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Thermodynamics constrains changes to the energy of a system, both deliberate and random, via its first and
second laws. When the system is not in equilibrium, fluctuation theorems such as the Jarzynski equality further
restrict the distributions of deliberate work done. Such fluctuation theorems have been experimentally verified
in small, nonequilibrium quantum systems undergoing unitary or decohering dynamics. Yet, their validity in
systems governed by a non-Hermitian Hamiltonian has long been contentious due to the false premise of the
Hamiltonian’s dual and equivalent roles in dynamics and energetics. Here we show that work fluctuations in
a non-Hermitian qubit obey the Jarzynski equality even if its Hamiltonian has complex or purely imaginary
eigenvalues. With postselection on a dissipative superconducting circuit undergoing a cyclic parameter sweep,
we experimentally quantify the work distribution using projective energy measurements and show that the fate
of the Jarzynski equality is determined by the parity-time symmetry of, and the energetics that result from,
the corresponding non-Hermitian, Floquet Hamiltonian. By distinguishing the energetics from non-Hermitian
dynamics, our results provide the recipe for investigating the nonequilibrium quantum thermodynamics of such
open systems.
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I. INTRODUCTION

The concept of a small system coupled to a large reservoir
is elemental to both thermodynamics and open quantum sys-
tems. In thermodynamics, a reservoir allows one to distinguish
between two types of energetics: heat Q, the random energy
transferred to the system from the reservoir, and work W ,
deliberately imparted to the system. The energy U of the
system is additively changed by the two, thereby encoding the
first law of quantum thermodynamics, !U = Q + W (Fig. 1,
right inset) [1–6]. Conversely, a closed quantum system is
governed by a Hermitian Hamiltonian H (t ), undergoes uni-
tary evolution with zero heat exchange, and its energy is equal
to the expectation value of the generator of its dynamics H (t ).
When coupled to a reservoir, one describes its evolution by av-
eraging over possible, consistent microstates of the reservoir.
This averaging leads to (engineered) decoherence and dissi-
pation [7]; the resulting dynamics are described by a Lindblad
equation ∂tρ = Lρ for the reduced density matrix ρ(t ) of
the system [8]. Here, the system-reservoir coupling results in
trajectory-dependent heat and work that, when added together,
gives a trajectory-independent change in the energy of the
system [9]. In such cases, the internal energy operator H (t ),
which encodes the energy U (t ) ≡ Tr[ρ(t )H (t )], is distinct
from the generator L of its temporal dynamics.
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In addition to the work-energy theorem, work fluctuations
of a nonequilibrium system with internal energy operator H (t )
are further constrained by the Jarzynski equality [10–13]:

〈e−βW 〉 = Z (τ )
Z (0)

≡ e−β!F . (1)

Here 〈·〉 denotes trajectory-ensemble average, β−1 is the
reservoir temperature, Z (t ) ≡ Tr exp[−βH (t )] is the system
partition function, and !F ≡ F (τ ) − F (0) is the Helmholtz
free energy change in time τ . The equality (1) supersedes the
Jensen inequality !F ! 〈W 〉 that constrains the amount of
work done on a system and its free-energy change. In a quan-
tum system with indefinite energy, a two-point-measurement
(TPM) protocol quantifies changes in a system’s energy !U
[14,15] in terms of transition probabilities between energy
eigenstates of the internal energy operator H (t ) (Fig. 1). It
entails performing a pair of projective measurements in the
energy basis to quantify !U . These transition probabilities
differ for unitary and Lindblad evolution and yet the Jarzynski
equality (1) holds [16] for unital quantum maps [17,18], as has
been experimentally verified [19–23].

In recent years, a third model of quantum dynamics
obtained by postselecting on quantum trajectories with no
quantum jumps has emerged [24,25]. With a non-Hermitian
generator Heff (t ) = H (t ) + i&(t ) and a nonlinear, trace-
preserving equation of motion [26], it maps pure states into
pure states but changes the entropy of mixed states [27],
thereby commingling salient features of unitary and Lindblad
evolution. These non-Hermitian systems occur by considering
a subspace of the larger dissipative system which is governed
by Lindblad evolution. When the non-Hermitian Heff has a
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FIG. 1. Thermodynamics of open quantum systems. The first law
of thermodynamics (right inset) states that the internal energy of a
system (S) coupled to a reservoir (R) is additively changed by the
heat Q and the work W . The generalized second law or the Jarzynski
equality (1) governs the trajectory-dependent work fluctuations. For a
quantum system starting in an equilibrium density matrix ρeq, these
work fluctuations are characterized by projective energy measure-
ments leading to a discrete work distribution P(W ). We show that
for cyclic parameter variations in Heff (t ), the average exponentiated
work is unity when the corresponding Floquet Hamiltonian HF

eff has
a parity-time symmetry, and its Floquet energy operator matches the
system’s initial energy operator.

real spectrum, its role in dynamics has been conflated with
energetics, leading to predicted violations of the Jarzynski
equality and Crooks fluctuation theorem when the spectrum
of Heff turns complex [28–33]. Fundamentally, the coherent,
nonunitary, nonunital dynamics generated by Heff begs the
question: What are the constraints on quantum work fluctu-
ations in such dynamics?

Here, we demonstrate the Jarzynski equality in a non-
Hermitian qubit undergoing real-time parameter changes,
including cases where Heff (t ) has complex eigenvalues at
all times. For simplicity, we focus on cyclic parameter
changes, where Heff (0) = Heff (τ ); the final and initial parti-
tion functions are equal, thus Z (τ )/Z (0) = 1. For these cyclic
parameter sweeps, the qubit dynamics is characterized by the
nonunitary G(τ ) = T exp[−i

∫ τ

0 Heff (t ′)dt ′] ≡ exp(−iτHF
eff )

that defines the non-Hermitian Floquet Hamiltonian HF
eff ≡

HF + i&F , where HF is the Floquet internal energy operator.
We show that the Jarzynski equality 〈e−βW 〉 = 1 is satisfied
when HF

eff has an explicit or emergent parity-time (PT ) sym-
metry that guarantees real or complex-conjugate eigenvalues,
and HF ∝ H (0), i.e., the two internal energy operators have
the same eigenbasis (see Appendix A).

II. NON-HERMITIAN DYNAMICS FROM NO-JUMP
QUANTUM EVOLUTION

Our experimental platform comprises a superconducting
transmon circuit with energy eigenstates labeled {|g〉, |e〉, | f 〉}
dispersively coupled to a microwave cavity (see Sec. IV for
more details). Bath engineering allows us to tune the radia-
tive decay rates such that the spontaneous emission decay
rate γe = 1.57 µs−1 of state |e〉 by quantum jumps |e〉 →
|g〉 is much larger than the decay rate γ f = 0.21 µs−1 from
| f 〉 → |e〉, leading to a decay contrast γ ≡ γe − γ f ≈ γe. The
spontaneous emission dissipation operator associated with
this decay is given by L = √

γ σ− ≡ √
γ |g〉〈e|. We postselect

quantum trajectories with no quantum jumps to the |g〉 state,

FIG. 2. Experimental setup. (a) A non-Hermitian qubit is real-
ized as the submanifold (dashed box) of the lowest three levels of
a transmon circuit. The system exhibits decay from the |e〉 state
to |g〉 at rate γe and is driven by a microwave drive with detuning
!(t ) and coupling rate J (t ). (b) The experimental protocol involves
preparing an initial eigenstate | ± x〉 = (| f 〉 ± |e〉)/

√
2 using reso-

nant rotation pulses Rπ
ge and Rπ/2

e f ,θ (where θ = π or 0, respectively),
dynamically tuning the energy operator H (t ) for a certain time τ

and returning it to its initial value H (τ ) = H (0), followed by post-
selective quantum state tomography. (c) By sampling both initial
states | j〉 ∈ {| + x〉, | − x〉} and postselecting cases where the system
does not project onto the ground state, we determine the transition
probabilities Pi j within the excited-state manifold {|e〉, | f 〉}.

thereby limiting the dynamics only to the excited-state sub-
space {|e〉, | f 〉}, with this no-jump evolution, the role of the
spontaneous emission dissipation is now captured by a Hamil-
tonian term −i

2 L†L = −iγ
2 |e〉〈e| [34,35]. With the addition of

a drive that couples the states |e〉 and | f 〉 with detuning !(t )
and rate J (t ) [Fig. 2(a)], the evolution of this qubit subspace
is described by an effective non-Hermitian Hamiltonian,

Heff (t ) = J (t )σx + !(t )| f 〉〈 f | + iγ
4

σz = H (t ) + i&, (2)

where σx = (| f 〉〈e| + |e〉〈 f |) and σz = (| f 〉〈 f | − |e〉〈e|) are
Pauli matrices in the excited-state subspace. Here we have
also removed an overall loss term proportional to the identity,
(− iγ

4 1), which reflects the exponentially decreasing posts-
election success. When !(t ) ≡ 0, the Hamiltonian Heff (t )
commutes with the antilinear operator PT = σxK, where
the parity operator P is defined as σx and the time-reversal
operator T is defined as complex conjugation K to the Hamil-
tonian Heff (t ), at all times. In the static case, this explicit
PT -symmetry underlies the purely real or purely imaginary
eigenvalues λ± = ±

√
J2 − (γ /4)2 of Heff with an exceptional

point (EP) degeneracy at JEP = γ /4.
The transition between real and imaginary eigenvalues

of PT -symmetric systems has been explored extensively in
a range of experimental platforms since its introduction by
Bender in 1998 [36]. This includes experimental work in
optical systems [37–42], ultracold atoms [43], and supercon-
ducting qubits [24]. This transition is typically described as a
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PT -symmetry breaking transition; from unbroken to broken
PT symmetry (real to imaginary eigenvalues) [38]. Notably,
the eigenstates of Heff are nonorthogonal near the EP and both
the eigenvalues and eigenstates coalesce at the EP. Signifi-
cant attention has been invested in dynamics in the vicinity
of the EP, in particular, where one observes nonreciprocal
state transport [44,45], chiral Berry phases [25], and enhanced
sensing [46,47]. When !(t ) += 0, the instantaneous eigenval-
ues λ±(t ) of the non-Hermitian Heff (t ) are complex and the
Hamiltonian has no explicit PT symmetry.

In the following, we implement three time-periodic param-
eter paths,

J (t ) = J̄ + (Jmax − Jmin)
2

cos
(

2πt
τ

)
, !(t ) = 0, (3)

!1(t ) = !max sin
(

πt
τ

)
, J (t ) = Jmax, (4)

!2(t ) = !max sin
(

2πt
τ

)
, J (t ) = Jmax, (5)

where τ is the protocol duration and J̄ = (Jmax + Jmin)/2.

III. MEASURING WORK DISTRIBUTION

The basis of the experiment is to determine the work distri-
bution P(W ) after the system is driven by the cyclic internal
energy operator H (t ) [Fig. 2(b)]. In our experiment, the TPM
procedure consists of three steps: (i) With a sequence of reso-
nant rotations to the transmon circuit, we initialize the system
in the eigenstates | ± x〉 = (| f 〉 ± |e〉)/

√
2 of the energy oper-

ator H (0) = Jmaxσx. A Gibbs state with inverse temperature β
is then synthesized by preparing the two eigenstates with rela-
tive probabilities P±x ∝ exp(∓βJmax). Throughout this paper,
we set β = 0.5 µs/rad, which corresponds to P+x = 0.98.
(ii) We dynamically apply work to the qubit by tuning the
parameters J (t ),!(t ) as in Eqs. (3)–(5). (iii) We perform a
final projective measurement in the basis {|g〉, | + x〉, | − x〉}
via a single shot, multistate readout of the qutrit, which
gives probabilities {pg, j, p+x, j, p−x, j} that add up to unity.
The TPM protocol determines the total energy change !U =
W + Q whose distribution is characterized by the transition
probabilities [48]

Pi j (τ ) = |〈i|G(τ )| j〉|2

〈 j|G†(τ )G(τ )| j〉
= pi j

p+x, j + p−x, j
, (6)

where i, j = ±x label the eigenstates of the internal en-
ergy operator H (0). The work distribution for the non-
Hermitian qubit is obtained through the transition prob-
abilities {p+x, j, p−x, j} after postselecting on the no-jump
evolution. The state-dependent denominator in (6) captures
the norm-preserving nature of the postselection process,∑

i Pi j (τ ) = 1 [Figs. 2(b) and 2(c)]. For Q = 0, we have
!U = W and the exponentiated-work expectation value from
(1) is obtained as

〈e−βW 〉(τ ) =
∑

i j=±x

e−β(Jmax,i−Jmax, j )Pi j (τ )Pj, (7)

where the statistical weights P±x = {0.98, 0.02} reflect the
reservoir temperature, transition probabilities Pi j (τ ) are

FIG. 3. Symmetries of transition probabilities. (a) Measured
probabilities Pi j (τ ) for the first path, (3), with Jmax = Jmin =
3.74 rad/µs are symmetrical under the exchange +x ↔ −x. (b) Mea-
sured probabilities for the second path, (4), with the same Jmax

value and !max = 10π rad/µs show clear asymmetry, P++ += P−−
and P+− += P−+. This asymmetry is connected to the absence of PT
symmetry for the Hamiltonian Heff (t ) along the second cyclic path.

experimentally measured for loop duration τ ranging from
0.1 µs ! τ ! 1 µs, Jmax,+x = Jmax, and Jmax,−x = −Jmax.

Figure 3(a) shows that for the first path with zero de-
tuning, Eq. (3), the survival and transition probabilities are
equal for the two energy eigenstates. On the contrary, for
the second path, Eq. (4) with !max = 10π rad/µs, the proba-
bilities P++ += P−− (or, equivalently, P−+ += P+−) are clearly
asymmetrical [Fig. 3(b)]. Both cases have Jmax = Jmin =
3.74 rad/µs. We observe stark differences between these two
cases which correspond to Hamiltonians Heff (t ) with or with-
out an explicit PT symmetry, respectively.

IV. EXPERIMENTAL SETUP

The experimental setup comprises a superconducting cir-
cuit that was fabricated and provided by the Superconducting
Qubits at Lincoln Laboratory (SQUILL) Foundry at MIT
Lincoln Laboratory. The experiments utilize a subportion of
a multiqubit chip with relevant components consisting of a
tunable transmon qubit with maximum frequency ωge/2π =
4.373 GHz, dispersively coupled to a readout resonator at cou-
pling rate g/2π = 33 MHz and linewidth κ/2π = 246 kHz,
qubit drive line, and an off-chip coupling line. A solenoid coil
fixed to the package allows control of the global flux through
the transmon SQUID loop, with bias current filtered at the 4 K
stage with a low pass filter (QDevil Q015 QFilter). The qubit
is operated at ωge/2π = 4.25 GHz and resonator frequency
ωr/2π = 6.88865 GHz. To realize the non-Hermiticity, an
off-chip coaxial filter is coupled to the qubit to enhance the
|e〉 decay rate to γe = 1.57 µs−1. The readout signal probes
the resonator via a common bus line and is amplified by
a Josephson parametric amplifier (BBN-PS2-JPA-DEVICE-
QEC) operating with ∼15 dB of gain.

V. JARZYNSKI EQUALITY AND ITS VIOLATION

Figure 4 summarizes the experimental results for
〈e−βW 〉(τ ) for J (t ) variations [(a)–(d)] and !1(t ) variations
[(e) and (f)]; each parameter path and the location of the EP is
schematically shown in the corresponding panel inset. We see
that 〈e−βW 〉 / 1 for J (t ) variations that range from the static
case, Jmax = Jmin (a), to paths confined to the PT -symmetric
region, Jmin = 0.5Jmax (b), to paths that traverse across the
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FIG. 4. Jarzynski equality and its violation. Experimental cal-
culation of 〈e−βW 〉(τ ) (solid lines) alongside the simulation results
(dashed lines). See Appendix B for simulation details. The insets
depict the parameter paths J (t ) or !1(t ) and the EP at JEP =
γ /4. (a)–(d) J (t ) sweeps with Jmax = 3.74 rad/µs (red) and Jmax =
1.89 rad/µs (black). (a) The static case, Jmax = Jmin, satisfies (1).
(b) The path going from Jmax to Jmin = 0.5Jmax is in the PT -
symmetric region and satisfies (1), as does the path (c) going across
the EP to Jmin = 0. (d) For a path starting in the PT -broken region
at Jmax = 0.04 rad/µs and reaching across the EP to Jmin > Jmax,
the Jarzynski equality (1) holds (upper inset: zoomed-in view of
fluctuations). (e), (f) For !1(t ), sweeps with Jmax = 3.74 rad/µs,
the average exponentiated-work increasingly deviates from unity:
!max = ∓10π rad/µs (red) and !max = ∓2π rad/µs (black). The
absence of transition probability symmetry seen in Fig. 3(b) (or a
parity-time symmetry) is instrumental to the violation of the Jarzyn-
ski equality.

EP into the PT -broken region with Jmin = 0 (c). Figure 4(d)
shows that starting from the PT -broken region and traversing
across the EP into the PT -symmetric region also maintains
the Jarzynski equality, with much smaller fluctuations aris-
ing from the smaller energy scale (upper inset). Thus, the
Jarzynski equality is satisfied for arbitrary J (t ) sweeps, in-
dependent of the real or imaginary nature of eigenvalues of
Heff (t ) as long as the Hamiltonian has an explicit PT sym-
metry. Interestingly, the Jarzynski equality is not expected to
be valid for the larger system into which the non-Hermitian
qubit is embedded, since the larger system evolves according
to a nonunital Lindblad map [49]. For the first path, this
explicit PT symmetry also ensures that the corresponding
Floquet energy operator HF has the same energetics as the
system’s initial energy operator H (0) = Jmaxσx. In sharp con-
trast, for one-sided sweeps !1(t ), the average exponentiated
work 〈e−βW 〉(τ ) exceeds one for !max < 0 (e) and is below
unity for !max > 0 (f), thereby indicating that the Jarzynski
equality is violated when Heff (t ) or its Floquet counterpart HF

eff
do not have an antilinear (parity-time) symmetry.

FIG. 5. Emergent parity-time symmetry and Jarzynski equality.
For the !2(t ) cyclic path with zero average detuning, the Flo-
quet Hamiltonian always has an emergent PT symmetry. (a) Yet
the transition probability asymmetries !P(τ ) = P++ − P−− (brown)
and !P(τ ) = P+− − P−+ (orange) are generally nonzero except at
loop times τ1 = 0.455 µs and τ2 = 0.572 µs. (b) Simulation of
exponentiated-work average (1) while sweeping !max and loop time
τ . Black dashed contours represent 〈e−βW 〉 = 1 and correspond to
cases where the Floquet energy operator HF aligns with the ini-
tial energy operator H (0). Red solid line: Experimental parameter
space. (c) Measured exponentiated-work average for the !2(t ) path
with !max = 10π rad/µs (solid line) shows the Jarzynski equality
is satisfied at loop times τ1, τ2. (d) A higher-resolution in loop-time
measurement of (c) for τ ranging from 0.4 µs to 0.6 µs. Dashed lines
in (a), (c), and (d): simulations

Lastly, we investigate a case where Heff (t ) has no ex-
plicit PT symmetry, and yet its Floquet counterpart HF

eff
is parity-time symmetric. In this case, the Jarzynski equal-
ity is satisfied only at specific loop times: times where the
Floquet energy operator HF aligns with the system’s ini-
tial energy operator H (0) = Jmaxσx. We introduce a different
parameter path, Eq. (5), which obeys !2(t ) = −!2(τ − t ).
As a consequence of the zero average detuning, the corre-
sponding Floquet Hamiltonian has an emergent parity-time
symmetry, i.e., HF

eff eigenvalues are always real or complex
conjugates. Figure 5(a) shows that the measured probability
asymmetry !P(τ ) ≡ P++(τ ) − P−−(τ ) (brown) or, equiv-
alently, !P(τ ) = P+−(τ ) − P−+(τ ) (orange), is generally
nonzero. However, the symmetry under the eigenstate-label
exchange +x ↔ −x, indicated by !P(τ ) = 0, is recovered
at loop times τ1 = 0.455 µs and τ2 = 0.572 µs. The corre-
sponding simulated exponentiated-work average shows that
although generally violated, the Jarzynski equality is satisfied
along black dashed contours [Fig. 5(b)]. These contours in-
tersect with the experimentally investigated region at !max =
10π rad/µs (red solid line). In general, the experimentally
measured 〈e−βW 〉(τ ) is not equal to unity [Fig. 5(c)]. How-
ever, at loop times τ1 and τ2, the two equalities 〈e−βW 〉 = 1
and !P = 0 are satisfied simultaneously. A higher-resolution
measurement of exponentiated work in a smaller loop-time
window shows this effect clearly [Fig. 5(d)].
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VI. DISCUSSION AND OUTLOOK

Non-Hermitian Hamiltonians with real spectra [36] re-
alized in open classical systems [38,39,50] have recently
materialized in the quantum domain [24,43,51–54]. On top
of their role in dynamics, their real eigenvalues are often
mistaken for allowed energies of a quantum system [28–33],
with implications to thermodynamics. Although the two share
conceptual roots, the thermodynamics of non-Hermitian sys-
tems remains an open challenge. A consistent formulation of
its first law requires distinguishing the Hermitian part H that
gives allowed energies [9] from the non-Hermitian Hamil-
tonian Heff = H + i& that governs the temporal dynamics.
Using the same distinction, we have verified a fluctuation
theorem for exponentiated work, i.e., Jarzynski equality (1)
for cyclic variations of Heff (t ) that include parameter regions
with complex eigenvalues.

The Jarzynski equality, rigorously tested in the classical
domain [55,56], trivially extends to isolated quantum sys-
tems (Q = 0) by equating the work distribution P(W ) with
the TPM protocol that, technically, generates the distribution
P(!U ) of internal-energy changes [14]. It also holds in de-
cohering quantum systems [23], but the equality’s validity
in driven qubits with dissipation, continuous monitoring, or
feedback, as tested with the TPM protocol, is disputed [57,58].
In such settings, the tests of the Jarzynski equality require
modifications that reflect the energetic cost of information
or, equivalently, unique dynamics that encode the monitoring,
feedback, and measurement processes [59–64]. Our results
show that the coherent qubit dynamics of non-Hermitian
Hamiltonians is a class where the Jarzynski equality is pre-
served when two symmetry considerations are met. First, that
the energy basis for the TPM protocol coincides with the
Hermitian part of the effective (Floquet or otherwise) Hamil-
tonian, and second that the non-Hermitian evolution ensures
that the qubit has symmetrical amplification or decay rates.
Ultimately, violations in the Jarzynski equality are expected
to arise from cases where the TPM protocol for characterizing
!U is contaminated by a nonreversible “classical” heat com-
ponent. With our symmetry-governed, consistent formulation
of the second law of thermodynamics, we anticipate unique
opportunities in quantum, nonequilibrium thermodynamics
through non-Hermitian models.
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APPENDIX A: ANALYTICAL RESULTS

For a qubit with internal energy operator H (0) = H (τ ) =
Jmaxσx, the exponentiated-work average (7) is given by

〈e−βW 〉 = e−2βJmax P+−(τ )P−x + e+2βJmax P−+(τ )P+x

+ P++(τ )P+x + P−−(τ )P−x. (A1)

It is easy to verify that the right-hand side is equal to
unity when the initial density matrix is thermal, i.e., P±x =
exp(∓βJmax)/2 cosh(βJmax), and the transition probabilities
are symmetric under the eigenstate-label exchange +x ↔ −x
[Fig. 3(a)]. The exchange-symmetry constraint on the Pi j (τ )
holds, provided the elements of the time-evolution matrix
G(τ ) satisfy |G++/G−+| = |G−−/G+−|. By expressing the
2 × 2 trace-less non-Hermitian Floquet Hamiltonian as HF

eff =
hxσx + hyσy + hzσz, the exchange-symmetry constraint can be
written as

∣∣∣∣
C − ihxS

(hy + ihz )S

∣∣∣∣ =
∣∣∣∣

C + ihxS
(hy − ihz )S

∣∣∣∣, (A2)

where C = cos(τ |h|), |h| ≡ (h2
x + h2

y + h2
z )1/2, and S =

sin(τ |h|)/|h|. The terms C,S are real if and only if |h|
is real or purely imaginary. It means the Floquet Hamilto-
nian HF

eff , with eigenvalues ±|h|, has an explicit or emergent
parity-time (antilinear) symmetry [65]. Equation (A2) further
requires that hx ∈ R and hy, hz are purely imaginary. Thus, the
non-Hermitian, parity-time symmetric, Floquet Hamiltonian
HF

eff = HF + i&F is further constrained to an internal energy
operator HF = hxσx that is aligned with the system’s initial
energy operator H (0). Note that the mere requirement of
parity-time symmetry allows for hx ∈ R and a complex hy =
h∗

z ∈ C. However, in such cases, HF = hxσx + Rehy(σy + σz )
is not aligned with H (0), and the constraint that guarantees
exchange symmetry for probabilities, Eq. (A2), is not fulfilled.
Thus, Jarzynski equality requires a parity-time symmetric HF

eff
with its Floquet energy operator proportional to the system’s
initial energy operator.

Next, we consider the applicability of the Jarzynski equal-
ity to parameter paths that are not closed, i.e., H (τ ) += H (0).
Figure 6 shows the comparison of 〈e−βW 〉 (markers) with
the ratio of partition functions Z (τ )/Z (0) (solid lines) for
multiple paths. We observe that when the initial and final
energy operators commute with each other, i.e., the energy-
basis states are the same, Jarzynski is satisfied. On the other
hand, when they do not commute, it is not satisfied. For the
non-Hermitian qubit case, this follows by expressing (7) as
sums of two orthogonal projectors of H (0) that continue to re-
main orthogonal after the non-Hermitian evolution. However,
a general analytical theory of Jarzynski equality for arbitrary
non-Hermitian quantum systems remains an open question.

APPENDIX B: SIMULATIONS

The evolution of the three-level system can be solved using
Lindblad equation

∂ρ3(t )
∂t

= −i[Hc(t ), ρ3(t )] +
4∑

i=1

Liρ3(t )L†
i − 1

2
{L†

i Li, ρ3(t )}.

(B1)
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FIG. 6. Simulation of noncyclic paths. Simulation of paths where
Z (0) += Z (τ ). The markers correspond to the left side of (1) and the
solid lines correspond to the computed partition functions from the
right-hand side of (1). The dark blue is for a case where the coupling
rate J is varied linearly from a maximum of Jmax = 3.74 µs−1 down
to Jmax/2 while ! = 0. The black case is for the same path but for a
quarter period of (3) with Jmax = 3.74 µs−1 and ! = 0. The red case
is the same as the dark blue case but with !/2π = 5 MHz, breaking
the PT symmetry of the Hamiltonian. The light blue case is for
constant Jmax = 3.74 µs−1 and varying !/2π linearly from 3 MHz
to 5 MHz, thus also breaking the PT symmetry of the Hamiltonian.

Here Hc = J (|e〉〈 f | + | f 〉〈e|) − !/2(|e〉〈e| − | f 〉〈 f |) and
the four dissipators Li include two radiative decay opera-
tors

√
γe|g〉〈e| and √

γ f |e〉〈 f |, and two dephasing operators

√
γ2e/2|e〉〈e| and

√
γ2 f /2| f 〉〈 f |. The decay and dephasing

rates are γe = 1.57 µs−1, γ f = 0.21 µs−1, γ2e = 1.631 µs−1,
and γ2 f = 0.584 µs−1. Equation (B1) is solved in MATLAB
using the Runge-Kutta method to obtain ρ3(τ ) with suitable
initial conditions and thereby calculate each transition prob-
ability Pi j (τ ). For γ f , γ2e, γ2 f 2 γe, the Lindblad results for
the {|e〉, | f 〉} manifold are identical to those obtained from the
non-Hermitian Hamiltonian [48]:

ρ2(τ ) = G(τ )ρ2(0)G†(τ )
Tr[ρ(0)G†(τ )G(τ )]

. (B2)

APPENDIX C: POSTSELECTION
AND ERROR ANALYSIS

For the experimental data, we employ postselection by
normalizing the state readouts to the population within the
{|e〉, | f 〉} manifold of states, and the resulting evolution can
be described by the non-Hermitian Hamiltonian (2). For each
transition probability, we repeat the experiment a total of 8000
times, yet through postselection up to ∼65% of the data is
discarded. The statistical (trinomial) error associated with the
state readout is typically less than 0.016 for the transition
probabilities and less than 0.012 for the exponentiated work.
Remnant, point-to-point fluctuations are likely due to residual
low-frequency (1/f) fluctuations in the experimental setup.
For Figs. 5(a), 5(c), and 5(d), we utilized 24 000 experimental
repetitions per point.
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