically

generate the non-zero entries of the constraint matrix on demand.

Hence, both algorithms should be seen as providing similar run-

time performance. The run-time and memory requirements of ILP

allow its usage to achieve optimal variant selection in all cases

tested.

7 CONCLUSIONS AND FUTURE WORK

In this work, we investigated the haplotype-aware variant selection

problem under the Hamming distance metric. We proved several
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Figure 3: Empirical evaluation of Greedy and LP algorithms using two human variation graphs g_chr1_SNP and g_chr22_SNP.

These plots demonstrate reduction achieved in graph sizes while varying 𝛼 and 𝛿 parameters. Size of the complete variation

graph (𝛿 = 0%) is included for comparison. Numbers on top of bars present actual data, useful for comparison when both Greedy

and LP achieve close results. Result of LP algorithm is missing for 𝛼 = 10, 000 (left-most column) because Gurobi LP solver

crashed due to insufficient memory. The Y-axes are log-scaled in the time and memory plots.

hardness-of-approximation results for the minimization and max-

imization versions of the problem and proposed approximation

algorithms. We then provided an ILP formulation of the problem

and demonstrated experimentally that this formulation is effective

in finding optimal solutions even on human chromosome scale

graphs and for a variety of sequence lengths and error percentage

thresholds. In addition to ensuring optimality, the gains compared

to other suboptimal algorithms are substantial for the realistic case

of short sequence lengths and error thresholds, more appropriate

when only substitutions are allowed. Future extensions of this work

include improving the execution of the ILP solver by developing

problem specific branch-and-cut techniques, and implementing the

logarithmic approximation algorithms presented in Section 4 and

comparing them to the existing Greedy and LP solutions described

in Section 6. We also plan to experimentally evaluate the impact of

the variant reduction obtained here on sequence-to-graph mapping

accuracy.

Finally, this work focused exclusively on the Hamming distance

version of the problem. While this constitutes a significant advance
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since the haplotype-aware problem is hitherto unsolved [14], gen-

eralizing it to the edit distance version is more realistic for longer

sequence lengths and particularly for long reads. This remains an

important open problem.
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