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Abstract. We investigate the notion of a semi-retraction between two first order struc-
tures (in typically different signatures) that was introduced by the second author as a link
between the Ramsey property and generalized indiscernible sequences. We further these
connections between combinatorics and model theory, and look at semi-retractions through
a new lens establishing transfers of the Ramsey property and finite Ramsey degrees under
quite general conditions that are optimal as demonstrated by counterexamples. Finally,
we compare semi-retractions to the category theoretic notion of a pre-adjunction.

1. Introduction

Our current subject is finiteness of Ramsey degrees for embeddings of finitely generated
structures and mechanisms that transfer this property between classes. Given a first-order
structure A in any signature, let K := age(A) be the class of all finitely generated substruc-
tures of A. Given an element A ∈ K, we may refer to all substructures of A isomorphic to
A as the A-substructures of A. We say that K has the Ramsey property if it has a certain
partition property as stated in Definition 2.5: The class K has the Ramsey property (RP)
if for all A,B ∈ K and integers k ≥ 1 there exists C ∈ K such that for any coloring of the
A-substructures of C, there exists a copy B′ of B in C such that the coloring is constant
on the A-substructures of B′. There has been much recent work in structural Ramsey
theory to understand the full landscape of classes of structures with the Ramsey property.
The Nešetřil-Rödl and Abramson-Harrington theorems gave general classes of structures
with the Ramsey property [1, 26], such as linearly ordered graphs and hypergraphs. Several
years later, this work was extended to first order structures in signatures that are not purely
relational [13], which is our present context.

Ramsey, in his 1929 paper, described the Entscheidungsproblem from the 1928 book by
Hilbert and Ackermann, Grundzüge der theoretischen Logik as “the problem of finding a
regular procedure to determine the truth or falsity of any given logical formula” [30]. In
an effort to address this problem for special cases of formulas, Ramsey proved what is now
known as the infinite Ramsey theorem for sets, followed by the finite Ramsey theorem for
sets (what we would call the Ramsey property for the class of finite sets, in the language of
Definition 2.5). The main theorem in [30] for universal sentences F in a relational signature
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states that there is an integer m depending on certain quantities derived from F , such that
F is consistent in a structure whose universe has m or more members if and only if some
logically equivalent sentence P in disjunctive normal form contains a disjunct of a certain
syntactic form. Let ∆ be a finite set of relation symbols and let n be an integer. It is the
presence of ∆-n-indiscernible sequences (see Definition 2.22) of a certain size depending on
m, guaranteed by Ramsey’s combinatorial theorems, that guarantees the necessity of the
condition in this main theorem. For further implications of Ramsey’s work, the interested
reader is invited to consult [19]. Later, in [7], the infinite Ramsey theorem for sets is
applied to obtain infinite ∆-n-indiscernible sequences locally based on an infinite subset of
a structure. This notion was generalized in [34] to I-indexed indiscernible sets, which were
the starting point for the investigations of the second author.

An I-indexed (generalized) indiscernible set (see Definition 2.23) is an I-indexed set of
same-length finite tuples ai from some structure M, for i ∈ I, which sequence is homo-
geneous in a certain way: The structure M does not make any more distinctions between
finite strings aı, aȷ of tuples than the atomic formulas in I do between ı and ȷ. This tool
gives streamlined proofs of the equivalence of certain dividing lines in classification theory
in model theory, for example that a theory is unstable if and only if it has the independence
property or the strict order property; or that a theory has the tree property if and only if it
has the tree property of either the first or second kind [34]. A property stated for a specific
class of trees in [6] was referred to as the modeling property by the second author in [31] and
proved to be equivalent to age(I) having the Ramsey property, under certain assumptions
on I. In the Introduction to [32], this latter result was termed a “dictionary” theorem, in
the spirit that the theorem translates phrase (1) (stated in the language of model theory)
into phrase (2) (stated in the language of partition theory) under mild conditions:

For the structure I, I-indexed indiscernible sets have the modeling property.(1)

For the structure I, age(I) has the Ramsey property.(2)

It is arguable that the entanglement of logic and partition theory from the start (as in
[30]) renders the use of the term “dictionary” moot. The second author appeals to recent
history when the two properties described in (1) and (2) were not as well understood to be
equivalent. Though the Ramsey property was used extensively in [34] in different contexts
to prove the existence of I-indexed indiscernible sets that model the definable relations on a
pre-existing set of parameters (as was done in [7]), it was not generally clear that these were
equivalent properties, and indeed, that the failure of the Ramsey property would guarantee
failure of the modeling property in specific contexts, to the detriment of certain model-
theoretic investigations. The outstanding hope is that manipulations on the model-theory
side could yield new results in partition theory. In fact, an argument in [32] that leveraged
the theory of generalized indiscernible sequences provided a new proof of the result in [18]
that a certain class of trees in a functional signature has the Ramsey property. In [32], the
dictionary theorem was extended to include all cases when I is locally finite and ordered,
modulo an additional property which was eliminated in [33] as a result of conversations
with the first author. The complete Dictionary Theorem is stated in Theorem 2.30.

In [33], the notion of semi-retraction was introduced by the second author, which is a
pair of maps between two structures A,B in possibly different signatures (see Definition
2.20). This notion, together with the Dictionary Theorem, yielded a theorem detailing
when a semi-retraction transfers the Ramsey property from B to A, stated in Corollary
2.34. Since the notion of semi-retraction is essentially algebraic, the first author suggested
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an investigation into a “formula-free” proof of the same result (one that does not specifically
use the tools of first-order logic). This approach ultimately led to Theorem 5.1, Corollary
5.5 and Theorem 5.9, which are sharper refinements of Corollary 2.34.

The paper is organized as follows. In Section 2, we outline our basic definitions and nota-
tional conventions as well as overview prior results. In Section 3, we state a characterization
of semi-retractions in terms of the Ramsey property under certain conditions, Theorem 3.7,
and give several examples and non-examples of semi-retractions. In Section 4, we show
that the countable random graph and countable random n-regular hypergraphs for n ≥ 3
are semi-retracts of the countable atomless Boolean algebra. In Section 5, we present our
“formula-free” argument for how semi-retractions transfer the Ramsey property, Corollary
5.5: If A is locally finite and the finitely-generated substructures of B are rigid, then if B
has RP and A is a semi-retract of B, A must have RP. Moreover, Theorem 5.9 eliminates
the assumption of rigidity in the case of relational structures. The same technique yields
a result on transfer of finite small Ramsey degrees in Corollary 5.3 and Theorem 5.1 (in
the latter, rigidity may be omitted again). In Section 6, we explore a categorical char-
acterization of semi-retractions as well as the relationship to pre-adjunctions, which were
introduced in [22]. In section 7, we discuss the relationship between semi-retractions and
more commons constructions in model theory.

2. Preliminaries

We present our basic notation around sequences. A tuple a is a finite sequence (a0, . . . , an−1)
for some natural number n, and |a| = n is defined to be the length of the tuple. Given
a set X and an integer s ≥ 1, Xs denotes the set of all s-tuples from X. We define
ran a := {a0, . . . , an−1}. All tuples a are assumed to be finite unless said otherwise. For
two tuples a1, a2, by a1 ⊆ a2 we mean that ran a1 ⊆ ran a2 as sets. For an integer k ≥ 0,
k := {0, 1, 2, . . . , k − 1}. For an integer k ≥ 1 a k-coloring of a set X is any function
c : X → k. We denote the image {c(x) : x ∈ X} by c(X). Given a function f : Xn → Y
and ı′ := (ik : k < s) ∈ Xs, we define f(ı′) = (f(ik) : k < s). Let f : X → Y be an injective
function and let ψ : A → B be a function between two subsets of X. We will denote by
f(ψ) : f(A) → f(B) the function defined by f(ψ) := {(f(a), f(ψ(a))) : a ∈ A}. Moreover,
if ψ is injective, f(ψ) is also injective.

A signature L is a list of symbols that must be interpreted in any L-structure as either
relations or functions of the specified arity. The signature is relational if it consists only
of relation symbols, and functional if it contains at least one function symbol. We do
not assume that signatures are either finite or relational, unless explicitly stated. The
cardinality of a set S is denoted by |S|. Given a structure A, L(A) refers to the signature
of A, |A| refers to the underlying set of A, and ||A|| to the cardinality of the set |A|. We
denote by Th(A) the theory of A – the set of all L(A)-sentences true in A. Given a from
A, ⟨a⟩A denotes the substructure generated by a in A (it will be the closure of a under
the n-ary function symbols of L(A) for all n ≥ 0). Given a (possibly infinite) tuple x
in 1-1 correspondence with an enumeration a of A, by DiagA(x) we mean the set of all
R(xi0 , . . . , xin−1) for relation symbols R ∈ L(A) such that A ⊨ R(ai0 , . . . , ain−1). For an
integer n ≥ 1, an n-ary L-formula is a first-order formula with free variables included in
the list x0, . . . , xn−1. We say that a set X ⊆ |A|n is definable if there exists n and an
n-ary L(A)-formula φ(x) such that for all a from A, A ⊨ φ(a) if and only if a ∈ X, and
0-definable if φ(x) may be chosen without parameters from A. A set X ⊆ |A|n is quantifier-
free definable if it is 0-definable by way of a quantifier-free formula φ(x). A structure A
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is ω-homogeneous if any partial isomorphism between finite subsets of A can be extended
to an automorphism of A. For the basics of formulas, structures, and Fräıssé theory the
reader is referred to [20, 12].

For structures A,B, A ⊆ B always denotes that A is a substructure of B, in which case
they are structures in the same signature. The age of a structure A, age(A) is the set of
all finitely-generated substructures of A, modulo L(A)-isomorphism. We will use Roman
letters A,B for finitely generated substructures of a given structure A. For structures A,A′,
A ∼= A′ means that the structures are isomorphic (and thus, they are in the same signature).
To emphasize the shared signature, we might write A ∼=L A′, where L = L(A) = L(A′).
We say that a structure A is rigid if the only automorphism of A is the identity map.

Remark 2.1. If age(B) consists of rigid elements, then for any C,C ′ ∈ age(B), if C ∼= C ′,
then this is witnessed by a unique isomorphism τ : C → C ′.

Fix a signature L, an L-structure A, and an integer n ≥ 1.

(1) Given a set ∆ of L-formulas, a ∆-n-type (over ∅ in A) is a set of n-ary formulas
from ∆ that is consistent with Th(A). A complete ∆-n-type π is a ∆-n-type such
that for every n-ary formula φ from ∆, either φ ∈ π or ¬φ ∈ π. If we drop the use
of n, we mean ∆-n-type for some n.

(2) In the case that ∆ is the set of all quantifier-free L-formulas, we call a ∆-n-type in
A a quantifier-free n-type in A. In the case that ∆ is the set of all L-formulas, we
call a ∆-n-type in A an n-type in A. Such types are described as “complete” if they
are complete ∆-n-types for the appropriate ∆.

(3) An n-type p over ∅ in A is realized (in A) if there exists a ∈ |A|n such that A ⊨ φ(a)
for all φ ∈ p.

(4) A structure A is κ-saturated if for all subsets S ⊆ |A| such that |S| < κ, A realizes
all types in A over S. We say that A is saturated, if it is ||A||-saturated.

(5) We define SM
n (∅) to be the space of all complete n-types over ∅ in A with the usual

Stone topology, with basic open sets [ψ] := {p ∈ SM
n (∅) | ψ ∈ p}.

(6) Given a tuple a ∈ |A|n, tpA∆(a) is the complete ∆-n-type of a in A. For tpA∆(a), we

write qftpA(a) when ∆ is the set of all quantifier-free formulas, and we write tpA(a)
when ∆ is the set of all formulas.

(7) For same-length tuples a, a′ from A, we will use a ∼A a′ to mean that qftpA(a) =
qftpA(a′), a ≡A

∆ a′ to mean that tpA∆(a) = tpA∆(a
′), and a ≡A a′ to mean that

tpA(a) = tpA(a′).

Remark 2.2. If a structure A is saturated then A realizes all types p ∈ SA
κ (∅) such that

κ ≤ ||A|| (see Lemma 1.12 in [34]).

2.1. Structural Ramsey theory and topological dynamics. We start this section
with some standard definitions from structural Ramsey theory, see [16, Introduction of part

(D)],[28],[25]. Given L-structures A,B we define
(︁
B
A

)︁
to be the set of all substructures A′ ⊆

B such that A′ ∼= A and Emb(A,B) to be the set of all L-embeddings f : A→ B. Given an
L-embedding h : B → C, we define h◦Emb(A,B) = {h◦f : f ∈ Emb(A,B)} ⊆ Emb(A,C).

Following [21], we define two types of Erdős-Rado partition arrow

Definition 2.3. Given a signature L, L-structures A,B,M, and integers k, d ≥ 1, the
notation

M −→ (B)Ar,d
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denotes that for all r-colorings c :
(︁M
A

)︁
→ r, there exists B′ ⊆ M, B′ ∼= B, such that⃓⃓⃓

c(
(︁
B′

A

)︁
)
⃓⃓⃓
≤ d.

We say that the structure B′ above is ≤ d-chromatic (for the coloring c on copies of A).
If d = 1, it will be dropped in the notation, and we will write

M −→ (B)Ar .

Moreover,

M e−−→ (B)Ar,d

denotes that for all r-colorings c : Emb(A,M) → r, there exists h ∈ Emb(B,M) such that
|c(h ◦ Emb(A,B))| ≤ d.

If d = 1, it will be dropped in the notation, and we will write

M e−−→ (B)Ar .

Definition 2.4. Let K be a class of finitely-generated L-structures, for some signature L,
and let A,B ∈ K. We say that (A,B) is a Ramsey duo for K if for all integers r ≥ 2 there
exists C ∈ K such that

C −→ (B)Ar .

We say that B′ is a copy of B homogeneous for c (on copies of A).

Definition 2.5. We say that K has the Ramsey property (RP) if for all A,B ∈ K, (A,B)
is a Ramsey duo for K.

Example 2.6. The following classes have RP:

(1) All finite sets in L = ∅ ([30]).
(2) All finite linear orders in L = {<} ([30]).
(3) All finite simple graphs with no loops with an ordering on the vertices in L = {R,<}

([1],[26]).
(4) All finite n-regular hypergraphs with linear orders in L = {R,<}, where R is n-ary

([1],[26]).
(5) Convexly ordered finite equivalence relations in L = {E,<} (known, see discussion

after Corollary 6.8 in [16]).
(6) Finite Boolean algebras in L = {∨,∧,¬,0,1} ([11]).

Example 2.7. The following classes do not have RP:

(1) All finite simple graphs with no loops ([24]).
(2) Finite equivalence relations with any ordering on points in L = {E,<} (Theorem

6.4 in [16]).
(3) Partial orders with any linear ordering on points in L = {<,≺} ([35]).

As we can see in examples above, the class of finite graphs does not have the Ramsey
property, but its expansion by linear orders does. This phenomenon leads to the notion of
a Ramsey degree.

Definition 2.8. Let K be a class of L-structures and let A ∈ K. We say that A has finite
Ramsey degree in K if there is an integer d ≥ 1 such that for every B ∈ K and every r ≥ 2,
there is C ∈ K such that C −→ (B)Ar,d.

We define d(A,K) to be the least such integer d, if it exists, and otherwise define d(A,K) =
∞. If d(A,K) is finite, it is the Ramsey degree of A in K.
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Observation 2.9. A class K has RP if and only if d(A,K) = 1 for all A ∈ K.

We can make a related definition for an infinite structure M.

Definition 2.10. Given an L-structure M and a finitely-generated substructure A ⊆ M,
we say that A has finite small Ramsey degree in M if for some integer d ≥ 1, for all
finitely-generated structures B ⊆ M, for all integers r ≥ 2,

M −→ (B)Ar,d.

If A has finite small Ramsey degree in M, then we define d(A,M) to be the least integer
d such that for all finitely generated structures B ⊆ M, for all integers r ≥ 2, M −→ (B)Ar,d.

If A does not have finite small Ramsey degree in M, we define d(A,M) = ∞.
We say that (A,B) is a Ramsey duo for M if for all integers r ≥ 2,

M → (B)Ar

Proposition 2.11. Fix a signature L and a locally finite L-structure M . Let K := age(M).
Then, for any finite substructures A,B ⊆ M, (A,B) is a Ramsey duo for K if and only if
(A,B) is a Ramsey duo for M.

A proof for Proposition 2.11 is straightforward and provided in the Appendix.
Given the ability to do calculations in a countably infinite structure, the following is

common usage:

Definition 2.12. We say that A has RP if age(A) has RP.

Striking connections between dynamics of an automorphism group of an ω-homogeneous
structure A and Ramsey degrees of age(A) were established in [16]. The work of these
authors and others shows that this relationship is best explained in terms of the Ramsey
properties of embeddings rather than substructures.

Definition 2.13. Let K be a class of L-structures and let A ∈ K. We say that A has finite
Ramsey degree for embeddings in K if there is an integer d ≥ 1 such that for every B ∈ K and
every r ≥ 2 there is C ∈ K such that for every coloring c : Emb(A,C) → {0, 1, . . . , r − 1},
there is h ∈ Emb(B,C) such that c on h ◦ Emb(A,B) takes at most d colors.

We define de(A,K) to be the least such integer d, if it exists, and otherwise define
de(A,K) = ∞. If de(A,K) is finite, it is the Ramsey degree for embeddings of A in K.

If de(A,K) = 1 for all A ∈ K, then we say that K has the Ramsey property for embeddings.

Definition 2.14. Given an L-structure M and a finitely-generated substructure A ⊆ M,
say that A has finite small Ramsey degree for embeddings in M if for some integer d ≥ 1,
for all finitely-generated structures B ⊆ M, for all integers r ≥ 2,

M e−−→ (B)Ar,d.

We define de(A,M) to be the least such integer d, if it exists, and otherwise define
de(A,M) = ∞. If de(A,M) is finite, it is the Ramsey degree for embeddings of A in M.

It is well known that the Ramsey property for a class K that is an age of finite structures
can be understood as a property of an infinite structure M with age(M) = K. This is
proved for a countable age of finite structures in Proposition 3 of [28] using ultrafilters, and
the generalization to Ramsey degrees is proved in the more general setting of a category C
with a distinguished subcategory Cfin satisfying certain assumptions in Lemma 3.4 of [21].
In the Appendix we provide a model-theoretic argument for Lemma 2.15 by compactness
as an alternative approach.
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Lemma 2.15. Fix a signature L and a locally finite L-structure M. Let K := age(M).
Then, for any finite substructure A ⊆ M,

(1) de(A,K) = de(A,M), and
(2) d(A,K) = d(A,M).

The relationship between Ramsey degrees for structures and Ramsey degrees for embed-
dings has a long history, dating back to work in [1], [26], [10]. This history is cataloged in
the introduction to Section 10 of [16], in which the case of K having an ordered expansion
with RP is worked out in detail. A more general result in a category theory context is
offered by Proposition 3.1 of [21].

Proposition 2.16 ([16, 21]). Given a signature L and a class K of finite L-structures and
A ∈ K, if de(A,K) is finite, then so is d(A,K) and

de(A,K) = |Aut(A)| · d(A,K).

Below we state the famous Kechris-Pestov-Todorčević correspondence from [16] between
the Ramsey property of age(A) for a (countable) ω-homogeneous structure A and the fixed
point on compacta property of Aut(A). We start by introducing the necessary notions from
topological dynamics.

Let G be a topological group and X a compact Hausdorff space. A continuous function
α : G×X → X is a G-flow if

(1) α(e, x) = x for any x ∈ X and e the neutral element of G,
(2) α(gh, x) = α(g, α(h, x)) for every g, h ∈ G and x ∈ X.

In, other words, a flow is a continuous group action, where continuity is considered with
respect to the product topology. We typically write gx in place of α(g, x). A G-flow on
X is minimal if X does not contain a non-empty proper closed G-invariant subset. A
homomorphism between G-flows X and Y is a G-equivariant continuous map ϕ : X → Y,
i.e., for every g ∈ G and x ∈ X, we have ϕ(gx) = gϕ(x). If ϕ is onto, we say that Y is
a quotient of X and if ϕ is bijective, it is called an isomorphism. Ellis showed that up
to isomorphism, for every topological group G, there is a unique universal minimal flow,
M(G), that is, a minimal G-flow which has every minimal G-flow as a quotient (see [8] for
discrete and [9] for arbitrary groups). We call G extremely amenable if every G-flow X has
a fixed point – a point x0 ∈ X such that gx0 = x0 for every g ∈ G. It immediately follows
that G is extremely amenable if and only if M(G) is a single point (and thus every minimal
G-flow is a single point).

Theorem 2.17 ([16],[3] for uncountable structures). Let A be an ω-homogeneous structure.
The following are equivalent.

(1) The group Aut(A) is extremely amenable.
(2) The class age(A) satisfies the Ramsey property and consists of rigid elements –

structures whose automorphism group is trivial.

In fact a consequence of Proposition 2.16 was observed as Proposition 2.3 in [23] stated
in a more general category theory context, namely that a class K of finite structures has the
Ramsey property for embeddings if and only if K has the Ramsey property for substructures
and every member of K is rigid. Thus item (2) in Theorem 2.17 can be replaced by

(2)’ age(A) satisfies the Ramsey property for embeddings.



8 DANA BARTOŠOVÁ AND LYNN SCOW

In [16], the authors computed a number of universal minimal flows of automorphism
groups of countable ω-homogeneous structures whose ages have finite Ramsey degrees. In
fact, Zucker later proved in [37] that finite Ramsey degrees are equivalent to the universal
minimal flow being metrizable, as stated precisely below.

Theorem 2.18 ([16], [37]). Let A be a countable ω-homogeneous structure. The following
are equivalent.

(1) The universal minimal flow M(Aut(A)) is metrizable.
(2) The class age(A) has finite Ramsey degrees for embeddings.

2.2. Semi-retractions. In this section, we will review the notions that informed the proof
of the Ramsey transfer result Corollary 2.34. These notions come from model theory, but
we will see later that the more general approach in the current paper allows us to drop
some of the assumptions originally thought to be necessary in Corollary 2.34, as evidenced
by Corollary 5.5.

Definition 2.19 ([33]). Given any structures A,B, not necessarily in the same signature,
we say that an injection h : A → B is

(i) quantifier-free type-respecting (qftp-respecting) if for all finite, same-length tuples ı, ȷ
from A,

ı ∼A ȷ⇒ h(ı) ∼B h(ȷ).

(ii) quantifier-free type-preserving (qftp-preserving) if A,B are structures in the same
signature and qftpA(ı) = qftpB(h(ı)) (thus, it is also qftp-respecting).

Definition 2.20 ([33]). Let A, B be any structures. We say that A is a semi-retract of B
(via (g, f)) if

(1) there exist qftp-respecting injections A g−→ B f−→ A,

(2) such that A fg−→ A is an embedding (equivalently, is qftp-preserving).

We refer to the pair (g, f) as the semi-retraction between A and B. We will refer to property
(1) in this Definition as the qftp-respecting property of semi-retractions and property (2) as
the composition property of semi-retractions.

Observation 2.21. If A is a semi-retract of B, then ||A|| = ||B||, by the Schröder-Bernstein
theorem.

2.3. The modeling property. The first use of Definition 2.22 was in [7] to construct
models with many automorphisms. The presentation of Definition 2.22 that we adopt in
this paper can be found in [34].

Definition 2.22 ([7],[34]). Given a structure M, a set ∆ of L(M)-formulas, and an integer
n ≥ 1, a ∆-n-indiscernible sequence is a sequence of finite l-tuples ai from M for some
integer l ≥ 1 indexed by some linear order I = (|I|, <) such that for all increasing n-tuples
ı, ȷ from I,

aı ≡M
∆ aȷ.

In the study of classification theory in model theory there has been significant use of
a generalization of this notion named “I-indexed indiscernible sets” in [34] which we will
define as follows.
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Definition 2.23 ([34]). Fix a structure I, an integer l ≥ 1, and l-tuples ai from some
structure M, for all i ∈ I. We say that (ai | i ∈ I) is an I-indexed indiscernible set if for
any integer n ≥ 1, for all n-tuples ı, ȷ from I,

ı ∼I ȷ⇒ aı ≡M aȷ.

We say that (ai | i ∈ I) is an I-indexed indiscernible sequence if I is an ordered structure,
and additionally a generalized indiscernible sequence when I is clear from context.

We review some definitions and basic results from [33], where the second author gave
a more complete proof that the modeling property is a model-theoretic analogue of the
Ramsey property.

Definition 2.24 ([32]). Given an integer l ≥ 1, an L′-structure I, an L-structure M and an
I-indexed set of l-tuples from M, X = (ai | i ∈ I), we define the EM-type of X (EMtp(X))
to be a syntactic type in variables (xi | i ∈ I), where |xi| = l for each i ∈ I, as follows:
EMtp(X) = {ψ(xi0 , . . . , xin−1) | ψ ∈ L, ı ∈ |I|n and (∀ȷ ∈ |I|n)(ȷ ∼I ı⇒ M ⊨ ψ(aj0 , . . . , ajn−1))}

Proposition 2.25 (Proposition 2 of [32]). Given an L′-structure I and an L-structure
M, fix sets of l-tuples from M indexed by I, X = (ai | i ∈ I) and Y = (bi | i ∈ I).
Y ⊨ EMtp(X) if and only if for any integer n ≥ 1, for all complete quantifier-free n-types
η in I and all n · l-ary formulas φ ∈ L, if we have the rule

(∀ȷ)(I ⊨ η(ȷ) ⇒ M ⊨ φ(aȷ))

then we have the rule

(∀ȷ)(I ⊨ η(ȷ) ⇒ M ⊨ φ(bȷ))

Definition 2.26 ([32]). Fix sequences of parameters X = (ai | i ∈ A), Y = (bi | i ∈ A),
where ai, bi are from some L-structure M.

We say Y is locally based on X if for any finite set of L-formulas, ∆, and for any finite
tuple (j0, . . . , jn−1) from A, there exists a tuple (i0, . . . , in−1) from A such that

ȷ ∼A ı

and

bȷ ≡M
∆ aı

Where Y and X are understood from context, this property will be referred to as local
basedness.

We give a proof sketch to illustrate the idea behind Proposition 2.27.

Proposition 2.27 (Proposition 2 in [32]). Fix sequences of parameters X = (ai | i ∈ I),
Y = (bi | i ∈ I), where ai, bi are l-tuples from some L-structure M, for some integer l ≥ 1.
We have that Y is locally based on X if and only if Y ⊨ EMtp(X).

Proof. Suppose Y ⊨ EMtp(X). To show local basedness, fix a finite set of L-formulas ∆
and a finite tuple ȷ from I with complete quantifier-free type η in I. Let φ be a conjunction
of all the formulas in the finite ∆-type of bȷ. Suppose, for contradiction, there is no ı ∼I ȷ

such that aı ≡M
∆ bȷ. Then

(∀ı)(I ⊨ η(ı) ⇒ M ⊨ ¬φ(aı)).
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Since Y ⊨ EMtp(X), we must have that

(∀ȷ)(I ⊨ η(ȷ) ⇒ M ⊨ ¬φ(bȷ)),

which contradicts the ∆-type of bȷ.
Suppose Y is locally based on X. To show Y ⊨ EMtp(X), consider a rule from EMtp(X):

(∀ı)(I ⊨ η(ı) ⇒ M ⊨ φ(aı)).

Fix any ȷ from I such that I ⊨ η(ȷ). By local basedness, there is ı ∼I ȷ such that bȷ ≡{φ} aı.

By the rule for η, M ⊨ φ(aı). Thus we have that M ⊨ φ(bȷ), as well. And so we have
proved the rule

(∀ȷ)(I ⊨ η(ȷ) ⇒ M ⊨ φ(bȷ)).

Since this is true for any rule, Y ⊨ EMtp(X). □

Definition 2.28 ([32]). Given a structure I, we say that I-indexed indiscernible sets have
the modeling property if for any integer l ≥ 1, any ||I||+-saturated structure M, and any
I-indexed set of l-tuples from M

X = (ai | i ∈ I),
there exists an I-indexed indiscernible set of l-tuples from M

Y = (bi | i ∈ I),
such that Y ⊨ EMtp(X) (equivalently, Y is locally based on X, by Proposition 2.27.)

Remark 2.29. In fact, it suffices to require that M in Definition 2.28 be ||I||-saturated, since
the type describing Y has ||I|| variables and no parameters from M, as noted in Remark
2.2. Previously, in [32], the bound was required to be ||I||+ not ||I||.

Theorem 2.30 (Dictionary Theorem,[31, 32, 33]). Suppose that I is a locally finite ordered
structure. Then I-indexed indiscernible sequences have the modeling property if and only if
age(I) has RP.

Theorem 2.30 fails when we drop order:

Example 2.31. Let I = (N,=) and note that age(I) has RP by Example 2.6. If we take an
I-indexed set in M := (N, <), X = (i | i ∈ I), then there is no I-indexed indiscernible set

in any extension M′ ⪰ M locally based on X. Such a set would need to have tpM
′
(i, j) =

tpM
′
(j, i) for i ̸= j ∈ N, which is not possible.

Example 2.31 illustrates why rigidity has been important in applications of structural
Ramsey theory to generalized indiscernible sequences in model theory. Consider an injection
f : I → M and parameters (ai : i ∈ I) such that ai = f(i), for all i ∈ I. Given a finite
substructure A ⊆ I of size n, the injection f induces a (possibly infinite) coloring on tuples
(a0, . . . , an) such that ran(a) ∼= A, where tpM(f(a)) is the color of a. Thus, if finitely-
generated substructures of M are rigid, then we will not have an I-indexed indiscernible
set locally based on (ai : i ∈ I) if A has a nontrivial automorphism. Note that the
modeling property (Definition 2.28) is a universal statement about all structures M, and
so it would immediately fail for I-indexed indiscernible sets if I is not rigid. The reason
for the modeling property to be a universal property is so that I can function as a tool in
classification theory to compare all theories, even those theories whose models have rigid
finitely-generated substructures. In fact, theories whose models are linearly ordered by a
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formula in the language play an important role in classification theory as they are unstable
and have the strict order property.

Theorem 2.30 fails when we drop local finiteness:

Example 2.32. Let I = (Z, p, s,<) be the structure on Z with the usual order < and
where p, s are unary function symbols interpreted as “predecessor” and “successor”, re-
spectively. The only possible finitely generated substructure of Z is the whole structure.
Since ||age(I)|| = 1, the class trivially has RP. However, we will show that I-indexed indis-
cernibles do not have the modeling property, showing the essentialness of the assumption
that I be locally finite in Theorem 2.30. Let M be the Fräıssé limit of finite convexly
ordered equivalence classes in signature {E,≺}. Let X = (ai | i ∈ Z) be such that all ai for
i odd are in one E-class that we call Odd and all aj for j even are in a separate E-class that
we call Even. Moreover, let i < j ⇒ ai ≺ aj , and Odd < Even in M. Within this example,
we use ∼ to denote E-equivalence in the following visualization, where elements are listed
in ≺-increasing order in M:

. . . a1 ∼ a3 ∼ a5 . . . ≁ . . . a2 ∼ a4 ∼ a6 . . .

The type EMtp(X) requires that whenever j = s(s(i)), xi ≺ xj and E(xi, xj). However, a
decision is not made about xi ≺ xj when j = s(i), since sometimes ai ≺ aj and sometimes
aj ≺ ai, when j = s(i), though ai, aj are always E-inequivalent when j = s(i). Suppose
there is an I-indexed indiscernible set locally based on X. If this indiscernible set chooses
the rule that bi ≺ bj , whenever j = s(i), then M would admit equivalence classes that are
not convexly ordered, e.g. with b1 ∼ b3 but

. . . b1 ≁ b2 ≁ b3 . . .

a contradiction. The alternative, choosing bi ≻ bs(i), is incompatible with bi ≺ bs(s(i)).

Theorem 2.33 ([33]). Let A and B be any structures. Suppose that A is a semi-retract
of B. Furthermore, suppose that B-indexed indiscernible sets have the modeling property.
Then A-indexed indiscernible sets have the modeling property.

Corollary 2.34 ([33]). Let A and B be locally finite ordered structures. Suppose that A is
a semi-retract of B and B has RP. Then A has RP.

Proof. This follows by Theorem 2.33 and Theorem 2.30. □

3. Semi-retractions, Reducts and Examples

In this section, we consider basic examples of semi-retractions and give a characterization
of semi-retractions in Theorem 3.7 under certain assumptions.

Definition 3.1. We say that A is a quantifier-free reduct of B if |A| = |B| = M and ∼B
refines ∼A on M , i.e. for all finite same-length tuples ı, ȷ from |A|, ı ∼B ȷ⇒ ı ∼A ȷ.

Observation 3.2. Note that A is a quantifier-free reduct of B if and only if |A| = |B| and
the identity map id : B → A is qftp-respecting.

Example 3.3. For two structures A,B such that |A| = |B|, A is a quantifier-free reduct of
B if any of the following hold.

(1) The signature L(A) is contained in the signature L(B).
(2) Every atomic formula of A with no parameters is equivalent to a quantifier-free

formula of B with no parameters.
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Definition 3.4. We say that A and B are quantifier-free interdefinable if |A| = |B| and
each of A, B is a quantifier-free reduct of the other.

Remark 3.5. If |A| = |B|, then A and B are quantifier-free interdefinable if and only if the
pair of identity maps between A and B give a semi-retraction (in either order).

Remark 3.6. In Theorem 3.7, the assumption that every quantifier-free type realized in
B is equivalent in B to an L(B)-formula follows from the assumption that there are only
finitely many quantifier-free n-types realized in B for any n ≥ 1. To see why this is true,
enumerate the quantifier-free n-types realized in B, {qs : s < m}, and note that there
exists a quantifier-free formula θs ∈ qt \ qs for all s ̸= t, s < m. Then, for any t < m,

M ⊨ ∀x
(︂
qt(x) ↔

⋀︁
s ̸=t θs(x)

)︂
.

The assumption that there are only finitely many quantifier-free n-types realized in B
for any n ≥ 1 holds in any countable ω-homogeneous structure B in a finite signature
that is uniformly locally finite (meaning for each n, there is a finite bound on the size of
substructures of B generated by n elements). A proof of this result can be read in Corollary
7.4.2 of [12].

Theorem 3.7. Fix locally finite ordered structures A and B and suppose that A is a
quantifier-free reduct of B (thus, for some κ, |A| = |B| = κ.) Assume that B is satu-
rated (i.e., κ-saturated.) Suppose that every quantifier-free type realized in B is equivalent
in B to an L(B)-formula. Suppose that B has RP. Then, A is a semi-retract of B if and
only if A has RP.

Proof. The ⇒ is from Corollary 2.34. It remains to show ⇐.
Suppose that A has RP. Let X = (ai | i ∈ A) enumerate B where ai = i. Since A

has RP, by Theorem 2.30, A-indexed indiscernible sets have the modeling property. Let
Y = (bi | i ∈ A) be an A-indexed indiscernible set locally based on X. By the saturation
assumption, we know that we can witness Y in B, and not just in some elementary extension
of B (see Remark 2.2). Define f : A → B to take i ↦→ bi. This is an injective map, since
ai ̸= aj for all i ̸= j and Y is A-indexed indiscernible locally based on X. It remains to
show that

A f−→ B id−→ A
is a semi-retraction.

By Observation 3.2, we already know that the identity map is qftp-respecting. We must
show the remaining properties from Definition 2.19: (i) ı1 ∼A ı2 ⇒ f(ı1) ∼B f(ı2) and
that (ii) ȷ ∼A id(f(ȷ)) = f(ȷ), for all tuples ȷ, ı1, ı2 ∈ |A|n, for all n < ω. We have (i) as
a direct consequence of A-indexed indiscernibility. We have (ii) from local basedness: for
every finite subset of L(B)-formulas ∆, for any ȷ ∈ |A|n, there is ı ∼A ȷ from A such that
bȷ ≡B

∆ aı. In other words, f(ȷ) = bȷ ≡B
∆ aı = ı. Given an arbitrary ȷ, let ∆ contain the

formula equivalent to qftpB(f(ȷ)), and fix a corresponding ı ∼A ȷ. Then, f(ȷ) ∼B ı, which
implies that f(ȷ) ∼A ı, since A is a quantifier-free reduct of B. Since f(ȷ) ∼A ı ∼A ȷ, we
have that f(ȷ) ∼A ȷ, showing (ii). □

Example 3.8. Let B := R< be the random ordered graph (the Fräıssé limit of finite ordered
graphs) and A := B ↾ {<}, so A is isomorphic to the rational linear order. It is easy to see
that A is a quantifier-free reduct of B, B is countably saturated, and both are locally finite
and ordered. By Theorem 3.7, A is a semi-retract of B.
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In order to find a semi-retraction (g, f) between A and B, one strategy is to take an
indiscernible sequence (g(i) | i ∈ A) in R<, i.e. such that for all integers n ≥ 0, for all
i0 < . . . < in−1 and j0 < . . . < jn−1 from A, the map g(ik) ↦→ g(jk) for all k < n provides an
isomorphism of ordered graphs in B. Such an indiscernible sequence is guaranteed to exist
in B, but in such a straightforward case, we can discern the existence of such a one directly:
let g(A) be a copy of the countably infinite complete graph Kω whose vertices form a dense
linear order without endpoints under < (guaranteed to exist in B by its saturation), where
g : A → B is set up to preserve order. Then f can be taken to be merely the identity map,
as follows

A g−→ B f=id−−−→ A.
This pair (g, f) now witnesses that A is a semi-retract of R.

Though both A,B are well-known to have RP, this fact can be thought of as an instance
of transfer by Corollary 5.5.

A similar argument can be made for the case A = (Q, <) and B = (|B|, E,≺) where B is
either of the ordered equivalence relation structures described in Example 2.6 or Example
2.7.

Next we look at three locally finite ordered structures known to have RP: the Shelah tree
Istree, the strong tree Istrtree and the convexly ordered equivalence relation Ieq. The structure
Ieq has RP (Example 2.6) which fact is related to the usefulness of mutually indiscernible
sequences in model theory (see Theorem III 7.12 (iii) in [34] for an early example of mutually
indiscernible sequences) even if RP is not explicitly mentioned. An infinitary proof that
shows that Istree has RP is given in the Appendix of [34] and a finitary proof is given in
Ch.2 §2.2 Lemma 2 of [27]. The fact that Istrtree has RP is implicitly used in the proof
of Thm III.7.11 in [34] and used explicitly in the survey paper [17]. See [32] for a more
detailed discussion of this history.

Definition 3.9. • Define Istree to be the structure on ω<ω (finite sequences from ω)
in the signature {⊴,∧, <lex, {Pn}n∈ω} where for all η, ν ∈ ω<ω, η ⊴ ν if and only
if η is an initial segment of ν, ∧ is the meet in the partial order ⊴, <lex is the
lexicographic order on finite sequences, i.e. η <lex ν if and only if

η ⊴ ν or η(|η ∧ ν|) < ν(|η ∧ ν|),

and η ∈ Pn if and only if |η| = n, for all n ∈ ω.
• Define Istrtree to be the structure on ω<ω in the signature {⊴,∧, <lex, <len} where
⊴,∧, <lex are interpreted as in Istree and <len is the preorder on µ, ν ∈ ω<ω defined
by the lengths of the sequences:

µ <len ν ⇔ |µ| < |ν|

• Define Ieq to be the structure on ω × ω in the signature {E,≺} where for all
(i, j), (s, t) ∈ ω× ω, (i, j)E(s, t) ⇔ i = s and (i, j) ≺ (s, t) ⇔ i < s∨ (i = s∧ j < t).

We recall the following example of a semi-retraction that transfers RP from age(Istrtree)
to age(Ieq).

Proposition 3.10 ([33]). Let A be the structure on the underlying set ω × Q such that
age(A) = age(Ieq) and each equivalence class in A is densely ordered by ≺. Let B be the
structure on the underlying set Q<ω such that age(B) = age(Istrtree) and the ⊴-successors
of any fixed node in B are densely ordered by <lex. Then A is a semi-retract of B.
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Proof. Given i ∈ ω, by the ith level in B, we mean all sequences in Q<ω of length i, and by
the ith equivalence class in A, we mean {(i, x) | x ∈ Q}.

Let ηi = (0, . . . , 0)⏞ ⏟⏟ ⏞
2i

. Let g take the ith equivalence class in A into {η⌢i (j) | j ∈ Q>0} in a

way that preserves the order. Let f : B → A be the map that takes the ith level in B into
the ith equivalence class in A in a way that preserves the order. Then A is a semi-retract
of B via (g, f). □

The following example is an application of Theorem 3.7.

Example 3.11. Since Istree is ordered and has RP, age(Istree) is an amalgamation class. Let
B be the Fräıssé limit of Istree and let A be the reduct of B to the signature of Istrtree.
Thus, age(A) = age(Istrtree) and so A has RP and B has RP. Since B is ω-homogeneous
and uniformly locally finite in a finite signature, Th(B) is ℵ0-categorical and has quantifier
elimination, as in Remark 3.6, and so B is ℵ0-saturated and every quantifier-free type in
B is equivalent to an L(B)-formula in B. Since the conditions in Theorem 3.7 are satisfied
and A has RP, it must be that A is a semi-retract of B.

4. (Counter)example

This section is inspired by an example of Mašulović from [22] where a pre-adjunction
(see Section 6.1) is constructed to transfer RP from the category of finite naturally ordered
Boolean algebras to the category of finite linearly ordered graphs. Both classes were previ-
ously known to have RP (see [26] and [1] for linearly ordered graphs, and [11] for Boolean
algebras), but the mechanism of transfer is quite interesting with a number of applications.

Let R denote the countably infinite Random graph (the Fräıssé limit of finite graphs)
and let Hn denote the countably infinite random n-regular hypergraph (the Fräıssé limit
of finite n-regular hypergraphs). Let Bba denote the countable atomless Boolean algebra
(the Fräıssé limit of finite Boolean algebras) with its induced partial order denoted by <Bba .
Below we show that R and Hn are semi-retracts of Bba. By Theorem 5.1, this gives us
upper bounds on Ramsey degrees for embeddings of finite graphs, respectively finite n-
regular hypergraphs, in terms of Ramsey degrees for embeddings of finite Boolean algebras,
and consequently on Ramsey degrees of substructures by Corollary 5.2. See Remark 4.2 for
a more detailed analysis.

4.1. Semi-retracts of the countable atomless Boolean algebra.

Theorem 4.1. The countable random graph R is a semi-retract of the countable atomless
Boolean algebra Bba.

Proof. We define a graph relation R on Bba as Mašulović does on power set algebras of
finite sets in [22]: (a, b) ∈ R if and only if a ̸= b and a ∧ b ̸= 0. We will build a graph
embedding g : R → (Bba, R) that will be qftp-respecting when Bba is considered as a Boolean
algebra. Since R is universal for countable graphs, there must be a graph embedding
f : (Bba, R) → R. Clearly, f will remain qftp-respecting with respect to Bba in the signature
of Boolean algebras. Since g and f are graph embeddings, f ◦ g is a graph embedding from
R to itself. Thus (g, f) will be a semi-retraction between R and Bba.

Let V = {vn : n ∈ ω} be an enumeration of vertices in R. Recall that an antichain in a
Boolean algebra is a collection of non-zero elements such that every two distinct elements
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have zero meet. Pick an infinite antichain B = {bn : n ∈ ω} in Bba. For any bn ∈ B, let
{bin : i ∈ ω} be an antichain ≤Bba-below bn. Define g : R → Bba by

g(vn) = bn ∨
⋁︂
i<n

bni (ε),

where

bni (ε) =

{︄
bni if (vi, vn) ∈ E

0 otherwise.

We will show that g is qftp-respecting: Every quantifier-free type in R is determined by E
on pairs of points, and that needs to be reflected in the image of g. By the definition of g,
if (vi, vn) ∈ E and i < n then g(vi)∧ g(vn) = bni ̸= 0. If (vi, vn) /∈ E, then g(vi)∧ g(vn) = 0.

Any Boolean expression with variables x0, . . . , xn−1 has its unique equivalent full disjunc-
tive normal form, that is, a disjunction of clauses, where each clause consist of conjuction
of literals xi or ¬xi so that each of the variables xi appears in every clause. We will show
that an n-type of elements of Bba in the image of g depends only on the type of the graph
they encode:

(1) For every triple of distinct numbers i, j, k: g(vi) ∧ g(vj) ∧ g(vk) = 0.

(2) Whenever i < j, we have that g(vi) ∧ g(vj) =

{︄
0 if (vi, vj) /∈ E

bji if (vi, vj) ∈ E.

It follows that every non-zero clause has at most two positive literals. Further,

(3) For any i ̸= j,

g(vi) ∧ ¬g(vj) = g(vi) ∧ ¬(g(vi) ∧ g(vj)) =

⎧⎪⎨⎪⎩
g(vi) if (vi, vj) /∈ E

g(vi) ∧ ¬bji if (vi, vj) ∈ E and i < j

g(vi) ∧ ¬bij if (vi, vj) ∈ E and i > j.

(4) For i ̸= j, ¬g(vi) ∧ ¬g(vj) = ¬(g(vi) ∨ g(vj)) by de Morgan’s law.

Let vi0 , vi2 , . . . , vin−1 be n distinct vertices of R. We will consider Boolean expression in
g(vi0), . . . , g(vin−1) in full disjunctive normal form. From the analysis above, we have three
cases.

(i) If a clause contains no positive literal, then it is equal to ¬(
⋁︁n−1
k=0 g(vik)), which is a

positive element disjoint from any g(vik).
(ii) If a clause has one positive literal g(vik) and all other n− 1 negative, it equals to

g(vik) ∧ ¬(
⋁︂

{g(vik) ∧ g(vij ) : (vik , vij ) ∈ E}),

which is ≤Bba g(vik) and disjoint from every g(vik) ∧ g(vij ) for j ̸= k.
(iii) If a clause contains two positive literals g(vik), g(vil), then it is equal to g(vik)∧g(vil).

Since {bji : i < j < ω} is an antichain, we get that any two distinct clauses have empty
meet. Therefore, it is not possible to obtain one clause below a join of the others, unless it
equals to zero. It means that there are no non-trivial equations with quantifier free formulas
about an n-tuple in the image of g other than comparison with 0. Since clauses in items
(i) and (ii) are never equal to 0, the entire type is decided by the clauses as in (iii), which
corresponds exactly to the type of the finite graph in the preimage. □

Remark 4.2. We say that A is a Ramsey object in K if for all B ∈ K, (A,B) is a Ramsey
duo for K. The class of finite Boolean algebras has RP (as in Example 2.6) while only
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complete or empty graphs are Ramsey objects in the class of finite graphs, as shown in [24].
Therefore, to secure transfer of RP by semi-retractions, the requirement on rigidity of B
in Corollary 5.5 or on relational signature in Theorem 5.9 cannot be completely removed.
The reason in the example of Theorem 4.1 is that there can be two distinct copies Γ1,Γ2

of the same finite graph in R such that f−1(Γ1) and f
−1(Γ2) have the same quantifier-free

type and generate the same Boolean subalgebra A of Bba (thanks to function symbols in the
signature of Boolean algebras). This would not have been possible if age(Bba) were rigid,
since a partial isomorphism from f−1(Γ1) to f

−1(Γ2) given by having the same quantifier-
free type would extend to a non-trivial automorphism of A.

Theorem 5.1 applied to (g, f) shows that the finite Ramsey degree of a finite graph Γ in
the class of finite graphs with embeddings is bounded above by the Ramsey degree of the
Boolean subalgebra of Bba generated by g(Γ) in the class of finite Boolean algebras with
embeddings (which is equal to n!, where n is the number of atoms in ⟨g(Γ)⟩). It can be
derived from results in [1] and [26] that the exact Ramsey degree for embeddings of a graph
on m vertices is m!. Thus our estimate is optimal only in the case of discrete graphs.

Question 4.3. The example of a semi-retraction on Theorem 4.1 was inspired by an exam-
ple in [22]. However, Mašulović’s example is about the classes of finite ordered graphs and
finite naturally ordered Boolean algebras, rather than their unordered versions presented
here. Is the random ordered graph (the Fräıssé limit of finite linearly ordered graphs) a
semi-retract of the countable atomless Boolean algebra with a generic normal order (the
Fräıssé limit of finite naturally ordered Boolean algebras)?

Let Hn = (V,E) be the countable random n-regular hypergraph. Mašulović commented
in his paper [22] that the method he used to witness the Ramsey property of linearly
ordered graphs by that of finite naturally ordered Boolean algebras did not generalize to
higher arity hypergraphs. We were able to overcome this obstacle in the unordered case.
As in graphs, one needs to ensure that the g-part of the semi-retraction maps to a portion
of the Boolean algebra, where every type is determined only by the hypergraph relation.
This can be achieved by a construction similar to that in Theorem 4.1, while making sure
that all k-tuples for k < n have the same type.

Theorem 4.4. For any integer n ≥ 2, Hn is a semi-retract of Bba.

Proof. We define an n-ary hypergraph relation Hn on Bba by (b0, . . . , bn−1) ∈ Hn iff⋀︁
i<j<n bi ̸= bj and

⋀︁n−1
l=0 bl ̸= 0. We will define an embedding g : Hn → (Bba, Hn) and by

universality of Hn, there is an embedding f : (Bba, Hn) → Hn. Since Hn is quantifier-free
definable in B, taking the reduct Bba of (Bba, Hn), (g, f) will be a semi-retraction between
Bba and Hn, as in the case of the random graph. However, we need to be more careful when
defining g than in the graph case – in (Bba, Hn) there are different < n-types, which is not
true in Hn

For every 1 ≤ k ≤ n, let Bk = {bı : ı ∈ ω[k]} be an antichain in Bba, where ω[k] denotes
all strictly increasing sequences in ω of length k. We further require that if ı is an initial
segment of ȷ, then bȷ <

Bba bı. Let {vl : l ∈ ω} be an enumeration of vertices of Hn and let
E denote the set of hyperedges. We define g : Hn → (Bba, Hn) by

g(vl) =
⋁︂

ı(|ı|−1)=l,|ı|<n

bı ∨
⋁︂

ı(|ı|−1)=l,|ı|=n,(vi(0),...,vi(n−1))∈E

bı.
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Since each Bk is an antichain, we have that for any ı ∈ ω[k]

k−1⋀︂
l=0

g(vi(l)) ̸= 0 iff k < n, or k = n and (vi(0), . . . , vi(n−1)) ∈ Hn.

We have that g and f are hypergraph embeddings and thus fg is an embedding. As in
the proof of Theorem 4.1, one can show that every N -type for N ≥ n in g(Hn) is determined
by n-types. Here it is crucial that every two k-tuples for k < n have the same type and
therefore n-types are determined solely by the hypergraph relation. We can conlude that g
considered as a map Hn → Bba is qftp-respecting. □

Remark 4.5. As in 4.2, by Theorem 5.1, the Ramsey degree for embeddings of a finite
hypergraph H in the class of finite hypergraphs is bounded above by the Ramsey degree of
⟨g(H)⟩ in the class of finite Boolean algebras with embeddings.

5. Formula-free approach to transferring the RP

In prior work [33], Corollary 2.34 demonstrated how semi-retractions transfer RP when
A and B are both ordered and locally finite. In this section we show in Corollary 5.5 that
some of the assumptions in Corollary 2.34 may be dropped. Namely, we only need rigidity
of the structures in age(B) and we only need local finiteness of A. In fact, the transfer can
be done locally for a pair of finite structures (A,B) in A, as demonstrated in Corollary 5.4.
Moreover, if the signatures of A and B are relational, we no longer need rigidity in age(B)
as shown in Theorem 5.9.

In Remark 4.2, we noted that the rigidity assumption in Corollary 5.4 or the relational
language in Theorem 5.9 cannot be removed. However, if we consider the Ramsey property
for embeddings rather than for substructures, which is the natural framework in dynamical
applications, we obtain a transfer principle for finite Ramsey degrees for embeddings (The-
orem 5.1) that does not assume more about A and B other than that A is a locally finite
semi-retract of B. We include examples that demonstrate the necessity of the assumptions
in Corollary 5.5 and Corollary 5.4.

Theorem 5.1. Suppose that A is a locally finite semi-retract of B via (g, f). Let A ∈
age(A). Suppose that ⟨g(A)⟩B has Ramsey degree d for embeddings in age(B). Then A has
Ramsey degree ≤ d for embeddings in age(A).

Proof. Let A0, B0 be finite substructures of A and let A = fg(A0) ∼= A0 and B = fg(B0) ∼=
B0. Let c : Emb(A,A) → {0, 1, . . . , r − 1} be a coloring. We will make use of Lemma 2.15
in proving this result.

Let A′ = ⟨g(A0)⟩B and B′ = ⟨g(B0)⟩B. Given any e ∈ Emb(A′, B′), the domain of
f(e ↾ g(A0)) is fg(A0) = A. For any x ∈ g(A0), we have x ∼B e(x) since e is an embedding,
and thus by the qftp-respecting property of f , f(x) ∼A f(e(x)). By these two observations,
f(e ↾ g(A0)) ∈ Emb(A,A). Thus, we may define an induced coloring c0 : Emb(A′,B) →
{0, 1, . . . , r − 1} by c0(e) = c(f(e ↾ g(A0))).

By assumption, there exists h ∈ Emb(B′,B) such that c0 restricted to h ◦ Emb(A′, B′)
takes on at most d colors. We let k = f(h ↾ g(B0)). By an argument similar to the one
in the previous paragraph, we have that k ∈ Emb(B,A). We claim that c restricted to
k ◦ Emb(A,B) takes on at most d colors:

Fix any j ∈ Emb(A,B). It is enough to show that c(k ◦ j) = c0(h ◦ j′) for some j′ ∈
Emb(A′, B′). By the definition of A and B, and since fg : A → A is an embedding,
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we have that (fg)−1(j) ∈ Emb(A0, B0). Let j′ ∈ Emb(A′, B′) to be unique embedding
extending the partial embedding g((fg)−1(j)) = f−1(j) : g(A0) → g(B0). Then j′ satisfies
c(k ◦ j) = c0(h ◦ j′). To see this, note that c0(h ◦ j′) is defined to be c(f((h ◦ j′) ↾ g(A0))).
However, (h ◦ j′) ↾ g(A0) = h ◦ (j′ ↾ g(A0)) = h ◦ (f−1(j) ↾ g(A0)) = (h ↾ g(B0)) ◦ (f−1(j) ↾
g(A0)) = (f−1(k)) ◦ (f−1(j) ↾ g(A0)). Now applying f to (h ◦ j′) ↾ g(A0) we obtain f
applied to (f−1(k)) ◦ (f−1(j) ↾ g(A0)) which is k ◦ j. Thus c(f((h ◦ j′) ↾ g(A0))) = c(k ◦ j),
as desired. □

In Proposition 2.16, we recalled the exact formula relating the Ramsey degree for embed-
dings and the Ramsey degree for substructures in case of a locally finite class. Therefore
Theorem 5.1 immediately yields the following corollary.

Corollary 5.2. Suppose that A is a locally finite semi-retract of B via (g, f). Let A ∈
age(A). Suppose that ⟨g(A)⟩B has Ramsey degree d for embeddings in age(B). Then A has
Ramsey degree ≤ d/|Aut(A)| for substructures in age(A).

In Theorem 4.1, we provided an example of the random graph as a semi-retract of the
countable atomless Boolean algebra. While the class of finite Boolean algebras is a Ramsey
class, the class of finite graphs is not, so we cannot simply say that semi-retractions transfer
the Ramsey property for structures. However, the existence of the semi-retraction provides
a bound on finite Ramsey degrees of finite graphs as per Corollary 5.2. We point out that
the reason that Section 4 does not provide a direct transfer of the Ramsey property is that
the signature of Boolean algebras contains function symbols, age(Bba) is not rigid, and the
semi-retraction defined in the proof of Theorem 4.1 allows two distinct finite isomorphic
graphs to generate the same Boolean algebra via preimages under f . We show in Theorem
5.9 that restricting to relation symbols and in Corollary 5.5 that restricting to B with age
consisting to rigid structure, suffice to transfer the Ramsey property, respectively.

Example 2.31 explained why rigidity is essential for applications of Ramsey theory to
indiscernible sequences. Thus we present a few special cases of Theorem 5.1 in the rigid
setting.

Corollary 5.3. Let A,B be structures and let K := age(A),K′ = age(B). Assume A is
locally finite and K′ consists of rigid elements. Suppose that A is a semi-retract of B by
the maps (g, f). For any finite substructure A ⊆ A, letting A′ := ⟨g(A)⟩B, if A′ has finite
Ramsey degree d in K′, then A has finite Ramsey degree in K, and in fact, d(A,K) ≤ d.

Proof. By Proposition 2.16, d(A,K) ≤ de(A,K). If K′ consists of rigid elements, then
de(A

′,K′) = (1) · d(A′,K′). Thus we have the inequalities:

d(A,K) ≤ de(A,K) ≤ de(A
′,K′) = d(A′,K′) = d

where the middle inequality follows from Theorem 5.1. □

Corollary 5.4 follows easily from the argument for Theorem 5.1: we merely need to be
aware of how we fix B in the beginning and set d = 1. An alternative argument, not as a
corollary of Theorem 5.1, is presented in the Appendix in Section 8.1.

Corollary 5.4. Let A,B be structures and suppose (g, f) is a semi-retraction between A
and B. Suppose that a, b are finite tuples from A that generate finite substructures A,B,
respectively, of A, such that g(a), g(b) generate rigid substructures A0, B0, respectively, of
B. If (A0, B0) is a Ramsey duo for B, then (A,B) is a Ramsey duo for A.

Corollary 5.5 is a special case of Corollary 5.4.
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Corollary 5.5. Let A,B be structures and suppose (g, f) is a semi-retraction between A
and B. Suppose that A is locally finite, and age(B) consists of rigid structures. If B has
RP, then A has RP.

To show the necessity of the assumptions in Corollary 5.5, we give an example of a
structure A that is a semi-retract of B, where each structure is in a non-relational signature,
such that A fails to be locally finite, the element in age(B) is not rigid, and RP fails to
transfer from B to A.

Example 5.6. Let A = (Z, s), B = (Z, s, p) where s, p are interpreted as the successor and
predecessor functions, respectively, that is, s(z) = z + 1 and p(z) = z − 1 for every z ∈ Z.
Note that any finite subset of B generates B, and so B trivially has RP. On the other hand,
any finite subset X of A generates the tail [a,∞) ⊆ Z where a = minX.

To see that A fails to have RP, let A = B = [0,∞). For any copy of A, there is a unique
element a ∈ A (minA) that generates all of A. Color copies of A in A red if that unique
element is odd, blue, if it is even. There is no copy of B in A that is homogeneous for this
coloring on copies of A.

It remains to verify that the identity maps give a semi-retraction A id−→ B id−→ A, but
this is the case because A and B are quantifier-free interdefinable (see Remark 3.5). In the
case of the predecessor function, we can define it from the successor function by switching
variables: For any a1, a2 ∈ |A| = |B| = Z, B ⊨ p(a2) = a1 ⇔ A ⊨ s(a1) = a2.

To show the necessity of the assumptions in Corollary 5.4, we give an example of a
structure A that is a semi-retract of B, where A is in a non-relational signature, such that
all structures in age(B) are finite and rigid, and a Ramsey duo for B fails to transfer to a
Ramsey duo for A, specifically because the pair in A is a counterexample to local finiteness
in A.

Example 5.7. Let A = (Z, s) be the structure where s is interpreted as the successor function
on Z. Let B = (Z, {R(n,k)}) where R(n,k)(a0, . . . , an−1) for k = (k0, . . . , kn−1) holds exactly

of increasing n-tuples a0 < a1 < . . . < an−1 from Z such that ai+1 − ai = ki, for all
i < n. The identity maps (g, f) := (id, id) give a semi-retraction because A and B are
quantifier-free interdefinable (see Remark 3.5).

Using the notation of Corollary 5.4, let a := 0, b := 0 in A, and a0 := g(0) = 0, b0 :=
g(0) = 0 in B. Define substructures of A: A := ⟨a⟩A = [0,∞), B := ⟨b⟩A = [0,∞). Define
substructures of B: A0 := ⟨g(a0)⟩B = {0}, B0 := ⟨g(b0)⟩B = {0}. Clearly (A0, B0) is a
Ramsey duo for B. Moreover, all structures in age(B) are finite, and thus rigid.

However, the structures generated by a and b in A are not finite, so the assumptions of
Corollary 5.4 are not satisfied. And indeed, the conclusion of Corollary 5.4 is not achieved:
(A,B) is not a Ramsey duo for A, as we saw in Example 5.6.

Example 5.7 can be modified slightly to satisfy the assumptions of Corollary 5.5.

Example 5.8. Let A = (N, p) be the structure where p is interpreted as the predecessor
function on the positive integers, i.e. p(n + 1) = n, for all n ∈ N, and p(0) := 0. Let B =
(N, p, s) where p is defined as in A and s is the successor function on N. The identity maps
(g, f) := (id, id) give a semi-retraction because A and B are quantifier-free interdefinable
(see Remark 3.5). In the case of the successor function, we can define it from the predecessor
function by switching variables: for any a1, a2 ∈ |A| = |B| = N, B ⊨ s(a1) = a2 ⇔ A ⊨
p(a2) = a1 ∧ a1 ̸= a2.
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It is clear that A is locally finite. The structure A trivially has RP because for all A,B
in age(A), there is at most one copy of A in B. The structure B trivially has RP because
age(B) consists of one element (as in Example 5.6) however this one element (which is all
of B) happens to be rigid, because the element 0 must be fixed by any automorphism of B.
Thus, the assumptions (and conclusion) of Corollary 5.5 are satisfied in this example.

Theorem 5.9. Let A,B be structures each in relational signatures and suppose that A is
a semi-retract of B, and let A ∈ age(A). If ⟨g(A)⟩B has Ramsey degree d in age(B), then A
has Ramsey degree bounded by d in A.

It would be possible to prove Theorem 5.9 with no mention of function symbols, but
there is a property, the “restricted inverse images under f” property (defined in Definitions
5.10 and 5.13, that could be of independent interest in the functional case. For this reason,
we pursue a slightly longer development of the argument than needed here. The reader who
would like to pursue the additional details for a proof of Corollary 5.5 using the “restricted
inverse images under f” property, is invited to read Section 8.1 within the Appendix.

The argument for Theorem 5.1 is of a category-theoretic nature and so certain details at
the level of substructures may not be immediately evident. For example, consider Definition
5.10 and what it would take for a certain finite B0 ⊆ B to have this property.

Definition 5.10. Fix structures A,B in relational signatures, finite substructures A,B ⊆ A
and an injection f : B → A. Fix substructures A0, B0 from B such that ||A0|| = ||A||. We
say that B0 has the relational restricted inverse images under f property for A witnessed
by A0 if for any C1 ⊆ f(B0) such that C1

∼=L(A) A, f
−1(C1) ∼=L(B) A0.

It turns out that if A is a semi-retract of B via (g, f), so long as B0 is isomorphic to an
image under g of a structure in A containing A as a substructure, then B0 has restricted
inverse images under f for A.

Proposition 5.11. Fix structures A and B in relational signatures. Fix a semi-retraction
(g, f) between A and B and finite substructures A,B ⊆ A. Let A0 = g(A), B0 = g(B), A1 =
f(A0). Then, for any B′

0
∼=L(B) B0, B

′
0 has the relational restricted inverse images under f

property for A witnessed by A0.

To develop the proof, we first state the analogues of Definition 5.10 and Proposition
5.11 in the case that the signatures contain function symbols. Since Definition 5.13 seems
technical at first, we motivate it with Example 5.12.

Example 5.12. Let A and B be as defined in Proposition 3.10. Fix a quantifer-free type
p(x0, x1) = {E(x0, x1), E(x1, x2), x0 ≺ x1 ≺ x2} in A and let a be a realization of this
type in A. Let b be a finite tuple from A containing the elements of a. Let (g, f) be the
semi-retraction described in Proposition 3.10. Define a0 := g(a), b0 := g(b).

Consider the various quantifier-free types of {b0 <lex b1 <lex b2} in the tree B := Istrtree
that map to copies of a in A under the map f : B → A:

(1) ¬(b0 ∧ b1 ⊴ b2),
(2) ¬(b1 ∧ b2 ⊴ b0),
(3) b0 ∧ b1 = b1 ∧ b2.

The quantifier-free type described in (3) corresponds to a0 in Definition 5.13, since it is the
only quantifier-free type that is realized within b0 in B that is a preimage of a.
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Definition 5.13. Fix finite tuples a, b from A and an injection f : B → A. Fix finite tuples
a0, b0 from B such that |a| = |a0|. We say that b0 has the restricted inverse images under f
property for a witnessed by a0 if for any c1 in

⟨︁
f(b0)

⟩︁
A such that c1 ∼A a, c0 := f−1(c1) ⊆ b0

and c0 ∼B a0.

Proposition 5.14. Let A and B be any structures with a semi-retraction (g, f) between A
and B. For any finite tuples a, b enumerating substructures of A, for any b

′
0 ∼B g(b), b

′
0 has

the restricted inverse images under f property for a witnessed by g(a).

Proof. Fix structures A,B and a pair of maps g : A → B and f : B → A witnessing that
A is a semi-retract of B. Fix finite tuples a, b enumerating substructures of A and let
a0 := g(a), b0 := g(b), a1 := f(a0), and b1 := f(b0). Let n := |a|.

Fix a tuple c1 in
⟨︁
b1
⟩︁
A such that:

c1 ∼A a.(1)

We will argue that c0 := f−1(c1) is in
⟨︁
b0
⟩︁
B: Since fg is an L(A)-embedding and we

assumed b =
⟨︁
b
⟩︁
A, it must be that b1 =

⟨︁
b1
⟩︁
A. Thus c1 ⊆ b1 so there is some c ⊆ b such

that g(c) = c0 and f(c0) = c1, and therefore f−1(c1) = g(c) ⊆ b0.
By the embedding property of semi-retractions,

c ∼A c1.(2)

The equations (1) and (2) imply that:

c ∼A a.(3)

Thus, by the qftp-respecting property of semi-retractions:

c0 = g(c) ∼B g(a) = a0(4)

By (4), we may conclude that c0 = f−1(c1) ∼B a0, as desired.

To complete the proof, fix any b
′
0 from B such that

b
′
0 ∼B b0.(5)

Since b
′
0 ∼B b0, f(b

′
0) ∼A f(b0) = b1 and so f(b

′
0) inherits b1’s property of enumerating a

substructure of A, i.e.
⟨︂
f(b

′
0)
⟩︂
A
= f(b

′
0).

Fix any e1 ⊆ b
′
1 =

⟨︂
f(b

′
0)
⟩︂
A
= f(b

′
0) such that e1 ∼A a. Then there exists e0 := f−1(e1) ⊆

b
′
0. The similarity (5) guarantees the existence of some e′0 ⊆ b0 (on the same coordinates

as e0 ⊆ b
′
0) such that e′0 ∼B e0. By the qftp-respecting property for semi-retractions,

f(e′0) ∼A f(e0) = e1 ∼A a, and we just argued that b0 has the restricted inverse images
under f property for a witnessed by a0, so e

′
0 ∼B a0, thus e0 ∼B a0, as desired. □

Now we are ready to adapt Proposition 5.14 to the case of relational signatures.

Proof of Proposition 5.11. Let A,B, f, g, A,B,A0, B0, A1 be as in the statement. Let a, b
be enumerations of A,B, respectively, and let a0 := g(a), b0 := g(b), a1 := f(a0). Clearly
a0, b0, a1 enumerate A0, B0, A1, respectively, and |a| = |a0|. Fix any B′

0
∼=L(B) B0 and fix

an isomorphism σ : B0 → B′
0 and let b

′
0 := σ(b0). By Proposition 5.14, b

′
0 has the restricted

inverse images under f property for a witnessed by a0. Clearly, this implies that B′
0 has

the relational restricted inverse images under f property for A witnessed by A0. □



22 DANA BARTOŠOVÁ AND LYNN SCOW

Having pointed out this technical property, we can deduce the relational case with little
machinery.

Proof of Theorem 5.9. Fix structures A,B in relational signatures and A ∈ age(A). Fix the
pair of maps g : A → B and f : B → A witnessing that A is a semi-retract of B. Assume
that A0 := g(A) ∈ age(B) has Ramsey degree d in age(B). Note that A0 is a substructure
of B since the signature of B is relational.

Let B ∈ age(A) and let c :
(︁A
A

)︁
→ k be a coloring. Denote B0 := g(B), A1 := f(A0), B1 :=

f(B0). Define an induced coloring c0 :
(︁ B
A0

)︁
→ k by c0(A

′
0) := c(f(A′

0)). This coloring is
well-defined by the qftp-preserving property of semi-retractions.

Since d(A0, age(B)) = d, there exists a copy B′
0 of B0 such that c0 takes at most d colors

on B′
0. We will argue that c takes at most d colors on B′

1 := f(B′
0) ⊆ A.

As B′
0
∼=L(B) B0, we have that B′

1
∼=L(A) B1(∼=L(A) B) by the qftp-respecting property of

semi-retractions. Fix any copy A′
1 of A in B′

1, and let A′
0 := f−1(A′

1) ⊆ B′
0. By Proposition

5.11, B′
0 has the relational restricted inverse images under f property for A witnessed by

A0, thus, A
′
0
∼=L(B) A0. But then A′

0 is a copy of A0 in B′
0, so c0(A

′
0) = c(f(A′

0)) = c(A′
1).

This proves the claim. □

6. Semi-retractions and categorical notions

In the next two sections, we point out similarities between semi-retractions and two
category theoretic notions – pre-adjunctions and retractions.

6.1. Pre-adjunctions. Dragan Mašulović realized in [22] that a categorical notion of pre-
adjunction was implicitly used in coding one Ramsey problem into another in the book
[29] by Pröml. The notions of pre-adjunction and semi-retraction appear to be closely
related in the usual setting of classes of finitely-generated structures. We show that every
semi-retraction defines a pre-adjunction and that in some instances pre-adjunctions define
semi-retractions. For a category C, we denote by Obj(C) its objects and by homC(A,B)
the collection of morphisms between objects A,B ∈ Obj(C).

Definition 6.1. Let C and D be categories and let F : Obj(D) → Obj(C) and
G : Obj(C) → Obj(D) be maps on objects. We say that (F,G) is a pre-adjunction if for
every A ∈ Obj(D) and C ∈ Obj(C) we have a map

ΦA,C : homC(F (A), C) → homD(A,G(C)),

such that

∀A,B ∈ Obj(D) ∀C ∈ Obj(C) ∀v ∈ homD(A,B) ∀ψ ∈ homC(F (B), C)

∃w ∈ homC(F (A), F (B)) such that ΦA,C(ψ ◦ w) = ΦB,C(ψ) ◦ v.

We state a version of Mašulović’s result restricted to our setting.

Theorem 6.2 ([22]). Let C and D be categories of finite structures with embeddings as
morphisms. Assume that F : Obj(D)⇄ Obj(C) : G is a pre-adjunction and that C has the
Ramsey property for embeddings. Then D has the Ramsey property for embeddings.

6.2. Pre-adjunctions from semi-retractions.

Theorem 6.3. Any semi-retraction (g, f) between A and B defines a pre-adjunction between
the categories of finite tuples of A and B, respectively, with qftp-preserving injections.
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Proof. Let D be all finite tuples of A with qftp-preserving injections as morphisms and let
C be all finite tuples of B with qftp-preserving injections as morphisms. Define
F : Obj(D) → Obj(C) by F (a) = g(a) and G : Obj(C) → Obj(D) by G(c) = f(c), and we
simply let Φa,c : homC(F (a), c) → homD(a,G(c)) be defined by ψ ↦→ f(ψ) ◦ f ◦ g.

Suppose that a, b ∈ Obj(D), c ∈ Obj(C), ψ ∈ homC(g(b), c), and v ∈ homD(a, b). Let
w ∈ homC(g(a), g(b)) be equal to g(v). Then

Φb,c(ψ) ◦ v = f(ψ) ◦ f ◦ g ◦ v
= f(ψ) ◦ f ◦ g(v) ◦ g
= f(ψ) ◦ f(g(v)) ◦ f ◦ g
= f(ψ ◦ g(v)) ◦ f ◦ g = f(ψ ◦ w) ◦ f ◦ g
= Φa,c(ψ ◦ w).

a b

G(c)

v

Φa,c(ψ◦w)
Φb,c(ψ)=f(ψ)

g(a) g(b)

c

w=g(v)

ψ

fg(a) fg(b)

f(c)

f(w)=fg(v)

f(ψ◦g(v))
f(ψ)

Therefore (F,G) is a pre-adjunction. □

Theorem 6.4. Let A and B be locally finite and let (g, f) be a semi-retraction between
A and B. Then there is a pre-adjunction between age(A) and age(B) with embeddings as
morphisms.

Proof. The proof goes along the same lines as the proof of Theorem 6.3. Let g : A → B
and f : B → A be a semi-retraction and let C be age(B) with embeddings and let D
be age(A) with embeddings. Define F : Obj(D) → Obj(C) by F (A) = ⟨g(A)⟩B and
G : Obj(C) → Obj(D) by G(C) = ⟨f(C)⟩A . For any A,B ∈ Obj(D) and embedding
v : A → B, denote by g(v)′ the unique extension of g(v) to ⟨g(A)⟩B, and similarly for
C,D ∈ Obj(C) and embedding w : C → D we define f(w)′ to be the unique extension
of f(w) to ⟨f(C)⟩A . Finally, define ΦB,C : homC(⟨g(B)⟩B , C) → homD(B, ⟨f(C)⟩A) by
ψ ↦→ f(ψ ↾ g(B)) ◦ f ◦ g. By analogous diagram chasing as in the proof of Theorem 6.3, we
can verify that we obtain a pre-adjunction.

A B

⟨f(C)⟩A

v

ΦA,C(ψ◦w)
ΦB,C(ψ)

⟨g(A)⟩B ⟨g(B)⟩B

C

w=g(v)′

ψ

□

6.3. Semi-retractions from pre-adjunctions. We now consider the reverse direction -
building semi-retractions out of pre-adjunctions.

Suppose that A and B are countable structures in relational signatures. Let D be age(A)
with embeddings as morphisms and let C be age(B) with embeddings as morphisms.
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Theorem 6.5. Suppose that (F,G) is a pre-adjunction between D and C and assume that
F and G preserve cardinality. Then there is a semi-retraction between A and a structure
B′ whose age is contained in C.

Proof. Let A =
⋃︁∞
i=1Ai be an increasing enumeration of A, where each ||Ai|| = i. For

any ei : Ai ⊂ Ai+1 we consider the identity morphis, id : F (Ai+1) → F (Ai+1) to obtain
wi : F (Ai) → F (Ai+1) by the definition of pre-adjunction satisfying the following:

ΦAi,F (Ai+1)(wi) = ΦAi,F (Ai+1)(wi ◦ idF (Ai+1)) = ΦAi+1,F (Ai+1)(idF (Ai+1
)) ◦ ei.

We will define g : A → B′ for some B′ with age included in age(B) by g(A1) = F (A1)
and g(Ai+1 \Ai) = F (Ai+1) \ wi(F (Ai)).

Ai Ai+1

GF (Ai) GF (Ai+1)

ei

ai=ΦAi,F (Ai)
(idF (Ai)

) ai+1

bi

F (Ai) F (Ai+1)

F (Ai+1)

wi

idF (Ai+1)

Since F andG are cardinality preserving, we have for everyAi that ai := ΦAi,F (Ai)(idF (Ai))

is an isomorphism from Ai to GF (Ai). It follows that bi = ai+1 ◦ ei ◦ a−1
i is an embedding

from GF (Ai) into GF (Ai+1) and that
⋃︁∞
i=1(GF (Ai), bi)

∼= A via
⋃︁∞
i=1 ai.

We define f : B′ → A by f(b) = a iff ai(g
−1(b)) = a. □

Question 6.6. Let A and B be (locally finite) structures and suppose that there is a
pre-adjunction between age(A) and age(B) with embeddings as morphisms. Under which
conditions is there a semi-retraction between A and B?

7. Concluding Remarks

In this section we gather together some concepts and prior work related to semi-retractions.
From a model-theoretic perspective, it is natural to ask what is the relationship of semi-
retractions to interpretations, and we approach this question in Section 7.1. In Section 7.2
we cite work that has addressed the question of when interpretations preserve RP.

The notion of a retraction is defined generally for categories, which we quote from [4].

Definition 7.1. Given a category C and morphisms f ∈ C(X,Y ) and g ∈ C(Y,X), if
fg = idY , i.e.

Y
g−→ X

f−→ Y and Y
fg=id−−−−→ Y

we say that the pair of maps (g, f) is a retraction of X onto Y and that Y is the retract of
X (via f and g).

The term “retraction” in Definition 7.7 implies the existence of a retraction in the category
of topological groups. In Section 7.3 we indicate a retraction that exists in the category of
products of types spaces (SA

n (∅))n<ω for structures A that have the property rqe, which
retraction is induced by any semi-retraction.

The fact that pairs of interpretations (under certain conditions) induce a retraction in a
distinct category from the category associated to semi-retractions suggests that these are
different concepts. We also give an example of an interpretation map that is not qftp-
respecting in Example 7.4.
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7.1. Interpretations and the Ramsey property. The results presented in this subsec-
tion are well-known.

Definition 7.2. Given two structures A,B a (finitary) interpretation of B in A denoted by
f : A ⇝ B is a surjective function f : U → |B| where U ⊆ |A|n is 0-definable, n < ω, and
for every integer m and 0-definable m-ary relation R in B (where we include the relation
x0 = x1), the set

{(a0, . . . , am−1) : B ⊨ R(f(a0), . . . , f(am−1))} ⊆ |A|n·m

is 0-definable in A. In other words, there exists a formula φR(x0, . . . , xm−1) in the signature
of A such that for all ai ∈ U , for all i < m:

A ⊨ φR(a0, . . . , am−1) ⇔ B ⊨ R(f(a0), . . . , f(am−1))

Remark 7.3. In Definition 7.2:

• We may define E ⊆ U×U to hold of (a1, a2) if and only if B ⊨ f(a1) = f(a2), in other
words, E := φ=. Then B is isomorphic to the induced structure on U/E (reducted to
the signature {φR}R), what is called a relativised reduct (of a definitional expansion)
of Aeq in Theorem 5.3.1 of [12].

• If B is interpreted in A such that the E-classes in A (as described above) are
singletons, then B is a (relativised) reduct of A.

In Example 7.4 we give an example of an interpretation map whose inverse is not qftp-
respecting, and thus does not constitute half of a semi-retraction pair.

Example 7.4. Let A := (Z, s), B := (Z + Z, s), and f : A → B be the bijection that
maps the even numbers of A onto the “first” copy of Z in B and the odd numbers of
A onto the “second” copy of Z in B, in the natural way. Let p ∈ SB

2 (∅) be the 2-type
p(x, y) := {sn(x) ̸= y : n < ω}. Let g : B → A be defined as the inverse map, g = f−1. The
function g maps realizations (x, y) of the type p in B onto realizations of various 2-types in
A (namely, all pairs of odd distances) thus g is not qftp-respecting. To see that f interprets
B in A, we just need to look at the atomic formula s(x0) = x1. For all (a0, a1) ∈ |A|,

B ⊨ s(f(a0)) = f(a1) ⇔ A ⊨ s(s(a0)) = a1.

Definition 7.5. An interpretation h : W ⇝ A for W ⊆ |A|k is homotopic to the identity
interpretation on A if the set {(a, b) : h(a) = b} ⊆W × |A| is 0-definable in A.

Remark 7.6. Note that the interpretation h in Definition 7.5 gives an isomorphism between
the induced structure on W/E and A that is definable in A.

Definition 7.7 ([2]). Given countable, ℵ0-categorical structures A and B, A is a retraction
of B if there exist interpretations f : A⇝ B g : B ⇝ A such that g ◦ f is homotopic to the
identity interpretation on A.

Definition 7.8. Given countable ℵ0-categorical structures A,B, if A and B are retractions
of one another, then we say they are bi-interpretable.

In [2], Ahlbrandt and Ziegler introduce theAut functor between the category of countable
ℵ0-categorical structures in a countable signature with interpretations as maps and the
category of topological groups. The functorAut associates to each interpretation f : A⇝ B
a continuous homomorphism Autf : Aut(A) → Aut(B) in the natural way. The following
result, attributed to T. Coquand, follows from the work in [2].
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Theorem 7.9 (T. Coquand). Given countable ℵ0-categorical structures A and B, A is a
retraction of B iff there are continuous homomorphisms

Aut(A)
φ−→ Aut(B) ψ−→ Aut(A)

such that ψ ◦ φ = 1.

Corollary 7.10 ([2]). Countable ℵ0-categorical structures A,B are bi-interpretable if and
only if their automorphism groups are isomorphic as topological groups.

In the preliminaries we introduced the notion of a definable set. Here we introduce a
generalization.

Definition 7.11. Fix a structure A, and an integer n ≥ 1. A set X ⊆ |A|n is quasidefinable
if it is the union of Aut(A)-orbits of |A|n, where the action of σ ∈ Aut(A) on |A|n is given
by (a0, . . . , an−1) ↦→ (σ(a0), . . . , σ(an−1)).

Remark 7.12. Using Scott sentences one can show that any quasidefinable subset of a
countable structure A is definable by an Lω1,ω formula with no parameters. If A is countable
and ℵ0-categorical, then quasidefinable sets are in fact 0-definable (see [15]).

Remark 7.13. In Definition 7.2, if “0-definable” is replaced with “quasidefinable” and the
map f is replaced with a countable collection of maps fi such that equality between fi(u)
and fj(v) is quasidefinable in A (just as equality between f(u) and f(v) must be definable
in A in a finitary interpretation) we may call this an infinitary interpretation, see the
introductory chapter of [15], “Models and Groups.”

An account due to Kaye in [15], “Models and Groups” expands on Corollary 7.10 as
follows:

Theorem 7.14 ([15]). If A,B are countable structures, Aut(A) ∼= Aut(B) as topological
groups if and only if A,B are infinitarily bi-interpretable.

It is satisfying to see that the following proposition and corollary follow immediately from
[16] and [37].

Proposition 7.15. Let A,B be countable ω-homogeneous structures, and suppose that A
is a retraction of B in the sense of Definition 7.7. If B has finite Ramsey degrees for
embeddings, then A has finite Ramsey degrees for embeddings.

Proof. Since B is ω-homogeneous, if B has finite Ramsey degrees for embeddings then the
universal minimal flow M(Aut(B)) is metrizable by the reverse direction of Theorem 2.18.
Let K be the kernel of the quotient ψ : Aut(B) → Aut(A). Any Aut(A)-flow on X induces
an Aut(B)-flow on X by fx = (Kf)x, where Aut(A) is identified with the quotient group
{Kf : f ∈ Aut(B)}. If M is a non-metrizable minimal flow of Aut(A), it induces a non-
metrizable minimal Aut(B)-flow as above, which is a contradiction. We may conclude that
M(Aut(A)) is metrizable, and thus that A has finite Ramsey degrees for embeddings by
Theorem 2.18. □

Corollary 7.16. If A,B are countable ω-homogeneous infinitarily bi-interpretable struc-
tures, then A has finite Ramsey degrees (for embeddings) if and only if B has finite Ramsey
degrees (for embeddings).

Remark 7.17. Note that in the proof of Proposition 7.15 we only needed that Aut(A) is a
quotient of Aut(B).
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7.2. Related Work. It is a natural question to ask under what conditions interpretations
transfer the Ramsey property. Proposition 7.18 gives an example of this type of result.

Proposition 7.18 (Proposition 3.8 in [5]). Given a countable ω-homogeneous ℵ0-categorical
structure Γ with RP for embeddings, every structure M with a first-order interpretation in
Γ has an ℵ0-categorical expansion N with RP for embeddings. Furthermore, if Γ is ω-
homogeneous in a finite relational signature, we can choose N to be ω-homogeneous in a
finite relational signature.

In [36], classes of structures interpretable in a fixed class K of finite structures in some
relational signature L are defined and investigated with respect to the Ramsey property.
For example, EK is defined to be all structures A in the signature L ∪ {E}, where E /∈ L
is interpreted as an equivalence relation. In the following, by an ordered expansion of a
structure we mean an expansion by a new relation symbol whose interpretation linearly
orders the structure. Suppose that K∗ is a class of ordered expansions of structures in K,
(this context could easily be adapted to the case where K is ordered by a relation in L)
and define CE [K∗] to be all ordered expansions of structures A ∈ EK such that the ordering
is convex (meaning that each equivalence class is an interval with respect to the ordering)
and the induced ordered structure A/E ∈ K∗. Theorem 4.5 of [36] states that K∗ has the
Ramsey property if and only if CE [K∗] has the Ramsey property.

The previous works provide an intriguing look into the relationship between the Ramsey
property and interpretations, but do not completely settle the question. Suppose A is
interpreted in B by way of D, E, where D is a definable subset of B, E is a definable
equivalence relation on D, and A is isomorphic to some reduct of D/E. If age(A) = K,
and age(B) = K′, then the interpretation demonstrates that a subset (the substructures of
D) of a reduct of K′ coincides with EK. Thus, the Ramsey transfer given by a particular
interpretation is related to the question of which reducts of a structure with the Ramsey
property have the Ramsey property.

We have learned that in recent work, a notion weaker than a semi-retraction has been
used in Lemma 3.14(iii) of [14], which paper generalizes many of the Ramsey transfer results
of [17] to positive logic.

7.3. Semi-Retractions and Retractions. In the case that A,B are countable and ℵ0-
categorical, the type spaces are finite, and so a well-defined map between them is continuous.
Under additional assumptions, qftp-respecting maps induce maps between type spaces.

Definition 7.19. Say that a structure A has property rqe (realized, quantifier-eliminable
types) if

SA
n (∅) = {qftp(a) : a ∈ |A|n}.

Observation 7.20. If A has rqe then every n-type over the empty set in A is realized in A.

Remark 7.21. If A is in a finite relational signature and Th(A) has quantifier elimination,
then complete quantifier-free types are complete types that are also finite types, so any type
realized in an elementary extension is realized in A. Thus A has rqe.

More generally, if A is an ω-homogeneous uniformly locally finite structure in a finite
signature, then Th(A) is ℵ0-categorical and has quantifier elimination as in Remark 3.6,
thus A has rqe.

Definition 7.22. Given A,B that have rqe, let g : A → B be a qftp-respecting injection
on the underlying sets. We define θg : S

A
n (∅) → SB

n (∅) to take p ∈ SA
n (∅) to q ∈ SB

n (∅) such
that there exists ı ∈ |A|n satisfying p(x) and g(ı) ∈ Bn satisfies q(x) (i.e. q = qftpB(g(ı))).
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Remark 7.23. Note that Definition 7.22 is well-defined since for any ı, ı′ satisfying p(x),
ı ∼A ı′ and so g(ı) ∼B g(ı

′) and thus qftpB(g(ı)) = qftpB(g(ı′)).

Observation 7.24. Given countable, ℵ0-categorical A,B that have rqe, let g : A → B be
a qftp-respecting injection on the underlying sets. The map θg as in Definition 7.22 is
continuous.

Proposition 7.25. Let A,B be countable ℵ0-categorical and rqe. If A is a semi-retract
of B via (g, f), then the pair of maps (θg, θf ) is a retraction of SB

n (∅) onto SA
n (∅) in the

category C of type spaces with continuous maps as morphisms.

Proof. By Observation 7.24, we know that (θg, θf ) are maps in the category C.

By assumption, there exist qftp-respecting injections on the underlying sets A
g−→ B f−→ A

such that the composition is qftp-preserving A fg−→ A.
Thus,

SA
n (∅)

θg−→ SB
n (∅)

θf−→ SA
n (∅)

and

SA
n (∅)

θf ·θg=id
SA
n (∅)−−−−−−−−−→ SA

n (∅)
which shows that the pair of maps is indeed a retraction in this category. □

8. Appendix

We start by providing proofs of some of the basic results quoted in the Preliminaries.

Lemma 2.15. Fix a signature L and a locally finite L-structure M . Let K := age(M).
Then, for any finite substructure A ⊆ M,

(1) de(A,K) = de(A,M), and
(2) d(A,K) = d(A,M).

Proof. Fix L, M, K and A as in the assumptions. Let n := ||A||. First we prove (2) and
then we indicate how (1) follows by a similar argument.

Since M is assumed to be locally finite with age K, we may expand L to a signature L′

that contains new predicates pC(x), for all C ∈ K, and expand M to an L′-structure M′

such that M′ ⊨ pC(c′) if and only if c′ is an enumeration of some structure C ′ such that
C ′ ∼= C.

Let Diag(M′) be the atomic diagram of M′ in the signature L′ in variables {xc : c ∈ M}.
In other words, for any atomic L′-formula φ(x0, . . . , xn−1), φ(xc0 , . . . , xcn−1) ∈ Diag(M′) if
and only if M′ ⊨ φ(c0, . . . , cn−1).

We may further expand L′ to a signature L∗ that contains new n-ary predicate symbols
{Ri(x) : i < ω}. Define θA,r to be the L∗-sentence stating that the interpretations of
{Ri}i<r form a partition on the copies of A in M:

θA,r := ∀x

⎛⎝(︄pA(x) ↔ ⋁︂
i<r

Ri(x)

)︄
∧
⋀︂

i ̸=j<r
¬(Ri(x) ∧Rj(x)) ∧

⋀︂
i<r,σ∈Sym(n)

(Ri(x) ↔ Ri(σ(x)))

⎞⎠ .

Define ψB,A,r,d to be the L∗-sentence stating (in conjunction with θA,r) that the r-coloring
of copies of A given by the interpretations of the {Ri}i<r achieves at least d colors on copies
of A within any copy of B:
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ψB,A,r,d := ∀y

⎛⎜⎝pB(y) → ⋁︂
x0, . . . , xd−1 ⊆ y;

|xi| = n, i < d

⎡⎣⋀︂
i<d

pA(xi) ∧
⋁︂

i0<i1<...<id−1<r

⎛⎝⋀︂
j<d

Rij (xj)

⎞⎠⎤⎦
⎞⎟⎠ .

Suppose d(A,K) ≥ d, for some integer d ≥ 1. By definition, there exists an integer r ≥ 2

and a structure B ∈ K such that for all C ∈ K, there is a coloring c :
(︁
C
A

)︁
→ r such that for

all B′ ⊆ C with the property that B′ ∼= B, |c(
(︁
B′

A

)︁
)| ≥ d. Thus, the following L∗-type Γ is

finitely satisfiable (in expansions of M′):

Γ({xc : c ∈ |M|}) := Diag(M′) ∪ {θA,r ∧ ψB,A,r,d}.

A realization of Γ induces a coloring c0 :
(︁M
A

)︁
→ r such that for any B′ ⊆ M with the

property that B′ ∼= B, |c0(
(︁
B′

A

)︁
)| ≥ d. Thus, we have shown that d(A,M) ≥ d.

If A does not have finite Ramsey degree in K, then for all integers d ≥ 1, d(A,K) ≥ d.
By the previous argument, d(A,M) ≥ d, for all integers d ≥ 1, and so A does not have
finite small Ramsey degree in M.

If A does have finite Ramsey degree in K, then it follows immediately that A has finite
small Ramsey degree in M, and d(A,M) ≤ d(A,K). By the argument above, we also have
that d(A,M) ≥ d(A,K), and so d(A,M) = d(A,K).

To see (1), for each finite substructure C ⊆ M we fix an enumeration c of C that we call
its “natural” enumeration. We then expand L to a signature L′ that contains new predicates
peC(x), for all C ∈ K, and expand M to an L′-structure M′ such that M′ ⊨ peC(c

′) if and
only if c′ ∼ c, where c is the natural enumeration of C.

Then we expand by predicates {Ri(x) : i < ω} and define

θeA,r := ∀x

⎛⎝peA(x) ↔ ⋁︂
i<r

Ri(x) ∧
⋀︂

i ̸=j<r
¬(Ri(x) ∧Rj(x))

⎞⎠

ψeB,A,r,d := ∀y(peB(y) →
⋁︂

x0, . . . , xd−1 ⊆ y;

|xi| = n, i < d

⎡⎣⋀︂
i<d

peA(xi) ∧
⋁︂

i0<i1<...<id−1<r

⎛⎝⋀︂
j<d

Rij (xj)

⎞⎠⎤⎦).
After this, the argument proceeds in the same manner. □

Proposition 2.11. Fix a signature L and a locally finite L-structure M . Let K := age(M).
Then, for any finite substructures A,B ⊆ M, (A,B) is a Ramsey duo for K if and only if
(A,B) is a Ramsey duo for M.

Proof. If (A,B) is a Ramsey duo for K, it follows immediately that (A,B) is a Ramsey duo
for M. Suppose (A,B) is not a Ramsey duo for K. Then there exists an integer r ≥ 2

such that for all C ∈ K, there exists a bad r-coloring fC :
(︁
C
A

)︁
→ r. As in Proposition

2.15, we can write the type of a structure M′ isomorphic to M with a bad r-coloring, i.e.

such that for all B′ ∼= B in M′, |c(
(︁
B′

A

)︁
)| ≥ 2. This type is finitely satisfiable using the bad

colorings fC and the fact that K = age(M). Now the L-reduct of the realization of this
type is isomorphic to M, and the isomorphism induces a bad coloring on M. □
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8.1. An RP transfer argument from the perspective of substructures. In this
section, we develop an argument for Corollary 5.5 built on the “restricted inverse images
under f” property as defined in Definition 5.13.

Corollary 5.5. Let A,B be structures and suppose (g, f) is a semi-retraction between A
and B. Suppose that a, b are finite tuples from A that generate finite substructures A,B,
respectively, of A, such that g(a), g(b) generate rigid substructures A0, B0, respectively, of
B. If (A0, B0) is a Ramsey duo for B, then (A,B) is a Ramsey duo for A.

Proof. Fix structures A,B, maps g, f , finite tuples a, b, and structures A,B,A0, B0, as in
the statement. Assume (A0, B0) is a Ramsey duo for B.

Fix finitely generated structures A,B ⊆ A and fix generators, a and b for these structures,
respectively, in some fixed enumeration. Since A is assumed locally finite, we may assume
that a, b enumerate A,B, respectively.

Fix a coloring c :
(︁A
A

)︁
→ 2. We define the tuples a0 := g(a), b0 := g(b), a1 := f(a0), b1 :=

f(b0). Moreover, let A0 := ⟨a0⟩B, B0 =
⟨︁
b0
⟩︁
B. Since fg is an embedding and a and b

were assumed to be structures, a1 and b1 must also enumerate L(A)-structures, which we
denote by A1 and B1, respectively. Since g is not an embedding, we must consider that the
structures generated by a0, b0 might be strictly larger than the generators: A0 := ⟨a0⟩B,
B0 =

⟨︁
b0
⟩︁
B. If there exists an L(B)-isomorphism ρ : A0 → A′

0, for some substructure A′
0 ⊆

B, let a′0 := ρ(a0) and define an induced coloring c0 :
(︁ B
A0

)︁
→ 2 by c0(A

′
0) := c(⟨f(a′0)⟩A).

Since ρ is an L(B)-isomorphism, we know that a′0 ∼B a0, and since f is qftp-respecting, we
know that f(a′0) ∼A f(a0) which implies that ⟨f(a′0)⟩A ∼= ⟨f(a0)⟩A ∼= A. This, and the fact
that the isomorphism ρ, if it exists, is unique, guarantee that this coloring c0 is well-defined
and total on the domain

(︁ B
A0

)︁
.

By the assumption of that (A0, B0) is a Ramsey duo, there is a copy B′
0 of B0 in B

homogeneous for the coloring c0 on copies of A0. Thus, there is d < 2 such that c0(A
′
0) = d

for all A′
0
∼=L(B) A0 in B′

0. Since B0
∼=L(B) B

′
0, Remark 2.1 guarantees the existence of a

unique isomorphism σ : B0 → B′
0. Define b

′
0 := σ(b0) and b

′
1 := f(b

′
0) and observe that

b
′
0 ∼B b0. By the qftp-respecting property of semi-retractions, since b

′
0 ∼B b0, b

′
1 = f(b

′
0) ∼A

f(b0) = b1. By the composition property of semi-retractions, b1 ∼A b. Thus, by transitivity

of the relation ∼A, b
′
1 ∼A b.

Since b1 enumerates an L(A)-structure the ∼A tuples b
′
1 enumerates an L(A)-structure,

which we may denote by B′
1. Moreover, we have shown that B′

1
∼= B. We claim that B′

1 is
the desired homogeneous copy of B in A for the coloring c. To verify, let A′

1 be a copy of
A in B′

1, and let ξ : A → A′
1 be the unique function witnessing the isomorphism. Define

a′1 := ξ(a) and note that a′1 ∼A a. Define a′0 := f−1(a′1). By Proposition 5.14, b
′
0 has the

restricted inverse images under f property for a witnessed by a0. So in particular, a′0 ⊆ b
′
0

and a′0 ∼B a0. By homogeneity of B′
0 for the coloring c0, c0(⟨a′0⟩B) = d, and since a′0 ∼B a0,

c0(⟨a′0⟩B) := c(⟨f(a′0)⟩A) thus d = c(⟨f(a′0)⟩A) = c(⟨a′1⟩A) = c(A′
1), as desired.

□

Remark 8.1. In the previous argument for Corollary 5.5, we make essential use of the local
finiteness of A. If A is not locally finite, then some finite tuple b from A generates an infinite
substructure B ⊆ A. Then g(B) ⊆ |B| is an infinite set that may or may not be generated
by a finite set of generators from B, in which case it may not be contained in an element
of age(B). This is a problem, because any copy of A ⊆ B in fg(B) ⊆ A has a preimage
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that is somewhere in g(B), and may be outside the image g(b) of the original generators,
b. In general, the Ramsey property for B does not constrain infinite sets such as g(B) that
are not contained in elements of age(B). For a more specific illustration of what could go
wrong, see Example 5.7.
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Elliott, Sebastian Lutz, and Jeffrey Paris. Frank Ramsey. In Edward N. Zalta and Uri
Nodelman, editors, The Stanford Encyclopedia of Philosophy. Metaphysics Research
Lab, Stanford University, Spring 2023 edition, 2023.

[20] David Marker. Model theory, volume 217 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 2002. ISBN 0-387-98760-6. An introduction.
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