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It is likely a fair assumption that you, the reader, are not
only familiar with but even quite adept at differentiating
by 𝑥. What about differentiating by 13? That certainly
didn’t come up in my calculus class! From a calculus per-
spective, this is ridiculous: are we supposed to take a limit
as 13 changes?

One notion of differentiating by 13, or any other prime
number, is the notion of 𝑝-derivation discovered indepen-
dently by Joyal [Joy85] and Buium [Bui96]. 𝑝-derivations
have been put to use in a range of applications in alge-
bra, number theory, and arithmetic geometry. Despite the
wide range of sophisticated applications, and the funda-
mentally counterintuitive nature of the idea of differenti-
ating by a number, 𝑝-derivations are elementary to define
and inviting for exploration.

In this article, we will introduce 𝑝-derivations and give
a few basic ways in which they really do act like derivatives
by numbers; our hope is that you will be inspired and con-
sider adding 𝑝-derivations to your own toolkit!
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𝑝-Derivations on ℤ
First we want to discuss differentiating one number 𝑛, by
another, 𝑝; i.e., what we will call 𝑝-derivations on ℤ. Be-
fore we succeed, we need to abandon the notion of deriv-
ative as a limit as the input varies by a small amount: the
thing 𝑝 that we are differentiating by does not vary, and
the thing 𝑛 that we are differentiating does not even have
an input! Instead, we take a little inspiration from elemen-
tary number theory.

Let 𝑝 be a prime number. By Fermat’s little theorem, for
any integer 𝑛, we have

𝑛 ≡ 𝑛𝑝 mod 𝑝,

so we can divide the difference 𝑛 − 𝑛𝑝 by 𝑝. The starting
point of our journey is that not only can we divide by 𝑝
here, but we should. The 𝑝-derivation on ℤ is the result of
this process. Namely:

Definition 1. For a prime number 𝑝, the 𝑝-derivation on ℤ
is defined as the function 𝛿𝑝 ∶ ℤ → ℤ given by the formula

𝛿𝑝(𝑛) =
𝑛 − 𝑛𝑝
𝑝 .

So, in particular, there is the 2-derivation on ℤ and the
13-derivation on ℤ given respectively by

𝛿2(𝑛) =
𝑛 − 𝑛2
2 and 𝛿13(𝑛) =

𝑛 − 𝑛13
13 .
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Let’s plug in a few values:

𝑛 𝛿2(𝑛) 𝛿3(𝑛) 𝛿5(𝑛)
⋮ ⋮ ⋮ ⋮
−4 −10 20 204
−3 −6 8 48
−2 −3 2 6
−1 −1 0 0
0 0 0 0
1 0 0 0
2 −1 −2 −6
3 −3 −8 −48
4 −6 −20 −204
5 −10 −40 −624
6 −15 −70 −1554
⋮ ⋮ ⋮ ⋮

A quick look at this table suggests a few observations,
easily verified from the definition:

• Numbers are no longer “constants” in the sense of
having derivative zero, but at least 0 and 1 are.

• These functions are neither additive nor multi-
plicative, e.g.:

𝛿𝑝(1) + 𝛿𝑝(1) ≠ 𝛿𝑝(2),
𝛿𝑝(1)𝛿𝑝(2) ≠ 𝛿𝑝(2).

• 𝛿𝑝 is an odd function, at least for 𝑝 ≠ 2.
• The outputs of 𝛿2 are just the negatives of the tri-

angular numbers.

We might also note that the outputs are very large in ab-
solute value, and think that this operation is simply mak-
ing a mess of our numbers. However, something more
informative occurs if we think about largeness of the out-
puts from the point of view of 𝑝, namely, the 𝑝-adic order
of 𝑛—the number of copies of 𝑝 in its prime factorization.
Writing 𝑛 = 𝑝𝑎𝑚 with gcd(𝑚, 𝑝) = 1, if 𝑎 > 0, we get

𝛿𝑝(𝑝𝑎𝑚) =
𝑝𝑎𝑚− (𝑝𝑎𝑚)𝑝

𝑝 = 𝑝𝑎−1𝑚(1 − 𝑝𝑎𝑝−𝑎𝑚𝑝−1).

Since 𝑝 ≥ 2 and 𝑎 ≥ 1, we must have 𝑎𝑝−𝑎 ≥ 1, so 𝑝 does
not divide 1 − 𝑝𝑎𝑝−𝑎𝑚𝑝−1. In particular, the 𝑝-derivation
decreases the 𝑝-adic order of a multiple of 𝑝 by exactly one.

This leads to our first comparison with old-fashioned
𝑑
𝑑𝑥

:

Comparison 1 (Order-decreasing property).
• If 𝑓 ∈ ℝ[𝑥] is a polynomial and 𝑥 = 𝑟 is a root of
𝑓 of multiplicity 𝑎 > 0, then 𝑥 = 𝑟 is a root of the
polynomial

𝑑
𝑑𝑥
(𝑓(𝑥)) of multiplicity 𝑎 − 1.

• If 𝑛 is an integer and 𝑝 is a prime factor of 𝑛 of mul-
tiplicity 𝑎 > 0, then 𝑝 is a prime factor of the integer
𝛿𝑝(𝑛) of multiplicity 𝑎 − 1.

In particular, if 𝑟 is a simple root or 𝑝 is a simple factor,
then it is no longer a root or factor of

𝑑
𝑑𝑥
(𝑓(𝑥)) or 𝛿𝑝(𝑛)

respectively.

Let’s check this against our table: the numbers −2, 2,
and 6 that were divisible by 2 but not 4 result in odd num-
bers whenwe apply 𝛿2, whereas±4 returned even numbers
no longer divisible by 4. Note that this order-decreasing
property says nothing about what happens when you ap-
ply 𝛿2 to an odd number, and indeed, based on the table
we observe that even and odd numbers can result. You can
convince yourself that

𝛿2(𝑛) is {
even if 𝑛 ≡ 0, 1 mod 4
odd if 𝑛 ≡ 2, 3 mod 4.

We’ve observed already that these 𝑝-derivations onℤ are
not additive. This can be a bit unsettling for those of us
(like myself) who are usually accustomed to the luxury of
additive operators. However, any function satisfying the
order-decreasing property of 𝛿𝑝 above must not be addi-
tive, since an additive function has to take multiples of 𝑝
to multiples of 𝑝. However, the error term can be made
concrete:

𝛿𝑝(𝑚 + 𝑛) − (𝛿𝑝(𝑚) + 𝛿𝑝(𝑛)) =
𝑚𝑝 + 𝑛𝑝 − (𝑚 + 𝑛)𝑝

𝑝

= −
𝑝−1
∑
𝑖=1

(𝑝
𝑖
)
𝑝 𝑚𝑖𝑛𝑝−𝑖.

All of the binomial coefficients (𝑝
𝑖
) appearing above are

multiples of 𝑝, so this expression is, given a particular
value of 𝑝, a particular polynomial in 𝑚 and 𝑛 with inte-
ger coefficients; let’s call it 𝐶𝑝(𝑚, 𝑛) for convenience. This
gives us the following “sum rule” for 𝛿𝑝:

𝛿𝑝(𝑚 + 𝑛) = 𝛿𝑝(𝑚) + 𝛿𝑝(𝑛) + 𝐶𝑝(𝑚, 𝑛). (+)

Products satisfy a rule with a similar flavor:

𝛿𝑝(𝑚𝑛) = 𝑚𝑝𝛿𝑝(𝑛) + 𝑛𝑝𝛿𝑝(𝑚) + 𝑝𝛿𝑝(𝑚)𝛿𝑝(𝑛). (×)
The fact that we have rules to break things down into

sums and products gives the basis for another comparison

with old-fashioned
𝑑
𝑑𝑥

:

Comparison 2 (Sum and product rules).

• For polynomials 𝑓(𝑥), 𝑔(𝑥), one can compute each of
𝑑
𝑑𝑥
(𝑓+𝑔) and 𝑑

𝑑𝑥
(𝑓𝑔) as a fixed polynomial expression

in the inputs 𝑓, 𝑔, 𝑑
𝑑𝑥
(𝑓), 𝑑

𝑑𝑥
(𝑔), namely 𝑑

𝑑𝑥
(𝑓 + 𝑔) =

𝑑
𝑑𝑥
(𝑓) + 𝑑

𝑑𝑥
(𝑔) and 𝑑

𝑑𝑥
(𝑓𝑔) = 𝑓 𝑑

𝑑𝑥
(𝑔) + 𝑔 𝑑

𝑑𝑥
(𝑓).

• For integers 𝑚, 𝑛, one can compute each of 𝛿𝑝(𝑚 + 𝑛)
and 𝛿𝑝(𝑚𝑛) as a fixed polynomial expression in the
inputs 𝑚, 𝑛, 𝛿𝑝(𝑚), 𝛿𝑝(𝑛), namely (+) and (×).

We might pause to ask whether we could have hoped
for a simpler way to differentiate by 13. If we want Com-
parsion 2 to hold, then the following theorem of Buium
provides a definitive answer.
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Theorem 1 (Buium [Bui97]). Any function 𝛿 ∶ ℤ → ℤ that
satisfies

• a sum rule 𝛿(𝑚 + 𝑛) = 𝑆(𝑚, 𝑛, 𝛿(𝑚), 𝛿(𝑛)) for some
polynomial 𝑆 with integer coefficients

• a product rule 𝛿(𝑚𝑛) = 𝑃(𝑚, 𝑛, 𝛿(𝑚), 𝛿(𝑛)) for some
polynomial 𝑃 with integer coefficients

is of the form

𝛿(𝑛) = ±𝑛 − 𝑛𝑝𝑒
𝑝 + 𝑓(𝑛)

for some prime integer 𝑝, positive integer 𝑒, and polynomial 𝑓
with integer coefficients.

That is, any function satisfying a sum rule and a product
rule is a mild variation on a 𝑝-derivation.

With the properties of 𝑝-derivations we have so far, we
can recreate analogues of some familiar aspects of calculus.
For example, from the product rule (×) and a straightfor-
ward induction, we obtain a power rule:

𝛿𝑝(𝑛𝑎) =
𝑎
∑
𝑖=1

(𝑎𝑖 )𝑝
𝑖−1𝛿𝑝(𝑛)𝑖𝑛(𝑎−𝑖)𝑝.

Note that the 𝑖 = 1 term in the sumabove, 𝑎𝑛(𝑎−1)𝑝𝛿𝑝(𝑛),
looks a bit like the power rule for usual derivatives. If we
allow ourselves to extend 𝛿𝑝 to a map onℚ, then we get an
analogue of the quotient rule:

𝛿𝑝 (
𝑚
𝑛 ) =

𝑛𝑝𝛿𝑝(𝑚) − 𝑚𝑝𝛿𝑝(𝑛)
𝑛2𝑝 + 𝑝𝑛𝑝𝛿𝑝(𝑛)

.

Of the main cast of characters in a first class on deriva-
tives, perhaps the most conspicuous one missing at this
point is the chain rule. Since there is no way to com-
pose a number with a number, we will need a notion of
𝑝-derivations for functions to state a sensible analogue of
the chain rule.

𝑝-Derivations for General Commutative Rings
One can define 𝑝-derivations for commutative rings with
1.
Definition 2. Let 𝑅 be a commutative ring with 1 and 𝑝 a
prime integer. A 𝑝-derivation on 𝑅 is a function 𝛿 ∶ 𝑅 → 𝑅
such that 𝛿(0) = 𝛿(1) = 0 and 𝛿 satisfies the sum rule (+)
and the product rule (×) above; i.e., for all 𝑟, 𝑠 ∈ 𝑅,

𝛿𝑝(𝑟 + 𝑠) = 𝛿𝑝(𝑟) + 𝛿𝑝(𝑠) −
𝑝−1
∑
𝑖=1

(𝑝
𝑖
)
𝑝 𝑟𝑖𝑠𝑝−𝑖 (+)

and
𝛿𝑝(𝑟𝑠) = 𝑟𝑝𝛿𝑝(𝑠) + 𝑟𝑝𝛿𝑝(𝑠) + 𝑝𝛿𝑝(𝑟)𝛿𝑝(𝑠). (×)

Evidently, the functions 𝛿𝑝 we defined on ℤ above are
𝑝-derivations. In fact, for a fixed 𝑝, a simple induction
and the sum rule show that for any 𝑝-derivation 𝛿 on a
ring 𝑅 and any 𝑛 in the prime subring (image of ℤ) of 𝑅,
𝛿(𝑛) = 𝛿𝑝(𝑛).

The other basic example is as follows. Take the ring of
polynomials in 𝑛 variables with integer coefficients, 𝑅 =
ℤ[𝑥1, … , 𝑥𝑛]. For any polynomial 𝑓(𝑥1, … , 𝑥𝑛), we can con-
sider its 𝑝th power 𝑓(𝑥1, … , 𝑥𝑛)𝑝, or we can plug in 𝑝th
powers of the variables as inputs to get 𝑓(𝑥𝑝1 , … , 𝑥

𝑝
𝑛). These

are different, but they agree modulo 𝑝 as a consequence
of the “freshman’s dream.” Namely, in the quotient ring
𝑅/𝑝𝑅 ≅ ℤ/𝑝ℤ[𝑥1, … , 𝑥𝑛],

(𝑓 + 𝑔)𝑝 = 𝑓𝑝 +
𝑝−1
∑
𝑖=1

(𝑝𝑖 )𝑓
𝑖𝑔𝑝−𝑖 + 𝑔𝑝 = 𝑓𝑝 + 𝑔𝑝,

since each (𝑝
𝑖
) is a multiple of 𝑝, and

(𝑓𝑔)𝑝 = 𝑓𝑝𝑔𝑝

as a consequence of commutativity, so the map 𝑓 ↦ 𝑓𝑝 is
a ring homomorphism in 𝑅/𝑝𝑅, called the Frobenius map.
Thus, in 𝑅/𝑝𝑅, taking 𝑝th powers before doing polynomial
operations is just as good as after. So, back in 𝑅 we can
divide the difference by 𝑝, and we will! Namely, we can
define the function

𝛿(𝑓(𝑥1, … , 𝑥𝑛)) =
𝑓(𝑥𝑝1 , … , 𝑥

𝑝
𝑛) − 𝑓(𝑥1, … , 𝑥𝑛)𝑝

𝑝 ,

and this function is a 𝑝-derivation. Just so we can refer to
this function later, let’s call this the standard 𝑝-derivation
onℤ[𝑥1, … , 𝑥𝑛] and denote it by 𝛿st,𝑝 (though this notation
is not at all standard).

For example,

𝛿st,2(𝑥3 + 5𝑥) = (𝑥2)3 + 5(𝑥2) − (𝑥3 + 5𝑥)2
2

= −5𝑥4 − 10𝑥2.

As this operator 𝛿st,𝑝 measures the failure of the fresh-
man’s dream, onemight think of this as a freshman’s night-
mare. In fact, in large generality, 𝑝-derivations all arise
from some freshman’s nightmare. Let’s make this pre-
cise. Given a ring 𝑅, we say that a map Φ ∶ 𝑅 → 𝑅 is a
lift of Frobenius if it is a ring homomorphism and the in-
duced map from 𝑅/𝑝𝑅 → 𝑅/𝑝𝑅 is just the Frobenius map,
i.e., Φ(𝑟) ≡ 𝑟𝑝 mod 𝑝𝑅 for all 𝑅. Given a 𝑝-derivation
𝛿 ∶ 𝑅 → 𝑅, the map Φ ∶ 𝑅 → 𝑅 given by

Φ(𝑟) = 𝑟𝑝 + 𝑝𝛿(𝑟)
is a lift of Frobenius. Indeed, the congruence condition is
automatic, and the sum rule and product rule on 𝛿 trans-
late exactly to the conditions that Φ respects addition and
multiplication. Conversely, if 𝑝 is a nonzero divisor on 𝑅,
and Φ is a lift of Frobenius, then the map 𝛿(𝑟) = Φ(𝑟)−𝑟𝑝

𝑝
is a 𝑝-derivation: the freshman’s nightmare associated to
the lift of Frobenius Φ.

It is worth noting that not every ring admits a 𝑝-
derivation. For a quick example, no ring 𝑅 of characteristic
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𝑝 admits a 𝑝-derivation, since we would have

0 = 𝛿(0) = 𝛿(𝑝) = 𝛿𝑝(𝑝) = 1 − 𝑝𝑝−1 = 1
in 𝑅. Much more subtle obstructions exist, and it is an
interesting question to determine which rings admit 𝑝-
derivations; see [AWZ21] for some recent work on related
questions.

Note that the power rule from before follows for any 𝑝-
derivation on any ring, since we just used the product rule
to see it. The order-decreasing property holds in general,
too, at least if 𝑝 is a nonzero divisor on 𝑅—this follows
from writing 𝑠 = 𝑝𝑎𝑟 with 𝑝 ∤ 𝑟 and applying the product
rule:
𝛿(𝑝𝑎𝑟) = 𝑝𝑎𝑝𝛿(𝑟) + 𝑟𝑝𝛿(𝑝𝑎) + 𝑝𝛿(𝑝𝑎)𝛿(𝑟)
= 𝑝𝑎𝑝𝛿(𝑟) + (𝑝𝑎−1 − 𝑝𝑎𝑝−1)𝑟𝑝 + 𝑝(𝑝𝑎−1 − 𝑝𝑎𝑝−1)𝛿(𝑟)
= 𝑝𝑎−1𝑟𝑝 + 𝑝𝑎(𝛿(𝑟) − 𝑝𝑎(𝑝−1)−1𝑟𝑝 − 𝑝𝑎(𝑝−1)𝛿(𝑟)).

Let’s wrap up our cliffhanger from the previous section.
Now that we have 𝑝-derivations of polynomials, we have
the ingredients needed for a chain rule: given a polyno-
mial 𝑓(𝑥) and a number 𝑛, we will think of the number
𝑓(𝑛) as the composition of the function 𝑓 and the num-
ber 𝑛, and we can try to compare 𝛿𝑝(𝑓(𝑛)) with 𝛿st(𝑓) and
𝛿𝑝(𝑛). Here’s the chain rule:

𝛿𝑝(𝑓(𝑛)) = 𝛿st,𝑝(𝑓)(𝑛) +
deg(𝑓)
∑
𝑗=1

𝑝𝑗−1 𝑑𝑗𝑓
𝑗! 𝑑𝑥𝑗 (𝑛

𝑝)𝛿𝑝(𝑛)𝑗 .

This is a bit more complicated than the original, but
let’s notice in passing that the 𝑗 = 1 term in the sum,
𝑑𝑓
𝑑𝑥
(𝑛𝑝)𝛿𝑝(𝑛), looks pretty close to the classic chain rule,

besides the 𝑝th power on 𝑛. The curious reader is encour-
aged1 to prove the formula above.

We have collected a decent set of analogues for the ba-
sics of differential calculus for 𝑝-derivations. One can ask
how far this story goes, and the short answer is very far.
Buium has developed extensive theories of arithmetic dif-
ferential equations and arithmetic differential geometry,
building analogues of the classical (nonarithmetic) ver-
sions of these respective theories with 𝑝-derivations play-
ing the role of usual derivatives. The reader is encour-
aged to check out [Bui05,Bui17] to learnmore about these
beautiful theories, though our story now diverges from
these. Instead, we will turn our attention towards using
𝑝-derivations to give some algebraic results with geomet-
ric flavors.

A Jacobian Criterion
One natural geometric consideration is whether, and
where, a shape has singularities: points that locally fail to

1For a hint, consider the lift of Frobenius on ℤ[𝑥] that sends 𝑥 ↦ 𝑥𝑝 +𝑝𝛿𝑝(𝑛),
and use Taylor expansion to rewrite the associated 𝑝-derivation in terms of the
standard 𝑝-derivation and derivatives of 𝑓.

look flat, due to some sort of crossing or crinkle (or some
harder-to-imagine higher-dimensional analogue of a cross-
ing or crinkle). For example, the double cone cut out by
the equation 𝑧2−𝑥2−𝑦2 = 0 has a singularity at the origin
where the two conesmeet, but any other point on the cone
is not a singularity, see Figure 1.

Figure 1. The cone of solutions of 𝑧2 − 𝑥2 − 𝑦2 = 0. The origin
is the unique singular point.

We are going to consider shapes like this that are cut
out by polynomial equations, though to state the classical
Jacobian criterion, we will consider their solution sets over
the complex numbers.

Since it is difficult to envision higher-dimensional
shapes (and impossible to envision what we’re doing
next!), it will be useful to give a somewhat more algebraic
heuristic definition of singularity. We will say that a point
𝑥 is a nonsingular point in 𝑋 if within 𝑋 one can locally cut
out 𝑥 by exactly 𝑑 = dim(𝑋)-many equations without tak-
ing roots, and singular otherwise. For example, the point
(1, 0, 1) in the cone is nonsingular, and I claim that the two
equations 𝑦 = 0, 𝑧 − 1 = 0 “work” for our definition: with
these two equations and the equation for 𝑋 , we get

𝑦 = 𝑧 − 1 = 𝑧2 − 𝑥2 − 𝑦2 = 0.
Substituting in, we get 0 = 𝑥2 − 1 = (𝑥 − 1)(𝑥 + 1), and
“near (1, 0, 1),” 𝑥 + 1 is nonzero, so we can divide out and
get 𝑥 − 1 = 0, so 𝑥 = 1, 𝑦 = 0, 𝑧 = 1. On the other hand,
(0, 0, 0) is singular, and the two equations 𝑦 = 0, 𝑧 = 0
don’t “work” for our definition: we have

𝑦 = 𝑧 = 𝑧2 − 𝑥2 − 𝑦2 = 0,
so 𝑥2 = 0, but we need to take a root to get 𝑥 = 0.

The classical Jacobian criterion gives a recipe for the lo-
cus of all singularities of a shape cut out by complex poly-
nomials.

Theorem 2 (Jacobian criterion). Let 𝑋 ⊆ ℂ𝑛 be the solution
set of the system of polynomial equations

𝑓1 = ⋯ = 𝑓𝑚 = 0.
If the dimension of 𝑋 is 𝑑 = 𝑛 − ℎ, and 𝑓1, … , 𝑓𝑚 generate a
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prime ideal2 in the polynomial ring ℂ[𝑥1, … , 𝑥𝑛], then the set
of singular points is the solution set within 𝑋 of the system of
polynomial equations

all ℎ × ℎ minors of
⎡⎢⎢⎢
⎣

𝜕𝑓1
𝜕𝑥1

⋯ 𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

⋯ 𝜕𝑓𝑚
𝜕𝑥𝑛

⎤⎥⎥⎥
⎦

= 0.

In particular, if 𝑓 is irreducible, the set of singular points of the
solution set 𝑓 = 0 is the solution set of

𝑓 = 𝜕𝑓
𝜕𝑥1

= ⋯ = 𝜕𝑓
𝜕𝑥𝑛

= 0.

For example, for the Whitney umbrella cut out by the
polynomial 𝑓 = 𝑥2 − 𝑦2𝑧, the singular locus is cut out by
the system

𝑥2 − 𝑦2𝑧 = 2𝑥 = 2𝑦𝑧 = 𝑦2 = 0,
which simplifies to 𝑥 = 𝑦 = 0; the 𝑧-axis is where the shape
crosses itself.

Figure 2. The Whitney umbrella of solutions of 𝑥2 − 𝑦2𝑧 = 0.
The singular locus consists of the line where it crosses itself.

The notion of (non)singularity in geometry is general-
ized in algebra by the notion of regular ring. For starters,
prime ideals in algebra play the role of points in geometry:
this is motivated by Hilbert’s nullstellensatz, which says
that for a quotient ring of the form3

ℂ[𝑥1, … , 𝑥𝑛]
(𝑓1, … , 𝑓𝑚)

,

every maximal ideal is of the form

𝔪𝑎 = (𝑥1 − 𝑎1, … , 𝑥𝑛 − 𝑎𝑛)
for some 𝑎 = (𝑎1, … , 𝑎𝑛) solution to

𝑓1(𝑎) = ⋯ = 𝑓𝑚(𝑎) = 0;
2We recall that an ideal 𝐼 is prime if it is proper and 𝑔ℎ ∈ 𝐼 implies 𝑔 ∈ 𝐼 or
ℎ ∈ 𝐼. Experts will recognize this condition as overkill, but something needs to
be done to avoid examples like (𝑥 − 𝑦)2 = 0 whose solution set 𝑋 is the (com-

plex) line {(𝑎, 𝑎)}, which is nonsingular, but 𝜕𝑓
𝜕𝑥

= 𝜕𝑓
𝜕𝑦

= 0 for every point in 𝑋,
or 𝑥2−𝑥 = 𝑥𝑦𝑧 = 0 whose solution set 𝑌 is two-dimensional but has a crossing
singularity at (0, 0, 1) that is not a solution of the 1 × 1 minors of the Jacobian
matrix.
3For a set of elements 𝑎1, … , 𝑎𝑡 in a ring 𝑅, we use the notation

(𝑎1, … , 𝑎𝑡) ≔ {𝑟1𝑎1 +⋯+ 𝑟𝑡𝑎𝑡 | 𝑟𝑖 ∈ 𝑅}
for the ideal generated by {𝑎1, … , 𝑎𝑡}.

including all prime ideals leads to a better theory for gen-
eral rings. Then we say that a prime ideal in a ring 𝑅 is
nonsingular or regular at a prime ideal 𝔮 if 𝔮 can be gener-
ated “locally” by ℎ equations, where ℎ is the codimension
of 𝔮 (how much 𝔮 cuts down the dimension of 𝑅), and
“locally” means4 that one can divide by elements outside
of 𝔮. In the motivating geometric situation where 𝑋 is the
solution set of 𝑓1 = ⋯ = 𝑓𝑚 = 0 over ℂ, the point 𝑎 ∈ 𝑋
is nonsingular if and only if 𝑅 = ℂ[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚)
is nonsingular at the maximal ideal 𝔪𝑎. A prime ideal is
singular if it is not nonsingular.

Intuitively, when working over ℤ rather than over ℂ or
a field, in addition to the geometric dimensions, there is
an arithmetic dimension that corresponds to the prime
integers 𝑝 in ℤ. To detect singularity, it suffices to in-
clude 𝑝-derivations as a substitute for derivatives in the
𝑝-direction! The following is a special case of a result in-
dependently obtained by Saito [Sai22] and Hochster and
the author [HJ21].

Theorem 3 (Saito, Hochster–Jeffries). Let 𝑅 = ℤ[𝑥1,…,𝑥𝑛]
(𝑓1,…,𝑓𝑚)

for

some prime ideal (𝑓1, … , 𝑓𝑚) of ℤ[𝑥1, … , 𝑥𝑛]. Then the set of
singular prime ideals 𝔮 of 𝑅 containing a fixed prime integer 𝑝
is exactly the set of prime ideals containing 𝑝 and

all ℎ × ℎ
minors of

⎡⎢⎢⎢
⎣

𝛿st,𝑝(𝑓1) (𝜕𝑓1
𝜕𝑥1

)𝑝 ⋯ ( 𝜕𝑓1
𝜕𝑥𝑛

)𝑝

⋮ ⋱ ⋮
𝛿st,𝑝(𝑓𝑚) (𝜕𝑓𝑚

𝜕𝑥1
)𝑝 ⋯ (𝜕𝑓𝑚

𝜕𝑥𝑛
)𝑝

⎤⎥⎥⎥
⎦

,

where ℎ = 𝑛 + 1 − dim(𝑅). In particular, if 𝑓 is irreducible,

the set of singular prime ideals of 𝑅 = ℤ[𝑥1,…,𝑥𝑛]
(𝑓)

containing 𝑝
is exactly the set of primes containing 𝑝 and

𝛿st,𝑝(𝑓) ,
𝜕𝑓
𝜕𝑥1

, … , 𝜕𝑓
𝜕𝑥𝑛

.

Example 1. Let 𝑛 be a squarefree integer (excluding 0 and
1), 𝑞 a prime number, and consider the ring𝑅 = ℤ[𝑞√𝑛]. We
claim that this admits a singular prime ideal if and only if
𝛿𝑞(−𝑛) is a multiple of 𝑞. Think5 of 𝑅 as ℤ[𝑥]/(𝑥𝑞−𝑛). For
a prime number 𝑝, the singular prime ideals 𝔞 containing
𝑝 are those that contain

𝑝, 𝛿st,𝑝(𝑥𝑞 − 𝑛), 𝑑𝑑𝑥(𝑥
𝑞 − 𝑛).

Using the sum rule for 𝛿st,𝑝 and the defining equation for
𝑅, we have

𝛿st,𝑝(𝑥𝑞 − 𝑛) = {𝛿𝑝(−𝑛) if 𝑝 ≠ 2
𝛿𝑝(−𝑛) − 𝑛𝑥𝑞 if 𝑝 = 2

in 𝑅.
4Precisely, “locally” means that we work in the localization 𝑅𝔮, and codimen-
sion refers to the height of the ideal 𝔮.
5This is where excluding 0 and 1 is necessary.
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For 𝑝 ≠ 𝑞, from 𝑑
𝑑𝑥
(𝑥𝑞 − 𝑛) = 𝑞𝑥𝑞−1, we get that 𝔞 must

contain 𝑥, and from the defining equation, 𝑛 as well. But
if the integers 𝑝, 𝑛, 𝛿𝑝(𝑛) are in a proper ideal 𝔞, since 𝑝 is
a prime number, we must have 𝑝 ∣ 𝑛 and 𝑝 ∣ 𝛿𝑝(𝑛), since
1 would be a linear combination of these numbers other-
wise. By the order-decreasing property, 𝑝2 ∣ 𝑛, contradict-
ing that 𝑛 is squarefree. So, there are no singular prime
ideals containing 𝑝 ≠ 𝑞.

For 𝑝 = 𝑞 ≠ 2 since
𝑑
𝑑𝑥
(𝑥𝑞 − 𝑛) is a multiple of 𝑞, us-

ing the simplification above, a prime ideal containing 𝑞 is
singular if and only if it contains

𝑞, 𝛿𝑞(−𝑛).
But if 𝑞 and 𝛿𝑞(−𝑛) are in 𝔞, then 𝑞 ∣ 𝛿𝑞(−𝑛); a singular
prime ideal then occurs if and only if this happens. The
analysis for 𝑝 = 𝑞 = 2 is similar (cf. [HJ21]).

This has a consequence for a familiar object in elemen-
tary number theory. By some standard results6 in commu-
tative algebra, the ring ℤ[𝑞√𝑛] is a ring of algebraic integers
(for its fraction field ℚ(𝑞√𝑛)) if and only if it has no singu-
lar prime ideals. Thus, we conclude that ℤ[𝑞√𝑛] is a ring of
integers if and only if 𝑞 ∤ 𝛿𝑞(−𝑛). In particular, for 𝑞 = 2,
using our earlier observation on when 𝛿2(𝑛) is odd or even,
we recover the fact that for 𝑛 squarefree, ℤ[√𝑛] is a ring of
integers if and only if 𝑛 ≢ 3 mod 4.

A Zariski–Nagata Theorem for Symbolic Powers
Let’s recall another classical theorem relating algebra and
geometry. To state it, we need the notion of symbolic
power of a prime ideal. Over a polynomial ring over a
field, or more generally, over a commutative Noetherian
ring, any ideal can be written as an intersection

𝐼 = 𝔮1 ∩⋯ ∩ 𝔮𝑡 (3)

where the 𝔮𝑖 are primary ideals: ideals with the property
that 𝑥𝑦 ∈ 𝔮 ⇒ 𝑥 ∈ 𝔮 or 𝑦𝑛 ∈ 𝔮 for some 𝑛. Such an ex-
pression is called a primary decomposition. The existence of
primary decomposition is a famous result of Lasker in the
polynomial case and Noether in the Noetherian case. This
can be thought of as a generalization of the fundamental
theorem of arithmetic: in ℤ, the primary ideals are just the
ideals generated by powers of primes, and a prime factor-
ization

𝑛 = 𝑝𝑒11 ⋯𝑝𝑒𝑛𝑛
corresponds to writing (𝑛) as an intersection of primary
ideals:

(𝑛) = (𝑝𝑒11 ) ∩⋯ ∩ (𝑝𝑒𝑛𝑛 ).

6Namely, ℤ[𝑞√𝑛] is a ring of integers if and only if it is integrally closed in its
fraction field. Since this ring is an integral extension of ℤ generated by one ele-
ment as an algebra, it is a one dimensional Noetherian domain. Such a ring is
integrally closed in its fraction field if and only if it is nonsingular.

There are two important differences with the fundamental
theorem of arithmetic, though:

• primary ideals are not powers of prime ideals in
general, nor are powers of prime ideals always pri-
mary, and

• the collection of primary ideals 𝔮𝑖 appearing in
the decomposition (3) is not unique, but if the
decomposition satisfies a simple irredundancy
hypothesis, then the components whose radical
does not contain any other component’s radical
are uniquely determined.

In particular, if 𝔮 is a prime ideal and 𝑛 > 1, then ac-
cording to the first point above, 𝔮𝑛 may admit an interest-
ing primary decomposition, and as a consequence of the
second point, the component with radical 𝔮 is the same in
any (irredundant) primary decomposition. This is called
the 𝑛th symbolic power of 𝔮, denoted 𝔮(𝑛).

Symbolic powers arise in various contexts in algebra
and geometry. For example, they arise naturally in inter-
polation questions, they play a key role in the proofs of
various classical theorems such as Krull’s principal ideal
theorem, and they have enjoyed a resurgence of interest in
combinatorics in connection with the packing problem of
Conforti and Cornuéjols. The interested reader is recom-
mended to read the survey [DDSG+18].

A classical pair of theorems of Zariski and Nagata gives
a geometric description of the symbolic power of an ideal
in a polynomial ring over ℂ. The result has various state-
ments; we will give a differential statement.

Theorem 4 (Zariski–Nagata Theorem). Let 𝑋 ⊆ ℂ𝑛 be the
solution set of the system of polynomial equations

𝑓1 = ⋯ = 𝑓𝑚 = 0.
Suppose that 𝑓1, … , 𝑓𝑚 generate a prime ideal 𝔮. Then 𝔮(𝑟) is
exactly the set of polynomials 𝑓 ∈ ℂ[𝑥1, … , 𝑥𝑛] such that

𝜕𝑎1+⋯+𝑎𝑛𝑓
𝜕𝑥𝑎11 ⋯𝜕𝑥𝑎𝑛𝑛

||𝑋 ≡ 0 for all 𝑎1 +⋯+ 𝑎𝑛 < 𝑟.

The same characterization is doomed to fail in ℤ[𝑥]: for
example, 𝔮 = (2) is a prime ideal with 𝔮(2) = (4); in par-
ticular, 2 ∉ (4). But 2 satisfies the derivative condition
corresponding to the right hand side above: taking 𝑎1 = 0,
we have 2 ∈ (2), and taking 𝑎1 = 1, we have

𝜕2
𝜕𝑥

= 0 ∈ (2).
If you’ve been paying attention so far, you should be

able to name the missing ingredient. Indeed, 𝛿st,2(2) =
−1 ∉ (2), so allowing partial derivatives and a 2-derivation
is enough to take this element 2 that isn’t in 𝔮(2) out of
𝔮, suggesting a way to characterize 𝑓 ∈ 𝔮(2) in terms of
derivatives (including our “derivative by 2”).

In fact, this works in general. The following analogue
of the Zariski–Nagata theorem is a special case of a result
of De Stefani, Grifo, and the author [DSGJ20].
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Theorem 5 (De Stefani–Grifo–Jeffries). Consider the ring
ℤ[𝑥1, … , 𝑥𝑛] and let 𝔮 = (𝑓1, … , 𝑓𝑚) be a prime ideal. Suppose
that 𝔮 contains the prime integer 𝑝. Then 𝔮(𝑟) is exactly the set
of polynomials 𝑓 ∈ ℤ[𝑥1, … , 𝑥𝑛] such that

𝛿𝑎0st,𝑝 (
𝜕𝑎1+⋯+𝑎𝑛𝑓
𝜕𝑥𝑎11 ⋯𝜕𝑥𝑎𝑛𝑛

) ∈ 𝔮 for all 𝑎0 + 𝑎1 +⋯+ 𝑎𝑛 < 𝑟.

Other Applications
𝑝-derivations have appeared in a range of sophisticated ap-
plications to number theory and arithmetic geometry. We
briefly list a few of these, and encourage the reader to ex-
plore further.
Effective bounds on rational points and 𝑝-jet spaces.
Themotivation for Buium’s original work on 𝑝-derivations
was to give bound the number of points on rational points
on curves. For a complex curve 𝑋 defined overℚ, there is a
natural map from 𝑋 to an algebraic group 𝐴, the Jacobian
of 𝑋 ; the main result of Buium [Bui96] gives an effective
bound, depending only on the genus of 𝑋 and the smallest
prime of a good reduction for 𝑋 , on the number of points
in 𝑋 that map to torsion elements of 𝐴.

To establish these results, Buium constructs 𝑝-jet spaces.
In differential geometry, the jet of a function 𝑓 of order 𝑘
at a point is the data of all of the values of the derivatives
of 𝑓 up to order 𝑘 at that point; the jet space of order 𝑘 of
a manifold 𝑋 is a manifold whose points correspond to
jets on 𝑋 . Buium’s 𝑝-jet spaces are analogues of jet spaces
obtained by replacing usual derivatives with 𝑝-derivations.
The result mentioned above is then obtained by intersec-
tion theory on 𝑝-jet spaces of curves.

As mentioned earlier, Buium has developed an exten-
sive theory of arithmetic differential geometry in analogy
with classical differential geometry, for which 𝑝-jet spaces
form the starting point. We refer the reader to [Bui05] to
learn more.
Relationship with Witt vectors. The Witt vectors are a
construction in number theory that generalizes the rela-
tionship between the prime field 𝔽𝑝 and the corresponding
ring of 𝑝-adic integers ℤ𝑝. To be precise, there is a functor
𝑊 from the category of rings to itself, called the functor
of (𝑝-typical) Witt vectors, that maps 𝔽𝑝 to ℤ𝑝. More gen-
erally, for any perfect field 𝐹 of characteristic 𝑝, 𝑊(𝐹) is a
local ring with maximal ideal (𝑝), and 𝑊(𝐹)/𝑝𝑊(𝐹) ≅ 𝐹;
in this way, one can think of 𝑊 as a generalization of a
construction of ℤ𝑝 from 𝔽𝑝.
𝑝-derivations have many interesting connections with

Witt vectors; indeed, they first arise in Joyal’s work to study
Witt vectors. Namely, Joyal shows that the forgetful func-
tor from the category of rings with a 𝑝-derivation to the
category of rings is left adjoint to the Witt vector functor.
Philosophy of the field with one element. Various for-
mulas for enumerating basic objects over a finite field 𝔽𝑞

limit to combinatorially meaningful quantities as 𝑞 → 1;
for example,

lim
𝑞→1

|GL𝑛(𝔽𝑞)|
|(𝔽×𝑞)𝑛|

= 𝑛! ,

where GL𝑛(𝔽𝑞) is the collection of linear automorphisms
of 𝔽𝑛𝑞 , the vector space of 𝑛-tuples over 𝔽𝑞, and 𝑛! counts
the number of permutations of 𝑛 elements. Partially mo-
tivated by this phenomenon, and partially motivated by
transferring results over finite fields to other settings, there
is a program of inventing a notion of algebraic geometry
over a “field with one element:” the mythical field with
one element is not literally a field with one element, which
would contradict the definition of field, but something
with a different structure than a field that admits some
sort of geometry analogous to what one would expect over
a field with one element for quantitative or various other
reasons. On the algebraic side, the field with one element
can be thought of as a “deeper base ring” than ℤ (though
not necessarily itself a ring!).

There are many approaches in the literature to imple-
menting the philosophy of the field with one element.
Most relevant for this article is the theory established by
Borger [Bor09] as well as the closely related approach of
Buium. Roughly speaking, Borger proposes that a model
for the field with one element should be ℤ equipped with
the collection of all its 𝑝-derivations 𝛿𝑝. In particular, in
Borger’s model, GL𝑛 “over the field with one element” is
the symmetric group on 𝑛 letters, aligning with the numer-
ical coincidence noted in the previous paragraph.
Unifying cohomology theories. Recent work of Bhatt
and Scholze [BS22] has employed 𝑝-derivations to relate
various 𝑝-adic cohomology theories (étale, de Rham, crys-
talline). The key ingredient is the notion of a prism, which
is a ring equipped with a 𝑝-derivation subject to some con-
ditions. We refer the reader to [BS22] to learn more.
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