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We develop a phase-estimation method with a distinct feature: its maximal run time (which deter-
mines the circuit depth) is §/¢, where € is the target precision, and the preconstant § can be arbitrarily
close to 0 as the initial state approaches the target eigenstate. The total cost of the algorithm satisfies the
Heisenberg-limited scaling o (e™1). As a result, our algorithm may significantly reduce the circuit depth
for performing phase-estimation tasks on early fault-tolerant quantum computers. The key technique is
a simple subroutine called quantum complex exponential least squares (QCELS). Our algorithm can be
readily applied to reduce the circuit depth for estimating the ground-state energy of a quantum Hamilto-
nian, when the overlap between the initial state and the ground state is large. If this initial overlap is small,
we can combine our method with the Fourier-filtering method developed in [Lin and Tong, PRX Quantum
3, 010318, 2022], and the resulting algorithm provably reduces the circuit depth in the presence of a large
relative overlap compared to €. The relative-overlap condition is similar to a spectral-gap assumption but
it is aware of the information in the initial state and is therefore applicable to certain Hamiltonians with
small spectral gaps. We observe that the circuit depth can be reduced by around 2 orders of magnitude in

numerical experiments under various settings.
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I. INTRODUCTION

Phase estimation is one of the most important quantum
primitives. The problem of phase estimation can be equiv-
alently stated as estimating the eigenvalue of a quantum
Hamiltonian H, under the assumption that we can query
H via the Hamiltonian-evolution operator U = e~"*# for
some real number 7. There are two important performance
metrics for the phase estimation: the maximal run time,
denoted by Tiax, and the total run time To, Which is the
sum of the run time multiplied by the number of repetitions
from each circuit in the algorithm. Ty.x and Tt approx-
imately measures the circuit depth and the total cost of
the algorithm, respectively, in a way that is independent
of the details in implementing U. If we are also given
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an eigenvector |1/) associated with an eigenvalue e~"**,
the Hadamard test is arguably the simplest algorithm for
estimating the phase A € [—7/t,7/7). It uses only one
ancilla qubit and a single query to U controlled by the
ancilla qubit, i.e., T = . This makes the Hadamard
test ideally suited for early fault-tolerant quantum devices,
which are expected to have a very limited number of log-
ical qubits and may have difficulty in handling circuits
beyond a certain maximal depth. The Hadamard test has
many drawbacks too: it requires |{) to be an exact eigen-
state, which is a stringent condition that cannot be satisfied
in most scenarios. It also requires Ny = O (e ~2) repetitions
to estimate A to precision €,and hence the total run time is
O(e™?).

Both problems can be addressed by quantum phase esti-
mation (QPE) and its many variants [1—6]. Generically,
estimating the phase to € accuracy with a high success
probability requires Tyax to be at least /€ for QPE [7,
Section 5.2.1] [8]. Additionally, the total run time of QPE
is O(e~!) and achieves the Heisenberg-limited scaling
[9—11], which is the optimal scaling permitted by quan-
tum mechanics. The standard version of QPE (see, e.g.,
Ref. [7, Chapter 5]) uses at least logz(n(re)‘l) ancilla
qubits and is not suitable for early fault-tolerant devices
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but the semiclassical version of QPE [1,2,12] can achieve
the same task and uses only one ancilla qubit.

To our knowledge, in all existing works on QPE sat-
isfying Heisenberg-limited scaling, the maximal run time
/€ is non-negotiable, in the sense that the preconstant
in front of €' cannot be significantly reduced in general.
This is because QPE-type methods construct, directly or
indirectly, a filtering function that transitions from 1 to 0
on an interval of width €. This can be a severe limitation
in practice, since estimating A to precision 0.001 means
that U needs to be coherently queried approximately 3000
times in the quantum circuit (assuming that ¢ = 1). It is
therefore desirable to have a phase-estimation method that
satisfies the following properties:

(1) It allows |) to be an inexact eigenstate with one
ancilla qubit.

(2) It maintains the Heisenberg-limited scaling: to esti-
mate A to precision € with probability 1 — 7, the
total cost is O(e ™! polylog(e~'n~1)).

(3) It reduces the circuit depth: the maximal run time
can be (much) lower than 7 /€, especially when |v/)
is close to be an exact eigenstate of U.

When |v/) is an exact eigenstate, the maximal run time in
QPE-type methods may be reduced by means of a trade-
off between the circuit depth and the number of repetitions.
However, if the initial state is not an exact eigenstate, this
strategy is no longer directly applicable. In this paper, we
introduce algorithms that can satisfy properties (2) and (3),
without assuming that |/) is an exact eigenstate.

A. Main idea

To achieve this, our quantum circuit (Fig. 1) is the
same as the circuit used in the Hadamard test but replaces
U=e ™ by U" = e ™" for a sequence of integers n.
This is a simple circuit, it uses only one ancilla qubit, and
it is suitable for early fault-tolerant quantum computers.
The most challenging component may be the implemen-
tation of the controlled time evolution. Under additional
assumptions, the controlled time evolution for certain uni-
taries may be replaced by uncontrolled time evolution (see,
e.g., Refs. [13—17]).

0) — H I W H ">
) ———] et
FIG. 1. The quantum circuit used for collecting the input data.

H is the Hadamard gate, t, = nt. Choosing W =1 or W = ST (S
is the phase gate) allows us to estimate the real or the imaginary
part of (/| exp(—it, H)|).

Let t, =nt for n=0,...,N — 1. Also, for simplic-
ity, we refer to T := N7 as the maximal running time
(the actual maximal running time is (N — 1)7). The cir-
cuit provides an estimate of the value of (y|e~"!|y)
by measuring the success probability of the first qubit.
Repeated measurements at different n provide a (complex)
time series

{(tns ZDYNZ (1)

where Z, is a complex-valued random variable such
that £(Z,) = (Y| exp(—it,H)|¥). In the intuitive analy-
sis, we may assume Z, = (Y| exp(—it,H)|v¥). We give the
detailed construction of Z,, in Sec. I A.

Without loss of generality, let us denote the target eigen-
state by |), the target eigenvalue by A¢ (in this context,
Ao does not need to be the smallest eigenvalue of H),
and the overlap between the initial state |i) and the tar-
get eigenstate by py = [(W|¥o)|*. We also assume Aq €
[—m, 7). If pg = 1 (i.e., | ) is the target eigenstate) and the
number of samples for each # is sufficiently large, we have
Z, ~ e~ _which is an exponential function. If py < 1,
we may still fit the input data provided by Eq. (1) using a
complex exponential » exp(—it,0), where r € C, 0 € R.

A main step of our method is a subroutine that solves
the following nonlinear least-squares problem:

(r*,0%) = argmin, ¢y x L(7,6),

N—1
1
L6 =5 > 12, — rexp(—it,0)[* 2)
n=0

where 60* gives the approximation to the phase Ay. Note
that once we obtain the data set from the quantum cir-
cuit in Fig. 1, minimizing L(»,60) only requires classical
computation. This subroutine is dubbed quantum complex
exponential least squares (QCELS). The minimization
problem can be efficiently solved on classical computers
(see Sec. 11 B). An illustrative example of QCELS using
the spectrum from the transverse-field Ising model (TFIM)
model (for details, see Sec. V A) is shown in Fig. 2(a). In
the graph, we set the initial overlap py = 0.8. The scatter
points are the data points (¢,, Z,) defined in Eq. (1), and the
curve represents the fitting function r* exp(—it0*), where
(r*, 0%) is the optimal solution to Eq. (10).

If po =1 and N = 2, the behavior of QCELS is very
similar to that of the Hadamard test, we can estimate
0 ~ Ay mod [—7/t,7/T) to any precision, and the cir-
cuit depth is independent of €. However, there are some
immediate issues with this approach:

(a) It is not so clear whether Eq. (2) can estimate Ag
accurately with a short-depth circuit, even if pg is
close but not equal to 1. Moreover, this method
clearly fails if there exists some eigenstate |;) such
that | (¥|¥,) |> > po. So po should be larger than
some minimal threshold.

020331-2



EVEN SHORTER QUANTUM CIRCUIT FOR PHASE ESTIMATION

PRX QUANTUM 4, 020331 (2023)

(a) - Data

Fitting

Imaginary part

FIG. 2.

(b)
--- QCELS (upper bound)
4 QPE-type (lower bound)
".‘. v Hadamard test
‘\0
3 el
- ..
.
(o e
2 s S,

Po

(a) Fitting the noisy input data with py = 0.8 using a complex exponential function. The mismatch between the data and the

best fit reflects that the input data are more complex than a single complex exponential function. Despite this mismatch even in the
absence of any Monte Carlo sampling error, QCELS is able to accurately estimate the phase under proper conditions. (b) A comparison
of the theoretical upper bound of § = Tppax€ for QCELS (T iy is the maximal run time) with the lower bound of § for QPE-type methods
when py > 0.71. The Hadamard test is only applicable when py = 1 and in this case § can be chosen to be arbitrarily small.

(b) For each n, the number of measurements is at least 1.
If N = @(e"), the total run time is at least N(N —
1)/2 = ©®(e2) and the method does not satisfy the
Heisenberg-limited scaling.

Our main body of work is to address these issues and to
develop an efficient algorithm for postprocessing the input
time series generated by quantum computers.

The answer to point (a) is given by Theorem 1. Roughly
speaking, when py > 0.71, we may choose a proper § > 0
so that the maximal run time is Ty.x = Nt = §/€ and
the global minima to Eq. (2) can estimate Xy to preci-
sion §/Tiax = € (mod [—m/t,7w/7)). Moreover, when Z,
is sufficiently concentrated around its expectation and as
po — 1, & can be chosen to be arbitrarily small. Therefore,
the maximal run time (and the circuit depth) can be con-
tinuously reduced as the input state approaches an exact
eigenstate and QCELS maintains the desirable behavior of
the Hadamard test when py < 1.

To address point (b), we can start from a small value
of 7, which allows us to estimate A to precision §/(NT1).
If § and N are fixed, then this estimate can only reach
limited precision. Similar to the binary search strategy for
refining the estimate of the eigenvalues [13,15,18], we can
refine this estimate by increasing the maximal run time.
Specifically, we can multiply 7 by a constant and repeat
the process with fixed § and N. We only need to repeat
the process J = log,(8/(N¢€)) times. At the last step, we
have 7, = §/(Ne) and the maximal circuit depth is Ty =
Nt; = §/€e. This procedure is called multilevel QCELS and
is described by Algorithm 1. According to Theorem 2,
when py ~ 1, we may choose § = O(y/1 —pg) < 1 and
estimate A to precision €. The maximal run time is Tiax =
Nt = §/€ and the total cost is O(8~'e~!). Both Theorem 2
and the numerical results verify that Algorithm 1 satisfies
the desired properties (1), (2), and (3) listed in Sec. I. In

particular, the circuit depth can be continuously adjusted
by the parameter § [see a comparison of the theoretical
circuit depth of different methods in Fig. 2(b)] and the
algorithm satisfies the Heisenberg-limited scaling for all
choices of § within the allowed range determined by pg
and the noise level due to measurements.

B. Ground-state energy estimation

As an application, we consider the problem of esti-
mating the ground-state energy (the algebraically smallest
eigenvalue) of an n-qubit quantum Hamiltonian H. Here,
we assume ground-state energy Ag € [—m,7w) and |Yy)
is the associated eigenvector. In the absence of addi-
tional assumptions, the task can be quantum Merlin Arthur
(QMA) hard [3,19,20]. Hence we assume that an initial
quantum state |y) = U;|0") can be prepared via a uni-
tary U; and the overlap po = |(¥|¥)|* > 0. If py > 0.71,
we can readily apply Theorem 2 to estimate Ay using a
short-depth circuit.

If po is small, we propose an algorithm combining
the multilevel QCELS algorithm with the Fourier-filtering
technique developed in Ref. [15] to estimate Ay. To demon-
strate the efficiency of the algorithm, we assume that there
is an interval / containing A and a slightly larger inter-
val I’ D I with a positive distance D separating 7 and (I)°
[see Eq. (36)]. We introduce a concept called the relative
overlap of the initial vector |v) with the ground state with
respect to the intervals 7 and 7"

W) 1 (o)
) = —m8m8M8M . 3
P e W IV0P ©)

Here, the denominator is assumed to be nonvanishing and
1,(-) is the indicator function on I such that 1;(Ag) =1
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if Ap € and 1;(9) =0 if Ay ¢ I. The most straight-
forward scenario is that the system has a spectral gap
A = Ay — Xo. We can then choose I = [, Aprior + A /4],
I" = [=7, Aprior +3A /4], and D = A /2, where Ayrior 1S @
rough estimation of A such that [Apior — Aol < A /4. The
relative overlap in this case will be 1. It should be noted
that the preceding discussion considers a worst-case sce-
nario. In a real application, even if the spectral gap is
very small, it may be feasible to choose suitable values
for I and I’ that result in a distance D significantly larger
than the spectral gap, while still achieving a large rel-
ative overlap p,(I,1’). Theorem 3 states that as long as
the relative overlap is larger than 0.71, we can estimate
the ground-state energy to precision €, where the maximal
run time i Tpax = @(Q‘l) + 8/€ and the total run time
Tiotal is approximately O(p, 26-2(D~! + 8/€)). Hence this
algorithm is particularly useful when D > €. As the rela-
tive overlap approaches 1, § can be chosen to be arbitrarily
small.

C. Related works

Based on the generalized uncertainty relation [21], there
exists a uniform complexity lower bound for the prob-
lem of phase estimation [22], i.e., the square of the error
is always Q (N, 'N~2) in the expectation sense, where
N is the query depth (with 7 = 1) and N, is the num-
ber of repetitions. In our case, to estimate the ground-
state energy with precision €, we have N,72_ = Q(e72),
where T is the maximal run time. From this perspec-
tive, the Hadamard test [with Ny = O(e?) and Tyax =
O(1)] and QPE [with N; = O(1) and Tpax = O™ )]
are at the two ends of the spectrum. It is possible to
achieve a measurement-depth trade-off by setting N, =
O(e 2179 T = O(e™¥) for some 0 <o < 1 [23].
However, the total cost will be at least N Tax = O(€%72).
Hence when o < 1, this strategy does not satisfy the
Heisenberg-limited scaling.

Our work is related to robust phase estimation (RPE)
in the context of quantum metrology for single-qubit sys-
tems, which was first proposed in Ref. [24]. RPE satis-
fies the Heisenberg-limited scaling and allows the input
state to be an inexact eigenstate, as long as the over-
lap with the desired eigenstate is larger than a certain
constant [25]. Due to these advantages, RPE has been
applied in quantum metrology, as well as other systems
that can be viewed as effective single-qubit systems [25—
29]. Empirical observations also suggest that the maxi-
mal run time of RPE may be smaller than n/e. How-
ever, we are not aware of theoretical analysis on this
aspect of the algorithm. (Note: After the submission of
this manuscript, recent analysis in Ref. [30] shows that
RPE can also achieve short maximal runtime.) It is pos-
sible to generalize RPE to perform phase estimation of
general n-qubit systems. That being said, QCELS and

multilevel QCELS can also be applied for parameter esti-
mation in quantum metrology, with a provably short circuit
depth.

There are a few other phase-estimation algorithms that
also use a single ancilla qubit. The efficiency of the
algorithms has so far been demonstrated numerically.
Reference [31] develops a postprocessing technique to
extract eigenvalues from phase-estimation data based
on a classical time-series (or frequency) analysis.
Reference [32] proposes a method that estimates
(V| exp(—itH) |y) first and then performs a classical
Fourier transform to estimate the eigenvalues. A very
different type of algorithm for ground-state energy esti-
mation is the variational quantum eigensolver (VQE) [23,
33,34], which constructs a variational ansatz [y (6)) to
approximate the lowest eigenvector [1/y) and the param-
eter 0 of the ansatz is adjusted to minimize the energy
(¥ (0)| H | (0)). The advantage of the VQE is that the
quantum circuit is very simple because short-depth cir-
cuits (often without using ancilla qubits) are enough to
estimate (¥ (0)| H [y (0)). However, the efficiency and
accuracy of VQE largely depend on the representation
power of the variational ansatz 1/ (6) and the solver of the
nonconvex optimization problem. Similar to VQE, there
are also other algorithms that try to perform phase esti-
mation using the quantum states generated in the time
evolution, such as the quantum imaginary time evolution
(QITE) algorithm [35] and some methods based on the
classical Krylov-subspace method, such as the quantum
subspace diagonalization [14,36]. However, these meth-
ods also lack a provable complexity upper bound and
existing theoretical analysis on quantum subspace diago-
nalization methods [37] has not been able to reveal the
advantage of such methods compared to classical QPE
methods.

For ground-state energy estimation, a number of quan-
tum algorithms [13,15,38—41] have been developed for
ground-state energy estimation using the Hamiltonian-
evolution input model. However, the maximal run time
of all existing works satisfying the Heisenberg-limited
scaling is at least C/e for some constant C = Q(1) that
is independent from the overlap py. Take the method in
Ref. [15], for instance, which uses the same quantum cir-
cuit as in Fig. 1 to generate the input data and can estimate
Ao with Heisenberg-limited scaling for any py > 0. The
method uses a Fourier filter to approximate the shifted sign
function. To resolve the ground-state energy to precision €,
the shifted sign function defined on [—, ) should make
a transition from 1 to 0 within a small interval of size €/2.
The maximal run time is O(e~') and the preconstant is
larger than 7 (see [15, Appendix A]). A similar mechanism
of constructing filtering functions is used in the near-
optimal ground-state preparation and ground-state energy
estimation algorithm based on the block-encoding input
model [18], the quantum eigenvalue transformation of
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unitary matrices (QETU) using the Hamiltonian-evolution
input model [13], and the statistical approach with a ran-
domized implementation of Hamiltonian evolution [40].

More recently, Ref. [41] has introduced a method that
uses the Fourier-filtering techniques from Ref. [15] to gen-
erate a rough estimation A for A¢ in the first step. Then,
it uses a derivative Gaussian filter around A to refine the
estimation of Ay. The main result [41, Corollary 1.3] is
that if the system has a spectral gap A, for any « € [0, 1],
the maximal run time can be chosen to be O(e @ A1+,
and the total cost is O(A'"%¢~2**). When « = 1, this
reduces to the previous result in Ref. [15], i.e., both the
maximal run time and the total cost scale as Q(e”).
When o = 0, the maximal run time becomes O(A™,
which can be much smaller than O(e~') when A > e,
and_this is compensated by an increase in the total cost
to O(e2A). We show in Corollary 4 that under the same
assumption, we may choose § = €/A in Theorem 3 and
the maximal run time of our method is also oA™Y,
while the total run time is O(e “2A). While the maximal
run time allowed by Ref. [41, Corollary 1.3] should be
at least O(A~"), our Theorem 3 allows an even shorter
maximal run time of O(1) under proper conditions. For
example, in many quantum systems, although the spec-
tral gap A is very small, the relative contribution of the
ground state to the initial state is significant in some
large interval [Ag, Ao + D), where D = (1) > A. Apply-
ing the result of Theorem 3 to this system, the maximal
run time is O (D~') = O(1). It may still be difficult to
estimate this relative overlap in practice. However, unlike
the spectral gap, the relative-overlap condition is aware of
the information in the initial state and this relaxed condi-
tion may significantly increase the applicability range of
our algorithm in practice, especially for certain Hamilto-
nians with a small spectral gap (see numerical examples
in Sec. V B).

D. Organization

The rest of the paper is organized as follows. In Sec. I,
we introduce QCELS and multilevel QCELS by assum-
ing that pg is larger than a certain constant threshold. We
also provide an intuitive analysis why QCELS can reduce
the maximal run time when py is close to 1. In Sec. III,
we analyze the maximal run time and the total cost of
our methods. We then extend the method to any pg > 0
in Sec. IV. The numerical simulation of our method is pro-
vided in Sec. V, where we mainly compare our method
with QPE, followed by discussions and future directions in
Sec. VI. We provide detailed proofs of our theorems in the
appendixes. Appendixes B, C, and D contain the proofs
for Theorems 1-3, respectively. In Appendixes A and E,
we introduce several technical lemmas that are relevant to
our main proof.

II. MAIN METHOD

A. Generating input data from quantum circuit

In Fig. 1, we may:

(1) Set W = I, measure the ancilla qubit and define a
random variable X,, such that X,, = 1 if the outcome
is 0 and X,, = —1 if the outcome is 1. Then,

EX,) =Re ((¢exp(—intH) [¥)).  (4)

(2) Set W = ST, measure the ancilla qubit, and define a
random variable Y, such that ¥,, = 1 if the outcome
is 0 and Y, = —1 if the outcome is 1. Then,

E(Y,) =Im ((¢|exp(—intH) |¥)).  (5)

Given two preset parameters N, Ny > 0 and time step T >
0, we use the quantum circuit in Fig. 1 to prepare the
following data set:

DH = {(ntazn)}i\[;()l 5 (6)

where Z, is calculated by running the quantum circuit
(Fig. 1) N, times. More specifically,

N
7, = Ni Z (Xion + 1Y) - (7
k=1
Here, X, and Y;, are independently generated by the
quantum circuit (Fig. 1) with different # and satisfy
Eqgs. (4) and (5), respectively. Hence in the limit Ny — oo,
we have

Zy = (Y| exp(—intH) [{) . ®)

To prepare the data set in Eq. (6), the maximal simu-
lation time is Tmax = (N — 1)T and the total simulation
time is N(N — 1)N;t/2 = NN;Tmax /2. To reduce the com-
plexity of our algorithm, it suffices to find an efficient
way to postprocess the data set given in Eq. (6) so that
a good approximation to Ao can be constructed with proper
choices of N, Ny, and .

B. QCELS and its intuitive analysis
Using the data set given in Eq. (6), we define the mean-
square error (MSE):

N—-1
1
Lr0) = > 12, — rexp(—iont)|? 9)
n=0

where r € C and 6 € R. The approximation to A¢ is con-
structed by minimizing the loss function L(r,6). Let

(10)

(r™,0%) = arg ,n (r,0);
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then 6* is an approximation to Ay and this defines the
QCELS algorithm. Note that once we obtain the data set
from the quantum circuit, minimizing L(r, 6) only requires
classical computation.

The mean-square error L(r,0) is a quadratic function
with respect to r. For a fixed value of 8, minimization with
respect to r gives

N-1

1 iOnt
r(@):}v;e Z, (11)
and
N |yl 2
: _ 2 _ iOnt
min L(r,0) = Zom v Zozne (12)

Therefore, minimizing L(r, 0) is equivalent to maximizing

2

; (13)

N—-1

7 eiénr
E n

n=0

/)=

which is a nonlinear function with respect to 8. According
to the definition of Z, in Eq. (7) (for the rigorous statement,
see Appendix A),

|Zy — (Wl exp(—intH) [y)| = O] 7).

Thus, when N, > 1 and py = 1, intuitively we have

Z, ~ (Y| exp(—intH) |§) = exp(iront),  (14)
which implies
_|explitrg — O)NT) — 1]
SO~ exp(i(hg — 0)7) — 1
. 2
_ 511.1(()\0 —0)Nt/2) . (15)
sin((Ag — 6)t/2)

Recall that T, = Nt. When N is large enough, the maxi-
mum of |(sin((Lg — O)Nt/2))/(sin((Lg — 6)T/2))| occurs
at & = A¢ and the closest local maximal 6* satisfies |0 —
Mo| = 7/Tmax. Therefore, to find the maximal value of
f (@) on the interval [—m,7), we may choose a uniform
grid of size up to [T« ] and perform gradient ascent from
each grid point. By maximizing over the values from all the
local maxima, we can robustly find the global maxima of
(and hence the global minima of the loss function L). As an
illustration, in Fig. 3, we give an example of the landscape
of the loss function and compare the optimization results
with different initial guesses.

When N, N; > 1 and py is sufficiently large, we can
show that 6* is a good approximation to Ay with relatively

160 — f(6)
140 ‘ e success 6g

. fail 60
120

100
Y%~ 80
60
40 ‘
20 |
0 .MMLA/\/ \/"\AM,.,..W
-1.6-14-12-1.0-0.8-0.6 -0.4 —0.2 0.0

FIG. 3. The landscape of the objective function f () in
Eq. (13) and a number of possible choices of the initial guess
6y with T = 80 and the eight-site TFIM model (see details
in Sec. V A). Here, py = 0.8 and the landscape for other values
of py is similar. The Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm is used to maximize the objective function f (6) for
different initial guesses 6. The error threshold is set as 0.01,
meaning that the optimization problem is successfully solved if
|0* — argmax,f (6)| < 0.01.

small depth. The rigorous theoretical results are presented
in Sec. III. Here, we briefly introduce the intuition and
leave more details to Sec. I1 C.

Let {()»m,Wm))}j,\,,tol be the set of eigenpairs of the
Hamiltonian H and let the distance of 6* to A,, be

Ry = |y — 6"t mod [—7, 7). (16)

Our goal is to prove that Ry is small. When N; > 1,
intuitively we have

Zy = (Y| exp(—intH) |) = po exp(—itont)
M—1

+ Y P exp(—ikyn1), (17)

m=1

where p,, = [{(Wm|¥)|? is the overlap between the initial
quantum state and the mth eigenvector. Hence in the limit
]vS - 005

=

1

L(r,0) = = ) |poexp(—ikont)

1N

2

T

+ DPm €Xp(—ikynt) — rexp(—ifnt)| .

1
(18)

m

Similarly to the above computation, we find that minimiz-
ing the right-hand side is equivalent to maximizing the
following function:
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M—1
[Po exp(i(o — O)nt) + > i exp(i(h, — G)nr)}

N-—1
foO=\>
_ exp(i(hg —0)Nt) — 1
T exp(iCho — 0)7) — 1
Therefore,
MU exp(i(hm — A)NT) — 1 ’
f 00) = |poN + n;pm O —tn 1| - @0

When the overlap between the initial state and |1) domi-

. M—1 L.
nates, i.e., po > Y, _| Pm, We can use the first equality in
Eq. (19) to obtain

N-1 M-1 M-1
NATOEDD (Po - me) =N (Po - me) .
n=0 m=1 m=1
(21)
Note that
exp(i(h —0)Nt) — 1 ‘ _ sin((A —0)TN/2)
exp(i(h —0)t) — 1 | | sin((h — 0)7/2)
< i .
T A —=60)tmod [—m, )|
(22)

The second equality of Eq. (19) together with Eq. (22)
gives

M—1
Y Zm:(} pm
min¥=} |(A,, — %)t mod [, )|
v

V(0% <

min,, R,,

(23)

As aresult,

4

M—1
(po - me) N <f (o) <VF (0% <

m=1

min,, R,
(24)

Equation (24) implies that there must exist some m* such
that (po - Zg;ll pm> R, <m/N and that 6* must be

close to one of the eigenvalues. Since py > an/[:_ll DPm, 1t
is reasonable to expect that this eigenvalue should be Ag

2

m=1
2

M—1
exp(i(h, —0)Nt) — 1
m 19
+ mZP exp(iGom — 0)7) — 1 (19)
[
(m* = 0) and we first have
T
|00 = 6") mod [ /7,7/7)| < r—
Tmax (pO - Zmzl pm)
(25)

When pq is very close to 1, we can further improve the
bound given in Eq. (25). Since 6* is the maximal point,

M-1
(pO - me) N
m=1

<Vf (o) <Vf (6" <

sin(NRy/2)

sin(Ro/2) + (1 = po)N,

(26)

where the last inequality comes from the first equality of
Eq. (22). This implies that

sin(VRy/2)

Sn(Re/2) | = BP0~ DN,

27

If we define 6 = Ry/N, we have sin(N (§/2N)) /sin(§/2N) >
(Bpo — 2)N. When § < m, using the Taylor expansion, we
have

Sin(N (8/2N)) _ 52
~sin(8/2N) ”N<1 - ﬁ) > (3po — 2)N.

Combining this with Eq. (27), we have

82~ 72(1 — py). (28)
Therefore, as pg — 1, § = O(/1 — py) — 0. Note that
sin(Nx) /sin(x) is monotonically decreasing on [0, 7 /(2N)];
if we can prove a loose bound R, € [0,7/N], then it can
be refined to

8
Ry < N (29)
or
[(hg — 0") mod [—7/T,7/7)| < =e. (30)

max

In other words, it suffices to choose the maximal run time
Tmax = &/€.
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The above intuitive analysis summarizes the reason why
QCELS can estimate Ao with a short-depth circuit. The pre-
cise statement is given in Theorem 1 and the behavior of
the preconstant § is demonstrated in Fig. 2(b).

C. Multilevel QCELS

Even though QCELS can reduce the maximal run time,
it does not satisfy the Heisenberg-limited scaling. To see
this, note that Tpax = (N — 1)t = O(e~1). If 7 is a con-
stant, then the total simulation time Tiop is $2(e72). We
may also attempt to choose N to be a constant and let
T = O(e!). However, the loss function is a periodic func-
tion in @ with period 27 /7. So we can only obtain |(Ag —
0*) mod [—7/t,7/T)| = O(€), which is a meaningless
estimate, since 7w/t = O(¢).

In this section, we provide a multilevel QCELS
algorithm that maintains the reduced maximal run time and
satisfies the Heisenberg-limited scaling. Roughly speak-
ing, we construct a sequence of data sets {Dp;} using
an increasing sequence of {7;}. The maximal simulation
time of the algorithm 7Ti,,x = Nt; and the total simula-
tion time of the algorithm Ty = ZJLI N(N — )N,
The parameters in the algorithm should be chosen properly.
The increasing speed of 7; should also be chosen properly.
If 7; increases too slowly, we need more iteration steps,
which increases the total cost. If 7; increases too rapidly,
there might exist more than one candidate for the estima-
tion interval for Ay in each iteration. We propose the choice
of 7j41 = 27; (for the precise choice of {7}, see Eq. (35)),
and this procedure is similar to Kitaev’s algorithm [3].
Each solution of the optimization problem based on {Dy ; }
helps us shrink the estimation interval and finally we obtain
a small estimation interval for X¢. The pseudocode of the
multilevel QCELS algorithm is given in Algorithm 1.

III. COMPLEXITY ANALYSIS WITH A LARGE
OVERLAP

To analyze the complexity of the multilevel QCELS
method in Algorithm 1, we need to find an upper bound
of the maximal or total simulation time for finding an €
approximation to A¢. In this section, we assume that the
initial overlap is large, i.e., po > 0.71. The extension to the
small py regime is discussed in Sec. IV.

Foreach0 <n < N — 1, we define

En = Zn - (1//| exp(—intH) W)

M—1
=2, — (Po exp(—iront) + me eXp(—iAmnr)> ,

m=1
(€1Y

which corresponds to the error that occurs in the expec-
tation estimation given in Eq. (7). Note that the {E,} are
independent complex random variables with zero expec-
tation and bounded magnitude. Using classical probability
theory, we can give a sharp tail bound for £, with respect to
N, N,, which is important for us in order to derive a choice
of N, N, in our algorithm. The detailed discussion and tail
bounds for E, can be found in Appendix A.

Using a proper tail bound for £,,, we can analyze the per-
formance of QCELS in Theorem 1. This also corresponds
to an iteration in Algorithm 1.

Theorem 1 (complexity of QCELS, informal): Ler 6*
be the solution of QCELS in Eq. (10). Given py > 0.71,
0<n<1/2,0<e€ < 1/2, wecan choose

5= 0(/T—po) (32)

1: Preparation: Number of data pairs: N; number of samples: Ng; number of iterations: J;

sequence of time steps: {7;}7_,; Quantum oracle: {exp(—iTjH)}J

Running;:

)\min — Ty )\max <
J< L

for j=1,...,J do

P NS TN

(r1,07)

arg min

=1

> [Amins Amax] contains Ag

Generate the data set in Egs. (6) and (7) using the circuit in Fig. 1 with ¢, = n7;.
Define loss function L(r, ) according to (9).
Minimizing the loss function (by maximizing Eq. (13)).

L(r,0),

r€C,0€[~Amin,Amax]

9: /\mm<—9;f—2i7j;/\ma,<<—9;‘+2i7j
10: end for
11: Output: 6*

> Shrink the search interval by 1/2

Algorithm 1.

Multilevel quantum complex exponential least squares
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and
NN, = (87 | min{N,N,} = Q(1),
r=nr="2, (33)
€
so that
P(|©* — x) mod [-7/T,7/T)| <€) = 1—n. (34)

The precise statement of Theorem 1 and the proof are
given in Appendix B. To show Eq. (34), two parts of
the error need to be controlled. First, as discussed before,
we should control E, by increasing the number of sam-
ples N, so that it does not change the loss function too
much. This is particularly important as py — 1. When the
condition given in Eq. (33) is satisfied, the probability of
|E,| = O@6%) = O(1 — py) is at least 1 — 5. The second
part of the error comes from the pollution from eigenvalues
other than Xy when py < 1. As a result, § cannot be arbi-
trarily small and needs to satisfy the relation in Eq. (32) as
Po — 1.

Although Theorem 1 is a complexity result for one step
of QCELS, it also shows that this basic version of QCELS
cannot satisfy the Heisenberg-limited scaling. Fix 0 < § <
1; then, if we choose the parameter according to the con-
dition in Eq. (33) and N = ©(1), we have t = ® (1/¢).
However, this makes the length of the estimation interval
[[—m/t,m/7)] = © (€) and the resulting estimation 6* is
meaningless. To solve this problem, we need to choose
T = ©(1). Then, we should set N = ®(1/¢) to satisfy the
third condition in Eq. (33); this finally makes the total
cost Tio = N(N — 1)7/2 = Q(1/€?%), which violates the
Heisenberg-limit scaling.

Theorem 1 can be used to describe the maximal run time
of Algorithm 1. Using Eq. (34), we can obtain many can-
didates of the estimation interval for A after solving each
minimization problem. On the other hand, we can choose
7; properly so that only one of this candidate survives in
each iteration. After eliminating other candidates, the esti-
mation in Eq. (34) can be directly written as |60* — X¢| <
8/T, which implies that Ty, = §/€ is enough to obtain
€ precision in our algorithm. Now, we are ready to intro-
duce the choice of the parameters and the main complexity
result of Algorithm 1.

Theorem 2 (complexity of multilevel QCELS, infor-
mal): Let 60* be the output of Algorithm 1. Given py >
0.7, 0 < n < 1/2,0 < € < 1/2, we can choose § accord-
ing to Eq. (32),

- 5
J = [logs(1/e)] +1, 5 =2~ Towt/o] =
€

Vi<j<J. (35)

Choose NN, = ® (8’(2“’“»). Then,

1)
Tmax:NTJ =
€

J
Tiotal = ZN(N — DNt /2 = ® (8"”"(”)(1)

j=1
and
IP’(|(9* — X¢) mod [—n,n)| <€)>1-n.

The precise statement of Theorem 2 and the proof are
given in Appendix C. Theorem 2 shows that as py — 1,
the multilevel QCELS algorithm satisfies the Heisenberg-
limited scaling and the maximal run time can be much
smaller than /€. On the other hand, there is a trade-off
between the maximal simulation time and the total simula-
tion time. In particular, N,N = © (372) diverges as § — 0.
This implies that, although 7}y, achieves the Heisenberg-
limited scaling, the preconstant may become too large if
the circuit depth is forced to be very small.

IV. GROUND-STATE ENERGY ESTIMATION
WITH A SMALL INITIAL OVERLAP

When py is smaller than the threshold value of 0.71,
our strategy is to find a way to “increase py” in the input
data. If the system has a spectral gap A = A — Ao > €,
we can then use the algorithm from a previous work [15]
to construct an eigenvalue filter to effectively filter out the
contribution above Ao + A/2 in the initial state, using a
circuit with maximal run time ®(A~1). The effective value
of py in the filtered data can be approximately 1 and the
multilevel QCELS algorithm becomes applicable.

The spectral gap is a property of the Hamiltonian. For
many quantum systems of interest, the spectral gap A can
be very small. Since QCELS can accurately estimate the
eigenvalues starting from an inexact eigenstate, the filter-
ing step does not need to be perfect either if py is small.
Consider an interval / containing Ag, a larger interval I’ D
1, and define the distance

min
x ¢l x€l

D = dist((I)°, 1) = |x1 — x2]. (36)

Then, the relative overlap of the initial vector [ir) with the
ground state [as defined in Eq. (3)], denoted by p,(1,1'),
plays the role of the effective value of py. Specifically, if
prI,I")y > 0.71, we can effectively filter out the contribu-
tion from (/')¢ in the initial state using the algorithm in
Ref. [15] with maximal run time @(D_l). After the filter-
ing operation, the relative overlap plays the role of py in the
previous section and we can apply the multilevel QCELS
algorithm to estimate A¢ with respect to the filtered data.
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The concept of the relative overlap may allow us to esti-
mate the ground-state energy for certain small gapped sys-
tems with a short-depth circuit, especially when p,.(I,1') ~
1 and D is much larger than the spectral gap A. Fur-
thermore, unlike the spectral-gap assumption, which is
a property of the Hamiltonian, the relative overlap is a
property of the initial state. This introduces flexibility
in the initial-state design that may be useful for future
explorations.

A. Algorithm
The modified algorithm has three steps:

(1) Rough estimation of Ayg. We obtain two rough-
estimation intervals / C I’ C [—m, 7] for A9, mean-
ing that Ay € I and p,(I,I') ~ 1.

(2) FEigenvalue filtering to remove high-energy con-
tribution. Define a polynomial F,(x) = 27:_ d ﬁ',,q
exp(ilx) such that

D Fyx) =1 =g, Vxel;
@ IF™I =g, Vxe[-mx]\Il. (37

We use Ref. [15, Lemma 6] to construct F, that
satisfies Eq. (37) with d = ®(D'polylog(g™")),
By = 00117, and T, |Fiy| = ©og(@)).

(3) Refined estimation of Ao with multilevel QCELS. We
can apply Algorithm 1 with the filtered data set
(see detail in Algorithm 2) to obtain an accurate
estimation of the ground-state energy.

Define

Fig= |Fl,q

d
e, =P/ Y|Pl G8)
I=—d

The main algorithm is summarized in Algorithm 2. Here,
the “DataGenerator” is used to filter out the high-energy
contribution. According to the construction of F, and Z, ,,
we have

|Z1.q4 — poexp(—iront)| & |po(Fy(ho) — 1) exp(—iront)

M—1
+ meFq()»m) exp(—iA,,nt)
m=1
_ (=p@.1) po
prd, 1)
This implies that the new data set successfully removes the

high-energy contribution when ¢ < 1 and p,(I,I') =~ 1,
and the solution 8* to the optimization problem in Eq. (39)

should be a good approximation to Ay. We also need a

sequence of data sets {(n‘L_’/,Zn,q) }iv:—01 with an increasing
sequence of {rj}f:1 to shrink and keep the correct esti-
mation interval. Similarly to Algorithm 1, we propose the
choice of 7,1 = 27; (for the precise choice of 7; and J,

see Theorem 3).

B. Complexity analysis

In this section, we analyze the complexity of
Algorithm 2 to show that it can reduce the circuit depth
and maintain the Heisenberg-limited scaling. Define the
expectation estimation error:

En,q = Zn,q - (1/f| Fq(H) eXp(—i”TH) W)

N,
1 s

- ﬁ Z Zk,n,q - IE(Zk,n,q) (39)
5 k=1

and

Gn,q = Zn,q — pPo exp(—ikonr)
= E, 4+ po(Fy(ho) — 1) exp(—iront)

M-1

+ Zkaq()Lk) exp(—iignt).
k=1

Using Eq. (37), we obtain

(1 =p,, 1)) po

G, < |E,
| n,ql <| n,q|+q+ o (1)

By choosing a large N; to reduce the expectation error
|E,. 4|, increasing the quality of the filter to reduce the
approximation error ¢, and assuming p,(/,1") &~ 1, we can
effectively reduce the error G,,. These choices will let
us find a good approximation of Ay by solving the opti-
mization problem. In Algorithm 2, constructing the loss
function contains two steps. First, to construct the eigen-
value filter, the required circuit depth is d = @(D~'). We
then combine the eigenvalue filter with the Algorithm 1
to construct the filtered data set. This increases the circuit
depth to Thax = d + 8/ = O(D~!) 4 /€. To construct a
sufficiently accurate loss function, the number of repeti-
tions is NN, = © (p, *6~+°(). This implies the total
evolution time Ty = © (p(;zé_(””(l)) (D71 +8/€)).
The result is summarized in the following theorem.

Theorem 3 (complexity of Algorithm 2, informal):
Given any failure probability 0 <n < 1, target preci-
sion 0 < € < 1/2, and knowledge of the relative over-

lap p,(I,I') > 0.71, we can set § = @( 1 —pr(l,l’)),
d=8(D"), ¢ = O(ps?), NN, = & (py 26~ M), min
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1: Preparation: Number of data pairs: N; number of samples: Ng; number of iterations: .J;

sequence of time steps: {7;}7_;;
Prepare a rough estimation:

Running:
)\min — T )\max — T
Jje 1L
while j < J do
1

Define loss function L;(r,6)

1 N-1
L]»(rﬁ) = N

n=0

Z | Zn,q — rexp(—i@nrj)|2

Generate estimation intervals of Ao such that \g € I C I’.

> [Amin; Amaz] 1S the estimation interval of Ag

Generate a data set {(n7;, Zn,q)}::[:_o using DataGenerator(r;, d, N;).

(39)

10: Minimizing loss function: (r},07) <= argmin, cc ge(— i Amax] L7 (75 0)-

AR
11: Amin ¢ 07 — %, Amax ¢ 07 + %
12: j—i+1
13: end while
14: Output: 0*

: function DATAGENERATOR(T, d, Ny)
k<« 1;
while k£ < N, do

> Shrink the search interval by 1/2.

> Generate the filtered data set

Generate a random variable r € [—d,d — 1,...,d] with the distribution P(r =1) = §;.

Run the quantum circuit (Figure 1) with t,, = 7 +n7 and W = ST to obtain ffk’n.

Zk,n,q — (Xk,n + il?k,n) exp(i(br,q) (Z

k< k+1
end while N
10: Dng NLﬁ Ek;1 Zin,q-
11: end function

d

j=—d Fj,q

).

1
2
3
4
5: Run the quantum circuit (Figure 1) with ¢, = 7+ n7 and W = I to obtain X}, .
6
7
8
9

Algorithm 2. Multilevel QCELS based ground-state energy estimation with small initial overlap

{N,N;} = SNZ(pO_Z), and J, T; according to Theorem 2 with
T =Nty =6/e. Then,

]P(|(9* — Xo) mod [—JT,JT)| < e) >1-—n,

where 0* is the output of Algorithm 2. In particu-
lar, the maximal evolution time is Tpy =d+8/€ =
@(D_l) + 8/€ and the total evolution time is T =
O (pg 262+ (D71 + §/¢)).

The detailed statement and the proof of this theorem can
be found in Appendix D. This theorem is an analog of
Theorem 2. As a special case, we assume that the spectral
gap A = A| — A¢ is much larger than the precision €. We
can construct [ = [—7, Aprior + A /4], 1" = [—7, Aprior +
3A /4], and D = A /2, where Ayrior 1S a rough estimation of
Ao such that |Ayior — Aol < A/4. Then, Theorem 3 gives
the following complexity estimate.

Corollary 4 (Complexity of Algorithm 2 with a
spectral gap): Given any 0<§ <1, failure

probability 0 < n < 1, target precision 0 < € < 1/2, and
spectral gap A = Ly — ko, we can set d = @(A’L), q=
© (p03?), NNs = © (py 28~+M)), min{N, N} = ©(p, %),
and J, t; according to Theorem 2. Then,

P (|* — x) mod [-7,7)| <€) =1 —n,
In particular, we have:

(a) The cost of preparing the rough estimation (con-
struct  Aprior, 1,1 '): the maximal evolution time
Tax1 = O(A™YY and the total evolution time
Tl = O(A™'pg?).

(b) The cost of constructing the loss function: the max-
imal evolution time Tmaxy = d + 8/ = OA™ +
8/€ and the total evolution time Tipa2 = ©
(po 28~ (A1 + 8/¢)).

In Corollary 4, if € < A, we can choose § = €/A,;
then Tax = maxgmax,la Tmax,Z} ~ Q(Ail) and Tiora =
Tiotal,1 + Ttotal2 ~ O(pg 2Ae~2). This recovers the results
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of [41, Theorem 1.1]. Note that with such a choice of §, the
total cost does not satisfy the Heisenberg-limited scaling.

V. NUMERICAL SIMULATION

In this section, we numerically demonstrate the effi-
ciency of our method using two different models. In
Sec. VA, we assume a large initial overlap and com-
pare the performance of Algorithm 1 with QPE for a
transverse-field Ising model. In Sec. V B, we assume that
the initial overlap is small and compare the performance
of Algorithm 2 with QPE for a Hubbard model. The
Hamiltonian is constructed using the QuSpin package [42].

In our numerical experiments, we normalize the spec-
trum of original Hamiltonian H so that the eigenvalues
belong to [—m /4, w/4]. Given a Hamiltonian H, we define
the normalized Hamiltonian:

TH

H= .
4IH ||

(40)

We then use the QCELS-based Algorithm 1 or Algorithm 2,
as well as QPE, to estimate the smallest eigenvalue of H
and measure the error accordingly.

A. Ising model

Consider the one-dimensional transverse-field Ising
model (TFIM) model defined on L sites with periodic
boundary conditions

L—1 m
H=-— (Zzizm +ZLZI) —g) X, (D
i=1

i=1

where g is the coupling coefficient, Z;, X; are Pauli oper-
ators for the ith site, and the dimension of H is 2-. We
choose L = 8,g = 4. We apply Algorithm 1 (referred to as

10t
(a) - error of QCELS p, = 0.6
error of QPE p, = 0.6
N —e-- error of QCELS p, = 0.8
10° S=y —— error of QPE p;=0.8

—— 0.06/T scaling
~~.__ " — 6n/Tscaling

10t 102 103
TmaX

QCELS for simplicity in this subsection) and QPE to esti-
mate A of the normalized Hamiltonian A [see Eq. (41)]. In
the test, we set pg = 0.6, 0.8 and implement QCELS (with
N =5 and N, = 100) and QPE 10 times to compare the
averaged error. The comparison of the results is shown in
Fig. 4. The errors of both QPE and QCELS are propor-
tional to the inverse of the maximal evolution time (7).
However, the constant factor § = Te of QCELS is much
smaller than that of QPE. Figure 4 shows that QCELS
reduces the maximal evolution time by 2 orders of mag-
nitude, even in this case when py = 0.6 is smaller than the
theoretical threshold 0.71. This suggests that the numerical
performance of QCELS can be significantly better than the
theoretical prediction in Theorem 2. The error of QPE is
observed to scale as 6;r/7. Moreover, the total evolution
time (Tiora1) of QCELS is also smaller (by nearly an order
of magnitude) than that of QPE.

B. Hubbard model

Consider the one-dimensional Hubbard model defined
on L spinful sites with open boundary conditions

L-1
H= —tZ Z C;',(,Cj+1,a

Jj=1oe{t,l}
L
1 1
+ UZ (nj,T — 5) (nj,¢ — 5) .
j=1

Here, ¢, (c;,(,) denotes the fermionic annihilation (cre-
ation) operator on site j with spin o. (-,-) denotes sites
that are adjacent to each other. n; , = cjﬂ ¢j o 1s the number
operator.

We choose L = 4,8, t=1, and U = 10. To implement
Algorithm 2 (also referred to as QCELS for simplicity in
this subsection) and QPE, we normalize H according to

10!
(b) - error of QCELS p, = 0.6
error of QPE p, = 0.6
100] *=o__ --e-- error of QCELS p, = 0.8
“Ssoo. -+ errorof QPEp, =038
w10 X
~ .
5 ) X
S A
= . > X %
U 1g-2 . W
“o.
.~ * r
1073 ey g
it
3
103 10% 10°
Trotal

FIG. 4. QPE versus QCELS in the TFIM model with eight sites. The initial overlap is large (po = 0.6, 0.8). (a) The depth (Tjax)- (b)
The cost (Tiota1). For QCELS, we choose N = 5 and Ny = 100. J and 7; are chosen according to Theorem 2. Both methods have the
error scaling linearly in 1/Ti,.x. The constant factor § = Te of QCELS is much smaller than that of QPE.
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10t
(a) —e- error of QCELS p, = 0.4, p, = 0.79
error of QPE p, = 0.4
10° ~e- error of QCELS p,=0.1,p,=0.77
—- error of QPE p, = 0.1
1071 0.06/T scaling

—— 6n/T scaling

10?2 10° 104 10°

FIG. 5.

10t

(b) —e— error of QCELS p, = 0.4, p,= 0.79
o error of QPE p, = 0.4
10 - error of QCELS p,=0.1,p,=0.77
-+~ error of QPE p;, = 0.1
107!
L 102 w
= . [} '.‘
2 N .
o 1073 4.x\" \
. *“‘K
10~ AN T
\EALT R L,
ey W o.\
105 §
i
*
10° 108 10’ 108
Ttota!

QPE versus QCELS in the Hubbard model with four sites. The initial overlap is small (py = 0.1, 0.4). (a) The depth (Tiax)-

(b) The cost (Tiotar). For QCELS, we choose N = 5 and Ny = |_15p0_ 2 log(d)J. J, 1; are chosen according to Corollary 4. Compared
with QPE, to achieve the same accuracy, QCELS requires a much smaller circuit depth.

Eq. (41) and choose a small initial overlap (po = 0.1, 0.4).
Following the method in Sec. IV, we first use the algorithm
in Ref. [15] to find a rough estimation, Apor, of A9 such
that |Aprior - A0| < D/2, where D is chosen properly so
that the relative overlap p,.(I,I') > 0.75 with intervals I =
[—7, Aprior + D/2] and I’ = [—7, Aprior + 3D/2]. In our
test, we set D = (Ax — Ag)/4 with K = Zlepk > po/3.
We find that the (normalized) relative gap (D) is 0.63
and 0.26 for L = 4,8, respectively. This is significantly
larger than the spectral gap, which is 0.018 and 0.005 for
L = 4,8, respectively.

After obtaining the rough estimation Ao, We construct
the eigenvalue filtering F, according to Ref. [15, Lemma
6] to separate I,I’. Noting that dist(Z, (I')°) = D, we set
d = [15/D] to ensure a small enough approximation error
q. We run QCELS with N = 5 and N, = | 15p;* log(d) |
and QPE 5 times to compare the averaged error. The results
are shown in Fig. 5 (four sites) and Fig. 6 (eight sites).
In both figures, it can be seen that the maximal evolution

10°

time of QCELS is almost 2 orders of magnitude smaller
than that of QPE. The total costs of the two methods are
comparable when py = 0.4 and the total cost of QCELS is
larger than that of QPE when py = 0.1, mainly due to the
increase of the number of repetitions N;. We note that, for
small py, since we first construct the eigenvalue filter F,,
the circuit depth of QCELS is at least d = | 15/D]. Thus,
it is reasonable to choose 7, > d. This directly ensures a
relatively small error (¢ < 1072) in our case. In other cases
when the gap D is large and only low accuracy is needed,
it may be possible to further reduce the circuit depth.

VI. DISCUSSION AND CONCLUSIONS

Due to the relatively transparent circuit structure and the
minimal number of required ancilla qubits, the quantum
circuit in Fig. 1 is suitable for early fault-tolerant quantum
devices and has received significant attention in perform-
ing a variety of tasks on quantum computers. Note that all

(a) —e- error of QCELS p, = 0.4, p,=0.79

* error of QPE p, =04
1 "\ —e- error of QCELS p,=0.1,p,=0.75

10 —- error of QPE p;=0.1

0.08n/T scaling
. —— 6n/T scaling
2 R
—~10 a4

error (€

102

103 104 10°

10°
(b) ~e-- error of QCELS p, = 0.4, p, = 0.79
N error of QPE p, = 0.4
107! - error of QCELS p,=0.1,p,=0.75
-« error of QPE p;= 0.1
—~10"2 S
w [N i
= * )
£ 103 R
[} NN \’o'\
1074 N \¥/ *\ ‘7: L e®
s AR \a'. hY
Safe bt ~
107> .
10° 108 107 108
Ttotal

FIG. 6. QPE versus QCELS in the Hubbard model with eight sites. (a) The depth (Tmax)- (b) The cost (Tigtar).- For QCELS, we choose
N =5and N, = LlSpO_ 2 log(d)J. J and 1; are chosen according to Corollary 4. Compared with QPE, to achieve the same accuracy,

QCELS has a much smaller circuit depth.
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algorithms in this paper (including the filtering algorithm
in Ref. [15]) all use the same circuit and the only differ-
ence is in the postprocessing procedure. This paper finds
that the circuit in Fig. 1 is even more powerful than previ-
ously thought for phase estimation and ground-state energy
estimation, especially when the initial overlap pg, or the
relative overlap p,, is large. The advantage of our method
can be theoretically justified when pg or p, approaches 1.
The numerical results show that even when pg or p, is away
from 1 (e.g., 0.8), our algorithms can still outperform QPE
and reduce the maximal run time (and hence the circuit
depth) by around 2 orders of magnitude.

Viewed more broadly, the problem of postprocessing
the quantum data from the circuit in Fig. 1 is a signal-
processing problem using a simple (complex) exponential
fitting function. Many methods have been developed in
the context of classical signal processing for similar pur-
poses (see, €.g., Refs. [43—46]). We think that at least two
features distinguish the quantum setting from the classi-
cal counterpart: (1) it is a priority to reduce the maximal
run time; and (2) each data point in the signal is inherently
noisy and the total number of measurements needs to be
carefully controlled. While these classical data-processing
methods can be applied to the phase-estimation problem,
we are not yet aware of analytical results demonstrating
the efficiency of such methods in the quantum setting. Such
connections could be an interesting direction to explore in
the future.

When the initial overlap py is small, we combine
QCELS with the Fourier-filtering algorithm in Ref. [15] to
effectively amplify this overlap as shown in Algorithm 2.
Another natural choice is to use the quantum eigenvalue
transformation of unitary matrices (QETU) [13], which is
a more powerful and slightly more complex circuit than
that in Fig. 1, to amplify the overlap with the ground state.
While we demonstrate applications of QCELS-based algo-
rithms to estimate ground-state energies, such algorithms
may be useful in a much wider context, such as esti-
mating excited-state energies and other observables [47].
Simultaneous estimation of multiple eigenvalues using the
same circuit is another interesting topic, which may open
the door for the development of efficient algorithms for a
broader class of quantum systems with small spectral gaps.

Our numerical experiments are available via GitHub
[48].
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APPENDIX A: ERROR BOUND FOR THE
EXPECTATION ESTIMATION

In this appendix, we give a bound for E, defined in
Eq. (31) with respect to N, N;. Recall that

E, = Z, — (Y| exp(—intH) |/)
M-1
=27, — (po exp(—iront) + me exp(—ik,,mr))
m=1

and

N,
I « .
Z, = ﬁs kXZI: (Xk,n + lYk,n) 5
where X;, and Y}, are independently generated by the
quantum circuit (Fig. 1) with different W and satisfy
Egs. (4) and (5), respectively. We also define the average
error term for each 6 as

N—1
— 1
Eo=5 gEn exp(iOnt).

In the following part of this appendix, we prove the
following bounds for £, and Fy:

(a) [Eq. (A4) of Lemma 5] Given 0 < 1 < 1/2, when
min{N7]vS} = Q(log(n_l))a

N—-1

1
IP’—E E, >107) <n. Al
<Nn_0| | > )_n (A1)

(b) [Eq. (AS5) of Lemma 6] Given 0 < n < 1/2and 0 <
p,& < 107, when NN, = Q (§ 2polylog(§'n™")),

IP’( sup  |Eq| > 5) <. (A2)
oelro— 4.0+ 4]

(c) [Eq. (A6) of Lemma 6] Given0 < n < 1/2and 0 <
p,& < 107, when NN, = Q (£ ?polylog(¢~'n7h),

IF’( sup  |Ep —Ej| = pé) <n. (A3)
0elrg— 5.0+ 51

Define Ej, = Xp, + iYin — (Yl exp(—intH) |{). Then,
we have E(E),) = 0 and |Et,| < 2. Using the bound and
independence of {Ey ,}r.,, we can first show the following
lemma.

Lemma 5: Given 0 < n < 1, then

1= 2 21In(1/7)
IP’(NZ|En|>m+,/ i T

n=0
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Proof of Lemma 5. First, since E, = 1/N; ZkNil Eip, wWe
have

E(E,) =0, E(E) < (E(E?)" <

5

|Eal < 2.

Since {|E,|} are bounded by 2 and independent of each
other, according to Hoeffding’s inequality, we have

( Z|E|— NXiE(|E|)>3)<eXp( Nz‘sz).

Lemma 6: Given 0 < n < 1/2 and p > 0, then

— 8/ N;N 1
P sup |E9| > (4x/§10g1/2 (—) + p)
0elro—b.ro+ 4] n

and

P sup Ey
0elro— .20+ 5]

Proof of Lemma 6. For 61,6, € [Ag — p/T, 1o + p/T], we

have
N-1
_ — 1 ) .
|E9| —E92| < v E E, (exp(i6nt) — exp(ifnt)
n=0

N—-1
1 .
<~ D2 2sin((01 — 02)n/2)]

n=0
<101 — 6T,

where we use |E,| < 2 in the last inequality. This implies
that Ey is a 7-Lipschitz function in 6.

Now, we first consider the tail bound of Ey for fixed
0 €lro—p/T, Ao+ p/T]. Write

N—1Ns—1

Z > anm + by,

nOml

where

nm = XmaRe (exp(ifnt)) — Y, ,Im (exp(i0nt))

Combining this inequality with E (|E,|) <2//N, and
choosing § = /2 In(1/n)/N, we prove Eq. (A4). |

We note that the magnitude bound in Eq. (A4) of Lemma
5 is stronger than what we need in the analysis of the opti-
mization problem given in Eq. (10). Intuitively, for fixed
6, with high probability, we have |Eg| = O (1//NN,),
which is a much better bound than Eq. (A4). However,
we cannot directly use sub-Gaussian properties in this case
since 6 is not fixed in the optimization process. On the
other hand, we expect that when N, N, are chosen properly,
0* should belong to a tiny interval around X, meaning that
it is not necessary to give a uniform bound for |F9| for all
0. In particular, to control the effect of the error term, it
suffices to bound ]EG‘ when 0 is close to 1. This bound is
stated in the following lemma.

m) <1 (A5)
~Fol2 (4ﬁlog1/2 (8—;VN) " 1) W’J_N) <y (A6)

(

and
by = Xy plm (exp(i&nt)) + Y, ,Re (exp(ifnt)) .

It is straightforward to see that {a,,,,} are independent ran-
dom variables with zero expectation and |a,,,| < 2. Then,
according to sub-Gaussian theory, for any & > 0, we have

2
>$)<2exp< ]\;Ss )

Similar bounds also hold for {b,,}. Thus, we obtain that,
for any & > 0,

nOml

— NN, &2
P(|Ey| = &) < 4exp (— d )
32
Given any € > 0, we can find a set of |2p/Te] points

{9'}\_20/7“5]

i such that for any 6 € [Ag — p/T, Ao + p/T],
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there exists i such that |9; — 0| < €. Because E, is T-
Lipschitz, we have

]P’( sup |FQ|ZS+TE)§]P’ sup |E@i >&
O€lo—.20+4] 1<i<| 2]
8p NNE?
<—exp|l—=]).
Te 32

Choose € = p/Ty/N,N and & = 4+/2log'? (8/N;N/n)
1/+/NsN; hence we prove Eq. (A5).

Next, to prove Eq. (A6), we first consider the tail bound
of Eg — EAO for fixed 0 € [Ag — p/T, Ao + p/T]. Write

N—1Ns—1

_ 1 _ _
Ey _E)»() = NN Z Z Ay + lbn,m,
n=0 m=1
where
anm = XmaRe (exp(ifnt) — exp(ilont))
— Y Im (exp(i@nt) — exp(ilont))
and

bym = Xy pIm (exp(int) — exp(iront))
+ YunRe (exp(i@nt) — exp(ilont)) .

Note that {a,,} are independent random variables with
zero expectation and |a, | < 2np/N. Then, according to
Hoeffding’s inequality, for any & > 0, we have

2
]P’( Zé>§2exp<—%).

Similarly to before, we finally have

N—1Ns—1

1 _
TR

n=0 m=1

IP’( sup |E9_EAO|2€+T€)
oelro— 4.0+ 4]

<P| sup |Es|=¢
1<i| ]
8p NN&?
< —exp|— .
Te 32p2

Choose € = p/Ty/N,N and & = 4+/2log'’? (8/N;N/n)
p/~/NsN; hence we prove Eq. (A6). |

APPENDIX B: PROOF OF THEOREM 1

For convenience of later discussion, we define a constant

a=1+ ( max sin(c)

) ~ 1.217.
ce(0/21 T + ¢

(B1)

In this appendix, we prove the following theorem.

Theorem 7 (complexity of QCELS): Let 6* be the solu-
tion of Eq. (10), let o be defined in Eq. (Bl), and let
T =Nt and py > 0.71. Given the depth constant 0 <
8 <4 and the failure probability 0 <n < 1/2, if § =
O (/1 — pg) and N, N, satisfy

NN, = Q (8~ polylog (log(¢ "Hn™")).

min(N.N) = Q@olylog (1), 7=, (B2)
then
P (|(9* — Ag) mod [—n/r,n/r)| < %) >1—n.

We note that Theorem 1 is a direct corollary of Theorem
7. The proof of Theorem 7 contains two steps. We first
use the bound of the expectation error in Appendix A to
show a proposition that induces a rough-complexity esti-
mation to an iteration in Algorithm 1. Then, we use the
rough-complexity result as a prior estimation and study the
loss function more carefully to obtain a sharper complexity
estimation.

1. Rough estimate

The rough-complexity estimation is stated in the follow-
ing proposition.

Proposition 8: Let 6* be the solution of Eq. (10), let o be
defined in Eq. (Bl), and let T = Nt and py > 0.71. Given
the depth constant 0 < § < 4 and the failure probability
0 < n < 1/2, if there exists a small enough number & > 0
such that

Do < 8 co.s(8/10) (B3)
(I4+a)pg—a—§& — 2sin(§/2)
and N and N; satisfy
NN, = Q (£ *polylog (67 'n7")),
min{N, N;} = Q(polylog (n’l)), (B4)

then

P (|(9* — o) mod [—7/7,7/T)| < %) >1—1.
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According to the proposition, we can choose §, N, and
N according to the inequality in Eq. (B3). First, we use
the parameter & in Eq. (B3) to represent an upper bound
of “|E,|” [defined in Eq. (31)] and N and N, are chosen
according to the results in Appendix A so that E, satisfies
this upper bound. Second, when § is very small, to make
sure that p satisfies Eq. (B3), we need py = 1 — O(5?),

J

which implies Eq. (32) in Theorem 1. Finally, the lower
bound py > 0.71 comes from Eq. (BS8), later in the proof
of Proposition 8. More specifically, to obtain Eq. (BS), we
need po/((1 + ) po — a — 1073) < 2, which implies py >
0.71.

We first rewrite the loss function given in Eq. (9). Note
that for any fixed 9,

2

N-1 M-1
1
max L(r,0) = — Z o exp(i(0 — Ao)nt) + Z P €xp(i(0 — Ap)nT) + E, exp(iOnt)
n=0 m=1
N-1 M—1 2
— ‘N Zpo exp(i(6 — Ag)nt) + me exp(i(@ — A,)nt) + E, exp(iBnt)
n=0 m=1
V- M—1 2
=¥ po exp(iront) + me exp(iAmnt) + E, exp(iOnt)
n=0 m=1
1 N—-1 M—1 2
- v > [po exp(i(0 — ho)nt) + > pmexp(i(0 — hp)nt) + E, exp(i@nr):| .
n= m=1

This means that minimizing L(7, #) is equivalent to maximizing the magnitude of the following function:

M-1

N—1
. Pm . E, .
@ = Z |:exp(z(9 — Ag)nt) + Z p_o exp(i(@ — Ay)nt) + p_o exp(z@nt):|

n=0 m=1

_ exp(i(@ — Xo)Nt) — 1
exp(i(@ — Ag)T) — 1

Define

N—1
— 1
Eq = v X_;E,, exp(ifnt).

Now, we are ready to prove Proposition 8:

Proof of Proposition 8. Define R, = |(A,, —0*)T mod
(—m,m]| for 0 <m < M — 1. We separate the following
proof into three steps. In the first step, we give a lower
bound for “|f (A¢)|”. Then, we give a loose upper bound
for Ry, using the fact that |f (6%)| > |f (Ao)|. Finally, we
improve the bound to §/7.

Step 1: Lower bound for “|f (Lo)|”

N po exp(i(6 — Am)NT) — 1

N-1

= py exp(i(0 — Ap)T) — 1

E, .
+y o exp(int). (B5)

n=0

(

Using Eq. (E4) in Appendix E 2, we have

exp(i(ho — A7) — 1 ‘

exp(i(hg — Ap)T) — 1

M-1
. Pk
lim |f(#)] = N — —
9—))»0 ; po

_ |EAO|N
Po

> (1 C@— iz M)N (B6)
Po Po

Step 2: Loose upper bound for Ry
We claim that for « in Eq. (B1),

TPo
(1+a)py— o — (|Eg»

RN < ( (B7)

+ |E\0’))‘

If the claim does not hold, note that

2
lexp(i(hg — 6%)7) — 1| = [25in(Ro/2)| = =Ro.
T
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Combining this with Eq. (E1) in Appendix E 1,

= Do | Bl
9*
If 09 < — —
RO zsz m Po
S( b4 1 —po IEe*I)N
RoN Po Po

1— E
<<l—(a—l) pO—M>N
Po bo

< Jim 7 @),

where we use RoN > mpo/ ((1 + o) py — o — (|Eg+|+
|E;, 1)) in the second last inequality. This contradicts to
the fact that |f (6*)| is the maximum. Thus, we must have
Eq. (B7).

Step 3: Improve upper bound to §/T with probability
1—n

Define 8 = po/((1 + @) po — @ — &). First, combin-

ing the second inequality of Eq. (B4) with Eq. (A4) of
Lemma 5 [or Eq. (A1)], we have

P (|Ey-

+ |E;| > 107) < n/2.

When |Eg+| + |E;,| < 1073, according to Eq. (B7), we
have Ry < JTpo/(((l +a)py — o — 10_3) N). Also, plug-
ging p = po/(((1 + a)po — @ — 107?)) into Eq. (A5) of
Lemma 6 [or Eq. (A2)] and using the first inequality of
Eq. (B4), we have

P sup  [Eg| = £/2) < n/2,
Oelro— 4.0+ 51

Combining the above two inequalities, we have
P (|Eo+| + |Esgl = §) <.

Then, to prove Eq. (34), it suffices to show that Ry < §/N
when [Egs| + |E;, | <&.

When |Eg«| + |E;,| < &, using Eq. (B7), pp > 0.71, and
the fact that £ is small enough (¢ < 1073), we further have

R < PO =ﬂ<2_77
"= O+apy—a—EN N N

(B8)

Since [(exp(iON) — 1)/(exp(if) — 1)| = |sin(N6/2)/
sin(6/2)|, from Eq. (B5) we also have

N sin(NRy/2) 1 —po &
0 — | N B9
et = (NSin(Ro/z) Po - 2170) (59
and
. l—-po &
Fe9=(1—(—-1 N = 11m If ©)I.
P 2p
(B10)
Combining Egs. (B9) and (B10), we have
sirll(NRo/Z) - A4+a)py—a—§ _ ]X BI11)
sin(Ry/2) Do B

Note that

sin8/2)  _ 2sin@G/2N _ N
sin(3/(2N)) ~ cos(8/2N)S — B’

where we use sin(8/(2N)) > cos(§/(2N))§/(2N) in the
first inequality and 8 < & cos(8/10) /2 sin(6/2) in the sec-
ond inequality. Hence

Sin(VRo/2) __ sin(N3/(2N))
sin(Ry/2) ~ sin(§/(2N))

Finally, because sin(Nx)/sin(x) is monotonically decreas-
ing in (0, 7/N], we have

(B12)

1)
ROSN

This concludes the proof. |

2. Refined estimate

According to Proposition 8, Eqgs. (B3) and (B4), when
8 — 0, we should set & ~ O(872) and NN, ~ O(8™%)
to ensure Tm.,x = 6/€. Thus, we cannot directly prove
Theorem 7 using Proposition 8. We need to reduce the
scaling of N and N; with respect to § .

The main idea is to use a different way to bound
the expectation error E,. To achieve a better bound for
the error term, instead of bounding Eg+ and E\O sepa-
rately, now we can bound the difference of these two
error terms using Eq. (A6). Intuitively, when 6* and Ag
are close to each other, it is likely that these two error
terms will cancel each other when we compare the dif-
ference between |f (6*)| and |f (A9)|. This intuition is
justified by Eq. (A6) of Lemma 6. Assume that we
already know [(0* — Ag) mod [—7/7,7/7]| < §/T; then
NN, > O (8% 2) suffices to guarantee |Egy — Ej 4| > &
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with high probability. Formally, comparing this require-
ment with the first inequality of Eq. (B4), we can reduce
the blow-up rate to O(§72) when § — 0, which matches
the condition in Theorem 7. However, the above calcu-
lation assumes that |(6* — Ag) mod [—7/t,7/7]| < &/T,
which is unknown to us in prior. To overcome this diffi-
culty, we need to use an iteration argument to achieve the
desired order. We first show the following lemma to start
our iteration.

Lemma 9: Given 0 <§ <4 and 0 < n < 1/2 and defin-
ing T = Nt, assume that the condition of Proposition § is
satisfied. If there exists 0 < & < & such that

Do _ 8 cos(6/10)
<ﬁa + 1>po — V20— V2(& +£8/2)  2sin(/2)
(B13)

and
NN, = (8%, polylog(¢'n™")), (B14)

then there exists 8new € (0,38) such that

P <|(9* — Ao) mod [—JT/‘L',7T/‘L’]| < 81;‘”) >1-—n,

where 8pey, is the unique solution to the following equation:

Po
(V2a + 1) po = V2 = VIE + Ebren/2)
N sin(8pew/(2N))
T SinGaen/2)

(B15)

Proof of Lemma 9. Define Ry = (A9 — 0*)T mod(—m,
7]]. Similarly to the proof of Proposition 8, we have

) _ _
P<Ro < ﬁ) >1—n/4, P(|Eep|+|Es| = &) <n/4

Combining Eq. (A6) of Lemma 6 (setting p = §) with
Eq. (B14) and pg > 0.71, we have

P sup |E9 —Ex0| >& ) <n/2
elho—S.ho+31
Thus, with probability 1 — n, we have
) — — — —
Ro< 5o [Eol +1Esgl <& [Eo —En| <.

(B16)

From Eq. (B16), it suffices to prove [(68* — X¢) mod
[—7/7,7/T]| < bnew/T.

Because 6* is the maximal point, using Eq. (B5) and the
result in Appendix E 2, we have

N-1 M-1 N-1
) . Pm exp(i(r,, —0*)Nt) — 1 E, s
exp(i(hg — 0%)nt) + — - + — exp(—if*nt)
; P 2 o expliGhn — 69)7) — 1 §0 p T
M-1 N-1
0 eXp(iGin — A)NT) — 1 E, .
>[N+ Pm exp(l(. 0)NT) + Z — exp(—iigT) (B17)
= po expi(hm —2o)T) =1 “=po
N-1
E, 1 —
> N+ Y 2 exp(—iror)| — (@ — D—22N.
Po
n=0

Also, using Eq. (B16), we have

N-1
> exp(i(ho — 0%)nt) +

N2 b exp(i(hm — 09NT) — 1

N—-1

2= py exp(iiy — 69)7) — 1

E, .
+ Z p_o exp(—if*nt)
n=0

n=0
N—-1 N-—1
E, 1—
<D explitho — 0%n) + Y = exp(—iront)| + Poy 4 Sty
n=0 n=0 Po p Po
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) N—1
RN /2 E, -
_ SII?( 0 / ) exp (lR()(N _ 1)/2) + Z . exp(_i)\,ont) —+ pON + é]v
sin(Ry/2) ‘= Po Po Po
. N—1
RoN /2 E, 1 - 8/2
- s1r.1( oN/ )+Z—exp(—ikonr) n poN+€1+€ / N
sin(Ro/2)  “= po Do Do
in(RoN/2) E 1— §/2
_ s1n(.o /2) | Ex p0N+§1+S/N, (B18)
N sin(Ry/2) Po Do Po

where we use |Eg« — Ej,| < po£ in the second inequality and |exp (iRo(N —1)/2) — 1| <8/2 and |¥ 0 ) E,

exp(—ikonr)‘ < NE& in the last inequality.

Let
N—1

> E,exp(—irgr) = N |Ey, | (cos(0x) + isin(Bp)) ,

n=0
where F,\O =1/N Zivz_ol E, exp(—iiont). Then |E\0] <& < po/m < po/2N (sin(RyN /2))/(sin(Ry/2)) according to the
second inequality of Eq. (B16) and the estimates in Eqs. (B17) and (B18) can be combined to obtain

i — 2 — 2
(sm(RoN/Z) Bl eE)> . (% Sm(gE)> L al—po) + (& +£/2)
0

\ \Vsin(Ro/2) — po Po
(B19)
.| C (1Bl 2
> 1+ Pl cos(Bg) | + Pl sin(0g) | .
\ Po Po
/
Because (N/ (x+a)?+ b2> > 1/+/2 when x,a,b > 0 and x + a > b, we obtain
Bl A 2
(1 4 2ol cos(eE)) + (A sin(eE))
Po Po
in(RoN/2) | |E (IE ’
sm(Ro 2 r| .
— (& e [
(N sin(Ro/2) + 7 cos( E)) + < 2 sin( E))
sin(RoN /2) 1
>l - — ) —,
= Nsin(Ro/2) ) 2
where we set a = |E ?»()| cos(fg) and b = |FM)| sin(0g). Plugging this back into Eq. (B19), we obtain
sinGRoN/2) _ (V24 1) o — 2 = V261 +68/2) 50

Nsin(Ry/2) — Po
According to Eq. (B13), we first have

sin(8/2) 2sin(8/2) (ﬁa + l)po — V2 — V2(51 + £8/2)
Nsin(8/2N)) ~ 8cos(3/10) 2 :

Thus, there exists §; < & such that

an/2) (VI 1) po — vVia — V3 +85/2)

Nsin(8;/(2N)) Po
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Using a similar argument as in the proof of Proposition 8, we have |Ry| < 8;/N. Then, similarly to the previous argument,
we can improve Eq. (B20), meaning that Ry should satisfy the following inequality:

sin(RyN/2) _ (ﬁa + l)po — V20 = V261 +£81/2)

Nsin(Ro/2) —

Because

Po

(V2 + 1) po = V2u = V26 +881/2)  (VEa+1)po—V2u = V2E+E8/D ings, 2

>
Po

there exists §, < §; such that

sin(8,/2)

Do ~ Nsin(8;/(2N))’

(ﬁa n 1) Po— 20 — N2(E + £8,/2)

Nsin(3,/2N))

Po

and |Ry| < 8,/N. Doing this recurrently, we finally have |Ry| < 8pew/N, Where

sin(Spew /2)

N $in(8new/(2N))

Finally, because /;(x) = sin(x/2)/N sin(x/(2N)) is a con-
cave function (x € [0,]) with /;(0) = 1,4}(0) = 0 and

o) = (V2 + 1) po = v/2a = /2061 + Ex/2) [po s
a linearly decreasing function with 0 < A,(0) < 1, 8pey 1S
the unique solution satisfying Eq. (B15). |

Equation (B14) provides a direction for reducing the
scaling of N and N, with respect to 4. If we ignore Eq. (B3),
to guarantee a short depth §,cw/€, we can choose § ~
Snews € ~ Snew, and & ~ (Sﬁew; then, it suffices to choose
NN, ~ @(én‘e%,v). This gives us the desired order. However,
the previous argument cannot be directly applied because
we also need & = O(8%) and NN, = Q(£72) according to
Egs. (B3) and (B4). These two requirements would bring
back the original §..% dependence on NN;.

Even the previous argument cannot be applied directly;
we can still use Lemma 9 to improve the scaling with
respect to § in the following way. According to Lemma
9, for fixed small §,ew, according to Eq. (B13), to make the

depth smaller than 6,y /€, we should choose

£ =0 (min{8 new}), & = O (0ny),

new

forall 1 <i < M. Then, according to the first inequality of
Egs. (B4) and (B14), we set

= 2 2s-2
NN, = © (05123}_1 {672, 8%; })-

(ﬁa + 1) Po— V20 — V2(E) 4 ESnen/2)

Po

(

Minimizing this in §, &, and & with fixed 8;, a proper
choice of these parameters should be

E=0(), 6§=0(2,), 8 =@(a§ew).

This choice of parameters would reduce the blow-up rate
of NNj to 5} (81;%53> when 8.y — 0. Using a similar argu-

ment as before, we can apply Lemma 9 repeatedly. In each
iteration, we can slightly reduce the scaling of NN, and the
final scaling can be O(§~2+°(1), This iteration process can
be carried out using the following lemma.

Lemma 10: Given 0 <3 <4, 0 <n < 1/2, define T =
Nt. Given an integer M > 1, a decreasing sequence
(&M, with small enough &, and a decreasing sequence

{6:4M,, assume that the condition of Proposition 8 is
satisfied with &€ = &y and § = §y. If

NN, = (87633 polylog(ME 10~ ) (B21)

and
Po
<\/§0! + 1)P0 — V20 — V2(Ei1 + £08i41/2)

- i1 €08(8;41/10)
2sin(8;11/2)

(B22)
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forall0 <i <M — 1. Then,

. )
IP’<|(9* — %9) mod [—r/7,7/7]| < 7M> >1—n.
(B23)
Proof of Lemma 10. First, according to Lemma 9 and

Proposition 8, the conditions in Eqgs. (B21) and (B22)
ensure that

IP(|(9* — Xo) mod [—7r/7,7/7]| < ‘%‘) >1—1n/2,

P (IEg+| + |E;o| = &) < n/8.

Combining the second inequality of Eq. (B21) with
Eq. (A6) of Lemma 6, we also have

Eo —Ex| =& | < 1

P
P =3 =)

0elro— o+

Thus, with probability 1 — (3n/4 + n/(4M — 1))), we
have

Ry < !
< —,
Y

|Eg+| + |Ex,| < min{&, 1073},
|Eor — Esy| < &

Similarly to the proof of Lemma 9, we have

P (|(0* — Ap) mod [—7T/‘L’,7'[/‘L']| < 8‘“’“’)

T
3

=1 (2 ),
4 Tam -

where pey 1 the unique solution to the following equation:

Po
(V2a + 1) po = V2 = V2(& + obren /2)
_ Nsin(8new/(2N))
SIN(Spew/2)
Because
Po

(V2a +1) po = v/2a = V(& + £082/2)

_ 8,¢08(5:/10)  Nsin(8,/(2N))
T 2sinG,/2) | sin(./2)

we must have §; > 8,0 and

P <|(0* — Ag) mod [—n/t,n/t]| < %)

3n n
Zl_(TJF4(M—1)>'

Combining this with the second inequality of Eq. (B21)
(i = 2), with probability 1 — 3n/4 + n/2M — 1))), we
have

A = =
Ro< o Bl + Bl <. [Eo =By <&,

which implies

33

P (\(9* — Ap) mod [—7/7,7/7]| < ?)

3n n
21‘(Z+m>'

Doing this repeatedly, we finally obtain Eq. (B23). |
Now, we are ready to prove Theorem 7.

Proof of Theorem 7. For fixed decreasing sequence {8;}/

with small enough 8y, according to Egs. (B3) and (B22), to

make the depth smaller than §,, /€, we need
(1+v2a)(1 —pp) = O (min {33}) :
£ = O (min{5,8,})), &=0(8), (B24)

for all 1 <i <M. The first equation implies that the
smallest §,, that we can choose is

Sy = O(/T— po).
According to Egs. (B4) and (B21), the last two equations
of Eq. (B24) imply that

MM=§Q£ng%%m%%ﬁD. (B25)

Minimizing Eq. (B25) in {8;};', (£}, with fixed 8y, a
proper choice of these parameters should be

2—(1/2;\;
£=0 (3}), 8 =0 (51\24—(1/2) ) ,
for 0 < i < M. Thus, to ensure that

P (|(9* — xo) mod [—7/7,7/7]| < 8%) >1—n,

_ 4
we can choose NN, = Q <3M2_(1/2)M polylog(M§),'n~!

P ATH). Set ¢ = 5 hence we conclude the

1.
2M 2 (1/2)M >
proof. |
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APPENDIX C: PROOF OF THEOREM 2

In this appendix, we prove a rigorous version of
Theorem 2 as follows.

Theorem 11 (complexity of multilevel QCELS): Let
0* be the output of Algorithm 1. Given py > 0.71, 0 <
n<1/2, 0<e<1/2 and small ¢ > 0, we can choose
8 according to Eq. (32). Let

J = [log,(1/€)] + 1,
8

T = 2j—1— rlogz(l/e)]
J Ne 5

vVi<j<J

and
NN; = © (5~ polylog (log(¢ ™) log(eHn ™)),
min{N, Ny} = Q(polylog (log(e "n™")).
Denote 0* as the output of Algorithm 1; then
P(|©* —2)| <€) =1—n.
In particular, we have

)
Tmax :NTJ = >
€

J

Tio = y_N(N — N,7; /2
j=1

e (polylog (logc ™) lOg(E‘l)n‘1)>

§1+¢e

Proof of Theorem 11. To prove Theorem 2, it suffices to
prove that for each fixed j,

k) ) ]
P(roelor——— 0+ —1|)<1-21
7 Nt/ Nt J

We prove this by induction. First, let j = 1. According to
Theorem 7,

(Ch)

P(y(e; — %o) mod [—7/71,7/71]| < %) >1— ;

Because 7 = 2~ [1002(/915/Ne < §/N < 1/4, we have
/Ty > 7. Then,

. 8 U
IP’<|91 — X <?) z 1=

Assume that Eq. (C1) is true forj = K — 1, meaning that

P{ie |6z ) 0F_, + )
0 K—1 NTK—I’ K—-1 Ntg_i
> 1 — u
- J

Using Theorem 7 again, we have

) )
P <)»0 € |:91’§1 T Nl Ok + N—TK_11| ﬂ Ck)

Kn
>1——, (C2)
where
8 2cm 1) 2cm
Cr = 0f — —+ —,05 + —+ —|.
k CGL![K N‘L’K+ K K+NTK TK:|
Noting that tx = 2tx_ and §/N < 7/4, we have
21 46 b4
—_—— — > —
K N‘L’K K
Since 0} € [0F_, — 7/Tx,0%_, + 7 /7], we obtain
0% ) 05+ )
K—1 NTKfl’ K—1 NTK71
() Ck = |6k S o 4
k= |Yk-1 NTK—I’ K-1 Ntg_i
() |6x O pryd
K ]\/Y'L'K7 K NTK '
Combining this with Eq. (C2), we obtain
) ) Kn
Plrel|lf——,00+—1|)>1— —,
(O [K Ntg K+NTK]>_ J
which concludes the proof. |

APPENDIX D: PROOF OF THEOREM 3

In this appendix, we prove the following rigorous ver-
sion of Theorem 3.

Theorem 12 (complexity of Algorithm 2): Given small
¢ > 0 and the failure probability 0 < n < 1, assume that

§=0 (w/l —p,(],]’)) and p,(I,1') is close enough to 1.
Letd = ©(D~'polylog(p, '67")), ¢ = ©(pes?),

)

J=[log,(1/e)| +1, 7 = zf'*lfﬂogz(l/eﬂN ’
' €

Vli<j=J,
and
NN, = Q (py 28~ *polylog

x (log(z " loge YD 'y~ py 1),
min{N, N;} = Q(p&zpolylog (log(e‘l)D_lr]_l)).
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Then,
8
P (|(9* — &) mod [—7/7,7/7]| < ?> >1—n,

where 0 is the output of Algorithm 2. In particular, to
construct the loss function,

Tmax = d + /€,
x (log(¢™") log(e D'~ "py ") (d + 8/6)) .

Tiotal = O (pg 28~ * “polylog

Define F = Y0, ‘I:"l,q‘. Since F, in Algorithm 2 is

chosen according to Ref. [15, Lemma 6], we have F =
O (log(D~'polylog(g~"))). Then, similarly to the proof of
Theorem 11 (in Appendix C), to prove Theorem 12, it
suffices to show the following theorem, which gives us
the complexity of one step of the iteration with a general
choice of 7, I’, and F,.

Theorem 13: Given small { > 0 and the failure proba-

bility 0 < n < 1, assume that § = ® <‘/1 —p,(l,[’)) and

that p,(I,1') is close enough to 1. Set ¢ = @ (pys?),
NN; = Q (py 26+ F2polylog(log(c )i ~'py ' F))
min{N, Ny} = Q(p, >Fpolylog (n~' F)).

Then,
]P(|(9* — xo) mod [—7/7,7/7]| < %) >1—7, (D)

where 0% is defined in Eq. (39) (with T, = T).

Define
N—1

Ep = % ZE”»‘I exp(ifnrt),
n=0
where £, ; is defined in Eq. (40). Similarly to the large-po
setting, we first give a bound for the expectation error £, ,
in the following lemma.

Lemma 14: Assume that g < 1. Given 0 < n < 1/2 and
0 < p, & < 10m, then:

(@) When min{N, N} = Q(po—erz log(n~' F)),

n=0

N—1
1
P (ﬁ > Engl > 0.001p0> <. (D2)

(b) When NN, = Q (p, 262 F?polylog(¢ ~'n~'py ) F),

P sup  |Egg] Zpoé) <n.  (D3)
Oelro— 4.0+ 51

(c) When
7o F)),

NN, = Q (p°py *& > Fpolylog(é~'n~!

P ( sup |E0,q - Eko,q| ZPOS) <. (D4)
0elro— 500+ 41

Proof of Lemma 14. The proof is very similar to that of
Lemmas 5 and 6 after noting that £, , = 1/N; ZkNi1 Zing —
E(Zk,n,q) and |Zk,n,q| =< F.

Before proving Theorem 13, we first prove a result that
is similar to Proposition 8.

Lemma 15: Define T = Nt and assume that p,(I,1)
is close enough to 1. Set q= ©(pys?). Given ©

(,/1 —p,(],]’)) <8§<4, 0<n<1/2 Ifthere exists a

small enough number & > 0 such that

1 - 8 cos(5/10)
1 —&—682/200 — 2sin(8/2)

(D5)

and

NN, = Q (py 262 F?polylog (¢ 'n~'py ' F))
min{N, N,} = Q (p, *Fpolylog (n~'F)), (D6)

then
8
P <|(9* — Ao) mod [—n/r,n/r]| < }> >1-—n, (D7)
where 6% is defined in Eq. (39).

Proof of Lemma 15. Ry = |(Ag — 0*)t mod (—m, ]|.
Recall that

Gy = Zng — poexp(idont)
= Euq +po(Fy(Xo) — 1) exp(—iront)

M—1

+ Y PrFy(p) exp(—irent)
k=1

and

(1 = p.(1,1") po

G4l < |E
|Gngl < |Engl +9+ 1)

(D8)

020331-24



EVEN SHORTER QUANTUM CIRCUIT FOR PHASE ESTIMATION

PRX QUANTUM 4, 020331 (2023)

Note that

N—1
min —Z‘an—rexp( anr)]
n=0
V=l

= re%HQIéR ﬁz |p0 exp(—itont) + Guq — rexp(— 19nr)|

N—1

1
- reC 96R N Z

n=0

2
- exp(—ifnt)| .
Po

Gng
exp(—iiont) + —=
Po

Similarly to the proof of Proposition 8, this minimization
problem is equivalent to maximizing the magnitude of the
following function in 6:

N—

Z —= exp(z@nr)

=1

exp(i(@ — Ao)N1) — 1
exp(i(6 — rg)T) — 1

(v

Finally, similarly to the proof of Proposition 8, because

sin(8/2) _ 2sin(8/2)N
Sin(3/(2N) — 8cos(3/10) —

1) =
(D9)

N—

Z

=1

nt)| +

<N(1 — & — §%/200),

we have P (Ry < §/N) > 1 — n, which implies Eq. (D7).
|

Similarly to the discussion in Appendix B, we cannot
directly prove Theorem 13 using Lemma 15. We need to
use a different way to bound the expectation error E, , to
reduce the scaling of N, N; with respect to §. First, we show
the following lemma, which is similar to Lemma 9.

Lemma 16: Define T = Nt and assume that p,(I,1') is
close enough to 1. Given © ( 1 —pr(l,l/)) <86§<4,0<

n < 1/2, and small enough & > 0, assume that Lemma 15,
Egs. (D5) and (D6) hold and there exists 0 < & < & such
that

1 S cos(6/10)
1 — V2(& +£8/2 4 82/200)  2sin(8/2) |

Let © (./1 - p,(l,[f)) < Spew < 8 satisfy

1 < Snew €0S(Onew/10)
1 — V2(E) 4 E8new/2 + 62.,/200) —  25in(Snew/2)

(D10)

First, using Egs. (D2) and (D6),

P <|En,q|
Po
Combining this with Eq. (D8), ¢ = ®(py?), and the
assumption that 1 — p,(I, ") is small enough, we can

have
P (lGn,q|
Po

When |G,4|/po < 1073, similarly to the proof of Propo-
sition 8, we have Ry < 7w /0.9N. This implies that, with
probability 1 — n/2,

> 5% 10—4) <n/2.

> 103) <n/2.

[Gnal o5, Ry < T
Po 09N~

The second inequality gives us a loose bound for Ry. Com-
bining these two inequalities with Eq. (D3) (p = 7/0.9),
the first inequality of Eq. (D6), and ® ( 1—p, 1T ) <
8 < 4, we further have

> §2/200 + s) <.

If g = ©(pody,,) and
NN, = Q (p, 8% > Fpolylog (¢, 'n~'py ' F)), (D11)

then

]P’(|(9* — Ag) mod [—n/r,n/r]| < Sl;w) >1—n.

Proof of Lemma 16. Define Ro = |(A¢p — 0*)T mod
(—m,m]|. According to Lemmas 14 and 15, we have
PRy <8/N)>1—n/4and

P (B

+ |Eso| = po§) < n/4.

Combining Eq. (D4) of Lemma 14 with Eq. (D11), we

have

P sup  |Eg — Ex| = po&1 | <n/2.
0elro—3.00+5]
Thus, with probability 1 — 5, we have
1) — _
Ry < v |Eg« — Ejy| < po (D12)
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and

|Eg| + [Es| < poé.

It suffices to prove that |(8* — Ag) mod [—n /7,7 /7]| < 8*/T, assuming Eqgs. (D12) and (D13).

Because 6* is the maximal point of Eq. (D9), we have

Z me (M) exp(i(@* — Ap)NT) — 1

L py expl(O — A7) — 1

where we use ¢ < po8%2/1600 and (1 — p.(I,1'))/p,(I,I') < §*/800 in the last inequality.

Also, using Eq. (D12), we have

NEg*

me (}"m) eXP(l(e* m)NT) -1
Z Po exp(i(0* — An)T) — 1

N—-1

sin(RoN /2)

sin(Ry/2) —

sin(RyN / 2)
sm(Ro /2) + Z

IA

exp(zkont)

where we use |Egr — E;| < po£1 in the first inequality
MMW%WAWwammﬁlﬂm

n=0 Po
(iront)| < NE in the second inequality.
Assume that
N—1
> " E,exp(iror) = N |Ej| (cos(Op) + isin(6r))
n=0

where E,, = 1/N Y ' E, exp(iront).

Note that |Ey,|/po < & < 1/m < 1/2N(sin(RyN/2))/
(sin(Ry/2)) according to the second inequality of
Eq. (D12). Then,

. ol 2 E 2
(SlngRoN/z) n |E)~o| COS(@E)) 4 <M SIU(QE)>
Do Po

N sin(Ry/2)

Z

+ & 4+ £8/2 4+ 8%/200

_ — 2
(l + — |E | cos(fg )> <| | sin(fg ))
\ Po
(D14)

I
Because (N/ x+a)?+ bz) > 1/+/2 when x,a,b > 0 and

x + a > b, we obtain

Zs,| © (B ’
<1+ ol o0 )) (&sin(eE))
Po Po

A%

. E, .
=|—— " exp(Ry(N — 1)/2) + > o exp(ilont)

(D13)
- N—-1
NE E, 8°N
>IN + — exp(irpnt)| — ——,
Po | gpo ’ 400
Ze (i(6* A)r)+2 e (il t)+82N+§N
Xp(z — n — €XpUArgn —_—
P 0 pliro 400 !
LGS
400 " !

+ (& + £8/2 + 82/400)N,

(

~ (sin(RoN/z) N E,,|

0s(0g) 2 + @sin(e ) 2
NsinRo/2) © po £ Po g
i} (1 B sin(RoN/2)> !

Nsin(Ro/2) ) 2’

where we see thata = |Ex0 | cos(fg)and b = |EAO | sin(fg).
Plugging this back into Eq. (D14), we obtain

sin(RoN /2)

2
W—l_‘/_(51+§3/2+8 /200).

(D15)

According to Eq. (D10), we first have

sin(§/2) 2sin(5/2)
Nsin(8/(2N))  &cos(8/10) =

— V2(& + £58/2 + §2/200).

Thus, there exists §; < § such that

sin(81/2) 5
= 1 — V2(§ +£8/2 + §2/200).
N sin(d;/N)) (&1 + 88/ /200)
Using a similar argument as in the proof of Proposition 8§,
we have |Rg| < §;/N. Then, similarly to the previous argu-
ment, we can improve Eq. (D15), meaning that Ry should
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satisfy the following inequality:
sin(RyN /2) 5
A e N ) 81/2 + 67/200).
N sin(Ro/2) ~ (&1 +§81/2 + 87/200)

Because

1 — V2(& +£81/2 + 87/200) > 1
sin(8;/2)

5 _ smlor/2)
— V2(E + £8/2 + §2/200) = N sin(8;/(2N))’

there exist 8, < &; such that
sin(8,/2) )
— = 1-v2 81/2 + 87/200
N en®,/ @) V2(& +£81/2 + 61/200)

and |Ry| < §,/N.Because A (x) = sin(x/2)/N sin(x/(2N))
++/2x2/200 is a concave function (x € [0,7]) with
h(0) = 1A (0) = 0 and hy(x) = 1 — ~/2(§, + £x/2) is a
linearly decreasing function that satisfies 0 < 4,(0) < 1, if
Snew Satisfies

C) (W) < Spew < &
and

Sin(Snew /2)
N $in(Goen/ 2N))

2 sin(8pew/2)
Snew €0S(Bnew/10)

— V2(&) 4 E8nen/2 + 82,,/200),
(D16)

<1

we must have [Ry| < Spew/N. |

Similarly to Appendix B, the next step is to do the
iteration using the following lemma.

Lemma 17: Define T = Nt and assume that p,(I,1') is

close enough to 1. Given 0 < n < 1/2, an integer M >

1, a decreasing sequence {Si}f.‘i o With small enough &,

and a decreasing sequence {Bi}f.‘i o With 80 < 4 and 6y >

® (1/1 —pr(l,l’)>, assume that &y,80, N, N, satisfy the
conditions in Lemma 15. If ¢ = ©(p83,),

NN, = Q (p, 28781 F polylog (M&.\n""'py ' F))
(D17)
and
1 _ 8i+1008(8:11/10)

1= V21 + £08i11/2+ 82,/200) ~ 2sin(8i41/2)
(D18)

forall0 <i <M — 1. Then,

IP’<|(6* — o) mod [—n/r,n/t]| < 5—;:’) >1-n.
(D19)

Proof of Lemma 17. First, according to Lemmas 15 and
16, we have

]P<|(9* — o) mod [—n/r,n/r]| < 8%) >1—n/2,
P (|Ee+| + |Exy| = poko) < n/4.

Combining Eq. (D17) (i = 1) with Eq. (D4) of Lemma 14,
we obtain

|Eo — Exy| = pota | < T

P
SP Sam -

belro—Fro+ ]
Thus, with probability 1 — 3n/4 + n/(4(M — 1))),

)

Ry < v |Eg«| + |Ey| < poko,  |Eox — Esy| < poko.

Similarly to the proof of Lemma 16, these inequalities
imply that

P <|(9* — &) mod [—7/7,7/7]| < 8“;W>

3n n
21_<T+4(M—1)>’

where 8pey 1S the unique solution to the following equation:

1 _ Nsin(pen/N))
1 - «/5(52 + E08new/2 + 82.,,/200) ©sin(Bnew/2)
Because
1 _ 8, cos(6,/10)
1 — V2(& + £8,/2 + 82/200) ~  2sin(8,/2)
N sin(8,/(2N))
sin(8,/2)

we must have 8, > 8w and

P <|(9* — Ao) mod [—7/7,7/7]| < %)

3n n
=1 (3 qarn)

Combining this with the second inequality of Eq. (D17)
(i = 2), with probability 1 — (3n/4 +n/2WM — 1))), we
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obtain

5 - _
Ry < v |Eg+| + [Esy| < pofo, |Eex — Esg| < poés,

which implies that

P <|(9* — Ao) mod [—7r/7,7/7]| < 5%)

3n n
1_< +2(M—1))

Doing this repetitively, we prove Eq. (D19). |
Now, we are ready to prove Theorem 13.

Proof of Theorem 13. According to the conditions of
Lemma 17, the smallest §,, that we can choose is

(ﬂ(‘/l — p,(I,P)). For a fixed decreasing sequence

{8, according to Eqgs. (D5) and (D18), to make the
depth smaller than §,, /€, we should choose

§ = O (min{s3,8u)), &=0(57),
forall 1 <i < M. Then, according to the first inequality of

Eq. (D6) and Eq. (D17), we set

NN, = Q
§ <0<r12213( 1 {po

’p() 28 g1-1-1 }>

Minimizing Eq. (D20) in {§; }l 0 ,{5,}1 o, with fixed 8y, a
proper choice of these parameters should be

(D20)

2—(1/2)!
E=0(2), 8=0 (52 “/2>M>
for 0 < i < M. Thus, to ensure that

]P’<|(9* — o) mod [—7‘[/1’,7T/‘L’]| < 57M> >1—n,

we can choose

4

NN, = Q (8 - polylog(M$8,,'n~ po 1]:)>

Set ¢ = hence we conclude the proof. |

2M 2— (1/2)M’

APPENDIX E: ADDITIONAL ESTIMATES
1. Properties of | (exp(i0NV) — 1)/(exp(if) — 1)| when
0 €|0,t/N]

In this appendix, we show that |(exp(iO6N)—1)/
(exp(i0) — 1)] is a decreasing and concave function when
0 € [0,7/N].

First, we have the bound

N-1
exp(idN) — 1 ‘ o
=y e <.

exp(if) — 1 (ED

j=0

To study the other properties of this function, we write it
as

exp(iON) — 1|  |sin(6N/2)
exp(i0) — 1 | | sin(6/2)
Then, it suffices to study the function
sm(9N )
g0) = 6 € [0,7/(2N)].
s1n(0)

When N = 2, we obtain g(6) = 2 cos() is decreasing and
concave when 6 € [0, 7 /4]. Note that

sin(6N)
sin(0)

sin((N — 1)6)
sin(6)

= cos((N — 1)6) + cos(0)

Because cos((N — 1)0) and cos(0) are decreasing and con-
cave functions when 6 € [0, 77/(2N)], using an induction
argument, g(#) is also a decreasing and concave function
when 6 € [0, /(2N)].

2. Lower bound for limy_,,, |f (#)| when N > 2
First, note that

exp(i(ho —0)T) — 1

im - =N.
029 exp(i(Ag — 0)7) — 1

Then,

M—1
(Ao — A —1
lim Re(f (9)) = N + Re( 3 £k SXPUto = 20 T)
60— ko = Po exp(i(hg — Ap)T) — 1

E
— —N,
Po

which implies that
egrgo If (@) zelin; Re(f (6))
i — —1
N+ Re Z Pk eXp(l.()»o A7)
= poexp(i(ro — A0)7) — 1

E
— —N.
Po

(E2)

Let o = 1 + maxce(o,x/21 sin(c)/(w 4 ¢) be defined as in
Eq. (B1). Now, we prove the claim

Re <exp(i0N) -1

@) = exp(if) — 1

) > —(ax—1)N.
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Assume not, meaning that there exists 6 such that

g(0) < —(@ = DN; (E3)

then, similarly to the argument in Appendix E I, we first
have |0| < 272/3N < 7. Note that

() = [cos(NO) — 1][c~os('9“) — 1]+ sill(Ng) sin(9)
(cos(8) — 1)? +sin®(9)
_cos((N — 1)§/2) sin(N§ /2)
N sin(9/2)

1 sin((N — 1)8) cos(8/2)
2 sin(6/2)

_ Lsin(@V — 1)8) cos(9/2)

=2 sin(6/2)

=cos’((N — 1)8/2) +

Since g (é) < 0, we must have (sin((N — 1)5))/sin(5/2) <
0, which implies that |0] > /(N — 1). Let ¢* = (N —
1)|6| —m;then 0 < ¢ < /2 and

1 sin(c) sin(c*)
g @)] = Yancrmen -1y =V VIS

sin(c)
<N -1 max R
ce(0,/21 T + ¢

where we use tan(f) > 6 when 0 € [0,77/2] in the sec-
ond inequality. This contradicts the assumption in Eq. (E3).
Thus, we musthave g(6) > — (maxce(/2) sin(c) /(7w + ¢))
N = —(o — 1)N, which finally implies that

1 — E
po —) N.  (E4)
Po Po

Jim |f @)1 = <1 — (@1
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