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—— Abstract

It is a long-standing open question to construct a classical oracle relative to which BQP /qpoly #

BQP/poly or QMA # QCMA. In this paper, we construct classically-accessible classical oracles
relative to which BQP/qgpoly # BQP/poly and QMA # QCMA. Here, classically-accessible classical
oracles are oracles that can be accessed only classically even for quantum algorithms. Based on a
similar technique, we also show an alternative proof for the separation of QMA and QCMA relative
to a distributional quantumly-accessible classical oracle, which was recently shown by Natarajan
and Nirkhe.
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1 Introduction

Quantum information is often in possession of richer structures than classical information,
at least intuitively. The first (but often false) thought is that phases and magnitudes are
continuous, and a piece of quantum information may be able to store exponentially or
infinitely more information than classical ones; which is always not true!. Since classical
and quantum information present distinct and unique natures, the community studies
their differences under different contexts and directions, including advice-aided quantum
computation [23, 1, 2, 4, 22, 19, 12, 11, 17, 20], QMA vs QCMA (i.e., quantum NP with
either quantum or classical witness) [6, 5, 15, 21], quantum vs classical communication
complexity [28, 10, 24, 7, 8, 16] and many others.

One way to understand their differences is by studying one-way communication complexity:
i.e., Alice and Bob want to jointly compute a function with their private inputs, but only
one-time quantum/classical communication from Alice to Bob is allowed. Among many

L As storing and extracting information takes resources that scale with accuracy.
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works, Bar-Yossef, Jayram, and Kerenidis [8] showed an exponential separation between
quantum and classical one-way communication complexity, for the so-called hidden matching
problem.

The other approach is by looking at QMA vs QCMA. In 2007, Aaronson and Kuperberg [5]
showed a black-box separation with respect to a black-box quantum unitary and left the
same separation with respect to a classical oracle as an open question. More than a decade
later, Fefferman and Kimmel [15] proved a second black-box separation using a distributional
in-place oracle, which is a non-standard type of oracles. Recently, Natarajan and Nirkhe [21]
moved a step closer to the goal by presenting a black-box separation with respect to a
distributional oracle?. Therefore, we would like to further investigate the difference between
quantum and classical proofs, i.e., the separation between QMA vs QCMA. In this work,
we address the question by demonstrating a separation relative to a classically accessible
classical oracle.

» Definition 1 (QMA). A language L is said to be in QMA if there exists a quantum
polynomial-time machine V together with a polynomial p(-) such that,
For all x € L, there exists a quantum state |t.) of at most p(|x|) qubits, such that V
accepts on |z, |Yg) with a probability at least 2/3.
For all x & L, for all quantum states |¢,) of at most p(|z|) qubits, V accepts on |x), |1),)
with a probability at most 1/3.
One can similarly define the class QCMA except |¢),) are of p(|z|) classical bits.

We also aim to understand the difference between quantum and classical information
through advice-aided quantum computation. Classically, a piece of advice can significantly
speed up classical computation, from speeding up exhaustive search [18] to deciding the unary
Halting Problem. In a quantum world, advice can be either a piece of classical or quantum
information. It is very natural to ask the question: does quantum advice “outperform”
classical advice? Among many questions, one of the most fundamental is to understand
the power of BQP/qpoly and BQP/poly: i.e., the class of languages that can be decided by
bounded-error quantum machines with arbitrary bounded-length quantum/classical advice
and polynomial time.

» Definition 2 (BQP/qpoly). A language L is said to be in BQP/qpoly if and only if there
exists a quantum polynomial-time machine A together with a collection of polynomial-sized
quantum states {|zn) }nen such that,

For all z € L, Pr[A(z, |2,)) = 1] > 2/3.

For all x & L, Pr [A(z, |2,)) = 0] > 2/3.
One can similarly define the class BQP/poly except |z,) are poly-sized classical strings.

Similar to the case of QMA vs QCMA, Aaronson and Kuperberg [5] in the same paper
showed an oracle separation between these two classes, leaving the separation with respect
to a classical oracle as an open question. Recently, Liu [20] showed the separation for its
relational variants (i.e., FBQP/qpoly and FBQP/poly) under a special case, where the oracle
is never given to the algorithms®. Despite all the efforts, the separation between BQP /poly
and BQP/gpoly relative to a classical oracle remains obscure.

2 In this case, the witness only depends on the distribution. The oracle is later picked from the distribution,
but independent of the witness.

3 As mentioned in Section 1.3, a concurrent work by Aaronson, Buhrman, and Kretschmer [3] proves
their relational variants FBQP /qpoly # FBQP /poly unconditionally.
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In this work, we proceed with the question by showing a full separation relative to a
classically accessible classical oracle. Along the way, we adapt our techniques and give an
alternative proof for the separation between QMA vs QCMA relative to a quantumly accessible

classical distributional oracle, which was recently established by Natarajan and Nirkhe [21].

1.1 Our Results

Our first result is a black-box separation between BQP/qpoly vs BQP/poly with respect to a
classically-accessible classical oracle.

Classically-accessible classical oracles. A classical oracle O is said to be classically
accessible if a quantum algorithm can only query the oracle classically; in other words, the

only interface of O to quantum algorithms is classical: given an input x, it outputs y = O(x).

» Theorem 3 (Informal). There exists a language L in BQP/qpoly but not in BQP/poly,
relative to a classically accessible classical oracle O.

Our work is based on the previous works on quantum advantages with unstructured
oracles, by Yamakawa and Zhandry [26] and recent separation by Liu [20]. Our work improves
[20] in two aspects: first, Liu only proved the separation of their relational variants, instead
of the original decision classes; second, the separation by Liu does not allow algorithms to
have access to the oracle (either classically, or quantumly), but only the advice can depend
on the oracle.

» Remark 4. Although the long-standing open question is to understand the separation relative
to a quantumly accessible classical oracle, our theorem is not weaker but incomparable. Since
classical access is not stronger than quantum access, it limits both the computational power
of quantum machines with quantum and classical advice: intuitively, classical access makes

it easier to prove a language £ is not in BQP® /poly but harder to prove £ € BQP® /qpoly.

A similar observation is applicable to the theorem concerning the separation between QMA

and QCMA.
Our second result is about the separation between QMA and QCMA.

» Theorem 5 (Informal). There exists a language £ in QMA but not in QCMA, relative to a
classically accessible classical oracle O.

Inspired by the techniques used in our Theorem 3 and Theorem 5, we give an alternative
proof for the result by Natarajan and Nirkhe [21]. Note in the following result, the classical
oracle is quantumly accessible.

» Theorem 6 (Informal). There exists a language £ in QMA but not in QCMA, relative to a
distributional quantumly-accessible classical oracle O.

A difference between the construction of [21] and ours is in the case when the oracle
is fixed to some oracle from the distribution. In [21], they can neither prove nor disprove
the separation between QMA and QCMA. However, in our construction, the separation will
disappear if we fix our oracle.

Finally, we observe that the problem considered in [26] gives a new superpolynomial
separation between classical and quantum one-way communication complexity. Though
such a separation has been known since 2004 [8], the new separation has two interesting
features that Bob’s input length is short and the classical lower bound holds even if Bob can
classically access Alice’s input as an oracle (see the full version for more detail).*

% As mentioned in Section 1.3, a concurrent work by Aaronson, Buhrman, and Kretschmer [3] observes
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1.2 Overview
Quantum Advantages and Separation for a Special Case

We will introduce the recent work on quantum advantages from unstructured oracles by
Yamakawa and Zhandry [26], as it will be used for both of our results in this work. They
proved that there exists a code C' C X" and an oracle-aided function fo such that, relative
to a random oracle from H : [n] x ¥ — {0, 1}, the function f& is easy to invert on any image
with quantum access but inversion is hard with only classical access. The function is defined
as the following:

H(,v)|[H(2,v)|| -+ [|H(n,vp)  if (v1,--- ,05) €C

H e =
FE (v, o) {l if (01, o) € C

Intuitively, although the function computes an entry-by-entry hash, the requirement that
(v1,-++ ,v,) must be a codeword enforces the hardness of inversion when only classical
queries are allowed. More precisely, the underlying code C' satisfies a property called list-
recoverability; even if a classical algorithm learns hash values of a subset E; C ¥ for each of
H(i,-), only a polynomial number of codewords can be found in E; x E3 X -+ x E,,, which
does not help invert random images®. On the other hand, they showed a quantum algorithm
that uses quantum queries to invert images.

Liu [20] observed that the inversion quantum algorithm only needs to make non-adaptive
quantum queries that are independent of the image y. Therefore, the algorithm with quantum
access can be easily cast into a quantum algorithm with quantum advice but no queries; on
the other hand, he showed that, if an algorithm has no access to the random oracle, it can
not invert even with a piece of exponentially large classical advice. Since given an image y
there are multiple pre-images of y, the above two statements lead to the separation between
FBQP/qpoly and FBQP/poly when an algorithm has no access to the oracle.

Allowing classical queries

Our first result is to extend the previous separation of FBQP/qpoly and FBQP/poly by Liu,
by allowing quantum algorithms to make online classical queries to H. Since the algorithm
with quantum advice makes no queries, it also works in this setting of classical access. We
only need to prove the hardness with classical advice: i.e., no quantum algorithms can invert
with classical queries and bounded classical advice.

Following the framework by Guo et al. [17], when only making classical queries (say, at
most T"), a piece of S bits of classical advice is equivalent to the so-called “ordinary advice”:
the advice consists of only ST coordinates, or ST pairs of inputs and outputs. More precisely,
the information the algorithm can learn from S bits of advice and T classical queries is
roughly the same as that from ST bits of ordinary advice and T classical queries. Thus, the
first step is to replace classical advice with ordinary classical advice.

It now remains to show that a quantum algorithm with classical access to H and short
ordinary advice can not invert random images. As ordinary advice only gives information on
at most polynomially many pairs of inputs and outputs, let E; denote the subset of inputs

that there is a variant of [8] that satisfies the former (but not latter).

® When all classical queries are non-adaptive, this is clearly true: as only polynomially many fZ are
known for codewords in C. The idea can be adapted to adaptive queries as well; we do not elaborate on
it here.
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whose hash values under H(i,-) are in the ordinary advice; since the ordinary advice is of
length polynomial, |E;| is polynomial for each i € [n]. Now let us assume the algorithm
makes non-adaptive queries that are independent of a challenge. In this case, we can further
define E! that consists of all 2 inputs whose values H (¢, 2) are known from these classical
queries. The algorithm in total learns hashes of H(3,-) for the inputs in E; U E. Observing
that |E; U Ef| is polynomial for each ¢, by the list-recoverability of the underlying code C,
the algorithm only learns values of f& for a polynomial number of codewords, which almost
always never hits a random challenge.

Lastly, we extend the proof to adaptive cases (for more details, please refer to Section 3).

Upgrading to BQP/qpoly v.s. BQP/poly

Next, we turn the above separation of relational classes into a separation of BQP/qpoly v.s.
BQP/poly. Our idea is to define a language £ through a family of random functions for each
n: Gn: {0,1}" — {0,1}, i.e., for x € {0,1}", x € £ if and only if G,,(z) = 1. We omit the
subscript when it is clear from context in the introduction.

We use an oracle O to hide the evaluation of G on z, by requiring the algorithm to invert
the function fg on image x. More precisely, we define O as follows:

Otv.2) {G(m) if fH(v) ==,
€ otherwise.
Then an algorithm only gets oracle access to O, but not H or G.

To see that L is decidable by a BQP /qpoly machine, we can just take the quantum advice
as in [20]. On an input x, an algorithm generates v such that ff(v) = x using the quantum
advice. We can then evaluate G(z) by querying O at (z,v) and decide if z € L.

On proving that £ cannot be decided by any BQP /poly machine, we leverage the statement
proved above: given classical advice, by only querying a classical oracle H, it is hard for
an efficient algorithm to invert fg . The beyond result implies that the algorithm should
only have negligible query weight on v under the classical oracle O such that fg (V) = z;
otherwise the algorithm can be turned into another one that inverts f&.

Therefore, we can reduce the problem to the case where an algorithm has only access
to G(y) for all y # x, but no access to G(z) for the challenge x; the goal is still to learn
G(z). This is exactly the famous Yao’s box problem [27]: a piece of advice is allowed to
depend on the whole oracle G, but then an online algorithm uses the advice to find G(z)
for a random z, with no access to G(z). By adapting the ideas in [27, 14] and combining
all the previous ideas with a standard diagonalization argument, we prove the separation
BQP? /qpoly # BQP? /poly relative to a classically accessible classical oracle.

Separation between QMA and QCMA relative to a classically accessible classical
oracle

We first construct a problem that has a short quantum proof for YES instances, no quantum
proof for NO instances, and no classical proof that can distinguish between YES and NO
instances. Given random functions H : [n] x ¥ — {0,1} and G : {0,1}" — {0,1}", as well
as a subset S C {0,1}™ with a size of at least 2/3 - 2™, we create two pairs of oracles:
For a YES instance, the oracle G and an oracle O[G, H, )] are provided. The latter takes
an input ¢ € {0,1}" and a vector v € C and outputs 1 if and only if f#(v) = G(¢).
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If it is a NO instance, the oracle G and an oracle O[G, H, S] is given. The latter takes
as input a t € {0,1}" and a vector v € C, it outputs 1 if and only if f#(v) = G(t) and
tgs.

A quantum algorithm A4, with the same advice as in [20], achieves the following:

The algorithm A on oracles G, O (which will be either O[G, H, 0] or O[G, H, S]), uniformly
at random samples ¢ € {0,1}". It then uses the quantum advice to compute a vector v
such that f(v) = G(t) and outputs O(t,v).

When O[G, H, 0] is given, by the correctness of the YZ algorithm, A will output 1 with
an overwhelming probability.

When O|G, H, S| is given, by the definition and the condition |S| > 2/3-2", A will output
1 with a probability at most 1/3.

On the other hand, for any quantum algorithm B with classical queries and bounded-sized
classical proof, it can not distinguish between the case of having access to G, O[G, H, )] or
G,0]|G, H, S]. On a high level, the only way to tell the difference is by finding an input (¢, v)
such that O[G, H, 0](t,v) # O|G, H, S](t,v). This will require B to query on an input (¢, v)
such that f(v) = G(t), which is difficult for B with only classical advice.

Finally, we mount our new separation result on the diagonalization argument and construct
a language that shows the separation between QMA and QCMA relative to a classically
accessible classical oracle. Please refer to the full version for more details.

Separation between QMA and QCMA relative to a distributional oracle

To separate QMA from QCMA, we would try to separate two distributions of oracles, namely
the YES and NO distributions, defined below: For a random function H: [n] x ¥ — {0, 1},
If it is a YES instance, an oracle distribution {O[r]}, with the index being drawn
uniformly at random, such that: O[r] takes v € £" and evaluates ff(v), and outputs 1
iff fE (v) =r;
If it is a NO instance, the oracle always outputs 0.

To see that the two distributions can be distinguished using a QMA machine, notice that
we can take the quantum advice as in [20], and generate v such that f&(v) = r. By querying
O at v, we can distinguish whether the oracle belongs to the YES distribution or the NO
distribution.

To prove the two distributions cannot be distinguished by any QCMA machine, we
notice that the difference between YES and NO oracles is only on inputs v that f& (v) = r.
Therefore, we reduce it to the hardness of finding v for random r such that ff(v) =r, even
when given classical advice.

In the full version, we define unary languages £; and their related oracle distributions
for each n. By a standard diagonalization argument, we can argue that there exists some
language £ that is in QMAO but not in QCMAO.

1.3 Concurrent Work

A concurrent work by Aaronson, Buhrman, and Kretschmer [3], among many results,
proves FBQP /poly # FBQP/qgpoly unconditionally where FBQP /poly and FBQP /qpoly are
the relational variants of BQP/poly and BQP/qpoly, respectively. The key insight behind the
result is an observation that a variant of hidden matching problem [8] gives an exponential
separation between classical and quantum one-way communication complexity with short
input length for Bob. They essentially prove that any such a separation with efficient Bob
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can be used to prove FBQP/poly # FBQP/gpoly. We independently had an observation that
[26] gives such a separation of classical and quantum one-way communication complexity
with short input length for Bob (see the full version). By relying on their proof, which is
fairly easy in hindsight, it seems possible to prove FBQP/poly # FBQP/qgpoly by using [26]
instead of the hidden matching problem.

A crucial difference between the one-way communication variant of [26] and the hidden
matching problem is that the hardness of the former with classical communication holds
even if Bob can classically query Alice’s input. Due to this difference, one cannot reprove
BQP/poly # BQP/gpoly and QMA # QCMA relative to a classically-accessible classical oracle
by using the hidden matching problem instead of [26]. On the other hand, it seems possible
to prove QMA # QCMA relative to a distributional quantumly-accessible classical oracle by
using (a parallel repetition variant of) their variant of the hidden matching problem instead
of [26].

2  Preliminaries

Basic notations

For a set X, |X| denotes the cardinality of X. We write z +— X to mean that z is uniformly
taken from X. For a distribution D over classical strings, we write z < D to mean that =
is sampled from the distribution D. For sets X and Y, Func(X,Y") denotes the set of all
functions from X to Y. For a positive integer n, [n] denotes the set {1,2,...,n}. QPT stands
for “Quantum Polynomial-Time”. We use poly to mean a polynomial and negl to mean a
negligible function.

Oracle variations

In the literature on quantum computation, when we say that a quantum algorithm has
oracle access to f : X — Y, it usually means that it is given oracle access to an oracle
that applies a unitary |z)|y) — |z) |y @ f(z)). We refer to such a standard oracle as
quantumly-accessible classical oracles. In this paper, we consider the following two
types of non-standard oracles.

The first is classically-accessible classical oracles. A classically-accessible classical
oracle for a classical function f: X — Y takes a classical string x € X as input and outputs
f(z). In other words, when an algorithm sends »_,  az.y |2) |y) to the oracle, the oracle first
measures the first register and then applies the unitary |z) |y) — |z) |y ® f(z)). Note that
classically-accessible classical oracles apply non-unitary operations.

The second is distributional quantumly-accessible classical oracles. They are
specified by a distribution F over classical functions f rather than by a single function f.
When we consider an algorithm that is given oracle access to a distributional quantumly-
accessible classical oracle, it works as follows: At the beginning of an execution of the
algorithm, a function f is chosen according to the distribution F, and then the algorithm has
access to a quantumly-accessible classical oracle that computes f. Note that f is sampled at
the beginning and then the same f is used throughout the execution.

Complexity classes

We define the complexity classes which we consider in this paper. Specifically, we define
BQP/gpoly, BQP/poly, QMA, and QCMA relative to classically-accessible classical oracles
and QMA and QCMA relative to distributional quantumly-accessible classical oracles.

72:7
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» Definition 7 (BQP/qpoly and BQP/poly languages relative to classically-accessible classical
oracles.). Let O be a classically-accessible classical oracle. A language £ C {0,1}* belongs to
BQP/qpoly relative to O if there is a QPT machine A and a polynomial-size family {|zn) }nen
of quantum advice such that for any x € {0,1}*,

PrA9(x, |21,) = L(2)] = 2/3

where L(x) :=1 if v € L and otherwise L(x) := 0.
BQP/poly is defined similarly except that the advice is required to be classical.

» Definition 8 (QMA and QCMA languages relative to classically-accessible classical oracles.).
Let O be a classically-accessible classical oracle. A language £ C {0,1}* belongs to QMA
relative to O if there is a QPT machine V with classical access to its oracle and a polynomial
p such that the following hold:

Completeness For any © € L, there is a p(|z|)-qubit witness |w) such that

Pr[VO (z,|w)) = 1] > 2/3.
Soundness For any x ¢ L and p(|x|)-qubit witness |w),
Pr[VO (z,|w)) =1] <1/3.
QCMA is defined similarly except that the witness is required to be classical.

» Definition 9 (QMA and QCMA languages relative to distributional quantumly-accessible
classical oracles.). Let F be a distributional quantumly-accessible classical oracle, i.e., it
specifies a distribution over classical functions f. A language £ C {0,1}* belongs to QMA
relative to F if there is a QPT machine V' with quantum access to its oracle and a polynomial
p such that the following hold:
Completeness For any x € L, there is a p(|z|)-qubit witness |w) such that

Pr [V/ =1]>2/3.

P [V (a,w) = 1] 2 2/
Soundness For any x ¢ L and p(|x|)-qubit witness |w),

flir}_[Vf(ac, lw)) =1] <1/3.

QCMA is defined similarly except that the witness is required to be classical.

» Remark 10. Notice that the quantum/classical witness |w) /w can only depend on the
distribution F rather than a specific oracle f.

Non-Uniformity in the ROM

Prior work has developed a number of tools to characterize the power of a non-uniform
adversary in the random oracle model (ROM). Note that we are considering the ROM
where we only allow classical access to random oracles unlike the quantum ROM [9]. This is
sufficient for our purpose because we use these tools only for proving BQP/qpoly # BQP /poly
and QMA # QCMA relative to classically-accessible classical oracles.

Similar to [20], we will be using the presampling technique, introduced by [25] and further
developed by [13, 17]. First, we define games in the ROM.

» Definition 11 (Games in the ROM). A game G in the ROM is specified by three classical
algorithms SampH, QueryH, and VerifyH where H <+ Func(X,Y) for some sets X,Y:
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SampH(r): it is a deterministic algorithm that takes uniformly random coins r € R as
input, and outputs a challenge CH. 6
Query™(r,-): it is a deterministic classical algorithm that hardcodes the randomness r
used to construct the challenge and provides the adversary’s online queries. ©
VerifyH(r,ans) : it is a deterministic algorithm that takes the same random coins for
generating a challenge and an alleged answer ans, and outputs b indicating whether the
game is won (b =1 for winning).
Let Tsamp be the number of queries made by Samp and Tyers, be the number of queries made
by Verify.

For a fized H € Func(X,Y) and a quantum algorithm A, the game GH is executed as
follows:

A challenger C samples CH + SampH(r) using uniformly random coins r.

A (uniform or mon-uniform) quantum algorithm A, that has classical oracle access to

QueryH(r, -), takes CH as input and outputs ans. We call A an online adversary/algorithm.

b < Verify™ (r, ans) is the game’s outcome.

» Definition 12. We say that a game G in the ROM has security §(Z,Q) :=§ if

H
= <
max PI:{r[QA 11 <9

where H < Func(X,Y) and max is taken over all A with Z-bit classical advice that makes
Q classical queries.

The presampling technique relates the probability of success of a non-uniform algorithm
with classical queries to a random oracle with the success probability of a uniform algorithm
in the P bit-fixing game, as defined below.

» Definition 13 (Games in the P-BF-ROM). A4 game G in the P-BF-ROM is specified by two
classical algorithms Samp™ and Verify™ that work similarly to those in Definition 11.
For a fired H € Func(X,Y) and a pair of algorithms (f,A), the game gﬁA is executed
as follows:
Offline Stage: Before a game starts, an offline algorithm f (having no input) generates
a list £ = {(zi,y:) }ieip) € (X x V)T containing at most P input-output pairs (all ;s
are distinct).
Online Stage: The game is then executed with A that knows L and has oracle access to
H similarly to Definition 11. H is a function drawn at random such that it satisfies L.

» Definition 14. We say that a game G in the P-BF-ROM has security v(P,Q) := v if

max Pr[GH , =1] <wv
i ax L [GF.a ] <
where H + Func(X,Y) and max is taken over all f that outputs P input-output pairs and
A that makes @Q classical queries.

» Theorem 15 ([20, Theorem A.1]%). Let G be any game with Qsamp, Qverity being the number
of queries made by Samp and Verify. For any classical advice length Z, and number of online
queries Q:

6 We note that the randomness r is separate from the randomness of H. r is used to sample the challenge.

7 As an example, for most applications, Query™ (r,-) = H(-).

8 Similar theorems with slightly worse bounds are presented in [13, Theorem 5 and 6] and [17, Theorem
3.

72:9

ITCS 2024



72:10

Classical vs Quantum Advice and Proofs Under Classically-Accessible Oracle

1. For P = Z(Q + Qsamp + Qverity); if G has security v(P, Q) in the P-BF-ROM, then it
has security 6(Z,Q) < 2-v(P,Q) against non-uniform unbounded-time algorithms with Z
bits of classical advice and Q classical queries.

2. For any P >0, if G has security 1/2 + v(P,Q) in the P-BF-ROM, then it has security
0(Z,Q) <1/24+v(P,Q)+Z(Q + Qverity + Qsamp)/ P against non-uniform unbounded-time
algorithms with Z bits of classical advice and @Q classical queries.

We can use the above correspondence to bound the success probability of a non-uniform
quantum algorithm with classical queries to the Yao’s Box game [27].

» Lemma 16 (Yao's Box with Classical Queries [27, 14]). Let G : [N] — {0,1} be a random
function. Let A be an unbounded-time algorithm, with Z bits of (classical) advice zg and Q
classical queries to G. The probability that A computes G(x) without querying G at random
index x is at most
1 Z 1

Pr[A%(zg,2) = G(2)] < = +2 M

P 2 N

The above lemma was essentially proved in [14], but we offer here an alternative proof
using the presampling technique of Theorem 15.

Proof of Lemma 16. We consider the bit-fixing game in the P-BF-ROM, where we fix the
value of G at P positions in the offline phase. Since A is not allowed to query G at position
x even in the P-BF-ROM (because it queries G via the original QueryG), the only way for .4
to successfully compute G(z) is if « is included in the set of fixed positions during the offline
phase. This happens with probability % and thus

P
In this game Qsamp = 0, since the Sampler outputs a challenge z € [N] uniformly at
random, without the need to perform any queries. The Verifier only needs to query G at
position z, thus Qveriry = 1. The statement of Item 2 of Theorem 15 with P = /Z(Q + 1)N
implies that the advantage of a non-uniform algorithm with advice zg and @ queries is at
most
Z(Q+1)

1
5(2,Q) < 5 +2\ = <

3 Quantum vs Classical Advice for [YZ22]

We review the result of [26], which gives an NP-search problem that is easy for BQP machines
but hard for BPP machines relative to a random oracle. Then we show that the problem is
easy for BQP machines with quantum advice and no online query but hard for unbounded-
time machine with polynomial-size classical advice and polynomially-many classical online
queries relying on an observation of [20].

» Definition 17 ([26]). Let C C X" be a code over an alphabet ¥ and H : [n] x ¥ — {0,1}
be a function. The following function is called a YZ function with respect to C and H:
&0 —{o, 1"
S (01,02, ey v0) = H(L00)|[H(2,09)| ||| H (1, v,).
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» Remark 18. When we refer to a code C' C 3", it actually means a family {C), },en of codes
C,, C X7 over an alphabet X,. We often omit the dependence of n for notational simplicity.

[26] shows that there is an error correcting code C, which satisfies a property called
list-recoverability, such that jg is easy to invert with quantum queries to H but hard to
invert with classical queries to H where H is modeled as a random oracle. Liu [20] observed
that the quantum inversion algorithm of [26] does not need to make adaptive queries, and
having a polynomial-size quantum advice on H that is independent of the target r suffices.
In addition, he proved that classical advice does not suffice for the task if no adaptive query
is allowed. Combining the above, we have the following theorem.

» Theorem 19 ([26, 20]). There is a code C C X" satisfying the following:
1. (Easiness with Quantum Advice) There is a QPT algorithm A and a family of
poly(n)-qubit quantum advice {|zm)}m such that for any r € {0,1}",

Pr(f& (A(lzr) 7)) = )] = 1 = negl(n)

where H <+ Func([n] x X, {0, 1}).
2. (Hardness with Classical Advice) For any unbounded-time algorithm B and polyno-
mial s, there is a negligible function p such that for any family of s(n)-bit classical advice

{ZH}H;
PrlfE (B(en,)) = 1] < u(n)

where H + Func([n] x £,{0,1}) and r + {0,1}".
Moreover, C satisfies (C, £, L)-list-recoverability, i.e., for any subset T; C X such that |T;| < ¢
for every i € [n],

H(v1,.oon) €C:|{i€n] iz €T} > (1—-Cn}| <L

where ¢ = Q(1), £=2"", and L = 20(n) for some constants 0 < c < < 1.

We extend Theorem 19 to require that the hardness with classical advice holds even if A
is given a classical access to H. This can be seen as a unification of [26] and [20].

» Theorem 20. Let C' C X" be the code in Theorem 19, the following holds:

Hardness with Classical Advice and Classical Queries For any unbounded-time algorithm
B that makes polynomially many classical queries to H and polynomial s, there is a
negligible function p such that for any family of s(n)-bit classical advice {zg}p,

Ilj’g[fg(BH(ZHw)) =] < p(n)

where H < Func([n] x £,{0,1}) and r < {0,1}".

Proof. The proof is obtained by combining the proofs of [26] and [20]. We give a full proof for

completeness. By Item 1 of Theorem 15, we only have to prove that the winning probability of

the following game in the P-BF-ROM is negl(n) for any P = poly(n) and an unbounded-time

algorithm B that makes @ = poly(n) online classical queries.

Offline Stage. B chooses list L = {x, yx}xe(p) of P input-output pairs where xp € [n] x ¥
and yi € {0,1} for each k € [P] and xj, # x) for all k # k’. Then the random oracle
H + Func([n] x 3,{0,1}) is uniformly chosen under the constraint that H () = y;, for
all i € [P].
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Online Stage. B takes r + {0,1}" as input, makes @ classical queries to H, and outputs
v = (vf,...,v) € &

Decision. B wins if v* € C and fH(v*) =r.

For i € [n], let T; := {v; € ¥ : x = (i,v;) for some k € [P]}. Let

Good := {(v1,...,vp) €EC:|{i € [n] : 2, € T3} > (1 — n}.

By the (¢, ¢, L)-list-recoverability and |T;| < P < 2" < £ (for sufficiently large n), we have
|Good| < L. We consider the following two cases:

Case 1: v* € Good. For each element v € Good, Pr,. (o 1}» [f#(v) =r] = 27" Thus,
by the union bound, the probability that B wins is at most |Good| - 27" = 279 hy

|Good| < L = 20("6/) and ¢ < 1.

Case 2: v* ¢ Good. The analysis of this case is very similar to the proof of soundness in
[26] and the following proof is partially taken verbatim from theirs. For each ¢ € [n] and
Jj € Q] let Sg C ¥ be the set of elements v; such that B ever queried (,v;) by the point
when it has just made the j-th query. Let S'ZJ = Sij UT; for each i € [n] and j € {0,1,...,Q}.
Without loss of generality, we assume that v} € S’lQ for all i € [n].° After the j-th query,
we say that a codeword v = (v1,...,v,) € C is K-queried if there is a subset I € [n] such
that |I| = K, v; € S’f for all ¢ € I, and v; ¢ S'f for all i ¢ I. By the assumption that
v* ¢ Good, v* is Kyp-queried for some Ky < [(1 — {)n] right after the offline stage. By
the assumption that v} € g’? for all i € [n], v* is n-queried after the Q-th query. Since a
K-queried codeword either becomes (K + 1)-queried or remains K-queried by a single query,
v* must be K-queried at some point of the execution of B for all K = Ky, Kg+ 1,...,n.

We consider the number of codewords that ever become K-queried for K = [(1 —()n]. If
v = (v1,...,0,) € Cis [(1 — {)n]-queried at some point, the number of i such that v; € §?
is at least [(1 — ¢)n] since 57 C ng for all 4,j. We have \S’ZQ| < Q+ P = poly(n) < 2
for sufficiently large n. On the other hand, C is (¢, £, L)-list recoverable for £ = 2"° and
L =200, Thus, the number of codewords that ever become [(1 — {)n]-queried is at most
L =200,

Suppose that we simulate the oracle H for B via lazy sampling, that is, instead of
uniformly choosing random functions at first, we sample function values whenever they are
specified in the list sent in the offline stage or queried in the online stage. Suppose that a
codeword v becomes [(1 — ¢)n]-queried at some point of the execution of the experiment.
Since the function values on the unqueried |{n] positions are not sampled yet, v can become a
valid proof only if all those values happen to be consistent to r, which occurs with probability
(%) Ll _ 9-00m) by ¢ = Q(1). Since one of them is the final output v*, by the union bound,
the probability that v* is a valid proof is at most L - (1) Lnd _ 9-0@m) by L = 20(n*) and
d < 1. <

We have the following corollary. The motivation of showing this corollary is to ensure
that “a large fraction of H works for all ” rather than that “for all r, a large fraction of H
works”. Looking ahead, this is needed for proving an oracle separation for BQP/poly and
BQP/gpoly (but not for QMA and QCMA).

9 This might increase @ by at most n, but T is still poly(n) anyway.
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» Corollary 21. Let C be the code in Theorem 19. Then the following hold:
1. (Easiness with Quantum Advice) There is a QPT algorithm A and a family of
poly(n)-qubit quantum advice {|zy)}3 such that

Pr{vr € {0,1}" Pr[3j € [1] 5.t FEY WD) = (v V™) e Alzn) 7)) > 1 — negl(n)]
> 1 — negl(n)
where H = (HM ..., HM) « (Func([n] x %,{0,1}))".
2. (Hardness with Classical Advice and Classical Queries) For any unbounded-time

algorithm B that makes poly(n) classical queries to H = (HW, ..., H™) and polynomial s,
there is a negligible function p such that for any family of s(n)-bit classical advice {z3 }4,

Prij € n] st fH7(v0) =1 (v, v ) B (z30,1)] < ()

where H = (HM, ..., H™) « (Func([n] x %,{0,1}))" and r + {0,1}".

Proof. For proving Item 1, we can set the advice as |zy) = |zpm) @ |2p@) @ -+ & |2gm) ),
and the algorithm just parallel runs the algorithm in Theorem 19 for different H(). Assume
the algorithm in Theorem 19 satisfies:

Pr(f& (A(lzr) ) = 7)) > 1= n(n),
for some negligible function 7n(n). For any r € {0,1}",

Brvj € ], 7 (VD) 2 (v, v ) e A(lzm) )] < )"

By an averaging argument, at most 7(n)"/? fraction of # will satisfy

Prlj € [n], f47 (vD) # 1 (v, v = A(lzg) 1)) > (n)"/?
By applying a union bound over all € {0,1}", we obtain that

F;_tr[Elr € {0,1}" Pr[Vj € [n], fg(j)(v(j)) £r: (v vy A(|zw), )] > n(n)] < (4n(n)) %
Applying negation, we obtain the bound above.

For proving Item 2, we will show how an adversary B that breaks hardness with classical
advice and classical queries, can be used to construct an adversary B’ that breaks hardness
with classical advice and classical queries of Theorem 20. To show this, we go through the
following steps:

1. For each fixed j € [n], H; = (HM, ... HG-D G H™) we define a pair

(B'[j, H;],{z 4, H;j]} i) of an adversary and advice in which j and H; is hardwired.

2. Show that (B'[j, H;],{2}y[j, H;]} 1) breaks Theorem 20 on average over the choice of j.
3. Fix the “best” j and H; (w.r.t. random H) to get a fixed pair of algorithm and advice
that breaks hardness of Theorem 20.

Specifically, it works as follows. Suppose there exists some adversary B and some polynomial
q(n) such that for sufficiently large n,

Pr(3j € [n] st f17 () = r s (v, v) = Bz, 1)) 2 g(n)

For each j and H;, we define (B'[j, H;],{z};[j. H;]} 1) as follows:
Z}J [Ja ’H;]: Given 'H;, set

H=HD,. . HUD g HOD  HO)

Set 2[4, H;] to the advice of B for H, i.e. zj[j, H;] := 2.
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B'[j, ’H;]H(z}{[j, H;],7): It runs BH (2} [j, H;],7) where B’ hardwired H; into its al-
gorithm. It simulates the oracle H for B by querying its own oracle H as HY) and
simulates other H") (i # j) by querying the hardwired ;.

By the above argument, we have

o FE L B l H5],) = 7]

= Pr [ (v0) =2 (v, v ) = B ()]
sTsJ

4

Thus, by taking j = j* and H*, that makes the above probability the largest for random H,
(B' {zptr) = (B'[j*, H5], {zp[i", H:]} i) breaks hardness of Theorem 20. <

4 BQP/poly vs BQP/gpoly under Classically-Accessible Oracle

In this section, we demonstrate a BQP/qpoly and BQP /poly separation relative to a classically-
accessible classical oracle.
The main technical lemma needed for proving the separation is the following.

» Lemma 22. There is a family of distributions {Ds, }nen, where D,, is supported on tuples

(G, 0) of functions G : {0,1}" — {0,1} and O : {0,1}*™) — {0,1}9") for some polynomials

p and q, satisfying the following:

1. (Easiness with Quantum Advice) There is a QPT algorithm A with classical access
to O and a family of poly(n)-qubit quantum advice {|zo)}o such that

<G’OP)(r_Dn[VaU € {0,1}™ Pr[A9(|z0),2) = G(z)] > 1 — negl(n)] > 1 — negl(n).

2. (Hardness with Classical Advice) For any unbounded-time algorithm B that makes
poly(n) classical queries to O and a family of poly(n)-bit classical advice {zo}o,

3

P © = <2

(G’O)f_m[B (z0,7) = G(z)] < 5
z{0,1}"

for all sufficiently large n.
For proving Lemma 22, we prepare the following lemma.

» Lemma 23. Let G : {0,1}" — {0,1} be a uniformly random function. For an unbounded-
time algorithm A that makes poly(n) classical queries to G and a family of poly(n)-bit classical
advice {z¢ }a, suppose that the following holds:

[A%(2q, z) = G(z)] >

G,z<+{0,1}"

ot w

Then the probability that x is contained in the query list is at least % for % fraction of
x € {0,1}"™ for sufficiently large n.
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Proof. For each = € {0,1}", we define G, as the random function G with its input on x
removed, i.e. Gz(z') = G(2') for 2’ # x and G,(z) = 0. Since A only makes classical queries
to G, the only way for it to distinguish G from G, is to query the oracle at x. Denote
by 4, the probability that a is in the query list of A%+, where the probability is over the
randomness of A and G,. We obtain that,

| Pr[A® (26, 7) = G(x)] — Pr[A% (26, 2) = G(x)]| < 4.

Now we consider the case when we uniform randomly choose z <+ {0,1}", and require
A%+ (zq,x) to output G(z). This is exactly Yao’s box problem, where the adversary is
required to output G(x) without querying z. By Lemma 16, we have the following bound for
Yao’s box with classical queries and classical advice:

PrAC (sq,7) = G()] < 5 + 2/ EACED _ 1 negin)

where we assume that A makes @ queries. Thus we have that
1
Pr[A®(zq,2) = G(x)] = Pr[A% (20,2) = G(2)] > 1o ~ nesl(n),
Therefore, we have

E[6,] > ]g H%r[AG(zG,x) =G(z)] - %r[AG””(zG,m) = G(x)]H > 1—10 — negl(n)

x

We now show that ¢, is at least % with probability % for sufficiently large n.

1 1 1 1
> — - > — > >
I;r [590 > 20} + <1 P;r {636 > 20}) 50 = E.[0.] > 10 negl(n)

1 1
> | >—
= I?Cr {52 > 20} negl(n)

- 20
Thus for sufficiently large n, for a % — negl(n) > % fraction of z € {0,1}", A will query x
with probability at least %. <

Then we prove Lemma 22.

Proof of Lemma 22. We define D,, to be the distribution that samples G and O as follows:
D,,: Let C C X" be the code in Corollary 21. It samples random functions G : {0,1}" —
{0,1} and HY : {0,1}°8" x ¥ — {0,1} for j € [n] and defines O as follows: O takes

z € {0,1}" and (v(V,...,v(™) € C™ as input, and outputs G(z) if there is j € [n]

such that fg v (vU )) = z and outputs L otherwise.'® For simplicity we will denote by

H=(HD,. . H™).

First, we show the easiness with quantum advice (Item 1). Let (A’, {|23,)}%) be the tuple
of an algorithm and family of quantum advice in Item 1 of Corollary 21. We construct
(A, {|z0)}o) that satisfies Item 1 of Lemma 22.

In fact, we allow the advice |zp) to be a mixed state and write it by po. Note that this
does not weaken the statement since any mixed state can be considered as a distribution
over pure states and thus there must exist a pure state advice |zp) that is at least as good
as po. The algorithm A and quantum advice po is described as follows:

10Note that 2 here plays the role of r in Corollary 21.
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po: We describe a randomized procedure to set po given an oracle O. This should be
understood as setting po to be the mixed state corresponding to the output of the
procedure. Sample (G,H) from the conditional distribution of D,, conditioned on the
given O. Note that then the joint distribution of (G, H, O) is identical to the real one.
Then pe is set to be py.

A®(po,x): Tt runs v < A'(po, r), queries (x,v) to O, and outputs whatever O returns.

Then Item 1 of Corollary 21 implies

Pr [V € {0,1}" Pr[A®(po,x) = G(x)] > 1 — negl(n)] > 1 — negl(n).
(G,0)+D,
Thus, Item 1 of Lemma 22 holds.

Next, we show the hardness with classical advice (Item 2). Suppose that there is
(B,{z0}0) that breaks it. Then we have

p © =
(Gp)(r_Dn B (z0,x) = G(z)] >
we{0,1}"

ol w

for infinitely many n € N. Recall that O returns G(z) only if the query (z, (v, ..., v(™))
satisfies f& <”(v(j)) = z for some j € [n]. Thus, by a direct reduction to Lemma 23, for
a 3—10 fraction of z € {0,1}", the query list of B to a randomly chosen O according to D,
will contain a query of the form (x, (v(Y),...,v(™)) such that there is j € [n] such that
fé{(]) (v\9)) = 2 with probability at least 2—10.

Also note that classical access to O can be simulated by classical access to G and
H=(HD, ... H™). Thus, the above directly gives an algorithm that violates the hardness
with classical advice and classical access to H (Item 2 of Corollary 21). To show this, we go
through the following steps:

1. For each fixed G, we define a pair (B'[G], {#%,[G]}#) of an adversary and advice in which

G is hardwired.

2. Show that (B'[G], {#%[G]}+) breaks Item 2 of Corollary 21 on average over the choice of

G.

3. Fix the “best” G (w.r.t. random H) to get a fixed pair of algorithm and advice that

breaks Item 2 of Corollary 21.

Specifically, it works as follows. For each G, we define (B'[G], {#%;[G]}#) as follows:
24, [G]: Construct O from (G, H). Set 2,[G] := zo.
B'[G’]H(zfu[G], x): It runs BO(24,[G], z) where B’ simulates the oracle O for B by using its

own oracle H and the hardwired oracle G and outputs a uniformly chosen query by B.
By the above argument, we have

. O, (G
GE{I“@[HJ €] st A7 (VD) =2: (v, . vy« B[G(2,[G], z)] > 5000
where @ is the number of queries by B. Thus, by taking G = G* that makes the above
probability the largest, (B', {2}, }2) := (B'[G*], {2},[G*]}) breaks Item 2 of Corollary 21.'*
<

L At first glance, this argument seems to allow 5’ to be a non-uniform machine that takes G as advice.
However, this is not needed since B’ can find the best G by itself by using its unbounded-time
computational power.
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Given Lemma 22, it is straightforward to prove a separation between BQP /qpoly and
BQP/poly relative to a classically-accessible classical oracle by the standard diagonalization
argument.

» Theorem 24. There is a classically-accessible classical oracle O relative to which
BQP/poly # BQP/qgpoly.

Proof. Suppose that we generate (G, 0) - D,, and define a language £ := | |,y G,,*(1) and
an oracle O that returns O, (x) on a query z € {0,1}*. We claim that £ € BQP? /qpoly
and £ ¢ BQP® /poly with probability 1.

To see £ € BQPY /qpoly with probability 1, Item 1 of Lemma 22 implies that there is a
BQP machine A with polynomial-size quantum advice that decides £ on all = of length n
with probability at least 1 — 2 for all sufficiently large n. Since > " | & = 72/6 is finite,

n=1n2 —

the Borel-Cantelli lemma implies that the probability that A fails on infinitely many n is 0.

In other words, the probability that there is N such that A succeeds in deciding £ on all z
such that |z| > N is 1. By augmenting A to decide £ by brute-force when the instance has
length smaller than N, we can conclude that there is a BQP machine with polynomial-size
quantum advice that decides £ on all z € {0,1}* with probability 1 over the random choice
of (G,0) for n € N.

Next, we prove L ¢ BQP?Y /poly with probability 1. For a BQP machine B that takes
£(n)-bit classical advice for a polynomial ¢, we define Sp(n) to be the event over the choice
of (G, O) that there is a £(n)-bit classical advice zp such that
2
3
Ttem 2 of Lemma 22 implies that there is an integer NV such that for any BQP machine B
with classical access to O, we have Prg o[Sp(n)] < c¢ for all n > N where ¢ := 9/10. We now
show that

Pr[Va € {0,1}" B®(20,2) = G(z)] >

PriSs(1) ASs2)A-..] =0

We will consider a sequence of input lengths nq,ns,... defined by n; := N and n; :=
T(n;—1) + 1, where T'(n) is the running time of B on input of length n. This means that
when B’s input length is n;_1, it cannot touch the oracle on input length > n;. This
guarantees that Pr[Sg(n;) | Sg(n;)] = Pr[Sg(n;)] for all i > j.

We can now show that the probability that B succeeds on all inputs is equal to 0 over
the choices of G, O.

PI‘[SB(l) N SB(Q) AL }

/\ sg(ni)}

Pr[Sg(nl)} . PI‘[SB(WQ) | SB(’IM)] .

< Pr

IN

c-
0

Since there are countably many QPT machines,

55[38 Se(1)ASB(2)A...]=0.

This means that £ ¢ BQP® /poly with probability 1 over the choice of (G, O). <
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