PHYSICAL REVIEW LETTERS 130, 220404 (2023)

Cross Entropy Benchmark for Measurement-Induced Phase Transitions

Yaodong Li ,1’2 Yijian Zou,2 Paolo Glorioso ,2 Ehud Altmaln,3 and Matthew P. A. Fisher®'
'Department of Physics, University of California, Santa Barbara, California 93106, USA
2Department of Physics, Stanford University, Stanford, California 94305, USA
3Departmem‘ of Physics, University of California, Berkeley, California 94720, USA

® (Received 9 January 2023; accepted 16 May 2023; published 1 June 2023)

We investigate prospects of employing the linear cross entropy to experimentally access measurement-
induced phase transitions without requiring any postselection of quantum trajectories. For two random
circuits that are identical in the bulk but with different initial states, the linear cross entropy y between the
bulk measurement outcome distributions in the two circuits acts as an order parameter, and can be used to
distinguish the volume law from area law phases. In the volume law phase (and in the thermodynamic limit)
the bulk measurements cannot distinguish between the two different initial states, and y = 1. In the area law
phase y < 1. For circuits with Clifford gates, we provide numerical evidence that y can be sampled to
accuracy ¢ from O(1/¢?) trajectories, by running the first circuit on a quantum simulator without
postselection, aided by a classical simulation of the second. We also find that for weak depolarizing noise
the signature of the measurement-induced phase transitions is still present for intermediate system sizes. In
our protocol we have the freedom of choosing initial states such that the “classical” side can be simulated
efficiently, while simulating the “quantum” side is still classically hard.
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Introduction.—QOpen quantum dynamics can host a rich
phenomenology, including a family of measurement-
induced phase transitions (MIPTs) in the scaling of
entanglement along quantum trajectories in monitored
systems [1-7]. The MIPT is a basic phenomenon in
many-body quantum dynamics and occurs generically in
a number of different models [8-26], yet its experimental
observation can be challenging, even on an error-corrected
quantum computer, due to the so-called ‘“‘postselection
problem.” Quantum trajectories are labeled by the meas-
urement history m, whose length is extensive in the
spacetime volume V' of the circuit; thus, the number of
possible trajectories m is exponential in V, but they each
occur with roughly the same probability. On the other hand,
one needs multiple copies of the same m in order to verify
any quantum entanglement; and then many different m to
perform a proper statistical average. On a quantum simu-
lator there is no general recipe for producing such copies
other than running the quantum circuit many times and
waiting until the measurement results coincide (“postse-
lection”). Naively, O(e") runs of the circuit are required,
thus severely restricting the scalability of such experiments.
Nevertheless, in an impressive recent experiment that
carries out postselection [27], the MIPT is observed on
small scale superconducting quantum processors.

The exponential postselection overhead has previously
been shown to be avoidable in two cases. First, when only
Clifford circuits are considered, the entanglement can be
verified by “decoding” the circuit, either through a full
classical simulation within the stabilizer formalism [28] or
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via machine learning [29]. With machine learning the
authors claim that “decoding” is possible also beyond
Clifford circuits, although this has yet to be explored in
detail. Second, when the nonunitary (monitored) dynamics
is a spacetime dual of a unitary one [30-32], postselection
is partially ameliorated, and correspondences between
unitary dynamics and monitored dynamics can be made.

Here, we propose a resource efficient experimental
protocol for verifying the MIPT in random circuits by
estimating the “linear cross entropy” (denoted y) between
the probability distribution of (bulk circuit) measurement
outcomes m in two circuits with the same bulk but different
initial states, p and . Closely related quantities have been
discussed previously [33]. In particular, as we establish,
both numerically and analytically, in the thermodynamic
limit the linear cross entropy (when suitably normalized) is
1 in the volume law phase, and equals a nonuniversal
constant smaller than 1 in the area law phase. Thus, the
MIPT can also be viewed as a phase transition in the
distinguishability of two initial states, when the bulk
measurement outcomes are given. In particular, the two
initial states become essentially indistinguishable when
measurements are below a critical density.

The definition of y includes contributions from all
samples of m, and to estimate y no postselection is
involved. However, as we discuss below, estimating y
usually requires an exponentially long classical simulation,
thus not scalable. Below, we show that when the classical
simulation becomes scalable in Clifford circuits, y can be
efficiently sampled by running the p circuit on a quantum
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simulator, aided by a classical simulation of the & circuit.
We provide numerical evidence that y is an order parameter
for the MIPT (i.e., y = 1 in the volume law phase and y < 1
in the area law phase).

By choosing the circuit bulk to be composed of Clifford
operations and ¢ to be a stabilizer state, the protocol is
scalable on both the quantum and the classical sides.
Nevertheless, unless p is also a stabilizer state, the p circuit
output state is still highly nontrivial and hard to represent
classically. More broadly, our protocol represents a general
—although not always scalable—approach for experimental
observations of measurement-induced physics that does not
reduce the quantum simulation to a mere confirmation of a
classical computation; see recent examples in Refs. [36-39].

In [35] we consider one nontrivial aspect of the output
state in the volume law phase when the p circuit is not
efficiently classically simulable, namely the bistring dis-
tribution when all qubits are measured, and found quali-
tative differences from the Porter-Thomas distribution.

Linear cross entropy and order parameter.—We con-
sider the “hybrid” circuit shown in Fig. 1, composed of
unitary gates on nearest-neighbor qubits arranged in a
brickwall structure, and single-site measurements in the
bulk, performed with probability p at each qubit within
each time step. By convention, each time step contains
L/2 unitary gates. Different from the usual setup [9], we
have an additional “encoding” stage before the hybrid
evolution for time fencoqing = 2L, following Refs. [5,34].
The reason for this somewhat unusual choice is practical: to
get a clearer experimental signal of the MIPT [35]. We call
the evolution after the encoding stage the “circuit bulk,”
which lasts for another #,,;, = 2L. The total circuit time
isT = Tencoding + tou = 4L.

Cm = PmNP

my—y** % MN_Np+1

Here, each line contains all quantum operations in one
circuit time step, and N is the total number of measure-
ments, which is proportional to the spacetime volume of the
circuit N « pV = pLT. The corresponding probability of
obtaining m is given by

P = Py (3)

We define similar quantities for a different initial state o,
O = C,,,aCj},, (4)

pS, = tro,,. (5)

With these, we define the (normalized) linear cross entropy
of the circuit between the two initial states as

T my gt My NNy 1

tout = 2L d:::] 2-qubit random unitary
Lencoding = aL %

—

1-qubit Pauli measurement
with probability p

1 pore |
X

FIG. 1. The layout of the hybrid circuit considered in this
Letter. Different from the usual setup [9], we have an additional
“encoding” stage before the hybrid evolution for time
fencoding = 2L, following Ref. [S]. We call the evolution after
the encoding stage the “circuit bulk,” which lasts for another
fpuik = 2L. The total circuit time is T = fepcoding + foux = 4L We
will compare two different initial states p and o (left unspecified
for the moment) undergoing the same circuit evolution.

For concreteness, we take all the measurements to be in
the Pauli Z basis. Given a circuit layout (as determined by the
brickwork structure and the location of measurements) and
the unitary gates in the bulk—which we denote collectively
as C—the unnormalized output state is defined by C and the
measurement record m = {my, m,, ..., my} as

Pm = mpcjn’ (1)

where p is the initial state of the circuit, and C,,, is the time-
ordered product of all the unitaries and projectors in the
circuit, written schematically as

UT_I * P

mN_NT_NT—l “'PmN_NT_NT—l_NT—ZJrl * UT—2"' (2)

Here, for fixed choices of p and o, after averaging over m,
xc only depends on the circuit C, and we have explicitly
included this dependence in our notation (while keeping the
dependence on p and o implicit). Finally, we take its
average over C,

P . c
m PP
x=Ecxc= Ec% (;lg )"21~ (7)

It was previously pointed out [7] that a quantity closely
related to —Iny corresponds to the free energy cost after
fixing a boundary condition in a (replicated) spin model
[6,7,40,41]; in [35], we provide a similar calculation for our
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circuit. From this derivation we expect 1 — y = e~?(%) for
large L in the volume law phase (p < p.),and 1 —y > Oin
the area law phase (p > p.), even as L — oo.

The physical meaning of y is clear: it quantifies the
difference between the probability distributions over meas-
urement histories for the two initial states. In the volume
law phase, y = 1 implies the impossibility of distinguish-
ing different initial states from bulk measurements due to
the “coding” properties of this phase (i.e., the dynamics in
the volume law phase generates a “dynamical quantum
memory” [4,5,42-45]). Intuitively, in the volume law
phase, local measurements are so infrequent that it extracts
little information about the initial state, as the information is
sufficiently scrambled by the random unitaries. The code
breaks down when p is increased past the transition, and y
saturates to a finite, nonuniversal constant strictly smaller
than 1. In this phase, information about the initial state
leaks into the measurement outcomes.

We now outline a protocol for estimating y, which is
similar to the linear cross entropy benchmark for random
unitary circuits [46,47]. Then we discuss its limitations
when applied to the MIPT and how to overcome them in
case of a stabilizer circuit.

General setup.—Consider running the circuit with initial
state p (“the p circuit”) on a quantum simulator. From the
simulation we obtain a measurement record m, an event
that occurs with probability p},. Given m we can perform a
classical simulation with the initial state ¢, and calculate the
corresponding probability pg,. Repeating this M times, we
obtain a sequence of probabilities {py, . pm,s---Pim,, }-
Their mean converges to the numerator of Eq. (6):

mepm. (8)

The denominator of Eq. (6) can be estimated similarly,
with a separate classical simulation, by running the ¢ circuit
M’ times and computing the mean of probabilities {p7, }.

This way we get

. I ¢
(P ), = i g 2 P, =

lim (p?,, )

! m
M' -0 =1 &

= lim > g = SR ()

Jj=1 m

Both equations above are well-defined, and in this protocol
each run of the circuit is used, so no postselection is
required. This should lead to a general protocol for
experimentally probe MIPTs, although a full classical
simulation is still necessary, and the experimentally acces-
sible system size will be limited by the power of classical
simulation.

To obtain a scalable protocol, we first focus on the case
where ¢ is a stabilizer state, and the circuit bulk C,, i
composed of stabilizer operations (Clifford gates and Pauli
measurements) [48-50]. At this point we do not put

constraint on p. In this special case, the denominator of
Eq. (6) can be computed exactly in polynomial time,
without doing any sampling as in Eq. (9) [35]. Thus, we
may rewrite Eq. (6) as

C:pr”z 19(3;6)2’ (10)

and in analogy with Eq. (8),

O L ML

For each run of the p circuit, we obtain the measurement
2 . .
record m; and compute [p7, />, (p)?] in polynomial

time, and take its mean over runs. Since the circuit is
Clifford, the new “observable” [pf, /=, (pf)?] is either O

or 1 for a given m [35], and this average converges quickly
with increasing M. In particular, since this is a binary
random variable, the variance of the samples should decay
as M~'/2 for a given C. Thus, for a fixed circuit M scales as
1/€%, where ¢ is the error of the estimation of y.. We also
see that y. is always bounded between O and 1. This is a
property special to Clifford circuits.

Numerical methods and results.—We first take p to be a
stabilizer state, while keeping ¢ another stabilizer state. As
we explain in [35] now y . in Eq. (10) admits a closed form
expression that does not involve any summation over m.
This allows an exact calculation of y. without the need of
performing any sampling, at the cost of introducing N extra
qubits that record the measurement history. These qubits
are usually called “registers.”

A further simplification occurs when p is obtainable
from ¢ via erasure or dephasing channels, so that the N
register qubits can also be dispensed with [35]. We will
focus on this case below, where the numerical simulation is
most scalable so that we can confidently extrapolate the
results to more general choices of p.

In Fig. 2(a), we plot y = Ecyc for p = (1/25)1 and
o = (]0)(0])®L, which satisfies the condition above. The
data show a clear “crossing” of y near the transition,
confirming our expectation that y is an order parameter for
the MIPT. Indeed, in the large L limit and for p < p., ¥
approaches unity, demonstrating that the distributions of
measurement outcomes become equal, independent of the
initial state. Moreover, data collapse in Fig. 2(d) shows
good agreement to a standard scaling form, with numerical
values of the location of the transition p, and of the critical
exponent v close to previous characterizations of the
MIPT [9].

An important practical parameter is the number M [51]
of circuit samples needed to estimate y within a given
accuracy, in particular their scaling with the system size.
By the central limit theorem, given independent samples
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FIG. 2. (a) Numerical results for y- when averaged over 300 Clifford circuits in the bulk (denoted by E.), with the initial states

p = (1/25)1 and ¢ = (|0)(0|)®L. Here, for each C, the calculation is exact, and M can be thought of as infinity in Eq. (11). Inset:
collapsing the data to a scaling form, with parameters p. and v close to those found near the MIPT in entanglement entropy [3,9]. (b),(c)
The behavior of y when depolarizing noise is present in the p circuit. As we see, at noise rate ¢ = 0.1% (b), there is still evidence
for a phase transition, although the location of the transition has shifted from p, ~ 0.16 to p. = 0.14. At noise rate 1% (c), there is no
crossing, and any signature of the phase transition is completely washed out. (d),(e) The convergence of the sample average

iy, = (Mc)™! Z;W:CI Xc, 10 x = Ecyc with increasing number of circuit samples M. For each of L € {64,128}, we plot o3,

E[(upm, — x)*] for M < 500, whereas y is estimated using M = 2000 circuits. The results are consistent with the central limit theorem;
see Eq. (12). From this plot we see that sample variance is suppressed by large L when p < p,, and is independent of L when p > p..
This justifies our choice of a relatively small M. that is independent of the system size.

{Cﬁy[:cl}, the sample average uy,. = (1/M¢) Zjv:cl Xc, con-
verges to y at large M as follows:

(12)

e = Ellum. —2)?) o< (M)~

with an overall amplitude that converges to the variance of
xo 02 lrc) = Eclre] = (Eclrc])? In Figs. 2(d) and 2(e) we
compute 0%46 numerically at two different system sizes L
and at different locations of the phase diagram. Our results
confirm Eq. (12), and by fitting the overall amplitude we
find that 62 [y ] is suppressed by large L in the volume law
phase p < p,. (as consistent with y — 1), and saturates to
an L-independent constant (~0.1) for p > p. Together
with our previous discussion on M (number of runs per
circuit C), these results justify our choices of relatively
small M- and M that are independent of system sizes; see
Figs. 2 and 3(a) below.

We also consider the effect of depolarizing noise occur-
ring randomly in the p circuit with probability ¢ per qubit
per time step, whereas the o circuit is still taken to be
noiseless. The setup is to mimic an experimental sampling
procedure where we run the p circuit on a quantum
processor subject to noise, whereas our supplemental
classical simulation of the ¢ circuit is noiseless. The
depolarizing noise acts as a symmetry-breaking field in
the effective spin model [6,7,30,31,52-55] and in its
presence the MIPT is no longer sharply defined.
Nevertheless, evidence of the MIPT may still be observable
if the error rate is small compared to the inverse spacetime
volume of the circuit, as we see in Figs. 2(b) and 2(c).

Next, we take p to be a nonstabilizer state, and o to be a
stabilizer state. In particular, we choose a state with |0) and

|T) on alternating sites, p =&/} (|0)(05,; ® |T)(T]y),
where |T) = (1/3/2)(|0) + ¢#/*|1)) is a magic state. We
still take the other initial state to be o = (]0)(0])®~.
Based on our calculations [35], we expect y to exhibit
similar behavior as in Fig. 2. This is confirmed in Fig. 3(a),
where we follow the sampling procedure in Eq. (11). In
particular, for a given C, we take L € {8,12,16}, and
sample M = 100 measurement trajectories, and compute

Clifford
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FIG. 3. (a) Numerical results of y for initial states p :®iL:/ 12

(|0)(0]5;,_; ® |T)(T|,;) and & = (]0)(0|)®" obtained from ran-
dom Clifford circuits. Here, M- = 300 circuit realizations are
taken for each L, and for each circuit, we use M = 100 runs to
estimate y ., following Eq. (11). Compared to Fig. 2(a), the results
are qualitatively similar, despite a different choice of initial state
and smaller system sizes. (b) Numerical results of y for initial
states p = (|4)(+|)®L and o = (]0){0])®L obtained from ran-
dom Haar circuits. Here, M~ = 150 circuit realizations are taken
for each L, and for each circuit we estimate Eqgs. (8) and (9)
separately, using M = 3200 runs each.
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(Pou | >om (Pm)?) mxc. We then take the ave-
J=1 P

rage over many different choices of C, namely
Ec(plw /D m (p2)?) ~Ecyc. We observe a crossing
J=1 P

of y at roughly the same value of p. in Fig. 2(a). The
system sizes that we accessed are limited by classical
simulations of the p circuit [59], but we hope larger system
sizes can be achieved on near-term quantum processors.

Finally, to test the validity of our approach beyond
Clifford circuits, we calculate y in circuits with random
Haar unitary gates for p = (|+)(+|)®" and ¢ = (|0)(0])®".
Here, we have to estimate the normalization of y. [see
Eqgs. (6) and (9)] separately. To obtain plots with compa-
rable accuracy as those from Clifford circuits, the number
of runs per circuit needs to be at least an order of magnitude
larger (for system sizes up to L = 16) due to the additional
numerical uncertainty in the normalization. Our results are
shown in Fig. 3(b), with an overall trend consistent with a
phase transition.

Discussions.—Our protocol requires a simulation of
many instances of the random hybrid circuit with mid-
circuit measurements, and for each instance O(1/&?)
trajectories to estimate the cross entropy to accuracy e.
This should be a task of similar complexity to Google’s
simulation of random unitary circuits [47], except that here
we do not make measurements on the output state but in the
bulk. However, different from that experiment, for observ-
ing the MIPT it suffices to focus on Clifford circuits, for
which the classical simulation is not hard. This protocol is
thus as scalable as the quantum processors. Our protocol
does not require extra quantum operations, and is flexible in
the choice of the initial state. The signal for the phase
transition persists at L = 40 for sufficiently weak (~0.1%)
depolarizing noise. Thus, we hope this protocol might be
achievable on existing or near-term devices.

If the circuit is not composed of Clifford gates, our
protocol is expected to require exponential classical resour-
ces. It is presently unclear whether it is in fact possible to
probe the MIPT beyond Clifford circuits with polynomial
resources [29].

Although the classical simulation is chosen to be easy for
practical purposes, in our protocol the quantum simulation
is classically hard for a generic choice of the initial state,
which would result in a highly nontrivial output state. Our
numerical results in [35] suggest that sampling measure-
ment outcomes on the output state of the quantum
simulation is classically hard in the volume law phase.
Whether this can be used in practice for demonstrating
quantum advantage is not known, due to apparent need of
postselection in order to sample from this distribution.
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