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BERNSTEIN-SATO THEORY FOR SINGULAR RINGS IN

POSITIVE CHARACTERISTIC

JACK JEFFRIES, LUIS NUNEZ-BETANCOURT, AND EAMON QUINLAN-GALLEGO

ABSTRACT. The Bernstein-Sato polynomial is an important invariant of an
element or an ideal in a polynomial ring or power series ring of characteristic
zero, with interesting connections to various algebraic and topological aspects
of the singularities of the vanishing locus. Work of Mustata, later extended by
Bitoun and the third author, provides an analogous Bernstein-Sato theory for
regular rings of positive characteristic.

In this paper, we extend this theory to singular ambient rings in positive
characteristic. We establish finiteness and rationality results for Bernstein-
Sato roots for large classes of singular rings, and relate these roots to other
classes of numerical invariants defined via the Frobenius map. We also obtain
a number of new results and simplified arguments in the regular case.
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1.1. Background. Let R := C[zy,...,x,] be a polynomial ring over C, f € R
be a nonzero polynomial and Dg be the ring of C-linear differential operators on
R; that is, Dg is the Weyl algebra over C. Bernstein [Ber72] and Sato [SS72],
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independently and in different contexts, showed that there is a nonzero polynomial
b¢(s) and an element £(s) € Dgs] satisfying the functional equation

(L.1) by(s)f* =&(s)- f7.

The monic polynomial bs(s) of least degree satistying the equation above for some
operator £(s) € Dgls] is called the Bernstein-Sato polynomial of f. This invariant
measures the singularities of the zero-locus of f in very subtle ways. For example,
work of Kollar [Kol96] and Ein, Lazarsfeld, Smith, and Varolin [ELSV04] gives that
the log-canonical threshold lct(f) of f is the smallest root of by (—s), and that every
jumping number in the interval [0,1) is a root of bs(—s). Furthermore, Kashiwara
[Kas83] and Malgrange [Mal83] proved that the eigenvalues of the monodromy
action on the cohomology of the Milnor fiber of f are given by exp(2mic) where
« ranges through all the roots of the Bernstein-Sato polynomial of f. Kashiwara
[Kas77] showed that the roots of bs(s) are rational and negative which, combined
with the previous result, shows that the monodromy action is quasi-unipotent (see
also [Mal75]).

An alternative characterization of bs(s) due to Malgrange exhibits bs(s) as the
minimal polynomial for the action of an operator s on a certain D-module Ny.
Budur, Mustata, and Saito constructed an analogue of s and N for the case of an
arbitrary ideal @ C R. Namely, even though N, is usually not finitely generated,
there exists a minimal polynomial of s on Ng; the Bernstein-Sato polynomial of a
is defined as this polynomial [BMS06]. One has that N, splits as a direct sum

Ny = @(Na))n

AeC

where (Ny), is the A-generalized eigenspace.
One can recover the minimal polynomial b,(s) from this decomposition, since
the roots are given by

(1.2) { Roots of ba(s) } = {A € C: (Ny)x # 0}
and the multiplicity of a root X is given by
(1.3) mult(), be(s)) = min{k > 0: (s — A)¥(Ny)» = 0}.

An extension of this rich theory has been proposed recently for the case where
R is a possibly singular C-algebra. Whenever R is a direct summand of a polyno-
mial ring over C, Alvarez Montaner, Huneke, and the second author [AMHNBI?]
showed that one can find bs(s) and &(s) as in Equation (1.1) and thus define a
Bernstein-Sato polynomial for elements f of R. We remark that to carry out this
construction one must take Dy to be the ring of C-linear differential operators of
R in the sense of Grothendieck. This line of research has continued with explo-
rations into connections with V-filtrations, multiplier ideals, and an extension of
these constructions for the case of ideals [AMHJ*+22].

Some aspects of the theory have also been developed in positive characteristic.
This began with the work of Mustata, who began this exploration in the case where
R := K[zy,...,z,] is a polynomial ring over a perfect field K of characteristic
p > 0 (or, more generally, a regular F-finite ring) and a = (f) is a principal ideal.
Mustata’s notion was later refined by Bitoun [Bit18] and extended to the case of
arbitrary ideals by the third author [QG21b).
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The main goal in this paper is to explore the theory of Bernstein-Sato roots
in positive characteristic after dropping the regularity assumption on R. One can
therefore think of this paper as providing a characteristic p counterpart to some
of the work on differential operators in singular rings [AMHNB17, AMHJ*22]. In
order to explain our results, we need to elaborate on this notion of Bernstein-Sato
invariants in positive characteristic.

Suppose R := K[z1,...,z,] is a polynomial ring over a perfect field K of char-
acteristic p > 0 and let a € R be an ideal. One starts, through mimicking the
construction of Budur, Mustata, and Saito, by defining a Dr-module N, associ-
ated to a. In the characteristic p setting the action of the operator s on N, naturally
extends to an action of the algebra C (Z(p),lﬁ‘p) of continuous functions from the

p-adics Z(p) to FF,. Note that we are explaining this construction using the alge-

bra C (2(1,), F,) of continuous functions from the p-adics Z(p) to Fp, in the style of
Bitoun [Bit18], as opposed to the operators s,0, 5,1, ... in the style of Mustata and
the third author. See Subsection 7.2 for the equivalence between these two points
of view. R R

Given a p-adic integer o € Z,), we let m, be the maximal ideal of C(Z),F,)
that consists of functions that vanish on «, and we let (Nq) = Anng,, Nq. A
careful analysis of the module N, allows one to show that there is a decomposition

Ny = @ (Na)a

a€Ly)

for which only finitely many (N,), are nonzero [Bit18], [QG21b, Proposition 6.1].
A posteriori, we conclude that the (Ng), can also be viewed as quotients of N,
namely (Ng)q = Nq/mgNg.

In analogy with the situation over C, we want to obtain some invariant of a from
this decomposition. A Bernstein-Sato root of a is thus defined to be a p-adic integer
o€ 2@) such that (Ng)(q) is nonzero (cf. (1.2)); we think of these as characteristic
p analogues of the roots of the Bernstein-Sato polynomial. In this setting, however,
we have m, = m2 for all a € Z(p) and it is therefore not clear how to associate a
multiplicity to each Bernstein-Sato root (cf. (1.3)), and thus there is no notion of
Bernstein-Sato polynomial.

The Bernstein-Sato roots of a nonzero ideal in a regular F-finite ring are known
to be rational and negative [Bit18, Corollary 2.4.3], [QG21b, Theorem 6.7], which
gives a characteristic p analogue of Kashiwara’s theorem, and they are also known
to be intimately linked to the F-jumping numbers of a [Bit18, Theorem 2.4.1],
[QG21b, Theorem 6.11].

1.2. Summary of results. In this paper, we pose and work with an elemen-
tary definition of Bernstein-Sato root in positive characteristic. Namely, we de-
fine a Bernstein-Sato root of an ideal a to be a p-adic integer that occurs as
the p-adic limit of a sequence of the form (v.) such that a”c is not contained
in ZrbGHomee (R.R) $(av<*1) (see Definitions 3.1 and 4.1). This elementary notion
naturally extends the notion of Bernstein-Sato root in positive characteristic for
regular rings described in the previous subsection. Namely, even after dropping
the regularity assumption on R, we can still build the module N, equip it with a
C’(Z(p),]Fp)—action, and consider the modules (Ng)o = No/mo N, for all o € Z(p).

We have that « € Z,) is a Bernstein-Sato root of a if and only if the module (Nq)q
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is nonzero (Theorem 7.3). In contrast with the regular case, when R is singular an
ideal a C R may have infinitely many Bernstein-Sato roots (see Example 9.1) and
the quotients Ny — (INg4)q a priori need not split.

We begin by isolating the necessary assumptions on a so that these pathologies
do not occur, and we encapsulate these in the notion of Bernstein-Sato admissible
ideals (see Definition 4.10). It is implicit in the work of the third author that ideals
of regular rings are always Bernstein-Sato admissible [QG21b, Theorem 6.1]. We
show that these ideals also abound in other classes of rings.

Theorem A (Theorem 6.4, Theorem 6.7). Let R be a noetherian F-finite ring,
and assume one of the following holds:

(a) The ring R is graded with finite F-representation type.
(b) The ring R is a direct summand of a reqular ring.
Then every ideal a C R is Bernstein-Sato admissible.

As mentioned, whenever an ideal a is Bernstein-Sato admissible we show that
the module N, behaves as in the regular case.

Theorem B. Let R be a noetherian F-finite ring and a C R be a Bernstein-Sato
admissible ideal. Then:

(i) (Theorem 4.13) The ideal a has only finitely many Bernstein-Sato roots.
(ii) (Corollary 7.4) The module Ny splits as a direct sum Ny =P No)a-
If in addition R is F-split, then
(iii) (Theorems 4.16 & 4.18) All of the Bernstein-Sato roots of a are rational
and lie in the interval® [—r,0], where r is the number of generators of a.

a€Ly) (

We remark that, for nonprincipal ideals, the lower bound is new even in the
case where R is regular. Combining this with a result of the third author on
the behavior of Bernstein-Sato roots of monomial ideals under mod-p reduction
[QG21a, Theorem 3.1], we are able to give the following characteristic zero result.

Corollary C (Corollary 4.20). Let R = Clzy,...,2,] be a polynomial ring over
C and a C R be a monomial ideal generated by r elements. If X is a root of the
Bernstein-Sato polynomial of a thent —r < \.

To study the action of differential operators on ideals in the ring, we introduce a
family of numerical invariants called differential thresholds. The collection of differ-
ential thresholds of an ideal contains several of its invariants defined via Frobenius,
including all of its jumping numbers, F-thresholds, and Cartier thresholds (see
Subsection 5). This unified approach allows us to obtain properties that were not
known in certain cases. We show that if a C R is a Bernstein-Sato admissible ideal,
then the set of differential thresholds for a is a discrete set of rational numbers (see
Theorems 5.15 and 5.16). As a consequence, we obtain that the F-thresholds of
rings with graded finite F-representation type are rational numbers (see Corollary
6.5). This extends previous results obtained for certain ideals in Stanley-Reisner
rings [BC21, Theorems A & B]. We also exhibit a close relation between differential
thresholds and Bernstein-Sato roots.

n fact, the lower bound can be improved by using the analytic spread.
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Theorem D (Theorem 5.17). Let R be F-split. Let a be an ideal with r generators.
There is an equality of cosets in Ly |Z:

{a+Z | a € Z,) Bernstein-Sato root of a}
={-A+Z | X € Z, differential threshold of a}.

We are able to define a module Ry f for any p-adic number that is the positive
characteristic analogue of the modules R¢f* with a € Q in characteristic zero
[Wall5]. If R is regular and « € Z(p) N Q<o, then Ry f* = M_, for regular rings,
where M_,, is the F-module introduced in earlier work of Blickle, Mustata, and
Smith to study jumping numbers of principal ideals [BMS09] (see also [NBP16]).
In Proposition 7.15, we show that in contrast to the situation in characteristic zero
[Sai2l], « is a Bernstein-Sato root if and only if f* ¢ Dg - ff*. We also provide
a characterization of the simplicity of Ry f in terms of Bernstein-Sato roots and
differential thresholds.

Theorem E (Theorem 8.13). Suppose that R is a strongly F-regular domain. Let
[ € R be a Bernstein-Sato admissible nonzerodivisor and o € Z,y N [—1,0). Then
the following are equivalent:

(a) The module Ry f™ is not simple over Dg.
(b) We have that « is a Bernstein-Sato root of f.
(c) We have that —« is a differential threshold of f.

Moreover, the finite generation or finite length R;f® as a Dpg-module pro-
vides information about the distribution of the Bernstein-Sato roots and differential
thresholds (see Theorems 8.1 & 8.4).

Since in the regular case M, is an F-finite F-module, it has finite length as a
Dpr-module [BMS09] (see also [Lyu97]). In Theorem 8.19, we show that R;f* is a
holonomic Dg-module for every Bernstein algebra, and so it has finite length as a
Dpr-module. This is a recently defined class of singular algebras whose Dg-modules
satisfy the Bernstein inequality [AMHJ *21]. We stress that our results regarding
Ry f* do not use the theory of F-modules, which is not available for singular rings.

We point out that we prove some results that are new even in the case where R
is regular (e.g., Corollary 4.19). In addition, we provide new proofs of previously
known theorems (e.g., Theorem 4.18).

Axel Stabler has pointed out to us that Bernstein-Sato polynomials for Cartier
modules [BS16,St&21] can also be used to give a notion of Bernstein-Sato polynomial
for certain singular algebras. Namely, if R = S/I is strongly F-regular and Q-
Gorenstein, and S is regular, one may consider R as a Cartier module over the ring
S, and apply the theory of ibid. to obtain Bernstein-Sato polynomials. In contrast,
our approach uses the operators on the singular ring itself and is developed for
rings that are not necessary strongly F-regular. In particular, in our approach an
ideal in a strongly F-regular ring may have more roots in the interval [—1,0] than
jumping numbers (see Example 9.3).

1.3. Notation. We fix a prime number p, and 2(1,) denotes the ring of p-adic
integers. Unless otherwise stated, all rings have characteristic p and are F-finite,
meaning that the Frobenius endomorphism is module-finite.

Given an ideal a in a ring R, we set a® = R by convention (even when a = (0)).
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We use multi-index notation: given a tuple of integers a = (a1,...,a,) € Z"
and a tuple of elements g = (g1,...,9,) € S™ in a commutative ring S, we denote
g% :=g{' -+ g% . The symbol 1 denotes the tuple 1 := (1,1,...,1). Recall we have
a multi-index binomial theorem: given a commutative ring S, tuples z,y € S™ and
a multi-exponent g € (Z>o)™ we have -

z+ye= > (%) 2yt L,

0<b;<a;

where (3) = [T, (3)-

2. PRELIMINARIES

2.1. Base p and p-adic expansions. Fix a prime number p. Let Z(p) denote
the completion with respect to (p) of Z,), i.e., the ring of p-adic integers. Given
a € Zp), there exists a unique sequence of integers (ae)eez., such that:

(1) OSOée Sp_la and

(i) @ =) ,5oP0e as a series in i(p).
We call a, the e-th p-adic digit of . We reserve the notation «, for this notion. We
define the e-th p-adic truncation of a to be the unique integer n with 0 < n < p°
such that @« =n mod p®; equivalently,

ace = ag +pay +pPag + -+ p T e

Recall that a p-adic integer « is rational if and only if v € Z,); this is equivalent
to a admitting an eventually periodic sequence of p-adic digits.

A p-adic number « has a purely periodic sequence of p-adic digits if and only if
a € Zwy N [=1,0]. In particular, the sequence of p-adic digits of a is periodic of
period e if and only if (1 —p®)« is an integer between 0 and p®—1, and in this case we
have (1 —p®)a = a<,; our convention is that the period is not necessarily minimal.
In particular, if o € Zp) N[—1,0] with (1 —p®)a € Zxo, then (1 —p*®)a = aceq for
all a. Similarly, the sequence of p-adic digits of « is eventually periodic of period e
if and only if (1 — p®)a € Z.

We can also extract the p-adic truncations of an arbitrary element o € Z,). For
our purposes, it suffices to determine for any such « an infinite sequence of p-adic
truncations.

Lemma 2.1. Let a € Zy), and let e € Z~q such that (p® — 1)a € Z. Then, for all
a >0, we have

o (1=p*)(a—[a])+[a] ifa ¢ Zeo,
=T+ a ifa € Zeo.

Proof. The claim is clear when o € Z, so take o ¢ Z. We first observe that
(1=p*)(a—Ja])+ [a] =a—[a] + [a] = a modulo p*©.

Since o — [a] > —1, for a > 0 we have —(a— [a]) + piﬂl <1,s0 (1—p®)(a—
[a]) + [a] <p* — 1.

We have a — [a] < 0, so for a > 0, we have —[«a] < (1 —p®®)(a— [a]) and thus
(1—p*)(a—Tal)+ [a] > 0. O
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Given X € (0,1], there exists a unique sequence of integers (A(¢)).>; satisfying
the following conditions.

(i) 0< @ <p-—1,
()
(i) A=>sy )‘pc , and
(iii) The sequence (A(?)).>; is not eventually zero.

We call \(®) the e-th digit of A base p, and we call the expression A = 2621 ’\;)

the non-terminating base p expansion of A. By convention, we set A9 = 0. We
adopt notation analogous to standard decimal notation, writing

A= AU A a@ s (basep),

where colons distinguish between consecutive digits.
For e > 1, the e-th truncation of A in base p is defined as (\), : AR
Note that p® (\),

1)/p°], and thus (), = %; in particular, for all e > 1 we have
define (\)_ := A, and make the convention (\), = 0.

A number A € (0, 1] has a purely periodic sequence of base p digits if and only if
A € ZyN(0,1]. In particular, the sequence of base p digits of A is periodic of period
e if and only if (p¢ — 1)\ is an integer between 0 and p¢ — 1, and in this case we
have (p® — 1)A = p® ()),; our convention is that period is not necessarily minimal.
In particular, if A € Z,) N (0, 1] with (p® — 1)\ € Z>q, then (p*® — 1)A = (A),, for
all a.

Al

p°

is the unique integer n with the property that A 6 (n/pe (n+
(A

Je <A We

2.2. Methods in prime characteristic.

Definition 2.2. Suppose that R is a ring of prime characteristic p.

(i) Given an integer e > 0, we let F¢R be the abelian group R endowed
with the R-module structure coming from restriction of scalars via the e-th
iterated Frobenius F¢ : R — R. Given an element f € R, we sometimes
write it as F¢f to emphasize that we view it as an element of FfR. With
this notation, the R-module structure of FER is given by gF¢f = F¢(g*" f)
for all f,g € R.

(ii) If R is a Z>¢-graded ring, F*R is a #Zzo—graded module over R, where
deg(Fer) = r% deg(r).

(iii) We say that R is F-finite if F°R is a finitely generated R-module for
some e > 1 (equivalently, for every e > 1).

A perfect field is F-finite. If R is F-finite then the polynomial ring R[z], the
power series ring R|[[z]], all quotients of R and all localizations of R are also F-
finite. This means that most rings that arise when doing algebraic geometry over
a perfect field are F-finite.

Definition 2.3. Suppose that R is a ring of prime characteristic p.
(i) We say that R is F-split if the Frobenius map splits or, equivalently, if
the R-module F, R has a nonzero free summand.
(ii) We say that R is F-pure if the Frobenius map is pure. Specifically, the
map M — M ®g F, R is injective for every R-module M.
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(iii) Assume that R is a domain. We say that R is strongly F-regular if
for every nonzero r € R there exists e € Z>o such that the R-module
homomorphism ¢ : R — F¢R given by 1 — FZr splits.

Remark 2.4. Suppose that R is a ring of prime characteristic p.
(i) If R is an F-finite ring [HR76, Corollary 5.3] or a complete local ring
[Fed83, Lemma 1.2], R is F-pure if and only R is F-split.
(ii) In the definitions of F-finite, F-pure, and F-split, the conditions on F,R
can be replaced by F¢R for some e > 1, or by FZR for every e > 1.

Definition 2.5. Let R be an F-finite ring and e > 0 be an integer. An additive
map ¢ : R — R is a p~°-linear map if ¢(r?" f) = r¢(f) for all r, f € R. We denote
by C% the set of all p~°-linear maps. Then, we have C} = Homg(F¢R, R). Given
an ideal a C R we denote by C% - a the ideal C% - a = (¢(f) | ¢ €CG, f € a).

Test ideals were introduced by Hochster and Huneke, and they are a fundamental
tool in the theory of tight closure [HH90, HH94, HH94]. Hara and Yoshida [HY03]
extended the notion of test ideals, 7r(a*), to pairs (R,a), where a C R is an ideal
and A € R. One can approach the theory of test ideals using Cartier operators
[BMS08,BMS09,Sch11,BB11,Blil3]. We now give the definition in terms of Cartier
operators for strongly F-regular rings [TT08].

Definition 2.6. Let R be an F-finite strongly F-regular ring. Let a C R be an
ideal, and A € R+. The test ideal of the pair (a, A) is defined by

Tr(a*) = U Cs - alP™M,

66220

The notion of test ideal discussed here is sometimes called the big test ideal.

We note that the chain of ideals {C§, - alP"*1} is increasing, and so, Tr(a*) =
Cg - alP*A1 for e > 0, because R is noetherian.

We now recall well-known properties of test ideals. We refer to the work done
specifically for strongly F-regular rings [TT08]. For a more general approach, we
refer to Blickle’s work on this subject [Blil3].

Proposition 2.7 ([TT08, Lemma 4.5]). Let R be a strongly F-reqular F-finite
ring, a,b C R ideals, and A\, N € R~q. Then,
(i) Ifa Cb, then 7(a*) C TR(6Y).
(ii) If A < N, then 7(a™) C 7(a?).
(iii) There exists € > 0 such that Tr(a®) = Tr(a) if X € [\, A +¢).
Every ideal a C R is associated to a family of test ideals 7(a”) parameterized

by real numbers A € Ry which forms a decreasing nested chain of ideals as A
increases.

Definition 2.8. Let R be an F-finite strongly F-regular ring and let a C R be an
ideal. A real number A > 0 is an F-jumping number of a if

r(0*) # TR(a77)

for every € > 0.
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2.3. Basics of differential operators. In this section we briefly recall the basic
notions on the theory of rings of differential operators introduced by Grothendieck
[Gro65, §16.8].

Let R be a K-algebra, where K is a field. The ring of K-linear differential
operators of R is the subring Dgx C Homgz(R, R) whose elements are character-
ized inductively as follows. The differential operators of order zero are D%lK =
Homp(R, R). A linear map § € Homg(R, R) is an operator of order less than
or equal to ¢ if dr — rd is an operator of order less than or equal to £ — 1. We
write D%‘K for the collection of differential operators of order at most £. We define

Dgrix = U@ezzo D%‘K, which is a ring with composition as the multiplication.

Example 2.9. Let R be either the polynomial ring K[zy,...,2,] or the formal

power series ring K[[z1, ..., x,]] with coefficients in a ring K. The ring of K-linear
differential operators is:
1d
DR|]K_R< Fd_l‘f |z:1,...,n; t€Z>0>,

that is, the free R-module generated by the differential operators %dd—q;. We recall
that t—l,% acts on the monomials of R by

[ PRR (0 LR e )

thdat " 0 a; >t

Furthermore, if K is a field of characteristic zero, we have

d d
Dgrik = — ey )
RIK R<d$17 7d.’En>

Example 2.10. Let S = K[z, ..., z4] be a polynomial ring over a field K of char-
acteristic zero and, given an ideal I C S, set R = S/I. Then, the ring of K-linear
differential operators of R is characterized in terms of the differential operators in
S [MRO1, Theorem 5.13]. Specifically,

D ~{6€Dgx|d(1) C I}
RIK = Ds :

Let R be an F-finite ring (not necessarily regular). We denote by Dg the ring
of Fp-linear differential operators on R. In this context, we have that

Dp = D DY,
e=0

where Dg) = Endg,c(R) and, if K is a perfect field contained in R, then the
ring Dpjg of K-linear differential operators on R agrees with Dr [Yek92,SVdB97].
Given an integer e > 0, we call D](Re) the ring of differential operators of level e. We
note that for any F-finite ring, the formation of DS)
Additionally, if R is F-finite and local, then the formation of DS) commutes with
completion. Both of these facts follow from description of Dy in terms of the level
filtration above and the behavior of Hom under flat base change.

We will also use a result of Smith that states that, whenever R is an F-split
domain, R is simple as a Dg-module if and only if R is strongly F-regular [Smi95].

commutes with localization.

Licensed to Mathematical Sciences Research Institute. Prepared on Sat May 11 18:06:43 EDT 2024 for download from IP 173.239.64.5.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5132 J. JEFFRIES, L. NUNEZ-BETANCOURT, E. QUINLAN-GALLEGO

2.4. Differential operators and V-filtrations. We introduce a few facts about
the relationship between Dg and Dgp), where R[t] = R[t1,...,t,] is a polynomial
ring over R. However, these facts are only used in Section 7, where we show that
the definition of Bernstein-Sato roots we give in Section 4 agrees with the definition
that one arrives to by considering the D-module constructions of Bitoun, Mustata,
and the third author in the regular case [Bit18, Mus09, QG21b]. For this reason, we
encourage the reader to skip the remaining of this section until they want to read
Section 7.

If £ € Dg is a differential operator on R, then ¢ acts on RJ[t] by the formula
€ (gth) = (€ g)tk for g € R and k € (Z>0)", and one checks that this exhibits &
as a differential operator on R[t]. Similarly, if § € Dp | is a differential operator
on F,[t] then we can think of ¢ as a differential operator on R[t] via the action
§- gtk = g(6 - t*). These observations yield a ring homomorphism Dx ®r, D, 5] —
Dgyy; we observe that it respects the level filtration and it therefore induces maps

DS) ®F, DI(F?[Q — DS[)Q' We want to show that these maps are isomorphisms.

Lemma 2.11. Let S be a commutative ring, G be a finite free S-module, and
M be an arbitrary S-module. Then the natural map Ends(M) ®s Ends(G) —
Endg(M ®s G) that sends [¢ @ ¥ — [u® v — ¢(u) ® ¥(v)]] is an isomorphism.

Proof. We have the following natural isomorphisms
Homg(M, M) ®s Homg(G, G) = Homg(G, G ®s Homg (M, M))
= Homg (G, Homg(M, M ®5 G))
= Homg(M @5 G, M ®5 G),

where the last isomorphism comes from the tensor-hom adjunction. We then check
that the composition of these isomorphisms is the morphism given in the statement.
|

Lemma 2.12. Let R be an F-finite ring. The morphisms Dg) QF, DJg‘i)[t] — DS[)L]

and Dr ®p, Dy, (g — DRy previously defined are isomorphisms.
Proof. Fix an e > 0. We then have
End g (R) ©r, Endg, e (Fpt]) = End poe (R) @ o BY @5, Fplt]”
@, e Endg, goe (Fp[t])-

Now note that there is an algebra isomorphism RP" ®F, Fp [t]P" = R[t]"", and recall
that Hom commutes with flat base change whenever the source module is finitely
presented. We thus have

End e (R) ®@pgoe R @F, Fp[t]”” @p goe Endg g0e (Fp[t])
= (Endpy (R) @poe RI") @pigoe (R S5, o Ende, o (Fy[t]))
= End pire (R @ pgpe R[ﬂpe) @ pgre Endgpype (R[ﬂpe Or, [t Fplt])
(Lemma 2.11)
= End gyee (R @ g R[ﬂpe Qr, e Fp [t])
= End giges (R @ goe RY @5, Fp[t]" @, goe Fplt])
= End gy (R[E]),
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and one checks that this composition agrees with the morphism in the statement.
The statement for Dpgy,) follows. O

It follows that we identify DS and D]g‘i)[ﬂ with subrings of DS[)E]; note that they
commute with each other.

Let I denote the ideal I = (t1,...,t.) C R[t]. For every e > 0 and i € Z we
denote

ViD= {€e D) & C PHiforall j € 7},

where we adopt the convention that I" = R[t] for all n < 0. We define V'Dpyy
similarly.

We give R[t] the grading that places R in degree zero and gives each
variable t; degree one. Because R is F-finite, so is R[t], and therefore D%[)t]
Endg(FER[t], FER[t]) acquires a Z-grading, which also induces a Z-grading on

Dppy. Given d € Z we denote by Rl[t]; (resp. (Dg-f[)ﬂ)d, (Drgpg)a) the set of homo-
geneous elements of R[t] (resp. DR[g]’ Dgyy) of degree d. We also denote R[t]>q =
D, Rlt]i, (Dig))>a i= @B (Digh))i and (Dppy)sa = @B 4 (Drpy)i- In particu-
lar, we have I = R[t]>,, for all n € Z. Note that the previous isomorphisms respect
the gradings, and they therefore induce isomorphisms DS) ®F, (Déi)[ 1 Ya — (DS&])
and Dg ®]F,, (DFp[ﬂ)d = (DR[g])d-

Lemma 2.13. Let e and i be integers with e > 0. Then:

(i) We have VZD;[)_] (D(e[)_])>i and V' Dgpy = (Dppyg)>i

(i) Ifi >0, then we also have VD', = (D5} )oI* and V' Dgyy=(Dryy)ol".

Proof. It is enough to prove the claims for Dg[)t]v and we begin with (i). The
inclusion V*D Re[)t] ) (D( )Zi follows from the fact that I/ = R[t]; for all j € Z.

For the other inclusion, suppose that £ € ViDgs[)t}, and therefore £ - R[t]; C R[t]>j44
for all j € Z. Let £ = ), ., & where &, is the homogeneous component of degree
k for £, and observe that if g € R]t] is homogeneous of degree d, then & - g is the
degree k+d homogeneous component of {-g € R[t]>;1q. We conclude that £,-g =0
whenever k < i, which proves the statement.

We now claim that (DS[)t])i = (Dg%e[)t])oR[t]i for all ¢ > 0, which together with
part (i) gives part (ii). Since (DS[)t])i = DS) ®F, (DH(T u) and (D(e ) = Dgs) ®F,
(DI(;;)[L])m we reduce to the case R = F,. Let o) ¢ D]F,,[g] denote the unique

operator of level e such that

#(© qa _ lfora=(pc—1,...,p¢ —1),
N 0 otherwise

for all @ € {0,...,p° — 1}"; observe ¢(¢) is homogeneous of degree —r(p® — 1).
Then DI(;)M is spanned over F, by the operators of the form tbo(©)te where b

ranges through (Z>o)” and g ranges through {0,...,p® — 1}", and therefore DI(F?[L]

is spanned by those for which |b| — r(p® — 1) + |a| = i or, equivalently, |a| — i =
r(p® — 1) — |b]. If 202 € (Dpgpy)i, then there is a multi-exponent ¢ € N§ with
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lc| = i such that a; > ¢; for every ¢, because r(p® — 1) — |b| > 0. We can thus write
tho (e = tbole)ga—cie which proves the claim. O

Given an integer ¢ > 0, we denote by s, the unique R-linear operator on R[t]
with the property that

syt = (<ol = )i £
forall a € (Z>o)", where (—); denotes i-th p-adic digit. In Lemma 2.14 we aggregate
some properties of these operators.
Lemma 2.14. We have:
(i) For all integers i > 0 and e > i,

Spi P TDIma )4 (PP D1ma

(ii) For all integers i > 0, spi is in (D}%al))o'
(iii) The operators s,i commute with each other.

iv) For all integers i > 0 we have (s,:)P = s,: or, equivalently, Pl —
P p j=0\5p

i) =o.

(v) If M is an Fp-vector space equipped with an action of the operators
POy Sply ..., 8pe—1, then M splits as a sum of multi-eigenspaces for the
action of these operators; namely, M = @ang M, where for all a =
(g, ,e—1) € Fy we define My == {u € M : s
0,...,e—1}.

it U = aqu Vi =
Proof. For (i) we simply observe that ( —|(p® — 1)1 —a| —7); = (—=rp® +|al); = |al;
(recall that whenever o = 8 mod p‘Z,, we have a; = 3;). For part (ii), we note that
sp has degree zero, that it is R-linear and that it commutes with multiplication by

tp " for all Jj=1,...,r. Parts (iii) and (iv) follow because each s,: is R-linear and
acts on monomials ;‘1 by an F-scalar. Part (v) follows from (iii) and (iv). O

Remark 2.15. It is possible to give a formula for the operators s,: in terms of partial

derivatives:
Z 6[01 . [ar]tw

la|=p?

where the 9! notation stands for divided power differential operators [QG21b,
Proposition 3.3]. We remark that the transpose of these operators already appeared
in work of Ma and Zhang [MZ14] as higher-order Euler operators.

2.5. The ring of continuous functions from Z(p) to F,,.

Definition 2.16. Given a set X and an integer e > 0 we denote by Conte(i(p), X)
the collection of all functions ¢ : Z(p — X such that (;5( ) = ¢(B) whenever

= B mod p°. We denote Cont(Z > X) = Ueey Cont® (Z (»)»X), and we call
Cont(i(p), X) the set of continuous functions from Z(p) to X.

Note that these are indeed the continuous functions when X is endowed with
the discrete topology, which is the only case we consider. When A is a ring, the
sets Cont® (Z(p),A) and Cont(Z(p),A) acquire A-algebra structures by pointwise
addition and multiplication.
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A function in Conte(z(p),X) is uniquely determined by its values on

{0,1,...,p¢ — 1}. Consequently, a function in Cont(z(p),X) is uniquely deter-
mined by its values in Z>( and, given an F,-vector space V, we have canonical
isomorphisms

4 ®]Fp COHtS(z(P)’ FP) L> Conte(Z(P)7 V)’
V ®r, COnt(z(p),IFp) — Cont(z(p), V).

Fix an integer e > 0, and let us consider the algebra Cont® (2(17), Fp).

Remark 2.17. The more geometrically-minded reader might like to think of the
results in this section via the following remark, which was pointed out to the third
author by Bhatt (see [QG21c, Remark II1.2] for a more detailed discussion). There
is a homeomorphism Spec(Cont(Z(p), F,)) = Z(p) which becomes an isomorphism of
ringed spaces when we equip 2(p) with the sheaf of rings I, associated to IF,,. In par-

ticular, all local rings of Cont(z(p), F,) are fields, and therefore all Cont(z(p), F,)-
modules are flat.

To every p-adic integer o € Z(p) we associate the maximal ideal

mgf) ={p€ Conte(z(p),lﬁ‘p) | p(a) = 0};

note that m(ae) = mge) whenever a = f mod p®. We have algebra isomorphisms

Conte(i(p),lﬁp) =~ Fun({0,1,...,p° —1},F,) 2 F, e; x -+ X F}, epe_q,

where the e; are orthogonal idempotents. In particular, every Conte(z(p),lﬁ‘p)—
module M splits as M = 28;01 Mq), where M(q) = Ann_ (o) (M).

Remark 2.18. Note that for every a € {0,1,...,p° — 1} the quotient M/m,(f) is
naturally identified with the submodule M. It follows that if N C M is a

submodule then the natural map N, /m,(f) — M /m,(f) is injective, which shows that
Conte(Z(p),]Fp)/me) is a flat Cont®(Z ), Fp)-module for every a € Zp.

We now give a presentation of the algebra Cont®(Z,,F,).

Recall that, given a p-adic integer a € Z(;,), we denote «; the i-th digit in the
p-adic expansion of « (see Subsection 2.1). Given an integer e > 0 we denote by
Ope + Z(y) — Fp, the function oy (@) = a.; note that ope is in Cont“t(Z ), Fy).
The function ope can be expressed using binomial coefficients: ope () = (;@) To
see this, use Lucas’ theorem to observe that whenever « = n € Z>o, we have
(:e) = o, modulo p, and that therefore o, is the unique continuous extension to
2(19) of the map n — (175) (considered as a map from Z to F),).

Lemma 2.19. The ring Conte(i(p),IFp) is generated by the operators oo,
Oply...,0pe—1 as an Fy-algebra. Moreover, the assignment x; v opi induces an
Fp-algebra isomorphism

Fp[xo, Tlyeon ,1‘671]

(e =z |i=0,...,e—1)

= Cont® (2(;0) y Fp).
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Proof. Every function in Conte(z(p),]Fp) is determined uniquely by its values on
{0,1,...,p° — 1} and, conversely, any F,-valued function on {0,1,...,p° — 1} ex-
tends uniquely to an element of Conte(z(p), F,).

By identifying every element of {0, ..., p®—1} with its base-p expansion we obtain
a bijection {0,...,p¢ — 1} = 7. We therefore have F-algebra isomorphisms

Cont®(Zy), Fp) = Fun({0,...,p* — 1},F,) = Fun(F;,F,),
and one checks that, under these identifications, the functions o, are sent to the

coordinate functions on Fj. Since Iy is a finite set every F)-valued function on it

is a polynomial on the coordinate functions. We conclude that Cont® ( (»)> Fp) is
a quotient of Fp[zo, ..., ze—1]/(2} — x;) and, since both of these algebras have the
same number of elements, the result follows. O

We conclude that Cont(z(p),IFp) is generated by the operators o,: (i € Zx),
and that we have an algebra isomorphism
]Fp[l'o, L1y }

>~ Cont(Z,),F,).
(2F — ;| i € Zxo) ont(Z). Fy)

In particular, given an F-finite ring R and an element f € R, we can identify
Cont(i(p), Rf) = Rf[opo, Oply .- ,] and Cont(i(p), DR) = DR[Upo, Oply - .]; these
are positive characteristic analogues of the objects R¢[s] and Dg[s] of classical
Bernstein-Sato theory, while the algebra Cont (i(p), F,) plays the role of the algebra
Cls] for the operator s = — Y, y,t;.

Let us now turn our attention to the algebra Cont(z(p),lﬁ‘p) and its modules.

Once again we associate to every a € Z,) a maximal ideal

= {p € Cont(Z,), F,) | p(a) = 0}.

Every maximal ideal of Cont(Z(p)7 F,) is of the form m, for some a € i(p) [Bit18].
Given a Cont(z(p),lﬁ‘p)—module M and a p-adic integer « € Z(p), we denote by
M,, the quotient
My = M/m M
If N C M is a submodule, N, is naturally a submodule of M, by the following
result.

Lemma 2.20. The module Cont(
COHt(Z(p), IFp) .

@) F )/maCont( ) Fp) is flat  over

Proof. For simplicity of notation, let us denote the algebra Cont(i(p),IFp) (resp.
Cont®(Z,,F,)) by C (resp. C¢). Note that C/m, = lim_,, C’e/mgf)7 and that if N
is a C-module then there is a natural map

lim(C*/m ©c- N) — (Cfme) @ N,

which we claim is an isomorphism. Indeed, giving a C-multilinear map C/m, x
N — W is equivalent to giving a compatible collection of C°-multilinear maps
ce/ m(e) x N — W which shows that both objects have the same universal property.

We know that Ce/m(e) is flat over C° (cf. Remark 2.18); since taking limits is
an exact operation the result follows. ([l
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Lemma 2.21. Let M be a Cont(z(p), F,)-module. If M, =0 for all p-adic integers
a € Z(p), then M = 0.

Proof. Fix an integer e >0. Givena € {0,...,p°—1} denote by X,(f) € Conte(z(p), F,)
the function such that X((f) (8) = 1 whenever 5 =a n}f)d p¢ and such that X,(f)(ﬂ) =
0 otherwise. We observe that a function ¢ € Cont(Z,),F,) belongs to m,, if and
only if X,(f)ga = 0 for a sufficiently large e; indeed, it suffices to take e large enough so

that ¢ € Conte(i(p), F,). We conclude that, given an element u € M and a p-adic

integer a € Z(;, there exists some large e, such that X&e“)u = 0 or, equivalently,

(1- X((f"))u =U.
The uniori Uaei(m (a+p®Zy,)) forms af open cover of Z,) whicil, by the com-
pactness of Z,, admits a finite subcover Z,y = U?zl(a(i) + pSe® Zpy). We con-

clude that
(eaqy) (€arny)

u:(l_xa(l) )"'(1_Xa(n) Ju=0. U
Proposition 2.22. Let M be a Cont(z(p),]Fp)—module. Suppose that there are only
finitely many o € 2(19) such that My # 0, say a1y, ..., ). Then the natural map
M= @, M, is an isomorphism that identifies M, with Anny, (Mmg).
Proof. Let K (resp. @) be the kernel (resp. cokernel) of the map M — @, M,
We thus have an exact sequence

(4) "

0= K— M- M,
i=1
We claim that we have Kz = Qg =0 for all 3 2(17).

Indeed, if B # ay;) for any i, then applying the functor (—)z to the exact sequence
above yields

o Q@ —0.

0—-Kzg—=0—=0—0Qg—0,
by Lemma 2.20. If 8 = «;), then we get

O—)Kg—>M5£>M5—>Q5—>O.
From Lemma 2.21, we conclude that K = @Q = 0. (]

Finally, we illustrate how the algebras Conte(i(p)JFp) and Cont(z(p),lﬁ‘p) arise
naturally in the context of differential operators.
We consider the map

A : Cont(Z,y, Dr) — (Dgiy)o
that sends & € Cont(z(p), Dg) to the unique operator £ on R[t] such that
£ ftt = (E(=r—lal) - )t
for every f € R and all @ € Z%,. Note that, for all e > 0, whenever { €
Conte(z(p),DEs)) we get that A(§) € (Dg;[)ﬁ)o. We therefore get an induced map
A®: Cont*(Zy), D)) = (Dig)y)o-

Lemma 2.23. The morphism A : Cont(z(p),DR) — (DRyy)o previously con-
structed is injective. Moreover, when r =1, A is an isomorphism.
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Proof. We have that Cont(z(p), Dr) = Dg ®r, Cont(z(p),lﬁ‘p) and that (Dgpy)o =
Dpr ®F, (Dr,[g)o (see Lemma 2.12), and the morphism respects these decomposi-
tions. It therefore suffices to prove the claims in the case where R =IF).

In this case, note that an operator § € Cont(z(p),D[Fp) is sent to the unique
operator & on F[t] for which 4 - t2 = §(—r — |a|)t%. If 6 = 0, then § = 0.

Now, let » = 1. If § is a differential operator of degree zero on F,[t] then there
exists a unique function ¢s : Z>¢ — F,, such that ¢ - t* = ¢5(a)t® for all a € Z>o.

If 0 € (Dy )[t])o, then § - t2+bP° = (§- 1)t for all b € Zxo, so ¢s(a) = ¢s(a -+ bp®);
therefore, ¢5 extends to an element of Conte(z(p),lﬁ‘p). The assignment 6 — &g,
where &5(a) = ¢s(1 — a) provides a two-sided inverse to the morphism given. O

Remark 2.24. It may seem unnatural to take {(—r — |a|) in the definition of A, as
opposed to £(|al). This is a natural consequence of the convention of working with
the operator s; = — Z:zl O, t; in characteristic zero, as opposed to the operator
>i_y ti0y,. Note that we have A(ope) = spe for every e > 0.

3. DIFFERENTIAL JUMPS

Definition 3.1. Let R be an F-finite ring and a C R be an ideal. We say that an
integer n > 0 is differential jump of level e of a if the inclusion Dg) a2 Dg) antl
is proper. We write B2 (p®) for the collection of all differential jumps of level e.

We note that n € B2 (p°) if and only if a” € DS) cantl,
Remark 3.2.
(i) If W C R is a multiplicative subset and a C R is an ideal, then we have
DY), -aW 'R = (DY )W 'R;

cf., [BINB19, Proposition 2.17]. If g1,...,gx € R are such that (g1, ..., gx)
= R and Max(R) denotes the collection of all maximal ideals of R, then we

have
UBQR% )= U B0

meMax(R)

(ii) If (R,m) is local and F-finite and a C R is an ideal then we have
R ®gr (Dg - a) = Dg - (aR) [BJNB19, Proposition 2.24]. We conclude
that D' - an/D) . a1 £ 0 if and only if

0 Ry D o Rea (Do) _ Dp' @A)
R e -3 e - e D ’
DY -antt  Rep (DY -antl) DY (aR)mt!
and therefore B (p®) = B 5(p®).
(iii) If Ris graded with homogeneous maximal ideal m, and a is homogeneous,

then D( a"/Djy (). qn+1 ig a graded module. Therefore, D "/D( antl
# 0 if and only if

Y R LI BN Di;) - (aRw)"
D(e an+1 mi (6) (aRm )n+1’

and therefore By (p°) = By (p°)-

Licensed to Mathematical Sciences Research Institute. Prepared on Sat May 11 18:06:43 EDT 2024 for download from IP 173.239.64.5.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BERNSTEIN-SATO FOR SINGULAR RINGS IN CHAR. p 5139

To compute differential jumps, we can also reduce to the case of an infinite
residue field by Lemma 3.3.

Lemma 3.3. Let (R,m,K) be an F-finite local ring and consider the extension
(S,n, L) given by
(Su n, L) = (R[‘T]mR[z] ; mR[x]mR[r] > K(.’II))
Then:
(i) The extension (S,n, L) is faithfully flat, F-finite, and local.

(ii) For every ideal a C R we have £(a) = £(aS), where { denotes analytic
spread.

(iil) If R is F-split, then so is S.

(iv) For every integer e > 0 and every ideal a C R we have B3 (p®) = Bag(p®).
Proof. The statements in (i), (ii), (iii) are standard [HS06, §8.5]. For (iv) observe
that, by Lemma 2.12, we have ng - (bR[z]) = (DS) - b)R[z] for any ideal b C R.

Then, by Remark 3.2, we have Dge) - (bS) = (Dge) -b)S. The claim on differential
jumps then follows by faithful flatness. O

Differential jumps can also be characterized in terms of Dg?-ideals.

Definition 3.4. Let R be an F-finite ring. An ideal a of R is a DS)-ideal if it is

)

a Dg%e)—submodule of R, equivalently, DS -aCa.

We record two natural families of Dg?-ideals.

Lemma 3.5. Let a C R be an ideal.
(i) The e-th Frobenius power al?’l of a is a Dg%e)-ideal.

(ii) The Cartier preimage I.(a) :={f € R |C4,-f Ca} ofaisa Dg?-ideal.

Proof. Let § € DS).

For (i), let a = (f1,.... fr) and 32, gif? € alP’l. Then 6(32, gif2) = 3, 7 6(gs)
c a[pe].

For (ii), given f € I.(a), and ¢ € C%, we have ¢ - (§ - f) = (¢ 0 ) - f € a since
od €C%. Thus, §- f € I.(a). O
Remark 3.6. If a = R is the unit ideal, then B3 (p®) = & for all e. Conversely, if
a g R is a proper ideal, we can take k such that a* C al?l, and then DS) ~ak C
DS) ~alPl = alP’l £ R = D) . a0 for every e, so BS(p®) # @ for every e.

Lemma 3.7. Let a,b C R be two ideals and e > 0 be an integer. IfDS)u = DS) -b,
then Cj -a=Cg - b.

Proof. Note that C% o DS) = C%. We therefore get C% - a = Cf - (DS) ca) =
cs - (DY - b) =C5% - b. O

Definition 3.8. Let R be an F-finite ring and fix an ideal a C R. Let b C R be a
proper Dg)—ideal such that a C v/b. We define

B8 (p°) := max{n >0: Dg-f) -a™ Z b}.
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Recall that, by convention, we have a’ = R and, since b is proper by assumption,
the set {n > 0 : DS) -a™ ¢ b} is never empty. Moreover, since a C v/b, we may
pick some m > 0 such that a™ C b. If we pick £ > 0 so that ak C a"‘[pc], then

DS) cak C Dg) camlP’l € qmlPl C p. We conclude that the maximum above does
indeed exist.

Remark 3.9. If R is regular, then? every Dg)—ideal b can be realized as b = [P’
for some ideal ¢. In this case, we have BS(p®) = v¢(p®), where v¢(p®) are the
v-invariants introduced by Mustata, Takagi, and Watanabe [MTWO05].

Lemma 3.10. If a C R is an ideal, then
Ba(p¢) = {BL(p°) | b is a D' -ideal, a C Vb # (1)}.

Proof. If b is a DS)-ideal with a € Vb, and n = B(p®), then DS) -a™ Z b and
DS) ~a"tt C b, s0 DS) can £ Dg) -a"tt. Conversely, if Dg) can £ DS) canth
then b = DS) ~a"tlis a DS)—ideal, and n = B (p°). O

Lemma 3.11. Let a C R be an ideal and n,e,a > 0 be integers. If DS) ca =
D' - amtl then DT qn = DY a1 Thus, BS(p) D B (peH).

Proof. If Dg;) cat = Dg;) -a™*! then
Dg;'i‘a) cat = Dg%e-i'(l) . (Dg%e) . an) _ Dg%e-i-(l) . (Dg%e) . anJrl) _ Dg%e-i'(l) . an+1' 0

Lemma 3.12. Let a C R be an ideal generated by r elements. If n > mp® + (r —
1)(p® — 1), then a® = a»~™P" (alPym,

Proof. The statement reduces to the case m = 1. The containment of the right-hand
side in the left is clear. For the other, by the pigeonhole principle, any monomial
of degree greater than r(p® — 1) in the generators of a must be a multiple of a p¢th
power of a generator, from which the claim is clear. O

Proposition 3.13. Let R be an F-finite ring and a C R be an ideal. If a is
generated by v elements, n > r(p® — 1) + 1, and Dg‘) SanPt = Dg) S P then
DS) ca = DS) ~a"*L. Hence, if n € BS(p®), then n — p® € B3(p°).

If a is principal and generated by a nonzerodivisor, n > p°¢, and D](Re) -at =
DY) - a1, then DY) - an?" = DY) anp 41,
Proof. By Lemma 3.12, we have that D) . a® = D(®) . (alP*lqn=r") = glP"l(D(e) .
a”P%) and D) . a"t! = olPl(D(©) . q»=P"+1) likewise. Then, if D) . " ?" =
D) . q"—P"+1 we must have D(®) . a™* = D(€) . gn+1,

If f is a nonzerodivisor, a = (f), and n > p®, we have f”eDg) N Dg) ca™.
Then, DY) - a® = DY - a"+1 implies DY) - an—#" = D) . qn—p"+1, O

Lemma 3.14. Let a C R be an ideal and fix integers n < m. Then DS) -at =
Dg) -a™ if and only if Dg) cad = Dg) -t for alln < j <m — 1. Equivalently,
Dg) cat = Dg) -a™ if and only if [n,m) N B (p°) = @.

2This is well-known to experts; it follows, for example, by using Frobenius descent [AMBLOE}].
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Proof. The statement follows from the chain of ideals
DS)-u”QDS)-a”“Q---2D§)~am. O

Lemma 3.15. Suppose R is F-split. Let b C a C R be ideals and e,a > 0 be

integers. Then Dg) S0 = DS) - b if and only if DS—M) cal”l = DS—M) -],

Proof. Tt suffices to prove the lemma for ¢ = 1. Fix a splitting o of the Frobenius.

Let a=(f1,..., ft) and b= (g1,...,9s).
For the forward implication, if Dg%e) 0= Dg%e) -b, then f1,..., f; € DS) -b. Then,
fi= Zj di;(g;) for some 6;; € DS). Thus, Fod;joo € D?l. We have

ZFoéijoo(g;)):ZFo(SU gi) Zéz] 95) | =17,

J J

and so Dgﬂ) call = D(e+l) blPl.
Conversely, if DY . aled = DYtV kel then f7,..., /7 € DY . blP) Thus,
r= > 0i (g7) for some &;; € DSH). Then g0 ;50 F € DS). We have

Zaoaz]oFg] Zao% Y=o | Y di(gh) | =a(fF) = fi,
J

and so DY -a =D - b. O

Proposition 3.16. Let R be an F-finite and F-split ring, a be an ideal with r
generators, and m > n > 0 be integers. Then for all integers e,a > 0 we have:

(i) Ifn € B3(p°), then [np®,np® + r(p® — )] N B3 (p°**) # 2.
(ii) If [n—r+1,m—1]NB(p°) = @, then [np® —r+1, mp*—1]NBL(p*+*) = @.
Proof. For part (i), we consider the chain of ideals

a™’ D qlP"l o (VP o (AP D" -1) — grp® (et —1)+1

(see Lemma 3.12). Acting with DS'M), we obtain the chain
DSM) R DS”) a5 DSM) a5 DSM) cqnpt (et =1+
By Lemma 3.15, the two ideals in the middle differ, so the two outer ones must also

differ. The statement then follows from Lemma 3.14.
Part (ii) follows similarly: we consider the chain

a(n—r-i—l)[pa] ) a(n—r-{-l)p“-{-(r—l)(pa—l) _ anpa—r—i-l ) ampa ) an%[pa]7
which gives
DE%C-HZ) . a(n7r+1)[pa] ) Dgs‘f‘a) . anpafﬂ*l 2 Dg_{e"'a) . ampa D Dg'i'a) . am[Pa].

Lemma 3.14 and Lemma 3.15 give that the two outer ideals are equal, and hence
the two in the middle must also be equal. Another application of Lemma 3.14 gives
the statement. ]
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4. BERNSTEIN-SATO ROOTS

We now begin the study of the first invariant of real interest: the Bernstein-Sato
roots of an ideal. These provide a characteristic-p analogue of the roots of the
Bernstein-Sato polynomial, although Definition 4.1 provides no indication of why
that would be the case; such an explanation is given later in Section 7. However,
using Definition 4.1 has many advantages: it does not involve any technicalities
beyond those of differential jumps, it provides an easier way of computing Bernstein-
Sato roots and it also is more useful for proving statements.

4.1. Definition and basic properties.

Definition 4.1. Let R be F-finite, and a be an ideal. We say that a € Z(p) is a
Bernstein-Sato root of a if there is a sequence (v,)22, with v, € B3(p®) such that «
is the p-adic limit of v.. We denote by BSR(a) the set of Bernstein-Sato roots of a.

We recall that a sequence of p-adic numbers (v.) converges to a p-adic number
o if and only if for every m € Zs( there is some N € Zxq such that p™ | (o — ve)
for all e > N.

Remark 4.2. Note that, given a sequence (1.)52, C Z>q, the condition that v, €
B3 (p©) for every e > 0 passes to subsequences. Indeed, if (v,,) is a subsequence,
then v,, € B(p®) C B*(p) for every i > 0.

Proposition 4.3. Let R be F-finite, a be an ideal with r generators and o € Z(,,)
be a p-adic integer. The following are equivalent:

(a) « is a Bernstein-Sato root of a.

(b) For all e > 0 there is some se € {0,...,1r — 1} such that ace + sep° €
B3 (p°).

(c) Thereis an infinite subset {e;} C Z>( and differential jumps v; € B3 (p®)
such that (vj) converges to a.

Proof. For (a) implies (b), let o be a Bernstein-Sato root of a, and v, € B3(p°)
such that a = limv,. For every a there is some e, such that p*|(a — v;) for all
J > eq; without loss of generality, we can take e, > a. Consider the sequence
Mg = Ve,. By Lemma 3.11, n, € B2(p*), and by construction, p®|(a — v,) for all
a. Then, by Proposition 3.13, we may subtract a multiple of p® from 7, to obtain
another sequence p, in which 0 < p, < rp?%, and p®|(a — ) for all a. It follows
that pg = acq + $ap™ € B (p®) with s, € {0,...,7 — 1} as required.

The implication (b) implies (c) is clear.

For (c) implies (a), it suffices to see that given a p-adically convergent sequence
of the form v., € B3 (p°) for e, an infinite increasing sequence of integers that
we can extend this to a sequence v, € B%(p®) for all e € Z>o. This follows from
Lemma 3.11. ([

Remark 4.4. Tt follows from the definition and from Remark 3.6 that if a = R, then
BSR(a) = @. On the other hand, if a & R is a proper ideal, then by Remark 3.6
there is a differential jump of level e for every e, and by compactness of Z(p)
condition (c) of Proposition 4.3 holds for some «, so BSR(a) # @.

In Section 7 we show that whether a p-adic integer is a Bernstein-Sato root or
not is given in terms of the nonvanishing of a certain module, whose construction
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is compatible with localization. From this it follows that Bernstein-Sato roots are
local invariants; however, we give a proof of this fact here that does not require the
material of Section 7.

To begin, let a C R be an ideal and fix an integer r > 0 such that a can be
generated by r elements. Given a positive integer e > 0 and a p-adic integer o we
denote by Ju(p¢, «) the set

Ja(p a) :={ace+sp° | s=0,1,...,r — 1} N B3 (p°).

Lemma 4.5. The p-adic integer « is not a Bernstein-Sato root of a if and only if
there is some e large enough so that J,(p®, «) = &, in which case Jo(p*, ) = @
for all a > e.

Proof. The first statement follows from the equivalence of (a) and (b) in Proposition
4.3. For the second statement, it is enough to show that whenever J,(p¢, a) = @
then J,(p°*t!, a) = @, which we prove by contradiction. Suppose that a is generated
by r elements. If we had some n € J,(p*™!, ), then we have n € BS(p¢t!), and
thus n € B3 (p®) (see Lemma 3.11). From Proposition 3.13 we conclude that there
is some integer k > 0 such that n — kp® € B3(p°®) and 0 < n — kp® < rp°. Since
n=a mod p*t!, we have n — kp® = @ mod p°, and therefore n — kp® = a.. + sp°
for some s € {0,1,...,7r — 1}. We conclude that n — kp® € J,(p®, o), giving the
desired contradiction. (]

Lemma 4.6. Suppose ¢1,...,9x € R are such that (g1,...,95) = (1). For a fized
p-adic integer o € 2(,)) and integer e > 0 the following are equivalent:

(a) We have J4(p°, o) = &.

(b) We have Jar,, (p°, ) =@ for alli=1,... k.

(¢) We have Jur,, (p%, a) = @ for all mazimal ideals m C R.

Proof. This follows from Remark 3.2. O

Lemma 4.7. Let m C R be a maximal ideal, @ € Z(p) be a p-adic integer and
e > 0 be an integer. If Jar,, (p°) = @, then there exists some g € R\ m such that

Jar,(p°) = 2.

Proof. Let S denote the set S := {ac. +sp®:s=0,1,...,7—1}. By Remark 3.2,
Jar,, (p°) = @ precisely when (Dg) ca") Ry = (DS) ca"t )Ry, for all n € S; that
is, whenever m is not in the support of the module @, ¢ DS) -u"/Dg) -a"*1. The

result then follows from the fact that the support of a finitely-generated module is
closed. 0

Proposition 4.8. Let R be a noetherian F-finite ring and a C R be an ideal. Let
91s---, 9k € R be such that (g1,...,9x) = (1) and let Max(R) denote the set of all
maximal ideals of R. We then have:

k
BSR(a) = | JBSR(aR,,) = | J BSR(aRuw).
i=1 meMax(R)
Proof. Lemmas 4.5 and 4.6 give the first equality, and show that BSR(a) 2
U BSR(aRn). To prove that BSR(a) C BSR(aRw), suppose that o € Z(p) is
such that a ¢ BSR(aRy,) for all maximal ideals m. By Lemma 4.5 and Lemma
4.7 we conclude that for every m € Max(R) there is some integer e, and some
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element g, € R\ m such that Jr, (p°",a) = . The elements (gm|m € Max(R))
generate the unit ideal and therefore there is a finite subcollection of them, say g; =

mys-- -Gk = gm,, that still generates the unit ideal. If e = max{em,,...,€m,},
then, Jar,, (p°,a) =@ for all i = 1,...,k by Lemma 4.5. Therefore J,(p°, o) = @
by Lemma 4.6. We conclude that oo ¢ BSR(a) by Lemma 4.5. O

Proposition 4.9. Let R be a noetherian F-finite ring and a C R be an ideal.

(i) If R is positively graded with homogeneous mazimal ideal m and a is
homogeneous, then BSR(a) = BSR(aRn).

(ii) If R is local, then BSR(a) = BSR(aR).
Proof. Both facts follow from Remark 3.2. O

4.2. Finiteness and rationality results. We now introduce a finiteness condi-
tion that has important consequences for Bernstein-Sato roots.

Definition 4.10. Let R be an F-finite ring and a C R be an ideal generated by r
elements. We say that a is Bernstein-Sato admissible if there is a constant C > 0
such that

#(Ba(p°) N[0,mp%)) < C
for every e € Z>o. We say that R is a Bernstein-Sato admissible ring if all of its
ideals are Bernstein-Sato admissible.

In our definition of Bernstein-Sato root we only require that the number of
differential jumps of level e in the interval [0, rp®) is bounded, but the subtraction
property of differential jumps (Proposition 3.13) gives a stronger statement.

Proposition 4.11. Let R be an F-finite ring and a C R be an ideal. The ideal a
is Bernstein-Sato admissible if and only if there are constants A, B > 0 such that
for all integers e, s > 0 we have

#@mﬂmmg)gAi+B

pe
Proof. Suppose that a is generated by r elements. We note that if a is Bernstein-
Sato admissible, then there exists A, B > 0 such that for all e,s > 0 we have
# (B; (p°)NJo, s)) < AI% + B by setting s = rp®. To prove the converse statement,

let C' > 0 be a constant as in Definition 4.10. We observe that for all integers k& > 1
we have # (B3 (p®) N [(k — 1)p®, kp°)) < C: this follows when 1 < k < r, and for
k > r it follows from Proposition 3.13. We conclude:

#(m 0.0 ) < #( :(_J] B2 ) N [k~ o' )

[l

pe

s(%+00—c%+c. 0
p p

Corollary 4.12. Whether a is Bernstein-Sato admissible or not does not depend
on the choice of r.
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Theorem 4.13. Let R be an F-finite ring and a C R a Bernstein-Sato admissible
ideal. Then a has finitely many Bernstein-Sato roots.

Proof. Pick an integer C' > 0 such that #(B3(p¢) N [0,rp®)) < C for all e >
0. We claim that there are at most C' Bernstein-Sato roots, and we prove it by
contradiction. Suppose that {aq,...,ac41} are distinct Bernstein-Sato roots of a,
and choose N large enough so that a; # a; mod p" for all i # j. By Proposition
4.3 we know there is some e large enough and v, ...voq1 € B2 (p©), with 0 < v; <
rp®, such that v; = o; mod p", and therefore vy, ...,vc,; are distinct differential
jumps. This gives the desired contradiction. O

Lemma 4.14. Let R be F-split, a C R be an ideal generated by r elements, o €
Zp) be a Bernstein-Sato root of a and a > 0 be an integer. There exists some
1€{0,1,...,r(p* — 1)} such that p®« + i is a Bernstein-Sato root of a.

Proof. Pick a sequence (v.) such that v, € B3(p®) whose p-adic limit is o. By
Proposition 3.16, for every e there is some i, € {0,1,...,r(p® — 1)} such that
PV + i € By(p¢t?). Since {0,1,...,7(p* — 1)} is a finite set, there is some i €
{0,1,...,7(p*—1)} and an increasing sequence (e;) such that p®v,, +i € By (p®*?).
The p-adic limit of p®v.; + i is p®a + i, and the result follows from Proposition
4.3. O

We recall that an ideal J is a reduction of an ideal I with reduction number n if
JI" = [ and JInt £ g1
Lemma 4.15. Let R be an F-finite local ring, a C R be an ideal and b C a be a
reduction of a with reduction number k. Then:
(i) For all integers e > 0 we have B2 (p®) C Uf:o Ba(p®) +i and By (p©) €
k o/ e ;
Uizo B2 (0°) —i-
(ii) The ideal a is Bernstein-Sato admissible if and only if b is Bernstein-Sato
admissible.

(iii) We have BSR(a) C UY_, BSR(b) + i and BSR(b) C |J!_, BSR(a) — i.
Proof. Part (i) follows by considering the following chains of ideals:
DY " * 2 DY) a" 2 DY - ant 2 DY) et
DY -a" 2 DY) - p" 2 DY) ot 2 D) gt

and applying Lemma 3.14.

Let us now prove part (ii); we use the alternative characterization of Bernstein-
Sato admissibility given in Proposition 4.11. Suppose that a is Bernstein-Sato
admissible and pick constants Aq, Bq such that #(B3(p°) N[0, s)) < Aa(s/p°)+ Ba
for all e, s > 0. By applying part (i) we conclude that

# (BN 09)) < #(gﬁzwm 0.5+ 4) - )

k
<k (Au” +Ba>
pe

< kAg— + k2 Aq + Ba.
pe
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For the other direction, suppose b is Bernstein-Sato admissible and choose constants
Ap, By similarly. Then

#(B0n0.9) < #(gsa<pe> 0.9 +i)

s
<k (Ab_ + Bb)
pe
s
— kAp— + kBy.
p

We now tackle part (iii). Suppose that o € BSR(a), and choose a sequence (v)
with v, € B2(p®) such that « is the p-adic limit of v,.. By part (i), for every e > 0
there is some i, € {0,1,...,k} such that v, — i, € B(p®). We conclude there is
some i € {0,1,...,k} and a subsequence (vc,) such that v., —i € B§(p%). The
p-adic limit of this subsequence is v — ¢ which, by Remark 4.2, is a Bernstein-Sato
root of b. Therefore, a € BSR(b) + i. The other statement follows similarly. O

Theorem 4.16. Let R be an F-finite F-split ring. Let a be a Bernstein-Sato
admissible ideal. Then every Bernstein-Sato root of a is rational.

Proof. Recall that BSR(a) denotes the set of Bernstein-Sato roots of a, and let
E/igf/{(a) C 2(1,)/Z be its image under the quotient map 2(17) — z(p)/Z; in other
words, lé_gl/{(a) = {a+Z | a € BSR(a)}. Note that, by Lemma 4.14, ]/B_S\I/{(a) is
closed under multiplication by p.

Let o € Z(p) be a Bernstein-Sato root. Since ]ggfi(a) is a finite set, there exist
some n < m such that p"a = p™«a mod Z; that is, there exists some ¢ € Z such
that p"a = p™a + c. It follows that o = ¢/(p™(p™ ™™ — 1)) and thus « is rational
(note that, a posteriori, we know that p™ must divide ¢). |

Lemma 4.17. Let R be an F-finite F-split ring. Let a be an r-generated ideal of
R. Let a € Z,) be a Bernstein-Sato root of a.

i) If a > 0, then there exists an increasing sequence {n;} C Z=q such that
s g q ) Z
a+n; is a Bernstein-Sato root of a for each j.
il) If « < —r, then there exists an increasing sequence {n;} C Z>q such that
3 g q J Z
a —n;j s a Bernstein-Sato root of a for each j.

Proof. For the first part, it suffices to show that there is some positive integer

n such that a + n is a Bernstein-Sato root. We can write a = 1;“6 + b with
- P
a,b € Z>q such that 0 < a < p®—1 and b > 0. By Lemma 4.14, there is some
i €{0,...,7(p°—1)} such that p°a+i is a root. We have pa+i = a+(p®—1)b—a+i.
Since a < p® — 1 < (p® — 1)b, the claim follows.
Likewise, for the second part, it suffices to show that there is some negative

pr— r—b
with a,b € Z>g such that 0 < a < p® —1 and b > 0. Then p°a+1i = —(p°® —
Dr+a— (p°—1)b+ a+iis aroot for some i € {0,...,r(p* — 1)}. We have
—(p=Dr+a—(p°—b+a+i<a—(p°—1)b+a < a, so we are done. O

integer n such that a+n is a Bernstein-Sato root. We can write o =

Theorem 4.18. Let R be an F-finite F-split ring. Let a be a Bernstein-Sato
admissible ideal with r generators. Then every Bernstein-Sato root of R lies in the
interval [—r,0].

Licensed to Mathematical Sciences Research Institute. Prepared on Sat May 11 18:06:43 EDT 2024 for download from IP 173.239.64.5.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BERNSTEIN-SATO FOR SINGULAR RINGS IN CHAR. p 5147

Proof. Since a is Bernstein-Sato admissible, the set of roots is finite. The bounds
on the roots then follow from Lemma 4.17. |

Corollary 4.19. Let R be a local F-finite F-split ring. Let a be a Bernstein-Sato
admissible ideal with analytic spread £. Then every Bernstein-Sato root of R lies
in the interval [—£,0].

Proof. By Remark 3.2 and Lemma 3.3, the statement reduces to the case where R
is local with infinite residue field. In this case, there exists a reduction of a that is
generated by at most ¢ elements. The result then follows from Theorem 4.18 and
Lemma 4.15. (]

Corollary 4.20. Let R = Clzy,...,x,] be a polynomial ring over C, m be the
mazimal ideal m = (x1,...,2,) and a C Clzy,...,x,] be a monomial ideal. If
X € Q is a root of the Bernstein-Sato polynomial of a then —£(aRy) < A.

Proof. Pick a large prime p and let R = F,lz1,...,2,) be a polynomial ring over
Fp,mC R denote the maximal ideal m = (x1,...,2,) and @ C R denote the mod-p
reduction of a.

We may pick p large enough so that A is a Bernstein-Sato root of a [QG21a,
Theorem 3.1]. Moreover, since the construction of the fiber cone of a with respect
to m is compatible with mod-p reduction, we can further enlarge p to assume® that
l(aRy) = ¢(aRy). Since a is homogeneous, we conclude that A is a Bernstein-Sato
root of R (Proposition 4.9), and we conclude that —f(aRg) < A from Corollary
4.19. O

In characteristic zero, whenever a C C[z1,...,z,] is a nonzero ideal, all the
roots of the Bernstein-Sato polynomial of a are strictly negative. Since we have
only shown that the Bernstein-Sato roots are nonpositive, the question of whether
zero can be a Bernstein-Sato root arises. We can answer it for principal ideals as
follows.

Proposition 4.21. Let R be an F-finite ring. The following are equivalent:
(a) The ring R is simple as a Dg-module.
(b) For all nonzero f € R we have 0 ¢ BSR(f).

Moreover, if these hold then the nilradical \/O of R is a prime ideal. In particular,
if R is reduced then it must be a domain.

Proof. Suppose that R is simple as a Dr-module. Given a nonzero f € R, we have
Dg-f = R and therefore there is some e large enough so that DS) f=R= DS) -fO.
We conclude that 0 ¢ B} (p®) and, by Proposition 4.3, we conclude that 0 ¢ BSR(f).

Conversely, suppose that 0 € BSR(f) for some nonzero f € R. By Proposition
4.3, for all e > 0 we have 0 € B}(p®) and thus DS) -f# Dgf) - f9 = R. We conclude
that Dg - f # R, and hence R is not simple as a Dg-module.

For the last statement, suppose that f, g € R are such that fg € v/0 and f ¢ /0.
Then the collection Hg(R) of g-torsion elements of R is a Dr-submodule of R which
contains a power of f, and is therefore nonzero. If R is Dg-simple, we conclude
that 1 € HJ(R) and thus some power of g is zero, i.e. g € V0. O

3In fact, by a result of Singla, the analytic spread of a monomial ideal a C
K[z1,...;2Zn](2,,....0,) depends only on the Newton polytope of a [Sin07, Cor. 4.10] (see also
[BAO03]), and therefore £(aRw) = £(aRw) for any p.
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Question 4.22. Let R be an F-finite ring that is simple as a Dg-module. Do we
have 0 ¢ BSR(a) for all nonzero ideals a C R?

5. DIFFERENTIAL THRESHOLDS

In this section we introduce the other key numerical invariant of this paper:
differential thresholds. These are related to F-jumping numbers, F-thresholds,
Cartier thresholds, and Bernstein-Sato roots.

5.1. Definition and basic properties.

Definition 5.1. Let R be an F-finite ring, and a C R an ideal. We say that
A € R is a differential threshold if there exists a sequence of elements v, € B (p®)
such that A = lim._, ;—g, where the limit is taken in the usual Euclidean topology.

When R is F-split, it turns out that every differential threshold can be realized
as a limit in a nice way.

Proposition 5.2. Let R be an F-finite F-split ring and X € Rsq. Let a be an r
generated ideal. The following are equivalent:

(a) A is a differential threshold of a.
(b) For all e > 0, there is a differential jump of level e for a in the interval
[peA — 7, peA].
(c) There is an infinite set {e;} C Zo and differential jumps v; € Bg(p%)
such that (vj/p%) converges to \.
Proof. We start by showing that (a) implies (b) by contraposition. Suppose that
[P°A — 1, peA] N B2 (p€) = @ for some e > 0. Since every differential jump is an
integer, we get that [[p°A] — r, [p®A|] N BS(p°) = @. By Proposition 3.16(ii) we
conclude that, for all integers a > 0,
[P[p°A] = p® =7+ 1, p*[p°A] +p") NBL(*T) = @
and therefore
Al —1 —1 ) 1 1
AL P )
p p p p

:@7

and thus

pe ? pe pe+a
By considering the cases p\ € Z and p°)\ ¢ Z separately, we observe that
EA] =1 [peA] +1
\e ((p pl L pJe )
and therefore A cannot be a differential threshold.

The implication (b) implies (c) is clear.

To show that (c) implies (a), let (e;) be an infinite increasing sequence of integers;
we need to show that we can extend (ve,/p®) to a convergent sequence (v;/p’),
i € Z>o. By Proposition 3.16, for v; € B(p®/) and for a > e; there is some v, ; €
By (p*) N [v;p®=<, (vj +1)p®~%]. For i = e;, take v; = v;, and for e; < i < €41,
take v; = v; 5. If a,b > e;, and u, v are such that e, < a < eu41 and e, <b < eyy1,
then

(B L) Loy o,

Vg 14

p*r pb

Vq Uy

— | pe peu

Uy Vy

peu pev

y Vy

pb pev

X | m

= e

peu pe'u
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Since (v;/ pej) is a Cauchy sequence, the right-hand side in the previous equation
tends to zero as j — oo, and hence (v;/p?) is Cauchy, as required. |

Remark 5.3. It follows from definition and from Remark 3.6 that if a = R, then a
has no differential jumps. Conversely, if a ; R is a proper ideal with r generators,
then by Remark 3.6 and Proposition 3.13 there is a differential jump of level e in
the interval [0,rp°] for every e, so by compactness of [0,r] there is a differential
jump for a.

Proposition 5.4. Let R be a noetherian F-split ring of characteristic p, a C R
be an ideal generated by r elements and k,l > 0 be integers with | — k > r — 1. If
[k, 1) N B3 (p®) = @ for some e > 0, then there are no differential thresholds of a in
the interval ( (k+r—1)/p%, 1/p°).
Proof. If [k,1) N B3 (p®) = & then, by Proposition 3.16, we have
[kp® + (r —1)(p* — 1), 1p*) NB(p*™*) = @
for all @ > e, and thus
k+r—1 r—1 1 ) 1
_ ,— N B® pe+a
pe peJra pe peJra ‘1( )
The result follows. U

= (.

Remark 5.5. If R is F-split, and a is an r-generated ideal, we have that 0 is a
differential threshold if and only if 0 is differential jump of level e for every e. If
0 ¢ B2(p®), then DS) -a=R, so Dg+a) -alP’l = R, and hence DSJFG) -a?" =R
for all a, so there are no thresholds in the interval [0,1/p¢). The other implication
follows from the definition of differential threshold.

If R is F-split, we can also find differential thresholds that are close to differential
jumps.

Lemma 5.6. Let R be an F-finite F-split ring, and a be an ideal with at most

r generators. If n € B2(p®), then there is a differential threshold \ for a in the
n—+r

el

Proof. Let v, := n. Applying Proposition 3.16 inductively we build a sequence

(Va)a>e With v, € B3 (p®) such that pv, <v,41 <pv, +r(p—1), and thus

, n
interval | —,

ﬁ<7/a+1 <ﬁ r(p—l)
pe pa+1 - p pa+1
In particular, the sequence (v,/p®) is increasing. We claim it is bounded by (n +
r)/p°; indeed, for all b > 0 we have

p—1 p—1
;ﬁs§+é;¥+ s
<n
_E e+1 1+ —l——-l-
_n rlp-
_pe+ pe+1 1_1
P
771—!—1"
= e
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Thus, the sequence (v4/p”) converges to a value in the interval [, ";;T]. O

Remark 5.7. Let R be an F-finite ring, and a C R an ideal. By Lemma 3.10,
we have that A is a differential threshold if and only if there exists a sequence of

DS)—ideals J. such that A = lime_,00 ma"{"ezig |a"ZJe}

We now provide several properties of differential thresholds. We first show that
the set formed by them remains the same after taking integral closure. Then, we
show a version of Skoda’s Theorem and a p-fractal property.

Proposition 5.8. Let R be an F-finite ring, and a,b C R be ideals with the same
integral closure. Then, a and b have the same differential thresholds.

Proof. Since a and b have the same integral closure, there exists an integer a such
that a™ C b"T® C a™*29 for every n € Z>g. Then,

an g bn+a g an+2a g bn+3a g an+4a.

If DS) cat = DS) - a"t4e then DS) S prte = Dg)b”“‘a. As a consequence, if
DY) ot £ DY) g3 then DY) - an # DY) - antie,

Let A be a differential threshold of b, and v, differential jumps of level e for b
such that lim._, 1% = \. It suffices to show that A is a differential threshold of
a, as the roles of a and b are interchangeable. Since (),c;_, Ic(m) is a prime ideal
[AE05], we have that a C (,cz_, Ie(m) if and only if b C (,cz_ Ie(m). Then,
fpt(a) = 0 if and only if fpt(b) = 0. We can assume that A is positive, we have
that v. > a for e > 0. We have that D(®) . b¥ #£ D(©) . p¥+2¢_ Ag a consequence,
D(©).qve=a o D(€) . qn+3a for ¢ > 0. Then, there exists a differential jump of level e
for a, we in {ve—a,v.—a+1,...,v.+3a} for e > 0. We have that lim,_,, % =\
Then, A is a differential threshold of a. O
Proposition 5.9. Let R be an F-finite ring, and a C R an ideal generated by
r elements. If X > r is a differential threshold of a, then A\ — 1 is a differential
threshold of a. If a is principal generated by a nonzerodivisor, the converse is true.

Proof. Let v, € B3(p®) be such that lim,_, o ;—5 = \. For e > 0, we have v, > rp®
50, Ve —p° € B2 (p®) by Proposition 3.13. Since lim_, o ”6;3”6 = A—1. We conclude
that A — 1 is a differential threshold.

Likewise, if a = (f), where f € R is a nonzerodivisor, let u. € B3(p°®) be
such that lim. ., % = A — 1. By Proposition 3.13, u. + p¢ € B}(pe). Since

lim, o0 “%pe = A, we conclude that X is a differential threshold. O

Corollary 5.10. Let (R, m,K) be a local F-finite ring, a C m an ideal, and £ be its
analytic spread. If X > € is a differential threshold of a, then A — 1 is a differential
threshold of a.

Proof. By Lemma 3.3, we may assume that K is infinite. Then, there exists an
ideal b generated by ¢ elements with the same integral closure of a. Then, the
result follows from Propositions 5.8 and 5.9. (]

5.2. Differential thresholds and numerical F-invariants. We now start com-
paring differential thresholds with other numerical invariants in prime characteris-
tic.
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Definition 5.11. Let R be an F-finite ring. Let a,b C R be proper ideals such
that a C v/b.
(i) The F-threshold of a in b [MTWO05, HMTWO08, DSNBP18] is defined by

P(a) = lim DR 2200 & bll}
e—00 pe ’
(ii) If R is F-split, the Cartier threshold of a in b [DSHNBW] is defined by
ot¥(a) = lim AN € Z20 [Ch-a” £ b}

e—00 pe

Proposition 5.12. Let R be an F-finite ring, and a C R be a proper ideal. Then:

(i) Every F-threshold of a is a differential threshold of a.

(ii) If R is F-split, then every Cartier threshold of a is a differential threshold
of a.

(iii) If R is strongly F-regular, then every F-jumping number of a is a differ-
ential threshold of a.

(iv) If R is regular, the set of F-jumping numbers of a and the set of differ-
ential thresholds of a agree.

Proof. The first claim follows from Remark 5.7 and Lemma 3.5.

The claim about Cartier thresholds follows from Remark 5.7 and Lemma 3.5,
since max{n | C§ - a™ Z b} = max{n | a” Z I.(b)}.

We now focus on the third statement. If DS) ca= DS) -b,then C; -a=Cx-b
(see Lemma 3.7). Then the set of differential jumps of level e contains the set

A(p®) ={n €Z>0 | Ch-a™ #Ch - a" T}
It suffices to show that every jumping number is a limit of elements in #A(pe).
We recall that in a strongly F-regular ring we have that 7(a*) = UeEZ>0 Cg -
alP"A1 [TTO08, Proposition 4.4]. We set a such that 7(a*) = C% - alP**. Let v, =
max{n | C4 - a" Z 7(a*)} € A(p®). We now show that lime_,o. e = A Set € > 0.
We pick b such that |\ — “;—3” > S fore>b. Weset a=\— 5 and s € Z>( such
that 7(a®) = C* - al?"1. Then,

ce.alPel = T(a%) # T(a’\) = (¢ . Pl
for e > max{a, s}. Then, [p*a] < v, < [p*A] for e > max{a, s}. Thus,

@S)\‘FE

a§M<Ve§ 5

P
for e > max{a,b, s}. Hence, lim,_, o, % =\

We now focus on the last claim. Since R is a regular F-finite ring, C%-a =Cg-b
if and only if D' - a = D' . b [AMBLO05, Lemma 3.1]. By Proposition 5.12, it
suffices to show that every differential threshold is an F-jumping number. Then,
the set of differential jumps of level e coincides with the set {n € Z>¢ | C§, - a" #
Cf - a™ 1} We recall that 7(a*) = U, ¢z, Ci - alP"A1 [BMS08, Definition 2.9]. Let
A = limeo0 7 with ve € A(p®). There exists € > 0 such that 7(a*) = C% - aF for
every A < 1% < A+ e [BMSO08, Proposition 2.14]. Then, 1% < \for e> 0. Set

a such that 1% > 5, 56 < Aand () = C5 - alP M for e > a. Tf v, +1 < peA,
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then v, + 1 < [p®A] and C% - a”=*! D C% - alP?A = (@), If v, +1 > p°A < v,
then C§ - a¥*! = r(a*). We have that 7(ar»®) 2 C§ - a” 2 C§ - a¥*! D 7(a’). We
conclude that A is an F-jumping number. |

Proposition 5.13. Let (R,m, K) be an F-finite F-split ring, and a C R an ideal.
Then, fpt(a) is the smallest differential threshold of a.

Proof. We note that the first jump of level e is
Ve = max{n | DS) -a" # R} = max{n | DS) -a" Cm}.

We have that DS) -a” C mif and only if a” C {f € R | Dg;) - f € m}. We
have that {f € R | DS) - f € m} = I.(m) [BINB19, Proposition 5.10]. Then,
fpt(a) = lime— 00 % is the smallest differential threshold. a

5.3. Discreteness and rationality results. We now show that the set of differen-
tial thresholds is closed under multiplication by p. This is known for F-thresholds,
but not for F-jumping numbers outside Gorenstein rings. Then, this result shows
one of the advantages of the unified approach provided by differential thresholds.

Lemma 5.14. Let R be an F-finite F-split ring, and a C R an ideal. If X is a
differential threshold, then pX is also a differential threshold.

Proof. Let r be the number of generators of a. Let v, € B2(p®) be such that

lime 00 1% = A. By Proposition 3.16 and Lemma 3.11 there exists some w, €
[pVe, p(ve +1 — 1)] N B2 (p°). We have that
pA = lim Pre < lim We < lim Pe =pA.
e—oo p° e—00 p¢ e—o0 p¢
Then, pA is a differential threshold. |

In the following results we focus on Bernstein-Sato admissible ideals. In this
case, we show discreteness and rationality. In Subsection 6.1 we use these results
to provide new cases where the F-thresholds are rational numbers.

Theorem 5.15. Let R be an F-finite ring and a an ideal. If a C R is a Bernstein-
Sato admissible ideal, then the set of differential thresholds for a is discrete. If R
is F'-split, then the converse holds.

Proof. Let r be the number of generators of a. We first show that if a is Bernstein-
Sato admissible, then the set of differential thresholds is discrete. By Proposition
5.9, it suffices to show that the set of differential thresholds in (0, ) is finite. Since
a is a Bernstein-Sato admissible ideal, there exists b € Z>( such that #(Bg(p®) N
[0, rpe)) < b for every e, and we claim that there are at most b differential thresholds
in (0,r).

Suppose, for a contradiction, that Aj,...,\pyr1 € (0,7) are distinct differential
thresholds of a. Pick disjoint open intervals Uy, ...,Upr1 € (0,7) with A; € Us;.
Then there is some e large enough and vy, ..., 41 € By (p®) with v;/p® € U; for
every i. It follows that vy, ..., 111 are distinct differential jumps of level e in the
interval (0, rp®), which gives a contradiction.

Now suppose that R is F-split, and assume that the set of differential thresholds
is discrete. In particular, there are finitely many differential thresholds in the
interval [0,7]; let 0 < A < -+ < A. < 7 be these differential thresholds. To
obtain a contradiction, suppose that a is not Bernstein-Sato admissible. Then we
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can choose some e € N such that the number of differential jumps of level e is
greater than (r + 1)c. By Lemma 5.6, every differential jump of level e lies in
Ui [p°Ai — 7, p°\;]. Since there are at most (r + 1)c integers in this set, we obtain
the desired contradiction. |

Theorem 5.16. Let R be an F-finite F-split ring, and a C R be a Bernstein-Sato
admissible ideal. Then, every differential threshold of a is a rational number.

Proof. Let X be a differential threshold for a. We fix ey such that p®®\ > r. For
e > ey, we take A = p°A — [p°A| +r — 1. By construction A, is a differential
threshold for every e by Proposition 5.9 and Lemma 5.14. By Theorem 5.15, there
exists e; < eg such that

Aoy =P A= [PTA +7 =1 =p= A= [pZA| +7—1= A,
Since ey > ey, we conclude that
62)\ _ 61)\
N
pe —p«t
5.4. Comparison between Bernstein-Sato roots and differential thresh-
olds. We end this subsection with a comparison between differential thresholds

and Bernstein-Sato roots. We note that we do not assume Bernstein-Sato admissi-
bility in this result.

Q. O

Theorem 5.17. Let R be F-split. Let a be an ideal with r generators.
(i) If a € Z¢y,) is a Bernstein-Sato root, then there is some differential thresh-

old X of a such that

{0,...,r =1} ifaé¢ Z,

{1,...,r} if o € L.

(ii) Conversely, if X € (Zy))>o is a differential threshold for a, then there is
some Bernstein-Sato root a for a such that

{1-r2—-r,...,0} ifA¢Zso,

{—7“,...,0} if)\EZZO.

a—[a]—i—)\e{

a+/\—p\je{

Thus, there is an equality of cosets in Zy/Z:
{a+Z | aeBSR(a)NZy} ={-A+Z | X € Z,) a differential threshold of a}.
Proof. We start with (i). By Proposition 4.3, for every a, there is some s €
{0,...,7 — 1} such that ac, + sp® € B3 (p®). Thus, there is an s € {0,...,r — 1}

such that aceq + sp®© € B (p®©) for infinitely many a.
If @ € Z <o, then by Lemma 2.1, we have aceq +$p*° = p*° +a+ sp®® € B (p*©).

1 ae
It then follows from Proposition 5.2 that lim w

a—00 pre
threshold.
If « ¢ Z g, then by Lemma 2.1, we have ac., = (1—p*¢)(a—[a])+[a] for a > 0.

It then follows from Proposition 5.2 that lim (L=p*)(a = [a]) +[a] +sp =

a—00 pae

= s+1 is a differential

s —a+ [a] is a differential threshold.
For (ii), let A € Z(,) be a differential threshold.
For A\ = 0, it follows from Remark 5.5 that 0 is a Bernstein-Sato root.
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Next, we deal with the case A € Z~(. By Proposition 5.2, for every a, there is
some v, € B3 (p®) such that p°A —r < v, < p®A. Writing v, = p®A — s,, we have
that s, € {0,...,7} for all @ and p*A — s, € B3(p®). There is some s € {0,...,r}
such that s, = s and p*A—s € B3 (p®) for infinitely many values of a. It follows from
Proposition 4.3 that —s, which is the p-adic limit of p*\ — s, is a Bernstein-Sato
root of a.

Finally, suppose that A\ ¢ Z>q, and let e € Z>( be such that (p® — 1)\ € Z>o.
Write A = [A] =1+ p, so p € (0,1). We then have [p*A] —1 = p*(\),, =
(p* — Dp + p*([A] — 1) for all @ € Z>q. By Proposition 5.2, for every a, there
is some v4e € B3 (p®®) such that [p?®A] —r < vge < [p?®A] = [p®A] — 1. Writing
Sage = [P*A] =1 —Vge, one has sqc € {0,1,...,r—1} and (p*©—1)u+p*e([A]-1)—
Sqe € B2(p*®). Therefore, there is some s € {0,...,r — 1} such that (p®® — 1)p +
p*([A] — 1) — s € B2(p*®) for infinitely many a. It follows from Proposition 4.3
that lim,(p®® — 1) + p*¢|A] — s = —u — s is a Bernstein-Sato root of a. O

Corollary 5.18. Let R be F-finite and F-split. If a = (f) is principal and
Bernstein-Sato admissible, then the set of Bernstein-Sato roots of (f) is exactly
the set of negatives of differential thresholds of (f) in the interval [0,1] N Z).

Corollary 5.19. If R is strongly F-regular and a is an ideal, then there is a
containment in L) [Z:

{=A+Z | X\ € Ly is an F-jumping number of a }
C{a+Z | a€ Ly is a Bernstein-Sato root of a }.

6. CLASSES OF BERNSTEIN-SATO ADMISSIBLE RINGS

6.1. Rings with finite F-representation type. In this section we prove that
every ideal in a graded K-algebra with finite F-representation type is Bernstein-
Sato admissible; therefore all ideals have a finite number of Bernstein-Sato roots.
We closely mimic the strategy employed by Takagi and Takahashi [TT08] in their
proof of discreteness of F-jumping numbers.

Definition 6.1 ([TT08]). Let R = €, 5., [1n be finitely generated Zxo-graded
K-algebra over a field Ry = K. We say that an R has finite F-representation type
if there exist a finite set of finitely generated graded R-modules, M, ..., M, such

that for every e € Z>¢ there exist a.; € Z>¢ and 91(6]) € Q<o such that
L Qeq
FeR = PP Mi(6))),
i=1 j=1
where the grading on FER is as in Definition 2.2(ii). We say that M,..., M, are
the finite F-representation type factors of R.

Definition 6.2 ([TT08]). Let R = €, 5, [In be finitely generated graded K-
algebra with Ry = K, and a C R. Let M be a finitely generated R-module. For

e € Z>q, we set
I.(a, M) = Homg(F{R, M) - F{a.

Lemma 6.3. Let R = ®nEZ>o R, be finitely generated graded K-algebra with Ry =
K, a € R be an ideal and M be a graded R-module. Suppose that R has finite F-
representation type, and that a is generated in degree less or equal to N. Then,
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there exists an integer C € Z>q such that I.(a, M) is generated in degree less or
equal to |C' + pﬂj for every integer e > 0.

Proof. Pick C >0 large enough so that, for alli=1, ..., ¢, the module Hompg(M;, M)
is generated in degrees < C'. This implies that for all ¢ = 1,...,¢ and 8 € Q the
module Homp(M;(0), M) = Homp(M;, M)(—6) is generated in degrees < C + 6
and, since all 9§? are negative, we conclude that the module

£ Qe

Homp(FCR, M) = @ @ Homp (M (6.)), M)

1=1 j=1

is generated in degrees < C.

We consider the module Hompg(Ff R, M)®F¢ R with the induced grading, and we
note that its submodule Homg (FER, M) ® Ffa is generated in degrees < C'+ N/p°.
Note that I.(a, M) is the image of Homp(FFfR, M) ® Ffa under the evaluation
morphism ® : Hompg(FfR,M) @ FER — M and, since ® is homogeneous of
degree zero, the result follows. ([l

Theorem 6.4. Let R = @n€Z>o R, be finitely generated graded K-algebra with
Ry = K. If R has finite F-representation type then R is a Bernstein-Sato admissible
Ting.

Proof. Let N € Z>( be such that a is generated in degree at most N. Let r be the
number of generators of a, and fix m < rp®. By Lemma 6.3, there exists C; such
that Hom(F¢R, M;) - Ffa™ is generated in degree at most ]\;T
Let 8; := dimg[M;]<nr+c;. Then, {I.(a™,M;) | m = 0,...,rp°} has at most ;
elements. We note that I.(a™, M;) = I.(a™, M;(—)) for every v € Q. Then,

DY .a™ = Hom(F¢R, F°R) - Ffa™

! o®
= Hom | F*R,EDEP M, (6))) | - Fea™
i=1 j

¢ NO!
= (P P Hom (F,fR, M (9§f})> CFeam
J

and so {DS) -a™|m=0,...,rp°} has at most 31 - - - 5 elements. |

As a consequence of Theorem 6.4, we obtain a new case where the differential
thresholds satisfy rationality and discreteness. In particular, these recover and
extend previous results known for Stanley-Reisner rings [BC21, Theorems A & B.

Corollary 6.5. Let R = ®7LEZ>0 R, be finitely generated graded K-algebra with
Ry = K. Suppose that R has finite F-representation type. Then, the sets

{"(@) [aC Vb # (1)} and {ot*(a) |aC Vb # (1)}
consist of rational numbers and do not have any accumulation points.

Proof. Since every ideal is Bernstein-Sato admissible by Theorem 6.4, the claim
follows from Proposition 5.12 and Theorems 5.15 & 5.16. O
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6.2. Direct summands. Next, we provide a second class of possibly singular rings
for which all ideals are Bernstein-Sato admissible: the class of direct summands
of regular rings. Passing to direct summands behaves especially well in the case
of level-differentially extensible direct summands, a notion introduced by Brenner
together with the first two authors [BINB19]. Let us give the definition in the case
of F-finite rings.

Definition 6.6. An extension R C S of F-finite rings is called level- differentially

e) (e)

extensible if for every integer e > 0 and every § € D( there exists some § € Dg

such that & = 4.

We note that large classes of invariant rings can be realized as level-differentially
extensible direct summands of polynomial rings (see [BJINB19, Section 6] for more
details).

Theorem 6.7. Let R C S be a split extension of F-finite rings and a C R be an
ideal. Then:

(i) For all integers e > 0, B3 (p°) C Big(p®).

(ii) If aS C S is a Bernstein-Sato admissible ideal, then so is a C R.
(iii) Every Bernstein-Sato root of a is a Bernstein-Sato root of aS.
(iv) Every differential threshold of a is a differential threshold of aS.

Assume furthermore that the extension R C S is level-differentially extensible.
Then:

(v) For all integers e > 0, B2 (p°®) = Bag(p®).
(vi) The Bernstein-Sato roots of a and the Bernstein-Sato roots of aS coin-
cide.
(vii) The differential thresholds of a and the differential thresholds of aS co-
incide.
Proof. Let us start with (i). Suppose that n ¢ Bi¢(p®); that is, D(Se) ca = D(Se) .
a”*1, and we claim that Dg) ca = D](Re) -a"t1. We observe it suffices to prove that
a” C DS) -a"t1. To prove this, suppose that f € a”. We know that there exist
differential operators &; € Dge) and elements g; € a"™! such that f = Y, & - g
Applying a splitting 5 : S — R to this equation, we obtain f = > .(8 0 &) - g;.
Since Bo&;|r € D( ©) , we conclude that f € DS) -a™*!. This proves the claim, and
thus (i) is proven.
Statement (ii) follows from (i): every bound for #(B%g(p®) N[0,7p%)) is a bound
for # (B3 (p°) N [0,rp®)). Statement (iii) follows from (i ) together with (ii). State-

ment (iv) follows from (i).
We now assume that the extension R C S is level-differentially extensible, and

prove (v). Suppose that n ¢ B2 (p°); that is, Dg) cat = D](Re) -a™* and we claim
that Dge) -at = D(Se) -a™*! and, once again, we observe that it suffices to show
that a™ C D(e) a”tl. We thus let f € a®. We know that there exist & € DS and
gi € a"t! such that f = >.& - g;. For every i, let & € D(e) be a lift of &. We

conclude that f =", 51 g; and therefore f € D(e) a™™1. This proves the claim,
and thus (v) is proven.
Statements (vi) and (vii) follow from (v). O
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Corollary 6.8. Suppose that S is a ring in which every ideal is Bernstein-Sato
admissible (e.g. S is reqular, or graded with finite F-representation type), and that
R is a direct summand of S. Then every ideal of R is Bernstein-Sato admissible.

7. BERNSTEIN-SATO ROOTS VIA THE MALGRANGE CONSTRUCTION

7.1. Bernstein-Sato roots and N,. Let R be an F-finite ring and let a C R be
an ideal. The definition of the Bernstein-Sato roots of a given in Definition 4.1 has
three important advantages: it is nontechnical, as it only relies on the relatively
simple notion of differential jumps; one can use it to prove things, as illustrated in
Section 4 and, finally, it is also more convenient for computing Bernstein-Sato roots
(see Section 9). However, it also has a serious drawback: it is not clear how this
notion of Bernstein-Sato roots is related to the classical notion of the Bernstein-Sato
polynomial. Our goal in this subsection is to explain how one arrives at Definition
4.1 from the point of view of the classical theory.

Fix generators a = (f1,..., f) for a, and for every integer e > 0 we consider the
module
R[t R[t
e o Bl f 5

T Ope = —
ST (o=t (= )P
where 0, is just a formal symbol. In particular, H¢ is the quotient of R[t] by a

DS&]—ideal and therefore it is a DS[)t]—module itself. Note that, as an R-module, we

have a decomposition
W= @ RU-0
a€{0,...,pe—1}"
We let ¢¢ : HS — HSH! be the map induced by multiplication by (f — )P (=11

which is Dg[)ﬂ—linear. We let H, be the direct limit

0 1
Hy=1lim(H® 25 HY 25 g2 o5 .0,
—

which acquires the structure of a Dpgpj-module. We note that the maps ¢¢ are
injective, and therefore each H{ is isomorphic to its image in H,. From this point
onwards, we identify each module H¢ with its image in H,, and we think of every
element of HY as an element of H,. For example, for all e > 0 we have

b= (f— D(pefl)l(gpe.
Lemma 7.1. There is an isomorphism
Ho = Hip oy g BRI
of Dgy-modules.

Proof. We let L denote the local cohomology module on the right hand side, which
we construct via the Cech complex on the given generators. We have an R-module

decomposition
L= & R,
a€(Zao)
where §/, denotes the class of (f —t)72.
We let ¢ H¢ — L be the unique R-linear map with VE((f — D) %0pe) = pe1—a
which gives an isomorphism of H¢ onto the submodule @ge{l,.,.,pE}T Réﬂi of L. One
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immediately checks that the ¢ are compatible as e changes, and that they give an
R-module isomorphism v : H, — L.
e)

It remains to check that this isomorphism is Dpgp-linear; i.e. that it is D( RIt)”

linear for every e. Since H{ is a D%[J—submodule of H, for every i > e, the D(e[)]

module structure on Hy is uniquely determined by the fact that £-(gd,:) = (£-9)9,

for all f € DR[_] all g € RH and all i > e. Now recall that ¢ ; is the class of
(f—t)PL=(fi—t))™® - (fr —t,)7P, which is a p’-power. It follows that for
every £ € Dg%) and every i > e, & commutes with multiplication by (f — ;)*pil in
the localization R[t](s, —4,)...(,t,). Therefore, in L we have - (g6,:) = (£ 9)d,;
for all € € DRM all g € R[t] and all i > e. O

It follows from the proof that the isomorphism we have constructed identifies
b6p0 = 61 with the class of (f —¢)™%, when the local cohomology module is viewed

via the Cech complex.
The characteristic zero theory leads us to consider the module

VODpp - 61

Ny = — 1
T ViDgy -6

In Lemma 7.2, we give a description that is more useful for our purposes. Recall
that we denote by (Dgy)o the differential operators of degree zero, with the grading
induced by degt; = 1.

Lemma 7.2. We have
(Drpg)o - 01
(DRpg)o - a0y

Proof. Let I denote the ideal T = (t1,...,t,). Since (f; — t;)01 = 0, we have that
161 = ady. By using Lemma 2.13 we get

Ny =

VODpg - 61= ) (Drig)ol™ 61 =Y (Driglo- 0"
n=0 n=0
= (Dgpg)o - 01,
and similarly
ViDpyg 61 =3 (Drig)ol" 61 = 3 (Drig)o - a"dy
n=1 n=1
= (Dgyg)o - ad1. 0

In particular, we conclude that N, is a (Dgpg)o-module. In characteristic zero,
the Bernstein-Sato polynomial of a is the minimal polynomial for the action of
s := —0¢t on the module N, (the existence of such a minimal polynomial being far
from clear). In particular, the module (N,) splits as a direct sum of generalized
eigenspaces Ny = @, .c(Na)x, and the roots of by(s) are precisely the A € C for
which (Ng4)» is nonzero.
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In characteristic p > 0, we view the algebra Cont(z(p),]Fp) as a subalgebra of
(Drgpy)o by using the map A from Subsection 2.5, and this subalgebra plays the

role of C[s]. Given a p-adic integer a € Z(p), we define
(Na)a = Na/mgNa,
and our result is as follows.
Theorem 7.3. Let R be an F-finite ring, a C R be an ideal and o € Z(p) be a

p-adic integer. Let Ny be the module defined above by using a choice of generators
for a. Then « is a Bernstein-Sato root of a if and only if (Ng)a is nonzero.

Corollary 7.4. Suppose that a is Bernstein-Sato admissible with Bernstein-Sato
roots {a1,...,as}. Then we have a decomposition Ng = @;_,(Na)a,-

Proof. Follows from Theorem 4.13 and Proposition 2.22. ]

We begin working towards the proof of Theorem 7.3. The idea is to write (NVg)q
as a direct limit (Ng)o = lim_,.(N¢),, to understand the nonvanishing of the (N¢),
for a fixed e, and to then analyze the effect of taking the direct limit.

We note that Ny =lim_,, N¢, where

. _ (Do &
(DS[)Q)O cady

a -

and that both (Dg[)t])o - 01 and (DS&])O - ady are (Dg[g)o—submodules of H. By
viewing Conte(z(p),lﬁ‘p) as a subalgebra of (DS&])O, we conclude that N¢ is a
Conte(z(p) ,Fp)-module.

Given a p-adic integer o € 2@) we let m' = m, N Conte(i(p),]Fp) and
(N§)a = Ng /m N
In particular, we have (Ng)q = lim_,(NE),.

Lemma 7.5. Letz = (z1,...,2;) and y = (y1,...,yr) be two sets of variables and
e >0 be an integer. In the ring Fyz,y] we have

(z — g)(p“*l)l _ Z£Q g(Jflefl)lfé7
b

where the sum takes place over all multi-exponents b € Z%, with 0 < b; < p°.

Proof. In the case where r = 1, this follows by observing that

e

@@=y Ty et by Tt T =0 -y = (- y)”
together with the fact that F,[z, y] is a domain.

For the general case, first note that the multi-index binomial theorem states that
the claim in the lemma is equivalent to the statement that ((p ;l)l) (—1)r P =Dl =

1 mod p, which in turn is equivalent to the claim that ((pegi)l) = (1) mod p.
This latter statement follows directly from the r = 1 case. |

Given an integer e > 0 and a multi-exponent ¢ € {0,...,p® — 1}" we define Qs
to be the following element of H:

Q= (" —Dl-a Spe.
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Note we have an R-module decomposition

H= @ RQ.
a€{0,...,pe—1}"

Recall that we identified D Pf ) and D( )[ 2 with subrings of D(e , and that with this

identification we have (DS[)E])O = D(e) ®F (D]g,p)[t])o (see Lemma 2.12).

Lemma 7.6. For every integer e > 0 we have the following equality of submodules
of HS:

(D(e)

el o= (P d Qg

0<a;<p®

Proof. We begin by noting that, by Lemma 7.5, we have
Si=(f-t)P Do = > rQ.

0<a;<p®

Given multi-exponents b, ¢ € Z" with 0 < b; < p® and ¢; < p® we denote by ULHC

the unique element of Dﬂ(‘"?[ﬁ] such that for all k € {0,1,...,p° — 1}" we have

SO e JEPTTEE I R = (p = )1 -D,
b—c = T
== 0 otherwise.

(e)

bse 1S homogeneous of

degree [b| — |¢|, the subcollection for which |b| = |¢| is an F,-basis for (D( )[ ])0.

Let b, ¢ € Z" be multi-exponents with 0 < b; < p® and ¢; < p such that |b|] = |¢|.
Let ¢/,¢" € Z" be the unique multi-exponents with 0 < ¢, < p®, 0 < ¢/ and
Qg =0 for a # b and

These operators form an IFp-basis for DI(F?[Q’ and since o

c=c —p°d’. We then have ol .

b—c

o), - Qf = 10,
C
= Q.
where in the last equality we use the fact that (fl?”e - tfe) = (fi — ti)P 0y = 0.
Therefore Uéic <0 = fpﬁ2 +o Qg and since p°|c”| + |b] = [c/| we have that

Ub%c 51 C @O<a <p°€ aalQe
For the other inclusion, let b,a € Z" be multi-exponents such that 0 < b;,

0 < a; < p° and |b| = |a|, and we show that i Qg € (D I(Fp)[t])o. Let b/, 0" € Z" be

the unique multi-exponents such that 0 < b} < p®, 0 < b/ and b = b + p°b’. We
then have

(e) _ (e b e
Jb’—)a—pcb” ’ 61 - Jb’—»g—peb” ’ i QQ’

= f*Q;,
and since |b'| = |a| — p°b”, Jl()/e)_m_peb,, € (Dée)[t})o, which proves the claim. O
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Proposition 7.7. Let R be an F-finite ring, a C R be an ideal and e > 0 be an
integer.
(i) We have a direct sum decomposition

D . glal
Ne= @ —E——Q.
0<a; <pe Dg%) ~alel+t
where é; denotes the image of Qg in the quotient.
(i) If o € 2@) is a p-adic integer, then (NS), consists of the summands
indexed by those a for which |a] = a mod p°.
Proof. Lemma 7.6 together with the fact that (DS[)L])O = DS) ®F, (D];Z)m)o (see
Lemma 2.12) implies that the submodule (DS[)t])o - 01 of HE is given by
(Do -1 = D (0 -a Qg

0<a;<p¢

Similarly, using Lemma 7.6 we observe that (D[(Fi)[t])o cadp = a(D]gi)[t])O -0 =
e alF , and by once again applying the fact that 0= QF
0<ar<pe A12F1QS, and b in applying the fact that (D' D¢

R[t]
(e)
(Dy 1,1)0 we conclude that

Fp[t]
(Di)o-adi = €D (D - a2,

0<a;<p®

P

and part (i) follows.

For part (ii), recall that the action of Conte(z(p),]Fp) on N¢ comes via the
map A defined in Subsection 2.5. An easy computation yields that a function
¢ € Cont®(Zy), Fp) acts on Qg by the scalar ¢(|a|), and therefore

m© Qe = 0if |a| =« .mod e, O
= FpQf otherwise.

Corollary 7.8. The module (N¢)q is a direct sum of the modules from the list

DY . an
—R _— 1 0<n<r(p*—1)andn=a modp®y,
D(e) -Cln+1

R

and every module from the list appears in the decomposition.

Proof. The result follows from Proposition 7.7(ii), together with the observation
that

{la] |0 <a; <p®and |g|=a modp°}={0<n<r(p°—1)|n=a modp°}.
]

Proposition 7.9. Let R be an F'-finite ring, a C R be an ideal, e > 0 be an integer
and o € Z(p) be a p-adic integer. The following are equivalent:

(a) The module (NE&)q is nonzero.

(b) The image of 01 in (NE)y is nonzero.

(c) There is a differential jump n € By (p®) with n = a mod p°.
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Proof. We note that (b) implies (a). To observe that (a) implies (b), note that the

subalgebra Conte(z(p), F,) of (DS[)t])O is central and therefore (N¢), is a cyclic left

(D) Jo-module generated by dr.

By Corollary 7.8, if (N¢), is nonzero, we have DS) -a # Dgf) -a"*! for some
n with 0 <n < r(p®—1) and n = @ mod p°. We conclude that (a) implies (c).
To show that (c) implies (a), suppose that we are given a differential jump n as
in part (c¢). By Proposition 3.13 we can subtract p¢ enough times to assume that
0 <n <r(p®—1), and the result follows by applying Corollary 7.8 once again.

Corollary 7.10. Suppose that (N&), =0 for some e > 0. Then (N%), =0 for all
1> e.

Proof of Theorem 7.3. Suppose that « € Z(p) is a Bernstein-Sato root of a; that is,
there is a sequence (v.) C Zxq such that v. € B2(p®) and so that « is the p-adic
limit of v.. By passing to a subsequence (see Remark 4.2) we may assume that
ve = a mod p°. By Proposition 7.9, the image of ¢; in (N§), is nonzero for every
integer e > 0. We conclude that the image of d; in (Ng), is nonzero, and thus
(Na)a # 0.

For the other direction, suppose that (Ny), is nonzero. By Corollary 7.10, we
must have that (N$), is nonzero for every e > 0. By Proposition 7.9 we conclude
that for every e > 0 there is a differential jump v, € BS(p®) with v. = o mod p°.
Since « is the p-adic limit of the sequence (v, ), « is a Bernstein-Sato root of a. O

7.2. The operators s, and the algebra Cont(i(p), F,). We give a few remarks
about why the result on the previous subsection establishes that the definition
of Bernstein-Sato root given in Section 4 is a natural extension of the notion in
previous work on this subject [QG21b].

Given a (Dpgpy)o-module M and a p-adic integer a, we define

My ={ue M : sy - u=ou},

where the operators s,: are as given in Subsection 2.4 (note that this module was
previously denoted as M, [QG21b]). Recall we also have the definition

M, = M/m, M,

where m, C Cont(z(p),]Fp) is the ideal of functions that vanish at a.
The module N, is a (Dgpy)o- module. Our approach is to think of N, as a

Cont(z(p),lﬁ‘p)—module by restriction of scalars, and a € Z(p) is a Bernstein-Sato
root of a precisely when (Ng)q is nonzero (Theorem 7.3). We recall that in earlier
work « is defined to be a Bernstein-Sato root whenever (Ng)(q) is nonzero [QG21b].
A priori these two constructions are different, but Proposition 7.11 tells us that
they agree whenever the module N, splits nicely; this is the case whenever a is a
Bernstein-Sato admissible ideal, and therefore the two definitions agree when the
ring R is regular (which is the only case considered in the third author’s work

[QG21b)).

Proposition 7.11. The following are equivalent for a left (Dgpy)o-module M.
(a) We have #{a € Z(p) | M(q) # 0} < o0 and M = EBan(p) Mqy-
(b) We have #{a € Z,) | My # 0} < oo, and the natural map ¢ : M —

aciy) M, is an isomorphism.
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If these hold then for all o € Z(p), we have Y(M o)) = M. In particular,
{Oz S Z(p) | M(a) 75 O} = {Oé S Z(p) | M, 7& 0}

Proof. With the notation from Subsection 2.4, we have that the ideal m, is gener-
ated by
My = (0, —a; | i € Zx>o)
and, since A(opi) = spi, we see that M) = Annps(m,) for any (Dgpy)o-module
M and any a € Z(p).
Suppose that M splits as in part (a). Then for all g € i(p) we have

My =( P M), =Mgp),
aEZ(p)

and the composition M — Mg = Mg is the projection map, which proves (b).
Suppose now that M splits as in part (b). The natural map M — @ M, is
Cont(Zy), Fp)-linear, and thus for all 8 € Z(,) we have

M) = ( D Ma) ) = Ms,
OLGZ(p)
and the composition Mg = Mgy — M is the inclusion map induced by the direct
sum decomposition, which proves (a).

The last statement follows from the proof. O
7.3. Alternative characterization of N;. For every e > 0 let H§ := Ry[t]/(f —
t)P" e, where e is a formal symbol. We have maps Hf — H;H given by multi-
plication by (f — )?"®=1) = (f2° — t**)P=1 and the limit

. 0 1 .
Hy = lim(H} — Hf — )
can be identified with Ry[t]s—./R[t], whereby J,e gets identified with the class of
(f —t)~P". Note that H¢ has a Dg[i]—module structure, and the map H§ — H;H is
Dg)t -linear. This gives the limit Hy a Dgj;j-module structure, and the isomorphism
Hf = Rf [t]f_t/Rf [t] is DR[t]—linear. R

We get an action of the algebra Cont®(Z(y),F,) on H§ by restriction of scalars
through A€, and an action of the algebra Cont(z(p),lﬁ‘p) on H; by restriction of
scalars through A.

Proposition 7.12. For every e > 0 there is a unique additive isomorphism
¢ : Cont®(Zgy), Ry) = HS
that identifies 1 with 61 and that is linear over Ry and over Conte(z(p), F,). These
isomorphisms glue to give an isomorphism
® : Cont(Z ), Ry) = Hy
that is linear over Ry and over Cont(z(p), F,).

Proof. Fix an integer e>0. Given a€{0,...,p°—1} denote by X((f) € Cont® (Z(p), F,)

the function such that X((f) (8) = 1 whenever = a mod p°¢ and such that X,(f)(ﬂ) =
0 otherwise.
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We claim that A(X((f)) € (DS[)t])O is the unique R-linear operator with the prop-
erty that, for all b € {0,1,...,p° — 1}, A(X((f)) P 1= — "= 1-b whenever b = a
and such that A(x((f)) - tP" =170 = 0 otherwise. Indeed by definition A(X((f)) acts
on 7" 717" by the scalar ng)(—l —(pc=1-0b)) = X (b p¢), which is 1 when
b= a and 0 when b # a.

We now observe that, given an e > 0, we have the following equalities in
Cont® ( (p), Ry) and H respectively:

p—1

1= "%,
a=0

1= (f —t)7" "oy Zfap—l e

(For the last equality, see Lemma 7.5). Tt follows that any map ®(¢): Conte(z(p), Ry)
— H§ with ®¢(1) = 0y that respects the R and Conte(z(p),lﬁ‘p)—actions must send
de(y (e)) = Tfewhere TS := foP"~1795,.. Since Conte(z(p),Rf) =, e fo(e)
and Hf = 0 Rj T¢ such a map ®° exists and is indeed an isomorphism.

Only the clalm regardmg the gluing remains, which follows from the following
identities in Cont® (Z(p), Ry) and Hf.

Zxa+cp~

_ fatp “—1— af — t)pe(p—l)(;pe+1
p—1

_ Zfa+cpetpﬁ+1—1—(a+cpe)
c=0

where we use Lemma 7.5 once again in the last equality. |

By restriction of scalars along A : Cont(z(p), Dp) = (Drpy)o we view Hy as a
Cont(A (»)» Dr)-module, and we then transfer this structure along ®: Cont(A( ), Rr)
=5 Hy to endow Cont( (»)> Ry) with a Cont(Z(p) Dpr)-module structure. The
module Cont(Z(p), Ry), viewed as a Cont(Z(p), DR) module in this way, is denoted
by Cont( »)> Ry)f? and an element ¢ € Cont( (»)s Rf) is written as ¢ f* when we
want to emphasme that we view it as an element of Cont(Z(p), Ry)f°. Namely, for
¢ e Cont(z(p),DR) and ¢ f° € Cont(z(p),Rf)fs, we define ¢ - ¢f* := ®H(A(E) -
(B))f°.

With this notation, it follows from Proposition 7.12 that we have isomorphisms
Cont( w:Dr) - f*
COIlt(Z(p), DR) . ffs

Our next goal is to describe the Cont(z(p),DR)—module structure of
Cont( »)» Ry) f2 more explicitly. Note that

COnt(z(p),DR) . fs = (DR[t])O -0 and

(7.1) a=b mod p®and € Dy (e) implies that f~20f% = f~bof°.
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Thus, given a p-adic integer a € Z(p) and an operator & € DS), the operators

fra<a§fo<a
are equal for all @ > e. This construction defines a map
Taﬁf :Dp — DRf Tayf(é) = fT¥<eif%e (e>0).

Note that T, s respects the level filtration, and it therefore induces maps Tg, , :
(e) (e)
Dy’ — DRf.

Lemma 7.13. For all € € Cont(z(p),DR) and ¢f® € Con‘u(z(p),Rf)fS we have
(€ of%)(a) = Yo s () - o).

Proof. We retain the notation frorri the proof of Proposition 7.12. Let us also
temporarily denote by £ x¢ € Cont(Z ), Ry) the function a +— Ty r({(a)) - P(a) as

before. We need to show that in H; we have the equality A(§)®(¢) = ®({*¢) and,

since the operation * is bilinear, it suffices to prove it for £ = 6)(,(16) and ¢ = gxl(,e)

for some 0 € Dg, g € Ry and a,b € {0,...,p° — 1}, where we retain the notation
of the proof of Proposition 7.12.

First note that for a # b we have A(X((f))Tbe = 0 and therefore A(éx((f))@(gxge))
= 6A(X((f)) -gT¢ = 0, and that (55((16)) * (gfge)) = 0. We may thus assume that

a = b, in which case we first observe that ((5)(((16)) * (gxge)) =f7%0- gf“)x,(f), and

we then compute:
A(Ex()D(gel) = SANS) - 9Ty
=0-gT3
= (6 gf )P 15,
=769/
=®(f76 - gf N
= ((6x5”) * (9x))- O

Given a p-adic integer a € 2(1,), evaluation at a defines a surjective Ry-module

homomorphism Cont(z(p), Ry)f* — Ry whose kernel is maCont(Z(p), Ry)f®, and
therefore we get an isomorphism

Cont(i(p), Rf)fs ~
m,Cont (Z(p) , Rf ) fs

along which we can transfer the Dr-module structure of the left hand side to Ry.
The module R¢, equipped with this exotic Dg-module structure, is denoted Ry f<,
where once again f is a formal symbol.

We describe the Dr-module structure more explicitly: given § € Dr and g € Ry
we have

(7.2) 6-(9F%) = (Tpald) - g)f* =76 [*9) FY

where a € Z is an integer that p-adically approximates «; more precisely, if § has
level e, then we require that p® divides a — a.

Licensed to Mathematical Sciences Research Institute. Prepared on Sat May 11 18:06:43 EDT 2024 for download from IP 173.239.64.5.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5166 J. JEFFRIES, L. NUNEZ-BETANCOURT, E. QUINLAN-GALLEGO

If o € Zp), then there exist b > 0 such that a(p® —1) € Z. Then, a(p® —1) € Z
for all integers e > 0. If § € Dg), then

§-(gf®) = fowrN(§. proa@t g po

for all g € Ry. This shows that Ry f* agrees with the Dg-module M_, as intro-
duced by Blickle, Mustati, and Smith [BMS09] and further studied by the second
author and Pérez [NBP16].

Lemma 7.14 justifies the notation Ry f<.

Lemma 7.14. Let R be an F-finite ring, f € R. Then:
(i) For dall o € Z(p) the Ry-module isomorphism Ry fett = Ry f® that
sends foT1 — ff> is Dg-linear.

(ii) For all n € Z the Ry-linear map Ry f™ = Ry that sends f™ — f™ is
Dgr-linear.

(iii) Let h = f" for some n € Zq). Then for all a € Z(p) the Ry-module
isomorphism Rh® = Ry f™* that sends h® — ™ is Dg-linear.

(iv) Suppose R is a domain and that for some h € Frac(R), some m € Z
and some k € 7 ~ pZ we have an equality h* = f™ in Frac(R). Then the
Rj-module homomorphism Ry f™/* — Frac(R) that sends f™/* — h is
Dpg-linear.

Proof. Fix an operator § € Dp of level e, an element g € Ry, o € 2@) and
an integer a € Z such that p® divides o — a. Part (i) follows because the given
morphism sends

§-gfott = flath(g. potlg)pott
= TS [T ) f
=0-(gff).

Similarly, in part (ii) we have

S-gf"=f""06-gf")f"
= 0 gf") "
=d-gf".

For part (iii) we note that p¢ divides na — na, and we compute:

0-gh® =h=% - gh*)h™
H ffna(é . fnag)fna
=0-(gf™).
In order to prove part (iv), we may replace m and k by nm and nk respectively,

and we may therefore assume that k = p® — 1. We take our approximation to m/k
to be a = —2(p® — 1); since (p® — 1)/k is an integer, so is a and, moreover,
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fe= h=(#"=1)_ Note then that the morphism sends

§-gf ™k =fs- frg)fm*
= f7U8- [ 9)h
=1 (5-hP )
=4 hg. O
ProEosition 7.15. Let R be an F-finite ring, f € R be a nonzerodivisor and

a € L,y be a p-adic integer.
(i) We have a Dg-module isomorphism

Dg-f* _
Dn-gge
(ii) We have f* ¢ Dy - ff< if and only if a is a Bernstein-Sato root of f.

Proof. Recall that, given a Cont(z(p),lﬁ‘p)—module M, we denote by M, the quo-
tient M, = M/m,M; the functor (—), is exact by Lemma 2.20. Therefore

(Cont(z(p), DgR) - f®)q is isomorphic to its image in Ry f®, which is Dg - f*; sim-
ilarly, we have a natural isomorphism (Cont(z(p),DR) fFfa &2 Dr- ff*. We
conclude that
Cont(Z,, Dg) - f*
(Nf)a — A (») -
CODt(Z(p), DR) . ff o
_ (Cont(Zy), D) - £*)a
(COHt(Z(p), DR) ' ffs)a
~ Dr-f*
Dr- ff
which gives (i). Statement (ii) follows from (i) together with Theorem 7.3. O

We note that the analogue of statement (ii) in Proposition 7.15 does not hold in
characteristic zero [Sai21].

Using Proposition 7.15, we show that positive Bernstein-Sato roots abound in
rings with certain bad singularities. We recall that a domain R is seminormal
whenever, for all a € Frac(R) such that a?,a® € R, we have a € R [Swag0].

Proposition 7.16. Let R be an F-finite domain. If R is not seminormal then, for
every n € Lo ~\ pZ, there is some f € R such that 1/n is a Bernstein-Sato root of

7.

Proof. Since R is not seminormal, we may pick some a € Frac(R) \ R such that
a?,a® € R, and therefore a* € R for all k > 2. Let f = a™; we then have f, fa € R
and a ¢ R. By Lemma 7.14(iv), the R -module homomorphism Ry f1/™ — Frac(R)
that sends fY" +— a is a Dp-linear embedding. Since Dg - fa C R, we have
a ¢ Dg- fa, so fY/™ ¢ Dg - ff*/™. By Proposition 7.15, we have that 1/n is a
Bernstein-Sato root of f. O

Corollary 7.17. Let R be an F-finite domain and suppose that all Bernstein-Sato
roots of all elements of R are nonpositive. Then R is seminormal.
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8. D-MODULE STRUCTURE OF Ry f¢

8.1. Bernstein-Sato roots, differential thresholds, and R;f“. Proposition
7.15 tells us that we can characterize the Bernstein-Sato roots of nonzerodivisor
f € R in terms of the modules Ry f“. In this section we explore how different
properties of the modules Ry f reflect on the Bernstein-Sato roots and the differ-
ential thresholds of f.

Theorem 8.1. Let R be an F-finite F-split ring, f € R be a nonzerodivisor and
a € Zpy- The following are equivalent:

(a) We have Ry f* = D - f~lott o

(b) The module Ry f* is finitely generated over Dp.

(¢) We have BSR(f)N{a—|a+1]-1l,a—|a+1]—-2,...} = 2.

(d) The set BSR(f)N{a—1,a—2,...} is finite.

(e) There is some € > 0 such that the interval (la+ 1| —a—¢, a+ 1] —a)
contains no differential thresholds of f.

Proof. Recall that there is a Dg-module isomorphism Ry f* = Rff_L"“HJ to
which identifies f~ Lot f& with f—let+e (Lemma 7.14). In particular, Ry fe
is finitely generated over Dp if and only if Ry f ~let1]4e is finitely generated over
Dp. We can therefore replace o with o — [« + 1] to assume that o € [—1,0).

We first show that (a) is equivalent to (c). Note that Ry f* = J;—, Dr- f~* f,
and therefore we have Ry f* = Dp - f if and only if every inclusion in the chain

Dp-f*CDp-f'f*CDr-f'f*C--

is an equality. By Lemma 7.14, for each integer k& > 0 we have compatible Dg-
module isomorphisms Dg - f~* f* = Dp - f*~*. By Proposition 7.15 we conclude
that, for all k > 1, D - f "1 f® = Dp - f~%f> if and only if o — k is not a
Bernstein-Sato root of f.

That (b) is equivalent to (d) is proved similarly: now we observe that Ry f* is
finitely generated over Dpg if and only if the chain above stabilizes, which happens
precisely when only finitely many of the inclusions are strict.

Statement (c) implies (d) trivially. To see that (d) implies (c), suppose that
BSR(f)N{a—1,a—2,...,} is nonempty; that is, suppose that there is a Bernstein-
Sato root of f of the form o — k for some integer k£ > 1. Since a — k < —1, we get
that BSR(f) N {a — k,a—k —1,...,} must be infinite by Lemma 4.17.

We thus have that (a), (b), (c), and (d) are equivalent. We now show that (a)
implies (e). Fix some a € Z~¢ such that a(p® — 1) € Z. By assumption, there is an
operator £ € Dp such that & - f& = fo®"~1 o Tf we pick i large enough so that
£ e Dgzﬂ)a) then we have

g fo = porTT I g(prat i)y

and we conclude that
g(f*a(p("’“)“*l)) — fa(piafl)p“.

Fix some e such that £ € D%eﬂ)a); we conclude that the above holds for all i > e.

Fix a splitting ¢ : Fx,R — R of the Frobenius morphism F’; for all integers
n > 0, its n-th iteration o™ : F'R — R is a splitting of F. We inductively define
operators & € Dg, for k > 1, by & = £ and &, = F(k—Da ¢ gk=1a ¢ | For

Licensed to Mathematical Sciences Research Institute. Prepared on Sat May 11 18:06:43 EDT 2024 for download from IP 173.239.64.5.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BERNSTEIN-SATO FOR SINGULAR RINGS IN CHAR. p 5169

all k > 0, we have F(k=Da ¢ gk=Da ¢ D%ﬁk)a) and therefore & € D%e+k)a) by
induction. By using induction on k once again we have that, for all ¢ > e,

—_a(plitkla_ —a(pit—1)pke
& (f (p 1)):f (™ =1)p™*
By considering the case ¢ = e, we conclude that
B;(p(eJrk)a) N [_ a(pea _ 1)pka’ _a(p(eJrk)a _ 1)) -
for all £ > 0. By Proposition 5.4, we conclude that f has no differential thresholds

in the interval
o —at
@ pea » T p(e-‘rk)a

and, since this holds for every k > 0, statement (e) follows.

Let us now assume (e), and prove (a). Once again, fix a € Z~( such that
a(p® —1) € Z. We begin by noting that the sequence [e — —a(p®® — 1)/p®?]
increases to —a, and thus there is some e large enough so that the interval

—a(pe —1)
|: pea » T
contains no differential thresholds of f. Observe that, given an integer £ > 0 and
an integer

n € [—a(p® — 1)p*, —a(p©the — 1) — 1],

n n+1 —a(p® —1)
|:p(e+k:)a’p(e+k:)a:| g |: pea y Q.

From Lemma 5.6 we conclude that, for all £ > 0,

Byt N [ — a(p™ — Dp*, —a(p™h* — 1)) = 2,

we have

and thus there is some differential operator &, € Dge—i_k)a) such that

g7 ) = e

and hence
& fO = AT, (f—a(p“*’“)“—l))fa
— foz(pkafl)fa.
We conclude that Dg - f& contains elements of the form f~¢f*, with ¢ arbitrarily
large, and thus Dg - f& = Ry f<. |

Remark 8.2. For a non-F-split ring R, and an arbitrary p-adic integer o € i(p),
the equivalence (b) <= (d) still holds. More generally, R; f* is finitely generated
over Dp if and only if we have Ry f* = Dg - f~' f* for some ¢ large enough, and
we have Ry f* = Dg - f~'f if and only if all inclusions in the chain

DR'f_tfa gDR'f_t_lfa gDR_f—t—2fa C.--

are equalities which, by Lemma 7.14 and Proposition 7.15, is in turn equivalent to
BSR(f)N{a—t—1l,a—t—2,---} = 2.

Corollary 8.3 provides an extension of a result of Blickle, Mustatd, and Smith
[BMS09, Theorem 2.11].
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Corollary 8.3. Let R be an F-finite F-split ring and f € R is Bernstein-Sato
admissible nonzerodivisor. For all o € (Zp))<o we have Ry f* = Dg - f<.

Let R be an F-finite ring, f € R be an element and « € Z(p) be a p-adic integer.
By (Ca) we denote the following chain of inclusions in the module R f:

(Ca) Dp-ff*2Dr-f?f*2Dr-fPf*2---.
Theorem 8.4. Let R be an F-finite F-split ring, f € R be a nonzerodivisor and
a € Zyy- The following are equivalent:

(a) The chain (C_ia1+a) is constant.

(b) The chain (C,,) stabilizes.

(c) We have BSR(f)N{a—Jal+1l,a—[a]+2,...} =2.

(d) The set BSR(f) n{a+1,a+2,...,} is finite.

(e) There is some € > 0 such that the interval ([a] —«, [a] —a+¢€) contains
no differential thresholds of f.

Proof. Recall that there is a Dg-module isomorphism Ry f* = Ry f~ fel+e which
identifies f~lo1f> with f—Tel+ We conclude that (C,) stabilizes if and only
if (C_ra14a) stabilizes. We may thus replace o with —[a] 4+ « to assume that
a € (—1,0].

The equivalences of (a), (b), (c), and (d) are proved in the same way as in
Theorem 8.1. Let us show that (a) implies (e). Fix a € Zs( such that a(p®—1) € Z.
By assumption, we have D f f* = Dg- f¢®*~D+r" f& and therefore there is some
differential operator ¢ € D such that £ f®*~D+p" fo — ffo 1fj is large enough
so that € € D%Hl)a) then we have

¢ fo—D4p" po fa(p““)“—l) g(fa(p“—l)-%p“ f—a(p(i“’“’l))fa

i+1)a

= fa(p( —-1) g(f—a(pi“—l)p“-irp“)fa,

and we conclude that
g(f*a(pmfl)p“ﬂ)“) — f*a(fo““)afl)H.

If we fix some e such that £ € Dgeﬂ)a), we conclude that the above holds for all
1> e.

As before, we consider a splitting o : F,R — R of the Frobenius morphism F,
and we inductively build a sequence of differential operators & € Dgr. We set
& = ¢ and, for all k > 1, we let & = & F* —1 0®. By induction on k, we have

that & € Dgwk)a) and that
£ (f*a(pmfl)pk“ﬂ)k“) — f*a(P(”"')afl)H

for all K >0 and all 7 > e.
By considering the case ¢ = e, we conclude that for every k£ > 0 we have

B;(p(e+k)a) N [_ a(p(e+k)a 1)+ 1, —a(p®® — 1)pka +pka)
and hence, by Proposition 5.4, the interval
(—a—i— 1+a ot 1—|—a>
pletkla’ pec
contains no differential thresholds of f. Since this holds for all £ > 0, statement
(e) follows.
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Now let us assume (e) and prove (a). Once again we fix a € Zsg such that
a(p® — 1) € Z. Pick some e large enough so that the interval (—«, —a + y'(’]
contains no differential thresholds of f. Note that, for all integers & > 0 and all

integers n with

ne[—a@EM* —1)+1,—a(p* - 1)p** +p** - 1],

n n+1 c 1+
p(eJrk)a ’ p(eJrk)a = Q, —0+ pea '

we have

From Lemma 5.6 we conclude that, for all £ > 0,
By (p ) N [ = a(pt™ — 1) + 1, —a(p™ — D)p** +p*) = 2,

and hence there is some differential operator &, € Dgﬁk)a)

such that
& (o DR RNy a4,
We conclude that
é_k ) fa(pka_l)_,’_pkafa _ fa(p(e+k)a_1) é_k (f_a(p(e+k)a_1) fa(pka_1)+pka)fa
- fa(p
= ffe.

We conclude that ff* € Dg- fa(pka_l)‘*‘pm f for all k > 0 and, since a(pk® —1) +
pF =p*F(a+1)—aand a+1 >0, we have ff* € Dr- fif* forallt > 1. O

(e+k)a

- ¢, (f—a(pe“—l)pk“+pk“)fa

Remark 8.5. For a non-F-split ring R and an arbitrary p-adic integer « the equiv-
alence (b) <= (d) remains true. More generally, for all integers ¢ we have

Dp-f'f*=Dg- f'M f*=Dp f'*? =

if and only if BSR(f)N{a+t,a+t+1,...} = & (see Lemma 7.14 and Proposition
7.15).

Corollary 8.6. Let R be an F-finite F-split ring and f € R be a Bernstein-Sato
admissible nonzerodivisor. For all o € Zy) we have

Dp - f1T f% = Dy fr10V2f% = Dy - frloTHo fo =

Corollary 8.7. Let R be an F-finite F-split ring, f € R be a nonzerodivisor and
a € Zpy N Z. The following are equivalent:

(a) The chain
CDgr-f'f*CDr-f*CDg ff*C
stabilizes on both sides.
(b) We have BSR(f)N(a+Z) C {a — [a]}.

(¢) There is some € > 0 such that the interval ([a] —a — ¢, [a] — a + €)
contains no differential thresholds of f.

Proof. Follows from Theorems 8.1 and 8.4, together with the observation that |a+
1] = [a] whenever « ¢ Z. O
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Corollary 8.8. Let R be an F-finite F-split ring, f € R be a nonzerodivisor. The
following are equivalent:

(a) The chain
-CDp-fT"CRCDp-fC--
of Dg-submodules of Ry stabilizes on both sides.
(b) We have BSR(f)NZ C {-1,0}.

(¢) There is some € > 0 such that (1 —e,1 4+ €) contains no differential
thresholds of f.

Proof. The statement follows by applying Theorems 8.1 and 8.4 to a = 0, and
by using the fact that (0,¢) contains no differential thresholds of f if and only if
(1,1 + ¢) contains no differential thresholds of f (Proposition 5.9). O

Corollary 8.9. Let R be an F-finite F-split ring, f € R be a nonzerodivisor,
and X\ € (Zep))>o. 1If Ry f~> has finite length as a Dg-module then \ is not an
accumulation point of differential thresholds of f.

Proof. By Lemma 7.14 and Proposition 5.9 we may assume that A € (0,1]. The
statement then follows from Corollaries 8.7 (applied to & = —\) and 8.8. O

Lemma 8.10. Let R be an F-finite ring strongly F-regular ring, f € R be a
nonzerodivisor, and o € (Zyy)<o. Then Ry f* is simple as a Dg,-module.

Proof. Recall that R is F-split and simple as a Dg-module [Smi95]. Fix an integer
a > 0 such that a(p® — 1) € Z. Take some nonzero element gf *f* € R;f*
where g € R and k € Z>(. Since R is Dr-simple there is some differential operator
0 € Dp such that §(g) = 1; fix some integer e large enough so that § € Dga). We
then have

(frowDgpae Tk g ph g — 5(g) = £,

which shows that every nonzero Dg,-submodule of R;f* contains f*. Since
Dg, f* = Ry f, the result follows. O

Lemma 8.11 extends a result of the second author and Pérez [NBP16, Corollary
3.18] to the singular case.

Lemma 8.11. Let R be an F-finite strongly F-regular ring. Let f € R be a
Bernstein-Sato admissible nonzerodivisor and let o € (Zyy)<o. Then Dg-f~ f[a]+1 po
is contained in every nonzero Dg-submodule of Ry f*. In particular, Dgr-f~ [al+1 fo
is the unique simple nonzero Dg-submodule of R¢f<.

Proof. Recall that R is F-split and simple as a Dg-module [Smi95]. Take some
nonzero v € Ry f*. By Lemma 8.10, Dg, - v = Ry f* and therefore there is some
differential operator § € Dr and some integer k& > 0 such that § - v = f*f*; we
may assume that k& > —[a] + 1. By Corollary 8.6 we have

Dg-flelHlfe — Dp . fFf* C Dy 0. O

Remark 8.12. Note that in [NBP16] the submodule Dy - =1 £ is used instead
of Dg - f~Tel+1 fo But these two submodules are equal: indeed, when « ¢ 7 we
have [—a| = —[a] + 1, and when a € Z the statement follows from Lemma 7.14
together with the fact that Dr - f = R = Dpg - 1.
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The following result recovers and extends a previous characterization of F-
thresholds due to the second author and Pérez [NBP16, Theorem 1.1].

Theorem 8.13. Let R be an F-finite strongly F-reqular ring. Let f € R be a
Bernstein-Sato admissible nonzerodivisor and o € Z,) N [—1,0). The following are
equivalent:

(a) The module Ry f™ is not simple over Dg.
(b) We have that « is a Bernstein-Sato root of f.
(c) We have that —« is a differential threshold of f.

Proof. The equivalence between (b) and (c) is given in Corollary 5.18. We show
that (a) is equivalent to (b).

By Corollary 8.3 we have Ry f® = Dg - f*, and by Lemma 8.11 Dy - ff< is
the unique simple Dp-submodule of Ry f* (see Remark 8.12 in the case o = —1).
Therefore Ry f* is not simple if and only if Dg - f* # Dgr - ff®, and the result
follows from Proposition 7.15. |

8.2. The length of R;f“. In this section we study the structure of R;f< for
Bernstein algebras [AMHJ *21]. This is a class of rings whose Dg-modules satisfy
Bernstein inequality, and as a consequence, there is a notion of holonomic Dg-
modules.

Setup 8.14. Let K be a field and R be a finitely generated graded K-algebra
such that Ry = K. Let m denote the maximal homogeneous ideal and w =

max{j | [m/m?]; # 0}.
The generalized Bernstein filtration of R with slope w, By, is defined by
Bi = {6 € Dg | deg(d) +word(d) < i}.

Since we have fixed the slope, we usually refer only to the Bernstein filtration and
do not mention the slope. The dimension of BY, is defined by

di i
Dim(B%) = inf {s €Rso | lim %} ,
= r—00 /X
and the multiplicity of B% is defined by

dimK Bﬁ%

1—+00
Definition 8.15. Let R be as in Setup 8.14. We say that R is a Bernstein algebra
if it satisfies the following conditions.
(i) There exists C' € Zsq such that for every § € By we have that 1 €
BGi6BS:,
(ii) Dim(B%) = 2dim(R), and
(iii) 0 < e(B%) < oo.
Let M be a finitely generated Dp-module. We say a filtration G® is a Bj-
filtration if
(i) Each G is a finite dimensional K vector space,
(i) M = Uz’eZzo G*, and
(iii) BLGI C G for all 4, j € Z>o.
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Given a filtration, G* of M, its dimension is defined by
dimK Q’ }

Dim(G®) = inf {s €R>o | lim —
=7 r—oo 7
and its multiplicity by
dimg G*
e(g) = limsup #Ifg)

1—00

Theorem 8.16 ([Bav09, Theorem 3.1] & [AMHJ*21, Theorem 3.4]). Suppose that
R is a Bernstein algebra. Let M be a finitely generated Dpr-module, and G® a By
filtration. Then,

dim(R) < Dim(G*®).
Definition 8.17. Suppose that R is a Bernstein algebra. Let M be a finitely

generated nonzero Dr-module. We say that M is holonomic if it admits a filtration
of dimension dim(R) and finite multiplicity.

Theorem 8.18 ([AMHJ*21, Theorem 3.8]). Suppose that R is a Bernstein algebra.
Let M be a holonomic Dg-module. Then, M has finite length as Dg-module.

Theorem 8.19. Suppose that R is a Bernstein algebra. Then, Ry f* is holonomic

for every nonzero element f € R and o € Z(p). In particular, Ry f* has finite
length as Dg-module.

Proof. There exists C' € Zsq such that Bh, C D§? [AMHJ*21, Proposition 4.14].
Let a = deg(f). Let G* = flc,B (Cat1) Ry. Then, Ry is holonomic Dg-module
with the By-filtration G* [AMHJ*21, Proof of Lemma 4.5]. Let A = C(2a+1)+1
and G' = GAife Rff“

We now show that G' is a By,-filtration. We have that G' is a finite dimensional
K-vector space and Ry f* = UieZZO G' because G° is a By,-filtration. It remains
to show that Bi,GI C G™I. We set e = |log, CiJ We note that a., < p°. Let

§eBLC D C D ) and e GI. Then, 7 € € G4. We have that
<fa<cﬁ> c gCi+Aj+aa<C g gCiJrAjerea g gCiJrAiJrCia,
because G* is a By-filtration. By the way G*® is defined, we have that

fal (fo¢<C fA]> c ga<ﬁa+Ci+Aj+Cia g gpeaJrCiJrAjJrCia g gCiaJrCiJrAjJrCia
<e

_ gAi+Aj )

Hence,

a ) _ Qce o z+g
We conclude that ngi - giﬂ'. Then, R;f< is a holonomic Dg-module. We
conclude that R;f* has finite length as Dgr-module by Theorem 8.18. O
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9. EXAMPLES

Klz,y, 2]
and f € (z,y,z). The ring R has no differential operators of negative degree.
It follows that Dg) - f"# Dg) - f"*t1 for all n > 0, so (f) is not Bernstein-
Sato admissible. Every p-adic integer is a Bernstein-Sato root of f, and every
nonnegative real number is a differential threshold of f.

Example 9.1. Let K be a field of characteristicp =1 mod 3, R =

Example 9.2. Let R = F,[z,y,2], with p odd, and a = (2%yz, 2y?z, 2yz?). We
have that a = %5 is a Bernstein-Sato root of a [QG2la, Example 3.5]. However,
its negative, %, is not an F-jumping number of a. To see this, we claim that
Tr(a*) = (zyz) for X € [1,3). Since a C (zyz), we have Tr(a*) C Tr((zyz)*) =
(zyz) for A € [1,2). It suffices to show that zyz € Tr(a*) for A < 3. For e > 0,
we have (zyz)?P" =2 = (22yz) P —D/2(gy?2) P = D/2(gy22)P"=1/2 ¢ qBr =3)/2 44
xyz € Cg - a®3r"=3)/2  Since (3,,;;63)/2 — %, the claim follows.

This example shows that the conclusion of Theorem 5.17 cannot be strengthened
to say that the negative of a Bernstein-Sato root is a differential threshold. We
have that % = 1 — « is an F-jumping number, and hence a differential threshold

[QG21a, Example 3.5].

Example 9.3. Let R = Fy[2?, zy,y?] C S = Fplz,y|, with p odd. This inclusion
is Cartier extensible, level differentially extensible, and is split as R-modules. Let
m = (22, zy,y?) be the homogeneous maximal ideal of R, and n = (z,y) be the
homogeneous maximal ideal of S. We have

TR(m)‘) = Ts((mS))\) NR= Ts(l‘l2>\) NR

for all A [AMHJ+227 Proposition 5.9]. We have 75(n?) = nl*=1 for v > 1, and
75(n7) = S for 0 < 4 < 1. We observe that n” N R = m/7/2l. Thus, the F-
jumping numbers of mS are {1, %, 2, %, 3, %, ...}, and the F-jumping numbers of m
are {1,2,3,...}.

By Proposition 5.12(iv), the differential thresholds of mS are {1, %, 2, %, 3, %, S
Then, by Theorem 6.7(vii), the differential thresholds of m are {1, %, 2, %, 3, %, b

To compute the Bernstein-Sato roots of m, we may equivalently compute the
Bernstein-Sato roots of mS = n? by Theorem 6.7(vi). We have that

DE n _ S ) if0<n<2p®—2,
o (o=l i (a—1)p* —1<n<ap®—2, a>2.
Thus, the differential jumps of level e for n? are
2 1
{Lape—ZJ|a22}—{bpe—1|b21}u{ o pe—g|621}.

Passing to p-adic limits, we conclude that the set of Bernstein-Sato roots of m is
(-1,-3)

This shows that an ideal may have Bernstein-Sato roots that are not congruent
modulo Z to F-jumping numbers. This also shows that an ideal may have differ-
ential thresholds that are not F-jumping numbers, even in a strongly F-regular
hypersurface.
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Example 9.4. Let R and S be as in Example 9.3. Take f = 2% +¢% and p =1
mod 12. We claim that 7¢(f12 %) = (z,y) for 0 < ¢ < 1, and 75(f12) = (z,9?).

To see this, first, we observe that for n = %, y € Cg - f*. Note that the
monomials in the binomial expansion are distinct, and that none of the exponents
1

e p 4 ’
we have n —j = ”3—71, and since j = (E720) + (B )p+ -+ (B )p L and n— j =
(%;1)+(p771)p+~ -+ (25)pet, j and n—j add without carrying, so (;‘) is nonzero

" .

j)(x‘l)] (y%)"~7 is a unit times zP"~'y*" 2, justifying the first

of different terms agree modulo p®. In the binomial expansion of f™, for j =

modulo p. Then (
observation.

Second, if n > %, for 0 < j < n, we must have either 45 > p® or 6(n—j) > 2p°©,
so any monomial in the binomial expansion of f” lies in (z,y?)P).

Third, if n = @, taking j = ”82—71 we have n — j = f%; the integers j and
n — j add without carrying as before, so there is a term in the expansion that is a

unit times 22P°~2yP~1. We conclude that x € C% - f. Similarly, one checks that

Yy eCy - fm fornzw.

Put together, these justify the claims on 75. Now, since (z,y) R = (z,y?) N R,
1—72 is a jumping number of fS, but not of fR. Note that % is a differential threshold
of fR by Theorem 6.7(vii) and 5.12.

This shows that Bernstein-Sato roots and F-jumping numbers of principal ideals
do not necessarily agree modulo Z; likewise, differential thresholds and F-jumping

numbers of principal ideals do not necessarily agree.

Kz, y]

(zy)
of Bernstein-Sato roots of x € R is {—1,0}. To see this, consider the decomposition

of R as an RP -module:

. The set

Example 9.5. Let K be a field of characteristic p > 0, and R =

p°—1 p°—1
R=R" 1o P RHR" 2" & P R/YR ¥.
i=1 j=1

From this, we compute that, for 0 < j < p©,

D(e) . xapeJrj _ (xape) if j =0,
g (1) it £0,

so By (p°) N [0,p°) = {0, p® — 1}.

Passing to p-adic limits, we find that the Bernstein-Sato roots are {0,—1} as
claimed. The differential thresholds of = are {0,1,2,...}.

Thus, for a Bernstein-Sato admissible ideal in an F-split ring, zero can occur
as a Bernstein-Sato root. The occurrence of zero as a root here is explained by
Proposition 4.21.

Example 9.6. Let K be a field of characteristic p > 2, and R = K[2?, 23]. The set
of Bernstein-Sato roots of z2 € Ris {—1, %} To see this, consider the decomposition
of R as an RP"-module:

pe—1

R=R'1e PR 2" & B 2",
1=2
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where R = K[z] is the normalization of R. Then DS) is a direct sum of copies of
E :=Endg,c (R” ). We then have, for 0 < j < p°,
ap® : . ‘41
DO g2y = [ @) if 0 <j<P=
R (220P°)(E - 2P") if B < j < pe
so By (p°) N [0,p°) = {25, p° — 1}

Passing to p-adic limits, we find that the Bernstein-Sato roots are {—1, %}, as
claimed. The positive root here is explained by Proposition 7.16. The differential
thresholds of z2 are {%, 1, %, 2,... }

This illustrates that the F-split hypothesis in Theorems 4.18 and 5.17 is neces-
sary.

Example 9.7. Let K be a field of characteristic 2, and R = K[z?, 23]. The set of
Bernstein-Sato roots of > € R is {—1}. We have the decomposition of R as an
RP“-module as in Example 9.6, and then, for 0 < j < p¢,

D). (g2)5+i — (:CQape) E if oeg J< 5 -1,

(2P )(E-a?P") if B —1<j<p®,

so B2(p®) N [0,p°) = {% — 1, p¢ — 1}. The only Bernstein-Sato root of x? is —1,
while the set of differential thresholds is {1,1,2,2,...}.

Example 9.8. Let R = K|[z]/(2™"!). For e such that p¢ > n, we have DS) =
Endg(R), and hence DS) -2) = R for j < n, and D](Re) -2J =0 for j > n. Thus,
B2 (p¢) = {n} for all e > 0. We then have that n is the unique Bernstein-Sato root,
and the only differential threshold is zero.
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