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We propose a class of graphene-based moiré systems hosting flat bands on kagome and honeycomb moiré
superlattices. These systems are formed by stacking a graphene layer on a 2D substrate with lattice constant
approximately /3 times that of graphene. When the moiré potentials are induced by a 2D irreducible corep-
resentation in the substrate, the model shows a rich phase diagram of low-energy bands including eigenvalue
fragile phases as well as kagome and honeycomb flat bands. Spin-orbit coupling in the substrate can lift
symmetry-protected degeneracies and create spin Chern bands, and we observe spin Chern numbers up to
three. We additionally propose a moiré system formed by stacking two graphene-like layers with similar lattice
constants and Fermi energies but with Dirac Fermi velocities of opposite sign. This system exhibits multiple
kagome and honeycomb flat bands simultaneously. Both models we propose resemble the hypermagic model of
[Scheer et al., Phys. Rev. B 106, 115418 (2022)] and may provide ideal platforms for the realization of strongly

correlated topological phases.
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I. INTRODUCTION

Since the discovery of the fractional quantum Hall effect,
nontrivial flat bands in two dimensions have become a dom-
inant paradigm for strongly correlated topological phases of
matter. In recent years, moiré systems such as twisted bilayer
graphene (TBG) [1] have been predicted to host nontrivial
flat bands [2-5] and experiments have revealed remarkable
strongly interacting phenomena such as unconventional super-
conductivity and correlated insulation [6—12]. Another way to
realize nontrivial flat bands is to construct tight-binding mod-
els that exhibit destructive wavefunction interference [13—15].
For example, a nearest-neighbor tight-binding model with
one symmetric orbital per site on a kagome lattice has one
exactly flat band [16,17]. Interacting systems based on this
tight-binding model have long been investigated as candidates
for strongly correlated phases such as Mott insulators or spin
liquids [18,19]. Similarly, a nearest-neighbor tight-binding
model with p, and p, orbitals on each site of a honeycomb
lattice has two exactly flat bands when certain parameters are
neglected [20]. For completeness, we review these flat band
tight-binding models in Appendices K and L. Despite exten-
sive searches for crystalline materials realizing such nontrivial
flat bands, they remain quite rare. Additionally, it is often
difficult to tune the Fermi level into a flat band [19,21-23].

A natural question is whether kagome or honeycomb
flat-band tight-binding models can be realized in moiré
materials, which generally enjoy highly tunable Fermi lev-
els. Recent studies on moiré models for twisted crystalline
materials with triangular Bravais lattices and low-energy
physics near the I' point have found kagome and hon-
eycomb flat bands. These so-called I'-valley models have
been derived for transition metal dichalcogenides (TMDs)
[25,26], interfaces between topological insulators and ferro-
magnetic insulators [27], and semiconductors [28]. Kagome
and honeycomb moiré superlattices have been observed with
scanning tunneling microscopy in twisted bilayer WSe,,
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although the orbitals from which they emerge remain
obscure [29].

In this paper, we introduce a graphene-based moiré model
that realizes kagome and honeycomb lattice flat bands. We
consider a graphene layer stacked on a two-dimensional
crystalline substrate with a triangular Bravais lattice and a
lattice constant approximately +/3 times that of graphene. At a
twist angle near 30°, the two layers are nearly commensurate
and produce a moiré pattern as shown in Fig. 1(c). The K
and —K graphene valleys are both folded close to the T
point of the substrate, and are thus coupled by van der Waals
interactions. Assuming the substrate states near the I point are
gapped at the graphene Fermi energy, the low-energy physics
in the graphene layer can be described by a continuum model
consisting of two Dirac cones with intervalley and intravalley
moiré potentials. We refer to this model as the coupled-valley
graphene model. When the substrate has maximal symmetry
and the interlayer twist angle is exactly 30°, the model
respects the magnetic space group P6mml’ (No. 183.186
in the BNS setting [30]). A particularly interesting limit is
that in which the moiré potentials are produced entirely by
substrate states occupying a two-dimensional (2D) spinless
irreducible corepresentation (coirrep) [31]. Without spin-orbit
coupling (SOC), we find a rich phase diagram of low-energy
bands including eigenvalue fragile phases [32] and magic
parameters with kagome or honeycomb flat bands near charge
neutrality. With SOC in the substrate, the z component of
spin is approximately conserved. We find moiré bands with
spin Chern numbers up to three, allowing realization of the
quantum spin Hall effect [33,34].

We note that commensurate bilayers with exactly +/3 lat-
tice constant ratio and perfect 30° alignment have been studied
using density-functional theory [35,36]. Moiré materials near
this configuration have also been studied theoretically and
experimentally [37—40]. However, these studies did not con-
sider the case in which the moiré potentials are produced
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FIG. 1. Illustration of the coupled-valley graphene model.
[(a),(b)] Real-space commensurate stacking configurations described
by Eq. (2) for two honeycomb lattice materials (made with [24]).
(c) The moiré pattern of two honeycomb lattices described by
Egs. (1) and (2) with e = —0.15 and 0 = 7°. (d) A momentum-
space diagram illustrating the moiré vectors q;, the graphene
coordinate system (x, y), and the moiré coordinate system (X, Ya)-
The graphene and substrate BZs are shown in blue and red, re-
spectively. The green dashed hexagon is formed from substrate
I'_ points and coincides with the graphene BZ when §e = 66 = 0.
(e) The moiré BZ and high-symmetry moiré quasimomenta in the
moiré coordinate system (x,,, yy ). This diagram pertains to both the
coupled-valley graphene and opposite-velocity models.

by a 2D spinless coirrep in the layer with a larger lattice
constant, nor did they report kagome or honeycomb moiré flat
bands.

We additionally propose a moiré model consisting of two
stacked graphene-like materials with nearly equal lattice con-
stants, both of which have Dirac cones at K and —K. We
show that if the two layers have nearly opposite Dirac Fermi
velocities and nearly equal Fermi energies, the system may
have multiple kagome and honeycomb moiré flat bands si-
multaneously near charge neutrality. We refer to this model
as the opposite-velocity model. Both models we propose bear
strong mathematical resemblance to the hypermagic model of
Ref. [41].

II. COUPLED-VALLEY GRAPHENE MODEL

We consider a system consisting of a graphene layer
stacked on top of a 2D crystalline substrate with a triangu-
lar Bravais lattice. The lattice constants of graphene and the
substrate are a ~ 0.246nm and ea, respectively, for some
real number €. Additionally, the substrate Bravais lattice has
a counterclockwise rotation of angle 6 relative to that of the

graphene layer. In order to create a moiré pattern, we take
0 =60+686, |del,[60] <1, (1)

where € and 6, describe some commensurate configuration
[42]. For the coupled-valley graphene model, we take

€ =1In~/3, 6 =30 )

Hereafter, we use + and — subscripts to denote momenta in
the top (graphene) and bottom (substrate) layers, respectively.
As illustrated in Fig. 1(d), when de = 66 = 0 the momentum
K, is an element of the commensurate reciprocal lattice.
As a result, when e and §6 are not both zero, graphene
states near K, —K,, and I' are van der Waals coupled
to substrate states near I'_, yielding a moiré Brillouin zone
(BZ) as shown in Fig. 1(e). The graphene states near I';
are far from the graphene Fermi energy and can be ignored.
Assuming the substrate states around I'_ are also highly
detuned, we can use Schrieffer-Wolff perturbation theory to
project out the substrate states and derive a moiré model
within the graphene layer involving only states near K, and
—K_.. The result is the coupled-valley graphene model, which
is derived in detail in Appendices F and G, and which we
now present.

We assume that SOC is present only in the substrate and not
in the interlayer hoppings. Due to the high symmetry of the
I'_ point, the z component of electron spin is conserved. As a
result, we can describe the system with a moiré Hamiltonian
H; for electrons of each spin s € {#, |}. In a convenient real-
space basis, this Hamiltonian takes the form

(S5 4(r) —ilivpoy -V Ty(r)
H; = ( T (r) S._(r) — ilivpoyy - V) 3)

where T;(r) and S; ,(r) are intervalley and intravalley moiré
potentials, n € {+, —} stands for graphene valley, vp ~
10 ms™! is the graphene Fermi velocity, oy = o,&y + 0,9 u
is a vector of Pauli matrices, and X, ¥); are axis unit vectors
for the moiré coordinate system in Figs. 1(d) and 1(e). We
choose the zero-energy point to be the graphene Fermi en-
ergy. As explained in Appendices F and G, we have chosen
a basis in which the two Dirac cones in Eq. (3) have the
same form even though they originate from opposite graphene
valleys.

To leading order, T(r) and S; ,(r) originate from second-
order hopping processes among the valleys, namely nK; —
- - —nK,, and nK; — I'_ — nK,, respectively. They
can be expanded as

3
Tv(r) = Z Z Tv,mq/eimqﬁra

j=1 m=1,-2

€ = €y + J¢,

3
S5 () = Ssp.0 + Z Z Ssny(ar—aope” BHITET,(4)
j=1y==%

for 2 x 2 complex matrices T q and S, 4. The q; vectors are
defined by

q; = R Ky = Ky R, Ju (5)
where

Ky = (1 — ¢ *Rs)Ky,

IKy| ~ v/8€2 + 862K, |. (6)
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TABLEI. (a) Coefficients for expansions of T; 4 and S; , 4 in Eq. (4) with respect to the matrices shown in the column titles. The parameters
Wy, and @, , are real and have energy units, and @,,, = 0 in the absence of SOC. The angle ¢, is defined in Eq. (7), {; = %”( j—1,
n, = RyX, and 0 = 0,& + 0,§. The index values are j € {1,2,3},m € {1, -2}, and y € {1, —1}. (b) Expressions for w,,, in terms of E, and
v for a 1D spinless coirrep. (c) Expressions for w,, , in terms of Ey, vy, and v, for a 2D spinless coirrep. (d) Expressions for @, , in terms of

Ey, A, vy, and v, for a 2D spinless coirrep with SOC.

(@) Ti.q and S;. q 90 0 Mg g —np2 oMy, Oz

Tv,mqj iSﬁ)pn\,o 0 Wim|,y iw\ml.z

Ss.n.0 Wo,0 0 0 st -
Ssnv@iej—as)) W0 TSNy W5, N5, +isy w5, 0 S5, +inywys,
(b) 1D coirrep 0 X y z

Eowo,, —3|vf? 0 0 0

Eyw; 0 0 —20? M, _v?
Egws 0 0 —v? —M, _v?
Eows, L2 M, [P 0 — P

(c) 2D coirrep 0 X y z

Eqwy,, =3(lvol® + luel?) 0 0 0

Eyw; 0 0 209 vy v3 — 202
E()U]z,ﬂ 0 0 —2U()l)x —(US + Uf)
Ews, L(lwol? = 21, Lwovz + v3vy) 0 Ly 2

(d) 2D coirrep (SOC) 0 X y z

Eyiy,, 0 0 0 3A(—=|vo|? + [vel?)
EQII)I_M )\.(U(Z) +2U§) 0 0 0

Eyib, A=vd +02) 0 0 0

Eoib 3, 15y ? — 2 (uov2 + vv,) 0 E(Jvol +2[vl?)

Here, R; denotes rotation by angle ¢ about 2 and ¢; =
27”( Jj—1). The q; vectors, moiré coordinate system, moiré
BZ, and high-symmetry moiré quasimomenta are illustrated
in Figs. 1(d) and 1(e).

The graphene electronic states carry a corepresentation
(corep) of the magnetic space group P6mml1’, which is gen-
erated by Bravais lattice translations, Cg, (rotation by /3
about Z), M, (reflection through the xz plane), and 7 (spinful
time-reversal). We assume that the substrate states also carry
a corep of Pomm1’. When 36 = 0, the moiré model in Eq. (3)
then also carries a corep of P6mm1’. In this case, the symme-
tries constrain the moiré potentials to the form in Table I(a),
where the parameters wy, , and #,, , are real and have energy
units, the ,, , parameters vanish in the absence of SOC, and

¢ = arg(e %% _ 1) ~ arg(—8e — i86). (7

When 86 is nonzero but small, the M, symmetry is weakly
broken. The moiré potentials may then gain small symmetry-
breaking perturbations on the order of §6, but these are
typically negligible. See Sec. III of Ref. [41] for a discussion
of a similar symmetry-breaking term in the model for TBG
near a commensurate twist angle.

We first examine the case without SOC. The moiré po-
tentials are then spin independent and are determined by the
spinless interlayer coupling and substrate Hamiltonian #H_ at
I'_. H_ carries a spinless corep p_ of the magnetic point
group 6mml’ (see Appendix I). By Schur’s lemma, one can
diagonalize H_ while also decomposing p_ into coirreps. As
a result, we can expand the moiré potentials in Eq. (4) as a
sum of contributions of coirreps in p_.

The spinless coirreps of 6mm1’ all have dimension 1 or 2
(see Table III). The moiré potential contribution from a 1D
spinless coirrep depends on its energy Ey in H_ (measured
relative to the graphene Fermi energy) and an interlayer hop-
ping parameter v, while the contribution from a 2D spinless
coirrep depends on its energy E( and two interlayer hopping
parameters, vy and v,. The parameter v is either real or imagi-
nary, depending on the coirrep. Likewise, vy and v, are either
both real or both imaginary. The w,, , parameters are given in
terms of Ey, v, vy, and v, in Table I [(b) and (¢)].

We now suppose that the substrate has SOC, and note
that any effect of SOC on the interlayer couplings can be
neglected at leading order. Since all spinful coirreps of 6mm1’
have dimension 2 (see Table III), the inclusion of spin maps
1D spinless coirreps to 2D spinful coirreps and 2D spinless
coirreps to 4D spinful reducible coreps. As a result, SOC can
only modify contributions arising from 2D spinless coirreps,
and in this case it simply splits the 4D spinful corep into two
spinful coirreps with energies E; and E,. We define

2 E;'—E;!

= -, =, 8
E;'+E! E;'+E! ®)

Ey
where A characterizes the SOC strength. The parameters w,, ,
and @y, , for a 2D spinless coirrep with SOC are given in
Table I [(c) and (d)] in terms of Ey, A, vg, and v,.

Since wy, , and i, , for a single coirrep vary inversely
with Ey, the moiré potentials will typically be dominated by
coirreps near the graphene Fermi energy. We consider now
the intriguing limit in which the moiré potentials arise entirely
from a single 2D spinless coirrep. Without loss of generality,
we assume vy, vy € R (see Appendix J). In this case, the

245136-3



MICHAEL G. SCHEER AND BIAO LIAN

PHYSICAL REVIEW B 108, 245136 (2023)

model can be parameterized by the dimensionless quantities

CJuol? + o

o= O FIE o + iv), ©)
Eolhvr Ky ¢ 7 8

A, @1, and the sign of Ej. The parameter o resembles the
parameter of the same name in the BM model [1] in that larger
a corresponds to stronger interlayer coupling and larger moiré
lattice constant.

We focus on the case with 80 = 0 and de # 0. Without
loss of generality, we choose §¢ <0, ¢; =0, and Ey <0
(see Appendix J). We then explore the moiré band structure
without SOC as a function of « € (0,00) and ¢ € [0, 7).
For each set of parameters, we identify a low-energy band
structure, by which we mean a minimal set of bands con-
taining the first valence and conduction bands such that the
symmetry coirreps at high-symmetry points (i.e., Ty, Ky,
and M,,) are well defined and satisfy the momentum-space
compatibility relations for P6mm1’ from magnetic topological
quantum chemistry [43,45-47]. We then define the phases by
identifying an integer linear combination of elementary band
representations (EBRs) with a minimal sum for the negative
coefficients compatible with each low-energy band structure.
Figure 2(b) shows all phases for which the low-energy band
structure has at most four bands and Fig. 2(c) tabulates the
EBR decompositions for the nine largest such phases. The
full list of EBRs for each magnetic space group can be found
on the Bilbao Crystallographic Server [43,44]. Example band
structures are shown with solid lines in Figs. 3(a)-3(d) and
Figs. 5(a)-5(e). The low (high)-energy bands are shown in red
(black).

Remarkably, phase 1 is compatible with the EBR for the
honeycomb lattice flat-band model [20] (see Appendix K 3),
while phases 7 and 8 are compatible with EBRs for the
kagome lattice flat-band model [16,17] (see Appendix K 2).
Moreover, the linear combinations of EBRs for phases 4, 6,
and 9 include a subtraction, implying that these phases have
at least a fragile topology when the low-energy bands are
isolated [32,48-51]. Real-space charge density distributions
corresponding to the low-energy band structures are shown
in Figs. 3(e)-3(h) and Figs. 5(f)-5(j). Triangular, honeycomb,
and kagome lattice patterns are clearly visible for phases 2, 1,
and 8, respectively, in agreement with Fig. 2(c).

In addition to identifying phases, it is also important to
search for flat bands. The dark regions in Fig. 2(a) indicate
parameters for which there is a flat band among the first three
valence and first three conduction bands. We see that several
phases admit flat bands, and the parameters for Figs. 3(a),
3(c), and 3(d) were chosen to exhibit extremely flat bands near
charge neutrality.

With SOC, the symmetry-protected degeneracies are
generically split and the bands gain spin Chern numbers C;
and C; = —C;. The dashed lines in Figs. 3(a)-3(d) and 5(a)-
5(e) show moiré band structures with SOC. For example,
Fig. 3(d) has a band with C; = 3. We note that the spin Chern
numbers with fixed A are not necessarily constant within each
spinless phase.

0 0.25 0.5 0.75 1
o/

phase|min max P6mm1’ EBR decomps
T [—2 2 )z
2 |-2 1 (F2)1a @ (B2)1a
3 |—-1 1 (A2)2
4 | -1 1 [(A2)3¢® (F1)1a D (A1)1a B (E)2s
5 | -1 3 (A2)26 ® (F1)1a
6 |—2 2 |(A1)3cD (E2)1a ® (B1)1a B (A1)2s
7T |-2 1 (A1)3c
8 -2 1 (A2)3c
9 |-3 1 (A1)3e @ (A1)2s B (A1)1a

FIG. 2. Low-energy bandwidths and phase diagram of low-
energy bands for the coupled-valley graphene model without SOC
and with moiré potentials arising from a 2D spinless coirrep at I'_.
We take 660 =0, ée <0, ¢; =0, vg,v, € R, A =0, and Ey < 0.
(a) The base 10 logarithm of the narrowest bandwidth (in units of
hvp|Ky|) among the first three valence bands and first three con-
duction bands at charge neutrality. The bandwidth is computed with
moiré quasimomenta I'y;, Ky, My, Kj;/2, and My, /2. (b) Phase
diagram of low-energy bands. All parameters for which the low-
energy band structure has more than four bands are shown in black.
(c) For each of the nine largest phases in (b), we show the band
indices and a linear combination of EBRs of Pémm1’ for the low-
energy band structure. The nth conduction (valence) band has index
n (—n). The symbols @ and H indicate sum and difference of EBRs,
respectively. The full list of EBRs for P6mm1’ can be found on the
Bilbao Crystallographic Server [43,44].

III. OPPOSITE-VELOCITY MODEL

We now introduce another moiré construction yielding
kagome and honeycomb flat bands (see Appendix H for a
detailed derivation). We consider a stack of two 2D materials
with triangular Bravais lattices and P6mm1’ symmetry. We
assume that both layers have Dirac cones at their K and —K
points centered at their Fermi energies, carrying the same
coreps of Pomm1’ as that of graphene. The bottom layer to
top layer lattice constant ratio e and counterclockwise twist
angle 0 satisfy Eq. (1) with

=0, 6 =0, (10)
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(a) (b) (c) (d)

Phase 1 Phase 2 Phase 6 Phase 8

1o =24 1/a = 4.0 1o =27 1/a=1.3

p/m = 0.6 @/m =0.95 @/m =0.75 @/m =0.75
A=0,0.15 A=0,0.1

+=1,-1,00 Cp = —-1,2,-1

E/(hvr|Knm|)

LM

FIG. 3. [(a)—~(d)] Moiré band structures of the coupled-valley
model in Eq. (3) for phases 1, 2, 6, and 8 of Fig. 2(b), with parameters
written above the panels. Band structures without (with) SOC are
shown with solid (dashed) lines. The black dotted lines indicate
charge neutrality. The low (high)-energy bands are shown without
SOC in red (black) and with SOC in blue (gray). The spin Chern
numbers are written in increasing order of energy above the panels.
[(e)—(h)] Real-space charge density distributions from fully filling
only the low-energy spinless bands shown in red in (a)—(d). Lighter
colors indicate higher charge densities. A moir€ unit cell is shown as
a white hexagon. A description of the EBR decomposition given in
Fig. 2(c) is written above each panel. The low-energy spinless bands
illustrated in (c) and (g) have at least a fragile topology and therefore
do not admit exponentially localized symmetric Wannier functions
[32,48,49,51]. The highest two spinless valence bands in (c) are
compatible with the EBR decomposition (A})s;. & (B1)1, H (A1)
while the lowest two spinless conduction bands are compatible with
(Ex)14. Figure 5 contains similar plots for the other phases tabulated
in Fig. 2(c).

so that

e=38¢, 0=350, e, 10]<]l. (11)

We study only the case without SOC for simplicity. The sys-
tem is illustrated in Figs. 4(a) and 4(b).

As in the BM model for TBG, the two valleys K; and
—K are nearly decoupled and are related by time-reversal.
In a convenient real-space basis, the Hamiltonian for the K4
valley takes the form

_ S+(I‘) - ihU+O-M -V
"= ( Ti(r)

T(r)

. (12)
S_(r)+ihv_opy -V
where T(r) and S;(r) are interlayer and intralayer moiré

potentials, / € {+, —} indicates layer, v; is the Dirac cone
Fermi velocity for layer I, oy = 0.8y + 0,91 is a vector

(c) (d)

v=1,ea =0
P

E/(hvr|Kwml)
I
i
i
1
\

T M

FIG. 4. Illustration of the opposite-velocity model. (a) A moiré
pattern for two honeycomb lattices with € = —0.15 and 6 = 7°.
(b) A momentum-space diagram illustrating the q; moiré vectors, the
top layer coordinate system (x, y), and the moiré coordinate system
(xar, yur)- The top (bottom) layer BZ is shown in blue (red). [(c),(d)]
Moiré band structures with wy/|w;| = 0.8, ¢, € {0, 7}, w, cos¢p; >
0, and 1/ = 0.5, with v and e, given above each panel. The black
dotted lines indicate charge neutrality. The parameters for (c) realize
the hypermagic model and have an emergent C,, symmetry. In (d),
the solid lines show bands along I'y — Ky — My, — Ty, while
the dashed lines shown bands along T'y; - —K); - —M); — Ty,
These bands differ because the emergent C,, symmetry is absent.
(e) The real-space charge density distribution from fully filling only
bands —4 to —2 in (c), which forms a kagome lattice pattern. (f) The
real-space charge density distribution from fully filling only bands
—1 and 1 in (c), which forms a honeycomb lattice pattern. Here,
the nth conduction (valence) band has index n (—n). See Fig. 6 for
charge density distributions for the other red bands in (c) as well as
EBR decompositions for the red bands in (c) and the red and blue
bands in (d).

of Pauli matrices, and X,;, ¥ are axis unit vectors for the
moiré coordinate system in Figs. 4(b) and 1(e). As explained
in Appendix H, we have chosen a basis in which the sign for
the bottom layer Dirac cone is negated.

To leading order, the moiré potentials can be expanded as

3
T()=Y Tye™, $i(r)=S0, (13)
j=1

for 2 x 2 complex matrices Ty and S; 4. The q; vectors are
defined by Eq. (5) with

Kyl ~ Ve + 07Kyl (14)

The q; vectors, moiré coordinate system, moiré BZ, and high-
symmetry moiré quasimomenta are illustrated in Figs. 4(b)
and 1(e).

When 6 = 0, the moiré model in Eq. (12) inherits all valley
preserving symmetries from the spinless coreps of P6mml’

Ky = (e“Rg — DK,
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on the two layers. Since C,, (rotation by m about Z) and T
reverse valley, the moiré model carries a spinless corep of the
magnetic space group P6'm’m (No. 183.187 in the BNS set-
ting [30]), which is generated by Bravais lattice translations,
Cs, (rotation by 277 /3 about Z), C>, 7, and M,,. In this case, the
symmetries imply

Ty, = wyo - fig; 44, + iwgoy,

lE
Sio = (EF + TA)ao, (15)

for real parameters wo, wi, Er, and Ex. Here, iy = RyX, 0 =
0.& + 0,¥, and

¢ = arg(l — e <) ~ arg (¢ + i0). (16)

Without loss of generality, we set Er = 0. When 6 is nonzero
but small, the M, symmetry is weakly broken. The moiré
potentials may then gain small perturbations on the order of
0, but these are typically negligible. For simplicity, we assume
0 = 0 and € # 0 hereafter, in which case ¢; € {0, 7}.

We refer to this model in the regime v_v; < O as the
opposite-velocity model. If both layers are graphene-like hon-
eycomb lattices, this requires their in-plane nearest-neighbor
hoppings to have opposite signs [52]. We parametrize the
model by the dimensionless quantities

Uy [wi] Ex

=" a= -2 a7
Y A= he Ky 07

v’ | Kyl
wo/|w1], and the sign of w; cos ¢, where vy = /|vyv_|. In
particular, when v = 1 and ex = O (i.e., the two layers have
opposite Dirac Fermi velocities and equal Fermi energies),
the Hamiltonian gains an emergent effective C,, symmetry
that sends r — —r and interchanges the layers, and the space
group is enriched to P6mm]1’. In this case, the Hamiltonian in
Eq. (12) has the same form as the hypermagic model given
in Eqgs. (71), (74), and (75) of Ref. [41] with |¢o| = 7 /2, and
the Ty, Si.0 matrices have the same form as the Tiq;> Ssn0
matrices in Table I(a) with @,, , = 0. This happens because
the coreps of P6mm]1’ in the coupled-valley graphene model
without SOC in Eq. (3) and the hypermagic model are the
same.

Figure 4(c) shows an example band structure with v = 1
and ex = 0, which simultaneously exhibits at least eight flat
bands. All the low-energy bands in red are compatible with
EBRs of P6mm1’ supported on honeycomb or kagome lat-
tices. The EBR for each group of bands is shown in Fig. 6(f).
In particular, four (two) groups of connected bands corre-
spond to kagome (honeycomb) lattice flat-band models (see
Appendix K), which can be observed in the real-space charge
density distributions in Figs. 4(e) and 4(f) and Figs. 6(a)-6(e).

Figure 4(d) shows an example band structure identical to
that in Fig. 4(c), except that v = 2 and e, = 0.5 so the emer-
gent C,, symmetry is absent. Interestingly, all of the flat bands
in Fig. 4(a) remain quite flat in Fig. 4(b). The main change
is that the EBR of P6mm1’ corresponding to the honeycomb
lattice flat-band model becomes a composite band representa-
tion of P6'm’m, and one of the two groups of bands with this
EBR splits into two disconnected groups. The groups of bands
supported on kagome lattices remain connected. The EBR
decomposition for each group of bands is shown in Fig. 6(g).

IV. DISCUSSION

A considerable number of 2D materials (e.g., germanene
and CdS) are known to have lattice constant approximately
V3 times that of graphene [37,39]. These materials can
be considered candidate substrates for the coupled-valley
graphene model in Eq. (3). In addition to the appropriate
lattice constant, a substrate material must have a 2D spinless
coirrep at the I' point near the graphene Fermi energy in
order to realize the phases in Fig. 2(b). In order to find such
materials, ab initio studies are needed.

We note that for a given substrate, the moiré potentials
may be tuned with pressure (which modulates interlayer hop-
ping) and out-of-plane displacement field (which modulates
the relative energies of states in the two layers). Additionally,
if the substrate material is placed both above and below the
graphene layer, the moiré potentials will be enhanced by a
factor of two. This is similar to the case of symmetric twisted
trilayer graphene [53,54].

In comparison to I'-valley models, which also have kagome
or honeycomb moiré flat bands [25-28], the coupled-valley
graphene model has the advantage that the electrons are lo-
calized within graphene, which is a clean and theoretically
well-understood material. Additionally, our model shows a
rich phase diagram of low-energy bands including eigenvalue
fragile phases in addition to flat bands.

It is less clear how to realize the opposite-velocity model
in Eq. (12). However, this model can host many kagome or
honeycomb flat bands simultaneously, so a realization could
provide a variety of interacting phases within a single sample.
It is worth noting additionally that both models we propose
could potentially be realized with metamaterials [55].
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APPENDIX A: ADDITIONAL FIGURES

Figures 5 and 6 are continuations of Figs. 3 and 4, respec-
tively.

APPENDIX B: NOTATIONS

Throughout this paper we consider bilayer structures
formed from two crystalline materials with triangular Bravais
lattices. We use [ = 4 and [ = — to denote the top and bottom
layers, respectively. The top layer has lattice constant a and
the bottom layer has lattice constant e“a for some real number
€. Additionally, the bottom layer is rotated counterclockwise
by angle 6 relative to the top layer. We denote the Bravais
lattice, reciprocal lattice, primitive unit cell, and Brillouin
zone of layer [ € {4, —} by L;, P, €2;, and BZ,, respectively.
We use %, ¥, and 2 for unit vectors in R and use primitive
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(2) (b) (c) () (e)
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1/a=4.0 1/a=4.0 1/a=4.0 1/a =3.0 1/a =4.0
¢/m =0.05 @/m=0.3 @/m=0.2 p/m=0.48 @/m =0.45
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P
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-1 =
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(j)topological

(f)honeycornb (g)topological (h)combination (i)kagome

Ymr

M

FIG. 5. Continuation of Fig. 3 for phases 3, 4, 5, 7, and 9. See
the caption of Fig. 3 for more information.

vectors

a; =aX, a=R_;pa, (BD)

for L, and
b1 = Rarjba, by = —47§/(aV/3), (B2)
for P,. We define high-symmetry crystal momenta
I, =0 K,=2b+1ib, M;=1b;+1b;, (B3
for the top layer and
- =0, K_=¢“RyK,, M_=¢“RyM,, (B4
for the bottom layer. We write |S| for the area of a region S C
R? such as BZ; or ;. Ry denotes rotation by angle ¢ about

(b) honeycomb (C ) kagome

(a)kagorﬂe (d)huneycomb (e)kagome

()
P6mm1’ EBRs min max|P6'm’m EBR decomps
B G s (W)ac
(E)Zb 4 5 (1E)2b
(A2)2p 2 3 (E)1a
(A1)se -1 1 (A1)2p
(B2)3c -4 -2 (A")se
(E)20 -7 =5 (A")se
—14 —12 (A1)3e —-11 -8 (*E)2 @ (E)1a
—14 —12 (A)se

FIG. 6. Continuation of Fig. 4. [(a)-(e)] Real-space charge den-
sity distributions for bands —14 to —12, —11 to —8, —7 to —5, 2
to 5, and 6 to 8, respectively in Fig. 4(c). (f) Pémm1’ EBRs for the
bands shown in red in Fig. 4(c). (g) P6'm'm EBR decompositions for
the bands shown in red and blue in Fig. 4(d). The nth conduction
(valence) band has index n (—n). The symbol @ indicates sum of
EBRs. The full list of EBRs for P6mm1’ and P6'm’m can be found
on the Bilbao Crystallographic Server [43,44].

Z and R4 denotes reflection through the plane orthogonal to
the vector i € R3. If V, V;, and V, are sets of vectors, u is a
vector, and r is a real number, we define

Vi+Vo={vi+wlv €V, v €V},

u+V={u+vveV}, rV={rviveV}. (BS)

Finally, we denote the Pauli matrices by o, oy, and o, we
denote the 2 x 2 identity matrix by oy, and we use the vectors
of Pauli matrices 0 = 0,X + 0,§ and ¢* = 0, X — 0,§.

APPENDIX C: COMMENSURATE CONFIGURATIONS

In the following subsections we enumerate all commen-
surate configurations, explain some of their properties, and
classify them into four types.

1. Conditions for commensuration

We say that two Bravais lattices are commensurate if they
share a nonzero element. If the triangular Bravais lattices
L_ and L, defined in Appendix B are commensurate then
their intersection L. = L_ N L, is another triangular Bravais
lattice called the commensuration superlattice. In this section,
we derive all values of € and 6 such that L_ and L, are
commensurate. Our approach is similar to that of Appendix D
in Ref. [41], which covers the case in which € = 0.

Let @ and b be matrices with columns (a;, ap) and (by, by),
respectively. Then every element of L, takes the form au,
for some integer vector u, and every element of L_ takes the
form e“Ryau_ for some integer vector u_. It follows that L_
and L, are commensurate if and only if

u, = ea 'Ryau_ (C)

is satisfied by some nonzero integer vectors u_ and uy, or
equivalently if all matrix elements of e‘@~'Ryé are rational.
One can compute

efalReaz(xﬁyO 20 )

C2
=2y Xo — Yo €2

where et = xo + yoi~/3. It follows that L_ and L, are com-
mensurate if and only if xy and y, are both rational.

Applying the same argument to the reciprocal lattices, we
see that P_ and P, are commensurate if and only if all matrix
elements of e~¢b~'Ryb are rational. Since

) (xo — Yo 2yo ) (C3)

—2y0 X0 +Yo

we see that P_ and P, are commensurate if and only if L_ and
L, are commensurate.
For commensurate L_ and L., we can write

olterioy _ M + i3

P1

for [ € {+,—} and integers w;, v;, p; with p; > 1 and
ged(uy, v, o) = 1. Any commensurate configuration is
equivalent up to an isometry to one with

€e>0 and 0<6<m/6.

(o))

(€5)

Table I shows the parameters for several commensurate con-
figurations satisfying Eq. (C5).
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TABLE II. Parameters for all commensurate configurations sat-
isfying Eq. (C5) and N_N, < 49 in increasing order of N_N..
The parameters p., vy, o4, —, v_, p_, and 6 are defined in
Appendix C1 while N, and N_ are defined by Eq. (C26). By
Eq. (C27), ¢¢ = /N, /N_. The four types of commensurate config-
uration (I4, I—, I+, and II—) are described in Appendix C5. The
values shown for 6 are rounded to four significant figures.

#  Type py vy pr p- Vo po 0 Ny N
1 1+ 1 0 1 1 0 1 0.0° 1 1
2 JIES 3 -1 6 3 1 2 30.0° 3 1
3 1- 1 0 2 2 0 1 0.0° 4 1
4 I+ 5 -1 14 5 1 2 19.11° 7 1
5 JIES 1 0 3 3 0 1 0.0° 9 1
6 - 3 -1 4 3 1 3 30.0° 4 3
7 1+ 3 -1 12 3 1 1 30.00 12 1
8 I- 7 -1 26 17 1 2 13.9° 13 1
9 I+ 1 0 4 4 0 1 0.00 16 1
10 I+ 4 -1 19 4 1 1 2341° 19 1
11 II- 9 -1 14 9 1 6 10.89° 7 3
12 IO+ 9 -1 42 9 1 2 10.89° 21 1
13 I- 1 0 5 5 0 1 0.0° 25 1
14 I+ 3 -1 18 9 3 2 30.00 27 1
15 I- 5 -1 7 5 1 4 19.11° 7 4
16 I— 5 -1 28 5 1 1 19.11° 28 1
17 I+ 11 -1 62 11 1 2 8.948° 31 1
18 I+ 2 0 3 3 0o 2 0.0° 9 4
19 I+ 1 0 6 6 0 1 0.00 36 1
20 I+ 1 -3 74 11 3 2 2528 37 1
21 II- 6 -1 13 6 1 3 16.1° 13 3
22 I+ 6 -1 39 6 1 1 16.1° 39 1
23 I- 13 -1 8 13 1 2 7.589° 43 1
24 11— 3 -1 8 6 2 3 30.0° 16 3
25 I+ 3 -1 24 6 2 1 30.0° 48 1
26 I+ 1 0 7 7 0 1 0.0 49 1
27 I- 13 -3 14 13 3 14 21.79 7 7
28 I- 13 -3 98 13 3 2 21.79° 49 1

2. Primitive vectors of L,

We will now derive the primitive vectors of L. when L_ and
L, are commensurate. To do so, we first compute the primitive
vectors u] and “12 of the Bravais lattice consisting of all integer
vectors u; such that

e_léfl_lR,[QElll[ € Zz. (C6)
The primitive vectors of L, will then be ZzuiL and &ui, or

alternatively eRyau’ and e€Ryau? .
By Egs. (C2) and (C4), we have

1 2

—le~—1 ~ Wi+ vy vy
R_jpa = — . C7

e ‘a 100 ( o - v/> (€N

L1
Taking w; = xX + y¥, Eq. (C6) becomes a congruence

2y, x\ _ (0
2= wam e

Multiplying by the adjugate gives Pl|(M12 + 3v12)x and
/01|(M12 + 3v12)y. Defining d; = ged(py, 'U~12 + 31)12), we then

mr+ v
—21)1

have (p;/d;)|x and (p;/d;)|y. Eq. (C8) is then equivalent to

12%; + v 21)1 x . 0
< —2\)1 n — vl) <y/> = (0> (mod dl) (C9)

where x = (p;/d;)x’ and y = (p;/d;)y’. Since d;|(u? + 3v?
and d;|p;, any common prime factor of d; and v; also divides
w; and p;, which is not possible. This implies gcd(d;, v;) = 1,
and we choose v;” ! to be an inverse of v; modulo d;. We now
consider several cases.

(1) d; =1 (mod 2). In this case, either p; is odd or p; is
even and y; + vy is odd. Since

(1 — vy +v) + 4} =0 (mod d)), (C10)

we have ged(d), wy — vi) = ged(dy, i +v) = ged
(d;, 2v;) = 1. It follows that the two congruences in Eq. (C9)
are redundant, so we only need to solve

(i 4+ v)X +2vy =0 (mod d)). (C11)

We solve this as y' = —2’11)1_1(;” + v)x" (mod d;) where
27! is an inverse of 2 modulo d;. The two primitive vectors
for Eq. (C6) are then

w = (pi/d)(& — 27" w4+ v)F).
u = pd. (C12)

(2) d; =2 (mod 4). In this case, p; =2 (mod 4) and u,
and v; are both odd. Eq. (C9) simplifies to

(H/l + V])/Z vy x/ _ O
( —V (o — Vl)/Z) ()/) = (0) (mod d;/2).
(C13)

Since
(i — v +v)/2+2vE =0 (mod d/2), (Cl4)

we have ged (d;/2, (u — vi)/2) = ged (d /2, (i +v1)/2) =
ged(d;/2,v;) = 1. It follows that the two congruences in
Eq. (C13) are redundant, so we only need to solve

(wi +v)x'/24+vy =0 (mod d;/2).
We solve this as y' = —vl_](,ul +v)x'/2 (mod d;/2). The
two primitive vectors for Eq. (C6) are then
i = (or/d)(& = vy +1)§/2),
u} = (01/2)§. (C16)

(3) d; =4 (mod 8). In this case, p; =0 (mod 4) and
w; and v; are both odd. Eq. (C13) holds in this case as
well. Since d;/2 is even and (u; +v;)/2 4+ (u —vi)/2 =1
(mod 2), Eq. (C13) implies that x’ and y’ are both even.
Equation (C13) then further simplifies to

(H/l + U[)/Z vy X' _ 0
( —V (o — Vl)/Q.) (y//> = (0) (mod d;/4)
(C17)

(C15)

where x’ = 2x” and y = 2y”. Since
(1 — v) (s +v)/4+v; =0 (mod d;/4) (C13)

we have ged(d; /4, (. — v1)/2) = ged (d; /4, (u; + vp)/2) =
gcd(d;/4,v;) = 1. It follows that the two congruences in
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Eq. (C17) are redundant and we only need to solve
(g +v)x"/24+ vy’ =0 (mod d;/4).

We solve this as y’ = —vfl(,u, 4+ v)x”/2 (mod d;/4). The
two primitive vectors are then

w = 2(p/d) (& — v G+ v)§/2),
u; = (p1/2)§.

Note that u? 4+ 3v? # 0 (mod 8) if at least one of y; and
vy is odd, so these are all the possible cases.
To summarize, u} and u? can be written in the form

u = filo/d)& — hi),

(C19)

(C20)

u; = gi(pi/2)§, (C21)
where
_ |1 when4+1d4
fr= 2  whendld;
(C22)
_J1  when2|d
=12 when 2 {d;’
and where A, satisfies
2U[h[ = U + v (mod d[) (C23)

Since Ezulr and Zzui are primitive vectors for L., the area of
the primitive unit cell 2, of L, is

f+g+/0.2.L
2dy

1€2] = [€24]. (C24)
Similarly, since e‘Ryéu! and e“Ryau? are primitive vectors

for L., we have

f-g-p2
€2 = [€2_]. (C25)
2d_
It follows that 2. contains N; elements of L; where
Q. 2
= €2, _ fi810; (C26)
€21 2d,
is a positive integer. Additionally,
N Q_ BZ
i_u_g_ezﬂ (C27)

N_ Q¢ IBZ|

3. Primitive vectors of P_ N P,

We will now derive the primitive vectors of P_ N P, when
P_ and P, are commensurate. As in Appendix C2 we first
compute the primitive vectors v, and VZ2 of the Bravais lattice
consisting of all integer vectors v; such that

b 'R_1ybv, € 77 (C28)

The primitive vectors of P_ N P, will then be bv! and bv2, or
alternatively e Rybv! and e “Rybv?.

Since
iy _ Pt Va3, (C29)
P—1
Eq. (C3) implies
- - 1 _
bR b= — <“§+ V-1 v ) (C30)
0—1 V_y M- — Vg

By an argument similar to that in Appendix C 2, we find

v, =Reu',, vi=u?,. (C31)

Furthermore, each primitive unit cell of P_ N P, contains N_;
elements of P;.

4. Commensuration reciprocal lattice

Suppose that L_ and L, are commensurate and let P. be
the reciprocal lattice of L.. Since L. is a triangular Bravais
lattice, P, is as well. Clearly, P_ and P, are both subsets of P,.
It follows that P, also contains the Bravais lattice P_ + P,.
However, since the reciprocal lattice of P_ + P, is a subset of
L., it follows that P, = P_ + P,. We call P, the commensura-
tion reciprocal lattice and we denote the Brillouin zone of P,
by BZ..

We can write the primitive vectors for P, corresponding to
au! and @u? in the form Eui’ 4 and l;u?’ +- Similarly, we can
write the primitive vectors for P, corresponding to eRyau’
and e“Ryau? in the form e “Rybu! _ and e “Rybu? _. A sim-
ple calculation shows

2
c,

d 2(mx+y)
—K, u,;=—">".

1
= ) (C32)
L fip 8ip

u

Additionally,

IBZ.| = |BZ;|/N, (C33)

forl € {+, —}.

5. Equivalence class of K; modulo P,

Note that the equivalence class of K; modulo P. is invariant
under rotations by 277 /3 about Z. It follows that K is either in
P, or is equivalent to one of the two distinct corners of BZ,.
We first find the conditions under which K; € P,.

Since K, = b(2&% + §)/3 and K_ = e “Ryh(2% + §)/3, it
follows that K; € P, if and only if

2, 1, I 5
3 + ¥ =mu, + nau (C34)
for some integers n; and n,. This equation can be solved for
rational n; and n, as

fioi gip1
= — 2 — h s = —.
n 3d) ( 1), N G

Since g;p; is always even, n, € Z is equivalent to 3|p;. Now
suppose 3|p; and we will show that n; € Z. If 34d, then
(3d))|p; so that n; € Z. On the other hand, if 3|d; then we
must have 3|u; and 3 1 v;. If we reduce Eq. (C23) modulo 3,
we find 2v;h; = v; (mod 3) or iy =2 (mod 3). In this case
we again have n; € Z. We conclude K; € P, if and only if
301

Next, we will show that at most one of p_ and p; is
divisible by 3. We have

-1
w4+ viiv/3 . (Ml + vﬂﬁ)

(C35)

Y] P—1

Pt — p—1v—_1i/3
12, +3v2

(C36)
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and suppose that 3|p_;. If 3 u_; then 3 f (u?, 4+ 3v?,) and
so 31 p;. On the other hand if 3|u_; then 34 v_; so that
9¢ (/Lz_l + 31)3,). The single factor of 3 in M2_1 + 31)%1 is then
canceled by that in p_; so that again 3 { p;.

Finally, we consider the case in which 31 p_p; so that
K_, K, ¢ P..Since K_ and K are both equivalent to corners
of BZ., we must have K_ — tK, € P. for some ¢ € {+, —},
which we will now find. Using Eq. (C30), we can write

K_ =b(e b 'Ryb)(2% + §)/3
=bQ2usX + (g +3v1)9)/Bp4).
It follows that
2 —t
(14 :0+)),2 +

(C37)

Mt +3vp —1py 1 2
y=mu,  +mu;

3p+ 3p+
(C38)
for some integers n; and n;. Solving for n, gives
m = S Guy 430, — 1), (C39)
In particular, this implies 3|(u4+ — #p4) or equivalently
t =puip+  (mod 3). (C40)

Note that Eq. (C36) implies that 3 { ©, whenever 3 { p_p,, so
Eq. (C40) indeed determines a valid value for 7. Additionally,
we can see from Eq. (C36) that

pop_ =pips (mod 3) (C41)

whenever 3 1 p_p,..

We summarize the results of this section by enumerating
the four possible types of commensurate configuration with
regard to the equivalence classes of K_ and K modulo P,.

I+.31p_py and pu_p_ = pypr =1 (mod 3). In this
case, K., K, € P.butK_ — K, € P..

I-.3tp_prand u_p_ = puipy = —1 (mod 3). In this
case, K_, K, ¢ P.butK_ 4+ K, € P..

4.3t p— and 3|p4. In this case, K_ ¢ P. and K, € P..

—.3|p_and 31 p,. In this case, K_ € P.and K, ¢ P..

APPENDIX D: MOIRE MODELS FOR EACH TYPE
OF COMMENSURATE CONFIGURATION

In this section, we derive moiré models for each of the four
types of commensurate configuration in Appendix C5. The
arguments given in this section are a simple generalization of
those in Ref. [41], which considered the case of TBG twisted
near an arbitrary commensurate angle. See also Appendices F
to H for detailed derivations of the moiré models near the
configurations €y = In V3, 6y =30°and ¢; =0, 6, = 0.

We consider a bilayer structure consisting of two 2D
crystalline materials with triangular Bravais lattices. For sim-
plicity, we assume that the top layer is graphene, although
the following arguments apply also to other similar materials.
The interatomic spacing of graphene is ap &~ 0.142nm and
the lattice constant of graphene is a = ag+/3 ~ 0.246 nm. For
simplicity, we choose the chemical potential so that we can
regard the graphene Fermi energy as 0. As in Appendix B,
the bottom layer has lattice constant e‘a and is rotated coun-
terclockwise by angle 6 relative to the top layer. We take €

and 0 as in Eq. (1) where ¢y and 6, are parameters for a
commensurate configuration, as described in Appendix C 1.
We write P? = ¢**R_sP_ and BZ? = ¢’*R_5BZ_ for the
bottom layer reciprocal lattice and Brillouin zone in the com-
mensurate case. The commensurate reciprocal lattice is P, =
P° + P, and Eq. (C33) implies

IBZ.| = |BZy|/N; = |BZ2|/N- DD
where BZ, is the Brillouin zone for P..

We are interested in the low-energy sector of the bilayer
Hamiltonian that originates from the graphene Dirac cones at
the K; and —K points. We assume there is some effective
Slater-Koster model that describes this low-energy physics
[56]. For simplicity, we neglect spin degrees of freedom for
now and consider them in Appendix D5. We use Wannier
functions |r, [/, a) for [ e {+,—}, reL;, and ¢ € O; as a
basis for our model, where O is the set of orbitals on layer /.
The Wannier function |r, [, o) is localized at position r + fo
in the xy plane. The most important orbitals in O, are the
carbon p, orbitals located on the two graphene sublattices,
since these orbitals give rise to the Dirac cones [57]. We
denote these orbitals by A and B and take

+

Ty = aof’, T; = —ao§' (DZ)

following the convention in Appendix K 1.
The Slater-Koster Hamiltonian takes the form

<r/7 l’a a’lHSKlra 17 a) = tl’,O(’,l,O[ (r/ + T(’)(/’ —r— T(ly) (D3)

for some complex-valued functions # 4 ;4. We transform to
momentum space by defining Bloch states

K. [, o) = «/% geik.(rﬂé)m [, a). (D4)
The interlayer coupling can then be written
(K, —1,a|Hsk|K, I, o)
_ Z Z P10 a(k+ Gl)e”?"G,,
G_eP. Gyep, V |S2-]1824]
x e (k4 G — K — Gy) (D5)

where #y 4.4 is the Fourier transform of # 4 ;4. Note that
Eq. (D5) generalizes Eq. (9) in Ref. [41].

We assume that 7 o 7 ,(Q) depends only on |Q| and de-
creases rapidly as |Q| grows. This implies that the magnitude
of a term in Eq. (D5) is large when |k + G| is small. By
a simple generalization of the arguments in Secs. C and D
of Ref. [41], Hsk generates a significant coupling between
states at momentum nK; + p with small |p| in layer + and
momentum k in layer / if one of the following two statements
holds.

(1) I =+ and k = nky + p — (¢ 7Ry — 1)nQ for some
ko € K, + P. and

Qe Ky —kg+P)NP (D6)

with small |Q].

245136-10



KAGOME AND HONEYCOMB FLAT BANDS IN MOIRE ...

PHYSICAL REVIEW B 108, 245136 (2023)

(2) I =— and k=eRynko+p — (e *“Rsp — H)nQ
for some kg € K, + P. and

Qe (Ki+P)N(k+P)

with small |Q].
‘We define

D7)

S, =K,+P)NBZ,, S =(K,+P)nNBZ" (D8)

and note that &; contains N; elements by Eq. (D1).
All states in layer [ relevant to the physics originating
with the graphene Dirac cones have momentum near an
element of S;.

Next, we will apply these results to derive the form of the
moiré model in three cases. In each case, we will show that the
Hamiltonian can be written as a direct sum of Hamiltonians of
a certain canonical form. We first present this form and then
proceed to the three cases.

1. Two Dirac cone moiré Hamiltonian

The canonical form for a moiré Hamiltonian with two
Dirac cones is

H= /d2r|r)7-l(r)(r|,

S+(I‘) — iFlU+0' -V

) = ( T'(r)

T(r)
S (r)—ihw_o-V)’
(D9)

Here, |r) is a four-dimensional row vector of states located
at position r, 7(r) and Si(r) are 2 x 2 spatially varying
moiré potentials, and v are Fermi velocities for the two Dirac
cones. The potentials can be expanded as

T(r) = Z quir-q’ S.(r) = Z Si.qeir-q’

qePy; q€Py

(D10)

for 2 x 2 complex matrices Ty and Sy  with Sl’q =5+ 4
The moiré reciprocal lattice Py, is given by

Py ={niqi + n2qa + m3qz|ny, no, n3 € Z, ny

+ny +n3 =0},
(D11)
and
Py=q+Py=q+Py=q;+Py. (D12)
The qy, q2, and q3 vectors are defined by
q; = (e *Rsp — DRgy1¢,/N-Ky (D13)

where ¢; = 2T”(j — 1), & is an angle, and N_ is the number
of bottom layer Bravais lattice sites in each commensurate
unit cell for the configuration with parameters €y and 6, (see
Appendix C2). The magnitudes of the 7y and S 4 matrices
typically decay rapidly with |q|, which allows us to truncate
the infinite sums in Eq. (D10). We use a straightforward
generalization of the method described in Appendix M of
Ref. [41] to compute band structures of H in the moiré Bril-
louin zone BZ,,, which is defined as the Wigner-Seitz unit
cell of Py.

2. Type I+ with bottom layer Dirac cones

We first suppose that the commensurate configuration with
parameters €y and 6 is of type Ix for x € {4, —}. We define
K’ = e‘SER_agK_ so that xK® € S_. Note that the graphene
layer has a Dirac cone at K, at O energy and a large gap
around O at all other momenta in S;. We assume that the
bottom layer has a Dirac cone at xK_ near 0 energy and a
large gap around O at all other momenta in e *“RsS_. The
low-energy physics associated with the graphene Dirac cones
is then described by an effective continuum model involving
only top layer momenta near K; and —K, and bottom layer
momenta near K_ and —K_. Furthermore, the model has two
decoupled valleys, one of which contains K and xK_ and the
other of which contains —K and —xK_. For simplicity, we
focus on the valley containing K and xK_.

We introduce continuum states |p, [, «) for p € R% | e
{+, —}, and a € {A, B}, which satisfy the normalization con-
dition

(p, U, dp, 1) =8P —P)Sride.a- (D14)

The continuum state |p, 4+, o) represents the Bloch state
IK, + p, 4, «) so that the Dirac cone at K, takes the form

(p, +, Al

/ a*p(p. +.4) Ip, +, B) (v o - p)(m M

) (D15)
where v, is the graphene Fermi velocity. The continuum
states |p, —,A) and |p, —, B) represent appropriate linear
combinations of bottom layer Bloch states with momenta
xK_ + p such that the Dirac cone at xK_ takes the form

2 _ _ X (p7_9A|
[ oo~ om0+ om0

(D16)

where v_ is the bottom layer Fermi velocity and E_ is a
small energy offset. Note that a Dirac cone in two dimen-
sions with any rotation angle or helicity is related to one
of the form five -p by a unitary transformation, so one
can always choose |p, —, A) and |p, —, B) to satisfy this
requirement.

If we group the continuum states with momentum p into a
row vector

|p> = (|pv +7A>|pv +7B) |p7_7A>|p7 _,B)), (D17)
the effective Hamiltonian can be written in the form
H = / d*p'd*plp")H(p', p)(pl
, _ (hvio-p 0 5
’H(p,p)—< 0 Fwa.p>8 ®-p
0 Tq 2/
+Z<O 0>8(p—p—q)
qepr;;
0 0y, ,
+Z(TJ 0>8 ®-p+q
qepy)
S‘hq 0 2/
+Z<O S_q)a ®-p-q@ @I
q€Py ’

245136-11



MICHAEL G. SCHEER AND BIAO LIAN

PHYSICAL REVIEW B 108, 245136 (2023)

where

Py = (e Ry — 1)(Py N PY), (D19)

Py = (e Rsp — D((Ky + Py) N (K2 +PY)).  (D20)

Ty and Sa[ denote complex 2 x 2 matrices with norms that
generally decrease as |q| increases. The values of these ma-
trices include contributions from states with momenta near
values in Sy or e *“R5»S_, which are not explicitly included
in the effective Hamiltonian.

By the results of Appendix C3, P, NP is a triangular
Bravais lattice with a unit cell N_ times larger than that of
P... Furthermore, (K, + P,) N (xK° + P%) can be written in
the form v + P, N P° for some nonzero vector v such that
Ryzpsv—veP. N PO Tt follows that there is some angle &
such that

P, NP’ =R,/N_Py,

Ky +P)N(K® +P%) =R V/N_(Ky +Py).  (D21)
‘We then have
Py = (e *Ryy — )Rg,y/N_Py.,
P = (e7*Rsp — DRsy, VN_(Ky + Py), (D22)

which is equivalent to Egs. (D11) to (D13). As an exam-

ple, when €g = 0, 6y = 0 we have N_ = 1 and one can take
& = 0. This particular case will be discussed further in
Appendix H.

Finally, we introduce real-space continuum states

1 ,
Ir,l,a) = — / d*pe ™"|p, 1, &), (D23)
21
which satisfy the normalization condition
(0,1 d|r, ) = 82 —1)8) 18u - (D24)

If we group the continuum states with position r into a row
vector

Ir) = (r, +, A)r,+,B) |r,—, A)r, -, B)), (D25)

the Hamiltonian takes the form of Eq. (D9) with T (r) and
S+ (r) potentials given by Eq. (D10).

We conclude that the moiré model for the valley contain-
ing Ky and xK_ is of the form in Appendix D1 with the
two Dirac cones coming from opposite layers. By a similar
argument, the Hamiltonian for the valley containing —K and
—xK_ also takes this form, although the &, angles for the two
valleys differ by 7.

3. Type I+ or II— with gapped bottom layer

Next, suppose that the commensurate configuration with
parameters €; and 6, is of type I+, I—, or II—. This is
equivalent to the requirement that K; ¢ P,. In contrast to
Appendix D 2, we assume that the bottom layer has a large gap
around 0 at all momenta in e %Rz S_. In this case, the low-
energy physics associated with the graphene Dirac cones is
described by an effective continuum model involving only top
layer momenta near K; and —K, . Furthermore, the model
has two decoupled valleys, one of which contains K, and the
other of which contains —K . Following a similar argument

to that in Appendix D 2, we find that the moiré model for both
valleys can be written in the form described in Appendix D 1
with 7' (r) = 0. In this case, the two Dirac cones correspond
to the two graphene valleys, vy = v_, and the angle & is
constrained only by

P, NP’ =R:,~/N_P,. (D26)

4. Type II+ with gapped bottom layer

Finally, suppose that the commensurate configuration with
parameters €y and 6y is of type I+ so that — K, € S;. As
in Appendix D3, we assume that the bottom layer has a
large gap around 0 at all momenta in e *¢R5S_. In this case,
the low-energy physics associated with the graphene Dirac
cones is described by an effective continuum model involving
only top layer momenta near K; and —K;. In contrast to
Appendices D2 and D 3, the model has only one valley so
there is no degree of freedom associated with valley. Fol-
lowing a similar argument to that in Appendix D 2, we find
that the moiré model can be written in the form described in
Appendix D 1. In this case, the two Dirac cones correspond
to the two graphene valleys so that v, = v_. Additionally,
although Eq. (D19) still holds, Eq. (D20) is modified to

Py = (e *“Rsp — D((Ky — (-K3) + PL) N PY)

= (eRss — D(=K4 + P1)NPY). (D27)
As a result, the angle & is now constrained by
P, NP’ =R;V/N_Py,
(-K; + P )N P’ =R, v/N_(K,; + Py). (D28)

As an example, when €y = In «/§, 6p = 30° we have N_ =1
and one can take & = m. This particular case will be dis-
cussed further in Appendices F and G.

5. Including spin

So far in Appendix D we have neglected spin degrees of
freedom. In each case, if both layers have negligible spin-orbit
coupling, the system can be described as a direct sum of
two copies of the spinless model, one for spin 1 and the
other for spin |. If there is significant spin-orbit coupling
(but the Dirac cones remain unchanged), the two spinless
models can have different parameters and can be coupled
together. In this paper, we will focus on cases in which the z
component of spin is preserved. In that case, the two spinless
models can have different parameters but will not be coupled.
If the system has time-reversal symmetry, the Hamiltoni-
ans for the two spins will be related by time-reversal. This
is explained in more detail in Appendix G for the case in
which €y = In+/3, 6y = 30°.

APPENDIX E: MOIRE COORDINATE SYSTEM

In order to make the Hamiltonian in Appendix D 1 more
closely resemble the BM model for small angle TBG, we
will define a coordinate system Xy, yys in which q; is on the
positive y,, axis. Let

£ =arg(e M — 1)+ & — /2 (E1)
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and
v = R:X, §u =R:§. (E2)

Note that q; = |qi|¥y» and Xy x ¥y = Z. We refer to the
coordinate system xy;, yy defined by X;; and ¥, as the
moiré coordinate system and illustrate it in Figs. 1(d)
and 1(e).

Note that

o= e*i(é/2)ffzoMei($/2)az (E3)

where oy = o Xy + 0,Ju. Applying the unitary change of
basis

Ir)e = IF)og ® e/, (E4)
Eq. (D9) can be rewritten
H = /d2r|r)$7-lg(r)(r|§,

He(r) = (00 ® €'V H(r) (o0 ® e /27

S§’+(r) — ihU+(TM -V
T (r)

Te(r)
Se _(r) —ihv_oy - V)]
(E5)
The T:(r) and Sgt (r) potentials are given by

Ti(r) = & E/D0T (1) iE /D0 — Z Tg,qeir'q,
qePy

Sew(r) = /P8 (0)e /D% = S 4 g™, (E6)
qePy

with
Tpq = C/P9:T e 1E/D0:,

Sesq= ei(é/Z)azSi,qe—i(E/Z)az_ (E7)

We have now expressed the Hamiltonian in the moiré€ coordi-
nate system. All models and figures in the main text use this
transformation.

APPENDIX F: COUPLED-VALLEY GRAPHENE
MODEL WITHOUT SPIN

We follow the construction of Appendix D for a bilayer
structure in which the top layer is graphene and the bottom
layer is some other 2D crystalline material with a triangular
Bravais lattice. In this section, we focus on moiré patterns near
the second commensurate configuration in Table II, which is
type IT+ and has €y = In +/3, 6y = 30°. For this configuration,
we have N, = 3 and N_ = 1, so that the sets S.. defined in
Eq. (D8) are given by

Sy ={Ky, -K I}, S ={I_} (F1)

As in Appendix D4, we assume that the bottom layer has a
gap around O at I'_ so that the low-energy physics is described
by a moiré model of the form in Appendix D 1 where the two
Dirac cones correspond to the two graphene valleys. In this
Appendix, we start with a moiré model involving degrees of
freedom in both layers. We then use second-order Schrieffer-
Wolff perturbation theory [58,59] to find an explicit form for

the graphene moiré model. Finally, we use symmetry and
corepresentation theory to constrain the model parameters.
We neglect spin degrees of freedom in this section and con-
sider them in Appendix G.

1. Continuum Hamiltonian

When §e = §0 = 0, the delta function in Eq. (D5) ensures
that the only bottom layer momentum that is coupled to
k=nK, +p is K =T_ +p, where n € {+, —} denotes
the two graphene valleys. However, when 8¢ and 86 are
not both zero, it is possible to couple a top layer state
with momentum k = nK, + p to a bottom layer state with
momentum k' = T'_ + p’ as long as

k+Gy =k +G_ (F2)

for some G_ € P_ and G, € P,. As in Appendix D, we
assume that 7y, ;4(Q) depends only on |Q| and decays
rapidly as |Q]| grows. It is then sufficient to consider only
terms in Eq. (D5) for which |k + G| is small. For small |p|,
the dominant terms are those with

Gy = n(R;, — DK,
¢R_3sG_ = R, K, (F3)
where ¢; = 2?’T(j — 1). For these terms, we have

P=p+nq;, q=R,(1—e¢ " RypK,. (Fd

Recall from Appendix D4 that for €y = In+/3, 6y = 30°
we can take &) = . Since additionally we have N_ =1,
the definition of ¢q; in Eq. (F4) is consistent with
Eq. (D13).

With this motivation, we now introduce a continuum model
that describes the low-energy physics of the bilayer system
associated with the graphene Dirac cones. We define contin-
uum states |p, n, a), for p € R, n € {+,0, -}, and o € O,
where | = 4+ when n € {+, —} and / = — when n = 0. The
state |p, 1, r),. represents the Bloch state [nK; + p, [, o) for
small p, and the continuum states satisfy the normalization
condition

(P,’ 77,7 05/|cP’ , Ol)c = 32([’/ - p)377’,778a/,a~ (FS)

We group the continuum states with momentum p into a row
vector

Ip). =(p, +, A),
x |p, 0, a1),

|p7 +7B>E |p7_7A>c |pv _vB)c
P, 0, ), (F6)

where O_ = {ay, ..., a,} is an index set for the orbitals on
the bottom layer. The continuum Hamiltonian then takes the
form

H. = /d2p/d2plp/)c7ic(P/,P)(P|ca

hvpo - p 0 0
Hp.p=[ O —fvpa®-p 0 |8(p' —p)
0 0 H_
;3 (0 0 0
+2.1 0 0 Ty S -p-a
=\T{, 0 0
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3 (0 0 Ty,
+> 10 0 0 )& -p+q).
=t\0 T, 0
(F7)

Here, vr is the graphene Fermi velocity and H_ is the n x n
Hamiltonian for the bottom layer at the I'_ point, which we
approximate as independent of momentum. The 7, 4; are 2 x
n complex matrices describing the coupling between valley 7
of graphene and H_.

We can write the continuum Hamiltonian in a simpler form
by transforming to real space. We define real-space continuum
states

1 .
o @) = / Ppe®p @), (FS)
2
which satisfy
', n,dler,n, @) =8 — )8y 100« (F9)

and group them into a row vector

|r>c :(|rv +7A>c |r7 +7B)C |rs _3A>c |r7_7B)c
X |ra Oaa]>c |r7 07an>c)' (FIO)
The continuum Hamiltonian then becomes
H, = / dPrie) H ()],
—ihvpo -V 0 T, (r)
H.(r) = 0 ihvpo* -V T_(r)
T/ (r) T'(r) H
3
Ty(r) =Y Tpqe ™. (F11)
j=1

Assuming that the spectrum of #_ has a sufficiently large
gap around 0, we can treat the bottom layer states perturba-
tively. Applying Schrieffer-Wolff perturbation theory [58,59]
to second order in the interlayer couplings and neglecting the
graphene energies, we find the effective Hamiltonian for the
graphene degrees of freedom

H, = / d*r|r) H,(r)(rl,

_ (—ihvpo -V 0
Hy(r) = ( 0 ihvpo™ - V)

= (%E:;)H_I(T.Z(l‘) 7' ()

|r>g = (|I', +7A)c |r’ +, B>L‘ |l', _’A>C |I', _’ B)C)

(F12)

Finally, we take a unitary change of basis to bring the model
into a form with two Dirac cones of the same helicity. To do
so, we define new states |r) by applying a o, transformation to
the sublattice degree of freedom in the n = — valley. Specifi-
cally, we take

(o)) 0
[r) = |r),Up where Uy = . (F13)

0 o

We then have
Hy = /d2r|r)’H(r)(r|

T(r) )
) (F14)
S_(r) —ihvpo -V

which is of the form in Eq. (D9) with vy = v_ = vp. The
T (r) and §,(r) potentials are given by

_ .V
Hr) = (Mr) T;ZI;FU

T(r) = —T (t)H"'T' (r)oy,
Sy(r) = =T (rYH T (r),

S_(r) = —o,T_()H™'T (r)o,. (F15)

Note that these potentials can be expanded in the form given
by Eq. (D10). However, in this case all 74 and S, ¢ matrices
vanish except for those of the form

Ty T-2qp  Stqj—ap- (F16)

Finally, it is worth noting that bottom layer states near I'_
are coupled to top layer states near I'; in addition to top layer
states near K, and —K,.. This is clear from Eq. (D5) as well
as from Eq. (F1). As a result, in principle one should also
include top layer states near I' ;. in Eq. (F7). However, since
these states all have large energies and are not directly coupled
to the graphene Dirac cones, they make no contribution
to a low-energy model derived using second-order
Schrieffer-Wolff perturbation theory. For this reason, we only
consider top layer states near K; and —K and bottom layer
states near I'_.

2. Symmetry constraints

We now consider the nontranslational symmetries of the
Hamiltonian in Eq. (F14). The possible crystalline symme-
try generators are Cs, (rotation by angle 27 /3 about Z), Cp,
(rotation by angle 7w about Z), M, (reflection through the
vz plane), and M, (reflection through the xz plane). Addi-
tionally, we consider the antiunitary time-reversal symmetry
T, which satisfies 72 = 1. By considering the action of
these symmetries on the graphene Wannier functions and
Bloch states, we can deduce the appropriate definitions for
the symmetry operators on the states |r), in Eq. (F12).
We define

i(2m /3)0.®0,
C3Z|1')g = |R2n/3r>g€l( 7/3)0.®0, i

Coc|r), = |-T) 0 ® 0y,

M;|r), = |Rsr),0: ® 00,

M,Ir), = |Ryr) 00 ® 0y,
Tlr), = |r),0: ® 0p. (F17)

Here, the first (second) Pauli matrix in each tensor product
acts on valley (sublattice). These operators can also be written
in terms of the |r) states in Eq. (F13) as

C35|r> = |R2n/3r)00 X ei(2”/3)03’

C2z|r> = —|—I‘>O'y ® Oz,

M;|r) = [Rzr)oy ® oy,
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My|r) = |Ryl‘)0z ® 0y,

TIr) = —ilr)oy, ® oy (F18)

Suppose that U is a unitary or antiunitary symmetry, which
acts as U|r) = |Or)M for an orthogonal matrix O and a
unitary matrix M. Then [U, Hy| = 0 is equivalent to H(Or) =
MH(r)M" in the unitary case and H(Or) = MH*(r)M' in
the antiunitary case. Applying this to the symmetry generators
gives the following constraints on the 7y and Sq matrices
defined by Eq. (D10):

[Cs.. Hy] =0 > Ty, nq = €77 Te™ "% and

i /3o g ,~iCn/3o
7.9 )

Si.Rorjpa = €

[Co: Hl =0 <= Ty =—0.T]o. and
St —q=0.5_40;,

My, H] =0 < Tryq = aquTay and

S+ Req = 0yS— —qOy,
My, Hy] =0 < Tryq = —0:140x and

Sn.Rsq = 0xSp.q0x;

[T.H =0 < Ty =—0,T]0, and
(F19)

*
Stq= ayS_,_qoy.

We will always make the assumption that Cs, and 7 sym-
metries are preserved. By Eq. (F19), 7 symmetry implies

S_(r) = 6,8% (r)o, (F20)

so it suffices to characterize T (r) and S (r). Keeping only
the terms in Eq. (F16), we can use Cs;, 7, and Hermiticity
to write
Ty, = u1 .0 - ﬁ{j + Up 40 - ﬁ;j+,,/2 + u; ;0;,
T 2q, = up 0 - B, + up 0 - By 170 + Un 07,
St.0 = uo,000 + o 0z,
S+sQI+j_q2+/ = U 3,000 + U0 ﬁ!/
+uy,0- g inp2 + U g0,
(F21)

S+,qz+j*ql+,f = S+7¢I1+/‘*Q2+.f ’

where up o and ug, are real parameters and all of the other
u parameters are in general complex. We now consider the
symmetry constraints in several cases.

(1) The symmetry group is generated by Cs, and 7. In this
case,

Up,0, Up,; € R. (F22)

(2) The symmetry group is generated by Cs,, T, and Cy,.
In this case,
UO,05 Ul xs ULy, U s U ys U g5 05 U5 0 U5, € R,
Uy,z, Uz 7, I/t\/g’z S iR,

w.=0. (F23)

(3) The symmetry group is generated by Cs,, 7, and M,.
In this case,

Ug,0, Uo,z, ULy, U2y € R,
Ul,x, ULz, U2 x, UD 7 € le
uys, =0. (F24)
(4) The symmetry group is generated by Cs., 7, and M.

In this case,
U0,0, U /3,00 U f3 5 e R,
uﬁ,y, Mf,z (S iR,
U, = Uy =y, = 0. (F25)

(5) The symmetry group is generated by Cs,, T, Co;, M,
and M,. In this case,

u(),Oa Ml,ya uz,ya u«/g!()a uﬁ!x E Ra

Ulz, Uz U /3, € iR,

Uz =ty =ty =u s, =0. (F26)
In this case, we summarize Eq. (F21) as
Tng; = Wim),y0 - Bz, /0 + Wiy 2107,
S+.0 = wo,000,
Sty @i - = W 3,000 + W 5,0 - Mg
+yw ;5. i0;, (F27)

form € {1, —2} and y € {+, —}, where the real w parameters
are defined by

Wi,y = Uiy, Wi,z = _iul,b Way = Uy,
Wy, = —ilpz, W0 = Up,0,
WpHo=Up0 Whae=UABy Wp, = T3,

(F28)

Note that C;, = M, M, so that this is a full enumeration of
the cases with Cs;, and 7 symmetries. See Appendix I for a
discussion of these symmetry groups and Table III for their
character tables.

3. Transformation to the moiré coordinate system

We now translate these results into the moiré coordinate
system defined in Sec. E. Equations (F20) and (F21) become

Se._(r) = 0y}, (1) (F29)
and
Tiq, = w100 -y, g +uy 30 - Bgynpe + Uy .07,
Tz, 2q; = u2x0 - B, ¢ + Uz y0 - gy po g + U 0,
S, 4,0 = Uo,000 + Uo ;07
Setaij—ary = U /5000 F it 5,0 Rgg +u 5 0 Ay

+ U39z

]
S§,+,Q1+j —Qo;°

S§»+7q2+j7ql+j = (F30)
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TABLE III. Character tables enumerating the coirreps of the
spinful magnetic point groups 31’, 61, mm21’, 3m1’, and 6mm!1’
described in Appendix I. Each column represents a corepresentation
conjugacy class [31], and for brevity we do not include columns for
conjugacy classes which are —1 times a shown conjugacy class, other
than the class —1. As explained in Appendix I, the rows in each table
for which the entry corresponding to —1 is positive (i.e., the spinless
coirreps) also form the character tables for the spinless magnetic
point groups 31, 61;, mm21;, 3m1j, and 6mm1;,. These tables can
be found on the Bilbao Crystallographic Server [30,43,44,60,61].

31 1 G, G -1
A, 1 1 1 1
2EE 2 -1 -1
EE 2 2 =22 -2
'E?E 2 1 1 -2
61’ 1 G, G Co. (o Cs. -1
A 1 1 1 1 1 1 1
B 1 1 1 -1 -1 -1 1
2EVE 2 -1 —1 2 -1 -1 2
BBy 2 -1 -1 -2 1 1 2
EVE, 2 =2 =2 0 0 0 -2
'ES’E; 2 1 1 0 V3 V3 -2
'E,’E, 2 1 1 0 =3 =3 =2
mm21’ 1 G, M, M, -1
A 1 1 1 1 1
A, 1 1 -1 -1 1
B, 1 -1 -1 1 1
B, 1 -1 1 -1 1
E 2 0 0 0 -2
3ml 1 Gy M -1
A, 1 1 1
A, 1 1 -1 1
E 2 -1 0 2
’E'E 2 -2 0 -2
E, 2 1 0 -2
6mml’ 1 C3z sz Cﬁz M.( My -1
A, 1 1 1 1 1 1 1
A, 1 1 1 1 -1 -1 1
B, 1 1 -1 -1 -1 1 1
B, 1 1 -1 -1 1 -1 1
E, 2 -1 2 -1 0 0 2
E, 2 -1 -2 1 0 0 2
E; 2 =2 0 0 0 0 -2
E, 2 1 0 -3 0 0 -2
E, 2 1 0 V3 0 0 -2
Additionally, Eq. (F27) becomes
T mq; = Wim| 30 - fig 49, + Wiy 2007,
Se,+,0 = Wo,000,
Sty (@i —s)) = W5,000 T W /5,0 D g2
+iyw s .0, (F31)

form € {1, —2} and y € {4, —}, where
¢ =mw/2 — & =arg(e T —1)

since &y = 7.

(F32)

4. Coirrep decomposition for the bottom layer

In this section, we show that the 7'(r) and S, (r) potentials
can be written as a sum over the irreducible corepresentations
(coirreps) of the symmetry group at the I'_ point in the bottom
layer. To do so, we analyze the nontranslational symmetries of
the bilayer continuum Hamiltonian in Eq. (F11). Generalizing
Eq. (F17), the relevant symmetry generators take the form

Cs:|r)g = |Ror p31) € A Y o
Cyilr)y = |—1),(0x ® 0,) © Oy —,
M,|r), = |Rsr), (0x ® 00) ® My,
My|r), = |Ryr) (00 ® 0x) & My,
TIr), = |r),(0x ® 00) & T, (F33)

for some unitary matrices Cs;—, Co, —, My _, M, _, and T_,
which act on the bottom layer. In a manner similar to that in
Appendix F2, one can derive the following constraints on the
T,),q; matrices arising from the commutation of each symmetry
with H,;
[C3Z7 Hc] =0 T7] qj+1 ein(Zﬂ/3)U; T’IﬂqjC;

[, H ] =0 Tn,q- = UXT*'Y»(le;z,—’
My, He] =0 <= T, q, =T1-, thx

Ti?,‘h

[My,HL-] =O <~ Tr] q — GxTn q1M

T

o, qu _T,

'7Q2_T

5
-, QZM —
Tyq, = 0:T), Q3M _T.q, = 0xT, QZM —

[T H1=0 < T,q,=T",T..

(F34)

In the presence of C;; and T symmetries, all of the 7,
matrices are determined by T . Specifically, we have

Tyq; = eI, qICl g
T_q =T; (117'T (F35)

Any additional symmetries then imply constraints on 7, g,.
Specifically,

[Cos Hl =0 = Ty g, = 0,TS  (Cor, T, (F36)
M. H]=0= T q =T (M, _T_), (F37)
My, H] =0 = T\ q = 0. T4 g, M, _. (F38)
By Egs. (F11) and (F15), we have
3
T(r)=— Y TpqH T  ope @+ (F39)
jk=1
3 .
= Z YT, 0 G M T T
Jk=1
x O—ye_ig”ze_ir'(Qk"'CIj), (F40)
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3
Si(r)=— Z T+,q/%:1Ti,qk€ir‘(qk7q/)
jok=1

(F41)

3
_ 2 : icio, 1=j /-1 k-
= — e T+,q]C3zyiH_ C3Z,
jh=1

Lpt  —ifio, jir-(q—q;)
_T_hqle e 7,

(F42)

It follows that we can compute the 7'(r) and S, (r) potentials
from T, 4, along with {_ and the symmetry corepresentation
on the bottom layer.

By Schur’s lemma for corepresentation theory, there is a
unitary change of basis for the bottom layer subspace that
diagonalizes H_ while also block diagonalizing the symme-
try corepresentation on the bottom layer into coirreps [31].
The contributions to 7'(r) and S, (r) in Egs. (F40) and (F42)
from each coirrep simply add. We can therefore consider the
form for 7T'(r) and S, (r) independently for each coirrep. In
the following sections, we explicitly find the form for the
u parameters in Eq. (F21) for each coirrep of each possible
symmetry group that contains Cs, and 7.

a. The symmetry group is generated by Cs3; and T

In this case, the symmetry group is isomorphic to the
spinless magnetic point group 31;, defined in Appendix I. We
see from Table III that there are two coirreps, namely A; and
’E'E.

(1) ForA;,wetakeCs, - =1,7_ =1, and

for complex parameters v; and wv,. Taking H_ = E,
Eqs. (F40) and (F42) imply that 7 (r) and S, (r) take the form
of Eq. (F21) with

2 2 2
Uy = —(v1 — vz), upy = — (vl +v2),
0
i
Uy, = Vv,
Ey
u2x_—i (v% v%) Uy = — ! (v%+v§),
’ 2E) ’ 2E)
i
Uy, = ——0U102
Ey ’
3 3
2 2 2 2
up,0 = —=—(vi|" + |v2l”),  wo;=——={v1|" — |v2|7),
, 2EO(I [“ =+ [v2]) ) 2EO(I I — [v2]7)

1—iv3 ., 143,
Uso= 4L, [vi] +W|v2| ,
1
U= —E(Ull%‘ + vivy),
l * *
Uy, = —E(vlv2 — v ),
1—-iv3, , 1+4+i/3
= vi|” — v . F44
Uy, AE, [v1] 4E, [va] (Fa4)
(2) For’E'E, we take C3, _ = ¢~'®7/3% T = o, and
Ty q, = V90 + V0% + V,0y + v,0; (F45)

for complex parameters vy, vy, vy, and v,. Taking H_ = Eyoy,

T _(Wn (F43) Egs. (F40) and (F42) imply that 7 (r) and S, (r) take the form
+a — .
vy of Eq. (F21) with
J

__i( + iv,v,) _3( — ivyv;,) _i(2_22_22_ 2)

Uy = E Vovy + iVeV;), Uy = Eo VoUx — iVyV;), U = Eo v, v; vy — 7)),
2 . 2 . [ 2 2 2

U, = Eo(vovy +ive,), Uy = EO(UOUX y,), Uy, = A (vo + v +v) —v7),

_ 3 2 2 2 2 _ 3 * * . " "
Up,0 = _Eo(|v0| + ue|” + |Uy| + |v %), Uo,; = _E_O(UOUZ + vy, + l(Uny - vay))a

1 . * *
50 = 5 (vol” = 20uel® = 20uy* + el + iv/3(vov? + vjv,)),
0

1
Us, = E(vov: + vovr + i(vyv] — viv,) — ﬁ(vovf — Ugvy) — ix/g(vxv;‘ + viv,)),
) )

1
Uz, = 5 (ovy + vyuy — iV ) — viv,) + x/g(vov;‘ — Uguy) — ix/g(vyv;“ + vyv,)),

2Ey

1 . * * .
5 = g ou! o vGu: = 2wy — ) + i3 (ol + o).

b. The symmetry group is generated by Cs,, T, and C»,

In this case, the symmetry group is isomorphic to the
spinless magnetic point group 61;, defined in Appendix 1. We
see from Table III that there are four coirreps, namely A, B,
2EllEl, and 2E21E2.

(F46)

(

(1) For A, we take G5, =1, T_ =1, and Cp, — = 1.
Equations (F43) and (F44) apply, and additionally Eq. (F36)
implies

vy = vy, (F47)
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(2) For B, we take C5;, - =1, 7_ =1, and Cp, - = —1.
Equations (F43) and (F44) apply, and additionally Eq. (F36)
implies

Uy = —UT. (F48)

(3) For 2E|'E|, we take C3, _ = e7/?7/39 T — o and
Gy, = o0p. Equations (F45) and (F46) apply, and additionally
Eq. (F36) implies

Vo, Ux, Uy € R, v, €iR. (F49)
(4) For ’E»'E», we take C3,_ = ¢ /@7/3% T = o, and
C,,— = —oy. Equations (F45) and (F46) apply, and addition-

ally Eq. (F36) implies

v, €R, wpg, v, v, €iR. (F50)

c. The symmetry group is generated by Cs,, T, and M,

In this case, the symmetry group is isomorphic to the
spinless magnetic point group 3ml; defined in Appendix L
We see from Table 111 that there are three coirreps, namely A,
Ay, and E.

(1) For Ay, we take C5;, - =1, T_ =1, and M, _ = 1.
Equations (F43) and (F44) apply, and additionally Eq. (F37)
implies

v, v2 € R, (F51)

(2) For Ay, we take G5, =1, 7_ =1, and M, _ = —1.
Equations (F43) and (F44) apply, and additionally Eq. (F37)
implies

vy, vy € iR, (F52)

(3) For E, we take Cs,_ = e ®"/3% T —o,. and
M, _ = —o,. Equations (F45) and (F46) apply, and
additionally Eq. (F37) implies

vy €R,  wvo, vy, v, €iR. (F53)

d. The symmetry group is generated by Cs,, T, and M,

In this case, the symmetry group is isomorphic to the
spinless magnetic point group 3ml; defined in Appendix I
We see from Table III that there are three coirreps, namely A,
A, and E.

(1) For Ay, we take C3;,_ =1, 7_ =1, and M,_ = 1.
Equations (F43) and (F44) apply, and additionally Eq. (F38)
implies

Uy = Vg. (F54)

(2) For As, we take C3,_ =1, 7_=1,and M, _ = —1.
Equations (F43) and (F44) apply, and additionally Eq. (F38)
implies

vy = —U. (F55)

(3) For E, we take Ci,_ = e '@/3 T —¢ . and
M, _ = o,. Equations (F45) and (F46) apply, and additionally
Eq. (F38) implies

vy = v, =0, (F56)

e. The symmetry group is generated by Cs,, T, Cy;, M, and M,

In this case, the symmetry group is isomorphic to the spin-
less magnetic point group 6mm1; defined in Appendix I. We
see from Table III that there are six coirreps, namely A;, A,
Bz, Bl, E2, and El.

(1) ForAj,wetake G5, _ =1,7_=1,Cp, - =1, M, _ =
1, and M, _ = 1. Equations (F43) and (F44) apply, and addi-
tionally Eqgs. (F36)—(F38) imply Eqgs. (F47), (F51), and (F54).

(2) ForAs,wetake G5, - =1,7_=1,Copp - =1, M, _ =
—1, and M, _ = —1. Equations (F43) and (F44) apply,
and additionally Eqgs. (F36)-(F38) imply Eqgs. (F47), (F52),
and (F55).

(3) For By, we take C5,_ =1, T_ =1, Cp_ = —1,
M, _ =—1,and M, _ = 1. Equations (F43) and (F44) apply,
and additionally Eqgs. (F36)-(F38) imply Eqgs. (F48), (F52),
and (F54).

(4) For By, we take C3,_ =1, T_ =1, Cp_ = —1,
M, _ =1,and M, _ = —1. Equations (F43) and (F44) apply,
and additionally Eqgs. (F36)-(F38) imply Eqgs. (F48), (F51),
and (F55).

(5) For E,, we take C3,_ = e '®"/3% T =o,, Cy, =
00, M, _ = o,, and M, _ = o,. Equations (F45) and (F46)
apply, and additionally (F36) and (F38) imply (F49) and (F56)
while Eq. (F37) implies

vo, vx, v; € R, v, €iR. (F57)
(6) For E;, we take C3, _ = e '®"/3% T =o¢,, Cp._ =
—09, M, = —0o,,and M, _ = o,. Equations (F45) and (F46)
apply, and additionally Eqs. (F36)—(F38) imply Egs. (F50),
(F53), and (F56).
We can summarize the results for this case more succinctly
using the w parameters in Eq. (F27). For coirreps A}, Az, B,

and B;, we have

20} M, _v}
Wiy = ——F/>» Wi, = — s
Ey Ey
2 2
v M, _v
wzv=-—zi, Wy, = — 2% L
3v|? ol
Wo,0 = — Eo W30~ Z_E()’
M, _|v)| v 12V/3
w\/g,x = — EO : u)\/,g,Z = — 2E0 s (F58)

where vy € R for A; and By, v; € iR for A and B, M, _ =1
for Ay and B,, and M, _ = —1 for A, and B;. Likewise, for
coirreps E, and E|, we have

200V V3 — 202 2000,
wl,y= ) wl,z= - S w2,y=__,
Ey Ey Ey
v + v} 3(Jvol? + |vel?)
W, =———", Wo=—"" -
E() EO
lvol* — 2|vy|? vov; + U5y
wﬁ’o - 2E0 ’ wﬂ’x - 2E() ’
lvol?v/3
w = , F59
3z 2E, (F59)

where vg, v, € R for E; and vy, v, € iR for E;.
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APPENDIX G: COUPLED-VALLEY GRAPHENE MODEL WITH SPIN

In Appendix F we ignored the spin degrees of freedom in order to simplify the discussion. In this Appendix, we present the
changes necessary to the derivation in Appendix F to include spin and spin-orbit coupling.

1. Continuum model

We use |1) and || ) to denote orthonormal spin states in the z direction and define the row vector of states

Isz) = (1) ). (G

Generalizing Eq. (F11), the spinful continuum Hamiltonian is

H = / Pr(r), ® [s.) A O)((r], ® (s.])

—ihvpo -V ® oy 0 T.(r)
He(r) = 0 ihvpo* -V ®oy T_(r)
T/ (r) T (r) H_
3
T,(r) =Y T, qe 9. (G2)

Jj=1

Here, the T,,,qj are 4 x (2n) complex matrices and #_ is the spinful Hamiltonian for the bottom layer at I'_. After applying
perturbation theory and a change of basis, we find a spinful continuum Hamiltonian for the graphene degrees of freedom of the
form

i, = / dr(r) ® IsDFT)((r] ® {s.])

A = <S+(r) l;:fr(; e S_(r)— l;‘v(:()f Ve oo> @3
where the 7 and §,, potentials are given by
T(r)=-T.(HA'T (x)(0y ® 09), §4(r) = —T (AT (x),
S.(r) = —(0, ® ) T_(O)YH' T (r)(0, ® 00). (G4)
We expand the potentials as
T(r)= Z Tye™, §,(r) = Z S, .qe™ (G5)
qepy; q€Py
for 4 x 4 complex matrices 7y and S,  with S‘;’q =38, q-
2. Symmetry constraints
In the presence of spin, we supplement Eqs. (F17) and (F18) with
Caclsz) = Is:)e™ % Cocls:) = Ise)e™ /2,
Mls) = Is)e™ /2% Myls,) = |s;)e” "7/,
Tls;) = Is;)oy. (G6)
Equation (F19) then generalizes to
[Cs. H] =0 < TRzn/3q — (£ g ei(27r/3)a;)Tq( ¢T3 @ o=iCT/30y  ang
Sn,szq — (@730 g i/ )S‘,,,q(e’i(z”/3)"z ® eiCT/30y
[Ca, Hg] =0 ¢ Ty=—(0.® GZ)TJ(GZ ®o,) and S‘+,_q =(0;Q® crz)S'_,q((rZ ® o),
My, H] =0 <= Tryq=(0y,®0)T(0,®0,) and 3§, ryq=(0y ® )5 _4(0y @ 0,
(M, ﬁg] =0 < Tqu =—(0,® ay)f‘q(ax ®o,) and S‘nﬁyq = (0, ® oy)S‘n’q(ox ® ay),
[T H] =0 < Ty =—(0,®0)I (6,®0,) and 8, 4=(0y®0,)5* _ (0y,®0y), (G7)

where the newly added second Pauli matrix in each tensor product acts on spin.
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As in Appendix F 2, we will always make the assumption that C3, and 7 symmetries are preserved. By Eq. (G7), 7 symmetry
implies

S_(r)= (oy ® Uy)S_T_(I')(Uy ® oy) (G8)

so it suffices to characterize 7 (r) and S, (r). If we expand these potentials to second order as in Eqgs. (G4) and (G5), we can use
Cs;, T, and Hermiticity to write

Tq.,- =Ty, ® 00 + 00 ® (it1,0x0 - fig; + 11,00 - By, 472 + 1,0:07),
T 2q, = T-2q, ® 00 + 00 ® (f12,040 - B¢, + 112,0y0 * B, 472 + 112,0,07),
S0 =S40 ® 00 + il0,0:00 ® 0 + il :0; ® 0, + flg 12 (01 ® Oy + Ty ® 0y) + il 1y(0x ® 0y — Ty ® 0),
S+,¢I1+/—QZ+/‘ = S+~Ql+j_q2+j ® oo+ 00 ® (17{«/5’0)(0' : ﬁ(,‘ + ﬁ\/iOyo_ ’ ﬁCj+Tf/2 + ﬁﬁﬂzgz)
+o- ﬁ{j ® (ﬁﬁ,xxa : ﬁé“f + ﬁ\/?,xya : ﬁ§f+7f/2 + aﬁ,xzaz)
+o- ﬁ(ﬂrﬂ/z ® (ﬁ\/?»yxo' : ﬁé“,f + ﬁ«/g,yya . ﬁé“f+”/2 + ﬁ«/?,yz%)
to:® (’:‘t«/izx(r : ﬁif + ﬁx/g,zya ’ ﬁf/“‘”/2 + ﬁﬁ,ZZUZ)’
S+»QZ+/—‘11+1‘ = S‘inHj_qZJrj’ (G9)

where g o, flo z;, %o, xx» and flo x, are real parameters, all of the other i parameters are in general complex, and where the forms
for the Ty and S, 4 matrices are given in Eq. (F21). We now consider the symmetry constraints in the same five cases as in
Appendix F2.

(1) The symmetry group is generated by Cs,; and 7. In this case, we have Eq. (F22) and

ﬁ0,0za ﬁO,zm ﬁ(),xx» ﬁO,xy e R. (GIO)
(2) The symmetry group is generated by Cs;, T, and C;. In this case, we have Eq. (F23) and
00,225 Hoxxs 10y B1,0x, 81,0ys 82,005 W2,0y5 B /5 000 B /5,05 Bf5 o Uf5xys B/ o B/ yyr /5. € R,

011,025 02,0z B /5,0, B3 0 1L /5 400 B3 1o 13 4y € IR,

ftg.o; = 0. (G11)
(3) The symmetry group is generated by Cs,, 7, and M,. In this case, we have Eq. (F24) and
it0,07, 0,225 %0 xy, f1,0x T2,0x € R,
ii1,0y, 1,07, i2,0y, f2,0; € iR,
Hoox =0 350, = U3, = ﬁﬁ,yy = ﬁﬁ,yz =i, = 0. (G12)
(4) The symmetry group is generated by Cs;, 7, and M. In this case, we have Eq. (F25) and
010,225 10,xy> B /5 032 B /3 s /5 30 g5 300 W a0 5 7 € R,
B3 000 /5000 i xs B a0 Bl gy B3 2y € IR,
fig,0; = il xx = fi1,0y = fl2,0y = 0. (G13)

(5) The symmetry group is generated by Cs;, 7, Cs;, My, and M. In this case, we have Eq. (F26) and
10,225 U0 ,xys W1,0x, 02,0x, W 73,055 /3 0pr /3 00 5 . € R,
Ijtlyoz, ftzqoz, IZ\/?,Oz’ ﬁ\/g,xz’ ﬁ«/g,zy € iR,
th()’()Z = ljt()yxx = Ijtlyoy = ljtz’()y = ﬁﬁ,()x = ﬁﬁ,xx = ﬂﬁ’w = ﬁﬂ,yz = Ijt\/g,zx =0. (G14)

3. Conservation of z component of spin

In this section we consider the case in which the Hamiltonian commutes with S, the generator of spin rotations about the z
axis. This operator is defined by

St} = ), S:lsz) = Isp)ho; /2, (G15)
and we have

[S;, ﬁg] =0 << [Tq, o0®o0;]=0 and [S,q,00®0.]=0. (G16)
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When I-Tg commutes with S, we can write

Hy=Hy @ 1) (1 + Hyy ® [1)(U] (G17)

where H, 4 and H, | are spinless Hamiltonians of the form in Eq. (F14). That is to say, we can write

Hys = / dPr{e)H, ()]

) — (S.H(r) ~ ifro -V ) ) (G18)
T (r) Ss.—(r) — ilivpo - V
for s € {1, |}, where
T =rme % +nme 2%,
5,0 =5,m8 2% s, 00 2, G19)
We expand the 7 and S; , potentials as
T,(r) = Z T,qe™,  S,(r) = Z Ssmqe™ (G20)
qepy q<Py
for 2 x 2 complex matrices T; q and S; With ST, | =S, —q.
Now suppose that H, commutes with S;, Cs,, and 7. By Eq. (G8), 7 symmetry implies
Ss.—(r) = 0,8*, , (r)o, (G21)
so it suffices to characterize the 7 and S; ; potentials. Additionally, Eq. (G9) holds with
fiy 0 = i1 0y = .00 = flp,0y = flo.ex = Hoy = i /50, =l /50, = M50 = M5,y =l 5., =i, =0. (G22)
We can then write
Ti.q, = Ty, + sii10:00,  Ts—2q; = T-2q; + S82,0:00, Ss,+.0 = S+,0 + Sio,0:00 + Silp,z; 07,
Ssta-@ = Stai—ay T 5830:00 T80 75,0 - i,
+ sit 5,0 - By npp + 8 5.0,
Sé\+~‘12+j‘¢11+/ = Sj,+,q1+j—q2+/" (G23)

for s € {1, |}, where we~have made the identification 1= +, | = —, and where the Ty and S, 4 matrices are given by Eq. (F21).
In the special case that H, commutes with S;, Cs;, T, Cy;, M,, and M,, Egs. (F27) and (G14) allows us to summarize this more
succinctly as

Tsmq; = $Wim|,0000 + Wim| y0 + gy /2 + Wi 20z,
Ss.+.0 = wo,000 + W0, .07,
St y@i—ar) = (W 30+ YD 50000 + (W 5, + YD 5,00 fi;, + (s 3, +ywyz,0)0z, (G24)
form e {1, =2}, y € {+, —}, and s € {7, |}, where the real & parameters are defined by

W0 = —illz, W0 = —lllyz, Wor =10z Wyz0=—llsgg, Wsz,="llsz,, Wz, =i/, (G25)

4. Transformation to the moiré coordinate system

Since the model for spin s € {1, |} described in Appendix G 3 is of the form described in Appendix D 1, we can transform it
into the moiré coordinate system defined in Appendix E just as we did in Appendix F 3. Equations (G21) and (G23) imply

%
Se 5, —(r) = aySé’_S.Jr(r)ay (G26)
and
Tisq; = Teq; +801.0:00,  Tes—2q; = To2q; + $02,0:00,  Se.s.+.0 = Se 1.0 + $h0,0:00 + 8o 207,
S$,S,+,Q1+/—€12+j = S€,+,Q1+/—€12+j + SU_ /30,90 + SU /31,0 ng—¢ + suﬁ,yza RUTEE Yo + SU /3 .9z,

_ ¢f
SE,SHHQHJ*‘]H/' - Sé,s,+,q1+/-—q2+/’ (G27)
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where the 7y and S,  matrices are given by Eq. (F30). Additionally, Eq. (G24) implies
Tt smq; = SWim|.0100 + W) y0 - Dy 1, + Wi 10,
St.5,4+,0 = Wo,000 + sWo 07,
Se s+ y(@s—wmi) = (W30 +5YD 7300000 + (W 5, +syD 5,00 Agvg—np + (D 5, +yw sz D)0 (G28)
form e {1, =2}, y € {+, —}, and s € {1, |}, where ¢, is defined by Eq. (F32).

5. Coirrep decomposition for the bottom layer

In this section, we consider the effect of spin on the corepresentation theory analysis in Appendix F4. We begin by
generalizing Eq. (F33) to

Ca.(I1)y ® [5:)) = |Rarj3r) (/F7/V78% @ 1T/ @ Cs,
Co-(I1), ® Is:) = |—1) (0, ® 0, ® e TP @ O _,
M (r), ® |s:)) = |Rsr) (0x @ 00 ® e "/%) @ M, _,
M,(Ir), ® I5.)) = [Ryr) (00 ® 00 @ e T/ @ M, _,
T(r)y ®1s2) = Ir)y(0: ®0p ® 0,) & T, (G29)

for some unitary matrices Cs, _, Cp._, M, _, M, _, and 7_, which act on the bottom layer including spin. Eq. (F34) then
generalizes to
[Ces Bl =0 = Ty gy, = (0797 @ e PT, €,

[sz’ ﬁC] =0 = Tn*q/ = (Gx ® e*i(n/Z)Uz )T—UsQJC;z,_

M, 1_7(_] —0 e Tn,ql = (00 ® e—i(n/2)dx)’f_nyq]M;_

13

—i(7T/2)0, \ ~
@ =(0Q®e i/ 2)on My g, My —

=

I3

@ =(00® eii(n/Z)m)T—ﬁ,mMT

X, —

=

I3

X
=
Il
e
J

a = (Ux ® e_i(”/2)¢»~)fn,q1M;_
Ty, = (0x ® e T9)T, o M
Ty, = (02 ® )T, 0, M
[T H] =0 &= T,q,= (00 ®0T*, T -

As in Appendix F4, in the presence of Cs; and 7 symmetries, all of the TW-CI/’ matrices are determined by 7} 4, through the
equations

Tn,q, — (einijﬂz ® e—i(C//Z)ﬂz)Tn’qIC‘IZ—’i

T g =(0®a)T; T . (G31)

C>;, M, and M, symmetries imply the constraints

[Cos Hl = 0= Ty g, = —(0: @ 0)T}  (Co: T, (G32)
My, H.]=0= Ty q = (00 ® o)}, (M, _T)", (G33)
My, Hl =0 = Ty g, = —i(0y ® 0y)T4 o, M _. (G34)
By Egs. (G2) and (G4), we have
3
Ty == Toq AT g (0 ® 0)e™ ™ 040 (G35)
Jik=1
3 .
== ) (@I, (CITATINCT I T T (0, ® 0y)(e 5% @ /D) atan, (G36)
Jik=1
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3
Su(r) = = 3 Tog AT om0 (G37)
Jjk=1
3 .
- _ Z (€% @ Eﬂ({j/z)gz)T+,qlc31;i7{:16§€;lf_:
k=1

@ (e*ié“w: ® ei(ﬁk/Z)Gz )eil“(qrq;)' (G38)

By the same argument as in Appendix F 4, it is possible to use Eqs. (G36) and (G38) to write 7 (r) and S*(r) as a sum over
the coirreps present on the bottom layer at I'_. Note that if we use 7 symmetry twice, we find

Ty g = (00 ® 0,)(00 ® o) T} o TV T =Ty g (=T-T7) (G39)

so that either 7_7* = —1 or T+,q1 = 0. As aresult, it suffices to consider only the spinful coirreps in Table III. We could write
a straightforward adaptation of Appendices F4 a—F4 e to the spinful case, considering coirreps EE and 'E*E for 31', coirreps
’E\'E,, 'E5’E3, and 'E,E, for 61, coirreps >E'E and E, for 3m1’, and coirreps E3, E,, and E| for 6mm1’. Such an analysis
would cover all possibilities including spin-orbit coupling in both the bottom layer and in the interlayer couplings. However,
the formulas would contain sixteen complex parameters in the case of the spinful point group 31’ and would not be particularly
illuminating.

For these reasons, we focus instead on the more physically realistic case of weak spin-orbit coupling. Specifically, we make
the approximation that spin-orbit coupling affects only the bottom layer Hamiltonian and not the interlayer coupling. We take

Tn(r) — Tn(r) ® 00, 7:[7 — Hf ® 00 + HSO,fy 6*32!7 — C3z,7 ® e—i(rr/3)r7;’ 621,7 — CZz,f ® e—i(n/Q)(Tz,
Mo =M, ® e~itT /Do My,_ =M,_® ey T T ® oy, (G40)

where H;o,— is the spin-orbit coupling Hamiltonian at I'_, which we assume is independent of momentum. As in Appendix F4,
we block diagonalize the spinless part of the corepresentation (i.e., Cs; —, Co, —, M _, M, _, 7_) along with #_. Since T(r) and
S, (r) in Egs. (G36) and (G38) are additive over these spinless coirreps, we now consider each spinless coirrep separately.

We first consider the case of a one-dimensional spinless coirrep. In this case, the full corepresentation in Eq. (G40) is two-
dimensional. Kramers’ theorem implies that spinful corepresentations cannot be one-dimensional, so the corepresentation must
be irreducible. It follows that Hy = Egop and Hso.— = 0. Egs. (G36) and (G38) imply

T(r)=Tr) ®op, S.(r)="S5.(r)® oo, (G41)

where T'(r) and S (r) are given by Eqs. (F40) and (F42) with H_ = Ej.
Next, suppose that the spinless coirrep is 2E'E for spinless point group 31;. The full corepresentation in Eq. (G40) is then
2E'E ® 'E*E, which decomposes as

’E'E® 'E*E =~ EE @ 'E’E. (G42)
Furthermore, if we take C3; _ = e~27/3)0: a5 in Appendix F4 a, then
-1 0 0 0
A —i 0, —i(r/3)o. 0 e—i(n/3) 0 0
Croo = e g i = [0 T s o | (G43)
0 0 0 -1
which makes the coirrep decomposition explicit. It follows that we can write
-1 s
HZ = —00®0p+ —0,Q0; (G44)

Ey Ey

where E is the harmonic mean of the energies at I'_ and A is a real dimensionless parameter that controls the spin-orbit coupling
strength. In the case of weak spin-orbit coupling, we will have |A| < 1 and note that A = 0 corresponds to vanishing spin-orbit
coupling.

Equations (G36) and (G38) imply

T(r)=Tr) @0y +rTs0(r) @0,  Si(r) = S4(r) ® g + AS50,+(r) @ 0, (G45)

where T'(r) and Si(r) are given by Egs. (F40) and (F42) with H_ = Eyop while Tso(r) and Sso 4 (r) are given by
Egs. (F40) and (F42) with H_ = Eyo,. It is clear from Eq. (G45) that [S,, ﬁg] = 0, which is the case that was discussed
in Appendix G3. If we parametrize T, 4, as in Eq. (F45) then T(r) and S‘+(r) are given by Egs. (G19), (G20) and (G23)
where the Ty and S, 4 matrices are given in terms of the vy, vy, vy, and v, parameters by Egs. (F21) and (F46), and
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additionally

A
~ 2 2 2 2 ~
i,0; = E_O(UO + 207 420 —v7),  fip0. = —

ir
2012 =02 = 02)

~ . ~ 3 2 2 2 2
Uo,0; = _E_(UOU;< + Uakvz - l(va; - U:Uy)), Uo,zz = _E_(|U0| — |uel” — |Uy| + |Uz| )
0 0

A s .
i3, = E(UOU; + vyu, + 2i(vevy — vyvy) + iv3(vol? + lv.1%)),

A
i3, = 5o (V) + vjv, — i(vov;‘ —v5uy) + \/g(vyv: — v;vz) - ix/g(vov: + vgur)),

2E,

A . * * * . *
i, = 2—Eo(vyv;k + v;vZ + i(vovy — vjvy) — \/g(vxvZ —viv,) — l\/g(vovy + vjvy)),

) A , —
iy, = E(lv()lz + 20ue > + 2|vy|2 + v |* + l«/g(vovZ + vyv;)).

(G46)

Finally, we consider the other possible spinless coirreps. The spinless coirrep could be 2E; 'E| or 2E»' E; for 61)), E for 3m1’,
or E, or E| for 6mm1’. However, the conventions we chose in Appendices F4 b-F4 e imply that Eq. (G43) is satisfied in each
case, and in fact the above calculation applies for each coirrep. The distinctions are only in the constraints placed on the vy, vy,
vy, and v, parameters, which are listed for each coirrep in Appendices F4b-F4e.

For the case of spinless point group 6mm1’, Eq. (G23) simplifies to Eq. (G24) where the w parameters are given by Eq. (F59)

and
A A A
ﬁ)l,OZ _(v(%+2v)%)7 1112,0:__(1)0_1)5), wo,zz__(|v0|2_|vx|2)7
ko ko ko (G47)
i — _)M/gw 2, o = ——)L\/g(v Vi vy, WoaL = L(|U 1>+ 2Jvel?)
V3o = g vl Vax = T, (Wovx T Vo). \/§,1—2E0 0 xl7)-
Additionally, vy, v, € R for coirrep E; and vy, v, € iR for coirrep E;.
[
APPENDIX H: OPPOSITE-VELOCITY MODEL We now take a unitary change of basis
We now consider the construction of Appendix D 2 specif- o 0
ically in the case of the type I+ configuration with €y = Ir), = |1')<0 ia> (H3)
Z

0,09 = 0. In this case, we have N_ =1 and we can take
& = 0 so that Eq. (D13) implies

q; = (e Ry — DR, K. (H1)
For simplicity, we ignore spin in this Appendix. We do not
need to assume that either layer is graphene, though we do
require both layers to have triangular Bravais lattices and
Dirac cones at their K and —K points centered at their Fermi
energies. Furthermore, we require that the symmetries Cs,
(rotation by angle 27 /3 about Z), C,, (rotation by angle =
about 2), M, (reflection through the yz plane), M, (reflection
through the xz plane), and 7 (antiunitary time-reversal with
T2 = 1) take the same form on the Dirac cones as they do
in graphene. As in Appendix D2, we focus on the valley
containing K, and K_, which is preserved by Cs,, C;, 7, and
M,,. Using the states |r) in Eq. (D25), we then have

C3Z|r> = |R27r/3r>0'0 ® ei(2ﬂ/3)(rz,

CZZT|r> = |—l’>0’() Q 0Oy,

My|r) = [Rsr)op ® oy (H2)

Here, the first (second) Pauli matrix in each tensor product
acts on layer (sublattice).

under which the Hamiltonian in Eq. (D9) becomes

H = /dzrlr)(,fl(l’)(ﬂo

i) = <§+(r) —ihvyo -V T(r)

H4
TH(r) S_(r)+ihv_o - V) H)
where

S,r)=S8.(), S_(r)=o0.5_(r)o,, T =iT(r)o,.

(H5)
Additionally, Eq. (H2) implies
Cs:Ir), = |Ron /1) 00 ® €7 /3%,
G Tlr), = |-r),00 ® 0%,
My|r), = [Rsr) 02 ® 0x. (H6)

Interestingly, this form for the Cs;, Co, T, and M, symmetries
is equivalent to that implied by Eq. (F18) for the coupled-
valley graphene model. With this motivation, we define the
emergent C,, operator

Co. = —|-r)o, ® o,. H7)

245136-24



KAGOME AND HONEYCOMB FLAT BANDS IN MOIRE ...

PHYSICAL REVIEW B 108, 245136 (2023)

We expand the potentials as

Try= ) Ty™ Sir)= ) 4™, (HS)

qepr;;

q€ePy

for 2 x 2 complex matrices 7y and S‘l,q with S‘f «= S‘lj_q. Applying the arguments of Appendix F2, we find

[Cs,, Hl =0 = Tg,, ,q = €7V Tye "®/3%  and
4 2734 q

< (2 /3)o, & —i(27 /3)o,
Sl,R27r/3q =%/ )0~S1.q€ e/ )UN’

[C. T H] =0 <= Tq = Uqu*Ox

M,,H] =0 <= Tqu = —oquax

S1.Ryq = 021,40

[Co: Hl =0 & Ty =—0.T)0.,5, =05 g0, and

To lowest order, we only need to keep terms of the form

(H10)

To,» Sio.
Using Cs;, C», T, and Hermiticity, we can then write

qu = Wyop + W0 - N, +wio - Ngqnpo + iwoo,

- LEA
S10= | Er + — Joo, (H11)

2
for real parameters wo, wy, Wg, W1, Er, and EA. If M, is also
preserved then additionally @ = @; = 0. If we additionally
have Eo = 0 and v_ = —v, then [C,., H] = 0.
Finally, we transform to the moiré coordinate system as
described in Appendix E. The qu and S ¢ matrices are then
replaced by

Tg‘qj = Wyoy + W0 - ﬁ§j+¢1—71/2 + wjo - ﬁ§j+¢] + iwgo,

- LEA
Sero0=\Er+ - )% (H12)
where
¢ =m/2 — & =arg(l — e %) (H13)
since &y = 0.

APPENDIX I: MAGNETIC POINT GROUPS

The spinful magnetic point group 6mm]l’ is generated by
three elements Cs,, My, and 7, which satisfy the relations

T =1, C.=M;=Ce:M) =T, CoT =TCs:.
M,T = TM,. an
We further define group elements

—1=T% Cy.=C, Cn=C.. M,=C:M;",

a2)

and subgroups
31" = (G5, T), a3)
61" = (Ce.. T), I4)

and 8,4 = 0,5/ 0,

and

V. = —v,. (H9)

[
mm21" = (M, My, T), as)
3ml" = (Cs;, My, T) or (C3;, My, T), {16)
where (xi, ..., x;) indicates the subgroup generated by ele-
ments xi, ..., X;. Note that Eq. (I6) gives two expressions

for 3m1’, which are different subgroups of 6mml’ but are
isomorphic. Information about these groups is available on the
Bilbao Crystallographic Server [30,43,44,60,61].

For each of these spinful magnetic point groups, we define
a corresponding spinless magnetic point group produced by
taking the quotient with the normal subgroup {1, —1}. Equiv-
alently, we replace the condition 7# = 1 by 72 = 1. We use a
subscript O to differentiate the spinless groups from the spinful
groups, so that we have defined 31;, 61(,, mm21j, 3ml;,, and
ommlyj,.

The character tables for the spinful magnetic point groups,
enumerating the coirreps in which 7 is represented by an anti-
linear operator, are given in Table III. For the case of 3m1’, we
use M in place of M, or M, to emphasize that both definitions
yield the same character table. In each coirrep, the element
—1 is either represented by 1 or by —1. Coirreps in which
—1 is represented by 1 are also coirreps of the corresponding
spinless magnetic point group. As a result, Table I1I also effec-
tively contains the character tables for the spinless magnetic
point groups. Additionally, we say that a corepresentation is
spinless (spinful) if it represents —1 by 1 (—1).

APPENDIX J: PARAMETER CHOICES FOR THE PHASE
DIAGRAM OF LOW-ENERGY BANDS

In this section, we justify the parameter choices that were
made to simplify the phase diagram of low-energy bands in
Fig. 2(b). We consider the Hamiltonian in Eq. (3) in the case
that the moiré potentials arise completely from a single 2D
spinless coirrep. We first note that the Hamiltonian is invariant
under ¢ > ¢ + m so that for the purpose of computing a
phase diagram we can take ¢ € [0, ). Similarly, the trans-
formation vy > ivy, vy —> v, is equivalent to conjugation by
o, ® op so we can take vy and v, to be real. Additionally,
¢1 — ¢ + 7 is equivalent to ¢ — —¢. Since we assume
86 = 0 for the phase diagram, we can take §¢ < O and ¢; = 0.
Finally, Ey — —Ej is equivalent to ¢ > —¢, conjugation by
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(a)

I KM T r KM T “r KM T

FIG. 7. [(a)—(c)] Illustrations of the tight-binding models in Appendix K. [(d)—(f)] Corresponding example band structures. (a) The
honeycomb lattice one-orbital model described in Appendix K 1. (b) The kagome lattice one-orbital model described in Appendix K 2. (c) The
honeycomb lattice two-orbital model described in Appendix K 3. (d) Band structure for the Hamiltonian in Eq. (K4) with s =0, r = 1. (e)

Band structure for the Hamiltonian in Eq. (K8) with s = 0, # = 1. (f) Band structures for the Hamiltonian in Eq. (K11) withs =0, 7 = 1. In

solid black lines we have #, = 1 and in dashed gray lines we have #, = 1.25.

0o ® o, and an overall sign change. As a result, we are free
to choose Ey < 0.

APPENDIX K: KAGOME AND HONEYCOMB
TIGHT-BINDING MODELS

In the following subsections we review three tight-binding
models on kagome and honeycomb lattices. We denote the
Bravais lattice, reciprocal lattice, and Brillouin zone for each
model by L, P, and BZ, respectively. The primitive vectors
of L are a; and a, as given in Eq. (B1) and illustrated in
Figs. 7(a)-7(c). The primitive vectors for P are b; and b, as
given in Eq. (B2) and the high-symmetry momenta are

r=0, (K1)

K =2b; + 1b;, M= 1b; + ib,.

1. Honeycomb lattice one-orbital model

We first consider a tight-binding model with a single spin-
less Wannier function on each site of a honeycomb lattice.
The Wannier centers and nearest-neighbor bonds are shown
in Fig. 7(a) with red circles and black lines, respectively. The
Wannier functions are all related by isometries to a single ex-
ponentially localized orbital, which carries some 1D spinless
coirrep p € {A1, A2} of 3m1’ (see Appendix I and Table III).
The Wannier functions together transform under the induced
corepresentation (p);, of the magnetic space group P6mm1’
(No. 183.186 in the BNS setting [30]), which we now de-
scribe.

The lattice sites have positions r + o7 where r € L, o €
{+,—}, and T = \/%Rn s2a;. We denote the Wannier function
at position r + ot By Ir, o) and define Bloch states

1 .
Kk, o) = ﬁ Z etk~(r+ar)|r7 o). (K2)

rel

Using coset representatives T, and T.C,, where T denotes
translation by r € L, the induced corepresentation (p)a; is
determined by

Ti |k, o) = e *T|k, a),
Ci |k, a) = |Roz 3K, o),

Cx |k, o) = |-k, —a),

M, |k, o) = tr(p(M,))|Rzk, &),
Mk, @) = tr(p(M,))|Ryk, —a),

Tk, a) = |—K, a). (K3)

According to the Bilbao Crystallographic Server [43,44],
(p)2p is always an elementary band representation [45].

If the Hamiltonian H for this system commutes with ()25
and has at most nearest-neighbor hopping, then H takes the
form

3
Hlk, o) = sk, ) +1 Y e FiT |k, —a) (K4)
j=1

for real parameters s and ¢, where {; = 27”( Jj — 1). Figure 7(d)
shows the band structure for the Hamiltonian in Eq. (K4) with
s = 0 and r = 1. The band structure has two dispersive bands
with at Dirac cone at K, van Hove singularities at M, and
extrema at I'. The spectrum is symmetric about s because
H — s anticommutes with the chiral symmetry operator

Clk, a) =alk, o). (KS5)

2. Kagome lattice one-orbital model

We next consider a tight-binding model with a single spin-
less Wannier function on each site of a kagome lattice. The
Wannier centers and nearest-neighbor bonds are shown in
Fig. 7(b) with red circles and black lines, respectively. The
Wannier functions are all related by isometries to a single
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exponentially localized orbital, which carries some spinless
coirrep p € {A1, Az, By, By} of mm21’ (see Appendix I and
Table III). The Wannier functions together transform under
the induced corepresentation ()3, of P6mm1’, which we now
describe.

The lattice sites have positions r + t; where re L, j €
{1,2,3}, 7; = 1R a;, and ¢{; = Z(j — 1). We denote the
Wannier function at positionr + 7; by Ir, j) and define Bloch

states
| ,J) zk(r+r,)|r (K6)
N 2
Using coset representatives Ty, T:Cs,, and TC where T,

denotes translation by r € L, the induced corepresentatlon
(p)3c is determined by

Tk, j) = e ™"k, j),

Cs |k, j) = [Raz 3k, j + 1),

G|k, j) = tr(p(C2))| K, j),

M.k, j) = tr(p(My))|IRzk, 2 — j),

Mk, j) = tr(p(My))|Ryk, 2 — j),

Tk, j) =1-K, j), (K7)

where the j indices are cyclic modulo 3. According to the
Bilbao Crystallographic Server [43,44], (p)3. is always an
elementary band representation [45].

If the Hamiltonian H for this system commutes with (p)3.
and has at most nearest-neighbor hopping, then H takes the
form

HIK, j) =slk, j) 4 2 cos(k - T,_ )|k, j + 1)

+2tcos(k- Tk, j—1) (K8)
for real parameters s and ¢. Figure 7(e) shows the band struc-
ture for the Hamiltonian in Eq. (K8) with s =0 and ¢t = 1.
The band structure has two dispersive bands with at Dirac
cone at K, van Hove singularities at M, and extrema at I'.
Additionally, there is a flat band that has a quadratic touching
with a dispersive band at I'. We prove in Appendix L2 that
the Hamiltonian in Eq. (K8) has a perfectly flat band with
energy s — 2¢.

3. Honeycomb lattice two-orbital model

Finally, we consider a tight-binding model with two spin-
less Wannier functions on each site of a honeycomb lattice.
The Wannier centers and nearest-neighbor bonds are shown
in Fig. 7(c) with red and blue circles and black lines, respec-
tively. The Wannier functions are all related by isometries
to a pair of exponentially localized orbitals, which transform
under coirrep E of 3ml’ (see Appendix I and Table III).
The Wannier functions together transform under the induced
corepresentation (E )y, of P6mm1’, which we now describe.

The lattice sites have positions r + o7 where r € L, « €
{+,—},and T = %Rn ,2a1. We denote the two Wannier func-

tions at position r + ot by |r, «, £) where £ € {4, —} labels

the two orbitals, and we define Bloch states

K, o, £) = Z XTI o ). (K9)
relL

JUS_Z

For convenience, we choose the two orbitals so that Cs,, M,
and 7T are represented by e '>"/3%: _qg  and o,K, respec-
tively, where KC denotes complex conjugation. This symmetry
condition is satisfied, for example, by atomic orbitals p, +
ilpy. Using coset representatives 7, and T.C,, where T de-
notes translation by r € L, the induced corepresentation (E )y,
is determined by

Ti |k, o, ) = e *T|k, a, £),
Ci.lk, a, £) = e "V Ry 3k, , £),
Co.k, o, £) = |-k, —a, £),

MK, o, £) = —|Rgk, a, —£),
M|k, @, £) = —|Rgk, —at, —£),

Tk, o, £) = |-k, «, —Z). (K10)

According to the Bilbao Crystallographic Server [43,44],
(E),p is an elementary band representation [45].

If the Hamiltonian H for this system commutes with (E ),
and has at most nearest-neighbor hopping, then H takes the
form

3
Hlk o, 0) =slk, o, ) + ) e 5% (to]k, —a, £)
j=1

+ tee ik, —a, —£)) (K11)

for real parameters s, fp, and t,, where {; = s G —=D.
Figure 7(f) shows band structures for the Hamlltoman in
Eq. (K11) with s =0, o =, = 1 in solid black lines and
s =0,1 =1, t, = 1.25 in dashed gray lines. The middle two
bands in both cases are dispersive and have a Dirac cone at K,
van Hove singularities at M, and extrema at I'. Additionally,
the top and bottom bands have quadratic touchings with the
middle two bands at I'. The spectrum is symmetric about s
because H — s anticommutes with the chiral symmetry oper-
ator

Clk, a, ) = a|k, a, £). (K12)

When 7y =1t, = 1, the top and bottom bands are flat, but
when 1y =1, t, = 1.25 they are dispersive. We prove in
Appendix L3 that the Hamiltonian in Eq. (K11) has two
perfectly flat bands with energies s = 3|¢y| when |fy| = |t,].

APPENDIX L: KAGOME AND HONEYCOMB FLAT BANDS
FROM BIPARTITE CRYSTALLINE LATTICES

In the following subsections we review the bipartite crys-
talline lattice construction of Ref. [15] and then apply it to
prove the existence of flat bands in the models described in
Appendices K2 and K 3.

1. Bipartite crystalline lattice construction

As in Appendices K 1 to K3, we consider a tight-binding
model supported on Wannier functions that are formed from
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(a)

<

FIG. 8. (a) Bipartite crystalline lattice for Appendix L2. The
n =1 (n=2) Wannier centers are shown with red (gray) circles.
(b) Bipartite crystalline lattice for Appendix L3. Then =1 (n = 2)
Wannier centers are shown with red and blue (gray) circles. In both
diagrams, the black lines indicate nearest-neighbor hoppings.

some set of exponentially localized orbitals. We partition the
orbitals into two subsets O and O, and denote the Wannier
functions arising from subset O, by |r,n,x) forr € L, n €
{1,2},and 1 < x < N,, where L is the Bravais lattice and N,
is the number of orbitals from O, in each unit cell. The orbital
Ir, n, x) has position r + 7, and we define Bloch states

Ik, n, x) = \/|B_Z Z eik»(r+171..r)|r’ n, x). (L1)

relL

We assume the Hamiltonian H has no hoppings between
Wannier functions arising from the same subset O,,, except for
a constant chemical potential ;+ on Wannier functions arising
from O,. A model of this form is called a bipartite crys-
talline lattice [15]. We assume without loss of generality that
N; > N,. For a given crystal momentum k, H is represented
on Bloch states [k, n, x) by the matrix

we(shy W) e

for some N; x N, complex matrix S(k). The first Ny (last Ny)
rows and columns of H(k) correspond to O; (O,). By the
rank-nullity theorem, the null space of ST(k) has dimension at

least N; — N,. Additionally, if v is in the null space of S (k)
then

H(k)(S) =0. (L3)

As aresult, H must have at least N — N, perfectly flat bands
with energy 0, which are completely supported on the Wannier
functions arising from 0.

We next apply Schrieffer-Wolff perturbation theory [58,59]
to second order in S(k) to find the low-energy Hamiltonian A
for the Wannier functions arising from O;. For a given crystal
momentum k, A is represented on Bloch states |k, 1, x) by the
matrix

)
H(K) = w (L4)

We now send |u|, |S(k)| — oo while fixing (k). In this
limit, the Schrieffer-Wolff perturbation theory at second order
becomes exact. The resulting tight-binding model A then has
at least N| — N, perfectly flat bands with energy 0.

2. Kagome lattice one-orbital model

We take |r, 1, x) to be the kagome lattice Wannier func-
tions |r, j) in Appendix K2 so that N; = 3. Additionally, we
take |r, 2, x) to be the honeycomb lattice Wannier functions
Ir, @) in Appendix K 1 so that N, = 2. The Wannier functions
and nearest-neighbor hoppings are illustrated in Fig. 8(a) in
red (n=1) and gray (n = 2) circles, and black lines, re-
spectively. Since the matrix elements of the Hamiltonian in
Eq. (K8) do not depend on the choice of corepresentation,
we are free to choose corepresentations A; of mm21’ and A
of 3m1’ to induce the corepresentations of P6mm1’, without
loss of generality. The full set of Wannier functions transforms
under the direct sum of the two induced corepresentations.

If the Hamiltonian H for this system commutes with
the direct sum corepresentation, satisfies the requirements in
Appendix L 1, and has at most first-order hoppings, then we
must have

HIk, j) =7 "]k, ),

3

Hk, o) = —plk, @) Z TRtk j) (L)
for a real parameter 7, where
o
Tjog = mR{/wr/Zal (L6)

with §; = 2T”(j —1). If we take . = 72/t for some fixed real
value ¢ and then send 7 — 00, the low-energy Hamiltonian H
described in Appendix L 1 takes the form of Eq. (K8) with s =
2t. Since H has Ny — N, = 1 perfectly flat band with energy 0
for any ¢t € R, we conclude that the Hamiltonian in Eq. (K8)
always has a perfectly flat band with energy s — 2z.

3. Honeycomb lattice two-orbital model

Next, we take |r, 1, x) to be the honeycomb lattice Wannier
functions |r, o, £) in Appendix K3 so that Ny = 4. Addi-
tionally, we take |r, 2, x) to be the kagome lattice Wannier
functions |r, j) in Appendix K2 so that N, = 3. The Wan-
nier functions and nearest-neighbor hoppings are illustrated
in Fig. 8(b) in red and blue (n = 1) and gray (n = 2) circles,
and black lines, respectively. We choose corepresentations
E of 3ml’ and p € {A, Az, By, B>} of mm21’ to induce the
corepresentations of P6mm1’. The full set of Wannier func-
tions transforms under the direct sum of the two induced
corepresentations.

If the Hamiltonian H for this system commutes with
the direct sum corepresentation, satisfies the requirements in
Appendix L 1, and has at most first-order hoppings, then we
must have

3
Hlk o, ) =7 e *Teebia 07k, j),
j=1

HIk, j) = JHTY D eMTee ek, o, £)

oa==% (==

—ulk, j

L7
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for a real or imaginary parameter 7, where

feR,vy=0,1,=0 whenp=A4A,
feiR,vy=0,1,=1 whenp=A4,
feR,vy=1,v, =0 whenp =B
feiR,vy=1,1,=1 whenp=25B, (L8)

(see Table III), 7, ; is given by Eq. (L6), and ¢; = %”(j —1).
If we take u = |f|>/t for some fixed real value ¢ and then
send || — oo, the low-energy Hamiltonian H described in
Appendix L1 takes the form of Eq. (K11) with s = 3¢, 1y =
(—=1)"'t, t, = (—=1)"*™2¢, Since H has a perfectly flat band
with energy O for any ¢ € R and vy, v, € {0, 1}, we conclude
that the Hamiltonian in Eq. (K11) has two perfectly flat bands
with energies s &£ 3|fy| when |f| = |t;].
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