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ABSTRACT

We propose an application for near-term quantum devices: namely,
generating cryptographically certified random bits, to use (for ex-
ample) in proof-of-stake cryptocurrencies. Our protocol repurposes
the existing “quantum supremacy” experiments, based on random
circuit sampling, that Google and USTC have successfully carried
out starting in 2019. We show that, whenever the outputs of these
experiments pass the now-standard Linear Cross-Entropy Bench-
mark (LXEB), under plausible hardness assumptions they neces-
sarily contain Q(n) min-entropy, where n is the number of qubits.
To achieve a net gain in randomness, we use a small random seed
to produce pseudorandom challenge circuits. In response to the
challenge circuits, the quantum computer generates output strings
that, after verification, can then be fed into a randomness extractor
to produce certified nearly-uniform bits—thereby “bootstrapping”
from pseudorandomness to genuine randomness. We prove our
protocol sound in two senses: (i) under a hardness assumption
called Long List Quantum Supremacy Verification, which we justify
in the random oracle model, and (ii) unconditionally in the random
oracle model against an eavesdropper who could share arbitrary
entanglement with the device. (Note that our protocol’s output
is unpredictable even to a computationally unbounded adversary
who can see the random oracle.) Currently, the central drawback
of our protocol is the exponential cost of verification, which in
practice will limit its implementation to at most n ~ 60 qubits, a
regime where attacks are expensive but not impossible. Modulo
that drawback, our protocol appears to be the only practical ap-
plication of quantum computing that both requires a QC and is
physically realizable today.
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1 INTRODUCTION

After three decades of quantum computing theory and experiment,
the world finally has noisy quantum devices, with 50 — 60 qubits
or ~ 100 photons, that solve special sampling problems in a way
that’s conjectured to outperform any existing classical computer.
The devices include Google’s 53-qubit “Sycamore” chip [9], USTC’s
“Jiuzhang” [48] and “Zu Chongzhi” [46], and most recently Xanadu’s
“Borealis” [30]. The sampling problems, which include Random
Circuit Sampling [5] and BosonSampling [3], grew directly out of
work in quantum complexity theory beginning around 2010.

To be clear, it’s still debated in which senses current devices have
achieved the milestone of “quantum supremacy”—a term coined by
Preskill [37] in 2012, to refer to an orders-of-magnitude speedup
over all known classical approaches for some well-defined (but not
necessarily useful) computational task. On the one hand, since
Google’s original 2019 announcement [9], the sampling experi-
ments have continued to improve, for example in number of qubits
and circuit depth (for RCS) [46], and in number of photons and
measurement fidelity (for BosonSampling) [30]. One expects fur-
ther improvements. On the other hand, classical spoofing attacks
against the experiments have also improved—with some attacks
based on tensor-network contraction (e.g., [35]), and others taking
advantage of noise in the devices (e.g., [10]). Notably, however,
the attacks that fully replicate the Google device’s observed per-
formance, such as that of [35], still have inherently exponential
scaling, and still seem to require an ExaFLOPS supercomputer to
match or beat the Google device’s running time of ~ 3 minutes. As
arough estimate, the Summit supercomputer uses 13 megawatts,
while Google [9, Appendix H] estimated that the dilution refrigera-
tor for its 53-qubit QC uses ~ 20 kilowatts. Thus, despite the QC’s
extreme need for refrigeration, it still wins by a factor of hundreds
as measured by electricity cost.

For some, the recent quantum supremacy demonstrations were
important mostly because they showcased many of the key ingre-
dients of a future fault-tolerant, scalable quantum computer—and
just as importantly, did not detect any correlated errors of the sort
that would render fault-tolerant quantum computing impossible.
For others, however, these experiments have done more: namely,
they’ve inaugurated the era of “NISQ” or Noisy Intermediate Scale
Quantum computation, another term coined by Preskill [38]. The
hope of NISQ is that, even before fault-tolerance is achieved, noisy
QCs with up to (say) 1000 qubits might already prove useful for cer-
tain practical problems, just like various analog computing devices
were useful even before the invention of the transistor inaugurated
the digital era.
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Unfortunately, despite the billions that have by now been in-
vested into NISQ hopes, the lack of any obvious “killer app” for
NISQ devices has emerged as a defining fact of the field.

Perhaps NISQ devices will be useful for simulation of condensed-
matter physics or even quantum chemistry. Alas, while there are
exciting proposals for quantum simulations that would need only
a few hundred qubits (e.g., [40]), these proposals invariably have
the drawback of requiring thousands or millions of layers of gates.
Unless it can be remedied, this would put them completely out
of reach for NISQ devices. Or perhaps NISQ devices will yield
speedups for optimization problems, via quantum annealing or
QAOA [23]. Alas, despite years of intense theoretical and empirical
work, researchers have struggled to show any clear advantage for
quantum annealing or QAOA over classical computing, for any
practical optimization problem—Iet alone an advantage that would
be achievable on a NISQ device.

We should add that, in recent years, there have been striking
new ideas for how to demonstrate quantum supremacy. These
include interactive protocols that exploit trapdoor one-way func-
tions [15, 27], as well as the spectacular result of Yamakawa and
Zhandry [47], which gave an exponential quantum speedup for an
NP search problem relative to a random oracle. Alas, pending some
breakthrough, none of these ideas seem to be implementable on a
NISQ device.

1.1 Our Contribution

This paper studies, to our knowledge for the first time, whether
current sampling-based supremacy experiments might themselves
have a useful application outside of physics.! We focus on the
generation of cryptographically certified random bits.

Needless to say, it is easy to use a quantum computer—or for that
matter, even a Geiger counter next to some radioactive material—
to generate as many random bits as we like: bits that quantum
mechanics itself predicts will be fundamentally unpredictable. The
problem is, how do we convince a skeptic over the Internet, with
no access to our hardware, that the bits were indeed random, and
not secretly backdoored? This is not just a theoretical worry: for
example, as a byproduct of the Edward Snowden revelations in 2013,
the world learned that a NIST pseudorandomness standard known
as Dual_EC_DRBG was indeed backdoored by the US National
Security Agency.?

Certified randomness has become a significant practical problem—
particularly with the rise of proof-of-stake cryptocurrencies, which
notably include Ethereum® (market cap at time of writing: $163
billion), following its migration on September 15, 2022. In proof-
of-stake systems, lotteries are continually run to decide which
currency holder gets to add the next block to the blockchain. There
is no trusted authority to manage these lotteries, yet the entire sys-
tem rests on the assumption that they are conducted honestly and
without bias. Other applications of certified randomness include

Some earlier work explored whether BosonSampling might be useful for (e.g.) cal-
culating molecular vibronic spectra [26] or graph similarity detection [41], but those
hopes were killed by efficient classical simulations.
Zhttps://en.wikipedia.org/wiki/Dual_EC_DRBG
3https://en.wikipedia.org/wiki/Ethereum
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non-interactive zero-knowledge proofs, and financial and electoral
audits.

One approach to the certified-randomness problem uses
blockchains themselves as a source of random bits—with the argu-
ment being that anyone who could predict the bits could exploit
their predictability to get rich [14]. Other approaches look to the
social or natural worlds for a source of publicly verifiable entropy:
for example, perhaps one could use the least significant digits of
the Dow Jones Industrial Average, or the patterns of granules that
form on the surface of the Sun.

More relevant for us, since 2009, an exciting line of work has
shown how to use measurements on entangled particles as a source
of physically certified randomness [19, 20, 33, 34, 36, 44]. The idea
is that, if the measurement outcomes are observed to violate the
Bell/CHSH inequality, then by that very fact, the outcomes cannot
have been secretly deterministic, unless there was secret commu-
nication between the “Alice” and “Bob” detectors. Furthermore,
depending on the experimental setup, this communication might
need to have occurred faster than light. Thus, the outcomes must
contain genuine entropy, which can be fed into a randomness ex-
tractor to purify it into nearly-uniform random bits. The technical
part is that, in a Bell/CHSH experiment, the measurement bases
must themselves be unpredictable—and thus, they need to be chosen
judiciously if we want an overall net gain in randomness. This is
the problem that the line of works [19, 20, 33, 34, 36, 44] has now
almost completely solved.

Bell/CHSH-based certified randomness protocols have already
been experimentally demonstrated [13], and are even in considera-
tion for practical deployment in the NIST Randomness Beacon [28],
which generates 512 random bits per minute.

The central drawback of these protocols is that a user, down-
loading allegedly random bits from the Internet, has no obvious
way to verify that the “Alice” and “Bob” detectors were out of
communication—the key assumption needed for security. Indeed,
in some Bell/CHSH experiments, “Alice” and “Bob” are mere feet
away! But even if they weren’t, how would this be proved?

The central insight of this paper is that sampling-based quan-
tum supremacy experiments provide an entirely different route to
certified randomness—a route that requires only a single quantum
device, while also being practical today. In our protocol, a classical
verifier uses a small random seed to generate n-qubit challenge cir-
cuits C1, Cy, . . . pseudorandomly. The verifier then submits these
Ci’s one at a time, presumably over the standard Internet, to a quan-
tum computer server. For each C;, the server needs to respond
quickly—say, in less than one second—with independent samples
S1, - . ., Sk from C;’s output distribution: that is, the distribution over
{0, 1} obtained by running C; on the initial state |0") and then
measuring in the computational basis.

The verifier, at its leisure, can then calculate the so-called Linear
Cross-Entropy Benchmark,

k
LXEB = ) (s/ICilo") [
=1

for at least some of the challenge circuits C;. If the LXEB scores are
sufficiently large, our analysis shows that the verifier can then be
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confident, under plausible computational assumptions, that there
must be Q(n) bits of genuine min-entropy in the returned samples.

In other words: even a quantum computer should need exp(n)
time to generate samples that pass the LXEB test and yet are se-
cretly deterministic or nearly-deterministic functions of C;. For
a typical circuit C;, an honest sample from the output distribu-
tion will contain n — O(log n) bits of min-entropy. A dishonest
quantum computer could somewhat reduce the entropy of the re-
turned samples—for example, by generating many samples and
then returning only those that start with 0 bits. But doing better, by
finding (e.g.) the lexicographically first samples that pass the LXEB
test, or the samples that maximize the LXEB score, should be expo-
nentially hard even quantumly, requiring amplitude amplification
or the like (while a subexponential classical algorithm wouldn’t
stand a chance). The purpose of our security reductions, which we
will explain in detail in Section 2, is just to formalize these simple
intuitions.

Assuming the returned samples (or enough of them) pass the
LXEB test, the last step of our protocol is to feed them into a clas-
sical seeded randomness extractor, to produce output bits that are
exponentially close in total variation distance to uniformly random.

Stepping back, many people have pointed out the close analogy
between

(1) the Bell/CHSH experiments, which ruled out local hidden-
variable theories (and which have now been recognized with
the Nobel Prize in Physics), and

(2) sampling-based quantum supremacy experiments, which
seek to rule out “classical polynomial-time hidden-variable
theories”

This paper shows that the analogy goes even further. In both cases,
the original purpose of the experiment was just to demonstrate
the reality of some quantum phenomenon, and rule out any clas-
sical explanation—but we then get certified randomness as a “free
byproduct” of the demonstration. In both cases, the entire setup
hinges on a numerical inequality—one that any classical explana-
tion must satisfy, that quantum mechanics predicts can be violated
by a large amount, and that realistic experiments can violate albeit
by less than the maximum that quantum mechanics predicts. In
both cases, any violation of the inequality turns out to suffice for
the certified randomness application.

We note, lastly, that our protocol inherently requires the use of
a quantum computer. This can be seen as follows: consider any
server that’s simulable in classical probabilistic polynomial-time.
Then by definition, there can be no efficient way to distinguish that
server from a simulation whose randomness has been replaced by the
output of a pseudorandom generator. Indeed, if the pseudorandom
generator has an m-bit seed, then the best distinguishing algorithm
would be expected to take exp(m) time—which means that even
given the ~ 2" time that we allow for verification, the verifier still
cannot distinguish an honest server from one with only m bits of
true entropy, for any m > n.

How does our actual quantum protocol evade the above impossi-
bility argument? Simply by a fact used again and again in quantum
complexity theory: namely, that there is no notion of “pulling the
randomness” (or quantumness) out of a quantum algorithm, for
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example to replace it with pseudorandomness, analogous to what is
possible with classical randomized algorithms. One could also say:
our protocol’s security analysis will depend on a computational
assumption, that the problem of “Long List Quantum Supremacy
Verification” is hard for the complexity class QCAM, whose clas-
sical analogue is simply false. The reasons for this, in turn, are
closely related to one of the elemental differences between classical
and quantum computation, that PostBPP (BPP with postselected
outputs) is contained in the polynomial hierarchy and can be sim-
ulated using approximate counting, whereas PostBQP = PP can
express #P-complete problems.

1.2 Practical Considerations

Our certified randomness protocol could be demonstrated on exist-
ing devices, with n = 60 qubits or some other number in the “quan-
tum supremacy regime.” However, there are practical and even
conceptual issues to be sorted out before deploying the protocol
for proof-of-stake cryptocurrency or any other critical application.

Verification cost. The central drawback of our protocol, as it
stands, is that to check the server’s outputs, the classical verifier
needs to calculate a Linear Cross-Entropy score, and this is expected
to take ~ 2" time—similar to the time needed for classical spoofing.
This drawback is directly inherited from Random Circuit Sampling
and all other current approaches to NISQ quantum supremacy itself.

Because of the verification cost, n, the number of qubits, must
be chosen small enough that 2” is still within range of the most
powerful classical supercomputers available. If so, however, the
issue is obvious: 2" would also be within range of a sufficiently
dedicated classical spoofer, who could then predict and control the
allegedly random bits.

Nevertheless, we claim that not all hope is lost. The crucial
observation is that spoofing, to be effective, needs to be continual:
for example, if the challenge circuits are submitted every second,
then the spoofer needs to run nearly every second as well. Even if
a real quantum computer were used (say) every other second, the
outputs would contain a lot of genuine min-entropy, which would
suffice for a secure protocol. The spoofing also needs to be fast—as
fast as the QC itself.

One might object that, since most classical algorithms to simulate
quantum circuits are highly parallelizable, spoofing our protocol
within some exacting time limit is “merely” a matter of spend-
ing enough money on classical computing hardware. When (say)
n = 60, though, we estimate that the expenditure, to do exp(60)
operations per second, would run into billions of dollars, outside
the means of all but corporations and nation-states.

Verification, by contrast, only needs to be occasional. Using
a tiny amount of seed randomness, the verifier can choose O(1)
random rounds of the protocol and spot-check only those. Then a
malicious server that spoofed even (say) 10% of the rounds would
be caught with overwhelming probability. Verification can also
be done at leisure: so long as the verifier is satisfied to catch the
spoofer after the fact, the verifier could spend hours or days where
the spoofer needed to take less than a second. Indeed, to keep the
server honest, arguably the verification need not even be done: it’s
enough to threaten credibly that it might be done!
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Having said that, of course it would be preferable if the verifi-
cation could be done in nO time, in some way that retained the
protocol’s “NISQiness.”

In our view, whether it’s possible to achieve sampling-based
quantum supremacy, on a NISQ device and with efficient classical
verification, has become one of the most urgent open problems in
quantum computing theory, even independently of this work. Our
work further underscores the problem’s importance, by showing
how a solution could turn secure, practical certified randomness
into the first real application of quantum computers.

Interactivity. A second practical issue with our protocol is the
need for the verifier continually to generate new challenge circuits
that are unpredictable to the quantum computing server. One could
reasonably ask: if the verifier has that ability, then why does it even
need the quantum computer to generate random bits?

The short answer is that our protocol offers an “upgrade” in
the level of unpredictability: the challenge circuits only need to be
pseudorandom (for reasons to be explained later, against a QSZK
adversary). So in particular, the verifier can generate all the circuits
deterministically from a single initial random seed. The protocol’s
output, by contrast, is guaranteed to be genuinely random.

Indeed, our protocol offers an appealing “forward secrecy” prop-
erty. Namely, even if we imagine that the verifier’s pseudorandom
generator will be broken in the future, so long as the server can’t
break the PRG at the time the protocol is run, the server is forced
to generate truly random bits. Such bits will of course remain
unpredictable, conditioned on anything that doesn’t depend on
themselves, regardless of any future advances in cryptanalysis.

Who verifies the verifier? Still, there remains a difficulty: the ver-
ifier checks the QC’s outputs, but who checks the verifier? If the
verifier just wants random bits for its own private use, then there
is no problem: the verifier could use our protocol, for example,
to check random bits output by a QC that was bought from an
untrusted manufacturer. But consider an application like proof-of-
stake cryptocurrency, where the certified random bits need to be
shared with the world. Does the world designate some organization
to play the role of the verifier? If so, then why couldn’t that organi-
zation be corrupted or infiltrated, as surely as the organization that
owns the quantum computer—bringing us back where we started?

Classical cryptography suggests a variety of potential solutions
to this dilemma. For example, perhaps a dozen or more classical ver-
ifiers each generate their own pseudorandom sequences, and those
sequences are then XORed together to produce a single sequence
which is used to generate the challenge circuits to send to the quan-
tum computing server. If even one verifier wants the sequence
to be unpredictable to the server, then it will be, provided that no
verifier can see any other verifier’s sequence before committing to
its own.

Again one could ask: if we trust such a XOR protocol, then why
not just use its outputs directly, and skip the quantum computer?
Again our answer appeals to the “randomness bootstrap”: provided
we agree that the XOR’ed sequence is unpredictable in practice, for
now, the quantum computer’s output will then be fundamentally
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unpredictable. Our protocol thus provides an upgrade in the level
of unpredictability.

1.3 Related Work

We are not the first to propose using a quantum computer to gen-
erate certified random bits, which are secure under some com-
putational hardness assumption. Brakerski, Christiano, Mahadev,
Vazirani, and Vidick [15] gave an elegant scheme based on the as-
sumed hardness of the Learning With Errors (LWE) problem. In
subsequent work, Mahadev, Vazirani, and Vidick [31] showed that
the Brakerski et al. protocol generates Q(n) random bits per round,
which matches our protocol.

The central advantage of the Brakerski et al. protocol over ours is
that its outputs can be verified in classical polynomial time. On the
other hand, unlike ours, their protocol seems difficult or impossible
to implement on a NISQ device, because it requires evaluating com-
plicated cryptographic functions on superpositions of inputs. In
addition, their protocol requires the quantum computer to maintain
a coherent superposition state while it interacts with the verifier,
presumably over the Internet. This is currently feasible only with
certain hardware platforms, such as trapped ions, and not for ex-
ample with superconducting qubits (whose coherence times are
measured in microseconds).

More recently, as a byproduct of their breakthrough on an expo-
nential quantum speedup for NP search relative to a random oracle,
Yamakawa and Zhandry [47] gave a different interactive protocol
to certify Q(logn) random bits, in the random oracle model and
also assuming the so-called Aaronson-Ambainis conjecture [2]. We
do not know whether the Yamakawa-Zhandry protocol remains
secure against an entangling adversary, nor whether it accumu-
lates entropy across multiple rounds. In any case, theirs is again a
protocol that evaluates complicated functions on superpositions of
inputs, meaning there is little or no hope of running it on a NISQ
device.

In contrast to these earlier works, here we pursue the “minimalist
approach” to generating certified randomness using a quantum
computer: we eschew all cryptography done in superposition, and
just examine the output distributions of random or pseudorandom
quantum circuits. By taking this route, we give up on efficient
verification, but we gain feasibility on current hardware, as well
as a conceptual unification of certified randomness with sampling-
based quantum supremacy itself.

Recently, building on the unpublished announcements by one
of us (SA) of the research now reported in this paper, Bassirian,
Bouland, Fefferman, Gunn, and Tal [11] took some first steps toward
analyzing the use of sampling-based quantum supremacy experi-
ments for certified randomness. Their first result says that, relative
to a random oracle, any efficient quantum algorithm for Fourier
Sampling must generate Q(n) bits of min-entropy as a byproduct
of its operation. Their second result says that Long List Quantum
Supremacy Verification (LLQSV), the problem that underlies our
hardness reduction, is neither in BQP nor in PH relative to a ran-
dom oracle. To prove non-containment in PH, they build on the
breakthrough oracle separation between BQP and PH due to Raz
and Tal [39].
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These results are of course closely related to ours, but they fall
short of a soundness analysis for our certified randomness protocol.
We go further than [11] in at least four respects:

(1) We prove that a plausible hardness assumption about LLQSV
implies the generation of certified random bits. This reduc-
tion does not depend on a random oracle.

(2) We give black-box evidence for that hardness assumption.
(The result of [11], that black-box LLQSV is not in PH, is
interesting and new, but neither necessary nor sufficient for
us. As we’ll explain, we need non-containment in the class
QCAM/qpoly.)

(3) We prove the accumulation of entropy across multiple
rounds.

(4) In the black-box setting, we prove security against an entan-
gled adversary.

Our proof techniques are also independent of those in [11].

Lastly, let us mention that Branddo and Peralta [17] have already
reported numerical calculations to find appropriate parameter set-
tings for the protocol described in this paper.

1.4 This Paper’s History

One of us (SA) conceived the certified randomness protocol, as
well as basic elements of its soundness analysis (e.g., the LLQSV ¢
QCAM/qpoly hardness assumption), in February 2018. SA then
gave various public talks about the proposal (e.g., [1]), albeit only
sketching the analysis. Those talks influenced subsequent work
on quantum supremacy: for example, the Google group cited them
as motivation in its 2019 paper announcing its 53-qubit Sycamore
experiment [9].

Alas, the soundness analysis ended up being too involved for SA
to complete alone. That and other factors caused a more than four-
year delay in writing up this paper. Here, we not only complete the
analysis that SA announced in 2018: we also prove security, in the
random oracle model, against an adversary who could be arbitrarily
entangled with the QC. This goes beyond what SA claimed in 20138,
and indeed addresses one of the central open problems raised at
that time.

1.5 Future Directions

Many important problems remain:

o As mentioned before, perhaps the biggest problem is to de-
sign a sampling-based quantum supremacy experiment that
both runs on a NISQ device and admits efficient classical
verification. If such an experiment were developed, then
based on our results here, we predict that it could be read-
ily repurposed to get a secure, efficiently-verifiable certified
randomness scheme that runs on existing devices.

o Short of that, it would also be interesting to adapt our ran-
domness protocol from Random Circuit Sampling (RCS)
to other known quantum supremacy proposals, such as
BosonSampling [3] and 1QP [18]. With BosonSampling,
the problem is that we currently lack a crisp, quantitative
conjecture about the best that a polynomial-time classical
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algorithm can do to spoof tests such as the Linear Cross-
Entropy Benchmark (LXEB). From 2013 work of Aaronson
and Arkhipov [4], we know that, in contrast to what we con-
jecture for RCS, efficient classical algorithms can get some
depth-independent, Q(1) LXEB advantage for BosonSam-
pling, but how much? Answering this question seems like
a prerequisite to designing a certified randomness protocol,
as it would set the lower bound on how well a BosonSam-
pling experiment has to do before it can be used for such a
protocol.

e Of course, it would be great to know more about the truth
or falsehood of the central hardness conjectures on which
we base our protocol’s security—e.g., that “Long List Quan-
tum Supremacy Verification” (LLQSV) lacks a QCAM/gpoly
protocol. It would be also great to prove our protocol’s se-
curity under weaker assumptions. Can we at least remove
the exponentially long list of circuits, and use a hardness
assumption involving a single circuit?

In the setting with an entangled adversary, we can currently

prove security only in the random oracle model. Can we

state a plausible hardness assumption that suffices for that
setting?

e Under some plausible hardness assumption, can we tighten
the lower bound on the amount of min-entropy generated
per sample—even up to the maximum of n — O(log n)?*

o Likewise, can we show that more and more min-entropy
continues to be generated, even if we sample with the same
circuit C over and over? Clearly there is a limit here: once
enough time has elapsed that a spoofer could have explicitly
calculated C’s entire output distribution, and perhaps even
stored it in a giant lookup table, C is no longer secure and
needs to be replaced by a new circuit. But can we at least go
up to that limit? To whatever extent we can, our protocol
would become much more efficient in practice—especially
once we factor in (e.g.) the time needed to calibrate a super-
conducting QC on a new circuit C.

o We know, both from the Haar-random approximation and
from extensive numerical evidence, that an ideal, honest QC
does succeed at the Linear Cross-Entropy Benchmark with
overwhelming probability, given a random quantum circuit
C as input. And in some sense, since this fact is never needed
in our security analysis, empirical evidence suffices for it!
All the same, it is strange that a rigorous proof of the fact is
still lacking, at least for “natural” quantum circuit ensembles.
We prove the fact in the random oracle model, but can we
prove it outright? Recent advances showing that random
quantum circuits yield t-designs [16, 25] take us part of the
way, but an additional idea seems needed.

2 TECHNICAL OVERVIEW

In this section, we give an overview of our technical contribution.
For the detailed analysis and discussions, we refer the readers to
the full version of our paper [7].

“n — O(log n) is the maximum because the quantum computer could always (say)
generate n°M samples from the correct distribution until it finds one whose first
O(log n) bits are all 0’s.
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2.1 Our Basic Result (without Entangled
Adversary)

Throughout this paper, we let C be a quantum circuit acting on
n qubits, and we let N = 2" be the Hilbert space dimension. Let
Pc be the probability distribution defined by pc(z) = [(z|C|0™)|%.
It is well-known that when C ~ Haar(N), the Haar measure over
N X N unitary matrices, we have

B E [pc(a)] =

N+1’ )

In 2019, Google [9] announced an experiment to show quantum
advantage on the following task, called Linear Cross-Entropy Bench-
marking (LXEB).

Problem 1 (Linear Cross-Entropy Benchmarking LXEBy, x (D)).
Let D be a probability distribution over quantum circuits on n qubits.
Then the LXEBy, ;. (D) problem is as follows: given C drawn from D,
output samples z1, . . .,z € {0,1}" such that

1 b
% ZPC(ZL‘) 25
i=1

We sometimes omit the argument D.

@)

Intuitively, we expect that a polynomial-time classical algorithm
should be unable to solve LXEBy, ;. for any b = 1+Q(1). By contrast,
if an ideal quantum computer simply runs C over and over on
the initial state |0™), measures in the computational basis, and
returns the results, then approximating C by a random unitary, by
(1) we expect the QC to solve LXEBy, ;. with 1 — 1/exp(k) success
probability for any constant b < 2. Meanwhile, a noisy QC could
be expected to solve LXEBy, ; for some b greater than 1 but less
than 2—and indeed that’s exactly what’s observed empirically, with
(for example) Google’s 2019 experiment achieving b ~ 1.002.

In this paper, our aim is to show, not merely a quantum advan-
tage over classical in solving LXEBy, ;, but a quantum sampling
advantage over any efficient algorithm—quantum or classical—that
returns the same s;’s a large fraction of the time when given the same
circuit C.

To do this, we’ll use a new and admittedly nonstandard hardness
assumption, but one that strikes us as extremely plausible. Our
assumption concerns the following problem:

Problem 2 (Long List Quantum Supremacy Verification
LLQSV(U)). We are given oracle access to M = O(23") quantum
circuits Cy,...,Cpy, each on n qubits, which are promised to be
drawn independently from the distribution U. We're also given
oracle access to M strings si,,...,sp € {0,1}". Then the task is to
distinguish the following two cases:

(1) No-Case: Each s; is sampled uniformly and uniformly from
{0,1}™.

(2) Yes-Case: Each s; is sampled from pc,, the output distribution
Ofci.

Our hardness assumption, which we call the Long List Hard-
ness Assumption (LLHAg(U)), now says the following, for some
parameter B < n:

LLQSV(U) ¢ QCAMTIME(2P)/q(28n°M). 3)
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Here QCAM, or Quantum Classical Arthur Merlin, is the class of
problems that admit an AM protocols with classical communication
and a quantum verifier. QCAMTIME(T) is the generalization of
QCAM where the verifier can use running time T (the communica-
tion is still restricted to be polynomial). QCAMTIME(T)/q(A) is
the same, but where the verifier now receives A bits of quantum
advice that depend only on n.

Our first main result is then the following.

THEOREM 2.1 (SINGLE-ROUND ANALYSIS, NO SIDE INFORMATION,
INFORMAL). Let U be a distribution over n-qubit quantum circuits,
and suppose LLHAg(U) holds. Also, let A be a polynomial-time
quantum algorithm that solves LXEBy, ;. (U) with probability at least
q. Then A’s output, sy, ..., Sk, satisfies

(3= -om) @

Pr [Hpin(s1...s¢]/C=C") > B/2| >
C’~‘U[ min (51 k| ) /]

where Hmin ({pi}) = min; log, pl, is the min-entropy.

To illustrate, suppose we set B := 0.49n—the best upper bound
that we know, B < n/2, follows from Grover’s algorithm. Suppose
also that b = 1.002, as in Google’s experiment [9], and that k
is chosen large enough so that g > 0.9990 by a large deviation
inequality. Then Theorem 2.1 is telling us that A’s output must
contain at least (0.12 — 0(1))n random bits.

Interestingly, while Theorem 2.1 is stated in terms of min-
entropy, and while our eventual multi-round result will also be
stated in terms of min-entropy, as an intermediate step it’s con-
venient to switch to Shannon entropy, as this is what entropy ac-
cumulation theorems use. Of course, since Hyi, (D) < H(D) for
every distribution O, Theorem 2.1 immediately implies the same
lower bound on Shannon entropy. Indeed, since Shannon entropy
behaves linearly with respect to expectation, Theorem 2.1 implies

that
bg—1
q - —0(1)).

()

B
H(s1,...,s¢|C) = 3 ( b

While LLHAB () is admittedly a strong assumption, our next
result justifies it by proving that it holds in the random oracle
model:

THEOREM 2.2 (HARDNESs OF LLQSV(U), INFORMAL). Given a
random oracle O, let U be the uniform distribution over M = 20(n)
quantum circuits C1, . . ., Cps, which Fourier-sample disjoint Boolean
functions fi, ..., fpr : {0, 1} — {=1,+1} respectively defined by A.
Then LLHAB(U) holds relative to O for B = Q(n).

Here we outline the proof. First we give a reduction for LLQSV
from another problem called Boolean Function Bias Detection
(BFBD). In the latter problem, the algorithm is given access to
M functions sampled from either a distribution D or the uniform
distribution. The distribution D can be described with the follow-
ing process: First sample a integer r € {0, 1, ..., N} with probability
N(1-2r/N)?- (1;])2_N, sample a random subset R C {0, 1}" of
size r, and finally set f(x) = —1 if and only if x € R. Since both
distributions are concentrated around r = N/2, a simple hybrid
argument leads to a basic lower bound for BQP. We then extend
the hardness result to interactive proof systems, specifically, the
class QIP[2] of two-message quantum interactive proofs, using a
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similar argument: Recall that the prover’s goal is always to con-
vince the verifier that the given function is sampled from 9. From
the observation stated above, we can modify a function f ~ D ona
small number of points to yield a random function. Thus a prover
which convinces the verifier to accept f ~ 9 would also convince
the verifier to accept a random function. Then by the inclusion
QCAM ¢ QIP[2], LLQSV is hard for QCAM.

To prove the desired hardness for the non-uniform class
QCAM/qgpoly (or generalizations of it to use more queries and more
advice), we observe that by Aaronson and Drucker’s exchange the-
orem [6], QCAM/gpoly € QMA/poly, so it suffices to show hard-
ness against the latter class. We then change the oracle model (and
not the problem itself) as follows: The oracle O contains N sections,
each indexed by an n-bit string x. The non-uniform protocol given
oracle access to O, input x, and all the samples (also indexed by x),
is challenged to determine whether the sample sy is sampled from
Oy or uniform (see Problem 2).

Clearly any solver for LLQSV can determine whether sy is sam-
pled from Oy for every x € {0,1}". By replacing the classical
advice with a random guess, we show that any QMA/poly verifier
solving the problem would imply a N no(l)—query QMA verifier
solving N problems with probability 27Poly(n)  Then we appeal
to the strong direct product theorem by Sherstov [42], who showed
that even to achieve success probability 2~*(N) computing N in-
dependent problems requires Q(Nd) queries, where d is the query
lower bound of a single problem obtained using the polynomial
method. Finally we derive a contradiction by showing that a single
problem has an exponential lower bound.

Building upon the above single-round analysis, the next step is
to showk accumulation of entropy across multiple rounds. We give
a simple m-round entropy accumulation process using LXEB1s
as the verification for m = n%)% and constant 0 < § < 1. In each
round, for y = O(log n/m), the verifier sends the same circuit as
in the previous round with probability 1 — y, or samples a fresh
random circuit with probability y. We define an epoch to be an
interval of consecutive rounds where the same circuit is sent.® With
overwhelming probability, there are at most O(log n) epochs. The
verifier chooses k random samples for each circuit, and checks if the
verifier passes LXEBy,5 for 99% of the given circuits. Applying
an Entropy Accumulation Theorem (EAT, explained in Section 2.4),
we prove the following statement.

THEOREM 2.3 (ENTROPY ACCUMULATION, NO SIDE INFORMATION,
INFORMAL). For f € [0,1], if LLHAg, holds, then for integer k =
Q(n?) and m = Q(log n), there exists an m-round entropy accumula-
tion protocol taking k - m samples such that conditioned on the event
Q of not aborting,

B

—-_m -

. ©)

0.01
Hmin(Z|C)pj = n((0.99 - T)

o)
for every device solving LXEB, .5k, where p is the output state, Z is
the responses received from the device, and C is the circuit in each
round.

SPotentially m can be exponentially large, but we do not pursue this here.
6Brakerski, Christiano, Mahadev, Vazirani and Vidick [15] used the same concept of
“epochs” to analyze their certified randomness protocol.
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Input:  security parameter n,

a distribution D over circuits on n qubits,

the threshold constant b € [1, 2],

the number of samples k = O(n?) per iteration,
the number of rounds m, and

the fraction y = O((log n)/m) of circuit updates.

Protocol:

(1) Fori=1,...,m, run the following steps:
(a) The verifier samples T; ~ Bernoulli(y). If T—1 = 1 (when
i > 1) or i = 1, the device samples C; ~ D. Otherwise, the
device sets C; = Cj—1. The verifier sends C; to the device
(and keeps T; secret).
(b) The device returns k samples d; = (z1, ..
(c) If T; = 1, the verifier sets

. Zk)~

k

Wi= ol Sipetan =y AR o)
where E; = 0 if there exist distinct £,¢" € {j : C; =
C;} such that the samples dy = (z¢1,...,2p) and dp
(z¢'1 - - -» zpr)) are not all distinct. (This check is used to
prevent the device repeats responses for any two rounds
using the same challenge circuit.) If T; = 0, the verifier
sets W; = L.

(2) Lett = |[{i : T; = 1}| be the number of test rounds. The

verifier computes

W= Z Wi (8)
i:T;=1
If W > 0.99, then the verifier accepts and outputs
(di,...,dm) to the quantum-proof randomness extractor.

Figure 1: The entropy accumulation protocol based on LLHA.

To summarize the results presented in this section, we give the
description of the protocol in Figure 1.

2.2 Entangled Adversary and Ideal
Measurements

In the previous section, we assumed that an attacker, Eve, trying to
predict the quantum computer’s outputs had no preshared entangle-
ment with the quantum computer. Now we relax that assumption.

To build intuition, we start with the special case where the quan-
tum computer performs an ideal measurement—i.e., it “just” applies
C to n qubits, followed by a measurement in the standard basis.
The “only” problem is that the qubits might not start in the desired
initial state |0™), but rather in some arbitrary state entangled with
Eve’s qubits.

We define the following idealized score, called b-XHOG(U).

Problem 3 (b-XHOG(D) [29]). For a distribution D over quantum
circuits on n qubits, an algorithm A given access to C ~ D is said to
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solve b-XHOG if it outputs a sample z such that

[pc(2)] ©)

E E > —.
C~D z~ﬂc N
For an algorithm A which is given access to C and outputs z, we
define the “XHOG score” of A to be the value Ec[E, . ¢ [pc(2)]].
This score was first considered by Kretschmer for showing a
Tsirelson bound for random circuit sampling in the oracle model
[29]. Recall that with the CHSH game, a violation of the classical
bound 3/4 implies certified randomness. Interestingly, our result
may be interpreted as certified randomness from a violation of the

classical XHOG score.

We will proceed with our analysis with b-XHOG first, and show a
von Neumann entropy lower bound Q(dn) when the device solves
(1 + §)-XHOG. First, the problem itself is linear in the device’s
output distribution: that is, for two devices ‘A with score s 4 and B
with score sg, a third device that runs A with probability p and 8
with probability (1 — p) has score p - sz + (1 — p) - sg. The linearity
condition coincides with the score calculation from violation of
Bell’s inequality.

More concretely, recall that to establish certified randomness
from a violation of Bell’s inequality, two devices A and B are asked
to play, say, the CHSH game: the verifier sends two questions x, y
to the devices and collecting the responses a, b. The verifier sets
the score to 1if x A y = a ® b and 0 otherwise, and the expectation
of the score is defined as

W= E

= E S[xAy=aa®b]]|.
x,y~{0,1} a,b~.ﬂx®8y(p)[ [x y=a ]]

(10)

It is well-known that the best achievable expectation is w
cos®(n/8). For certified randomness, it was further shown that
when the expectation & > cos?(/8 + ¢), the output of A has
von Neumann entropy lower-bounded by 1 — h(sin4¢) = 1 — O(¢),
where h(x) := —xlogx — (1 — x) log(1 — x) is the binary entropy
function [8]. Like the XHOG score, here the score w can be exactly
computed only by taking infinitely many samples from the same
devices. With a finite number of samples, we can only approximate
the score.

Proving a conditional min-entropy lower bound from sample
statistics, in an m-round sequential process, amounts to the problem
of entropy accumulation. An Entropy Accumulation Theorem
(EAT) for certified randomness is usually stated as follows: In an
m-round sequential process, the verifier randomly selects O(log m)
rounds to get an approximation of the score. If the approximation
is sufficiently close to cos? (7/8), the number of extractable random
bits is at least Q(m) times the von Neumann entropy lower bound
established in a single-round analysis.

Without loss of generality, let the entanglement shared between
the device and Eve be a pure state |i). For every state pzf clas-
sical on Z, we show that the conditional von Neumann entropy
H(Z|CE)p 2 H(Z|C)p — x(Z : CE),, where y is the Holevo quan-
tity. To see why they they must use weak entanglement, we can
write |) = X, ax|¥x)|¢px) for orthonormal bases {|¢x)} and
{|¢x)} in the Schmidt decomposition. We show that the device
solving b-XHOG for b > 1 + 6, the amplitude ayx must concentrate
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at a single compoment, say x*, such that |ay+|? > 8. By the obser-
vation that the Holevo quantity equals the entanglement entropy,
we establish an upper bound O((1 — §)n) on the Holevo quantity.
In this simplified setting, we have already seen that if the device
has a large XHOG score, then they must use weak entanglement
to pass the verification. However, the entire analysis relies on the
assumption that the device must perform the ideal measurement.

2.3 A Fully General Device

Next, we consider the setting in which the adversary may share
arbitrary entanglement with Eve. We give an unconditional proof
for certified randomness in the random oracle model.

Instead of setting a binary-valued score for each question-answer
pair as in Section 2.1, for question C and response z, the score is
set to pc(z). Then, in a single round analysis, we first show that
if the device passes (1 + §)-XHOG score, then the von Neumann
entropy of the joint state is at least Q(n).

THEOREM 2.4 (SINGLE-ROUND ANALYSIS, INFORMAL). Every device
A that on input the first system of a bipartite state ppg and given
oracle access to a Haar random C, makes T < onl7 queries and
solves (1+ 8)-XHOG must output a state 279 _close to a state UzE
classical on system Z such that

H(ZICE), > 0.99n - O(log T). (11)

Furthermore, there is a single-query device that solves (2 — 27")-
XHOG.

To prove Theorem 2.4, the key observation is that one can approx-
imate, to diamond distance 2-%("), any device A making T queries
to a Haar random C by another device ¥ which does not make any
queries, but is given k samples z1, . ..,z ~ Pc for k = T2 . 20(n)
For each A, we call the associated device ¥ the simplified device.
With probability 1 — O(k?/N), these samples does not contain any
collision. In this event (no collision occurring), ¥ solves (1 + §)-
XHOG implies that 7 outputs z € S = {z1, ..., zx } with probability
at least § — 0(1). Intuitively, this robustly certifies that A’s out-
put must be e-close to a strategy where the output is prepared by
sampling from C for k times and choosing one of the samples.

From this point of view, a simplified device solving (1+8)-XHOG
is equivalent to winning the following game with probability at least
d —o0(1): Given k independent samples S from P¢, outputs a string
z € S. Though the game looks quite trivial, it yields a sharp lower
bound of the von Neumann min-entropy. By the no-communication
theorem, Eve, even if she learns P¢, has no information about the
samples given to ¥, but Eve can potentially control the output
distribution when the device sees a particular set of samples. Since
with high probability over C, Pc has min-entropy n — O(logn),
we show that averaging over any distribution supported on these
samples, the resulting distribution has von Neumann entropy at
least 0.996n — O(log T).

Our lower bound in Theorem 2.4 is close to optimal. Consider a
device which samples from Pc with probability § and outputs a uni-
form string obtained by performing a standard basis measurement
on EPR pairs shared with Eve with probability 1 — 8. In the former
event, the device solves b-XHOG for b ~ 2, whereas in the latter,
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the output is a uniformly random string, which solves 1-XHOG.
Thus, by linearity, the device solves (1+6)-XHOG. The output joint
classical-quantum state from the device is a probabilistic mixture
of the two states. Moreover, with overwhelming probability over
choices of C, the Shannon entropy of Pc is n — O(logn). Then by
the concavity of von Neumann entropy, the output has conditional
von Neumann entropy én — o(n).

To accumulate the entropy, we give a sequential process which
is very similar to the one introduced in Section 2.1: The verifier
samples t = O(logn) different circuits, and asks for at least k
samples for each circuit. Upon receiving the samples, the verifier
chooses k random samples for each circuit, and checks if the device
passes LXEBy, 5 i for a constant 6 for 99% of the circuits. We show
that the accumulation process certifies Q(dmn) bits.

THEOREM 2.5 (ENTROPY ACCUMULATION FROM A GENERAL DEVICE,
INFORMAL). For integer k = Q(n?), m = Q(klog n), there exists an
entropy accumulation protocol taking m samples such that conditioned
on the event Q of non-aborting,

(12)

for devices solving LXEBy s i, where p is the output state, Z is the
samples from the device, C is the circuits and E is the information
held by Eve.

Hiin (ZICE) p1 2 n(oA995m - 0(\/%))

More concretely, taking o 0.1, this bound is n -
(0.099m — O(+/m)) by taking m samples from the device. We note
that this bound is seemingly weaker than the bound in Theorem 2.3,
but the number of samples is m (instead of km as in Theorem 2.3).
The minimal sample complexities in the protocols are no different—
both are Q(n? log n)—for a perfect device to pass the verification
with overwhelming probability. For technical reasons, in the latter
protocol, k samples for each verification are randomly chosen (from
all samples sent by the device corresponding to the same challenge
circuit) and received sequentially. In contrast, in the former proto-
col, in each round the device is asked to send k samples, and the
verifier checks one round for each circuit.

The above analysis lead to an entropy accumulation protocol,
described in Figure 2.

We also note that Theorem 2.3 and Theorem 2.5 are incomparable
results. In particular, the security analysis for Theorem 2.5 heavily
relies on the model in which the device is given access to the circuit
and the distribution (the Haar measure) over circuits. In contrast,
the security analysis based on LLHA may still hold when the de-
vice is given access to a description of circuits sampled from other
distributions. We leave it as an open question whether there exists
a hardness assumption under which linear cross-entropy bench-
marking certifies min-entropy against an entangling adversary in
the plain model.

2.4 Entropy Accumulation

The proof of Theorem 2.5 is based on the entropy accumulation
theorem (EAT) by Dupuis, Fawzi and Renner [22], with modifica-
tions explained as follows. Let f be an affine function, called the
min-tradeoff function, such that in a single-round analysis, one can
show that H(Z|E), > f(q) for distribution g = (p, 1 - p) and any
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Input:  Security parameter n,
the number of rounds m,
the score parameter § € [0, 1],
the fraction of circuit updates y = O((log n)/m), and
the fraction of test rounds n = O((n?log n)/m).
Protocol:
(1) Fori=1,...,m,run the following steps:

(a) The verifier samples T; Bernoulli(y), and F;
Bernoulli(n). If T;_; = 1 or i = 1, the device chooses a
fresh circuit C; ~ Haar(N). Otherwise, if T;_; = 0 and
i > 1, then the device sets C; = Cj_1 to be the circuit used
in the previous round. The verifier sends C; to the device.

(b) The prover returns a sample z;.

(2) Let the number of epoches, i.e., the set of consecutive rounds
i such that the same circuit C; = C is used, be t. For each
epoch Ej, let t; = |{i € Ej : F; = 1}| denote the number
of test rounds in this epoch. The verifier rejects if there
exists a pair of collisions that correspond to the same circuit;
otherwise it computes

1
Sj= Z pe;(zi).

J ieE;Ti=1

(13)

If% 25.:1 d[sj = (146)/N] = 0.99, then the verifier accepts
and outputs (zy,. .
extractor.

., Zm) to the quantum-proof randomness

Figure 2: The entropy accumulation protocol.

state p whose acceptance probability is p. In an m-round sequen-
tial process, the verifier checks ym rounds (called test rounds) by
computing the decision bits from the samples, and computes an
approximate distribution § = (p, 1 — p). The min-entropy round
across the m rounds is then m- £(§) — O(y/m). Thus an EAT reduces
a multi-round analysis to a lower bound on the single-round von
Neumann entropy.

Since we adopt the b-XHOG score for a bound of the von Neu-
mann entropy in a single round analysis, the score obtained from
the test rounds is no longer computed from binary random vari-
ables. Thus we define a new min-tradeoff function f’ which maps
the score to a lower bound of the von Neumann entropy. Then we
show that if an approximation of the score, defined as the average
of pc, (z;) is more than s, then the accumulated entropy is at least
m- f'(s) - O(ym).

The entropy accumulation procedure allows for spot checking,
that is, in the m-round process, instead of computing pc, (z;) for
every round i € [m], the verifier only computes pc;, (z;) for a subset
of indices i of size O(n? log n). In more details, the verifier changes
the circuits for O(log n) times, and in each epoch the verifier com-
putes the average of k = O(n?) samples. The number of test rounds
is set for the device that takes i.i.d. samples from pc on each cir-
cuit C to pass the verification with overwhelming probability. By
Hoeffding’s inequality, a device that samples from pc outputs k
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samples whose average score is concentrated above 2 — O(1) for
a typical C with overwhelming probability. If the verifier passes
LXEBy, i for the epoches of a sufficiently large fraction Q(1), the
average is above 1+ Q(1) with overwhelming probability, and by
the entropy accumulation theorem, the conditional min-entropy is
Q(nm).

2.5 Pseudorandomness and Statistical Zero
Knowledge

The protocols for certified randomness rely on perfect randomness
for generating the challenge circuit. However, by a counting ar-
gument, the challenge space is doubly exponentially large, and it
requires exponentially many random bits to compute a truly ran-
dom circuit. To produce a net gain in randomness, we must rely
an efficiently computable function which uses polynomially many
random bits and generates pseudorandomness with security level
sufficient for our purpose.

However, the standard notion of pseudorandom functions (PRFs)
against quantum polynomial-time adversaries does not seem to be
sufficient, since it only guarantees the output of the device is pseu-
dorandom! Thus for certified randomness, we require a stronger
pseudorandom function, when a truly random function is replaced
with which, the output remains statistically indistinguishable from
the uniform distribution.

To provide such a security guarantee, we construct a pseudoran-
dom function indistinguishable from a truly random function for
any QSZK protocols. To see why such a security level is sufficient,
we recall facts about the class QSZK which consists of promise
problems that admit a quantum statistical zero-knowledge proto-
col. A QSZK protocol is one that consists of a proof system, i.e., a
quantum polynomial-time verifier and an unbounded prover, and
an efficient quantum simulator which simulates the interaction of
the proof system without access to a witness.

Watrous showed that QSZK has a natural complete problem
called the quantum state distinguishability problem (QSD) [45]. In
this problem, the instance is a tuple of two efficiently computable
quantum circuits Qo, Q1. For a € (0, 1], the verifier is challenged
to determine the trace distance ||po — p1|ir is at least @, or at most
a?, where pj, is a marginal state obtained by computing Qj, for
b € {0,1}. It is known for this class, there is an amplification
procedure, and therefore the gap can be made exponentially close
to 1 [45]. More recently, Menda and Watrous showed that relative
to a random oracle, UP ¢ QSZK [32]. Ben-David and Kothari
defined a query measure on statistical zero-knowledge proof, and
showed that the positive-weighted adversary method can only
prove suboptimal lower bounds for certain problems [12].

For certified randomness, we define the QSZK-distinguishability
between two distributions over functions, and a similar definition
can be extended to distributions over unitaries.

Definition 2.6 (QSZK-distinguishability, informal). Two distribu-
tions Do, D1 over functions are said to be QSZK-distinguishable if
there exist a pair of algorithms A, B such that the averaged trace
distance between A" and B ’s output states has non-neglgigible
difference between F ~ Dy and F ~ Dy. The distributions are said to
be QSZK-indistinguishable if no such algorithms exist.
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A QSZK-secure pseudorandom function is defined as one QSZK-
indistinguishable from a random function. We propose an assump-
tion, called pseudorandom function assumption (PRFA), that there
exists a QSZK-secure pseudorandom function. We justify the as-
sumptions are valid by giving a construction for algorithms given
oracle access to the function.

THEOREM 2.7 (PSEUDORANDOM FUNCTIONS, INFORMAL). There
exists a QSZK-secure pseudorandom function with key length O(n)
relative to a random oracle.

Similarly, we say a pseudorandom unitary is QSZK-secure if it
is QSZK-indistinguishable from a random unitary. We propose
a similar assumption, called pseudorandom unitary assumption
(PRUA), that there exists a QSZK-secure pseudorandom unitary,
and prove the existence relative to an oracle with key length O(n).

Under these assumptions, when replacing a random circuit with a
pseudorandom one, the output remains statistical indistinguishable
from a uniform distribution, conditioned on Eve’s side informa-
tion. To see why, recall that De, Portmann, Vidick, and Renner
[21] showed that Trivesan’s randomness extractor [43] is quantum-
proof. That is, the output from the randomness extractor together
with Eve’s side information is a quantum state p statistically indis-
tinguishable from o ® pg, where ¢ is a maximally mixed state and
pE is the marginal state held by Eve. If the device given a pseudo-
random circuit outputs a quantum state that changes the distance
by a non-negligible amount from o ® pg, then such a device implies
a QSZK protocol that distinguishes a pseudorandom circuit from a
random one.

To see there is a net gain in randomness, the protocol samples
O(log n) pseudorandom circuits, each of which takes O(n) random
bits for the keys of the pseudorandom function, and finally it pro-
duces Q(mn) random bits. For m = poly(n), we have a polynomial
expansion.

While we do not know whether a weaker assumption can work
for certified randomness, the security level seems necessary against
an entangling adversary. Indeed, if there is no quantum side infor-
mation, then all we need is to use a pseudorandom circuit against
adversaries solving the statistical difference from uniform problem.
In the purely classical setting, the problem is known to be complete
for NISZK, a subclass of SZK consisting of problems that admits a
non-interactive statistical zero-knowledge protocol [24]. However,
in the presence of quantum side information, an unbounded Eve
can prepare any pg, and security against QSZK seems necessary.
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