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BERNSTEIN-SATO THEORY FOR SINGULAR RINGS IN

POSITIVE CHARACTERISTIC

JACK JEFFRIES, LUIS NÚÑEZ-BETANCOURT, AND EAMON QUINLAN-GALLEGO

Abstract. The Bernstein-Sato polynomial is an important invariant of an
element or an ideal in a polynomial ring or power series ring of characteristic
zero, with interesting connections to various algebraic and topological aspects
of the singularities of the vanishing locus. Work of Mustaţă, later extended by
Bitoun and the third author, provides an analogous Bernstein-Sato theory for
regular rings of positive characteristic.

In this paper, we extend this theory to singular ambient rings in positive
characteristic. We establish finiteness and rationality results for Bernstein-
Sato roots for large classes of singular rings, and relate these roots to other
classes of numerical invariants defined via the Frobenius map. We also obtain
a number of new results and simplified arguments in the regular case.
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1. Introduction

1.1. Background. Let R := C[x1, . . . , xn] be a polynomial ring over C, f ∈ R
be a nonzero polynomial and DR be the ring of C-linear differential operators on
R; that is, DR is the Weyl algebra over C. Bernstein [Ber72] and Sato [SS72],
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independently and in different contexts, showed that there is a nonzero polynomial
bf (s) and an element ξ(s) ∈ DR[s] satisfying the functional equation

(1.1) bf (s)f
s = ξ(s) · fs+1.

The monic polynomial bf (s) of least degree satisfying the equation above for some
operator ξ(s) ∈ DR[s] is called the Bernstein-Sato polynomial of f . This invariant
measures the singularities of the zero-locus of f in very subtle ways. For example,
work of Kollár [Kol96] and Ein, Lazarsfeld, Smith, and Varolin [ELSV04] gives that
the log-canonical threshold lct(f) of f is the smallest root of bf (−s), and that every
jumping number in the interval [0, 1) is a root of bf (−s). Furthermore, Kashiwara
[Kas83] and Malgrange [Mal83] proved that the eigenvalues of the monodromy
action on the cohomology of the Milnor fiber of f are given by exp(2πiα) where
α ranges through all the roots of the Bernstein-Sato polynomial of f . Kashiwara
[Kas77] showed that the roots of bf (s) are rational and negative which, combined
with the previous result, shows that the monodromy action is quasi-unipotent (see
also [Mal75]).

An alternative characterization of bf (s) due to Malgrange exhibits bf (s) as the
minimal polynomial for the action of an operator s on a certain D-module Nf .
Budur, Mustaţă, and Saito constructed an analogue of s and Nf for the case of an
arbitrary ideal a ⊆ R. Namely, even though Na is usually not finitely generated,
there exists a minimal polynomial of s on Na; the Bernstein-Sato polynomial of a
is defined as this polynomial [BMS06]. One has that Na splits as a direct sum

Na =
⊕

λ∈C

(Na)λ,

where (Na)λ is the λ-generalized eigenspace.
One can recover the minimal polynomial ba(s) from this decomposition, since

the roots are given by

(1.2) { Roots of ba(s) } = {λ ∈ C : (Na)λ �= 0}

and the multiplicity of a root λ is given by

(1.3) mult(λ, ba(s)) = min{k ≥ 0 : (s− λ)k(Na)λ = 0}.

An extension of this rich theory has been proposed recently for the case where
R is a possibly singular C-algebra. Whenever R is a direct summand of a polyno-
mial ring over C, Àlvarez Montaner, Huneke, and the second author [ÀMHNB17]
showed that one can find bf (s) and ξ(s) as in Equation (1.1) and thus define a
Bernstein-Sato polynomial for elements f of R. We remark that to carry out this
construction one must take DR to be the ring of C-linear differential operators of
R in the sense of Grothendieck. This line of research has continued with explo-
rations into connections with V -filtrations, multiplier ideals, and an extension of
these constructions for the case of ideals [ÀMHJ+22].

Some aspects of the theory have also been developed in positive characteristic.
This began with the work of Mustaţă, who began this exploration in the case where
R := K[x1, . . . , xn] is a polynomial ring over a perfect field K of characteristic
p > 0 (or, more generally, a regular F -finite ring) and a = (f) is a principal ideal.
Mustaţă’s notion was later refined by Bitoun [Bit18] and extended to the case of
arbitrary ideals by the third author [QG21b].
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The main goal in this paper is to explore the theory of Bernstein-Sato roots
in positive characteristic after dropping the regularity assumption on R. One can
therefore think of this paper as providing a characteristic p counterpart to some
of the work on differential operators in singular rings [ÀMHNB17, ÀMHJ+22]. In
order to explain our results, we need to elaborate on this notion of Bernstein-Sato
invariants in positive characteristic.

Suppose R := K[x1, . . . , xn] is a polynomial ring over a perfect field K of char-
acteristic p > 0 and let a ⊆ R be an ideal. One starts, through mimicking the
construction of Budur, Mustaţă, and Saito, by defining a DR-module Na associ-
ated to a. In the characteristic p setting the action of the operator s on Na naturally

extends to an action of the algebra C(Ẑ(p),Fp) of continuous functions from the

p-adics Ẑ(p) to Fp. Note that we are explaining this construction using the alge-

bra C(Ẑ(p),Fp) of continuous functions from the p-adics Ẑ(p) to Fp, in the style of
Bitoun [Bit18], as opposed to the operators sp0 , sp1 , . . . in the style of Mustaţă and
the third author. See Subsection 7.2 for the equivalence between these two points
of view.

Given a p-adic integer α ∈ Ẑ(p), we let mα be the maximal ideal of C(Ẑ(p),Fp)
that consists of functions that vanish on α, and we let (Na)α := Annmα

Na. A
careful analysis of the module Na allows one to show that there is a decomposition

Na =
⊕

α∈Ẑ(p)

(Na)α

for which only finitely many (Na)α are nonzero [Bit18], [QG21b, Proposition 6.1].
A posteriori, we conclude that the (Na)α can also be viewed as quotients of Na,
namely (Na)α ∼= Na/mαNa.

In analogy with the situation over C, we want to obtain some invariant of a from
this decomposition. A Bernstein-Sato root of a is thus defined to be a p-adic integer

α ∈ Ẑ(p) such that (Na)(α) is nonzero (cf. (1.2)); we think of these as characteristic
p analogues of the roots of the Bernstein-Sato polynomial. In this setting, however,

we have mα = m
2
α for all α ∈ Ẑ(p) and it is therefore not clear how to associate a

multiplicity to each Bernstein-Sato root (cf. (1.3)), and thus there is no notion of
Bernstein-Sato polynomial.

The Bernstein-Sato roots of a nonzero ideal in a regular F -finite ring are known
to be rational and negative [Bit18, Corollary 2.4.3], [QG21b, Theorem 6.7], which
gives a characteristic p analogue of Kashiwara’s theorem, and they are also known
to be intimately linked to the F -jumping numbers of a [Bit18, Theorem 2.4.1],
[QG21b, Theorem 6.11].

1.2. Summary of results. In this paper, we pose and work with an elemen-
tary definition of Bernstein-Sato root in positive characteristic. Namely, we de-
fine a Bernstein-Sato root of an ideal a to be a p-adic integer that occurs as
the p-adic limit of a sequence of the form (νe) such that a

νe is not contained
in
∑

φ∈Hom
Rpe (R,R) φ(a

νe+1) (see Definitions 3.1 and 4.1). This elementary notion

naturally extends the notion of Bernstein-Sato root in positive characteristic for
regular rings described in the previous subsection. Namely, even after dropping
the regularity assumption on R, we can still build the module Na, equip it with a

C(Ẑ(p),Fp)-action, and consider the modules (Na)α = Na/mαNa for all α ∈ Ẑ(p).

We have that α ∈ Ẑ(p) is a Bernstein-Sato root of a if and only if the module (Na)α
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is nonzero (Theorem 7.3). In contrast with the regular case, when R is singular an
ideal a ⊆ R may have infinitely many Bernstein-Sato roots (see Example 9.1) and
the quotients Na → (Na)α a priori need not split.

We begin by isolating the necessary assumptions on a so that these pathologies
do not occur, and we encapsulate these in the notion of Bernstein-Sato admissible
ideals (see Definition 4.10). It is implicit in the work of the third author that ideals
of regular rings are always Bernstein-Sato admissible [QG21b, Theorem 6.1]. We
show that these ideals also abound in other classes of rings.

Theorem A (Theorem 6.4, Theorem 6.7). Let R be a noetherian F -finite ring,
and assume one of the following holds:

(a) The ring R is graded with finite F -representation type.

(b) The ring R is a direct summand of a regular ring.

Then every ideal a ⊆ R is Bernstein-Sato admissible.

As mentioned, whenever an ideal a is Bernstein-Sato admissible we show that
the module Na behaves as in the regular case.

Theorem B. Let R be a noetherian F -finite ring and a ⊆ R be a Bernstein-Sato
admissible ideal. Then:

(i) (Theorem 4.13) The ideal a has only finitely many Bernstein-Sato roots.

(ii) (Corollary 7.4) The module Na splits as a direct sum Na=
⊕

α∈Ẑ(p)
(Na)α.

If in addition R is F -split, then

(iii) (Theorems 4.16 & 4.18) All of the Bernstein-Sato roots of a are rational
and lie in the interval 1 [−r, 0], where r is the number of generators of a.

We remark that, for nonprincipal ideals, the lower bound is new even in the
case where R is regular. Combining this with a result of the third author on
the behavior of Bernstein-Sato roots of monomial ideals under mod-p reduction
[QG21a, Theorem 3.1], we are able to give the following characteristic zero result.

Corollary C (Corollary 4.20). Let R = C[x1, . . . , xn] be a polynomial ring over
C and a ⊆ R be a monomial ideal generated by r elements. If λ is a root of the
Bernstein-Sato polynomial of a then1 −r ≤ λ.

To study the action of differential operators on ideals in the ring, we introduce a
family of numerical invariants called differential thresholds. The collection of differ-
ential thresholds of an ideal contains several of its invariants defined via Frobenius,
including all of its jumping numbers, F -thresholds, and Cartier thresholds (see
Subsection 5). This unified approach allows us to obtain properties that were not
known in certain cases. We show that if a ⊆ R is a Bernstein-Sato admissible ideal,
then the set of differential thresholds for a is a discrete set of rational numbers (see
Theorems 5.15 and 5.16). As a consequence, we obtain that the F -thresholds of
rings with graded finite F -representation type are rational numbers (see Corollary
6.5). This extends previous results obtained for certain ideals in Stanley-Reisner
rings [BC21, Theorems A & B]. We also exhibit a close relation between differential
thresholds and Bernstein-Sato roots.

1In fact, the lower bound can be improved by using the analytic spread.
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Theorem D (Theorem 5.17). Let R be F -split. Let a be an ideal with r generators.
There is an equality of cosets in Z(p)/Z:

{α+ Z | α ∈ Z(p) Bernstein-Sato root of a}
= {−λ+ Z | λ ∈ Z(p) differential threshold of a}.

We are able to define a module Rff
α for any p-adic number that is the positive

characteristic analogue of the modules Rff
α with α ∈ Q in characteristic zero

[Wal15]. If R is regular and α ∈ Ẑ(p) ∩Q<0, then Rff
α = M−α for regular rings,

where M−α is the F -module introduced in earlier work of Blickle, Mustaţă, and
Smith to study jumping numbers of principal ideals [BMS09] (see also [NBP16]).
In Proposition 7.15, we show that in contrast to the situation in characteristic zero
[Sai21], α is a Bernstein-Sato root if and only if fα /∈ DR · ffα. We also provide
a characterization of the simplicity of Rff

α in terms of Bernstein-Sato roots and
differential thresholds.

Theorem E (Theorem 8.13). Suppose that R is a strongly F -regular domain. Let
f ∈ R be a Bernstein-Sato admissible nonzerodivisor and α ∈ Z(p) ∩ [−1, 0). Then
the following are equivalent:

(a) The module Rff
α is not simple over DR.

(b) We have that α is a Bernstein-Sato root of f .

(c) We have that −α is a differential threshold of f .

Moreover, the finite generation or finite length Rff
α as a DR-module pro-

vides information about the distribution of the Bernstein-Sato roots and differential
thresholds (see Theorems 8.1 & 8.4).

Since in the regular case Mα is an F -finite F -module, it has finite length as a
DR-module [BMS09] (see also [Lyu97]). In Theorem 8.19, we show that Rff

α is a
holonomic DR-module for every Bernstein algebra, and so it has finite length as a
DR-module. This is a recently defined class of singular algebras whose DR-modules
satisfy the Bernstein inequality [ÀMHJ+21]. We stress that our results regarding
Rff

α do not use the theory of F -modules, which is not available for singular rings.
We point out that we prove some results that are new even in the case where R

is regular (e.g., Corollary 4.19). In addition, we provide new proofs of previously
known theorems (e.g., Theorem 4.18).

Axel Stäbler has pointed out to us that Bernstein-Sato polynomials for Cartier
modules [BS16,Stä21] can also be used to give a notion of Bernstein-Sato polynomial
for certain singular algebras. Namely, if R = S/I is strongly F -regular and Q-
Gorenstein, and S is regular, one may consider R as a Cartier module over the ring
S, and apply the theory of ibid. to obtain Bernstein-Sato polynomials. In contrast,
our approach uses the operators on the singular ring itself and is developed for
rings that are not necessary strongly F -regular. In particular, in our approach an
ideal in a strongly F -regular ring may have more roots in the interval [−1, 0] than
jumping numbers (see Example 9.3).

1.3. Notation. We fix a prime number p, and Ẑ(p) denotes the ring of p-adic
integers. Unless otherwise stated, all rings have characteristic p and are F -finite,
meaning that the Frobenius endomorphism is module-finite.

Given an ideal a in a ring R, we set a0 = R by convention (even when a = (0)).
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We use multi-index notation: given a tuple of integers a = (a1, . . . , an) ∈ Zn

and a tuple of elements g = (g1, . . . , gn) ∈ Sn in a commutative ring S, we denote
ga := ga1

1 · · · gan
n . The symbol 1 denotes the tuple 1 := (1, 1, . . . , 1). Recall we have

a multi-index binomial theorem: given a commutative ring S, tuples x, y ∈ Sn and
a multi-exponent a ∈ (Z≥0)

n we have

(x+ y)a =
∑

0≤bi<ai

(
a

b

)
xbya−b,

where
(
a
b

)
=
∏n

i=1

(
ai

bi

)
.

2. Preliminaries

2.1. Base p and p-adic expansions. Fix a prime number p. Let Ẑ(p) denote
the completion with respect to (p) of Z(p), i.e., the ring of p-adic integers. Given

α ∈ Ẑ(p), there exists a unique sequence of integers (αe)e∈Z≥0
such that:

(i) 0 ≤ αe ≤ p− 1, and

(ii) α =
∑

e≥0 p
eαe as a series in Ẑ(p).

We call αe the e-th p-adic digit of α. We reserve the notation αe for this notion. We
define the e-th p-adic truncation of α to be the unique integer n with 0 ≤ n < pe

such that α ≡ n mod pe; equivalently,

α<e := α0 + pα1 + p2α2 + · · ·+ pe−1αe−1.

Recall that a p-adic integer α is rational if and only if α ∈ Z(p); this is equivalent
to α admitting an eventually periodic sequence of p-adic digits.

A p-adic number α has a purely periodic sequence of p-adic digits if and only if
α ∈ Z(p) ∩ [−1, 0]. In particular, the sequence of p-adic digits of α is periodic of
period e if and only if (1−pe)α is an integer between 0 and pe−1, and in this case we
have (1− pe)α = α<e; our convention is that the period is not necessarily minimal.
In particular, if α ∈ Z(p) ∩ [−1, 0] with (1− pe)α ∈ Z≥0, then (1− pae)α = α<ea for
all a. Similarly, the sequence of p-adic digits of α is eventually periodic of period e
if and only if (1− pe)α ∈ Z.

We can also extract the p-adic truncations of an arbitrary element α ∈ Z(p). For
our purposes, it suffices to determine for any such α an infinite sequence of p-adic
truncations.

Lemma 2.1. Let α ∈ Z(p), and let e ∈ Z>0 such that (pe − 1)α ∈ Z. Then, for all
a � 0, we have

α<ea =

{
(1− pae)(α− �α
) + �α
 if α /∈ Z<0,

pae + α if α ∈ Z<0.

Proof. The claim is clear when α ∈ Z, so take α /∈ Z. We first observe that
(1− pae)(α− �α
) + �α
 ≡ α− �α
+ �α
 ≡ α modulo pae.

Since α−�α
 > −1, for a � 0 we have −(α−�α
)+ �α�
pae−1 ≤ 1, so (1− pae)(α−

�α
) + �α
 ≤ pae − 1.
We have α−�α
 < 0, so for a � 0, we have −�α
 ≤ (1− pae)(α−�α
) and thus

(1− pae)(α− �α
) + �α
 ≥ 0. �
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Given λ ∈ (0, 1], there exists a unique sequence of integers (λ(e))e≥1 satisfying
the following conditions.

(i) 0 ≤ λ(e) ≤ p− 1,

(ii) λ =
∑

e≥1
λ(e)

pe , and

(iii) The sequence (λ(e))e≥1 is not eventually zero.

We call λ(e) the e-th digit of λ base p, and we call the expression λ =
∑

e≥1
λ(e)

pe

the non-terminating base p expansion of λ. By convention, we set λ(0) = 0. We
adopt notation analogous to standard decimal notation, writing

λ = . λ(1) : λ(2) : · · · : λ(e) : · · · (base p),

where colons distinguish between consecutive digits.

For e ≥ 1, the e-th truncation of λ in base p is defined as 〈λ〉e := λ(1)

p + · · ·+ λ(e)

pe .

Note that pe 〈λ〉e is the unique integer n with the property that λ ∈ (n/pe, (n +

1)/pe], and thus 〈λ〉e = �peλ�−1
pe ; in particular, for all e ≥ 1 we have 〈λ〉e < λ. We

define 〈λ〉∞ := λ, and make the convention 〈λ〉0 = 0.
A number λ ∈ (0, 1] has a purely periodic sequence of base p digits if and only if

λ ∈ Z(p)∩(0, 1]. In particular, the sequence of base p digits of λ is periodic of period
e if and only if (pe − 1)λ is an integer between 0 and pe − 1, and in this case we
have (pe − 1)λ = pe 〈λ〉e; our convention is that period is not necessarily minimal.
In particular, if λ ∈ Z(p) ∩ (0, 1] with (pe − 1)λ ∈ Z≥0, then (pae − 1)λ = 〈λ〉ae for
all a.

2.2. Methods in prime characteristic.

Definition 2.2. Suppose that R is a ring of prime characteristic p.

(i) Given an integer e ≥ 0, we let F e
∗R be the abelian group R endowed

with the R-module structure coming from restriction of scalars via the e-th
iterated Frobenius F e : R → R. Given an element f ∈ R, we sometimes
write it as F e

∗ f to emphasize that we view it as an element of F e
∗R. With

this notation, the R-module structure of F e
∗R is given by gF e

∗ f = F e
∗ (g

pe

f)
for all f, g ∈ R.

(ii) If R is a Z≥0-graded ring, F e
∗R is a 1

peZ≥0-graded module over R, where

deg(F e
∗ r) =

1
pe deg(r).

(iii) We say that R is F -finite if F e
∗R is a finitely generated R-module for

some e ≥ 1 (equivalently, for every e ≥ 1).

A perfect field is F -finite. If R is F -finite then the polynomial ring R[x], the
power series ring R[[x]], all quotients of R and all localizations of R are also F -
finite. This means that most rings that arise when doing algebraic geometry over
a perfect field are F -finite.

Definition 2.3. Suppose that R is a ring of prime characteristic p.

(i) We say that R is F -split if the Frobenius map splits or, equivalently, if
the R-module F∗R has a nonzero free summand.

(ii) We say that R is F -pure if the Frobenius map is pure. Specifically, the
map M → M ⊗R F∗R is injective for every R-module M .
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(iii) Assume that R is a domain. We say that R is strongly F -regular if
for every nonzero r ∈ R there exists e ∈ Z≥0 such that the R-module
homomorphism ϕ : R → F e

∗R given by 1 �→ F e
∗ r splits.

Remark 2.4. Suppose that R is a ring of prime characteristic p.

(i) If R is an F -finite ring [HR76, Corollary 5.3] or a complete local ring
[Fed83, Lemma 1.2], R is F -pure if and only R is F -split.

(ii) In the definitions of F -finite, F -pure, and F -split, the conditions on F∗R
can be replaced by F e

∗R for some e ≥ 1, or by F e
∗R for every e ≥ 1.

Definition 2.5. Let R be an F -finite ring and e ≥ 0 be an integer. An additive
map φ : R → R is a p−e-linear map if φ(rp

e

f) = rφ(f) for all r, f ∈ R. We denote
by Ce

R the set of all p−e-linear maps. Then, we have Ce
R = HomR(F

e
∗R,R). Given

an ideal a ⊆ R we denote by Ce
R · a the ideal Ce

R · a = (φ(f) | φ ∈ Ce
R, f ∈ a).

Test ideals were introduced by Hochster and Huneke, and they are a fundamental
tool in the theory of tight closure [HH90,HH94,HH94]. Hara and Yoshida [HY03]
extended the notion of test ideals, τR(a

λ), to pairs (R, aλ), where a ⊆ R is an ideal
and λ ∈ R. One can approach the theory of test ideals using Cartier operators
[BMS08,BMS09,Sch11,BB11,Bli13]. We now give the definition in terms of Cartier
operators for strongly F -regular rings [TT08].

Definition 2.6. Let R be an F -finite strongly F -regular ring. Let a ⊆ R be an
ideal, and λ ∈ R>0. The test ideal of the pair (a, λ) is defined by

τR(a
λ) =

⋃

e∈Z≥0

Ce
R · a�peλ�.

The notion of test ideal discussed here is sometimes called the big test ideal.
We note that the chain of ideals {Ce

R · a�peλ�} is increasing, and so, τR(a
λ) =

Ce
R · a�peλ� for e � 0, because R is noetherian.
We now recall well-known properties of test ideals. We refer to the work done

specifically for strongly F -regular rings [TT08]. For a more general approach, we
refer to Blickle’s work on this subject [Bli13].

Proposition 2.7 ([TT08, Lemma 4.5]). Let R be a strongly F -regular F -finite
ring, a, b ⊆ R ideals, and λ, λ′ ∈ R>0. Then,

(i) If a ⊆ b, then τ (aλ) ⊆ τR(b
λ).

(ii) If λ < λ′, then τ (aλ
′

) ⊆ τ (aλ).

(iii) There exists ε > 0 such that τR(a
λ) = τR(a

λ′

) if λ′ ∈ [λ, λ+ ε).

Every ideal a ⊆ R is associated to a family of test ideals τ (aλ) parameterized
by real numbers λ ∈ R>0 which forms a decreasing nested chain of ideals as λ
increases.

Definition 2.8. Let R be an F -finite strongly F -regular ring and let a ⊆ R be an
ideal. A real number λ ≥ 0 is an F -jumping number of a if

τR(a
λ) �= τR(a

λ−ε)

for every ε > 0.
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2.3. Basics of differential operators. In this section we briefly recall the basic
notions on the theory of rings of differential operators introduced by Grothendieck
[Gro65, §16.8].

Let R be a K-algebra, where K is a field. The ring of K-linear differential
operators of R is the subring DR|K ⊆ HomZ(R,R) whose elements are character-

ized inductively as follows. The differential operators of order zero are D0
R|K =

HomR(R,R). A linear map δ ∈ HomK(R,R) is an operator of order less than
or equal to � if δr − rδ is an operator of order less than or equal to � − 1. We
write D�

R|K for the collection of differential operators of order at most �. We define

DR|K =
⋃

�∈Z≥0
D�

R|K, which is a ring with composition as the multiplication.

Example 2.9. Let R be either the polynomial ring K[x1, . . . , xn] or the formal
power series ring K[[x1, . . . , xn]] with coefficients in a ring K. The ring of K-linear
differential operators is:

DR|K = R

〈
1

t!

dt

dxt
i

| i = 1, . . . , n; t ∈ Z≥0

〉
,

that is, the free R-module generated by the differential operators 1
t!

dt

dxt
i

. We recall

that 1
t!

dt

dxt
i

acts on the monomials of R by

1

t!

dt

dxt
i

· xα1
1 · · ·xαn

n =

{(
αi

t

)
xα1
1 · · ·xαi−t

i · · ·xαn
n αi < t,

0 αi ≥ t.

Furthermore, if K is a field of characteristic zero, we have

DR|K = R

〈
d

dx1
, . . . ,

d

dxn

〉
.

Example 2.10. Let S = K[x1, . . . , xd] be a polynomial ring over a field K of char-
acteristic zero and, given an ideal I ⊆ S, set R = S/I. Then, the ring of K-linear
differential operators of R is characterized in terms of the differential operators in
S [MR01, Theorem 5.13]. Specifically,

DR|K =
{δ ∈ DS|K | δ(I) ⊆ I}

IDS|K
.

Let R be an F -finite ring (not necessarily regular). We denote by DR the ring
of Fp-linear differential operators on R. In this context, we have that

DR =

∞⋃

e=0

D
(e)
R ,

where D
(e)
R = EndRpe (R) and, if K is a perfect field contained in R, then the

ring DR|K of K-linear differential operators on R agrees with DR [Yek92,SVdB97].

Given an integer e ≥ 0, we call D
(e)
R the ring of differential operators of level e. We

note that for any F -finite ring, the formation of D
(e)
R commutes with localization.

Additionally, if R is F -finite and local, then the formation of D
(e)
R commutes with

completion. Both of these facts follow from description of DR in terms of the level
filtration above and the behavior of Hom under flat base change.

We will also use a result of Smith that states that, whenever R is an F -split
domain, R is simple as a DR-module if and only if R is strongly F -regular [Smi95].
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2.4. Differential operators and V -filtrations. We introduce a few facts about
the relationship between DR and DR[t], where R[t] = R[t1, . . . , tr] is a polynomial
ring over R. However, these facts are only used in Section 7, where we show that
the definition of Bernstein-Sato roots we give in Section 4 agrees with the definition
that one arrives to by considering the D-module constructions of Bitoun, Mustaţă,
and the third author in the regular case [Bit18,Mus09,QG21b]. For this reason, we
encourage the reader to skip the remaining of this section until they want to read
Section 7.

If ξ ∈ DR is a differential operator on R, then ξ acts on R[t] by the formula
ξ · (gtk) = (ξ · g)tk for g ∈ R and k ∈ (Z≥0)

r, and one checks that this exhibits ξ
as a differential operator on R[t]. Similarly, if δ ∈ DFp[t] is a differential operator
on Fp[t] then we can think of δ as a differential operator on R[t] via the action
δ · gtk = g(δ · tk). These observations yield a ring homomorphism DR ⊗Fp

DFp[t] →
DR[t]; we observe that it respects the level filtration and it therefore induces maps

D
(e)
R ⊗Fp

D
(e)
Fp[t]

→ D
(e)
R[t]. We want to show that these maps are isomorphisms.

Lemma 2.11. Let S be a commutative ring, G be a finite free S-module, and
M be an arbitrary S-module. Then the natural map EndS(M) ⊗S EndS(G) →
EndS(M ⊗S G) that sends [φ⊗ ψ �→ [u⊗ v �→ φ(u)⊗ ψ(v)]] is an isomorphism.

Proof. We have the following natural isomorphisms

HomS(M,M)⊗S HomS(G,G)
∼−→ HomS(G,G⊗S HomS(M,M))
∼−→ HomS(G,HomS(M,M ⊗S G))
∼−→ HomS(M ⊗S G,M ⊗S G),

where the last isomorphism comes from the tensor-hom adjunction. We then check
that the composition of these isomorphisms is the morphism given in the statement.

�

Lemma 2.12. Let R be an F -finite ring. The morphisms D
(e)
R ⊗Fp

D
(e)
Fp[t]

→ D
(e)
R[t]

and DR ⊗Fp
DFp[t] → DR[t] previously defined are isomorphisms.

Proof. Fix an e ≥ 0. We then have

EndRpe (R)⊗Fp
EndFp[t]p

e (Fp[t]) ∼= EndRpe (R)⊗Rpe Rpe ⊗Fp
Fp[t]

pe

⊗Fp[t]p
e EndFp[t]p

e (Fp[t]).

Now note that there is an algebra isomorphism Rpe ⊗Fp
Fp[t]

pe ∼= R[t]p
e

, and recall
that Hom commutes with flat base change whenever the source module is finitely
presented. We thus have

EndRpe (R)⊗Rpe Rpe ⊗Fp
Fp[t]

pe ⊗Fp[t]p
e EndFp[t]p

e (Fp[t])

∼=
(
EndRpe (R)⊗Rpe R[t]p

e)⊗R[t]pe
(
R[t]p

e ⊗Fp[t]p
e EndFp[t]p

e (Fp[t])
)

∼= EndR[t]pe (R⊗Rpe R[t]p
e

)⊗R[t]pe EndR[t]pe (R[t]p
e ⊗Fp[t]p

e Fp[t])

∼= EndR[t]pe (R⊗Rpe R[t]p
e ⊗Fp[t]p

e Fp[t])

(Lemma 2.11)

∼= EndR[t]pe (R⊗Rpe Rpe ⊗Fp
Fp[t]

pe ⊗Fp[t]p
e Fp[t])

∼= EndR[t]pe (R[t]),
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and one checks that this composition agrees with the morphism in the statement.
The statement for DR[t] follows. �

It follows that we identify D
(e)
R and D

(e)
Fp[t]

with subrings of D
(e)
R[t]; note that they

commute with each other.
Let I denote the ideal I = (t1, . . . , tr) ⊆ R[t]. For every e ≥ 0 and i ∈ Z we

denote

V iD
(e)
R[t]

:= {ξ ∈ D
(e)
R[t] : ξ · I

j ⊆ Ij+i for all j ∈ Z},
where we adopt the convention that In = R[t] for all n ≤ 0. We define V iDR[t]

similarly.
We give R[t] the grading that places R in degree zero and gives each

variable ti degree one. Because R is F -finite, so is R[t], and therefore D
(e)
R[t] =

EndR(F
e
∗R[t], F e

∗R[t]) acquires a Z-grading, which also induces a Z-grading on

DR[t]. Given d ∈ Z we denote by R[t]d (resp. (D
(e)
R[t])d, (DR[t])d) the set of homo-

geneous elements of R[t] (resp. D
(e)
R[t], DR[t]) of degree d. We also denote R[t]≥d =

⊕∞
i=d R[t]i, (D

(e)
R[t])≥d :=

⊕∞
i=d(D

(e)
R[t])i and (DR[t])≥d =

⊕∞
i=d(DR[t])i. In particu-

lar, we have In = R[t]≥n for all n ∈ Z. Note that the previous isomorphisms respect

the gradings, and they therefore induce isomorphisms D
(e)
R ⊗Fp

(D
(e)
Fp[t]

)d
∼−→ (D

(e)
R[t])d

and DR ⊗Fp
(DFp[t])d

∼−→ (DR[t])d.

Lemma 2.13. Let e and i be integers with e ≥ 0. Then:

(i) We have V iD
(e)
R[t] = (D

(e)
R[t])≥i and V iDR[t] = (DR[t])≥i.

(ii) If i ≥ 0, then we also have V iD
(e)
R[t]=(D

(e)
R[t])0I

i and V iDR[t]=(DR[t])0I
i.

Proof. It is enough to prove the claims for D
(e)
R[t], and we begin with (i). The

inclusion V iD
(e)
R[t] ⊇ (D

(e)
R[t])≥i follows from the fact that Ij = R[t]≥j for all j ∈ Z.

For the other inclusion, suppose that ξ ∈ V iD
(e)
R[t], and therefore ξ ·R[t]j ⊆ R[t]≥j+i

for all j ∈ Z. Let ξ =
∑

k∈Z
ξk where ξk is the homogeneous component of degree

k for ξ, and observe that if g ∈ R[t] is homogeneous of degree d, then ξk · g is the
degree k+d homogeneous component of ξ ·g ∈ R[t]≥i+d. We conclude that ξk ·g = 0
whenever k < i, which proves the statement.

We now claim that (D
(e)
R[t])i = (D

(e)
R[t])0R[t]i for all i ≥ 0, which together with

part (i) gives part (ii). Since (D
(e)
R[t])i = D

(e)
R ⊗Fp

(D
(e)
Fp[t]

)i and (D
(e)
R[t])0 = D

(e)
R ⊗Fp

(D
(e)
Fp[t]

)0, we reduce to the case R = Fp. Let σ(e) ∈ D
(e)
Fp[t]

denote the unique

operator of level e such that

σ(e) · ta =

{
1 for a = (pe − 1, . . . , pe − 1),

0 otherwise

for all a ∈ {0, . . . , pe − 1}r; observe σ(e) is homogeneous of degree −r(pe − 1).

Then D
(e)
Fp[t]

is spanned over Fp by the operators of the form tbσ(e)ta, where b

ranges through (Z≥0)
r and a ranges through {0, . . . , pe − 1}r, and therefore D

(e)
Fp[t]

is spanned by those for which |b| − r(pe − 1) + |a| = i or, equivalently, |a| − i =
r(pe − 1) − |b|. If tbσ(e)ta ∈ (DR[t])i, then there is a multi-exponent c ∈ Nr

0 with
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|c| = i such that aj ≥ cj for every i, because r(pe − 1)− |b| ≥ 0. We can thus write

tbσ(e)ta = tbσ(e)ta−ctc, which proves the claim. �

Given an integer i ≥ 0, we denote by spi the unique R-linear operator on R[t]
with the property that

spi · ta = (−|a| − r)i t
a

for all a ∈ (Z≥0)
r, where (−)i denotes i-th p-adic digit. In Lemma 2.14 we aggregate

some properties of these operators.

Lemma 2.14. We have:

(i) For all integers i ≥ 0 and e > i,

spi · t(pe−1)1−a = |a|it(p
e−1)1−a.

(ii) For all integers i ≥ 0, spi is in (D
(i+1)
R[t] )0.

(iii) The operators spi commute with each other.

(iv) For all integers i ≥ 0 we have (spi)p = spi or, equivalently,
∏p−1

j=0(spi −
j) = 0.

(v) If M is an Fp-vector space equipped with an action of the operators
sp0 , sp1 , . . . , spe−1 , then M splits as a sum of multi-eigenspaces for the
action of these operators; namely, M =

⊕
α∈Fe

p
Mα where for all α =

(α0, . . . , αe−1) ∈ Fe
p we define Mα := {u ∈ M : spi · u = αiu ∀i =

0, . . . , e− 1}.
Proof. For (i) we simply observe that (−|(pe− 1)1− a| − r )i = (−rpe+ |a|)i = |a|i
(recall that whenever α ≡ β mod piZp we have αi = βi). For part (ii), we note that
spi has degree zero, that it is R-linear and that it commutes with multiplication by

tp
i+1

j for all j = 1, . . . , r. Parts (iii) and (iv) follow because each spi is R-linear and

acts on monomials ta by an Fp-scalar. Part (v) follows from (iii) and (iv). �

Remark 2.15. It is possible to give a formula for the operators spi in terms of partial
derivatives:

spi = −
∑

|a|=pi

∂
[a1]
t1 ta1

1 · · · ∂[ar ]
tr tar

r ,

where the ∂[a] notation stands for divided power differential operators [QG21b,
Proposition 3.3]. We remark that the transpose of these operators already appeared
in work of Ma and Zhang [MZ14] as higher-order Euler operators.

2.5. The ring of continuous functions from Ẑ(p) to Fp.

Definition 2.16. Given a set X and an integer e ≥ 0 we denote by Conte(Ẑ(p), X)

the collection of all functions φ : Ẑ(p) → X such that φ(α) = φ(β) whenever

α ≡ β mod pe. We denote Cont(Ẑ(p), X) =
⋃∞

e=0 Cont
e(Ẑ(p), X), and we call

Cont(Ẑ(p), X) the set of continuous functions from Ẑ(p) to X.

Note that these are indeed the continuous functions when X is endowed with
the discrete topology, which is the only case we consider. When A is a ring, the

sets Conte(Ẑ(p), A) and Cont(Ẑ(p), A) acquire A-algebra structures by pointwise
addition and multiplication.
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A function in Conte(Ẑ(p), X) is uniquely determined by its values on

{0, 1, . . . , pe − 1}. Consequently, a function in Cont(Ẑ(p), X) is uniquely deter-
mined by its values in Z≥0 and, given an Fp-vector space V , we have canonical
isomorphisms

V ⊗Fp
Conte(Ẑ(p),Fp) Conte(Ẑ(p), V ),

V ⊗Fp
Cont(Ẑ(p),Fp) Cont(Ẑ(p), V ).

∼

∼

Fix an integer e ≥ 0, and let us consider the algebra Conte(Ẑ(p),Fp).

Remark 2.17. The more geometrically-minded reader might like to think of the
results in this section via the following remark, which was pointed out to the third
author by Bhatt (see [QG21c, Remark III.2] for a more detailed discussion). There

is a homeomorphism Spec(Cont(Ẑ(p),Fp)) ∼= Ẑ(p) which becomes an isomorphism of

ringed spaces when we equip Ẑ(p) with the sheaf of rings Fp associated to Fp. In par-

ticular, all local rings of Cont(Ẑ(p),Fp) are fields, and therefore all Cont(Ẑ(p),Fp)-
modules are flat.

To every p-adic integer α ∈ Ẑ(p) we associate the maximal ideal

m
(e)
α := {ϕ ∈ Conte(Ẑ(p),Fp) | ϕ(α) = 0};

note that m
(e)
α ≡ m

(e)
β whenever α ≡ β mod pe. We have algebra isomorphisms

Conte(Ẑ(p),Fp) ∼= Fun({0, 1, . . . , pe − 1},Fp) ∼= Fp e1 × · · · × Fp epe−1,

where the ei are orthogonal idempotents. In particular, every Conte(Ẑ(p),Fp)-

module M splits as M =
⊕pe−1

a=0 M(a), where M(a) = Ann
m

(e)
a
(M).

Remark 2.18. Note that for every a ∈ {0, 1, . . . , pe − 1} the quotient M/m
(e)
a is

naturally identified with the submodule M(a). It follows that if N ⊆ M is a

submodule then the natural map N/m
(e)
a → M/m

(e)
a is injective, which shows that

Conte(Ẑ(p),Fp)/m
(e)
α is a flat Conte(Ẑ(p),Fp)-module for every α ∈ Ẑ(p).

We now give a presentation of the algebra Conte(Zp,Fp).

Recall that, given a p-adic integer α ∈ Ẑ(p), we denote αi the i-th digit in the
p-adic expansion of α (see Subsection 2.1). Given an integer e ≥ 0 we denote by

σpe : Ẑ(p) → Fp the function σpe(α) = αe; note that σpe is in Conte+1(Ẑ(p),Fp).

The function σpe can be expressed using binomial coefficients: σpe(α) =
(
α
pe

)
. To

see this, use Lucas’ theorem to observe that whenever α = n ∈ Z≥0, we have(
n
pe

)
≡ αe modulo p, and that therefore σpe is the unique continuous extension to

Ẑ(p) of the map n �→
(
n
pe

)
(considered as a map from Z to Fp).

Lemma 2.19. The ring Conte(Ẑ(p),Fp) is generated by the operators σp0 ,
σp1 , . . . , σpe−1 as an Fp-algebra. Moreover, the assignment xi �→ σpi induces an
Fp-algebra isomorphism

Fp[x0, x1, . . . , xe−1](
xp
i − xi | i = 0, . . . , e− 1

) ∼= Conte(Ẑ(p),Fp).
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Proof. Every function in Conte(Ẑ(p),Fp) is determined uniquely by its values on
{0, 1, . . . , pe − 1} and, conversely, any Fp-valued function on {0, 1, . . . , pe − 1} ex-

tends uniquely to an element of Conte(Ẑ(p),Fp).
By identifying every element of {0, . . . , pe−1} with its base-p expansion we obtain

a bijection {0, . . . , pe − 1} ∼= Fe
p. We therefore have Fp-algebra isomorphisms

Conte(Ẑ(p),Fp) ∼= Fun({0, . . . , pe − 1},Fp) ∼= Fun(Fe
p,Fp),

and one checks that, under these identifications, the functions σpe are sent to the
coordinate functions on Fe

p. Since Fe
p is a finite set every Fp-valued function on it

is a polynomial on the coordinate functions. We conclude that Conte(Ẑ(p),Fp) is
a quotient of Fp[x0, . . . , xe−1]/(x

p
i − xi) and, since both of these algebras have the

same number of elements, the result follows. �

We conclude that Cont(Ẑ(p),Fp) is generated by the operators σpi (i ∈ Z≥0),
and that we have an algebra isomorphism

Fp[x0, x1, . . . ](
xp
i − xi | i ∈ Z≥0

) ∼= Cont(Ẑ(p),Fp).

In particular, given an F -finite ring R and an element f ∈ R, we can identify

Cont(Ẑ(p), Rf ) = Rf [σp0 , σp1 , . . . , ] and Cont(Ẑ(p), DR) = DR[σp0 , σp1 , . . . ]; these
are positive characteristic analogues of the objects Rf [s] and DR[s] of classical

Bernstein-Sato theory, while the algebra Cont(Ẑ(p),Fp) plays the role of the algebra

C[s] for the operator s = −
∑r

i=1 ∂titi.

Let us now turn our attention to the algebra Cont(Ẑ(p),Fp) and its modules.

Once again we associate to every α ∈ Ẑ(p) a maximal ideal

mα := {ϕ ∈ Cont(Ẑ(p),Fp) | ϕ(α) = 0}.

Every maximal ideal of Cont(Ẑ(p),Fp) is of the form mα for some α ∈ Ẑ(p) [Bit18].

Given a Cont(Ẑ(p),Fp)-module M and a p-adic integer α ∈ Ẑ(p), we denote by
Mα the quotient

Mα := M/mαM.

If N ⊆ M is a submodule, Nα is naturally a submodule of Mα by the following
result.

Lemma 2.20. The module Cont(Ẑ(p),Fp)/mαCont(Ẑ(p),Fp) is flat over

Cont(Ẑ(p),Fp).

Proof. For simplicity of notation, let us denote the algebra Cont(Ẑ(p),Fp) (resp.

Conte(Zp,Fp)) by C (resp. Ce). Note that C/mα = lim→e C
e/m

(e)
α , and that if N

is a C-module then there is a natural map

lim
→e

(Ce/m(e)
α ⊗Ce N) −→ (C/mα)⊗C N,

which we claim is an isomorphism. Indeed, giving a C-multilinear map C/mα ×
N → W is equivalent to giving a compatible collection of Ce-multilinear maps

Ce/m
(e)
α ×N → W , which shows that both objects have the same universal property.

We know that Ce/m
(e)
α is flat over Ce (cf. Remark 2.18); since taking limits is

an exact operation the result follows. �
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Lemma 2.21. Let M be a Cont(Ẑ(p),Fp)-module. If Mα = 0 for all p-adic integers

α ∈ Ẑ(p), then M = 0.

Proof. Fix an integer e≥0. Given a ∈ {0, . . . , pe−1} denote by χ
(e)
a ∈Conte(Ẑ(p),Fp)

the function such that χ
(e)
a (β) = 1 whenever β ≡ a mod pe and such that χ

(e)
a (β) =

0 otherwise. We observe that a function ϕ ∈ Cont(Ẑ(p),Fp) belongs to mα if and

only if χ
(e)
α ϕ = 0 for a sufficiently large e; indeed, it suffices to take e large enough so

that ϕ ∈ Conte(Ẑ(p),Fp). We conclude that, given an element u ∈ M and a p-adic

integer α ∈ Ẑ(p) there exists some large eα such that χ
(eα)
α u = 0 or, equivalently,

(1− χ
(eα)
α )u = u.

The union
⋃

α∈Ẑ(p)
(α+ peαẐ(p)) forms an open cover of Ẑ(p) which, by the com-

pactness of Ẑ(p), admits a finite subcover Ẑ(p) =
⋃n

i=1(α(i) + p
eα(i) Ẑ(p)). We con-

clude that

u = (1− χ
(eα(1)

)

α(1)
) · · · (1− χ

(eα(n)
)

α(n)
)u = 0. �

Proposition 2.22. Let M be a Cont(Ẑ(p),Fp)-module. Suppose that there are only

finitely many α ∈ Ẑ(p) such that Mα �= 0, say α(1), . . . , α(n). Then the natural map

M
∼−→
⊕n

i=1 Mα(i)
is an isomorphism that identifies Mα(i)

with AnnM (mα).

Proof. Let K (resp. Q) be the kernel (resp. cokernel) of the map M →⊕n
i=1 Mα(i)

.
We thus have an exact sequence

0 → K → M →
n⊕

i=1

Mα(i)
→ Q → 0.

We claim that we have Kβ = Qβ = 0 for all β ∈ Ẑ(p).
Indeed, if β �= α(i) for any i, then applying the functor (−)β to the exact sequence

above yields
0 → Kβ → 0 → 0 → Qβ → 0,

by Lemma 2.20. If β = α(i), then we get

0 → Kβ → Mβ
id−→ Mβ → Qβ → 0.

From Lemma 2.21, we conclude that K = Q = 0. �

Finally, we illustrate how the algebras Conte(Ẑ(p),Fp) and Cont(Ẑ(p),Fp) arise
naturally in the context of differential operators.

We consider the map

Δ : Cont(Ẑ(p), DR) −→ (DR[t])0

that sends ξ ∈ Cont(Ẑ(p), DR) to the unique operator ξ̃ on R[t] such that

ξ̃ · fta = (ξ(−r − |a|) · f)ta

for every f ∈ R and all a ∈ Zr
≥0. Note that, for all e ≥ 0, whenever ξ ∈

Conte(Ẑ(p), D
(e)
R ) we get that Δ(ξ) ∈ (D

(e)
R[t])0. We therefore get an induced map

Δe : Conte(Ẑ(p), D
(e)
R ) → (D

(e)
R[t])0.

Lemma 2.23. The morphism Δ : Cont(Ẑ(p), DR) −→ (DR[t])0 previously con-
structed is injective. Moreover, when r = 1, Δ is an isomorphism.
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Proof. We have that Cont(Ẑ(p), DR) = DR ⊗Fp
Cont(Ẑ(p),Fp) and that (DR[t])0 =

DR ⊗Fp
(DFp[t])0 (see Lemma 2.12), and the morphism respects these decomposi-

tions. It therefore suffices to prove the claims in the case where R = Fp.

In this case, note that an operator δ ∈ Cont(Ẑ(p), DFp
) is sent to the unique

operator δ̃ on Fp[t] for which δ̃ · ta = δ(−r − |a|)ta. If δ̃ = 0, then δ = 0.
Now, let r = 1. If δ is a differential operator of degree zero on Fp[t] then there

exists a unique function φδ : Z≥0 → Fp such that δ · ta = φδ(a)t
a for all a ∈ Z≥0.

If δ ∈ (D
(e)
Fp[t]

)0, then δ · ta+bpe

= (δ · ta)tbpe

for all b ∈ Z≥0, so φδ(a) = φδ(a+ bpe);

therefore, φδ extends to an element of Conte(Ẑ(p),Fp). The assignment δ �→ ξδ,
where ξδ(a) = φδ(1− a) provides a two-sided inverse to the morphism given. �

Remark 2.24. It may seem unnatural to take ξ(−r − |a|) in the definition of Δ, as
opposed to ξ(|a|). This is a natural consequence of the convention of working with
the operator s1 = −∑r

i=1 ∂titi in characteristic zero, as opposed to the operator∑r
i=1 ti∂ti . Note that we have Δ(σpe) = spe for every e ≥ 0.

3. Differential jumps

Definition 3.1. Let R be an F -finite ring and a ⊆ R be an ideal. We say that an

integer n ≥ 0 is differential jump of level e of a if the inclusion D
(e)
R ·an ⊇ D

(e)
R ·an+1

is proper. We write B•
a(p

e) for the collection of all differential jumps of level e.

We note that n ∈ B•
a(p

e) if and only if an �⊆ D
(e)
R · an+1.

Remark 3.2.

(i) If W ⊆ R is a multiplicative subset and a ⊆ R is an ideal, then we have

D
(e)
W−1R · aW−1R = (D

(e)
R · a)W−1R;

cf., [BJNB19, Proposition 2.17]. If g1, . . . , gk ∈ R are such that (g1, . . . , gk)
= R and Max(R) denotes the collection of all maximal ideals of R, then we
have

B•
a(p

e) =

k⋃

i=1

B•
aRgi

(pe) =
⋃

m∈Max(R)

B•
aRm

(pe).

(ii) If (R,m) is local and F -finite and a ⊆ R is an ideal then we have

R̂ ⊗R (DR · a) ∼= DR̂ · (aR̂) [BJNB19, Proposition 2.24]. We conclude

that D
(e)
R · an/D(e)

R · an+1 �= 0 if and only if

0 �= R̂ ⊗R
D

(e)
R · an

D
(e)
R · an+1

∼= R̂ ⊗R (D
(e)
R · an)

R̂ ⊗R (D
(e)
R · an+1)

∼=
D

(e)

R̂
· (aR̂)n

D
(e)

R̂
· (aR̂)n+1

,

and therefore B•
a(p

e) = B•
aR̂

(pe).

(iii) If R is graded with homogeneous maximal ideal m, and a is homogeneous,

then D
(e)
R ·an/D(e)

R ·an+1 is a graded module. Therefore, D
(e)
R ·an/D(e)

R ·an+1

�= 0 if and only if

0 �=
(

D
(e)
R · an

D
(e)
R · an+1

)

m

∼=
D

(e)
Rm

· (aRm)
n

D
(e)
Rm

· (aRm)n+1
,

and therefore B•
a(p

e) = B•
aRm

(pe).
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To compute differential jumps, we can also reduce to the case of an infinite
residue field by Lemma 3.3.

Lemma 3.3. Let (R,m,K) be an F -finite local ring and consider the extension
(S, n, L) given by

(S, n, L) := (R[x]mR[x],mR[x]mR[x],K(x)).

Then:

(i) The extension (S, n, L) is faithfully flat, F -finite, and local.

(ii) For every ideal a ⊆ R we have �(a) = �(aS), where � denotes analytic
spread.

(iii) If R is F -split, then so is S.

(iv) For every integer e ≥ 0 and every ideal a ⊆ R we have B•
a(p

e) = B•
aS(p

e).

Proof. The statements in (i), (ii), (iii) are standard [HS06, §8.5]. For (iv) observe

that, by Lemma 2.12, we have D
(e)
R[x] · (bR[x]) = (D

(e)
R · b)R[x] for any ideal b ⊆ R.

Then, by Remark 3.2, we have D
(e)
S · (bS) = (D

(e)
S · b)S. The claim on differential

jumps then follows by faithful flatness. �

Differential jumps can also be characterized in terms of D
(e)
R -ideals.

Definition 3.4. Let R be an F -finite ring. An ideal a of R is a D
(e)
R -ideal if it is

a D
(e)
R -submodule of R, equivalently, D

(e)
R · a ⊆ a.

We record two natural families of D
(e)
R -ideals.

Lemma 3.5. Let a ⊆ R be an ideal.

(i) The e-th Frobenius power a
[pe] of a is a D

(e)
R -ideal.

(ii) The Cartier preimage Ie(a) := {f ∈ R | Ce
R · f ⊆ a} of a is a D

(e)
R -ideal.

Proof. Let δ ∈ D
(e)
R .

For (i), let a = (f1, . . . , fr) and
∑

i gif
pe

i ∈ a
[pe]. Then δ(

∑
i gif

pe

i ) =
∑

i f
pe

i δ(gi)

∈ a
[pe].
For (ii), given f ∈ Ie(a), and ψ ∈ Ce

R, we have ψ · (δ · f) = (ψ ◦ δ) · f ∈ a since
ψ ◦ δ ∈ Ce

R. Thus, δ · f ∈ Ie(a). �

Remark 3.6. If a = R is the unit ideal, then B•
a(p

e) = ∅ for all e. Conversely, if

a � R is a proper ideal, we can take k such that a
k ⊆ a

[pe], and then D
(e)
R · ak ⊆

D
(e)
R · a[pe] = a

[pe] �= R = D(e) · a0 for every e, so B•
a(p

e) �= ∅ for every e.

Lemma 3.7. Let a, b ⊆ R be two ideals and e ≥ 0 be an integer. If D
(e)
R ·a = D

(e)
R ·b,

then Ce
R · a = Ce

R · b.

Proof. Note that Ce
R ◦ D

(e)
R = Ce

R. We therefore get Ce
R · a = Ce

R · (D(e)
R · a) =

Ce
R · (D(e)

R · b) = Ce
R · b. �

Definition 3.8. Let R be an F -finite ring and fix an ideal a ⊆ R. Let b ⊆ R be a

proper D
(e)
R -ideal such that a ⊆

√
b. We define

Bb

a(p
e) := max{n ≥ 0 : D

(e)
R · an �⊆ b}.
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Recall that, by convention, we have a0 = R and, since b is proper by assumption,

the set {n ≥ 0 : D
(e)
R · an �⊆ b} is never empty. Moreover, since a ⊆

√
b, we may

pick some m > 0 such that a
m ⊆ b. If we pick k > 0 so that a

k ⊆ a
m[pe], then

D
(e)
R · ak ⊆ D

(e)
R · am[pe] ⊆ a

m[pe] ⊆ b. We conclude that the maximum above does
indeed exist.

Remark 3.9. If R is regular, then2 every D
(e)
R -ideal b can be realized as b = c

[pe]

for some ideal c. In this case, we have Bb
a(p

e) = νca(p
e), where νca(p

e) are the
ν-invariants introduced by Mustaţă, Takagi, and Watanabe [MTW05].

Lemma 3.10. If a ⊆ R is an ideal, then

B•
a(p

e) = {Bb

a(p
e) | b is a D

(e)
R -ideal, a ⊆

√
b �= (1)}.

Proof. If b is a D
(e)
R -ideal with a ⊆

√
b, and n = Bb

a(p
e), then D

(e)
R · an �⊆ b and

D
(e)
R · an+1 ⊆ b, so D

(e)
R · an �= D

(e)
R · an+1. Conversely, if D

(e)
R · an �= D

(e)
R · an+1,

then b = D
(e)
R · an+1 is a D

(e)
R -ideal, and n = Bb

a(p
e). �

Lemma 3.11. Let a ⊆ R be an ideal and n, e, a ≥ 0 be integers. If D
(e)
R · an =

D
(e)
R · an+1, then D

(e+a)
R · an = D

(e+a)
R · an+1. Thus, B•

a(p
e) ⊇ B•

a(p
e+a).

Proof. If D
(e)
R · an = D

(e)
R · an+1, then

D
(e+a)
R · an = D

(e+a)
R · (D(e)

R · an) = D
(e+a)
R · (D(e)

R · an+1) = D
(e+a)
R · an+1. �

Lemma 3.12. Let a ⊆ R be an ideal generated by r elements. If n ≥ mpe + (r −
1)(pe − 1), then a

n = a
n−mpe

(a[p
e])m.

Proof. The statement reduces to the casem = 1. The containment of the right-hand
side in the left is clear. For the other, by the pigeonhole principle, any monomial
of degree greater than r(pe − 1) in the generators of a must be a multiple of a peth
power of a generator, from which the claim is clear. �

Proposition 3.13. Let R be an F -finite ring and a ⊆ R be an ideal. If a is

generated by r elements, n ≥ r(pe − 1) + 1, and D
(e)
R · an−pe

= D
(e)
R · an−pe+1, then

D
(e)
R · an = D

(e)
R · an+1. Hence, if n ∈ B•

a(p
e), then n− pe ∈ B•

a(p
e).

If a is principal and generated by a nonzerodivisor, n ≥ pe, and D
(e)
R · an =

D
(e)
R · an+1, then D

(e)
R · an−pe

= D
(e)
R · an−pe+1.

Proof. By Lemma 3.12, we have that D(e) · an = D(e) · (a[pe]
a
n−pe

) = a
[pe](D(e) ·

a
n−pe

) and D(e) · an+1 = a
[pe](D(e) · an−pe+1) likewise. Then, if D(e) · an−pe

=
D(e) · an−pe+1, we must have D(e) · an = D(e) · an+1.

If f is a nonzerodivisor, a = (f), and n ≥ pe, we have fpe

D
(e)
R ·an−pe

= D
(e)
R ·an.

Then, D
(e)
R · an = D

(e)
R · an+1 implies D

(e)
R · an−pe

= D
(e)
R · an−pe+1. �

Lemma 3.14. Let a ⊆ R be an ideal and fix integers n < m. Then D
(e)
R · an =

D
(e)
R · am if and only if D

(e)
R · aj = D

(e)
R · aj+1 for all n ≤ j ≤ m− 1. Equivalently,

D
(e)
R · an = D

(e)
R · am if and only if [n,m) ∩ B•

a(p
e) = ∅.

2This is well-known to experts; it follows, for example, by using Frobenius descent [ÀMBL05].
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Proof. The statement follows from the chain of ideals

D
(e)
R · an ⊇ D

(e)
R · an+1 ⊇ · · · ⊇ D

(e)
R · am. �

Lemma 3.15. Suppose R is F -split. Let b ⊆ a ⊆ R be ideals and e, a ≥ 0 be

integers. Then D
(e)
R · a = D

(e)
R · b if and only if D

(e+a)
R · a[pa] = D

(e+a)
R · b[pa].

Proof. It suffices to prove the lemma for a = 1. Fix a splitting σ of the Frobenius.
Let a = (f1, . . . , ft) and b = (g1, . . . , gs).

For the forward implication, if D
(e)
R ·a = D

(e)
R ·b, then f1, . . . , ft ∈ D

(e)
R ·b. Then,

fi =
∑

j δij(gj) for some δij ∈ D
(e)
R . Thus, F ◦ δij ◦ σ ∈ De+1

R . We have

∑

j

F ◦ δij ◦ σ(gpj ) =
∑

j

F ◦ δij(gj) = F

⎛
⎝∑

j

δij(gj)

⎞
⎠ = fp

i ,

and so D
(e+1)
R · a[p] = D

(e+1)
R · b[p].

Conversely, if D
(e+1)
R · a[p] = D

(e+1)
R · b[p], then fp

1 , . . . , f
p
t ∈ D

(e+1)
R · b[p]. Thus,

fp
i =

∑
j δij(g

p
j ) for some δij ∈ D

(e+1)
R . Then σ ◦ δij ◦ F ∈ D

(e)
R . We have

∑

j

σ ◦ δij ◦ F (gj) =
∑

j

σ ◦ δij(gpj ) = σ

⎛
⎝∑

j

δij(g
p
j )

⎞
⎠ = σ(fp

i ) = fi,

and so D
(e)
R · a = D

(e)
R · b. �

Proposition 3.16. Let R be an F -finite and F -split ring, a be an ideal with r
generators, and m ≥ n ≥ 0 be integers. Then for all integers e, a ≥ 0 we have:

(i) If n ∈ B•
a(p

e), then [npa, npa + r(pa − 1)] ∩ B•
a(p

e+a) �= ∅.

(ii) If [n−r+1,m−1]∩B•
a(p

e) = ∅, then [npa−r+1,mpa−1]∩B•
a(p

e+a) = ∅.

Proof. For part (i), we consider the chain of ideals

a
npa ⊇ a

n[pa] ⊇ a
(n+1)[pa] ⊇ a

(n+1)pa+(r−1)(pa−1) = a
npa+r(pa−1)+1

(see Lemma 3.12). Acting with D
(e+a)
R , we obtain the chain

D
(e+a)
R · anpa ⊇ D

(e+a)
R · an[pa] ⊇ D

(e+a)
R · a(n+1)[pa] ⊇ D

(e+a)
R · anpa+r(pa−1)+1.

By Lemma 3.15, the two ideals in the middle differ, so the two outer ones must also
differ. The statement then follows from Lemma 3.14.

Part (ii) follows similarly: we consider the chain

a
(n−r+1)[pa] ⊇ a

(n−r+1)pa+(r−1)(pa−1) = a
npa−r+1 ⊇ a

mpa ⊇ a
m[pa],

which gives

D
(e+a)
R · a(n−r+1)[pa] ⊇ D

(e+a)
R · anpa−r+1 ⊇ D

(e+a)
R · ampa ⊇ D

(e+a)
R · am[pa].

Lemma 3.14 and Lemma 3.15 give that the two outer ideals are equal, and hence
the two in the middle must also be equal. Another application of Lemma 3.14 gives
the statement. �
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4. Bernstein-Sato roots

We now begin the study of the first invariant of real interest: the Bernstein-Sato
roots of an ideal. These provide a characteristic-p analogue of the roots of the
Bernstein-Sato polynomial, although Definition 4.1 provides no indication of why
that would be the case; such an explanation is given later in Section 7. However,
using Definition 4.1 has many advantages: it does not involve any technicalities
beyond those of differential jumps, it provides an easier way of computing Bernstein-
Sato roots and it also is more useful for proving statements.

4.1. Definition and basic properties.

Definition 4.1. Let R be F -finite, and a be an ideal. We say that α ∈ Ẑ(p) is a
Bernstein-Sato root of a if there is a sequence (νe)

∞
e=0 with νe ∈ B•

a
(pe) such that α

is the p-adic limit of νe. We denote by BSR(a) the set of Bernstein-Sato roots of a.

We recall that a sequence of p-adic numbers (νe) converges to a p-adic number
α if and only if for every m ∈ Z≥0 there is some N ∈ Z≥0 such that pm | (α− νe)
for all e ≥ N .

Remark 4.2. Note that, given a sequence (νe)
∞
e=0 ⊆ Z≥0, the condition that νe ∈

B•
a(p

e) for every e ≥ 0 passes to subsequences. Indeed, if (νei) is a subsequence,
then νei ∈ B•

a(p
ei) ⊆ B•(pi) for every i ≥ 0.

Proposition 4.3. Let R be F -finite, a be an ideal with r generators and α ∈ Ẑ(p)

be a p-adic integer. The following are equivalent:

(a) α is a Bernstein-Sato root of a.

(b) For all e ≥ 0 there is some se ∈ {0, . . . , r − 1} such that α<e + sep
e ∈

B•
a(p

e).

(c) There is an infinite subset {ej} ⊆ Z≥0 and differential jumps νj ∈ B•
a(p

ej )
such that (νj) converges to α.

Proof. For (a) implies (b), let α be a Bernstein-Sato root of a, and νe ∈ B•
a(p

e)
such that α = lim νe. For every a there is some ea such that pa|(α − νj) for all
j ≥ ea; without loss of generality, we can take ea ≥ a. Consider the sequence
ηa = νea . By Lemma 3.11, ηa ∈ B•

a(p
a), and by construction, pa|(α − νa) for all

a. Then, by Proposition 3.13, we may subtract a multiple of pa from ηa to obtain
another sequence μa in which 0 ≤ μa < rpa, and pa|(α − μa) for all a. It follows
that μa = α<a + sap

a ∈ B•
a(p

a) with sa ∈ {0, . . . , r − 1} as required.
The implication (b) implies (c) is clear.
For (c) implies (a), it suffices to see that given a p-adically convergent sequence

of the form νea ∈ B•
a(p

ea) for ea an infinite increasing sequence of integers that
we can extend this to a sequence νe ∈ B•

a(p
e) for all e ∈ Z≥0. This follows from

Lemma 3.11. �

Remark 4.4. It follows from the definition and from Remark 3.6 that if a = R, then
BSR(a) = ∅. On the other hand, if a � R is a proper ideal, then by Remark 3.6

there is a differential jump of level e for every e, and by compactness of Ẑ(p)

condition (c) of Proposition 4.3 holds for some α, so BSR(a) �= ∅.

In Section 7 we show that whether a p-adic integer is a Bernstein-Sato root or
not is given in terms of the nonvanishing of a certain module, whose construction
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is compatible with localization. From this it follows that Bernstein-Sato roots are
local invariants; however, we give a proof of this fact here that does not require the
material of Section 7.

To begin, let a ⊆ R be an ideal and fix an integer r ≥ 0 such that a can be
generated by r elements. Given a positive integer e ≥ 0 and a p-adic integer α we
denote by Ja(p

e, α) the set

Ja(p
e, α) := {α<e + spe | s = 0, 1, . . . , r − 1} ∩ B•

a(p
e).

Lemma 4.5. The p-adic integer α is not a Bernstein-Sato root of a if and only if
there is some e large enough so that Ja(p

e, α) = ∅, in which case Ja(p
a, α) = ∅

for all a ≥ e.

Proof. The first statement follows from the equivalence of (a) and (b) in Proposition
4.3. For the second statement, it is enough to show that whenever Ja(p

e, α) = ∅
then Ja(p

e+1, α) = ∅, which we prove by contradiction. Suppose that a is generated
by r elements. If we had some n ∈ Ja(p

e+1, α), then we have n ∈ B•
a(p

e+1), and
thus n ∈ B•

a(p
e) (see Lemma 3.11). From Proposition 3.13 we conclude that there

is some integer k ≥ 0 such that n − kpe ∈ B•
a(p

e) and 0 ≤ n − kpe < rpe. Since
n ≡ α mod pe+1, we have n−kpe ≡ α mod pe, and therefore n−kpe = α<e+ spe

for some s ∈ {0, 1, . . . , r − 1}. We conclude that n − kpe ∈ Ja(p
e, α), giving the

desired contradiction. �

Lemma 4.6. Suppose g1, . . . , gk ∈ R are such that (g1, . . . , gk) = (1). For a fixed

p-adic integer α ∈ Ẑ(p) and integer e ≥ 0 the following are equivalent:

(a) We have Ja(p
e, α) = ∅.

(b) We have JaRgi
(pe, α) = ∅ for all i = 1, . . . , k.

(c) We have JaRm
(pe, α) = ∅ for all maximal ideals m ⊆ R.

Proof. This follows from Remark 3.2. �

Lemma 4.7. Let m ⊆ R be a maximal ideal, α ∈ Ẑ(p) be a p-adic integer and
e ≥ 0 be an integer. If JaRm

(pe) = ∅, then there exists some g ∈ R \ m such that
JaRg

(pe) = ∅.

Proof. Let S denote the set S := {α<e + spe : s = 0, 1, . . . , r− 1}. By Remark 3.2,

JaRm
(pe) = ∅ precisely when (D

(e)
R · an)Rm = (D

(e)
R · an+1)Rm for all n ∈ S; that

is, whenever m is not in the support of the module
⊕

n∈S D
(e)
R ·an/D(e)

R ·an+1. The
result then follows from the fact that the support of a finitely-generated module is
closed. �

Proposition 4.8. Let R be a noetherian F -finite ring and a ⊆ R be an ideal. Let
g1, . . . , gk ∈ R be such that (g1, . . . , gk) = (1) and let Max(R) denote the set of all
maximal ideals of R. We then have:

BSR(a) =

k⋃

i=1

BSR(aRgi) =
⋃

m∈Max(R)

BSR(aRm).

Proof. Lemmas 4.5 and 4.6 give the first equality, and show that BSR(a) ⊇⋃
m
BSR(aRm). To prove that BSR(a) ⊆ BSR(aRm), suppose that α ∈ Ẑ(p) is

such that α /∈ BSR(aRm) for all maximal ideals m. By Lemma 4.5 and Lemma
4.7 we conclude that for every m ∈ Max(R) there is some integer em and some
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5144 J. JEFFRIES, L. NÚÑEZ-BETANCOURT, E. QUINLAN-GALLEGO

element gm ∈ R \ m such that JRgm
(pem , α) = ∅. The elements (gm|m ∈ Max(R))

generate the unit ideal and therefore there is a finite subcollection of them, say g1 =
gm1

, . . . , gk = gmk
, that still generates the unit ideal. If e = max{em1

, . . . , emk
},

then, JaRgi
(pe, α) = ∅ for all i = 1, . . . , k by Lemma 4.5. Therefore Ja(p

e, α) = ∅
by Lemma 4.6. We conclude that α /∈ BSR(a) by Lemma 4.5. �

Proposition 4.9. Let R be a noetherian F -finite ring and a ⊆ R be an ideal.

(i) If R is positively graded with homogeneous maximal ideal m and a is
homogeneous, then BSR(a) = BSR(aRm).

(ii) If R is local, then BSR(a) = BSR(aR̂).

Proof. Both facts follow from Remark 3.2. �

4.2. Finiteness and rationality results. We now introduce a finiteness condi-
tion that has important consequences for Bernstein-Sato roots.

Definition 4.10. Let R be an F -finite ring and a ⊆ R be an ideal generated by r
elements. We say that a is Bernstein-Sato admissible if there is a constant C > 0
such that

#
(
B•
a(p

e) ∩ [0, rpe)
)
≤ C

for every e ∈ Z≥0. We say that R is a Bernstein-Sato admissible ring if all of its
ideals are Bernstein-Sato admissible.

In our definition of Bernstein-Sato root we only require that the number of
differential jumps of level e in the interval [0, rpe) is bounded, but the subtraction
property of differential jumps (Proposition 3.13) gives a stronger statement.

Proposition 4.11. Let R be an F -finite ring and a ⊆ R be an ideal. The ideal a
is Bernstein-Sato admissible if and only if there are constants A,B > 0 such that
for all integers e, s ≥ 0 we have

#

(
B•
a(p

e) ∩ [0, s)

)
≤ A

s

pe
+B.

Proof. Suppose that a is generated by r elements. We note that if a is Bernstein-
Sato admissible, then there exists A,B > 0 such that for all e, s ≥ 0 we have

#

(
B•
a(p

e)∩ [0, s)

)
≤ A s

pe +B by setting s = rpe. To prove the converse statement,

let C > 0 be a constant as in Definition 4.10. We observe that for all integers k ≥ 1
we have #

(
B•
a(p

e) ∩ [(k − 1)pe, kpe)
)
≤ C: this follows when 1 ≤ k ≤ r, and for

k > r it follows from Proposition 3.13. We conclude:

#

(
B•
a(p

e) ∩ [0, s)

)
≤ #

( �s/pe�⋃

k=1

B•
a(p

e) ∩ [(k − 1)pe, kpe)

)

≤
⌈
s

pe

⌉
C

≤
(

s

pe
+ 1

)
C = C

s

pe
+ C. �

Corollary 4.12. Whether a is Bernstein-Sato admissible or not does not depend
on the choice of r.
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Theorem 4.13. Let R be an F -finite ring and a ⊆ R a Bernstein-Sato admissible
ideal. Then a has finitely many Bernstein-Sato roots.

Proof. Pick an integer C > 0 such that #
(
B•
a(p

e) ∩ [0, rpe)
)
≤ C for all e ≥

0. We claim that there are at most C Bernstein-Sato roots, and we prove it by
contradiction. Suppose that {α1, . . . , αC+1} are distinct Bernstein-Sato roots of a,
and choose N large enough so that αi �≡ αj mod pN for all i �= j. By Proposition
4.3 we know there is some e large enough and ν1, . . . νC+1 ∈ B•

a(p
e), with 0 ≤ νi <

rpe, such that νi ≡ αi mod pN , and therefore ν1, . . . , νC+1 are distinct differential
jumps. This gives the desired contradiction. �

Lemma 4.14. Let R be F -split, a ⊆ R be an ideal generated by r elements, α ∈
Ẑ(p) be a Bernstein-Sato root of a and a ≥ 0 be an integer. There exists some
i ∈ {0, 1, . . . , r(pa − 1)} such that paα+ i is a Bernstein-Sato root of a.

Proof. Pick a sequence (νe) such that νe ∈ B•
a(p

e) whose p-adic limit is α. By
Proposition 3.16, for every e there is some ie ∈ {0, 1, . . . , r(pa − 1)} such that
paνe + ie ∈ B•

a(p
e+a). Since {0, 1, . . . , r(pa − 1)} is a finite set, there is some i ∈

{0, 1, . . . , r(pa−1)} and an increasing sequence (ej) such that paνej +i ∈ B•
a(p

ej+a).
The p-adic limit of paνej + i is paα + i, and the result follows from Proposition
4.3. �

We recall that an ideal J is a reduction of an ideal I with reduction number n if
JIn = In+1 and JIn−1 �= JIn.

Lemma 4.15. Let R be an F -finite local ring, a ⊆ R be an ideal and b ⊆ a be a
reduction of a with reduction number k. Then:

(i) For all integers e ≥ 0 we have B•
a(p

e) ⊆
⋃k

i=0 B•
b
(pe) + i and B•

b
(pe) ⊆⋃k

i=0 B•
a(p

e)− i.

(ii) The ideal a is Bernstein-Sato admissible if and only if b is Bernstein-Sato
admissible.

(iii) We have BSR(a) ⊆ ⋃k
i=0 BSR(b) + i and BSR(b) ⊆ ⋃k

i=0 BSR(a)− i.

Proof. Part (i) follows by considering the following chains of ideals:

D
(e)
R · bn−k ⊇ D

(e)
R · an ⊇ D

(e)
R · an+1 ⊇ D

(e)
R · bn+1,

D
(e)
R · an ⊇ D

(e)
R · bn ⊇ D

(e)
R · bn+1 ⊇ D

(e)
R · an+k+1,

and applying Lemma 3.14.
Let us now prove part (ii); we use the alternative characterization of Bernstein-

Sato admissibility given in Proposition 4.11. Suppose that a is Bernstein-Sato
admissible and pick constants Aa, Ba such that #

(
B•
a(p

e)∩ [0, s)
)
≤ Aa(s/p

e)+Ba

for all e, s ≥ 0. By applying part (i) we conclude that

#

(
B•
b(p

e) ∩ [0, s)

)
≤ #

( k⋃

i=0

B•
a(p

e) ∩ [0, s+ k)− i

)

≤ k

(
Aa

s+ k

pe
+Ba

)

≤ kAa

s

pe
+ k2Aa +Ba.
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For the other direction, suppose b is Bernstein-Sato admissible and choose constants
Ab, Bb similarly. Then

#

(
B•
a(p

e) ∩ [0, s)

)
≤ #

( k⋃

i=0

B•
b(p

e) ∩ [0, s) + i

)

≤ k

(
Ab

s

pe
+Bb

)

= kAb

s

pe
+ kBb.

We now tackle part (iii). Suppose that α ∈ BSR(a), and choose a sequence (νe)
with νe ∈ B•

a(p
e) such that α is the p-adic limit of νe. By part (i), for every e ≥ 0

there is some ie ∈ {0, 1, . . . , k} such that νe − ie ∈ B•
b
(pe). We conclude there is

some i ∈ {0, 1, . . . , k} and a subsequence (νej ) such that νej − i ∈ B•
b
(pej ). The

p-adic limit of this subsequence is α− i which, by Remark 4.2, is a Bernstein-Sato
root of b. Therefore, α ∈ BSR(b) + i. The other statement follows similarly. �

Theorem 4.16. Let R be an F -finite F -split ring. Let a be a Bernstein-Sato
admissible ideal. Then every Bernstein-Sato root of a is rational.

Proof. Recall that BSR(a) denotes the set of Bernstein-Sato roots of a, and let

B̃SR(a) ⊆ Ẑ(p)/Z be its image under the quotient map Ẑ(p) → Ẑ(p)/Z; in other

words, B̃SR(a) = {α + Z | α ∈ BSR(a)}. Note that, by Lemma 4.14, B̃SR(a) is
closed under multiplication by p.

Let α ∈ Ẑ(p) be a Bernstein-Sato root. Since B̃SR(a) is a finite set, there exist
some n < m such that pnα ≡ pmα mod Z; that is, there exists some c ∈ Z such
that pnα = pmα + c. It follows that α = c/(pn(pm−n − 1)) and thus α is rational
(note that, a posteriori, we know that pn must divide c). �

Lemma 4.17. Let R be an F -finite F -split ring. Let a be an r-generated ideal of
R. Let α ∈ Z(p) be a Bernstein-Sato root of a.

(i) If α > 0, then there exists an increasing sequence {nj} ⊂ Z≥0 such that
α+ nj is a Bernstein-Sato root of a for each j.

(ii) If α < −r, then there exists an increasing sequence {nj} ⊂ Z≥0 such that
α− nj is a Bernstein-Sato root of a for each j.

Proof. For the first part, it suffices to show that there is some positive integer

n such that α + n is a Bernstein-Sato root. We can write α =
a

1− pe
+ b with

a, b ∈ Z≥0 such that 0 ≤ a < pe − 1 and b > 0. By Lemma 4.14, there is some
i ∈ {0, . . . , r(pe−1)} such that peα+i is a root. We have peα+i = α+(pe−1)b−a+i.
Since a < pe − 1 < (pe − 1)b, the claim follows.

Likewise, for the second part, it suffices to show that there is some negative

integer n such that α+n is a Bernstein-Sato root. We can write α =
a

pe − 1
− r− b

with a, b ∈ Z≥0 such that 0 ≤ a < pe − 1 and b > 0. Then peα + i = −(pe −
1)r + a − (pe − 1)b + α + i is a root for some i ∈ {0, . . . , r(pe − 1)}. We have
−(pe − 1)r + a− (pe − 1)b+ α+ i ≤ a− (pe − 1)b+ α ≤ α, so we are done. �

Theorem 4.18. Let R be an F -finite F -split ring. Let a be a Bernstein-Sato
admissible ideal with r generators. Then every Bernstein-Sato root of R lies in the
interval [−r, 0].
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Proof. Since a is Bernstein-Sato admissible, the set of roots is finite. The bounds
on the roots then follow from Lemma 4.17. �

Corollary 4.19. Let R be a local F -finite F -split ring. Let a be a Bernstein-Sato
admissible ideal with analytic spread �. Then every Bernstein-Sato root of R lies
in the interval [−�, 0].

Proof. By Remark 3.2 and Lemma 3.3, the statement reduces to the case where R
is local with infinite residue field. In this case, there exists a reduction of a that is
generated by at most � elements. The result then follows from Theorem 4.18 and
Lemma 4.15. �

Corollary 4.20. Let R = C[x1, . . . , xn] be a polynomial ring over C, m be the
maximal ideal m = (x1, . . . , xn) and a ⊆ C[x1, . . . , xn] be a monomial ideal. If
λ ∈ Q is a root of the Bernstein-Sato polynomial of a then −�(aRm) ≤ λ.

Proof. Pick a large prime p and let R̄ = Fp[x1, . . . , xn] be a polynomial ring over
Fp, m̄ ⊆ R̄ denote the maximal ideal m̄ = (x1, . . . , xn) and ā ⊆ R̄ denote the mod-p
reduction of a.

We may pick p large enough so that λ is a Bernstein-Sato root of ā [QG21a,
Theorem 3.1]. Moreover, since the construction of the fiber cone of a with respect
to m is compatible with mod-p reduction, we can further enlarge p to assume3 that
�(aRm) = �(āR̄m̄). Since a is homogeneous, we conclude that λ is a Bernstein-Sato
root of āR̄m̄ (Proposition 4.9), and we conclude that −�(āR̄m̄) ≤ λ from Corollary
4.19. �

In characteristic zero, whenever a ⊆ C[x1, . . . , xn] is a nonzero ideal, all the
roots of the Bernstein-Sato polynomial of a are strictly negative. Since we have
only shown that the Bernstein-Sato roots are nonpositive, the question of whether
zero can be a Bernstein-Sato root arises. We can answer it for principal ideals as
follows.

Proposition 4.21. Let R be an F -finite ring. The following are equivalent:

(a) The ring R is simple as a DR-module.

(b) For all nonzero f ∈ R we have 0 /∈ BSR(f).

Moreover, if these hold then the nilradical
√
0 of R is a prime ideal. In particular,

if R is reduced then it must be a domain.

Proof. Suppose that R is simple as a DR-module. Given a nonzero f ∈ R, we have

DR ·f = R and therefore there is some e large enough so thatD
(e)
R ·f = R = D

(e)
R ·f0.

We conclude that 0 /∈ B•
f (p

e) and, by Proposition 4.3, we conclude that 0 /∈ BSR(f).

Conversely, suppose that 0 ∈ BSR(f) for some nonzero f ∈ R. By Proposition

4.3, for all e ≥ 0 we have 0 ∈ B•
f (p

e) and thus D
(e)
R ·f �= D

(e)
R ·f0 = R. We conclude

that DR · f �= R, and hence R is not simple as a DR-module.
For the last statement, suppose that f, g ∈ R are such that fg ∈

√
0 and f /∈

√
0.

Then the collection H0
g (R) of g-torsion elements of R is a DR-submodule of R which

contains a power of f , and is therefore nonzero. If R is DR-simple, we conclude
that 1 ∈ H0

g (R) and thus some power of g is zero, i.e. g ∈
√
0. �

3In fact, by a result of Singla, the analytic spread of a monomial ideal a ⊆

K[x1, . . . , xn](x1,...,xn) depends only on the Newton polytope of a [Sin07, Cor. 4.10] (see also

[BA03]), and therefore �(aRm) = �(āR̄m̄) for any p.
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Question 4.22. Let R be an F -finite ring that is simple as a DR-module. Do we
have 0 /∈ BSR(a) for all nonzero ideals a ⊆ R?

5. Differential thresholds

In this section we introduce the other key numerical invariant of this paper:
differential thresholds. These are related to F -jumping numbers, F -thresholds,
Cartier thresholds, and Bernstein-Sato roots.

5.1. Definition and basic properties.

Definition 5.1. Let R be an F -finite ring, and a ⊆ R an ideal. We say that
λ ∈ R≥0 is a differential threshold if there exists a sequence of elements νe ∈ B•

a(p
e)

such that λ = lime→∞
νe

pe , where the limit is taken in the usual Euclidean topology.

When R is F -split, it turns out that every differential threshold can be realized
as a limit in a nice way.

Proposition 5.2. Let R be an F -finite F -split ring and λ ∈ R>0. Let a be an r
generated ideal. The following are equivalent:

(a) λ is a differential threshold of a.

(b) For all e ≥ 0, there is a differential jump of level e for a in the interval
[peλ− r, peλ].

(c) There is an infinite set {ej} ⊆ Z>0 and differential jumps νj ∈ B•
a(p

ej )
such that (νj/p

ej ) converges to λ.

Proof. We start by showing that (a) implies (b) by contraposition. Suppose that
[peλ− r, peλ] ∩ B•

a(p
e) = ∅ for some e ≥ 0. Since every differential jump is an

integer, we get that [�peλ
 − r, �peλ�] ∩ B•
a(p

e) = ∅. By Proposition 3.16(ii) we
conclude that, for all integers a ≥ 0,

[
pa�peλ
 − pa − r + 1, pa�peλ�+ pa

)
∩ B•

a(p
e+a) = ∅

and therefore [�peλ
 − 1

pe
− r − 1

pe+a
,
�peλ�+ 1

pe

)
∩ 1

pe+a
B•
a(p

e+a) = ∅,

and thus (�peλ
 − 1

pe
,
�peλ�+ 1

pe

)
∩ 1

pe+a
B•
a(p

e+a) = ∅.

By considering the cases peλ ∈ Z and peλ /∈ Z separately, we observe that

λ ∈
(�peλ
 − 1

pe
,
�peλ�+ 1

pe

)

and therefore λ cannot be a differential threshold.
The implication (b) implies (c) is clear.
To show that (c) implies (a), let (ej) be an infinite increasing sequence of integers;

we need to show that we can extend (νej/p
ej ) to a convergent sequence (νi/p

i),
i ∈ Z≥0. By Proposition 3.16, for νj ∈ B•

a(p
ej ) and for a > ej there is some νa,j ∈

B•
a(p

a) ∩ [νjp
a−ej , (νj + r)pa−ej ]. For i = ej , take νi = νj , and for ej < i < ej+1,

take νi = νi,j . If a, b ≥ ej , and u, v are such that eu ≤ a < eu+1 and ev ≤ b < ev+1,
then∣∣∣∣

νa
pa

− νb
pb

∣∣∣∣ ≤
∣∣∣∣
νa
pa

− νu
peu

∣∣∣∣+
∣∣∣∣
νu
peu

− νv
pev

∣∣∣∣+
∣∣∣∣
νb
pb

− νv
pev

∣∣∣∣ ≤
2r

pej
+

∣∣∣∣
νu
peu

− νv
pev

∣∣∣∣ .
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Since (νj/p
ej ) is a Cauchy sequence, the right-hand side in the previous equation

tends to zero as j → ∞, and hence (νi/p
i) is Cauchy, as required. �

Remark 5.3. It follows from definition and from Remark 3.6 that if a = R, then a

has no differential jumps. Conversely, if a � R is a proper ideal with r generators,
then by Remark 3.6 and Proposition 3.13 there is a differential jump of level e in
the interval [0, rpe] for every e, so by compactness of [0, r] there is a differential
jump for a.

Proposition 5.4. Let R be a noetherian F -split ring of characteristic p, a ⊆ R
be an ideal generated by r elements and k, l ≥ 0 be integers with l − k ≥ r − 1. If
[k, l) ∩ B•

a(p
e) = ∅ for some e ≥ 0, then there are no differential thresholds of a in

the interval
(
(k + r − 1)/pe, l/pe

)
.

Proof. If [k, l) ∩ B•
a(p

e) = ∅ then, by Proposition 3.16, we have
[
kpa + (r − 1)(pa − 1), lpa

)
∩ B•

a(p
e+a) = ∅

for all a ≥ e, and thus
[
k + r − 1

pe
− r − 1

pe+a
,
l

pe

)
∩ 1

pe+a
B•
a(p

e+a) = ∅.

The result follows. �

Remark 5.5. If R is F -split, and a is an r-generated ideal, we have that 0 is a
differential threshold if and only if 0 is differential jump of level e for every e. If

0 /∈ B•
a(p

e), then D
(e)
R · a = R, so D

(e+a)
R · a[pa] = R, and hence D

(e+a)
R · apa

= R
for all a, so there are no thresholds in the interval [0, 1/pe). The other implication
follows from the definition of differential threshold.

If R is F -split, we can also find differential thresholds that are close to differential
jumps.

Lemma 5.6. Let R be an F -finite F -split ring, and a be an ideal with at most
r generators. If n ∈ B•

a(p
e), then there is a differential threshold λ for a in the

interval

[
n

pe
,
n+ r

pe

]
.

Proof. Let νe := n. Applying Proposition 3.16 inductively we build a sequence
(νa)a≥e with νa ∈ B•

a(p
a) such that pνa ≤ νa+1 ≤ pνa + r(p− 1), and thus

νa
pa

≤ νa+1

pa+1
≤ νa

pa
+

r(p− 1)

pa+1
.

In particular, the sequence (νa/p
a) is increasing. We claim it is bounded by (n +

r)/pe; indeed, for all b ≥ 0 we have

νe+b

pe+b
≤ n

pe
+

r(p− 1)

pe+1
+ · · ·+ r(p− 1)

pe+b

≤ n

pe
+

r(p− 1)

pe+1

(
1 +

1

p
+

1

p2
+ · · ·

)

=
n

pe
+

r(p− 1)

pe+1

1

1− 1
p

=
n+ r

pe
.
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Thus, the sequence (νa/p
a) converges to a value in the interval [ npe ,

n+r
pe ]. �

Remark 5.7. Let R be an F -finite ring, and a ⊆ R an ideal. By Lemma 3.10,
we have that λ is a differential threshold if and only if there exists a sequence of

D
(e)
R -ideals Je such that λ = lime→∞

max{n∈Z≥0 | an �⊆Je}

pe .

We now provide several properties of differential thresholds. We first show that
the set formed by them remains the same after taking integral closure. Then, we
show a version of Skoda’s Theorem and a p-fractal property.

Proposition 5.8. Let R be an F -finite ring, and a, b ⊆ R be ideals with the same
integral closure. Then, a and b have the same differential thresholds.

Proof. Since a and b have the same integral closure, there exists an integer a such
that an ⊆ b

n+a ⊆ a
n+2a for every n ∈ Z≥0. Then,

a
n ⊆ b

n+a ⊆ a
n+2a ⊆ b

n+3a ⊆ a
n+4a.

If D
(e)
R · an = D

(e)
R · an+4a, then D

(e)
R · bn+a = D

(e)
R b

n+3a. As a consequence, if

D
(e)
R · bn+a �= D

(e)
R · bn+3a, then D

(e)
R · an �= D

(e)
R · an+4a.

Let λ be a differential threshold of b, and νe differential jumps of level e for b

such that lime→∞
νe

pe = λ. It suffices to show that λ is a differential threshold of

a, as the roles of a and b are interchangeable. Since
⋂

e∈Z>0
Ie(m) is a prime ideal

[AE05], we have that a ⊆ ⋂
e∈Z>0

Ie(m) if and only if b ⊆ ⋂
e∈Z>0

Ie(m). Then,

fpt(a) = 0 if and only if fpt(b) = 0. We can assume that λ is positive, we have
that νe > a for e � 0. We have that D(e) · bνe �= D(e) · bνe+2a. As a consequence,
D(e) ·aνe−a �= D(e) ·an+3a for e � 0. Then, there exists a differential jump of level e
for a, we in {νe−a, νe−a+1, . . . , νe+3a} for e � 0. We have that lime→∞

we

pe = λ.

Then, λ is a differential threshold of a. �

Proposition 5.9. Let R be an F -finite ring, and a ⊆ R an ideal generated by
r elements. If λ > r is a differential threshold of a, then λ − 1 is a differential
threshold of a. If a is principal generated by a nonzerodivisor, the converse is true.

Proof. Let νe ∈ B•
a(p

e) be such that lime→∞
νe

pe = λ. For e � 0, we have νe > rpe

so, νe−pe ∈ B•
a(p

e) by Proposition 3.13. Since lime→∞
νe−pe

pe = λ−1. We conclude

that λ− 1 is a differential threshold.
Likewise, if a = (f), where f ∈ R is a nonzerodivisor, let ue ∈ B•

a(p
e) be

such that lime→∞
ue

pe = λ − 1. By Proposition 3.13, ue + pe ∈ B•
f (p

e). Since

lime→∞
ue+pe

pe = λ, we conclude that λ is a differential threshold. �

Corollary 5.10. Let (R,m,K) be a local F -finite ring, a ⊆ m an ideal, and � be its
analytic spread. If λ > � is a differential threshold of a, then λ− 1 is a differential
threshold of a.

Proof. By Lemma 3.3, we may assume that K is infinite. Then, there exists an
ideal b generated by � elements with the same integral closure of a. Then, the
result follows from Propositions 5.8 and 5.9. �

5.2. Differential thresholds and numerical F -invariants. We now start com-
paring differential thresholds with other numerical invariants in prime characteris-
tic.
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Definition 5.11. Let R be an F -finite ring. Let a, b ⊆ R be proper ideals such
that a ⊆

√
b.

(i) The F -threshold of a in b [MTW05,HMTW08,DSNBP18] is defined by

cb(a) = lim
e→∞

max{n ∈ Z≥0 | an �⊆ b
[e]}

pe
.

(ii) If R is F -split, the Cartier threshold of a in b [DSHNBW] is defined by

ctb(a) = lim
e→∞

max{n ∈ Z≥0 | Ce
R · an �⊆ b}

pe
.

Proposition 5.12. Let R be an F -finite ring, and a ⊆ R be a proper ideal. Then:

(i) Every F -threshold of a is a differential threshold of a.

(ii) If R is F -split, then every Cartier threshold of a is a differential threshold
of a.

(iii) If R is strongly F -regular, then every F -jumping number of a is a differ-
ential threshold of a.

(iv) If R is regular, the set of F -jumping numbers of a and the set of differ-
ential thresholds of a agree.

Proof. The first claim follows from Remark 5.7 and Lemma 3.5.
The claim about Cartier thresholds follows from Remark 5.7 and Lemma 3.5,

since max{n | Ce
R · an �⊆ b} = max{n | an �⊆ Ie(b)}.

We now focus on the third statement. If D
(e)
R · a = D

(e)
R · b, then Ce

R · a = Ce
R · b

(see Lemma 3.7). Then the set of differential jumps of level e contains the set

A(pe) = {n ∈ Z≥0 | Ce
R · an �= Ce

R · an+1}.
It suffices to show that every jumping number is a limit of elements in 1

peA(pe).

We recall that in a strongly F -regular ring we have that τ (aλ) =
⋃

e∈Z≥0
Ce
R ·

a
�peλ� [TT08, Proposition 4.4]. We set a such that τ (aλ) = Ca · a�paλ�. Let νe =
max{n | Ce

R · an �⊆ τ (aλ)} ∈ A(pe). We now show that lime→∞
νe

pe = λ. Set ε > 0.

We pick b such that |λ− �peλ�
pe | > ε

2 for e ≥ b. We set α = λ− ε
2 and s ∈ Z≥0 such

that τ (aα) = Cs · a�psα�. Then,

Ce · a�peα� = τ (aα) �= τ (aλ) = Ce · a�peλ�

for e ≥ max{a, s}. Then, �psα
 ≤ νe ≤ �psλ
 for e ≥ max{a, s}. Thus,

α ≤ �peα

pe

≤ νe ≤
�peλ

pe

≤ λ+
ε

2

for e ≥ max{a, b, s}. Hence, lime→∞
νe

pe = λ.

We now focus on the last claim. Since R is a regular F -finite ring, Ce
R · a = Ce

R ·b
if and only if D

(e)
R · a = D

(e)
R · b [ÀMBL05, Lemma 3.1]. By Proposition 5.12, it

suffices to show that every differential threshold is an F -jumping number. Then,
the set of differential jumps of level e coincides with the set {n ∈ Z≥0 | Ce

R · an �=
Ce
R · an+1}. We recall that τ (aλ) =

⋃
e∈Z≥0

Ce
R · a�peλ� [BMS08, Definition 2.9]. Let

λ = lime→∞
νe

pe with νe ∈ A(pe). There exists ε > 0 such that τ (aλ) = Ce
R · ak for

every λ < k
pe < λ + ε [BMS08, Proposition 2.14]. Then, νe

pe ≤ λ for e � 0. Set

a such that 1
pe > ε

2 ,
νe

pe ≤ λ and τ (aλ) = Ce
R · a�peλ� for e ≥ a. If νe + 1 ≤ peλ,
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then νe + 1 ≤ �peλ
 and Ce
R · aνe+1 ⊇ Ce

R · a�peλ� = τ (aλ). If νe + 1 > peλ ≤ νe,

then Ce
R · aνe+1 = τ (aλ). We have that τ (a

νe
pe ) ⊇ Ce

R · aνe � Ce
R · aνe+1 ⊇ τ (aλ). We

conclude that λ is an F -jumping number. �

Proposition 5.13. Let (R,m,K) be an F -finite F -split ring, and a ⊆ R an ideal.
Then, fpt(a) is the smallest differential threshold of a.

Proof. We note that the first jump of level e is

νe = max{n | D(e)
R · an �= R} = max{n | D(e)

R · an ⊆ m}.
We have that D

(e)
R · an ⊆ m if and only if a

n ⊆ {f ∈ R | D
(e)
R · f ∈ m}. We

have that {f ∈ R | D(e)
R · f ∈ m} = Ie(m) [BJNB19, Proposition 5.10]. Then,

fpt(a) = lime→∞
νe

pe is the smallest differential threshold. �

5.3. Discreteness and rationality results. We now show that the set of differen-
tial thresholds is closed under multiplication by p. This is known for F -thresholds,
but not for F -jumping numbers outside Gorenstein rings. Then, this result shows
one of the advantages of the unified approach provided by differential thresholds.

Lemma 5.14. Let R be an F -finite F -split ring, and a ⊆ R an ideal. If λ is a
differential threshold, then pλ is also a differential threshold.

Proof. Let r be the number of generators of a. Let νe ∈ B•
a(p

e) be such that
lime→∞

νe

pe = λ. By Proposition 3.16 and Lemma 3.11 there exists some ωe ∈
[pνe, p(νe + r − 1)] ∩ B•

a(p
e). We have that

pλ = lim
e→∞

pνe
pe

≤ lim
e→∞

ωe

pe
≤ lim

e→∞

pνe
pe

= pλ.

Then, pλ is a differential threshold. �

In the following results we focus on Bernstein-Sato admissible ideals. In this
case, we show discreteness and rationality. In Subsection 6.1 we use these results
to provide new cases where the F -thresholds are rational numbers.

Theorem 5.15. Let R be an F -finite ring and a an ideal. If a ⊆ R is a Bernstein-
Sato admissible ideal, then the set of differential thresholds for a is discrete. If R
is F -split, then the converse holds.

Proof. Let r be the number of generators of a. We first show that if a is Bernstein-
Sato admissible, then the set of differential thresholds is discrete. By Proposition
5.9, it suffices to show that the set of differential thresholds in (0, r) is finite. Since
a is a Bernstein-Sato admissible ideal, there exists b ∈ Z≥0 such that #

(
B•
a(p

e) ∩
[0, rpe)

)
≤ b for every e, and we claim that there are at most b differential thresholds

in (0, r).
Suppose, for a contradiction, that λ1, . . . , λb+1 ∈ (0, r) are distinct differential

thresholds of a. Pick disjoint open intervals U1, . . . , Ub+1 ⊆ (0, r) with λi ∈ Ui.
Then there is some e large enough and ν1, . . . , νb+1 ∈ B•

a(p
e) with νi/p

e ∈ Ui for
every i. It follows that ν1, . . . , νb+1 are distinct differential jumps of level e in the
interval (0, rpe), which gives a contradiction.

Now suppose that R is F -split, and assume that the set of differential thresholds
is discrete. In particular, there are finitely many differential thresholds in the
interval [0, r]; let 0 ≤ λ1 < · · · < λc ≤ r be these differential thresholds. To
obtain a contradiction, suppose that a is not Bernstein-Sato admissible. Then we
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can choose some e ∈ N such that the number of differential jumps of level e is
greater than (r + 1)c. By Lemma 5.6, every differential jump of level e lies in⋃c

i=1[p
eλi − r, peλi]. Since there are at most (r+1)c integers in this set, we obtain

the desired contradiction. �

Theorem 5.16. Let R be an F -finite F -split ring, and a ⊆ R be a Bernstein-Sato
admissible ideal. Then, every differential threshold of a is a rational number.

Proof. Let λ be a differential threshold for a. We fix e0 such that pe0λ > r. For
e ≥ e0, we take λe = peλ − �peλ� + r − 1. By construction λe is a differential
threshold for every e by Proposition 5.9 and Lemma 5.14. By Theorem 5.15, there
exists e1 < e2 such that

λe1 = pe1λ− �pe1λ�+ r − 1 = pe2λ− �pe2λ�+ r − 1 = λe2 .

Since e2 > e1, we conclude that

λ =
�pe2λ� − �pe1λ�

pe2 − pe1
∈ Q. �

5.4. Comparison between Bernstein-Sato roots and differential thresh-

olds. We end this subsection with a comparison between differential thresholds
and Bernstein-Sato roots. We note that we do not assume Bernstein-Sato admissi-
bility in this result.

Theorem 5.17. Let R be F -split. Let a be an ideal with r generators.

(i) If α ∈ Z(p) is a Bernstein-Sato root, then there is some differential thresh-
old λ of a such that

α− �α
+ λ ∈
{
{0, . . . , r − 1} if α /∈ Z<0,

{1, . . . , r} if α ∈ Z<0.

(ii) Conversely, if λ ∈ (Z(p))≥0 is a differential threshold for a, then there is
some Bernstein-Sato root α for a such that

α+ λ− �λ� ∈
{
{1− r, 2− r, . . . , 0} if λ /∈ Z≥0,

{−r, . . . , 0} if λ ∈ Z≥0.

Thus, there is an equality of cosets in Z(p)/Z:

{α+ Z | α ∈ BSR(a) ∩ Z(p)} = {−λ+ Z | λ ∈ Z(p) a differential threshold of a}.
Proof. We start with (i). By Proposition 4.3, for every a, there is some s ∈
{0, . . . , r − 1} such that α<a + spa ∈ B•

a(p
a). Thus, there is an s ∈ {0, . . . , r − 1}

such that α<ea + spae ∈ B•
a(p

ae) for infinitely many a.
If α ∈ Z<0, then by Lemma 2.1, we have α<ea+spae = pae+α+spae ∈ B•

a(p
ae).

It then follows from Proposition 5.2 that lim
a→∞

(s+ 1)pae + α

pae
= s+1 is a differential

threshold.
If α /∈ Z<0, then by Lemma 2.1, we have α<ea = (1−pae)(α−�α
)+�α
 for a � 0.

It then follows from Proposition 5.2 that lim
a→∞

(1− pae)(α− �α
) + �α
+ spae

pae
=

s− α+ �α
 is a differential threshold.
For (ii), let λ ∈ Z(p) be a differential threshold.
For λ = 0, it follows from Remark 5.5 that 0 is a Bernstein-Sato root.

Licensed to Mathematical Sciences Research Institute. Prepared on Sat May 11 18:06:43 EDT 2024 for download from IP 173.239.64.5.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Next, we deal with the case λ ∈ Z>0. By Proposition 5.2, for every a, there is
some νa ∈ B•

a
(pa) such that paλ − r ≤ νa ≤ paλ. Writing νa = paλ − sa, we have

that sa ∈ {0, . . . , r} for all a and paλ − sa ∈ B•
a(p

a). There is some s ∈ {0, . . . , r}
such that sa = s and paλ−s ∈ B•

a(p
a) for infinitely many values of a. It follows from

Proposition 4.3 that −s, which is the p-adic limit of paλ − s, is a Bernstein-Sato
root of a.

Finally, suppose that λ /∈ Z≥0, and let e ∈ Z≥0 be such that (pe − 1)λ ∈ Z≥0.
Write λ = �λ
 − 1 + μ, so μ ∈ (0, 1). We then have �paeλ
 − 1 = pae 〈λ〉ae =
(pae − 1)μ + pae(�λ
 − 1) for all a ∈ Z≥0. By Proposition 5.2, for every a, there
is some νae ∈ B•

a
(pae) such that �paeλ
 − r ≤ νae ≤ �paeλ� = �paeλ
 − 1. Writing

sae = �paeλ
−1−νae, one has sae ∈ {0, 1, . . . , r−1} and (pae−1)μ+pae(�λ
−1)−
sae ∈ B•

a(p
ae). Therefore, there is some s ∈ {0, . . . , r − 1} such that (pae − 1)μ +

pae(�λ
 − 1) − s ∈ B•
a(p

ae) for infinitely many a. It follows from Proposition 4.3
that lima(p

ae − 1)μ+ pae�λ� − s = −μ− s is a Bernstein-Sato root of a. �

Corollary 5.18. Let R be F -finite and F -split. If a = (f) is principal and
Bernstein-Sato admissible, then the set of Bernstein-Sato roots of (f) is exactly
the set of negatives of differential thresholds of (f) in the interval [0, 1] ∩ Z(p).

Corollary 5.19. If R is strongly F -regular and a is an ideal, then there is a
containment in Z(p)/Z:

{−λ+ Z | λ ∈ Z(p) is an F -jumping number of a }
⊆ {α+ Z | α ∈ Z(p) is a Bernstein-Sato root of a }.

6. Classes of Bernstein-Sato admissible rings

6.1. Rings with finite F -representation type. In this section we prove that
every ideal in a graded K-algebra with finite F -representation type is Bernstein-
Sato admissible; therefore all ideals have a finite number of Bernstein-Sato roots.
We closely mimic the strategy employed by Takagi and Takahashi [TT08] in their
proof of discreteness of F -jumping numbers.

Definition 6.1 ([TT08]). Let R =
⊕

n∈Z≥0
Rn be finitely generated Z≥0-graded

K-algebra over a field R0 = K. We say that an R has finite F -representation type
if there exist a finite set of finitely generated graded R-modules, M1, . . . ,M� such

that for every e ∈ Z≥0 there exist αe,i ∈ Z≥0 and θ
(e)
i,j ∈ Q≤0 such that

F e
∗R

∼=
�⊕

i=1

αe,i⊕

j=1

Mi(θ
(e)
i,j ),

where the grading on F e
∗R is as in Definition 2.2(ii). We say that M1, . . . ,M� are

the finite F -representation type factors of R.

Definition 6.2 ([TT08]). Let R =
⊕

n∈Z≥0
Rn be finitely generated graded K-

algebra with R0 = K, and a ⊆ R. Let M be a finitely generated R-module. For
e ∈ Z≥0, we set

Ie(a,M) = HomR(F
e
∗R,M) · F e

∗ a.

Lemma 6.3. Let R =
⊕

n∈Z≥0
Rn be finitely generated graded K-algebra with R0 =

K, a ⊆ R be an ideal and M be a graded R-module. Suppose that R has finite F -
representation type, and that a is generated in degree less or equal to N . Then,
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there exists an integer C ∈ Z≥0 such that Ie(a,M) is generated in degree less or

equal to �C + N
pe � for every integer e ≥ 0.

Proof. Pick C>0 large enough so that, for all i=1, . . . , �, the module HomR(Mi,M)
is generated in degrees ≤ C. This implies that for all i = 1, . . . , � and θ ∈ Q the
module HomR(Mi(θ),M) = HomR(Mi,M)(−θ) is generated in degrees ≤ C + θ

and, since all θ
(e)
i,j are negative, we conclude that the module

HomR(F
e
∗R,M) =

�⊕

i=1

αe,i⊕

j=1

HomR(Mi(θ
(e)
i,j ),M)

is generated in degrees ≤ C.
We consider the module HomR(F

e
∗R,M)⊗F e

∗R with the induced grading, and we
note that its submodule HomR(F

e
∗R,M)⊗F e

∗ a is generated in degrees ≤ C+N/pe.
Note that Ie(a,M) is the image of HomR(F

e
∗R,M) ⊗ F e

∗ a under the evaluation
morphism Φ : HomR(F

e
∗R,M) ⊗R F e

∗R → M and, since Φ is homogeneous of
degree zero, the result follows. �

Theorem 6.4. Let R =
⊕

n∈Z≥0
Rn be finitely generated graded K-algebra with

R0 = K. If R has finite F -representation type then R is a Bernstein-Sato admissible
ring.

Proof. Let N ∈ Z≥0 be such that a is generated in degree at most N . Let r be the
number of generators of a, and fix m ≤ rpe. By Lemma 6.3, there exists Ci such
that Hom(F e

∗R,Mi) · F e
∗ a

m is generated in degree at most Nm
pe + Ci ≤ Nr + Ci.

Let βi := dimK[Mi]≤Nr+Ci
. Then, {Ie(am,Mi) | m = 0, . . . , rpe} has at most βi

elements. We note that Ie(a
m,Mi) = Ie(a

m,Mi(−γ)) for every γ ∈ Q. Then,

D
(e)
R · am = Hom(F e

∗R,F e
∗R) · F e

∗ a
m

= Hom

⎛
⎝F e

∗R,
�⊕

i=1

⊕

j

M
α

(e)
i,j

i (θ
(e)
i,j )

⎞
⎠ · F e

∗ a
m

=

�⊕

i=1

⊕

j

Hom

(
F e
∗R,M

α
(e)
i,j

i (θ
(e)
i,j )

)
· F e

∗ a
m

and so {D(e)
R · am| m = 0, . . . , rpe} has at most β1 · · ·β� elements. �

As a consequence of Theorem 6.4, we obtain a new case where the differential
thresholds satisfy rationality and discreteness. In particular, these recover and
extend previous results known for Stanley-Reisner rings [BC21, Theorems A & B].

Corollary 6.5. Let R =
⊕

n∈Z≥0
Rn be finitely generated graded K-algebra with

R0 = K. Suppose that R has finite F -representation type. Then, the sets

{cb(a) | a ⊆
√
b �= (1)} and {ctb(a) | a ⊆

√
b �= (1)}

consist of rational numbers and do not have any accumulation points.

Proof. Since every ideal is Bernstein-Sato admissible by Theorem 6.4, the claim
follows from Proposition 5.12 and Theorems 5.15 & 5.16. �
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6.2. Direct summands. Next, we provide a second class of possibly singular rings
for which all ideals are Bernstein-Sato admissible: the class of direct summands
of regular rings. Passing to direct summands behaves especially well in the case
of level-differentially extensible direct summands, a notion introduced by Brenner
together with the first two authors [BJNB19]. Let us give the definition in the case
of F -finite rings.

Definition 6.6. An extension R ⊆ S of F -finite rings is called level-differentially

extensible if for every integer e ≥ 0 and every δ ∈ D
(e)
R there exists some δ̃ ∈ D

(e)
S

such that δ = δ̃|R.

We note that large classes of invariant rings can be realized as level-differentially
extensible direct summands of polynomial rings (see [BJNB19, Section 6] for more
details).

Theorem 6.7. Let R ⊆ S be a split extension of F -finite rings and a ⊆ R be an
ideal. Then:

(i) For all integers e ≥ 0, B•
a(p

e) ⊆ B•
aS(p

e).

(ii) If aS ⊆ S is a Bernstein-Sato admissible ideal, then so is a ⊆ R.

(iii) Every Bernstein-Sato root of a is a Bernstein-Sato root of aS.

(iv) Every differential threshold of a is a differential threshold of aS.

Assume furthermore that the extension R ⊆ S is level-differentially extensible.
Then:

(v) For all integers e ≥ 0, B•
a(p

e) = B•
aS(p

e).

(vi) The Bernstein-Sato roots of a and the Bernstein-Sato roots of aS coin-
cide.

(vii) The differential thresholds of a and the differential thresholds of aS co-
incide.

Proof. Let us start with (i). Suppose that n /∈ B•
aS(p

e); that is, D
(e)
S · an = D

(e)
S ·

a
n+1, and we claim that D

(e)
R ·an = D

(e)
R ·an+1. We observe it suffices to prove that

a
n ⊆ D

(e)
R · an+1. To prove this, suppose that f ∈ a

n. We know that there exist

differential operators ξi ∈ D
(e)
S and elements gi ∈ a

n+1 such that f =
∑

i ξi · gi.
Applying a splitting β : S → R to this equation, we obtain f =

∑
i(β ◦ ξi) · gi.

Since β ◦ ξi|R ∈ D
(e)
R , we conclude that f ∈ D

(e)
R · an+1. This proves the claim, and

thus (i) is proven.
Statement (ii) follows from (i): every bound for #

(
B•
aS(p

e)∩ [0, rpe)
)
is a bound

for #
(
B•
a
(pe) ∩ [0, rpe)

)
. Statement (iii) follows from (i) together with (ii). State-

ment (iv) follows from (i).
We now assume that the extension R ⊆ S is level-differentially extensible, and

prove (v). Suppose that n /∈ B•
a(p

e); that is, D
(e)
R · an = D

(e)
R · an+1, and we claim

that D
(e)
S · an = D

(e)
S · an+1 and, once again, we observe that it suffices to show

that an ⊆ D
(e)
S · an+1. We thus let f ∈ a

n. We know that there exist ξi ∈ D
(e)
R and

gi ∈ a
n+1 such that f =

∑
i ξi · gi. For every i, let ξ̃i ∈ D

(e)
S be a lift of ξi. We

conclude that f =
∑

i ξ̃i · gi and therefore f ∈ D
(e)
S · an+1. This proves the claim,

and thus (v) is proven.
Statements (vi) and (vii) follow from (v). �
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Corollary 6.8. Suppose that S is a ring in which every ideal is Bernstein-Sato
admissible (e.g. S is regular, or graded with finite F -representation type), and that
R is a direct summand of S. Then every ideal of R is Bernstein-Sato admissible.

7. Bernstein-Sato roots via the Malgrange construction

7.1. Bernstein-Sato roots and Na. Let R be an F -finite ring and let a ⊆ R be
an ideal. The definition of the Bernstein-Sato roots of a given in Definition 4.1 has
three important advantages: it is nontechnical, as it only relies on the relatively
simple notion of differential jumps; one can use it to prove things, as illustrated in
Section 4 and, finally, it is also more convenient for computing Bernstein-Sato roots
(see Section 9). However, it also has a serious drawback: it is not clear how this
notion of Bernstein-Sato roots is related to the classical notion of the Bernstein-Sato
polynomial. Our goal in this subsection is to explain how one arrives at Definition
4.1 from the point of view of the classical theory.

Fix generators a = (f1, . . . , fr) for a, and for every integer e ≥ 0 we consider the
module

He
a
:=

R[t]

(f − t)pe1
δpe =

R[t]

(f1 − t1)p
e · · · (fr − tr)p

e δpe ,

where δpe is just a formal symbol. In particular, He
a is the quotient of R[t] by a

D
(e)
R[t]-ideal and therefore it is a D

(e)
R[t]-module itself. Note that, as an R-module, we

have a decomposition

He
a =

⊕

a∈{0,...,pe−1}r

R (f − t)a δpe .

We let φe : He
a
→ He+1

a
be the map induced by multiplication by (f − t)p

e(p−1)1,

which is D
(e)
R[t]-linear. We let Ha be the direct limit

Ha := lim
→

(H0
a

φ0

−→ H1
a

φ1

−→ H2
a → · · · ),

which acquires the structure of a DR[t]-module. We note that the maps φe are
injective, and therefore each He

a is isomorphic to its image in Ha. From this point
onwards, we identify each module He

a with its image in Ha, and we think of every
element of He

a as an element of Ha. For example, for all e ≥ 0 we have

δ1 = (f − t)(p
e−1)1δpe .

Lemma 7.1. There is an isomorphism

Ha
∼= Hr

(f1−t1,...,fr−tr)
R[t]

of DR[t]-modules.

Proof. We let L denote the local cohomology module on the right hand side, which
we construct via the Čech complex on the given generators. We have an R-module
decomposition

L =
⊕

a∈(Z>0)r

Rδ′a,

where δ′a denotes the class of (f − t)−a.

We let ψe : He
a → L be the unique R-linear map with ψe((f − t)aδpe) = δ′pe1−a,

which gives an isomorphism of He onto the submodule
⊕

a∈{1,...,pe}r Rδ′a of L. One
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immediately checks that the ψe are compatible as e changes, and that they give an
R-module isomorphism ψ : Ha

∼−→ L.

It remains to check that this isomorphism is DR[t]-linear; i.e. that it is D
(e)
R[t]-

linear for every e. Since Hi
a is a D

(e)
R[t]-submodule of Ha for every i ≥ e, the D

(e)
R[t]-

module structure on Ha is uniquely determined by the fact that ξ ·(gδpi) = (ξ ·g)δpi

for all ξ ∈ D
(e)
R[t], all g ∈ R[t] and all i ≥ e. Now recall that δ′pi is the class of

(f − t)−pi1 = (f1 − t1)
−pi · · · (fr − tr)

−pi

, which is a pi-power. It follows that for

every ξ ∈ D
(e)
R and every i ≥ e, ξ commutes with multiplication by (f − t)−pi1 in

the localization R[t](f1−t1)···(fr−tr). Therefore, in L we have ξ · (gδ′pi) = (ξ · g)δ′pi

for all ξ ∈ D
(e)
R[t], all g ∈ R[t] and all i ≥ e. �

It follows from the proof that the isomorphism we have constructed identifies
δp0 = δ1 with the class of (f − t)−1, when the local cohomology module is viewed

via the Čech complex.
The characteristic zero theory leads us to consider the module

Na :=
V 0DR[t] · δ1
V 1DR[t] · δ1

.

In Lemma 7.2, we give a description that is more useful for our purposes. Recall
that we denote by (DR[t])0 the differential operators of degree zero, with the grading
induced by deg ti = 1.

Lemma 7.2. We have

Na =
(DR[t])0 · δ1
(DR[t])0 · aδ1

.

Proof. Let I denote the ideal I = (t1, . . . , tr). Since (fi − ti)δ1 = 0, we have that
Iδ1 = aδ1. By using Lemma 2.13 we get

V 0DR[t] · δ1 =

∞∑

n=0

(DR[t])0I
n · δ1 =

∞∑

n=0

(DR[t])0 · anδ1

= (DR[t])0 · δ1,

and similarly

V 1DR[t] · δ1 =

∞∑

n=1

(DR[t])0I
n · δ1 =

∞∑

n=1

(DR[t])0 · anδ1

= (DR[t])0 · aδ1. �

In particular, we conclude that Na is a (DR[t])0-module. In characteristic zero,
the Bernstein-Sato polynomial of a is the minimal polynomial for the action of
s := −∂tt on the module Na (the existence of such a minimal polynomial being far
from clear). In particular, the module (Na) splits as a direct sum of generalized
eigenspaces Na =

⊕
λ∈C

(Na)λ, and the roots of ba(s) are precisely the λ ∈ C for
which (Na)λ is nonzero.
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In characteristic p > 0, we view the algebra Cont(Ẑ(p),Fp) as a subalgebra of
(DR[t])0 by using the map Δ from Subsection 2.5, and this subalgebra plays the

role of C[s]. Given a p-adic integer α ∈ Ẑ(p), we define

(Na)α := Na/mαNa,

and our result is as follows.

Theorem 7.3. Let R be an F -finite ring, a ⊆ R be an ideal and α ∈ Ẑ(p) be a
p-adic integer. Let Na be the module defined above by using a choice of generators
for a. Then α is a Bernstein-Sato root of a if and only if (Na)α is nonzero.

Corollary 7.4. Suppose that a is Bernstein-Sato admissible with Bernstein-Sato
roots {α1, . . . , αs}. Then we have a decomposition Na =

⊕s
i=1(Na)αi

.

Proof. Follows from Theorem 4.13 and Proposition 2.22. �

We begin working towards the proof of Theorem 7.3. The idea is to write (Na)α
as a direct limit (Na)α = lim→e(N

e
a)α, to understand the nonvanishing of the (Ne

a)α
for a fixed e, and to then analyze the effect of taking the direct limit.

We note that Na = lim→e N
e
a , where

Ne
a
:=

(D
(e)
R[t])0 · δ1

(D
(e)
R[t])0 · aδ1

,

and that both (D
(e)
R[t])0 · δ1 and (D

(e)
R[t])0 · aδ1 are (D

(e)
R[t])0-submodules of He

a . By

viewing Conte(Ẑ(p),Fp) as a subalgebra of (D
(e)
R[t])0, we conclude that Ne

a is a

Conte(Ẑ(p),Fp)-module.

Given a p-adic integer α ∈ Ẑ(p) we let m
(e)
α = mα ∩ Conte(Ẑ(p),Fp) and

(Ne
a)α := Ne

a/m
(e)
α Ne

a .

In particular, we have (Na)α = lim→e(N
e
a)α.

Lemma 7.5. Let x = (x1, . . . , xr) and y = (y1, . . . , yr) be two sets of variables and
e ≥ 0 be an integer. In the ring Fp[x, y] we have

(x− y)(p
e−1)1 =

∑

b

xb y(p
e−1)1−b,

where the sum takes place over all multi-exponents b ∈ Zr
≥0 with 0 ≤ bi < pe.

Proof. In the case where r = 1, this follows by observing that

(x− y)(yp
e−1 + yp

e−2x+ · · ·+ yxpe−2 + xpe−1) = xpe − yp
e

= (x− y)p
e

,

together with the fact that Fp[x, y] is a domain.
For the general case, first note that the multi-index binomial theorem states that

the claim in the lemma is equivalent to the statement that
(
(pe−1)1

b

)
(−1)r(p

e−1)−|b| ≡
1 mod p, which in turn is equivalent to the claim that

(
(pe−1)1

b

)
≡ (−1)|b| mod p.

This latter statement follows directly from the r = 1 case. �

Given an integer e ≥ 0 and a multi-exponent a ∈ {0, . . . , pe − 1}r we define Qe
a

to be the following element of He
a :

Qe
a := t(p

e−1)1−a δpe .
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Note we have an R-module decomposition

He
a =

⊕

a∈{0,...,pe−1}r

R Qe
a.

Recall that we identified D
(e)
R and D

(e)
Fp[t]

with subrings of D
(e)
R[t], and that with this

identification we have (D
(e)
R[t])0 = D

(e)
R ⊗Fp

(D
(e)
Fp[t]

)0 (see Lemma 2.12).

Lemma 7.6. For every integer e ≥ 0 we have the following equality of submodules
of He

a
:

(D
(e)
Fp[t]

)0 · δ1 =
⊕

0≤ai<pe

a
|a| Qe

a.

Proof. We begin by noting that, by Lemma 7.5, we have

δ1 = (f − t)(p
e−1)1 δpe =

∑

0≤ai<pe

fa Qe
a.

Given multi-exponents b, c ∈ Zr with 0 ≤ bi < pe and ci < pe we denote by σ
(e)
b→c

the unique element of D
(e)
Fp[t]

such that for all k ∈ {0, 1, . . . , pe − 1}r we have

σ
(e)
b→c · tk =

{
t(p

e−1)1−c if k = (pe − 1)1− b,

0 otherwise.

These operators form an Fp-basis for D
(e)
Fp[t]

, and since σ
(e)
b→c is homogeneous of

degree |b| − |c|, the subcollection for which |b| = |c| is an Fp-basis for (D
(e)
Fp[t]

)0.

Let b, c ∈ Zr be multi-exponents with 0 ≤ bi < pe and ci < pe such that |b| = |c|.
Let c′, c′′ ∈ Zr be the unique multi-exponents with 0 ≤ c′i < pe, 0 ≤ c′′i and

c = c′ − pec′′. We then have σ
(e)
b→c ·Qe

a = 0 for a �= b and

σ
(e)
b→c ·Qe

b = t(p
e−1)1−c′+pec′′δpe

= fpec′′Qe
c′ ,

where in the last equality we use the fact that (fpe

i − tp
e

i ) = (fi − ti)
pe

δpe = 0.

Therefore, σ
(e)
b→c · δ1 = fpec′′+b Qe

c′ , and since pe|c′′| + |b| = |c′| we have that

σ
(e)
b→c · δ1 ⊆⊕0≤ai<pe a

|a|Qe
a.

For the other inclusion, let b, a ∈ Zr be multi-exponents such that 0 ≤ bi,

0 ≤ ai < pe and |b| = |a|, and we show that f b Qe
a ∈ (D

(e)
Fp[t]

)0. Let b′, b′′ ∈ Zr be

the unique multi-exponents such that 0 ≤ b′i < pe, 0 ≤ b′′i and b = b′ + peb′′. We
then have

σ
(e)
b′→a−peb′′ · δ1 = σ

(e)
b′→a−peb′′ · f

b′Qe
b′

= f bQe
a,

and since |b′| = |a| − peb′′, σ
(e)
b′→a−peb′′ ∈ (D

(e)
Fp[t]

)0, which proves the claim. �
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Proposition 7.7. Let R be an F -finite ring, a ⊆ R be an ideal and e ≥ 0 be an
integer.

(i) We have a direct sum decomposition

Ne
a =

⊕

0≤ai<pe

D
(e)
R · a|a|

D
(e)
R · a|a|+1

Q̃e
a,

where Q̃e
a denotes the image of Qe

a in the quotient.

(ii) If α ∈ Ẑ(p) is a p-adic integer, then (Ne
a )α consists of the summands

indexed by those a for which |a| ≡ α mod pe.

Proof. Lemma 7.6 together with the fact that (D
(e)
R[t])0 = D

(e)
R ⊗Fp

(D
(e)
Fp[t]

)0 (see

Lemma 2.12) implies that the submodule (D
(e)
R[t])0 · δ1 of He

a is given by

(D
(e)
R[t])0 · δ1 =

⊕

0≤ai<pe

(D
(e)
R · a|a|)Qe

a.

Similarly, using Lemma 7.6 we observe that (D
(e)
Fp[t]

)0 · aδ1 = a(D
(e)
Fp[t]

)0 · δ1 =
⊕

0≤ai<pe a
|a|+1Qe

a, and by once again applying the fact that (D
(e)
R[t])0 = D

(e)
R ⊗Fp

(D
(e)
Fp[t]

)0 we conclude that

(D
(e)
R[t])0 · aδ1 =

⊕

0≤ai<pe

(D
(e)
R · a|a|+1)Qe

a,

and part (i) follows.

For part (ii), recall that the action of Conte(Ẑ(p),Fp) on Ne
a comes via the

map Δ defined in Subsection 2.5. An easy computation yields that a function

ϕ ∈ Conte(Ẑ(p),Fp) acts on Qe
a by the scalar ϕ(|a|), and therefore

m
(e)
α Qe

a =

{
0 if |a| ≡ α mod pe,

FpQ
e
a otherwise.

�

Corollary 7.8. The module (Ne
a)α is a direct sum of the modules from the list

{
D

(e)
R · an

D
(e)
R · an+1

∣∣∣∣ 0 ≤ n ≤ r(pe − 1) and n ≡ α mod pe
}
,

and every module from the list appears in the decomposition.

Proof. The result follows from Proposition 7.7(ii), together with the observation
that

{|a| | 0 ≤ ai < pe and |a| ≡ α mod pe} = {0 ≤ n ≤ r(pe − 1) | n ≡ α mod pe}.
�

Proposition 7.9. Let R be an F -finite ring, a ⊆ R be an ideal, e ≥ 0 be an integer

and α ∈ Ẑ(p) be a p-adic integer. The following are equivalent:

(a) The module (Ne
a)α is nonzero.

(b) The image of δ1 in (Ne
a)α is nonzero.

(c) There is a differential jump n ∈ B•
a(p

e) with n ≡ α mod pe.
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Proof. We note that (b) implies (a). To observe that (a) implies (b), note that the

subalgebra Conte(Ẑ(p),Fp) of (D
(e)
R[t])0 is central and therefore (Ne

a )α is a cyclic left

(D
(e)
R[t])0-module generated by δ1.

By Corollary 7.8, if (Ne
a)α is nonzero, we have D

(e)
R · an �= D

(e)
R · an+1 for some

n with 0 ≤ n ≤ r(pe − 1) and n ≡ α mod pe. We conclude that (a) implies (c).
To show that (c) implies (a), suppose that we are given a differential jump n as
in part (c). By Proposition 3.13 we can subtract pe enough times to assume that
0 ≤ n ≤ r(pe − 1), and the result follows by applying Corollary 7.8 once again. �

Corollary 7.10. Suppose that (Ne
a)α = 0 for some e ≥ 0. Then (N i

a)α = 0 for all
i ≥ e.

Proof of Theorem 7.3. Suppose that α ∈ Ẑ(p) is a Bernstein-Sato root of a; that is,
there is a sequence (νe) ⊆ Z≥0 such that νe ∈ B•

a(p
e) and so that α is the p-adic

limit of νe. By passing to a subsequence (see Remark 4.2) we may assume that
νe ≡ α mod pe. By Proposition 7.9, the image of δ1 in (Ne

a
)α is nonzero for every

integer e ≥ 0. We conclude that the image of δ1 in (Na)α is nonzero, and thus
(Na)α �= 0.

For the other direction, suppose that (Na)α is nonzero. By Corollary 7.10, we
must have that (Ne

a )α is nonzero for every e ≥ 0. By Proposition 7.9 we conclude
that for every e ≥ 0 there is a differential jump νe ∈ B•

a(p
e) with νe ≡ α mod pe.

Since α is the p-adic limit of the sequence (νe), α is a Bernstein-Sato root of a. �

7.2. The operators spi and the algebra Cont(Ẑ(p),Fp). We give a few remarks
about why the result on the previous subsection establishes that the definition
of Bernstein-Sato root given in Section 4 is a natural extension of the notion in
previous work on this subject [QG21b].

Given a (DR[t])0-module M and a p-adic integer α, we define

M(α) := {u ∈ M : spi · u = αiu},
where the operators spi are as given in Subsection 2.4 (note that this module was
previously denoted as Mα [QG21b]). Recall we also have the definition

Mα := M/mαM,

where mα ⊆ Cont(Ẑ(p),Fp) is the ideal of functions that vanish at α.
The module Na is a (DR[t])0- module. Our approach is to think of Na as a

Cont(Ẑ(p),Fp)-module by restriction of scalars, and α ∈ Ẑ(p) is a Bernstein-Sato
root of a precisely when (Na)α is nonzero (Theorem 7.3). We recall that in earlier
work α is defined to be a Bernstein-Sato root whenever (Na)(α) is nonzero [QG21b].
A priori these two constructions are different, but Proposition 7.11 tells us that
they agree whenever the module Na splits nicely; this is the case whenever a is a
Bernstein-Sato admissible ideal, and therefore the two definitions agree when the
ring R is regular (which is the only case considered in the third author’s work
[QG21b]).

Proposition 7.11. The following are equivalent for a left (DR[t])0-module M .

(a) We have #{α ∈ Ẑ(p) | M(α) �= 0} < ∞ and M =
⊕

α∈Ẑ(p)
M(α).

(b) We have #{α ∈ Ẑ(p) | Mα �= 0} < ∞, and the natural map ψ : M →⊕
α∈Ẑ(p)

Mα is an isomorphism.
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If these hold then for all α ∈ Ẑ(p), we have ψ(M(α)) = Mα. In particular,

{α ∈ Ẑ(p) | M(α) �= 0} = {α ∈ Ẑ(p) | Mα �= 0}.
Proof. With the notation from Subsection 2.4, we have that the ideal mα is gener-
ated by

mα = (σpi − αi | i ∈ Z≥0)

and, since Δ(σpi) = spi , we see that M(α) = AnnM (mα) for any (DR[t])0-module

M and any α ∈ Ẑ(p).

Suppose that M splits as in part (a). Then for all β ∈ Ẑ(p) we have

Mβ =
( ⊕

α∈Ẑ(p)

M(α)

)
β
∼= M(β),

and the composition M → Mβ
∼= M(β) is the projection map, which proves (b).

Suppose now that M splits as in part (b). The natural map M →
⊕

α Mα is

Cont(Ẑ(p),Fp)-linear, and thus for all β ∈ Ẑ(p) we have

M(β)
∼=
( ⊕

α∈Ẑ(p)

Mα

)
(β)

= Mβ ,

and the composition Mβ
∼= M(β) → M is the inclusion map induced by the direct

sum decomposition, which proves (a).
The last statement follows from the proof. �

7.3. Alternative characterization of Nf . For every e ≥ 0 let He
f := Rf [t]/(f −

t)p
e

δpe , where δpe is a formal symbol. We have maps He
f → He+1

f given by multi-

plication by (f − t)p
e(p−1) = (fpe − tp

e

)p−1, and the limit

Hf := lim
→

(H0
f −→ H1

f −→ · · · )

can be identified with Rf [t]f−t/Rf [t], whereby δpe gets identified with the class of

(f− t)−pe

. Note that He
f has a D

(e)
R[t]-module structure, and the map He

f → He+1
f is

D
(e)
R[t]-linear. This gives the limitHf aDR[t]-module structure, and the isomorphism

Hf
∼= Rf [t]f−t/Rf [t] is DR[t]-linear.

We get an action of the algebra Conte(Ẑ(p),Fp) on He
f by restriction of scalars

through Δe, and an action of the algebra Cont(Ẑ(p),Fp) on Hf by restriction of
scalars through Δ.

Proposition 7.12. For every e ≥ 0 there is a unique additive isomorphism

Φe : Conte(Ẑ(p), Rf )
∼−→ He

f

that identifies 1 with δ1 and that is linear over Rf and over Conte(Ẑ(p),Fp). These
isomorphisms glue to give an isomorphism

Φ : Cont(Ẑ(p), Rf )
∼−→ Hf

that is linear over Rf and over Cont(Ẑ(p),Fp).

Proof. Fix an integer e≥0. Given a∈{0, . . . , pe−1} denote by χ
(e)
a ∈Conte(Ẑ(p),Fp)

the function such that χ
(e)
a (β) = 1 whenever β ≡ a mod pe and such that χ

(e)
a (β) =

0 otherwise.

Licensed to Mathematical Sciences Research Institute. Prepared on Sat May 11 18:06:43 EDT 2024 for download from IP 173.239.64.5.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5164 J. JEFFRIES, L. NÚÑEZ-BETANCOURT, E. QUINLAN-GALLEGO

We claim that Δ(χ
(e)
a ) ∈ (D

(e)
R[t])0 is the unique R-linear operator with the prop-

erty that, for all b ∈ {0, 1, . . . , pe − 1}, Δ(χ
(e)
a ) · tpe−1−b = tp

e−1−b whenever b = a

and such that Δ(χ
(e)
a ) · tpe−1−b = 0 otherwise. Indeed, by definition Δ(χ

(e)
a ) acts

on tp
e−1−b by the scalar χ

(e)
a (−1 − (pe − 1 − b)) = χ

(e)
a (b − pe), which is 1 when

b = a and 0 when b �= a.
We now observe that, given an e ≥ 0, we have the following equalities in

Conte(Ẑ(p), Rf ) and He
f respectively:

1 =

pe−1∑

a=0

χ(e)
a ,

δ1 = (f − t)p
e−1δpe =

pe−1∑

a=0

fatp
e−1−aδpe .

(For the last equality, see Lemma 7.5). It follows that any map Φ(e) : Conte(Ẑ(p), Rf )

→ He
f with Φe(1) = δ1 that respects the R and Conte(Ẑ(p),Fp)-actions must send

Φe(χ
(e)
a ) = T e

a where T e
a := fatp

e−1−aδpe . Since Conte(Ẑ(p), Rf ) =
⊕pe−1

a=0 Rfχ
(e)
a

and He
f =

⊕pe−1
a=0 RfT

e
a such a map Φe exists and is indeed an isomorphism.

Only the claim regarding the gluing remains, which follows from the following

identities in Conte(Ẑ(p), Rf ) and He
f :

χ(e)
a =

p−1∑

c=0

χ
(e)
a+cpe ,

T e
a = fatp

e−1−a(f − t)p
e(p−1)δpe+1

=

p−1∑

c=0

fa+cpe

tp
e+1−1−(a+cpe),

where we use Lemma 7.5 once again in the last equality. �

By restriction of scalars along Δ : Cont(Ẑ(p), DR)
∼−→ (DR[t])0 we view Hf as a

Cont(Ẑ(p), DR)-module, and we then transfer this structure along Φ: Cont(Ẑ(p), Rf )
∼−→ Hf to endow Cont(Ẑ(p), Rf ) with a Cont(Ẑ(p), DR)-module structure. The

module Cont(Ẑ(p), Rf ), viewed as a Cont(Ẑ(p), DR)-module in this way, is denoted

by Cont(Ẑ(p), Rf )f
s and an element φ ∈ Cont(Ẑ(p), Rf ) is written as φfs when we

want to emphasize that we view it as an element of Cont(Ẑ(p), Rf )f
s. Namely, for

ξ ∈ Cont(Ẑ(p), DR) and φfs ∈ Cont(Ẑ(p), Rf )f
s, we define ξ · φfs := Φ−1(Δ(ξ) ·

Φ(β))fs.
With this notation, it follows from Proposition 7.12 that we have isomorphisms

Cont(Ẑ(p), DR) · fs ∼= (DR[t])0 · δ and
Cont(Ẑ(p), DR) · fs

Cont(Ẑ(p), DR) · ffs
∼= Nf .

Our next goal is to describe the Cont(Ẑ(p), DR)-module structure of

Cont(Ẑ(p), Rf )f
s more explicitly. Note that

(7.1) a ≡ b mod pe and δ ∈ D
(e)
R implies that f−aδfa = f−bδf b.
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Thus, given a p-adic integer α ∈ Ẑ(p) and an operator δ ∈ D
(e)
R , the operators

f−α<aδfα<a

are equal for all a ≥ e. This construction defines a map

Υα,f : DR → DRf
Υα,f (δ) = f−α<eδfα<e (e � 0).

Note that Υα,f respects the level filtration, and it therefore induces maps Υe
α,f :

D
(e)
R → D

(e)
Rf

.

Lemma 7.13. For all ξ ∈ Cont(Ẑ(p), DR) and φfs ∈ Cont(Ẑ(p), Rf )f
s we have

(ξ · φfs)(α) = Υα,f (ξ(α)) · φ(α).

Proof. We retain the notation from the proof of Proposition 7.12. Let us also

temporarily denote by ξ �φ ∈ Cont(Ẑ(p), Rf ) the function α �→ Υα,f (ξ(α)) ·φ(α) as
before. We need to show that in Hf we have the equality Δ(ξ)Φ(φ) = Φ(ξ �φ) and,

since the operation � is bilinear, it suffices to prove it for ξ = δχ
(e)
a and φ = gχ

(e)
b

for some δ ∈ DR, g ∈ Rf and a, b ∈ {0, . . . , pe − 1}, where we retain the notation
of the proof of Proposition 7.12.

First note that for a �= b we have Δ(χ
(e)
a )T e

b = 0 and therefore Δ(δχ
(e)
a )Φ(gχ

(e)
b )

= δΔ(χ
(e)
a ) · gT e

b = 0, and that (δξ
(e)
a ) � (gξ

(e)
b ) = 0. We may thus assume that

a = b, in which case we first observe that (δχ
(e)
a ) � (gχ

(e)
a ) = f−a(δ · gfa)χ

(e)
a , and

we then compute:

Δ(ξχ(e)
a )Φ(gξ(e)a ) = δΔ(χ(e)

a ) · gT e
a

= δ · gT e
a

= (δ · gfa)tp
e−1−aδpe

= f−a(δ · gfa)T e
a

= Φ
(
f−a(δ · gfa)χ(e)

a

)

= Φ((δχ(e)
a ) � (gχ(e)

a )). �

Given a p-adic integer α ∈ Ẑ(p), evaluation at α defines a surjective Rf -module

homomorphism Cont(Ẑ(p), Rf )f
s → Rf whose kernel is mαCont(Ẑ(p), Rf )f

s, and
therefore we get an isomorphism

Cont(Ẑ(p), Rf )f
s

mαCont(Ẑ(p), Rf )f
s

∼−→ Rf ,

along which we can transfer the DR-module structure of the left hand side to Rf .
The module Rf , equipped with this exotic DR-module structure, is denoted Rff

α,
where once again fα is a formal symbol.

We describe the DR-module structure more explicitly: given δ ∈ DR and g ∈ Rf

we have

(7.2) δ · (gfα) = (Υf,α(δ) · g)fα = f−a(δ · fag)fα,

where a ∈ Z is an integer that p-adically approximates α; more precisely, if δ has
level e, then we require that pe divides α− a.
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If α ∈ Z(p), then there exist b > 0 such that α(pb− 1) ∈ Z. Then, α(peb− 1) ∈ Z
for all integers e > 0. If δ ∈ D

(e)
R , then

δ · (gfα) = fα(peb−1)(δ · f−α(peb−1)g)fα

for all g ∈ Rf . This shows that Rff
α agrees with the DR-module M−α as intro-

duced by Blickle, Mustaţă, and Smith [BMS09] and further studied by the second
author and Pérez [NBP16].

Lemma 7.14 justifies the notation Rff
α.

Lemma 7.14. Let R be an F -finite ring, f ∈ R. Then:

(i) For all α ∈ Ẑ(p) the Rf -module isomorphism Rff
α+1 ∼−→ Rff

α that

sends fα+1 �→ ffα is DR-linear.

(ii) For all n ∈ Z the Rf -linear map Rff
n ∼−→ Rf that sends fn �→ fn is

DR-linear.

(iii) Let h = fn for some n ∈ Z(≥0). Then for all α ∈ Ẑ(p) the Rf -module

isomorphism Rhh
α ∼−→ Rff

nα that sends hα �→ fnα is DR-linear.

(iv) Suppose R is a domain and that for some h ∈ Frac(R), some m ∈ Z
and some k ∈ Z � pZ we have an equality hk = fm in Frac(R). Then the
Rf -module homomorphism Rff

m/k → Frac(R) that sends fm/k �→ h is
DR-linear.

Proof. Fix an operator δ ∈ DR of level e, an element g ∈ Rf , α ∈ Ẑ(p) and
an integer a ∈ Z such that pe divides α − a. Part (i) follows because the given
morphism sends

δ · gfα+1 = f−(a+1)(δ · fa+1g)fα+1

�→ f−a(δ · fa+1g)fα

= δ · (gffα).

Similarly, in part (ii) we have

δ · gfn = f−n(δ · gfn)fn

�→ f−n(δ · gfn)fn

= δ · gfn.

For part (iii) we note that pe divides nα− na, and we compute:

δ · ghα = h−a(δ · gha)hα

�→ f−na(δ · fnag)fnα

= δ · (gfna).

In order to prove part (iv), we may replace m and k by nm and nk respectively,
and we may therefore assume that k = pb − 1. We take our approximation to m/k
to be a = −m

k (p
eb − 1); since (peb − 1)/k is an integer, so is a and, moreover,
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fa = h−(peb−1). Note then that the morphism sends

δ · gfm/k = f−a(δ · fag)fm/k

�→ f−a(δ · fag)h

= hpeb

(δ · h−peb+1g)

= δ · hg. �

Proposition 7.15. Let R be an F -finite ring, f ∈ R be a nonzerodivisor and

α ∈ Ẑ(p) be a p-adic integer.

(i) We have a DR-module isomorphism

DR · fα

DR · ffα
∼= (Nf )α.

(ii) We have fα /∈ DR · ffα if and only if α is a Bernstein-Sato root of f .

Proof. Recall that, given a Cont(Ẑ(p),Fp)-module M , we denote by Mα the quo-
tient Mα = M/mαM ; the functor (−)α is exact by Lemma 2.20. Therefore

(Cont(Ẑ(p), DR) · fs)α is isomorphic to its image in Rff
α, which is DR · fα; sim-

ilarly, we have a natural isomorphism (Cont(Ẑ(p), DR) · ffα)α ∼= DR · ffα. We
conclude that

(Nf )α =

(
Cont(Ẑ(p), DR) · fs

Cont(Ẑ(p), DR) · ffs

)

α

=
(Cont(Ẑ(p), DR) · fs)α

(Cont(Ẑ(p), DR) · ffs)α

∼= DR · fα

DR · ffα ,

which gives (i). Statement (ii) follows from (i) together with Theorem 7.3. �

We note that the analogue of statement (ii) in Proposition 7.15 does not hold in
characteristic zero [Sai21].

Using Proposition 7.15, we show that positive Bernstein-Sato roots abound in
rings with certain bad singularities. We recall that a domain R is seminormal
whenever, for all a ∈ Frac(R) such that a2, a3 ∈ R, we have a ∈ R [Swa80].

Proposition 7.16. Let R be an F -finite domain. If R is not seminormal then, for
every n ∈ Z≥2 � pZ, there is some f ∈ R such that 1/n is a Bernstein-Sato root of
f .

Proof. Since R is not seminormal, we may pick some a ∈ Frac(R) \ R such that
a2, a3 ∈ R, and therefore ak ∈ R for all k ≥ 2. Let f = an; we then have f, fa ∈ R
and a /∈ R. By Lemma 7.14(iv), the Rf -module homomorphism Rff

1/n → Frac(R)

that sends f1/n �→ a is a DR-linear embedding. Since DR · fa ⊆ R, we have
a /∈ DR · fa, so f1/n /∈ DR · ff1/n. By Proposition 7.15, we have that 1/n is a
Bernstein-Sato root of f . �

Corollary 7.17. Let R be an F -finite domain and suppose that all Bernstein-Sato
roots of all elements of R are nonpositive. Then R is seminormal.
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8. D-module structure of Rff
α

8.1. Bernstein-Sato roots, differential thresholds, and Rff
α. Proposition

7.15 tells us that we can characterize the Bernstein-Sato roots of nonzerodivisor
f ∈ R in terms of the modules Rff

α. In this section we explore how different
properties of the modules Rff

α reflect on the Bernstein-Sato roots and the differ-
ential thresholds of f .

Theorem 8.1. Let R be an F -finite F -split ring, f ∈ R be a nonzerodivisor and
α ∈ Z(p). The following are equivalent:

(a) We have Rff
α = DR · f−�α+1�fα.

(b) The module Rff
α is finitely generated over DR.

(c) We have BSR(f) ∩ {α− �α+ 1� − 1, α− �α+ 1� − 2, . . . } = ∅.

(d) The set BSR(f) ∩ {α− 1, α− 2, . . . } is finite.

(e) There is some ε > 0 such that the interval (�α+ 1� −α− ε, �α+ 1� − α)
contains no differential thresholds of f .

Proof. Recall that there is a DR-module isomorphism Rff
α ∼= Rff

−�α+1�+α

which identifies f−�α+1�fα with f−�α+1�+α (Lemma 7.14). In particular, Rff
α

is finitely generated over DR if and only if Rff
−�α+1�+α is finitely generated over

DR. We can therefore replace α with α− �α+ 1� to assume that α ∈ [−1, 0).
We first show that (a) is equivalent to (c). Note that Rff

α =
⋃∞

k=0DR ·f−kfα,
and therefore we have Rff

α = DR · fα if and only if every inclusion in the chain

DR · fα ⊆ DR · f−1fα ⊆ DR · f−1fα ⊆ · · ·
is an equality. By Lemma 7.14, for each integer k ≥ 0 we have compatible DR-
module isomorphisms DR · f−kfα ∼= DR · fα−k. By Proposition 7.15 we conclude
that, for all k ≥ 1, DR · f−k+1fα = DR · f−kfα if and only if α − k is not a
Bernstein-Sato root of f .

That (b) is equivalent to (d) is proved similarly: now we observe that Rff
α is

finitely generated over DR if and only if the chain above stabilizes, which happens
precisely when only finitely many of the inclusions are strict.

Statement (c) implies (d) trivially. To see that (d) implies (c), suppose that
BSR(f)∩{α−1, α−2, . . . , } is nonempty; that is, suppose that there is a Bernstein-
Sato root of f of the form α− k for some integer k ≥ 1. Since α− k < −1, we get
that BSR(f) ∩ {α− k, α− k − 1, . . . , } must be infinite by Lemma 4.17.

We thus have that (a), (b), (c), and (d) are equivalent. We now show that (a)
implies (e). Fix some a ∈ Z>0 such that α(pa − 1) ∈ Z. By assumption, there is an
operator ξ ∈ DR such that ξ · fα = fα(pa−1)fα. If we pick i large enough so that

ξ ∈ D
((i+1)a)
R then we have

ξ · fα = fα(p(i+1)a−1)ξ(f−α(p(i+1)a−1)),

and we conclude that

ξ
(
f−α(p(i+1)a−1)

)
= fα(pia−1)pa

.

Fix some e such that ξ ∈ D
((e+1)a)
R ; we conclude that the above holds for all i ≥ e.

Fix a splitting σ : F∗R → R of the Frobenius morphism F ; for all integers
n ≥ 0, its n-th iteration σn : Fn

∗ R → R is a splitting of Fn. We inductively define
operators ξk ∈ DR, for k ≥ 1, by ξ1 = ξ and ξk = F (k−1)a ξ1 σ(k−1)a ξk−1. For
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all k ≥ 0, we have F (k−1)a ξ1 σ(k−1)a ∈ D
((e+k)a)
R and therefore ξk ∈ D

((e+k)a)
R by

induction. By using induction on k once again we have that, for all i ≥ e,

ξk
(
f−α(p(i+k)a−1)

)
= f−α(pia−1)pka

.

By considering the case i = e, we conclude that

B•
f (p

(e+k)a) ∩
[
− α(pea − 1)pka,−α(p(e+k)a − 1)

)
= ∅

for all k ≥ 0. By Proposition 5.4, we conclude that f has no differential thresholds
in the interval (

− α+
α

pea
,−α+

α

p(e+k)a

)

and, since this holds for every k ≥ 0, statement (e) follows.
Let us now assume (e), and prove (a). Once again, fix a ∈ Z>0 such that

α(pa − 1) ∈ Z. We begin by noting that the sequence [e �→ −α(pea − 1)/pea]
increases to −α, and thus there is some e large enough so that the interval

[−α(pea − 1)

pea
,−α

)

contains no differential thresholds of f . Observe that, given an integer k ≥ 0 and
an integer

n ∈ [−α(pea − 1)pka,−α(p(e+k)a − 1)− 1],

we have [
n

p(e+k)a
,
n+ 1

p(e+k)a

]
⊆
[−α(pea − 1)

pea
,−α

)
.

From Lemma 5.6 we conclude that, for all k ≥ 0,

B•
f (p

(e+k)a) ∩
[
− α(pea − 1)pka,−α(p(e+k)a − 1)

)
= ∅,

and thus there is some differential operator ξk ∈ D
((e+k)a)
R such that

ξk
(
f−α(p(e+k)a−1)

)
= f−α(pea−1)pka

,

and hence

ξk · fα = fα(p(e+k)a−1)ξk
(
f−α(p(e+k)a−1)

)
fα

= fα(pka−1)fα.

We conclude that DR · fα contains elements of the form f−tfα, with t arbitrarily
large, and thus DR · fα = Rff

α. �

Remark 8.2. For a non-F -split ring R, and an arbitrary p-adic integer α ∈ Ẑ(p),
the equivalence (b) ⇐⇒ (d) still holds. More generally, Rff

α is finitely generated
over DR if and only if we have Rff

α = DR · f−tfα for some t large enough, and
we have Rff

α = DR · f−tfα if and only if all inclusions in the chain

DR · f−tfα ⊆ DR · f−t−1fα ⊆ DR · f−t−2fα ⊆ · · ·
are equalities which, by Lemma 7.14 and Proposition 7.15, is in turn equivalent to
BSR(f) ∩ {α− t− 1, α− t− 2, · · · } = ∅.

Corollary 8.3 provides an extension of a result of Blickle, Mustaţă, and Smith
[BMS09, Theorem 2.11].
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Corollary 8.3. Let R be an F -finite F -split ring and f ∈ R is Bernstein-Sato
admissible nonzerodivisor. For all α ∈ (Z(p))<0 we have Rff

α = DR · fα.

Let R be an F -finite ring, f ∈ R be an element and α ∈ Ẑ(p) be a p-adic integer.
By (Cα) we denote the following chain of inclusions in the module Rff

α:

(Cα) DR · ffα ⊇ DR · f2fα ⊇ DR · f3fα ⊇ · · · .
Theorem 8.4. Let R be an F -finite F -split ring, f ∈ R be a nonzerodivisor and
α ∈ Z(p). The following are equivalent:

(a) The chain (C−�α�+α) is constant.

(b) The chain (Cα) stabilizes.

(c) We have BSR(f) ∩ {α− �α
+ 1, α− �α
+ 2, . . . } = ∅.

(d) The set BSR(f) ∩ {α+ 1, α+ 2, . . . , } is finite.

(e) There is some ε > 0 such that the interval (�α
−α, �α
−α+ε) contains
no differential thresholds of f .

Proof. Recall that there is a DR-module isomorphism Rff
α ∼= Rff

−�α�+α which

identifies f−�α�fα with f−�α�+α. We conclude that (Cα) stabilizes if and only
if (C−�α�+α) stabilizes. We may thus replace α with −�α
 + α to assume that
α ∈ (−1, 0].

The equivalences of (a), (b), (c), and (d) are proved in the same way as in
Theorem 8.1. Let us show that (a) implies (e). Fix a ∈ Z>0 such that α(pa−1) ∈ Z.
By assumption, we have DR ·ffα = DR ·fα(pa−1)+pa

fα and therefore there is some
differential operator ξ ∈ DR such that ξ ·fα(pa−1)+pa

fα = ffα. If i is large enough

so that ξ ∈ D
((i+1)a)
R then we have

ξ · fα(pa−1)+pa

fα = fα(p(i+1)a−1) ξ
(
fα(pa−1)+pa

f−α(p(i+1)a−1)
)
fα

= fα(p(i+1)a−1) ξ
(
f−α(pia−1)pa+pa)

fα,

and we conclude that

ξ
(
f−α(pia−1)pa+pa)

= f−α(p(i+1)a−1)+1.

If we fix some e such that ξ ∈ D
((e+1)a)
R , we conclude that the above holds for all

i ≥ e.
As before, we consider a splitting σ : F∗R → R of the Frobenius morphism F ,

and we inductively build a sequence of differential operators ξk ∈ DR. We set
ξ1 = ξ and, for all k > 1, we let ξk = ξ1 F a ξk−1 σa. By induction on k, we have

that ξk ∈ D
((e+k)a)
R and that

ξk
(
f−α(pia−1)pka+pka)

= f−α(p(i+k)a−1)+1

for all k ≥ 0 and all i ≥ e.
By considering the case i = e, we conclude that for every k ≥ 0 we have

B•
f (p

(e+k)a) ∩
[
− α(p(e+k)a − 1) + 1,−α(pea − 1)pka + pka

)

and hence, by Proposition 5.4, the interval
(
− α+

1 + α

p(e+k)a
,−α+

1 + α

pea

)

contains no differential thresholds of f . Since this holds for all k ≥ 0, statement
(e) follows.
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Now let us assume (e) and prove (a). Once again we fix a ∈ Z>0 such that
α(pa − 1) ∈ Z. Pick some e large enough so that the interval (−α,−α + 1+α

pea ]

contains no differential thresholds of f . Note that, for all integers k ≥ 0 and all
integers n with

n ∈
[
− α(p(e+k)a − 1) + 1,−α(pea − 1)pka + pka − 1

]
,

we have [
n

p(e+k)a
,
n+ 1

p(e+k)a

]
⊆
(
− α,−α+

1 + α

pea

]
.

From Lemma 5.6 we conclude that, for all k ≥ 0,

B•
f (p

(e+k)a) ∩
[
− α(p(e+k)a − 1) + 1,−α(pea − 1)pka + pka

)
= ∅,

and hence there is some differential operator ξk ∈ D
((e+k)a)
R such that

ξk
(
f−α(pea−1)pka+pka)

= f−α(p(e+k)a−1)+1.

We conclude that

ξk · fα(pka−1)+pka

fα = fα(p(e+k)a−1) ξk
(
f−α(p(e+k)a−1) fα(pka−1)+pka)

fα

= fα(p(e+k)a−1) ξk
(
f−α(pea−1)pka+pka)

fα

= ffα.

We conclude that ffα ∈ DR ·fα(pka−1)+pka

fα for all k ≥ 0 and, since α(pka−1)+
pka = pka(α+ 1)− α and α+ 1 > 0, we have ffα ∈ DR · f tfα for all t ≥ 1. �

Remark 8.5. For a non-F -split ring R and an arbitrary p-adic integer α the equiv-
alence (b) ⇐⇒ (d) remains true. More generally, for all integers t we have

DR · f tfα = DR · f t+1fα = DR · f t+2 = · · ·

if and only if BSR(f)∩{α+ t, α+ t+1, . . . } = ∅ (see Lemma 7.14 and Proposition
7.15).

Corollary 8.6. Let R be an F -finite F -split ring and f ∈ R be a Bernstein-Sato
admissible nonzerodivisor. For all α ∈ Z(p) we have

DR · f−�α�+1fα = DR · f−�α�+2fα = DR · f−�α�+3fα = · · · .

Corollary 8.7. Let R be an F -finite F -split ring, f ∈ R be a nonzerodivisor and
α ∈ Z(p) � Z. The following are equivalent:

(a) The chain

· · · ⊆ DR · f−1fα ⊆ DR · fα ⊆ DR · ffα ⊆ · · ·

stabilizes on both sides.

(b) We have BSR(f) ∩ (α+ Z) ⊆ {α− �α
}.
(c) There is some ε > 0 such that the interval (�α
 − α − ε, �α
 − α + ε)
contains no differential thresholds of f .

Proof. Follows from Theorems 8.1 and 8.4, together with the observation that �α+
1� = �α
 whenever α /∈ Z. �
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Corollary 8.8. Let R be an F -finite F -split ring, f ∈ R be a nonzerodivisor. The
following are equivalent:

(a) The chain

· · · ⊆ DR · f−1 ⊆ R ⊆ DR · f ⊆ · · ·
of DR-submodules of Rf stabilizes on both sides.

(b) We have BSR(f) ∩ Z ⊆ {−1, 0}.
(c) There is some ε > 0 such that (1 − ε, 1 + ε) contains no differential
thresholds of f .

Proof. The statement follows by applying Theorems 8.1 and 8.4 to α = 0, and
by using the fact that (0, ε) contains no differential thresholds of f if and only if
(1, 1 + ε) contains no differential thresholds of f (Proposition 5.9). �

Corollary 8.9. Let R be an F -finite F -split ring, f ∈ R be a nonzerodivisor,
and λ ∈ (Z(p))>0. If Rff

−λ has finite length as a DR-module then λ is not an
accumulation point of differential thresholds of f .

Proof. By Lemma 7.14 and Proposition 5.9 we may assume that λ ∈ (0, 1]. The
statement then follows from Corollaries 8.7 (applied to α = −λ) and 8.8. �

Lemma 8.10. Let R be an F -finite ring strongly F -regular ring, f ∈ R be a
nonzerodivisor, and α ∈ (Z(p))≤0. Then Rff

α is simple as a DRf
-module.

Proof. Recall that R is F -split and simple as a DR-module [Smi95]. Fix an integer
a > 0 such that α(pa − 1) ∈ Z. Take some nonzero element gf−kfα ∈ Rff

α

where g ∈ R and k ∈ Z≥0. Since R is DR-simple there is some differential operator

δ ∈ DR such that δ(g) = 1; fix some integer e large enough so that δ ∈ D
(ea)
R . We

then have (
f−α(pea−1)δfα(pea−1)+k

)
· gf−kfα = δ(g)fα = fα,

which shows that every nonzero DRf
-submodule of Rff

α contains fα. Since
DRf

fα = Rff
α, the result follows. �

Lemma 8.11 extends a result of the second author and Pérez [NBP16, Corollary
3.18] to the singular case.

Lemma 8.11. Let R be an F -finite strongly F -regular ring. Let f ∈ R be a
Bernstein-Sato admissible nonzerodivisor and let α∈(Z(p))≤0. Then DR·f−�α�+1fα

is contained in every nonzero DR-submodule of Rff
α. In particular, DR·f−�α�+1fα

is the unique simple nonzero DR-submodule of Rff
α.

Proof. Recall that R is F -split and simple as a DR-module [Smi95]. Take some
nonzero v ∈ Rff

α. By Lemma 8.10, DRf
· v = Rff

α and therefore there is some

differential operator δ ∈ DR and some integer k ≥ 0 such that δ · v = fkfα; we
may assume that k ≥ −�α
+ 1. By Corollary 8.6 we have

DR · f−�α�+1fα = DR · fkfα ⊆ DR · v. �

Remark 8.12. Note that in [NBP16] the submodule DR · f�−α�fα is used instead
of DR · f−�α�+1fα. But these two submodules are equal: indeed, when α /∈ Z we
have �−α
 = −�α
 + 1, and when α ∈ Z the statement follows from Lemma 7.14
together with the fact that DR · f = R = DR · 1.
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The following result recovers and extends a previous characterization of F -
thresholds due to the second author and Pérez [NBP16, Theorem 1.1].

Theorem 8.13. Let R be an F -finite strongly F -regular ring. Let f ∈ R be a
Bernstein-Sato admissible nonzerodivisor and α ∈ Z(p) ∩ [−1, 0). The following are
equivalent:

(a) The module Rff
α is not simple over DR.

(b) We have that α is a Bernstein-Sato root of f .

(c) We have that −α is a differential threshold of f .

Proof. The equivalence between (b) and (c) is given in Corollary 5.18. We show
that (a) is equivalent to (b).

By Corollary 8.3 we have Rff
α = DR · fα, and by Lemma 8.11 DR · ffα is

the unique simple DR-submodule of Rff
α (see Remark 8.12 in the case α = −1).

Therefore Rff
α is not simple if and only if DR · fα �= DR · ffα, and the result

follows from Proposition 7.15. �

8.2. The length of Rff
α. In this section we study the structure of Rff

α for

Bernstein algebras [ÀMHJ+21]. This is a class of rings whose DR-modules satisfy
Bernstein inequality, and as a consequence, there is a notion of holonomic DR-
modules.

Setup 8.14. Let K be a field and R be a finitely generated graded K-algebra
such that R0 = K. Let m denote the maximal homogeneous ideal and w =
max{j | [m/m2]j �= 0}.

The generalized Bernstein filtration of R with slope w, B•
R, is defined by

Bi
R = {δ ∈ DR | deg(δ) + w ord(δ) ≤ i}.

Since we have fixed the slope, we usually refer only to the Bernstein filtration and
do not mention the slope. The dimension of B•

R is defined by

Dim(B•
R) = inf

{
s ∈ R≥0 | lim

r→∞

dimK Bi
R

ir

}
,

and the multiplicity of B•
R is defined by

e(B•
R) = lim sup

i→∞

dimK Bi
R

iDim(B•
R
)
.

Definition 8.15. Let R be as in Setup 8.14. We say that R is a Bernstein algebra
if it satisfies the following conditions.

(i) There exists C ∈ Z>0 such that for every δ ∈ Bi
R we have that 1 ∈

BCi
R δBCi

R ,

(ii) Dim(B•
R) = 2 dim(R), and

(iii) 0 < e(B•
R) < ∞.

Let M be a finitely generated DR-module. We say a filtration G• is a B•
R-

filtration if

(i) Each Gi is a finite dimensional K vector space,

(ii) M =
⋃

i∈Z≥0
Gi, and

(iii) Bi
RGj ⊆ Gi+j for all i, j ∈ Z≥0.
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Given a filtration, Gi of M , its dimension is defined by

Dim(G•) = inf

{
s ∈ R≥0 | lim

r→∞

dimK Gi

ir

}
,

and its multiplicity by

e(G) = lim sup
i→∞

dimK Gi

iDim(G•)
.

Theorem 8.16 ([Bav09, Theorem 3.1] & [ÀMHJ+21, Theorem 3.4]). Suppose that
R is a Bernstein algebra. Let M be a finitely generated DR-module, and G• a B•

R

filtration. Then,

dim(R) ≤ Dim(G•).

Definition 8.17. Suppose that R is a Bernstein algebra. Let M be a finitely
generated nonzero DR-module. We say that M is holonomic if it admits a filtration
of dimension dim(R) and finite multiplicity.

Theorem 8.18 ([ÀMHJ+21, Theorem 3.8]). Suppose that R is a Bernstein algebra.
Let M be a holonomic DR-module. Then, M has finite length as DR-module.

Theorem 8.19. Suppose that R is a Bernstein algebra. Then, Rff
α is holonomic

for every nonzero element f ∈ R and α ∈ Ẑ(p). In particular, Rff
α has finite

length as DR-module.

Proof. There exists C ∈ Z≥0 such that Bi
R ⊆ DCi

R [ÀMHJ+21, Proposition 4.14].

Let a = deg(f). Let Gi = 1
fCiBi(Ca+1)

R ⊆ Rf . Then, Rf is holonomic DR-module

with the B•
R-filtration G• [ÀMHJ+21, Proof of Lemma 4.5]. Let A = C(2a+1)+ 1

and G̃i = GAifα ⊂ Rff
α.

We now show that G̃i is a B•
R-filtration. We have that G̃i is a finite dimensional

K-vector space and Rff
α =

⋃
i∈Z≥0

G̃i because G• is a B•
R-filtration. It remains

to show that Bi
RG̃j ⊆ G̃i+j . We set e = �logp Ci�. We note that α<e < pe. Let

δ ∈ Bi
R ⊆ DCi

R ⊆ D
(e)
R and g

fAj f
α ∈ G̃j . Then, g

fAj ∈ GAj . We have that

δ

(
fα<e

g

fAj

)
∈ GCi+Aj+aα<e ⊆ GCi+Aj+pea ⊆ GCi+Ai+Cia,

because G• is a B•
R-filtration. By the way G• is defined, we have that

1

fα<e
δ

(
fα<e

g

fAj

)
∈ Gα<ea+Ci+Aj+Cia ⊆ Gpea+Ci+Aj+Cia ⊆ GCia+Ci+Aj+Cia

= GAi+Aj .

Hence,

δ

(
g

fAi
fα

)
=

1

fα<e
δ

(
fα<e

g

fAn

)
fα ∈ G̃i+j .

We conclude that Bi
RG̃i ⊆ G̃i+j . Then, Rff

α is a holonomic DR-module. We
conclude that Rff

α has finite length as DR-module by Theorem 8.18. �
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9. Examples

Example 9.1. Let K be a field of characteristic p ≡ 1 mod 3, R =
K[x, y, z]

(x3 + y3 + z3)
,

and f ∈ (x, y, z). The ring R has no differential operators of negative degree.

It follows that D
(e)
R · fn �= D

(e)
R · fn+1 for all n ≥ 0, so (f) is not Bernstein-

Sato admissible. Every p-adic integer is a Bernstein-Sato root of f , and every
nonnegative real number is a differential threshold of f .

Example 9.2. Let R = Fp[x, y, z], with p odd, and a = (x2yz, xy2z, xyz2). We
have that α = −5

4 is a Bernstein-Sato root of a [QG21a, Example 3.5]. However,

its negative, 5
4 , is not an F -jumping number of a. To see this, we claim that

τR(a
λ) = (xyz) for λ ∈ [1, 3

2 ). Since a ⊆ (xyz), we have τR(a
λ) ⊆ τR((xyz)

λ) =

(xyz) for λ ∈ [1, 3
2 ). It suffices to show that xyz ∈ τR(a

λ) for λ < 3
2 . For e > 0,

we have (xyz)2p
e−2 = (x2yz)(p

e−1)/2(xy2z)(p
e−1)/2(xyz2)(p

e−1)/2 ∈ a
(3pe−3)/2, so

xyz ∈ Ce
R · a(3pe−3)/2. Since (3pe−3)/2

pe → 3
2 , the claim follows.

This example shows that the conclusion of Theorem 5.17 cannot be strengthened
to say that the negative of a Bernstein-Sato root is a differential threshold. We
have that 9

4 = 1 − α is an F -jumping number, and hence a differential threshold
[QG21a, Example 3.5].

Example 9.3. Let R = Fp[x
2, xy, y2] ⊆ S = Fp[x, y], with p odd. This inclusion

is Cartier extensible, level differentially extensible, and is split as R-modules. Let
m = (x2, xy, y2) be the homogeneous maximal ideal of R, and n = (x, y) be the
homogeneous maximal ideal of S. We have

τR(m
λ) = τS((mS)λ) ∩R = τS(n

2λ) ∩R

for all λ [ÀMHJ+22, Proposition 5.9]. We have τS(n
γ) = n

�γ−1� for γ ≥ 1, and
τS(n

γ) = S for 0 ≤ γ < 1. We observe that n
γ ∩ R = m

�γ/2�. Thus, the F -
jumping numbers of mS are {1, 3

2 , 2,
5
2 , 3,

7
2 , . . . }, and the F -jumping numbers of m

are {1, 2, 3, . . . }.
By Proposition 5.12(iv), the differential thresholds ofmS are {1, 32 , 2, 52 , 3, 7

2 , . . . }.
Then, by Theorem 6.7(vii), the differential thresholds of m are {1, 32 , 2, 52 , 3, 7

2 , . . . }.
To compute the Bernstein-Sato roots of m, we may equivalently compute the

Bernstein-Sato roots of mS = n
2 by Theorem 6.7(vi). We have that

D
(e)
S · nn =

{
S if 0 ≤ n ≤ 2pe − 2,

(na−2)[p
e] if (a− 1)pe − 1 ≤ n ≤ ape − 2, a > 2.

Thus, the differential jumps of level e for n2 are

{�ape − 2� | a ≥ 2} = {bpe − 1 | b ≥ 1} ∪
{
2c+ 1

2
pe − 3

2
| c ≥ 1

}
.

Passing to p-adic limits, we conclude that the set of Bernstein-Sato roots of m is
{−1,− 3

2}.
This shows that an ideal may have Bernstein-Sato roots that are not congruent

modulo Z to F -jumping numbers. This also shows that an ideal may have differ-
ential thresholds that are not F -jumping numbers, even in a strongly F -regular
hypersurface.
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Example 9.4. Let R and S be as in Example 9.3. Take f = x4 + y6, and p ≡ 1
mod 12. We claim that τS(f

7
12−ε) = (x, y) for 0 < ε � 1, and τS(f

7
12 ) = (x, y2).

To see this, first, we observe that for n = 7pe−7
12 , y ∈ Ce

R · fn. Note that the
monomials in the binomial expansion are distinct, and that none of the exponents

of different terms agree modulo pe. In the binomial expansion of fn, for j = pe−1
4 ,

we have n− j = pe−1
3 , and since j = ( p−1

4 ) + ( p−1
4 )p+ · · ·+ ( p−1

4 )pe−1 and n− j =

( p−1
3 )+( p−1

3 )p+· · ·+( p−1
3 )pe−1, j and n−j add without carrying, so

(
n
j

)
is nonzero

modulo p. Then
(
n
j

)
(x4)j(y6)n−j is a unit times xpe−1y2p

e−2, justifying the first

observation.
Second, if n ≥ 7pe

12 , for 0 ≤ j ≤ n, we must have either 4j ≥ pe or 6(n− j) ≥ 2pe,

so any monomial in the binomial expansion of fn lies in (x, y2)[p
e].

Third, if n = 2(pe−1)
3 , taking j = pe−1

2 we have n− j = pe−1
6 ; the integers j and

n− j add without carrying as before, so there is a term in the expansion that is a
unit times x2pe−2yp−1. We conclude that x ∈ Ce

R · fn. Similarly, one checks that

y2 ∈ Ce
R · fn for n = 3(pe−1)

4 .

Put together, these justify the claims on τS . Now, since (x, y)∩R = (x, y2)∩R,
7
12 is a jumping number of fS, but not of fR. Note that 7

12 is a differential threshold
of fR by Theorem 6.7(vii) and 5.12.

This shows that Bernstein-Sato roots and F -jumping numbers of principal ideals
do not necessarily agree modulo Z; likewise, differential thresholds and F -jumping
numbers of principal ideals do not necessarily agree.

Example 9.5. Let K be a field of characteristic p > 0, and R =
K[x, y]

(xy)
. The set

of Bernstein-Sato roots of x ∈ R is {−1, 0}. To see this, consider the decomposition
of R as an Rpe

-module:

R = Rpe · 1 ⊕
pe−1⊕

i=1

(R/yR)p
e · xi ⊕

pe−1⊕

j=1

(R/yR)p
e · yj .

From this, we compute that, for 0 ≤ j < pe,

D
(e)
R · xape+j =

{
(xape

) if j = 0,

(xape+1) if j �= 0,

so B•
x(p

e) ∩ [0, pe) = {0, pe − 1}.
Passing to p-adic limits, we find that the Bernstein-Sato roots are {0,−1} as

claimed. The differential thresholds of x are {0, 1, 2, . . . }.
Thus, for a Bernstein-Sato admissible ideal in an F -split ring, zero can occur

as a Bernstein-Sato root. The occurrence of zero as a root here is explained by
Proposition 4.21.

Example 9.6. Let K be a field of characteristic p > 2, and R = K[x2, x3]. The set
of Bernstein-Sato roots of x2 ∈ R is {−1, 1

2}. To see this, consider the decomposition

of R as an Rpe

-module:

R = R
pe

· 1 ⊕
pe−1⊕

i=2

R
pe

· xi ⊕ R
pe

· xpe+1,
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where R = K[x] is the normalization of R. Then D
(e)
R is a direct sum of copies of

E := EndRpe (R
pe

). We then have, for 0 ≤ j < pe,

D
(e)
R · (x2)ap

e+j =

{
(x2ape

) if 0 ≤ j ≤ pe+1
2

(x2ape

)(E · xpe

) if pe+1
2 < j < pe

,

so B•
x(p

e) ∩ [0, pe) = {pe+1
2 , pe − 1}.

Passing to p-adic limits, we find that the Bernstein-Sato roots are {−1, 12}, as
claimed. The positive root here is explained by Proposition 7.16. The differential
thresholds of x2 are { 1

2 , 1,
3
2 , 2, . . . }.

This illustrates that the F -split hypothesis in Theorems 4.18 and 5.17 is neces-
sary.

Example 9.7. Let K be a field of characteristic 2, and R = K[x2, x3]. The set of
Bernstein-Sato roots of x2 ∈ R is {−1}. We have the decomposition of R as an
Rpe

-module as in Example 9.6, and then, for 0 ≤ j < pe,

D(e) · (x2)ap
e+j =

{
(x2ape

) if 0 ≤ j ≤ pe

2 − 1,

(x2ape

)(E · xpe

) if pe

2 − 1 < j < pe,

so B•
x(p

e) ∩ [0, pe) = {pe

2 − 1, pe − 1}. The only Bernstein-Sato root of x2 is −1,

while the set of differential thresholds is { 1
2 , 1,

3
2 , 2, . . . }.

Example 9.8. Let R = K[x]/(xn+1). For e such that pe > n, we have D
(e)
R =

EndK(R), and hence D
(e)
R · xj = R for j ≤ n, and D

(e)
R · xj = 0 for j > n. Thus,

B•
x(p

e) = {n} for all e � 0. We then have that n is the unique Bernstein-Sato root,
and the only differential threshold is zero.
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larities with differential operators, Adv. Math. 358 (2019), 106843, 89, DOI
10.1016/j.aim.2019.106843. MR4020453

[Bli13] Manuel Blickle, Test ideals via algebras of p−e-linear maps, J. Algebraic Geom. 22
(2013), no. 1, 49–83, DOI 10.1090/S1056-3911-2012-00576-1. MR2993047
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integral operators and partial differential equations (Colloq. Internat., Univ. Nice,
Nice, 1974), Lecture Notes in Math., Vol. 459, Springer, Berlin, 1975, pp. 98–119.
MR0419827
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