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ABSTRACT

We give a polynomial time classical algorithm for sampling from
the output distribution of a noisy random quantum circuit in the
regime of anti-concentration to within inverse polynomial total
variation distance. The algorithm is based on a quantum analog
of noise induced low degree approximations of Boolean functions,
which takes the form of the truncation of a Feynman path integral
in the Pauli basis.
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1 INTRODUCTION

Quantum random circuit sampling (RCS) is a basic primitive at
the heart of recent “quantum supremacy” experiments [6, 31, 32].
The quantum circuits in question are typically defined over a fixed
architecture with gates chosen at random from some distribution
(Fig. 1); in this work we assume two qubit gates which are Haar
random!. There are three parameters associated with the circuit:
the number of qubits n, the circuit depth d, and the number of gates
m = O(nd). In the experiments a relatively small number of samples

The requirement of Haar random 2-qubit gates can be relaxed; see Definition 3 and
Remark 3.
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are collected from the experimental implementation of RCS (though
this number must necessarily scale exponentially in d), followed by
a classical verification of these samples, using a statistical measure
such as linear cross entropy (XEB), which requires classical post-
processing time that is much larger and scales exponentially in n.
Moreover in the experiments the depth d is sufficiently large that
the output distribution of the ideal random quantum circuit (Fig. 1
(a)) is anti-concentrated?, and indeed the output distribution tends
to the Porter-Thomas distribution.

Quantum supremacy is not only a milestone on the way to a
practical quantum computer, it is also a fundamental physics exper-
iment that tests quantum mechanics in the limit of high complexity
— it is “an experimental violation of the extended Church-Turing
thesis” [1, 8]. To demonstrate such a violation one must carry out a
quantum computation that cannot be simulated by a polynomial
time classical algorithm. This has been the main motivation for
showing the complexity-theoretic hardness of both ideal and noisy
random circuit sampling [2, 3, 10, 11, 13, 25-27] (see Section 1.2 for
a detailed discussion). However, recent work [17] cast doubt on the
conjecture of [3] that provided the hardness of noisy RCS based
on the XEB test. Yet, this work left unclear whether hardness of
the XEB test could be restored by formulating a new conjecture,
and whether efficient classical algorithms exist for the other statis-
tical tests for RCS output distributions such as the Heavy Output
Generation (HOG) [2] and log XEB [9].

In this paper we study the classical complexity of RCS in the pres-
ence of a constant rate of noise per gate. Specifically we consider a
simple noise model shown in Fig. 1 (b) where a (arbitrarily small)
constant amount of depolarizing noise is applied to each qubit at
each time step, which is a theoretical model for the actual RCS
experiments. Our main result shows that sampling from the output
distribution of a noisy random circuit can be approximately simu-
lated by an efficient classical algorithm within small total variation
distance.

2Anti-concentration is a property of random circuits which says that the output
distribution is sufficiently flat when circuit depth is large enough. It was proven that
anti-concentration holds for random circuits defined on 1D architecture [7, 14] as long
as circuit depth d = Q(log n), and it was conjectured that Q (log n) depth suffices for
anti-concentration for any reasonably connected architecture such as 2D lattice [14],
due to the fact that random circuits in 2D is expected to have faster mixing than 1D
(Remark 1).
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Figure 1: Random circuit sampling, each white box is an in-
dependent Haar random 2-qubit gate. (a) Ideal RCS generates
an output distribution p(C) that satisfies anti-concentration
when d = Q(logn). (b) Noisy RCS, where an arbitrarily small
constant amount of depolarizing noise is applied to each
qubit at each step, which generates a noisy output distribu-
tion p(C). Here the 1D architecture is for illustration; the
result applies to general architectures (Definition 3).

THEOREM 1 (MAIN RESULT). Assuming anti-concentration, there
is a classical algorithm that, on input a random circuit C on any fixed
architecture, outputs a sample from a distribution that is -close to the
noisy output distribution p(C) in total variation distance with success
probability at least 1 —§ over the choice of C, in time poly(n, 1/¢,1/8).

To put this in perspective, consider a RCS quantum supremacy
experiment that collects M samples. We claim that Theorem 1 im-
plies that there is a classical algorithm running in time bounded by
polynomial in M, that outputs M samples that are indistinguishable,
i.e. no statistical test can distinguish the output of the algorithm
from the output of the experiment with probability greater than
1/2+ p, for any constant g > 0. This is because to achieve statistical
indistinguishability it suffices to choose ¢ = p/M, which by the
main result above gives a running time poly(n, M /). Thus the run-
ning time of our algorithm is at most a polynomial in the running
time of the experiment.

COROLLARY 1. Assuming anti-concentration, no statistical test
applied to M samples can distinguish between the output of a noisy
random circuit and the above classical algorithm with running time
poly(n, M). In particular, if M = poly(n), the classical algorithm runs
in poly(n) time.
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We note that the implications of our result are complexity theo-
retic and do not directly address the soundness of finite-size quan-
tum supremacy experiments.

Also note that anti-concentration is a central assumption for both
the RCS experiments and our algorithm, which is believed to hold
for general architectures above Q(logn) depth [14]. At the same
time, the output distribution of noisy random circuits is 2-0(d)
close to uniform in total variation distance [4, 15, 16]. This means
that any quantum supremacy experiment must collect M = 20Q(d)
samples. Thus d = ©(log n) was recognized as the sweet spot for
scalable experimental demonstration of quantum computational
advantage [15], depth O(log n) to guarantee polynomial number
of samples and Q(logn) to guarantee anti-concentration. In this
regime both the sample complexity of the experiment and running
time of our classical algorithm scale polynomially in n.

Our approach builds upon the work of Gao and Duan in 2018 [16].
They developed the idea of performing a Fourier transform on quan-
tum circuits and an algorithm for simulating noisy random circuits
via a truncation in Fourier domain and calculating low-degree
Fourier coefficients. They used the resulting algorithm to efficiently
estimate local observables for random analogs of fault-tolerance
circuits, thus showing that structure is necessary for quantum fault-
tolerance. While not explicitly mentioned in [16], their approach in
fact produces a quasi-polynomial time algorithm for sampling from
the output distribution to within inverse polynomial total variation
distance®. This raises the challenge of giving a polynomial time
algorithm for the sampling problem.

We start by reformulating the Fourier transform defined by [16]
as Feynman path integral in the Pauli basis, and the simulation al-
gorithm as calculating those Feynman paths with lowest Hamming
weight. The Pauli basis framework was also used by [17] to give an
alternative argument for achieving a 270(d) XEB (see Appendix A
of the online version [5] for a more formal treatment). The advan-
tage of using the Pauli basis for Feynman path integral is that most
low-Hamming-weight Feynman paths have 0 contribution to the
path integral. This view helps design an enumeration algorithm that
calculates the contributions of only non-trivial paths in polynomial
time. From the perspective of Fourier analysis, prior algorithms of
[12, 16] based on low-degree Fourier approximation mainly rely
on noise sensitivity and have running time nOUog1/e) where ¢ is
the desired approximation error which results in quasi-polynomial
running time for our purpose, but our algorithm has running time
20(og1/¢) = poly(1/¢) due to the additional property of Fourier
sparsity.

Our algorithm is not practical in its current form due to a large
exponent in the running time, and we leave as an interesting future
direction to develop practical implementations using our frame-
work. See Section 1.3 for discussions regarding finite-size noisy
RCS experiments.

1.1 Description of Algorithm

Our main result suggests that random quantum circuits are “noise
sensitive” in the sense that any small constant amount of noise
makes the sampling problem classically simulable. Interestingly,

3This fact was unknown at the time, as it was believed that anti-concentration requires
large circuit depth. Recent developments [7, 14] suggest otherwise.
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the result has a natural analogy with the noise sensitivity of Boolean
functions which we review below.

Let p : {0,1}"™ — [0, 1] be a probability distribution viewed as a
Boolean function that is anti-concentrated, i.e. X ¢ (g,1)n p(x)? =
O(1) - 27", Consider noise being applied to p in the following way:
first sample x ~ p, then replace each bit in x by a random bit with
probability y. The resulting noisy distribution p has an exponential
decay in the Fourier domain,

P = D, A=pFlps)-n,

se{0,1}"

1

where p(s) = zin Zxe{o1n p(x)(=1)** is the Fourier transform of
p and | - | denotes Hamming weight. The exponential decay allows
p to have a low-degree approximation q(x) = Zse{o1yms|<e(1—
Y) Isl p(s)(=1)**. The approximation error can be bounded as fol-
lows:

2
(Z |p(x) - q<x>|)

2"y | Yo (a=p"lpes) -

X \s:|s|>¢
=2 > (1-p)*Flp(s)?
X si|s|>¢

@

<2(1-p)* ) pls)?
(1-p2" ) p(x)?

=0(1) - (1-p*.

Here, the first line is by Cauchy-Schwarz; the second line follows
from the orthogonality of the Fourier basis (3}, (—1)**- (-1)¥* =0
when s # s”), which allows us to replace the square of the sum with
the sum-of-square. Finally, the last line uses anti-concentration.
Below we show that random quantum circuits have a similar noise
sensitive property where noise induces a low-degree approximation,
which provides the basis for our simulation algorithm.

Let p be an n qubit density matrix. We can write p = X scp, s
where P, are the normalized n-qubit Pauli operators, and as =
Tr(sp) is real. We keep track of the coefficients in the Pauli basis
after unitary evolution p — UpU, which evolve according to the

rule Tr(sUpUT) = Dtep, Tr(sUtUT) Tr(tp). Comparing with the
transition rule (x|U[y) = 2., (x|Uly) (yl¢) we can see that while
(x|Uly) is the transition amplitude from |y) to |x), Tr(sUtUT)

plays the role of transition amplitude from ¢ to s.

Consider a quantum circuit C = UyUy_q - - - Uy where U; is a
layer of 2-qubit gates and d is circuit depth. A Pauli path is a
sequence s = (Sg,...,S7) € P‘,f“. The Feynman path integral in
the Pauli basis (in short, Pauli path integral) is written as sum of
product of transition amplitudes,

p(Cx)= Tr(|x)(x|sd)Tr(stde_lU;’).,,

S05+-:Sd EPn

Tr(31 U soUlT) Tr(so |O" )<O"|) .

®)

Note that LHS is the probability p(C, x) = | (x|C|0™)|? instead of
amplitude. Denote the contribution of a Pauli path s = (s, ...,sq) €
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P,‘f“ to the path integral as f(C, s, x), which gives
p(C,x) = ZseP‘,{” f(C,s,x).

Our algorithm for simulating noisy random circuits is based on a
simple but powerful fact, used in [16, 24]. Consider the single-qubit
depolarizing noise with strength y, E(p) = (1 —y)p + y% Tr(p).
This noise channel has a special property of being diagonalized by
Pauli operators as

&I =1, &P)=(1-yPVPe{X,VYZ}. 4)

Therefore the contribution of a Pauli path of a noisy quantum
circuit subject to this noise, decays exponentially with the Hamming
weight of the Pauli path:

pCx = ), A-pPlfCsx),

d+1
sePq

©)

where p(C, x) is the output probability of the noisy circuit and |s|
is the Hamming weight of s (the number of non-identity Pauli
in s). We would like to approximate the value p(C, x) by summing
only over the low-weight Pauli paths,

pCx~ Y (-pMfCsx),

sePdtl|s|<r

(6)

and claim that the total variation distance achieved by the ap-
proximation is 27900 on average. This is not immediate since the
f(C,s,x) can be both positive and negative. We invoke two proper-
ties of random circuits: the first is orthogonality, which says that
on average over random circuits the product of the contributions
from two different Pauli paths equals 0, i.e.

]g[f(c’ s, x)f(C,s",x)] = 0 when's # s'; (7)

the second is anti-concentration, which says that the sum of
squares of the output probability of a random circuit is small, i.e.

ggmc,x)z =0(1) 27", (8)

Interestingly, the proof that this low-degree approximation has
small error follows a similar structure as Eq. (2), where orthogo-
nality allows us to upper bound the total variation distance by a
sum of squares quantity, which is then upper bounded using anti-
concentration (see Eq. (33)). Here the main difference is that the
low-degree approximation of Eq. (2) holds for individual Boolean
functions, while randomness is fundamental in our argument (note
that both orthogonality and anti-concentration properties have an
averaging over random circuits). An interesting open question is
to study for which specific quantum circuits does the low-degree
approximation of Eq. (6) hold.

The next step is to develop an algorithm to calculate the RHS of
Eq. (6). Note that a straightforward sum over all paths up to weight
¢ gives a running time of O(nd)?) leading to a quasi-polynomial
time algorithm as in [16]. Here we develop a counting argument
and efficient enumeration method for all Pauli paths of weight at
most ¢ which takes only 2000 time. The idea is sparsity of the
low-weight paths, meaning that for most Pauli paths in PZ*!, its
contribution f(C,s,x) is 0; therefore we design a combinatorial
algorithm that only enumerates those paths that have non-zero
contributions. Finally, the sampling algorithm follows from a gen-
eral sampling-to-computing reduction of [12].
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At a high level, the hardness assumptions in [2, 3] may be in-
tuitively viewed as asserting that Feynman path integral in the
computational basis is essentially the best classical algorithm for
RCS, and achieving non-trivial correlation requires following ex-
ponentially many paths. Instead, the Pauli path integral approach
has the virtue that low weight paths have the most significant
contribution.

1.2 Prior Work Regarding the Computational
Complexity of RCS

To put the above results in context, let us recall the background
regarding complexity theoretic evidence that classical computers
cannot efficiently sample from the output of a random quantum
circuit (this section focuses on asymptotic hardness; see next section
for discussions regarding finite-size experiments). There are two
main genres of results along those lines, which we review below
(see [19] for a more comprehensive survey).

The first is in the form of a worst-case to average-case reduction,
showing that if an efficient classical algorithm can sample from
the output distribution of ideal RCS within small total variation
distance, then the Polynomial Hierarchy collapses [10, 11, 25-27].
The eventual goal of this program was to show classical hardness
for sampling within constant total variation distance, which would
require showing average-case hardness of computing the output
probability of ideal RCS within additive error O(2~"). While the
earliest average-case hardness results could only tolerate very small
additive error, it was hoped that over time the reductions could be
made more robust. This has indeed been the case, with an improve-
ment from a large polynomial in the exponent [11] to 270(m) [26],
but this line of work has hit an obstacle that may prove difficult to
overcome (see e.g. [10, Section 3] and [15, Section II A]). Moreover,
these results do not address the actual RCS experiments which are
highly noisy. Note that the related work of [13] argued that the
hardness of approximate sampling for noisy RCS can be reduced
to ideal RCS, but the argument required a local noise model that
decreases as O(1/n), which is not scalable.

The second genre is based on complexity theoretic assumptions
about the difficulty of distinguishing heavy and light outputs of
the random circuit [2, 3]. These assumptions essentially say that
even a tiny correlation (order 27") with the output distribution of
ideal RCS is hard to achieve classically. While these assumptions
are quite strong, they have the virtue of yielding robust bounds.
Indeed a specific conjecture in this genre called XQUATH [3] has
provided robust complexity theoretic foundation of the linear cross
entropy benchmark (XEB) used in recent experiments [6, 31, 32].
This provided a way to heuristically argue that even the very small
XEB achieved in actual 50-70 qubit experiments was a classically
difficult computational task. However, the strong parameters in
the assumption (correlation of order 27") was called into question
by the result of [17], although it remained unclear if the hardness
of the XEB test can be restored by changing the parameters in
XQUATH. In addition, it was unclear whether the hardness of the
other statistical tests such as HOG or log XEB was impacted. Our
results address these questions by showing that no statistical tests,
like the XEB, HOG and log XEB, can distinguish between noisy
RCS and our classical algorithm.
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1.3 Concluding Remarks: What Our Results Do
Not Address

We importantly note several points left unaddressed by our results.

e Practical speed-ups. We note that our results do not ad-
dress RCS based quantum supremacy in its non-asymptotic,
practical form. In particular, much progress has been made in
developing practical spoofing algorithms for achieving a sim-
ilar numerical value as the XEB in current 53-60 qubit RCS
experiments. Practical tensor network algorithms [18, 21-
23, 29, 30] can achieve this goal using hundreds of GPUs in
a few hours, but these algorithms have exponential scaling
and become impractical if the system size increases by a few
qubits. A numerical implementation of the algorithm in [17]
achieved roughly 10% of Google’s XEB using 1 GPU in 1
second, though it remains unclear whether this algorithm
can achieve Google’s XEB (using much less than hundreds
of GPUs). Our algorithm is not practical in its current form,
as there is a large constant (of order 1/y where y is the error
per gate) in the degree of the polynomial of the running
time. An interesting future direction is to develop practical
implementations using our framework and ideas from [17]
that achieves similar XEB as in the experiments [6, 31, 32]
using a small amount of resource.

Sublogarithmic depth. Our algorithm assumes

anti-concentration and therefore works for random circuits

with depth at least Q(log n).* The issue with sub-logarithmic
depth random circuits (with Haar random 2-qubit gates) is
that there is no evidence for hardness of sampling even for
ideal RCS, as all existing results for average-case hardness
(the first genre discussed above) are only relevant for sam-
pling when anti-concentration holds. In addition, [28] gives
evidence that 2D ideal RCS can be efficiently simulated when
depth is smaller than some fixed constant. The complexity of
ideal and noisy RCS remains unclear at depth between con-
stant and o(log n). Separately, existing quantum supremacy
experiments rely on the assumption that the ideal circuit
is close to Porter-Thomas for benchmarking; closeness to

Porter-Thomas is even stronger than anti-concentration.

Notwithstanding the above discussion, it remains possible

that a different approach based on RCS of sublogarithmic

depth circuits, which does not rely on anti-concentration,
could lead to a scalable experimental violation of the ex-
tended Church-Turing thesis.

o Less random gate sets. Besides anti-concentration, our
algorithm also requires randomness in the gate set. The
simplest distribution over the gate set to think of is that of
Haar random 2-qubit gates. However, the gate sets used in
actual experiments [6, 31, 32] are not Haar random 2-qubit
gates, but gates with more limited randomness. While we
do not know if our results hold for the exact gate sets used
in those recent experiments, we show in Section 4 that our
algorithm works for a gate set which is closely related to
the gate sets used in those experiments; more generally, the

Tt was shown [14, 15] that anti-concentration requires at least Q(log n) depth for
random circuits with Haar random 2-qubit gates.
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required condition for our results is in fact much weaker
than Haar random 2-qubit gates (see Definition 3).

Overview of remainder of paper. In Section 2 we give formal
definitions of the Pauli path integral and derive useful properties of
this framework. In Section 3 we give the proof of our main result,
and discuss Google and USTC’s gate set in Section 4. Appendix
A of the online version [5] contains a formal proof for refuting
XQUATH using the Pauli basis framework. As an application of the
Pauli basis framework, we provide simple proofs for existing results
about random circuits, including a lower bound on the depth for
anti-concentration previously shown by [14] (Corollary 2), and an
improved lower bound on the convergence to uniform for noisy
random circuits previously shown by [15] (see Appendix B of the
online version [5]).

2 THE PAULI BASIS FRAMEWORK

We first give formal definitions of the Pauli path integral discussed
in Section 1.1 and then derive useful properties of this framework.
Let C = UyUy_q - - - U be a quantum circuit acting on n qubits,
where Uj is a layer of 2-qubit gates and d is circuit depth. The
Feynman path integral in the computational basis is written as

(0”|clo™) Z (0"Uglxa-1) (xa-1lUa-1lxa—2)

X1,..0Xg—1€{0,1}7

- (aafvifo”).

)
The main difference when switching to the Pauli basis is that
instead of thinking about a quantum circuit as applying unitary
matrices to vectors, we think of it as unitary channels applied to den-
sity matrices, C = Uy;Uy_1 - - - Uy where each U;(-) = U,~(-)Ul.T
is a unitary channel. Similar to decomposing a pure state vector
into a superposition of computational basis states, we consider the
normalized Pauli operators

P = {I/VEX/VE Y2, Z/\@}m (10)

as an operator basis and decompose a density matrix into a linear
combination of Pauli operators (Table 1). In Table 1 we present the
operator basis as a direct analogy of vector basis by switching to
the operator ket notation (Table 1 (c)).

DEFINITION 1 (PAULI PATH INTEGRAL). LetC = UyUy_1 -+ Uy be
a quantum circuit acting on n qubits, where U; is a layer of 2-qubit
gates and d is circuit depth, and let p(C,x) = | (x|C|0™)|? be the
output probability distribution. The Pauli path integral is written as

pCx) = Y Tl s0) Te(saUasa-1Uj |
S05--Sd €Pn
c.. Tr(slUISOUf) TI'(S() |On><0n|)
D (lsa) CsalUalsas) - Gsilhlso) Gsolo™.

S05--Sd€Pn
(11)

N Sd) €
Pg“. We also define the Fourier coefficient of a quantum circuit C
with output x and Pauli path s as

f(Cos,x) = xlsa) (salUalsa-1)) - (s11Urlso) (sol0™)

Here each term on RHS corresponds to a Pauli path's = (s, . .

(12)
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Algorithm 1 Simulating noisy random circuits by low-degree
Fourier approximation

Input: quantum circuit C, truncation parameter ¢, x € {0,1}"
Output: an approximation of p(C, x)

1: g0

2: for all legal Pauli path s with |s| < ¢ do

3 calculate f(C, s, x)

& qeq+(-pklfC s

5. end for

6: Return g

and the output probability is written as

p(Cx)= Y f(Csx).

sepdtt

(13)

Eq. (11) follows from repeatedly applying the rules shown in
Table 1. The above definition can also be extended to noisy quan-
tum circuits. Let E(p) = (1 —y)p + y% Tr(p) be the single-qubit
depolarizing noise with strength y. It has the property that E(I) = 1
and E(P) = (1-y)PwhenP € {X,Y,Z}.

DEFINITION 2 (PAULI PATH INTEGRAL FOR NOISY QUANTUM CIR-
curts). For a quantum circuit C = UyUy_, - - - Uy, let C be a noisy
quantum circuit where each qubit in C is subject to y depolarizing
noise in each layer (Fig. 1 (b)). Let

P(Cx) = (x| EPULES" - THEP|0™) (14)

be the output probability distribution of the noisy circuit C. The Pauli
path integral for C is defined as

pCx) = Y, f(Csx) (15)
sepd+t
where B
F(Cs.0) s=(xlE%™ s (sal UaE® Isa—1) »

< s ThE® [s0) (s0]0™ .
Let |s| be the Hamming weight of s (the number of non-identity
Pauli in s). The definition of depolarizing noise implies that

f(Csx) = (1-p)BIF(Cs,x). 17

Our algorithm described in Section 1.1 is summarized in Al-
gorithm 1 (“legal” Pauli path is defined in Definition 6). Next we
develop properties of the Pauli basis that are useful later.

First, note that the Fourier coefficients f(C, s, x) can be further
decomposed into products of transition amplitudes of 2-qubit gates

(qlU\py = Tr(quUT) where U € U(4), p, q € P2, so any Fourier
coefficient can be computed in time O(nd). The Fourier coefficients
satisfy f(C,s,x) € Rand |f(C,s,x)| < zin This is because for any
x € {0,1}" and s € P,, we have

(xls) = Tr(|]xXx|s) € {0, (18)

1 1
In addition, the output x only affects the sign of the Fourier coeffi-
cient, as

f(C,s,%)% = f(C,5,0M2,  Vx e {0,1}". (19)
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Table 1: The Feynman path integral can be viewed as decomposing the state into basis states at each step of time evolution. (a)
The standard decomposition with computational basis states. (b) Decomposition using the Pauli operator basis, where states
are represented as density matrices and time evolution is represented as unitary channels. (c) The same decomposition using

the Pauli operator basis, presented with operator ket notation.

(a) Vector basis (b) Operator basis (c) Operator basis
State W= >, @k | p= ) Trsp)s )= Gslodls)
xe{0,1}" sePy, seP,
Evolution | [y) = U [) p = UpU' o) — Ulp)
Path integral | (x|UIY) = £, (xIUly) wly) | Te(sUpUT) = £, Te(sUtU7) Ta(ep) | (sltdlp) = E, sty elp)

The rest of the properties we develop in this section crucially
rely on the randomness of the gate set. We first recall the properties
of Haar random 2-qubit gates.

LEMMA 1 (PROPERTIES OF HAAR RANDOM 2-QUBIT GATES [20]).
LetU € U(4) be a Haar random 2-qubit gate, and p, q,r, s € P2. Then

E (plUlgh{Lr|Uls) =0 ifp#rorq#s. (20)
U~U(4)
We also have
1, p=q=I%2
0, p=1I%%/2,q+I%)2,
E U|g)? = 21
UNU(4)<<P| lg» 0. p#I®2q=1%2, (21)
1l5’ else.

Eq. (20) is a key property which we refer to as gate-set orthog-
onality. It says that if we consider the Pauli basis decomposition
and average over two copies of a random unitary, then the random-
ness forces the input and output Paulis to be the same across the
two copies. Next we show that this property does not require full
randomness over U(4); randomness over Pauli operators already
suffices.

LEMMA 2 (GATE-SET ORTHOGONALITY). Let D be any distribution
over U(4) that is invariant under right-multiplication of random
Pauli, i.e. for any measurable function F,

E [F(U)]= E E F(UV)]. 22
EFOI= BB FOVL @)
Then for any P,Q € {L X, Y,Z}2 such that P # Q, we have

E |urUuT @UQUT| =0. 23
E 0 (23)

Proor. Due to invariance under right-multiplication of random
Pauli and linearity, it suffices to prove that

vPvievovi|=0 ifP#0. (24)

V~{IX,Y,Z}? [
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Let (P, Q) = 1| P, Q anticommute]. Then

E
V~{IX,Y,Z}?
1

[VPVT o VoV

- VPV @ vovT
Ve{lX,Y,Z}?
1

(—1){VPHV-Q p g o (25)

Ve{lX,Y,Z}?

COREER L Yo
Ve{lX,Y,Z}?

0,

where the last line follows from the fact that PQ is not identity, and
therefore commutes with half Paulis and anticommutes with the
other half. ]

Our main result holds for any gate set and architecture that
satisfies gate-set orthogonality and anti-concentration. We discuss
these two properties separately and start with orthogonality.

DEFINITION 3 (GATE SET AND ARCHITECTURE OF RANDOM CIR-
curts). We consider random quantum circuits defined over a fixed
architecture described as follows. In each layer, each qubit experi-
ences a 2-qubit gate (so the number of qubits n is even, and there
are nf2 2-qubit gates per layer). The 2-qubit gates can be applied to
any pair of qubits, without geometric locality. Each 2-qubit gate is
independently drawn from some distribution that is invariant under
right-multiplication of random Pauli. The final layer is drawn from a
distribution that is invariant under both left- and right-multiplication
of random Pauli.

Note that the requirement that each qubit experiences a 2-qubit
gate in each layer is for convenience; more general architectures
can be handled by a suitable redefinition of circuit depth (this was
also noted in [15]).

Examples of gate sets that satisfy Definition 3 include Haar
random 2-qubit gates as well as a fixed 2-qubit gate surrounded by
Haar random single qubit gates. A fixed 2-qubit gate surrounded by
random Pauli gates also satisfies Definition 3 but may violate anti-
concentration (see Remark 2). Any ensemble of random circuits
that satisfies Definition 3 has the following crucial property that
we frequently use.

LEMMA 3 (ORTHOGONALITY OF FOURIER COEFFICIENTS). Let C
be a random circuit drawn from some distribution D that satisfies
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Definition 3. Then for any Pauli pathss # s’ € Pg“ and for any
x € {0,1}" we have

f(C,s,x)f(C, s',x)] =0. (26)

E |
Cc~D
ProoF. As s # s/, there exists a 2-qubit gate U that contributes
transition amplitude ((q1|U|p1)) to f(C,s, x) and contributes
Kg2|U|p2)) to f(C,s’,x), such that p; # pa € Pp. Lemma 2 implies
that

E [(qulUlpr) &qz|Ulpz)] = 0. (27)

Due to the independence between different gates, we can separately
calculate the expectation over each gate in Eq. (26). Therefore the
above equation implies that the overall expectation in Eq. (26) equals
0. One special case is that the difference between s and s’ happens
at the last step s4. For this case we use the left-invariance under
random Pauli of the final layer of gates. O

Next we discuss anti-concentration, which is formally defined
as follows.

DEFINITION 4 (ANTI-CONCENTRATION). A distribution over quan-
tum circuits D satisfies anti-concentration if

> pEx*=0(1).

xe{0,1}"

E 2"

C~D (28)

REMARK 1. The following is known about anti-concentration:

o [7, 14] showed that anti-concentration is satisfied for 1D ran-
dom circuits with Haar random 2-qubit gates as long as circuit
depth is above some constant times log n.

o [14] also showed that ©(nlogn) 2-qubit gates are necessary
and sufficient for anti-concentration for a stochastic all-to-all
connected architecture with Haar random 2-qubit gates.

o [14, 15] showed that at least Q(logn) depth is necessary for
anti-concentration, for any architecture with Haar random
2-qubit gates. We also give a simple proof of this fact using the
Pauli basis framework in Corollary 2.

o [14] remarked that, as anti-concentration is proven for two
architectures which are two opposite extremes of geometric lo-
cality, they conjecture ©(nlog n) size (which is ©(log n) depth
in our case) to be necessary and sufficient for anti-concentration
for any reasonably well-connected architecture.

REMARK 2. The results discussed in Remark 1 only concern Haar
random 2-qubit gates. We expect the same results to hold for a fixed
2-qubit gate surrounded by Haar random single qubit gates. It is worth
mentioning that while a fixed 2-qubit gate surrounded by random
Pauli gates satisfies Definition 3, we do not expect it to satisfy anti-
concentration, due to the fact that it does not generate the entire
Clifford group when, for example, the 2-qubit gate is a CNOT gate.

The reason for requiring anti-concentration for our results is be-
cause it is closely related to the Fourier weights of random circuits,
which is then related to the error of the simulation algorithm.

DEFINITION 5 (FOURIER WEIGHT). The Fourier weight of a ran-
dom circuit C at degree k is defined as

> fCsom

sePdtl:|s|=k

W, =2""E 29
(3 g (29)
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Here the 22" factor is a normalization factor that comes from
Eq. (18). A crucial property for our arguments is that
anti-concentration implies that the total Fourier weight is upper
bounded by a constant.

LEMMA 4 (ToTAL FOURIER WEIGHT). Let D be a distribution over
quantum circuits that satisfies anti-concentration and Definition 3.
The Fourier weights {W} satisfy

(1) Wo =1,
(2) Wy =0,Y0 < k <d,
(3) Zk>ds1 Wk = 0(1).

Proor. Wy = 1 corresponds to the unique all-identity path. Let
s be a Pauli path of Hamming weight k = |s| € (0, d]. Then there
exists a 2-qubit gate U that contributes a transition amplitude
(q|U|p) to f(C,s,0m), where either p is identity and q is non-
identity, or vice versa. In either case we have (gq|U|p)) = 0. This
implies that Wy = 0.

To bound the total weight, we start with anti-concentration.

O — n 2
m=_E 2" > pCx)
xef{o0,1}"
2

Z Z f(C,s,x)

xe{01}m \sepgn

= E 2" Y Y, fCsnf(Csw)

x€{0,1}" 5 57 epd+t

:CHNEDZ" Z Z f(C,s,x)?

xe (01} sepin

=22”C]ED Z £(C,s5,0m)?2

1
sepdt

_ 92n CiED Z Z f(Cs, On)z

k20 sepd*l;|s|=k

=1+ Z Wy.

k>d+1

E 2"
Cc~D

(30)

Here, the first line follows from anti-concentration; the second line
follows from the Pauli path integral; the fourth line follows from
orthogonality (Lemma 3); the fifth line follows from Eq. (19). O

Finally we give a detailed clarification regarding the assumptions
we make about the architecture and gate set for our main result.

REMARK 3. For our main result Theorem 1, we assume Definition 3
and anti-concentration as defined in Definition 4.

o If the gate set is Haar random 2-qubit gates, no further as-
sumption is needed.

o If not, then we further assume that the circuit depth is at
least Q(log n). This is because our algorithm requires Q(log n)
depth to be efficient, and we cannot rule out the possibility that
there is an ensemble of random circuits below log depth that
satisfies both Definition 3 and 4.
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3 SIMULATING NOISY RANDOM CIRCUIT
SAMPLING

Given a random circuit C and an output x, let p(C, x) = | (x|Clo™)|?
be the ideal output distribution and let $(C, x) be the output distri-
bution of the noisy circuit where C is subject to local depolarizing
noise of rate y. This section shows the following:

THEOREM 2 (RESTATEMENT OF THEOREM 1). Let D be a distri-
bution over quantum circuits that satisfies anti-concentration and
Definition 3 (also see Remark 3). There is a classical algorithm that,
on input C ~ D, outputs a sample from a distribution that is e-close
to p(C, x) in total variation distance with success probability at least
1 — 8 over the choice of C, in time poly(n, 1/¢,1/6).

Our goal is to compute a function §(C, x) that achieves small L;
distance

A=lp=gl= ), 1H(Cx) - q(Cx)] (31)

xe{0,1}n

with high probability. Here {G(C, x)} is not necessarily a distri-
bution, and §(C, x) is not necessarily positive (the bar notation
indicates that g is a quasi-probability distribution). The main result
is derived in three steps:

(1) We use a general sampling-to-computing reduction shown
by [12] which says that given the ability to compute G(C, x)
as well as its marginals, we can sample from a distribution
that is O(A)-close to p(C, x) with a polynomial overhead.
This is discussed in Section 3.3. It remains to develop an
efficient algorithm to compute G(C, x) and its marginals.

(2) The algorithm is to approximate p(C,x) by summing its
low-degree Fourier coefficients, defined as

iCx)= Y flCsn= Y a-pllfecsx, 62

s:|s|<t s:|s| <t

where ¢ is to be determined. In Section 3.1 we upper bound
the total variation distance A achieved by this approximation.
It shows that choosing ¢ = O(log 1/¢) suffices to achieve ¢
total variation distance.

(3) It remains to bound the running time of the algorithm. In
Section 3.2 which is the main technical part, we show that
each §(C, x) can be computed in time 2°0(f), This completes
the argument.

3.1 Bounds for the Total Variation Distance

We show that the expected total variation distance square is upper
bounded by an exponential decay of the Fourier weights.

952

Dorit Aharonov, Xun Gao, Zeph Landau, Yunchao Liu, and Umesh Vazirani

E[A] <2"E ) (H(Cx) - 4(Cx))
¢ CxG{O,l}"
2

2, 1=yl

x€{0,1}7 \s:|s|>¢
=2"E > > (1-pfcsx)?

x€{0,1}" s:|s|>¢

— ZZHIE Z (1 _ y)zlslf(c’ s, OH)Z

s:|s|>¢

= Z(l - 1) W

k>t

=2"E

(33)

Here, the first line follows from Cauchy-Schwarz; the second line
is by definition of §; the third line follows from orthogonality
(Lemma 3); the fourth line follows from Eq. (19); the fifth line is by
definition of Fourier weight.

A simple upper bound can be derived assuming anti-concentration
(item 3 from Lemma 4),

JE[AZ] < > -pHwe < Y (1= W <0(1) e (34)
k>t k>t

1

By choosing £ = O(log 1/¢) (roughly ¢ ~ v

antee that A < ¢ with high probability.

-log 1/¢) we can guar-

3.2 Counting and Enumerating Legal Pauli
Paths

For a given truncation parameter ¢, the running time of the algo-
rithm depends on the number of Pauli paths with Hamming weight
at most ¢, as well as the efficiency for finding and enumerating
these paths. A simple argument for bounding the number of paths
is as follows. There are n(d + 1) locations in the circuit to insert
Pauli paths. The total number of ways to insert £ non-identity Pauli
into the Pauli path is at most (n(d;l)), and the choice of X, Y, Z for
each non-identity gives a 3¢ factor. Therefore the total number of
paths with Hamming weight at most ¢ is at most

¢ (”(‘” 1)) 30 < (nd) 00

P (35)

In this section we show that this bound is a significant overestimate
and can be improved to 20(*), The key point here is that only the
“legal” paths matters, and therefore we design an algorithm that
only counts and enumerates legal paths.

DEFINITION 6 (LEGAL PAULI PATH). For a given circuit architecture,
a Pauli path s = (so, s1, - . ., Sq) is legal if the following two conditions
are satisfied:

(1) For all 2-qubit gates in the circuit, its input and output Paulis
are either both 11, or both not 11.
(2) so and sq contains only I and Z.

The reason for considering legal Pauli paths is that the illegal
ones are irrelevant, as they contribute 0 to the Pauli path integral.

LEMMA 5. Any illegal Pauli path s gives f(C,s,x) = 0 for any C
and x.
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PRroOOF. Let s be an illegal Pauli path. Then there are two cases:
either the first or the second condition of Definition 6 is violated.
If the second condition is violated, then f(C,s, x) = 0 because the
inner product between computational basis states with sy or sy
equals 0, due to the fact that

(xIs) = Tr(lxXx| - s) =0,  Vx € {0,1}",s ¢ {I/V2,Z/V2}®".
(36)
If the first condition is violated, then there is a 2-qubit gate U
whose input Pauli is IT and the output is not IT, or vice versa. Then
f(C,s,x) = 0 because the transition amplitude contributed by U

equals 0 due to the fact that unitary channel is trace preserving, i.e.

(plUIq) = Tr(pUqUT) =0 ifp=I®Il/2qtI®I/2
orp#I®I/2,q=I®]I/2.

O

Next we develop arguments to count legal paths. The number of
legal Pauli paths up to a given Hamming weight is a combinatorial
property that only depends on the circuit architecture, independent
of the gate set.

We first give a simple example that counts the number of legal
paths with weight d + 1. Lemma 4 says that d + 1 is the smallest
non-zero Hamming weight with legal paths. The result below is
interesting by itself, as we will show later that this result gives a
simple lower bound on the depth for anti-concentration (Corol-
lary 2).

LEMMA 6. The number of legal Pauli paths with Hamming weight
d+1 equalsn - 2d . 3d-1,

PROOF. Asthe Paulipaths = (s, s1, ..., sg) has Hamming weight
d + 1, it has to be the case that |s;| = 1 fori = 0,...,d. We first
choose the location of the non-identity in the first layer so, which
has n choices. Suppose this non-identity Pauli is at the input of
some 2-qubit gate U. Then the output of U can be either IR or RI
(We use R to represent a non-identity), which gives two choices.
Repeating this argument for each layer, we know that the number
of configurations of locations of non-identities is n - 2¢. Finally, the
391 factor comes from the fact that the non-identity Pauli at the
first and last layer has to be Z, while each of the other d — 1 layers
has three choices among X, Y, Z. O

Next we show that anti-concentration implies the desired 2°(¢)
upper bound for the number of legal paths. This bound is clearly
tight up to the constant in the exponent, as even the choice of
X, Y, Z for a single path of weight ¢ gives a 3¢ factor. The problem
with the result below is that it does not give an algorithm to find
and enumerate the legal paths. This is addressed later.

LEMMA 7. Consider any circuit architecture which satisfies anti-
concentration with Haar random 2-qubit gates. For any ¢ > d + 1, the
total number of legal Pauli paths with Hamming weight at most ¢ is
upper bounded by 200

Proor. We have shown in Lemma 4 that anti-concentration
implies that Y5441 Wi = O(1). Below we give a lower bound on
the Fourier weight up to degree . Consider any legal Pauli path s
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with Hamming weight at most ¢. We will calculate its contribution
to the Fourier weight 22" E¢ f(C,s,0™)? as follows.

22n Ig [f(C, s, On)Z]
= 2B ((xlsad sal Ualsa-1) -+ (i Thlso) (sol0™)° |
= B [(alUalsa-1)* -+ (o1l hlso)’]

-E [(salUglsg—1 H?] - E [(s11Th1s0)?]

1 G(s)
15

Here the second line follows from the fact that

[(x[sgW| = |{sol0™N| = ‘/%7 the third line is due to the indepen-
dence between different random gates, and the fourth line is due to
Lemma 1, where we define

(38)

G(s) := the number of 2-qubit gates whose input

39
and output are not IT in s. (9

The above calculation says that any 2-qubit gate whose input and

output are not II contributes a 11—5 factor to the Fourier weight. A

simple bound on G(s) is

% < G(s) < s, (40)

where LHS is because each gate corresponds to at most 4 non-
identity Paulis, and RHS is because each gate has at least 1 input
non-identity Pauli. This implies that

Is]
1
2"E[f(Cs,0M ] > =] . 41
2lrcs0] > () ()
Using this we have
{
o= ) W
k=d+1
{
= 2"E C,s,0M)?
k:Zd;-I ¢ epd; |7kf( )
$EFnisI= (42)

¢ Is]
1
> g E (E) 1[s is legal]
k=d+1 sepd+i:|s|=k
>

¢
1
(E) (Number of legal paths of weight at most ¢),

which means that the number of legal paths of weight at most ¢ is
at most O(1) - 15%. ]

We have remarked earlier that the number of legal paths is a com-
binatorial property that only depends on the circuit architecture,
independent of the gate set. We introduce Haar random 2-qubit
gates in Lemma 7 as a proof technique for bounding the Fourier
weights. We further show that the above results imply a lower
bound on the depth for anti-concentration, which has been shown
by [14, 15] using different techniques.

COROLLARY 2. Consider any circuit architecture which satisfies
anti-concentration with Haar random 2-qubit gates, then the circuit
depth satisfies d = Q(logn).
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Proor. Consider ¢ = d + 1, using Lemma 6 and Lemma 7 we
have

n-2%.3%71 < 0(1) - 1591,
which implies that d = Q(logn).

(43)

O

Next we present the main result of this section, an algorithm for
efficiently enumerating low-weight legal Pauli paths.

LEMMA 8. For any ¢ > d + 1, the number of legal Pauli paths
with Hamming weight at most { is at most ntld . 2000 (the circuit
architecture does not need to satisfy anti-concentration). Furthermore
there is an efficient algorithm to enumerate the legal paths in time
nt/d . 20(0) gnq memory O(nd).

The proof of Lemma 8 is deferred to the end of this section. Next
we discuss its relationship with the above results.

First, it appears that Lemma 8 is not tight as it has an additional
nt/? factor compared with Lemma 7. In fact this is not the case,
due to the fact that Lemma 7 assumes anti-concentration, which
by Corollary 2 means that Lemma 7 only holds when d = Q(log n).
Note that in this case

n[/d — e§~logn — 20((’)’ (44)

so in the anti-concentration regime Lemma 8 gives the same as-
ymptotic result as Lemma 7, which is tight up to the constant in
the exponent.

Second, when ¢ = O(d), Lemma 8 gives poly(n) - 20(d) There-
fore compared with Lemma 6 we conclude that Lemma 8 with
¢ = O(d) is tight up to the constant in the exponent, regardless of
whether anti-concentration holds.

Proof of Lemma 8. We prove Lemma 8 in the rest of this section.
We will enumerate legal Pauli paths s = (so, s1,...,5g) using the
following method.

(1) For each d + 1 < k < ¢, choose the Hamming weight
wo, .. ., wq for each layer, such that wo + - - - + wy = k.

(2) Choose the configuration (positions of identities and non-
identities) for each layer.

(3) Choose X/Y/Z for each non-identity.

The following is a detailed counting argument and enumeration
method for the legal Pauli paths. Consider a fixed total Hamming
weightd+1 <k < ¢.

(1) Choose the Hamming weight wy, . . ., wy for each layer, such
that the total weight is k. The number of choices equals the
number of solutions to the equation wo + wa +-- -+ wyg =k

(w;i > 1), which equals to (kd_l) < 2%=1 The enumeration of
such solutions can be achieved using a combinations enu-
merator which efficiently enumerates all combinations of
choosing d objects from k — 1 objects, with memory cost
O(d). Note that not all solutions correspond to legal Pauli
paths; the illegal ones will be rejected later.

(2) For each Hamming weight configuration wy, ..., wg, let ¢
be the index of the layer with smallest Hamming weight
(if there are tiebreaks, choose the smallest t). As the total
weight is k, we know that w; < k/d. Next we enumerate the
configuration (locations of non-identities) of this layer. The
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n
Y
ing a combinations enurtnerator. We can store a configuration
of a layer using n bits.
(3) We choose the configurations for the other layers in a way
that evolves the ¢-th layer both forwards and backwards. For
example, consider choosing the configuration for the t + 1-th
layer, conditioned on a given configuration for the ¢-th layer.
Consider the layer of 2-qubit gates that connects the ¢-th
layer of the Pauli path with the t+1-th layer of the Pauli path.
Those 2-qubit gates that have input IT have to have output
II. The number of 2-qubit gates whose input is not II is at
most w;. For each of these gates, its output can be IR, RI,
or RR (We use R to represent a non-identity). So there are at
most 3™ configurations for the ¢+ 1-th layer. Not all of these
configurations satisfy the constraint that the ¢ + 1-th layer
has Hamming weight w;;;. So within these (at most) 3™
configurations, we reject those that do not have weight wy4;.
Repeating this procedure for the next layer, we have that
the number of configurations for the ¢ + 2-th layer is at most
3%t+1 conditioned on a given configuration for the ¢ + 1-th
layer. Using the same argument but evolve backward from
the t-th layer, the number of configurations for the t — 1-th
layer is at most 3", and the number of configurations for
the t — 2-th layer is at most 3"~! and so on.
Repeat the above argument for t + 1,¢ + 2,...,d as well
as t — 1,t — 2,...,0. The total number of configurations
for the entire Pauli path (conditioned on a given partition
wy, ..., wq and a given configuration for the ¢-th layer) is
Wi = 3K The memory cost for enumerating a
configuration for the entire circuit is at most O(nd).
Replace each R with X, Y, Z (except for the first and last layer,

number of choices is ( ) < n*/9 and can be enumerated us-

—
N
el

at most 32i

5

=~

where R is only replaced with Z), giving another 3k factor.

Taking into account all factors in the above steps, the total number
of legal paths of Hamming weight at most ¢ (and the total running
time of the enumeration algorithm) is at most

4
Dokt gk gk < gt/ gt =t/ 200 (45)
k=d+1

3.3 Putting Everything Together

Summarizing the main results of the previous section, we have the
following.

LEmMMA 9. Consider the same assumptions as our main result (Re-
mark 3) and fix a truncation parameter €. There is an algorithm
that computes the function q(C,x) = Y5 <e(l - y)|5|f(C, s, %)
and its marginals in time nd - 20(0)  Here by marginal we mean
YieT Zxe{o1} Q(Cox1,...,xp) forany T C [n].

PRrOOF. As circuit depth d = Q(logn), Lemma 8 says that for
any x € {0,1}", g(C,x) can be computed in time nd - 20() ys-
ing the enumeration algorithm, as there are 2°(¢) paths and each
path takes O(nd) time to compute. To compute a certain marginal
2ieT 2ixief01) 9(C. X1, ..., Xpn), note that we cannot straightfor-
wardly compute each g(C, x1, . . ., x) and sum them up because it
has an additional factor 27!, However, the marginal can be easily
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computed by exchanging the summation order,

Z Z q(C,x1,...,xn)

ieT x;€{0,1}

Z Z (l—y)lslf(C,s,xl,...,xn)

i€T x;€{0,1} s:|s|<¢

Z (l—y)ls| Z Z f(Cs,x1,. ., xn) |

si|s|<¢t ieT x;€{0,1}

(46)

The statement follows from the fact that the summation in the
bracket can be computed in time O(nd). This is because

Z Z f(C s, x1,...,xn)
i€T x;€{0,1}
= Z Z <<x|sd>><<sd|(ud|sd_1» . «51 |’L[1|so))((so|0">) (47)

i€T x;€{0,1}
= (X |sa) €salUglsg—1) - - - €s11Unlso) Ksol0™),

where

(s = o sq - ) e Xoei| Q) 1 |

jeT ieT

Lemma 9 allows us to use the standard reduction of sampling
from a probability distribution via computing its marginals. An
issue here is that g(C, x) is not necessarily a distribution; it is only
guaranteed to be close to p(C, x) in L; norm. We use the following
result of [12] which allows us to sample from a distribution that is
close to p(C, x).

LEmMMA 10 (LEMMA 10 IN [12]). Let p be a probability distribution
on {0, 1}". Assume there is an oracle that computes a function § :
{0,1}" — R as well as its marginals, such that ||p — q||; < 8. Then
there is an algorithm that samples from a probability distribution q
using O(n) calls to the oracle, such that ||p — ql|; < 46/(1 - J).

Proof of Main result. In Section 3.1 we have shown that Ec [Az] <
0(1) - e=2rt, By Markov’s inequality,

PRI

Therefore, with probability at least 1 — § over random circuit C, we
have

A* > ZISE [AZ]] <5 (49

< L 2] <« % -yt
A_\/SE[A]_\/Se ) (50)

Using Lemma 9 and Lemma 10, for those circuits that satisfy
Eq. (50) we can sample from a probability distribution thatis O(1)-A-
close to p(C, x) in total variation distance. Let ¢ be the desired total

variation distance, then

&e_ﬂ < ¢ is satisfied when ¢ > ! log o

V6 Y £~\/5'

Obtaining one sample requires O(n) calls to the algorithm in
Lemma 9. Assuming circuit depth is d < poly(n), the total run-
ning time for obtaining one sample is n - nd - 2000) = poly(n) -

(0 /(e \/S))O(I/Y) = poly(n, 1/¢,1/9).

(51)
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3.4 Statistical Indistinguishability

Next we show that our main result implies statistical indistinguisha-
bility. We first recall the basic notions and then give a proof of
Corollary 1.

Given two known probability distributions p, q¢ over the same
finite alphabet ({0, 1}" in our case), and given M samples from either
p or g, we would like to tell which is the case with high success
probability. That is, two known distributions p and g are statistically
distinguishable if there is an algorithm A (with unbounded running
time) that, on input x1,...,x3 ~ D,

o if D = p, A returns “D = p” with probability at least %;
o if D = q, A returns “D = ¢” with probability at least %

Two known distributions p and g are statistically indistinguishable
with M samples if there is no algorithm A that satisfies the above
condition. We use the following well-known fact that closeness in
total variation distance implies statistical indistinguishability.

LEMMA 11. Two known distributions p and q are statistically in-
distinguishable with M samples if
~lp =gl < 52)
o 1P = qlly < 2
In the context of random circuit sampling, statistical distinguisha-
bility is similarly defined with an additional averaging over the
random circuit.

DEFINITION 7 (STATISTICAL DISTINGUISHABILITY). For a random
circuit C, let p(C,x) be the noisy RCS output distribution and let
q(C, x) be a classical mock-up distribution (the output distribution
of a classical simulation algorithm). p(C, x) is statistically distin-
guishable from q(C, x) with M samples if there is an algorithm A
with input C as well as x1,...,xp € {0,1}" and output one of
{noisy RCS, mock-up} (with unbounded running time) such that

® BEcPry  xp~p(0) [A(C,x1,..., x0) = noisy RCS] > %
® BEcPry  xy~q(c) [A(C x1,..., xp1) = noisy RCS] < %

Proof of Corollary 1. In order to prove statistical indistinguisha-
bility it suffices to show that
1
e | S
2[5 M.q0M] | <3 53)
Our main result says that [|p(C) — q(C)||; < ¢ with probability at

least 1 — ¢ over C. Call those C that satisfy ||[p(C) —q(C)ll; < ¢
good, and the rest bad. We have

el ]| <2l o], s
+ Pr[C is bad]
<E [M - 15(C), q(O)l; IC is good] + &

< Me+ 6,

(54)
where the first line follows from the law of total expectation and the
second line follows from subadditivity of total variation distance
with respect to tensor product. Therefore, statistical indistinguisha-
bility is guaranteed by choosing ¢ = 0.01/M and § = 0.01, which
gives running time poly(n, M) in our algorithm.
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Figure 2: A gate set related to Google and USTC’s experi-
ments, for which our main result holds. LHS: the gate set
consists of a fixed fSim gate surrounded by random gates
from {VX, VY, VW} as well as random Z rotations. RHS: this
is equivalent to LHS due to a special property of the {Sim
gates.

4 GENERALIZING TO AN APPROXIMATION
OF GOOGLE AND USTC’S GATE SETS

In this section we discuss the role of gate sets in our main result.
Assuming anti-concentration holds and at least Q(logn) depth,
then in fact the only place in the proof of our main result where the
gate set is relevant is in the third line of Eq. (33). It uses a property
of the Pauli paths called orthogonality (Lemma 3), which follows
from a property of the gate set which we call gate-set orthogonality
(Lemma 2). Gate-set orthogonality says that in the Pauli basis, if we
consider averaging over two copies of a random gate in the gate
set, then it effectively forces the input Pauli to be identical across
the two copies. Lemma 2 shows that this holds as long as the gate
set is closed under random Pauli.

However, in Google and USTC’s experiments [6, 31, 32] this
condition is violated. They considered random circuits with fixed
2-qubit gates and random single-qubit gates, where the 2-qubit
gates are called fSim and are roughly parameterized as follows,

1 0 0 0
, 0 0 e i 0
fSim(w1, w2, w3) = 0 e—ion 0 0 (55)
0 0 0 e~ iws

These angles are site-dependent and are determined by benchmark-
ing experiments. The single-qubit gates are chosen randomly® from
{(VX, VY, VW}, where W = (X + Y)/V2.

Here we consider a related gate set shown in LHS of Fig. 2 where
the main difference is that we insert random Z rotations. The fSim
gates have a special property that allows us to borrow randomness
from Rz (63), Rz (04) and create additional random gates as Rz (6s),
R7(66), leading to the equivalent gate set in RHS of Fig. 2. This is
because of the following commutation property. By definition, we
can check that for any angles 61, 02, @ = (w1, w2, W3),

Rz (01) ® Rz(02) - fSim(w) = fSim(w) - Rz(62) ® Rz (01). (56)

Therefore we can consider the effective single qubit gate set
R7(01)VRz(03),V € {\/)_(, VY, \/W} By direct calculation, we can
verify that this single-qubit gate set is invariant under random Pauli
and thus satisfies gate-set orthogonality.

LEMMA 12. Let D be a distribution over single-qubit unitary de-
fined as Rz (61)VRz(02) where 01,03 ~ [, ] and

>Google’s single qubit gates V are not independent across each layer; neighboring
layers does not repeat. This is still covered by Lemma 12 as it holds even for any fixed

Ve {(VX, VY, YW}
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vV ~ {\/X VY, \/W} Then for any P,Q € {I,X,Y,Z} such that
P # Q, we have

E [UPUT®U U] =o. 57
B 0 7

This implies the orthogonality condition in Lemma 3 which
implies that our main result holds. An interesting open question is
whether orthogonality is necessary for our main result, and whether
our main result holds for the exact gate sets used in Google and
USTC’s experiments.
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